WO2022131783A1 - Thick steel plate having high-strength and high-ductility, and manufacturing method therefor - Google Patents

Thick steel plate having high-strength and high-ductility, and manufacturing method therefor Download PDF

Info

Publication number
WO2022131783A1
WO2022131783A1 PCT/KR2021/019052 KR2021019052W WO2022131783A1 WO 2022131783 A1 WO2022131783 A1 WO 2022131783A1 KR 2021019052 W KR2021019052 W KR 2021019052W WO 2022131783 A1 WO2022131783 A1 WO 2022131783A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
cooling
thick steel
high strength
Prior art date
Application number
PCT/KR2021/019052
Other languages
French (fr)
Korean (ko)
Inventor
김효신
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2022131783A1 publication Critical patent/WO2022131783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the present invention relates to steel for shipbuilding, and more particularly, to a thick steel material having high strength and high ductility characteristics and a method for manufacturing the same.
  • Patent Document 1 Korean Patent Publication No. 10-0340547
  • One aspect of the present invention is to provide a thick steel material capable of securing high ductility as well as high strength at the same time despite a thick steel material having a certain thickness, and a method for manufacturing the same.
  • the subject of the present invention is not limited to the above.
  • the subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
  • a thick steel material having a microstructure of high strength and high ductility composed of air-cooled ferrite, water-cooled ferrite and segmented pearlite.
  • Another aspect of the present invention comprises the steps of preparing a steel slab having the above-described alloy composition; heating the steel slab in a temperature range of 1050 to 1200 °C; manufacturing a hot-rolled steel sheet by finishing hot rolling the heated slab; and cooling the hot-rolled steel sheet at a cooling rate of 5-7°C/s to a temperature range of 650-750°C,
  • the cooling provides a method of manufacturing a thick steel material having high strength and high ductility, characterized in that the cooling water is poured and then the pattern of not watering is repeated twice or more.
  • the high-strength and high-ductility steel of the present invention has the effect of being advantageously applied as steel for shipbuilding.
  • FIG. 1 shows a microstructure photograph of a conventional steel for shipbuilding.
  • Figure 2 shows a microstructure photograph of the invention steel according to an aspect of the present invention.
  • FIG. 3 is a schematic diagram of a cooler to which water cooling can be applied.
  • FIG. 4 shows a coolant spray pattern of a cooler to which water cooling can be applied.
  • (a) shows a conventional continuous cooling pattern
  • (b) shows an example of a coolant spray pattern according to the present invention.
  • the inventor of the present invention has studied in depth to obtain a steel material having high strength and high elongation characteristics in order to achieve excellent impact resistance properties of the material in providing a thick steel material suitable as steel for shipbuilding.
  • the present invention provides a thick steel material of a certain thickness or more suitable as steel for shipbuilding, and in addition to the optimum alloy composition of the thick steel material, it is possible to provide optimal process conditions advantageous for forming the intended structure during steel manufacturing. Confirmed, and came to complete the present invention.
  • the thick steel material having high strength and high ductility is, by weight, carbon (C): 0.14 to 0.17%, silicon (Si): 0.2 to 0.5%, manganese (Mn): 0.9 to 1.2%, Aluminum (Al): 0.015 to 0.04%, niobium (Nb): 0.005 to 0.015%, titanium (Ti): 0.005 to 0.02%, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less may be included.
  • the content of each element is based on the weight, and the ratio of the tissue is based on the area.
  • Carbon (C) is an element advantageous in securing strength by causing solid solution strengthening and bonding with Nb in steel to form carbon nitride.
  • C may be included in an amount of 0.14% or more, but if the content is excessive, the strength of the steel is excessively increased, which is not preferable because it causes a decrease in the elongation. In consideration of this, the C may be included in an amount of 0.17% or less.
  • the C may be limited to 0.14 to 0.17%.
  • Silicon (Si) is an element that contributes to the deoxidation of steel during steelmaking and improves the strength of steel through solid solution strengthening.
  • Si may be included in an amount of 0.2% or more, but when the content is excessive, the strength is excessively increased, which is not preferable because it causes a decrease in elongation. In consideration of this, the Si may be included in an amount of 0.5% or less.
  • the Si may be limited to 0.2 to 0.5%.
  • Manganese (Mn) is an element that effectively improves strength through solid solution strengthening of steel and improvement of hardenability.
  • Mn may be included in an amount of 0.9% or more.
  • the Mn may be included in an amount of 1.2% or less.
  • the Mn may be limited to 0.9 to 1.2%.
  • Aluminum (Al) is an effective element for deoxidizing steel, and may be included in an amount of 0.015% or more to ensure cleanliness of steel. However, if the content is excessive, the fraction of Al 2 O 3 inclusions increases, and the size thereof becomes coarse, which causes deterioration of the toughness of the steel. In consideration of this, the Al may be included in an amount of 0.04% or less.
  • the Al may be limited to 0.015 to 0.04%.
  • Niobium (Nb) is an element advantageous to forming a fine structure and improving strength by precipitating as a solid solution or carbon nitride to suppress recrystallization during rolling or cooling.
  • Nb may be included in an amount of 0.005% or more.
  • C carbon affinity
  • the Nb may be included in an amount of 0.015% or less.
  • the Nb may be limited to 0.005 to 0.015%.
  • Titanium (Ti) is an element contributing to toughness improvement by inhibiting grain growth by combining with nitrogen (N) in steel to form Ti nitride (TiN).
  • Ti may be included in an amount of 0.005% or more.
  • coarse precipitates are formed, which may act as a factor of destruction.
  • the solid solution Ti remaining after not bonding with N in the steel forms Ti carbide (TiC), thereby inhibiting the toughness of the steel.
  • the Ti may be included in an amount of 0.02% or less.
  • the Ti may be limited to 0.005 to 0.02%.
  • Nitrogen (N) is an element that effectively contributes to the refinement of the structure by combining with Nb or Ti in steel to form a nitride.
  • the content In order to sufficiently obtain such an effect, it may be included in an amount of 0.002% or more. However, if the content is excessive, it may impair the surface quality of the steel sheet, so it may be included in an amount of 0.008% or less in consideration of this.
  • the N may be limited to 0.002 to 0.008%.
  • Phosphorus (P) 0.02% or less
  • Phosphorus (P) is an impurity that is unavoidably mixed in steel, and when its content exceeds 0.02%, it causes grain boundary segregation and causes steel embrittlement.
  • the P may be limited to 0.02% or less, but 0% may be excluded in consideration of the unavoidable level.
  • S is an impurity that is unavoidably mixed in steel, and when its content exceeds 0.005%, it combines with Mn in the steel to form non-metallic inclusions such as MnS, thereby impairing the properties of the central portion of the steel thickness.
  • the S may be limited to 0.005% or less, but 0% may be excluded in consideration of the unavoidable level.
  • the steel of the present invention may further include at least one of Mo and Cr as follows in order to more advantageously secure the physical properties of the steel.
  • Molybdenum (Mo) is an element advantageous for increasing the hardenability of steel and improving the strength of steel.
  • Mo Molybdenum
  • Chromium (Cr) is dissolved in austenite during reheating of the slab to increase the hardenability of steel and contribute to securing the strength of steel. If the content of Cr is excessive, there is a risk that the toughness and weldability of steel may be deteriorated, and thus Cr may be included in an amount of 0.05% or less in consideration of this.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the thick steel material of the present invention having the above-described alloy composition has a microstructure composed of ferrite and a pearlite composite structure, and in this case, the pearlite is preferably segmented pearlite segmented to a predetermined size (see FIG. 2 ).
  • the ferrite is preferably composed of air-cooled ferrite and water-cooled ferrite.
  • the present invention can secure ductility and toughness by forming air-cooled ferrite to secure high ductility as well as high strength, and secure strength and toughness by forming water-cooled ferrite.
  • segmented pearlite of a certain size preferably a maximum length of 50 ⁇ m, rather than a pearlite phase having a general band (layered) structure.
  • the air-cooled ferrite and the water-cooled ferrite preferably have an area fraction of 80% or more (excluding 100%) in total. If the sum of the fractions of the air-cooled ferrite and the water-cooled ferrite is less than 80%, it may be difficult to secure a desired high ductility.
  • the average grain size of the air-cooled ferrite and the water-cooled ferrite is 12 to 30 ⁇ m.
  • the average grain size of the ferrite exceeds 30 ⁇ m, it becomes difficult to secure a target level of strength as a coarse ferrite phase is excessively present.
  • the size is less than 12 ⁇ m, there is a fear that the elongation may be lowered as the strength is too high.
  • the air-cooled ferrite and the water-cooled ferrite include equiaxed ferrite (polygonal ferrite), while acicular ferrite (accicular ferrite) is not included.
  • the segmented pearlite may be formed parallel to the rolling direction. In this case, if the maximum length exceeds 50 ⁇ m, brittle fracture becomes easy when an external force is generated, thereby causing a decrease in elongation.
  • the segmented pearlite preferably has a length of 50 ⁇ m or less, and preferably contains an area fraction of 20% or less (excluding 0%).
  • the steel of the present invention which has a microstructure controlled to a specific structure in addition to the alloy composition described above, has 30% or more and a yield strength of 315 MPa or more on the basis of the converted elongation. have.
  • the present invention can manufacture a desired steel sheet through [steel slab heating - hot rolling - cooling], and the conditions for each step will be described in detail below.
  • the steel slab of the present invention having the above-described alloy composition includes Nb as a semi-finished product.
  • heating may be performed at 1050° C. or more based on the slab thickness center.
  • the heating may be performed at 1200° C. or less.
  • a hot-rolled steel sheet can be manufactured by hot-rolling the steel slab heated according to the above.
  • the finish hot rolling during the hot rolling may be performed in a temperature range of Ar3+10 to Ar3+150°C.
  • the temperature is less than Ar3+10°C, there is a fear that the toughness is greatly reduced due to the initiation of transformation during rolling.
  • the temperature exceeds Ar3+150°C, the austenite refinement by rolling is not sufficiently achieved, and thus the target level of strength cannot be secured.
  • the cumulative reduction ratio of 50% or more. If the cumulative reduction ratio during the finish hot rolling is less than 50%, recrystallization by rolling to the center of the thickness does not occur, and thus there is a problem in that toughness is deteriorated as the grains in the center are coarsened. It should be noted that the upper limit of the cumulative reduction ratio is not particularly limited, and may be appropriately selected in consideration of the desired thickness of the hot-rolled steel sheet.
  • the cooling may be performed up to a temperature range of 650 to 750° C. starting from below the Ar3 temperature, and is preferably performed at a cooling rate of 5 to 7° C./s.
  • the cooling may be started in the inner, and in this case, it may correspond to starting the cooling at Ar3 or less.
  • the cooling termination temperature is less than 650° C. during cooling, a low-temperature phase such as bainite is generated in the steel, and there is a risk of a decrease in elongation along with a rapid increase in strength.
  • the temperature is too high and exceeds 750° C., the ferrite cannot be effectively refined, and thus the strength of the target level cannot be secured. More advantageously, the cooling can be finished at 665° C. or higher.
  • the cooling may be performed by water cooling using a cooler that sprays cooling water.
  • the cooler is not limited thereto, but may be provided as shown in FIG. 3 , and the steel material is positioned between the cooling water spraying devices positioned up and down and the steel material is transferred through the conveying roll, with respect to the upper/lower surface of the steel material You can spray coolant.
  • Cooling using such a cooler generally terminates cooling after spraying cooling water from several consecutive water injection units, as shown in FIG.
  • the watering/non-irrigation pattern can be repeated for each watering unit, and in this case, the watering/non-irrigation pattern is preferably repeated two or more times. do.
  • the pattern in repeating the injection/non-injection pattern with respect to the cooling water spray pattern, the pattern may be appropriately set according to the structure of the facility.
  • the amount of cooling water sprayed from each unit may be appropriately selected according to the thickness of the transferred steel, but it should be suggested to the extent that the cooling rate suggested in the present invention can be satisfied.
  • the steel of the present invention which has completed the cooling process as described above, is a thick steel material having a maximum thickness of 50 mm, preferably 10 to 50 mm, and has an effect of securing high ductility as well as high strength for this thick steel material.
  • Molten steel having an alloy composition shown in Table 1 was prepared and a steel slab was prepared through continuous casting.
  • a hot-rolled steel material having a predetermined thickness was manufactured through a [heating-hot rolling-cooling] process under the conditions shown in Table 2 below.
  • yield strength (YS), tensile strength (TS), and elongation (El) were measured using a universal tensile tester.
  • the elongation (El) tends to be measured unfavorably as the thickness of the steel becomes thinner, so that the same value is obtained regardless of the thickness of the steel.
  • the conversion elongation (E ') can be calculated through the following formula (in the following formula, E means elongation (before conversion), t means steel material thickness (mm)).
  • microstructure was observed using an optical microscope for the same test piece, and each phase was divided through an image analyzer and fractions were measured.
  • Inventive Examples 1 to 7 which satisfy both the alloy composition and manufacturing conditions presented in the present invention, have the intended microstructure, that is, an appropriate fraction of ferrite (air-cooled and water-cooled ferrite) and segmented pearlite. formation can be confirmed. Thereby, the yield strength of 315 MPa or more and the conversion elongation standard were secured to 30% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention is to provide a thick steel plate and a manufacturing method therefor, wherein the steel plate can secure high strength and high ductility simultaneously even though having a certain thickness.

Description

고강도 및 고연성을 가지는 후물 강재 및 이의 제조방법 Thick steel material having high strength and high ductility and manufacturing method thereof
본 발명은 조선용 강에 관한 것으로, 보다 상세하게는 고강도와 더불어 고연성 특성을 가지는 후물 강재 및 이의 제조방법에 관한 것이다.The present invention relates to steel for shipbuilding, and more particularly, to a thick steel material having high strength and high ductility characteristics and a method for manufacturing the same.
해양 산업이 점차 활발해짐에 따라 선박의 활용이 증가하고 있으며, 이에 따라 선박 간 충돌, 좌초 등의 사고 위험성도 높아지고 있다.As the marine industry becomes more active, the use of ships is increasing, and accordingly, the risk of accidents such as collisions and strandings between ships is also increasing.
또한, 안전 및 환경에 대한 관심이 증대되면서 군용, 상선, 유조선 등에 사용되는 조선용 강에 대해 사고시에도 파괴가 일어나지 않고 버틸 수 있는 내충격 특성의 향상이 요구되고 있는 실정이다.In addition, as interest in safety and the environment increases, it is required to improve the impact resistance characteristics that can withstand the destruction of steel used in the military, merchant ships, tankers, etc. even in an accident.
한편, 연신율이 높은 소재일수록 파괴 발생 시까지의 전체 소성 변형량 및 에너지 흡수량이 크므로, 외력 및 충격에 대한 내충격성이 향상된다고 알려져 있다. On the other hand, it is known that the higher the elongation, the greater the total amount of plastic deformation and energy absorption until fracture occurs, and thus the impact resistance against external forces and impacts is improved.
이러한 내충격성을 가지는 소재를 적용하는 경우, 선박 사고가 일어나 일정량의 변형이 발생하더라도 해당 선박의 파단을 방지함으로써 재산 및 인명 피해를 방지할 수 있다.When a material having such impact resistance is applied, even if a certain amount of deformation occurs due to a ship accident, damage to property and human life can be prevented by preventing the breakage of the corresponding ship.
기존, 항복강도 315MPa급 이상의 조선용 강의 경우, 냉각시 공냉을 통해 생산되는데, 이에 의해 강의 조직이 페라이트 및 펄라이트의 층상 조직을 가지게 된다 (도 1 참조). 이와 같은 조직을 가지는 강이 외력을 받게 되면, 밴드 형태의 펄라이트 조직에 취성 파괴가 일어나 연신율을 저하시키는 주된 요인이 된다.Conventionally, in the case of shipbuilding steel with a yield strength of 315 MPa or higher, it is produced through air cooling during cooling, whereby the steel structure has a layered structure of ferrite and pearlite (see FIG. 1). When a steel having such a structure is subjected to an external force, brittle fracture occurs in the band-shaped pearlite structure, which is a major factor in reducing the elongation.
이러한 문제를 해소하기 위해서는 냉각시 공냉이 아닌 수냉을 적용함으로써 밴드 형태의 펄라이트를 분절시키는 것이 유효하나, 이 경우 냉각종료온도가 너무 낮거나, 냉각속도가 크면 베이나이트 등의 저온상이 생성되어 강도가 높아지는 반면, 오히려 연신율이 저하되는 문제가 있다. In order to solve this problem, it is effective to segment the band-shaped pearlite by applying water cooling instead of air cooling during cooling. On the other hand, there is a problem that the elongation rate is lowered on the contrary.
(특허문헌 1) 한국 등록특허공보 제10-0340547호(Patent Document 1) Korean Patent Publication No. 10-0340547
본 발명의 일 측면은, 일정의 두께를 가지는 후물 강재임에도 고강도와 더불어 고연성을 동시에 확보할 수 있는 후물 강재 및 그 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a thick steel material capable of securing high ductility as well as high strength at the same time despite a thick steel material having a certain thickness, and a method for manufacturing the same.
본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of the present invention is not limited to the above. The subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.14~0.17%, 실리콘(Si): 0.2~0.5%, 망간(Mn): 0.9~1.2%, 알루미늄(Al): 0.015~0.04%, 니오븀(Nb): 0.005~0.015%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.008%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,One aspect of the present invention, by weight, carbon (C): 0.14 to 0.17%, silicon (Si): 0.2 to 0.5%, manganese (Mn): 0.9 to 1.2%, aluminum (Al): 0.015 to 0.04% , niobium (Nb): 0.005 to 0.015%, titanium (Ti): 0.005 to 0.02%, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, balance containing Fe and other unavoidable impurities;
미세조직이 공냉 페라이트, 수냉 페라이트 및 분절 펄라이트로 구성된 고강도 및 고연성을 가지는 후물 강재를 제공한다.Provided is a thick steel material having a microstructure of high strength and high ductility composed of air-cooled ferrite, water-cooled ferrite and segmented pearlite.
본 발명의 다른 일 측면은, 상술한 합금조성을 가지는 강 슬라브를 준비하는 단계; 상기 강 슬라브를 1050~1200℃의 온도범위에서 가열하는 단계; 상기 가열된 슬라브를 마무리 열간압연하여 열연강판을 제조하는 단계; 및 상기 열연강판을 650~750℃의 온도범위까지 5~7℃/s의 냉각속도로 냉각하는 단계를 포함하며,Another aspect of the present invention comprises the steps of preparing a steel slab having the above-described alloy composition; heating the steel slab in a temperature range of 1050 to 1200 °C; manufacturing a hot-rolled steel sheet by finishing hot rolling the heated slab; and cooling the hot-rolled steel sheet at a cooling rate of 5-7°C/s to a temperature range of 650-750°C,
상기 냉각은 냉각수를 주수한 후 미주수하는 패턴을 2회 이상 반복하여 행하는 것을 특징으로 하는 고강도 및 고연성을 가지는 후물 강재의 제조방법을 제공한다.The cooling provides a method of manufacturing a thick steel material having high strength and high ductility, characterized in that the cooling water is poured and then the pattern of not watering is repeated twice or more.
본 발명에 의하면, 최대 두께 50mm의 후물 강재에 대해 고강도와 더불어 고연성의 확보가 가능하다.According to the present invention, it is possible to secure high ductility as well as high strength for a thick steel material having a maximum thickness of 50 mm.
이러한 본 발명의 고강도 및 고연성의 후물 강재는 조선용 강으로서 유리하게 적용할 수 있는 효과가 있다.The high-strength and high-ductility steel of the present invention has the effect of being advantageously applied as steel for shipbuilding.
도 1은 종래 조선용 강의 미세조직 사진을 나타낸 것이다.1 shows a microstructure photograph of a conventional steel for shipbuilding.
도 2는 본 발명의 일 측면에 따른 발명강의 미세조직 사진을 나타낸 것이다.Figure 2 shows a microstructure photograph of the invention steel according to an aspect of the present invention.
도 3은 수 냉각의 적용이 가능한 냉각기의 모식도이다.3 is a schematic diagram of a cooler to which water cooling can be applied.
도 4는 수 냉각의 적용이 가능한 냉각기의 냉각수 분사 패턴을 나타낸 것으로, (a)는 종래의 연속 냉각 패턴을 나타내며, (b)는 본 발명에 따른 냉각수 분사 패턴의 한 가지 예를 나타낸 것이다. 4 shows a coolant spray pattern of a cooler to which water cooling can be applied. (a) shows a conventional continuous cooling pattern, and (b) shows an example of a coolant spray pattern according to the present invention.
본 발명의 발명자는 조선용 강으로 적합한 후물 강재를 제공함에 있어서, 소재의 우수한 내충격 특성을 달성할 수 있도록, 고강도와 더불어 고연신 특성을 가지는 강재를 얻기 위하여 깊이 연구하였다.The inventor of the present invention has studied in depth to obtain a steel material having high strength and high elongation characteristics in order to achieve excellent impact resistance properties of the material in providing a thick steel material suitable as steel for shipbuilding.
특히, 기존의 조선용 강(도 1 참조)의 경우 조직이 밴드 형태의 펄라이트로 구성되어 외력을 받았을 때 취성 파괴에 의한 연신율 열화를 일으키는 문제가 있음을 확인하고, 본 발명은 이를 해결하는 한편, 강 제조과정에서 저온상의 형성을 최소화할 수 있는 방안을 제공함에 기술적 의의가 있다.In particular, in the case of the existing steel for shipbuilding (see Fig. 1), it was confirmed that there was a problem of causing deterioration of elongation due to brittle fracture when the structure was composed of band-shaped pearlite and subjected to external force, and the present invention solves this problem, It has technical significance in providing a way to minimize the formation of a low-temperature phase in the steel manufacturing process.
구체적으로, 본 발명은 조선용 강으로 적합한 일정 두께 이상의 후물 강재를 제공하며, 상기 후물 강재의 최적 합금조성과 더불어, 강재 제조시 의도하는 조직을 형성하는 데에 유리한 최적 공정조건을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.Specifically, the present invention provides a thick steel material of a certain thickness or more suitable as steel for shipbuilding, and in addition to the optimum alloy composition of the thick steel material, it is possible to provide optimal process conditions advantageous for forming the intended structure during steel manufacturing. Confirmed, and came to complete the present invention.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 측면에 따른 고강도 및 고연성을 가지는 후물 강재는 중량%로, 탄소(C): 0.14~0.17%, 실리콘(Si): 0.2~0.5%, 망간(Mn): 0.9~1.2%, 알루미늄(Al): 0.015~0.04%, 니오븀(Nb): 0.005~0.015%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.008%, 인(P): 0.02% 이하, 황(S): 0.005% 이하를 포함할 수 있다.The thick steel material having high strength and high ductility according to an aspect of the present invention is, by weight, carbon (C): 0.14 to 0.17%, silicon (Si): 0.2 to 0.5%, manganese (Mn): 0.9 to 1.2%, Aluminum (Al): 0.015 to 0.04%, niobium (Nb): 0.005 to 0.015%, titanium (Ti): 0.005 to 0.02%, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less may be included.
이하에서는, 본 발명에서 제공하는 강재의 합금조성을 위와 같이 제한하는 이유에 대하여 상세히 설명한다. Hereinafter, the reason for limiting the alloy composition of the steel provided in the present invention as above will be described in detail.
한편, 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량을 기준으로 하며, 조직의 비율은 면적을 기준으로 한다.Meanwhile, unless otherwise specified in the present invention, the content of each element is based on the weight, and the ratio of the tissue is based on the area.
탄소(C): 0.14~0.17%Carbon (C): 0.14 to 0.17%
탄소(C)는 고용강화를 일으키고, 강 중의 Nb 등과 결합하여 탄·질화물을 형성시킴으로써 강도 확보에 유리한 원소이다. Carbon (C) is an element advantageous in securing strength by causing solid solution strengthening and bonding with Nb in steel to form carbon nitride.
본 발명에서 목표로 하는 수준의 강도를 확보하기 위해서는 0.14% 이상으로 C를 포함할 수 있으나, 그 함량이 과도할 경우 강의 강도가 과도하게 증가하여 연신율의 저하를 유발하므로 바람직하지 못하다. 이를 고려하여, 상기 C를 0.17% 이하로 포함할 수 있다. In order to secure the strength of the target level in the present invention, C may be included in an amount of 0.14% or more, but if the content is excessive, the strength of the steel is excessively increased, which is not preferable because it causes a decrease in the elongation. In consideration of this, the C may be included in an amount of 0.17% or less.
따라서, 상기 C는 0.14~0.17%로 제한할 수 있다.Therefore, the C may be limited to 0.14 to 0.17%.
실리콘(Si): 0.2~0.5%Silicon (Si): 0.2-0.5%
실리콘(Si)은 제강시 강의 탈산에 기여하고, 고용강화를 통해 강의 강도 향상에 기여하는 원소이다. Silicon (Si) is an element that contributes to the deoxidation of steel during steelmaking and improves the strength of steel through solid solution strengthening.
상술한 효과를 충분히 얻기 위해서는 0.2% 이상으로 Si을 포함할 수 있으나, 그 함량이 과도할 경우 강도가 지나치게 증가하여 연신율의 저하를 유발하므로 바람직하지 못하다. 이를 고려하여 상기 Si을 0.5% 이하로 포함할 수 있다.In order to sufficiently obtain the above-described effect, Si may be included in an amount of 0.2% or more, but when the content is excessive, the strength is excessively increased, which is not preferable because it causes a decrease in elongation. In consideration of this, the Si may be included in an amount of 0.5% or less.
따라서, 상기 Si은 0.2~0.5%로 제한할 수 있다.Therefore, the Si may be limited to 0.2 to 0.5%.
망간(Mn): 0.9~1.2%Manganese (Mn): 0.9~1.2%
망간(Mn)은 강의 고용강화 및 경화능 향상을 통해 강도를 효과적으로 향상시키는 원소이다. 이러한 Mn에 의해 목표 수준의 강도를 확보하기 위해서는 0.9% 이상으로 Mn을 포함할 수 있다. 다만, 그 함량이 과도하면 강 중 S와 결합하여 MnS 개재물을 형성하고, 중심부 편석을 일으킴에 따라, 강의 인성 저하를 유발할 우려가 있다. 이를 고려하여, 상기 Mn을 1.2% 이하로 포함할 수 있다.Manganese (Mn) is an element that effectively improves strength through solid solution strengthening of steel and improvement of hardenability. In order to secure a target level of strength due to Mn, Mn may be included in an amount of 0.9% or more. However, if the content is excessive, it combines with S in steel to form MnS inclusions, and as it causes central segregation, there is a possibility that the toughness of the steel may be deteriorated. In consideration of this, the Mn may be included in an amount of 1.2% or less.
따라서, 상기 Mn은 0.9~1.2%로 제한할 수 있다.Therefore, the Mn may be limited to 0.9 to 1.2%.
알루미늄(Al): 0.015~0.04%Aluminum (Al): 0.015~0.04%
알루미늄(Al)은 강을 탈산시키는데 효과적인 원소로서, 강의 청정성 확보를 위해서는 0.015% 이상으로 포함할 수 있다. 다만, 그 함량이 과도하면 Al2O3 개재물의 분율이 증가하고, 그 크기가 조대해져 강의 인성을 저해하는 원인이 된다. 이를 고려하여, 상기 Al을 0.04% 이하로 포함할 수 있다.Aluminum (Al) is an effective element for deoxidizing steel, and may be included in an amount of 0.015% or more to ensure cleanliness of steel. However, if the content is excessive, the fraction of Al 2 O 3 inclusions increases, and the size thereof becomes coarse, which causes deterioration of the toughness of the steel. In consideration of this, the Al may be included in an amount of 0.04% or less.
따라서, 상기 Al은 0.015~0.04%로 제한할 수 있다.Therefore, the Al may be limited to 0.015 to 0.04%.
니오븀(Nb): 0.005~0.015%Niobium (Nb): 0.005 to 0.015%
니오븀(Nb)은 고용 또는 탄·질화물로 석출하여 압연 또는 냉각 중에 재결정을 억제함으로써 조직을 미세하게 형성하고, 강도 향상에 유리한 원소이다.Niobium (Nb) is an element advantageous to forming a fine structure and improving strength by precipitating as a solid solution or carbon nitride to suppress recrystallization during rolling or cooling.
상술한 효과를 충분히 얻기 위해서는 0.005% 이상으로 Nb을 포함할 수 있다. 다만, 그 함량이 과도할 경우 탄소(C) 친화력에 의해 C-집중이 발생하여 MA 상의 생성을 촉진함에 따라, 인성을 저하시키고 파괴 저항성을 낮추는 문제가 있다. 이를 고려하여, 상기 Nb을 0.015% 이하로 포함할 수 있다.In order to sufficiently obtain the above-described effect, Nb may be included in an amount of 0.005% or more. However, when the content is excessive, C-concentration occurs due to carbon (C) affinity to promote the formation of the MA phase, thereby reducing toughness and lowering fracture resistance. In consideration of this, the Nb may be included in an amount of 0.015% or less.
따라서, 상기 Nb은 0.005~0.015%로 제한할 수 있다.Therefore, the Nb may be limited to 0.005 to 0.015%.
티타늄(Ti): 0.005~0.02%Titanium (Ti): 0.005-0.02%
티타늄(Ti)은 강 중 질소(N)와 결합하여 Ti 질화물(TiN)을 형성함으로써 결정립 성장을 억제하여 인성 향상에 기여하는 원소이다. Titanium (Ti) is an element contributing to toughness improvement by inhibiting grain growth by combining with nitrogen (N) in steel to form Ti nitride (TiN).
상술한 효과를 충분히 얻기 위해서는 0.005% 이상으로 Ti을 포함할 수 있다. 다만, 그 함량이 과다할 경우, 조대한 석출물이 형성되고, 이는 파괴의 요인으로 작용할 수 있다. 또한, 강 중 N과 결합하지 못하고 남은 고용 Ti이 Ti 탄화물(TiC)을 형성함으로써 강의 인성을 저해하는 문제가 있다. 이를 고려하여, 상기 Ti을 0.02% 이하로 포함할 수 있다.In order to sufficiently obtain the above-described effect, Ti may be included in an amount of 0.005% or more. However, when the content is excessive, coarse precipitates are formed, which may act as a factor of destruction. In addition, there is a problem in that the solid solution Ti remaining after not bonding with N in the steel forms Ti carbide (TiC), thereby inhibiting the toughness of the steel. In consideration of this, the Ti may be included in an amount of 0.02% or less.
따라서, 상기 Ti은 0.005~0.02%로 제한할 수 있다.Therefore, the Ti may be limited to 0.005 to 0.02%.
질소(N): 0.002~0.008%Nitrogen (N): 0.002 to 0.008%
질소(N)는 강 중 Nb 또는 Ti과 결합하여 질화물을 형성함으로써, 조직의 미세화에 효과적으로 기여하는 원소이다. Nitrogen (N) is an element that effectively contributes to the refinement of the structure by combining with Nb or Ti in steel to form a nitride.
이러한 효과를 충분히 얻기 위해서는 0.002% 이상으로 포함할 수 있다. 다만, 그 함량이 과도하면 강판 표면 품질을 저해할 수 있으므로, 이를 고려하여 0.008% 이하로 포함할 수 있다.In order to sufficiently obtain such an effect, it may be included in an amount of 0.002% or more. However, if the content is excessive, it may impair the surface quality of the steel sheet, so it may be included in an amount of 0.008% or less in consideration of this.
따라서, 상기 N는 0.002~0.008%로 제한할 수 있다.Therefore, the N may be limited to 0.002 to 0.008%.
인(P): 0.02% 이하Phosphorus (P): 0.02% or less
인(P)은 강 중에 불가피하게 혼입되는 불순물로서, 그 함량이 0.02%를 초과하게 되면 입계 편석을 일으켜 강을 취화시키는 원인이 된다.Phosphorus (P) is an impurity that is unavoidably mixed in steel, and when its content exceeds 0.02%, it causes grain boundary segregation and causes steel embrittlement.
따라서, 상기 P은 0.02% 이하로 제한할 수 있으며, 다만 불가피한 수준을 고려하여 0%는 제외할 수 있다.Therefore, the P may be limited to 0.02% or less, but 0% may be excluded in consideration of the unavoidable level.
황(S): 0.005% 이하Sulfur (S): 0.005% or less
황(S)은 강 중에 불가피하게 혼입되는 불순물로서, 그 함량이 0.005%를 초과하게 되면 강 중 Mn과 결합하여 MnS 등의 비금속 개재물을 형성하여 강 두께 중심부의 물성을 저해하는 원인이 된다.Sulfur (S) is an impurity that is unavoidably mixed in steel, and when its content exceeds 0.005%, it combines with Mn in the steel to form non-metallic inclusions such as MnS, thereby impairing the properties of the central portion of the steel thickness.
따라서, 상기 S은 0.005% 이하로 제한할 수 있으며, 다만 불가피한 수준을 고려하여 0%는 제외할 수 있다.Therefore, the S may be limited to 0.005% or less, but 0% may be excluded in consideration of the unavoidable level.
한편, 본 발명의 강재는 상술한 합금조성 외에, 강재 물성을 보다 유리하게 확보하기 위하여, 다음과 같이 Mo 및 Cr 중 1종 이상을 더 포함할 수 있다.On the other hand, in addition to the alloy composition of the present invention, the steel of the present invention may further include at least one of Mo and Cr as follows in order to more advantageously secure the physical properties of the steel.
몰리브덴(Mo): 0.05% 이하Molybdenum (Mo): 0.05% or less
몰리브덴(Mo)은 강의 소입성을 증가시키고, 강의 강도 향상에 유리한 원소이다. 이러한 Mo의 함량이 과다할 경우 베이나이트 상의 형성을 조장하여 강의 인성을 저해하는 문제가 있으므로, 이를 고려하여 상기 Mo은 0.05% 이하로 포함할 수 있다.Molybdenum (Mo) is an element advantageous for increasing the hardenability of steel and improving the strength of steel. When the content of Mo is excessive, there is a problem of inhibiting the toughness of steel by promoting the formation of the bainite phase.
크롬(Cr): 0.05% 이하Chromium (Cr): 0.05% or less
크롬(Cr)은 슬라브 재가열시 오스테나이트에 고용되어 강의 소입성을 증가시키고, 강의 강도 확보에 기여한다. 이러한 Cr의 함량이 과다할 경우 오히려 강의 인성 및 용접성이 저하될 우려가 있으므로, 이를 고려하여 상기 Cr은 0.05% 이하로 포함할 수 있다.Chromium (Cr) is dissolved in austenite during reheating of the slab to increase the hardenability of steel and contribute to securing the strength of steel. If the content of Cr is excessive, there is a risk that the toughness and weldability of steel may be deteriorated, and thus Cr may be included in an amount of 0.05% or less in consideration of this.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to any person skilled in the art in the manufacturing process, all details thereof are not specifically mentioned in the present specification.
상술한 합금조성을 가지는 본 발명의 후물 강재는 미세조직이 페라이트 및 펄라이트 복합조직으로 구성되며, 이때 펄라이트는 일정의 크기로 분절된 분절 펄라이트인 것이 바람직하다 (도 2 참조). 또한, 상기 페라이트는 공냉 페라이트 및 수냉 페라이트로 구성되는 것이 바람직하다.The thick steel material of the present invention having the above-described alloy composition has a microstructure composed of ferrite and a pearlite composite structure, and in this case, the pearlite is preferably segmented pearlite segmented to a predetermined size (see FIG. 2 ). In addition, the ferrite is preferably composed of air-cooled ferrite and water-cooled ferrite.
구체적으로, 본 발명은 고강도와 더불어 고연성의 확보를 위하여, 공냉 페라이트를 형성하여 연성 및 인성을 확보하고, 수냉 페라이트의 형성으로 강도 및 인성을 확보할 수 있다. Specifically, the present invention can secure ductility and toughness by forming air-cooled ferrite to secure high ductility as well as high strength, and secure strength and toughness by forming water-cooled ferrite.
나아가, 일반적인 밴드(층상) 구조의 펄라이트 상이 아닌, 일정 크기, 바람직하게 최대 길이가 50㎛인 분절 펄라이트를 형성함으로써, 외력에 의한 취성 파괴를 최소화하는 효과를 얻을 수 있다.Furthermore, it is possible to obtain the effect of minimizing brittle fracture due to external force by forming segmented pearlite of a certain size, preferably a maximum length of 50 μm, rather than a pearlite phase having a general band (layered) structure.
상기 공냉 페라이트와 수냉 페라이트는 면적분율 합으로 80% 이상(100% 제외)인 것이 바람직하다. 상기 공냉 페라이트 및 수냉 페라이트의 분율 합이 80% 미만이면 목적하는 고연성의 확보가 어려워질 수 있다.The air-cooled ferrite and the water-cooled ferrite preferably have an area fraction of 80% or more (excluding 100%) in total. If the sum of the fractions of the air-cooled ferrite and the water-cooled ferrite is less than 80%, it may be difficult to secure a desired high ductility.
또한, 상기 공냉 페라이트와 수냉 페라이트를 통틀어, 평균 결정립 크기가 12~30㎛인 것이 바람직하다. 상기 페라이트의 평균 결정립 크기가 30㎛를 초과하게 되면 조대한 페라이트 상이 과도하게 존재함에 따라 목표 수준의 강도를 확보하기 어려워진다. 반면, 그 크기가 12㎛ 미만이면 강도가 지나치게 높아짐에 따라 연신율이 저하될 우려가 있다.In addition, it is preferable that the average grain size of the air-cooled ferrite and the water-cooled ferrite is 12 to 30 μm. When the average grain size of the ferrite exceeds 30 μm, it becomes difficult to secure a target level of strength as a coarse ferrite phase is excessively present. On the other hand, if the size is less than 12㎛, there is a fear that the elongation may be lowered as the strength is too high.
본 발명에서 상기 공냉 페라이트와 수냉 페라이트는 등축정 페라이트(polygonal ferrite)를 포함하는 한편, 침상 페라이트(accicular ferrite)는 포함하지 아니함을 밝혀둔다.In the present invention, the air-cooled ferrite and the water-cooled ferrite include equiaxed ferrite (polygonal ferrite), while acicular ferrite (accicular ferrite) is not included.
상기 분절 펄라이트는 압연 방향에 평행하여 형성될 수 있으며, 이때 그 최대 길이가 50㎛를 초과하게 되면 외력 발생시 취성 파괴가 쉬워져 연신율의 저하를 초래할 우려가 있다.The segmented pearlite may be formed parallel to the rolling direction. In this case, if the maximum length exceeds 50 μm, brittle fracture becomes easy when an external force is generated, thereby causing a decrease in elongation.
따라서, 상기 분절 펄라이트는 50㎛ 이하의 길이를 갖는 것이 바람직하며, 면적분율 20% 이하(0% 제외)로 포함하는 것이 바람직하다.Accordingly, the segmented pearlite preferably has a length of 50 μm or less, and preferably contains an area fraction of 20% or less (excluding 0%).
상술한 합금조성과 더불어 특정 조직으로 제어된 미세조직을 가지는 본 발명의 강재는 변환 연신율 기준으로 30% 이상, 항복강도가 315MPa 이상으로 확보되는 바, 고강도와 고연성을 동시에 확보할 수 있는 효과가 있다.The steel of the present invention, which has a microstructure controlled to a specific structure in addition to the alloy composition described above, has 30% or more and a yield strength of 315 MPa or more on the basis of the converted elongation. have.
이하, 본 발명의 다른 일 측면에 따른, 본 발명에서 제공하는 고강도 및 고연성을 가지는 후물 강재를 제조하는 방법에 대하여 상세히 설명한다.Hereinafter, a method for manufacturing a thick steel material having high strength and high ductility provided by the present invention according to another aspect of the present invention will be described in detail.
간략히, 본 발명은 [강 슬라브 가열 - 열간압연 - 냉각]을 거쳐 목적하는 강판을 제조할 수 있으며, 각 단계별 조건에 대해서는 하기에 상세히 설명한다.Briefly, the present invention can manufacture a desired steel sheet through [steel slab heating - hot rolling - cooling], and the conditions for each step will be described in detail below.
강 슬라브 가열steel slab heating
상술한 합금조성을 가지는 본 발명의 강 슬라브는 반제품 상태로서 Nb을 포함한다. 이러한 강 슬라브를 가열함에 있어서, 상기 강 슬라브 내에 함유된 Nb 탄질화물의 충분한 용체화를 고려하여 슬라브 두께 중심부 기준 1050℃ 이상에서 가열을 행할 수 있다. 다만, 그 온도가 지나치게 높으면 스케일(scale) 결함을 증가시킬 뿐만 아니라, 오스테나이트 결정립이 조대화되어 강의 소입성을 증가시키는 문제가 있다. 이를 고려하여 상기 가열은 1200℃ 이하에서 행할 수 있다.The steel slab of the present invention having the above-described alloy composition includes Nb as a semi-finished product. In heating such a steel slab, in consideration of sufficient solutionization of the Nb carbonitride contained in the steel slab, heating may be performed at 1050° C. or more based on the slab thickness center. However, when the temperature is too high, there is a problem in that scale defects are increased, and austenite grains are coarsened to increase the hardenability of steel. In consideration of this, the heating may be performed at 1200° C. or less.
열간압연hot rolled
상기에 따라 가열된 강 슬라브를 열간압연하여 열연강판을 제조할 수 있다.A hot-rolled steel sheet can be manufactured by hot-rolling the steel slab heated according to the above.
상기 열간압연시 마무리 열간압연은 Ar3+10~Ar3+150℃ 온도범위에서 행할 수 있는데, 이때 온도가 Ar3+10℃ 미만이면 압연 중 변태 개시에 따라 인성이 크게 저하될 우려가 있다. 반면, 그 온도가 Ar3+150℃를 초과하게 되면 압연에 의한 오스테나이트 미세화가 충분히 이루어지지 못하게 되어 목표 수준의 강도를 확보할 수 없게 된다.The finish hot rolling during the hot rolling may be performed in a temperature range of Ar3+10 to Ar3+150°C. In this case, if the temperature is less than Ar3+10°C, there is a fear that the toughness is greatly reduced due to the initiation of transformation during rolling. On the other hand, when the temperature exceeds Ar3+150°C, the austenite refinement by rolling is not sufficiently achieved, and thus the target level of strength cannot be secured.
상술한 온도범위로 마무리 열간압연을 행함에 있어서, 50% 이상의 누적 압하율로 행하는 것이 바람직하다. 상기 마무리 열간압연시 누적 압하율이 50% 미만이면 두께 중심부까지 압연에 의한 재결정이 일어나지 않게 되어, 중심부 결정립이 조대화됨에 따라 인성이 열화되는 문제가 있다. 상기 누적 압하율의 상한은 특별히 한정하지 아니하며, 얻고자 하는 열연강판 두께를 고려하여 적절히 선택할 수 있음을 밝혀둔다.In performing the finish hot rolling in the above-mentioned temperature range, it is preferable to carry out the cumulative reduction ratio of 50% or more. If the cumulative reduction ratio during the finish hot rolling is less than 50%, recrystallization by rolling to the center of the thickness does not occur, and thus there is a problem in that toughness is deteriorated as the grains in the center are coarsened. It should be noted that the upper limit of the cumulative reduction ratio is not particularly limited, and may be appropriately selected in consideration of the desired thickness of the hot-rolled steel sheet.
냉각Cooling
상술한 바에 따라 얻은 열연강판을 냉각하여 본 발명에서 목표로 하는 물성을 가지는 강재를 제조할 수 있다.By cooling the hot-rolled steel sheet obtained as described above, it is possible to manufacture a steel material having physical properties targeted in the present invention.
상기 냉각은 Ar3 온도 이하에서 개시하여 650~750℃의 온도범위까지 행할 수 있으며, 5~7℃/s의 냉각속도로 행하는 것이 바람직하다.The cooling may be performed up to a temperature range of 650 to 750° C. starting from below the Ar3 temperature, and is preferably performed at a cooling rate of 5 to 7° C./s.
상기 냉각을 행함에 있어서 Ar3를 초과하는 온도에서 개시하게 되면, 페라이트의 입자 크기가 너무 미세하게 되어 강도가 지나치게 증가하여 목표 수준의 연성을 확보하지 못하게 된다. 또한, 강판의 선단부와 후단부 간의 냉각 개시 시점의 시간차로 인해 선·후단부 재질 편차가 발생할 우려가 있다. When the cooling is started at a temperature exceeding Ar3, the particle size of the ferrite becomes too fine and the strength is excessively increased, so that the target level of ductility cannot be secured. In addition, due to the time difference between the cooling start time between the front end and the rear end of the steel sheet, there is a risk of causing material deviation between the front end and the rear end.
다만, 상기 냉각시 냉각개시온도가 너무 낮으면 (최종) 수냉 전에 변태가 완료되어 강의 조직이 공냉에 의한 페라이트 및 펄라이트의 층상 조직을 가지게 될 우려가 있는 바, 상기 열간압연을 완료한 후 수 초 내로 냉각을 개시할 수 있으며, 이 경우 Ar3 이하에서 냉각을 개시하는 것에 해당할 수 있다. However, if the cooling start temperature during cooling is too low (final), transformation is completed before water cooling, and there is a risk that the steel structure may have a layered structure of ferrite and pearlite due to air cooling, a few seconds after completion of the hot rolling The cooling may be started in the inner, and in this case, it may correspond to starting the cooling at Ar3 or less.
상기 냉각시 냉각종료온도가 650℃ 미만이면 강재 내에 베이나이트 등의 저온상이 생성되어 강도의 급격한 상승과 함께 연신율의 저하가 발생할 우려가 있다. 반면, 그 온도가 지나치게 높아 750℃를 초과하게 되면 페라이트를 효과적으로 미세화하지 못하여 목표 수준의 강도를 확보하지 못하게 된다. 보다 유리하게는 상기 냉각을 665℃ 이상에서 종료할 수 있다.When the cooling termination temperature is less than 650° C. during cooling, a low-temperature phase such as bainite is generated in the steel, and there is a risk of a decrease in elongation along with a rapid increase in strength. On the other hand, if the temperature is too high and exceeds 750° C., the ferrite cannot be effectively refined, and thus the strength of the target level cannot be secured. More advantageously, the cooling can be finished at 665° C. or higher.
상술한 온도범위로 냉각을 행할시, 그 때의 냉각속도가 5℃/s 미만이면 강재 내에 층상의 펄라이트가 생성되어 소재 취화에 의한 연신율 저하를 일으킬 가능성이 높다. 반면, 상기 냉각속도가 7℃/s를 초과하게 되면 강재 내에 저온 조직상이 형성되어 연성의 저하를 유발할 수 있다.When cooling to the above-mentioned temperature range, if the cooling rate at that time is less than 5 ℃ / s, layered pearlite is generated in the steel material, there is a high possibility of causing a decrease in elongation due to material embrittlement. On the other hand, when the cooling rate exceeds 7° C./s, a low-temperature texture is formed in the steel, which may cause a decrease in ductility.
한편, 상술한 조건으로 냉각을 행함에 있어서, 상기 냉각은 냉각수를 분사하는 냉각기를 이용한 수 냉각으로 행할 수 있다. 상기 냉각기는 이에 한정하는 것은 아니나, 도 3에 나타낸 바와 같이 구비될 수 있으며, 상/하로 위치한 냉각수 분사장치 사이에 강재가 위치되어 이송롤을 통해 강재가 이송되면서, 그 강재의 상면/하면에 대해 냉각수를 분사할 수 있다.Meanwhile, in performing cooling under the above-described conditions, the cooling may be performed by water cooling using a cooler that sprays cooling water. The cooler is not limited thereto, but may be provided as shown in FIG. 3 , and the steel material is positioned between the cooling water spraying devices positioned up and down and the steel material is transferred through the conveying roll, with respect to the upper/lower surface of the steel material You can spray coolant.
이러한 냉각기를 이용한 냉각은 일반적으로 도 4의 (a)와 같이, 여러 개의 연속된 주수 유닛에서 냉각수를 분사한 후 냉각을 종료하는 반면, 본 발명에서는 냉각수 분사 패턴을 다르게 적용함에 기술적 의의가 있다.Cooling using such a cooler generally terminates cooling after spraying cooling water from several consecutive water injection units, as shown in FIG.
구체적으로, 본 발명은 한 가지 예로서, 도 4의 (b)와 같이, 주수 유닛 별로 주수/미주수 패턴을 반복하여 행할 수 있으며, 이때 상기 주수/미주수 패턴은 2회 이상 반복하는 것이 바람직하다.Specifically, as an example of the present invention, as shown in FIG. 4(b) , the watering/non-irrigation pattern can be repeated for each watering unit, and in this case, the watering/non-irrigation pattern is preferably repeated two or more times. do.
이와 같이, 이송롤에 의해 일방향으로 이송되는 강재에 대해 유닛 별로 주수/미주수 패턴을 반복하여 냉각수를 분사함에 의해, 전체적인 단위 시간 당 평균 유량이 감소되어 냉각속도를 낮게 유지하는 것이 가능하다. 또한, 강재의 표면부에서는 냉각, 복열이 반복됨에 따라 연속적으로 냉각수를 분사하는 경우에 비해 표면부 급냉에 의한 저온상의 생성을 억제하는 효과를 얻을 수 있다.In this way, by repeating the water/non-watering pattern for each unit and spraying cooling water for the steel material conveyed in one direction by the conveying roll, the average flow rate per unit time as a whole is reduced, and it is possible to keep the cooling rate low. In addition, compared to the case of continuously spraying cooling water as cooling and recuperating are repeated in the surface portion of the steel, it is possible to obtain an effect of suppressing the generation of a low-temperature phase due to rapid cooling of the surface portion.
본 발명에서 상기 냉각수 분사 패턴에 대해 주수/미주수 패턴을 반복함에 있어서, 설비 구조에 따라 적절히 패턴을 설정할 수 있을 것이다. 또한, 각 유닛에서 분사되는 냉각수의 양은 이송되는 강재의 두께에 따라 적절히 선택할 수 있을 것이며, 다만 본 발명에서 제안하는 냉각속도를 만족할 수 있는 정도로 제안되어야 할 것이다.In the present invention, in repeating the injection/non-injection pattern with respect to the cooling water spray pattern, the pattern may be appropriately set according to the structure of the facility. In addition, the amount of cooling water sprayed from each unit may be appropriately selected according to the thickness of the transferred steel, but it should be suggested to the extent that the cooling rate suggested in the present invention can be satisfied.
상술한 바에 따라 냉각 공정을 완료한 본 발명의 강재는 최대 두께 50mm, 바람직하게는 10~50mm의 두께를 가지는 후물 강재이며, 이러한 후물 강재에 대해 고강도와 더불어 고연성을 확보하는 효과가 있다.The steel of the present invention, which has completed the cooling process as described above, is a thick steel material having a maximum thickness of 50 mm, preferably 10 to 50 mm, and has an effect of securing high ductility as well as high strength for this thick steel material.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에 나타낸 합금조성을 가지는 용강을 제조하여 연속주조를 통해 강 슬라브를 준비하였다. 각각의 강 슬라브에 대해 하기 표 2에 나타낸 조건으로 [가열 - 열간압연 - 냉각] 공정을 거쳐 일정의 두께를 가지는 열연 강재를 제조하였다.Molten steel having an alloy composition shown in Table 1 was prepared and a steel slab was prepared through continuous casting. For each steel slab, a hot-rolled steel material having a predetermined thickness was manufactured through a [heating-hot rolling-cooling] process under the conditions shown in Table 2 below.
강종steel grade 합금조성 (중량%)Alloy composition (wt%)
CC SiSi MnMn AlAl NbNb TiTi SS PP NN
AA 0.170.17 0.490.49 1.151.15 0.0390.039 0.0100.010 0.0150.015 0.0040.004 0.0120.012 0.0020.002
BB 0.150.15 0.430.43 1.051.05 0.0310.031 0.0090.009 0.0120.012 0.0040.004 0.0120.012 0.0020.002
CC 0.140.14 0.350.35 0.930.93 0.0320.032 0.0110.011 0.0130.013 0.0040.004 0.0100.010 0.0030.003
DD 0.150.15 0.430.43 1.251.25 0.0400.040 0.0100.010 0.0120.012 0.0030.003 0.0100.010 0.0030.003
EE 0.070.07 0.440.44 0.930.93 0.0340.034 0.0180.018 0.0130.013 0.0050.005 0.0070.007 0.0020.002
강종steel grade 두께
(mm)
thickness
(mm)
가열heating 마무리 열간압연finish hot rolled 냉각Cooling 비고note
온도
(℃)
temperature
(℃)
종료온도
(℃)
end temperature
(℃)
누적
압하율(%)
accumulate
reduction ratio (%)
개시온도
(℃)
start temperature
(℃)
종료온도
(℃)
end temperature
(℃)
속도
(℃/s)
speed
(℃/s)
패턴
pattern
AA 1515 11361136 879879 8585 755755 659659 6.76.7 22 발명예 1Invention Example 1
BB 2020 11391139 879879 8080 779779 686686 6.26.2 22 발명예 2Invention Example 2
CC 2020 11291129 858858 8080 766766 683683 5.55.5 22 발명예 3Invention example 3
BB 4040 11131113 808808 6060 760760 669669 6.16.1 33 발명예 4Invention Example 4
CC 4040 11121112 811811 6060 764764 677677 5.95.9 33 발명예 5Invention Example 5
BB 5050 11071107 789789 5050 754754 682682 5.15.1 44 발명예 6Invention example 6
CC 5050 11111111 790790 5050 752752 680680 5.15.1 44 발명예 7Invention Example 7
AA 1515 11271127 857857 8585 729729 591591 7.07.0 연속*continuity* 비교예 1Comparative Example 1
BB 3232 11101110 805805 5656 공냉air cooling -- -- 비교예 2Comparative Example 2
CC 4040 11131113 887887 7878 848848 689689 19.919.9 연속continuity 비교예 3Comparative Example 3
BB 5050 11101110 879879 5656 821821 487487 6.66.6 33 비교예 4Comparative Example 4
CC 5050 11041104 877877 5656 818818 660660 9.49.4 연속continuity 비교예 5Comparative Example 5
DD 3030 11221122 809809 7373 769769 694694 6.76.7 22 비교예 6Comparative Example 6
EE 4040 11161116 853853 6565 765765 674674 6.56.5 33 비교예 7Comparative Example 7
표 2에서 냉각 패턴은 냉각수의 (주수/미주수) 패턴이 적용되는 수를 나타낸 것으로, 패턴 2는 주수/미주수 + 주수/미주수, 패턴 3은 주수/미주수 + 주수/미주수 + 주수/미주수를 의미한다.ㄴ
또한, 연속*은 2개 이상의 주수 유닛에서 연속적으로 냉각수를 분사한 패턴 방식을 의미한다.
In Table 2, the cooling pattern indicates the number to which the (main/non-jug) pattern of the cooling water is applied, pattern 2 is the number of weeks/non-jugs + main water/non-jugs, and pattern 3 is the main water/non-jugs + main water/non-jugs + main water/non-jugs. /means a minor number.b
In addition, continuous* refers to a pattern method in which coolant is continuously sprayed from two or more water injection units.
상기에 따라 제조된 각각의 열연 강재에 대해 미세조직과 기계적 물성을 측정하고, 그 결과를 하기 표 3에 나타내었다.The microstructure and mechanical properties were measured for each of the hot-rolled steel materials prepared as described above, and the results are shown in Table 3 below.
우선, 각 열연 강재의 압연방향에 수직한 방향으로 시편을 채취한 후, 만능인장시험기를 이용하여 항복강도(YS), 인장강도(TS), 연신율(El)을 측정하였다. 이때, 연신율(El)은 강재의 두께가 얇아질수록 불리하게 측정되는 경향이 있는 바, 강재의 두께에 관계없이 동등한 값이 얻어지도록, 수식을 통하여 보상해주는 변환연신율(E')을 기준으로 측정하였다. 변환연신율(E')은 다음의 수식을 통해 계산할 수 있다 (하기 수식에서, E는 연신율(변환 전)을 의미하며, t는 강재 두께(mm)를 의미한다).First, after taking specimens in a direction perpendicular to the rolling direction of each hot-rolled steel, yield strength (YS), tensile strength (TS), and elongation (El) were measured using a universal tensile tester. At this time, the elongation (El) tends to be measured unfavorably as the thickness of the steel becomes thinner, so that the same value is obtained regardless of the thickness of the steel. did The conversion elongation (E ') can be calculated through the following formula (in the following formula, E means elongation (before conversion), t means steel material thickness (mm)).
Figure PCTKR2021019052-appb-img-000001
Figure PCTKR2021019052-appb-img-000001
또한, 동일한 시험편에 대해 광학현미경을 이용하여 미세조직을 관찰하였으며, 이미지 분석기(image analazer)를 통해 각 상(phase)을 구분하고 분율을 측정하였다.In addition, the microstructure was observed using an optical microscope for the same test piece, and each phase was divided through an image analyzer and fractions were measured.
구분division 미세조직microstructure 기계적 물성mechanical properties
F 분율*
(면적%)
F fraction*
(area%)
F 평균
크기(㎛)
F mean
Size (㎛)
P 분율
(면적%)
P fraction
(area%)
P 길이
(㎛)
P length
(μm)
YS
(MPa)
YS
(MPa)
TS
(MPa)
ts
(MPa)
El
(%)
El
(%)
발명예 1Invention Example 1 8282 1313 1818 4242 387387 531531 3232
발명예 2Invention Example 2 8383 1717 1717 3737 373373 515515 3131
발명예 3Invention example 3 8585 1515 1515 3535 389389 522522 3333
발명예 4Invention Example 4 8686 1919 1414 3131 370370 505505 3232
발명예 5Invention Example 5 8585 1717 1515 3434 382382 515515 3232
발명예 6Invention example 6 8484 1515 1616 3838 376376 509509 3131
발명예 7Invention Example 7 8181 1616 1919 3939 380380 509509 3131
비교예 1Comparative Example 1 7171 88 2727 6565 451451 582582 2727
비교예 2Comparative Example 2 7575 1414 2525 4747 381381 532532 2929
비교예 3Comparative Example 3 7676 1010 2424 6868 411411 544544 2626
비교예 4Comparative Example 4 7474 99 2525 5757 431431 572572 2626
비교예 5Comparative Example 5 7575 99 2424 5858 395395 557557 2727
비교예 6Comparative Example 6 7979 1111 1919 5151 389389 517517 2929
비교예 7Comparative Example 7 9292 1010 88 6262 416416 491491 2727
표 3에서 F는 페라이트, P는 펄라이트를 의미하며, 여기서 F 분율*은 공냉 페라이트와 수냉 페라이트를 합한 분율로 나타낸 것이다.
또한, 비교예 1, 4, 5 및 6은 F 및 P 외에 베이나이트 상이 일부 형성되었으며, 그 분율은 상기 F 및 P 분율을 제외한 잔부 분율에 해당한다.
In Table 3, F means ferrite and P means pearlite, where F fraction* is expressed as a combined fraction of air-cooled ferrite and water-cooled ferrite.
In addition, in Comparative Examples 1, 4, 5 and 6, a bainite phase was partially formed in addition to F and P, and the fraction corresponds to the remaining fraction excluding the F and P fractions.
상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제시하는 합금조성 및 제조조건을 모두 만족하는 발명예 1 내지 7은 의도하는 미세조직 즉, 적정 분율의 페라이트(공냉 및 수냉 페라이트)와 분절 펄라이트가 형성됨을 확인할 수 있다. 이에 의해, 항복강도 315MPa 이상와 더불어 변환 연신율 기준 30% 이상으로 확보되었다.As shown in Tables 1 to 3, Inventive Examples 1 to 7, which satisfy both the alloy composition and manufacturing conditions presented in the present invention, have the intended microstructure, that is, an appropriate fraction of ferrite (air-cooled and water-cooled ferrite) and segmented pearlite. formation can be confirmed. Thereby, the yield strength of 315 MPa or more and the conversion elongation standard were secured to 30% or more.
한편, 본 발명의 합금조성을 만족하는 반면, 제조조건이 본 발명을 벗어나는 비교예 1 내지 5과, 합금조성이 본 발명을 벗어나는 비교예 6 및 7 모두 변환 연신율 기준으로 연신율이 30% 미만으로 확보됨에 따라 고강도 및 고연성을 양립할 수 없었다.On the other hand, while satisfying the alloy composition of the present invention, Comparative Examples 1 to 5, in which the manufacturing conditions are outside the present invention, and Comparative Examples 6 and 7, in which the alloy composition deviates from the present invention, the elongation is secured to less than 30% based on the converted elongation. Therefore, high strength and high ductility were not compatible.
이 중, 비교예 7의 경우 일정 이상의 강도가 확보됨을 확인할 수 있는데, 이는 Nb이 과도하게 첨가됨에 의해 페라이트 결정립 크기가 상대적으로 더 미세하게 형성된 것에 기인한다.Of these, in Comparative Example 7, it can be confirmed that a certain strength or more is secured, which is due to the relatively fine ferrite grain size formed by excessive addition of Nb.

Claims (11)

  1. 중량%로, 탄소(C): 0.14~0.17%, 실리콘(Si): 0.2~0.5%, 망간(Mn): 0.9~1.2%, 알루미늄(Al): 0.015~0.04%, 니오븀(Nb): 0.005~0.015%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.008%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,By weight%, carbon (C): 0.14 to 0.17%, silicon (Si): 0.2 to 0.5%, manganese (Mn): 0.9 to 1.2%, aluminum (Al): 0.015 to 0.04%, niobium (Nb): 0.005 ~0.015%, titanium (Ti): 0.005 to 0.02%, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, the balance contains Fe and other unavoidable impurities do,
    미세조직이 공냉 페라이트, 수냉 페라이트 및 분절 펄라이트로 구성된 고강도 및 고연성을 가지는 후물 강재.Thick steel with high strength and high ductility whose microstructure is composed of air-cooled ferrite, water-cooled ferrite and segmented pearlite.
  2. 제 1항에 있어서,The method of claim 1,
    상기 강재는 중량%로 몰리브덴(Mo): 0.05% 이하 및 크롬(Cr): 0.05% 이하 중 1종 이상을 더 포함하는 고강도 및 고연성을 가지는 후물 강재.The steel is molybdenum (Mo) in weight%: 0.05% or less and chromium (Cr): thick steel having high strength and high ductility further comprising at least one of 0.05% or less.
  3. 제 1항에 있어서,The method of claim 1,
    상기 공냉 페라이트 및 수냉 페라이트는 분율 합으로 80면적% 이상인 고강도 및 고연성을 가지는 후물 강재.The air-cooled ferrite and water-cooled ferrite is a thick steel material having high strength and high ductility of 80 area% or more as a sum of fractions.
  4. 제 1항에 있어서,The method of claim 1,
    상기 공냉 페라이트와 수냉 페라이트의 평균 결정립 크기가 12~30㎛인 고강도 및 고연성을 가지는 후물 강재.A thick steel material having high strength and high ductility, wherein the average grain size of the air-cooled ferrite and the water-cooled ferrite is 12 to 30 μm.
  5. 제 1항에 있어서,The method of claim 1,
    상기 분절 펄라이트는 50㎛ 이하의 길이를 갖는 것인 고강도 및 고연성을 가지는 후물 강재.The segmented pearlite is a thick steel material having high strength and high ductility that has a length of 50 μm or less.
  6. 제 1항에 있어서,The method of claim 1,
    상기 강재는 변환 연신율 기준으로 30% 이상, 항복강도 315MPa 이상인 고강도 및 고연성을 가지는 후물 강재.The steel is a thick steel material having high strength and high ductility of 30% or more based on conversion elongation, yield strength of 315 MPa or more.
  7. 중량%로, 탄소(C): 0.14~0.17%, 실리콘(Si): 0.2~0.5%, 망간(Mn): 0.9~1.2%, 알루미늄(Al): 0.015~0.04%, 니오븀(Nb): 0.005~0.015%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.008%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 준비하는 단계;By weight%, carbon (C): 0.14 to 0.17%, silicon (Si): 0.2 to 0.5%, manganese (Mn): 0.9 to 1.2%, aluminum (Al): 0.015 to 0.04%, niobium (Nb): 0.005 ~0.015%, titanium (Ti): 0.005 to 0.02%, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, the balance contains Fe and other unavoidable impurities preparing a steel slab to do;
    상기 강 슬라브를 1050~1200℃의 온도범위에서 가열하는 단계;heating the steel slab in a temperature range of 1050 to 1200 °C;
    상기 가열된 슬라브를 마무리 열간압연하여 열연강판을 제조하는 단계; 및manufacturing a hot-rolled steel sheet by finishing hot rolling the heated slab; and
    상기 열연강판을 650~750℃의 온도범위까지 5~7℃/s의 냉각속도로 냉각하는 단계를 포함하며,Comprising the step of cooling the hot-rolled steel sheet to a temperature range of 650 ~ 750 ℃ at a cooling rate of 5 ~ 7 ℃ / s,
    상기 냉각은 냉각수를 주수한 후 미주수하는 패턴을 2회 이상 반복하여 행하는 것을 특징으로 하는 고강도 및 고연성을 가지는 후물 강재의 제조방법.The cooling is a method of manufacturing a thick steel material having high strength and high ductility, characterized in that the cooling water is poured and then the pattern of not watering is repeated twice or more.
  8. 제 7항에 있어서,8. The method of claim 7,
    상기 마무리 열간압연은 Ar3+10~Ar3+150℃ 온도범위에서, 누적 압하율 50% 이상으로 행하는 것인 고강도 및 고연성을 가지는 후물 강재의 제조방법.The finish hot rolling is Ar3 + 10 ~ Ar3 + 150 ℃ temperature range, the method of manufacturing a thick steel material having high strength and high ductility to be performed at a cumulative reduction ratio of 50% or more.
  9. 제 7항에 있어서,8. The method of claim 7,
    상기 냉각은 Ar3 온도 이하에서 개시하는 것인 고강도 및 고연성을 가지는 후물 강재의 제조방법.The cooling is a method of manufacturing a thick steel material having high strength and high ductility that is to be started below the Ar3 temperature.
  10. 제 7항에 있어서,8. The method of claim 7,
    상기 냉각은 665~750℃의 온도범위까지 행하는 것인 고강도 및 고연성을 가지는 후물 강재의 제조방법.The cooling is a method of manufacturing a thick steel material having high strength and high ductility that is performed up to a temperature range of 665 ~ 750 ℃.
  11. 제 7항에 있어서,8. The method of claim 7,
    상기 강 슬라브는 중량%로 몰리브덴(Mo): 0.05% 이하 및 크롬(Cr): 0.05% 이하 중 1종 이상을 더 포함하는 고강도 및 고연성을 가지는 후물 강재의 제조방법.The steel slab is molybdenum (Mo): 0.05% or less and chromium (Cr): 0.05% or less by weight of the steel slab.
PCT/KR2021/019052 2020-12-15 2021-12-15 Thick steel plate having high-strength and high-ductility, and manufacturing method therefor WO2022131783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0175752 2020-12-15
KR1020200175752A KR102523765B1 (en) 2020-12-15 2020-12-15 Thick steel plate having high-strenghth and high-ductility, and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2022131783A1 true WO2022131783A1 (en) 2022-06-23

Family

ID=82057885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019052 WO2022131783A1 (en) 2020-12-15 2021-12-15 Thick steel plate having high-strength and high-ductility, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102523765B1 (en)
WO (1) WO2022131783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300653A (en) * 1994-04-28 1995-11-14 Nippon Steel Corp High strength steel bar excellent in delayed fracture resistance and its production
KR20010060760A (en) * 1999-12-28 2001-07-07 이구택 structural steel having High strength and method for menufactreing it
KR20020043028A (en) * 2000-12-01 2002-06-08 이구택 Thermo-mechanical controlled processing plate cooling method for thick sheet construction
KR20130028514A (en) * 2011-09-09 2013-03-19 중앙대학교 산학협력단 On-and-off cooling method for work roll in rolling mill and apparatus thereof
KR20200072968A (en) * 2018-12-13 2020-06-23 주식회사 포스코 The steel plate having excellent fatigue resistance, method for manufacturing thereof, and steel pipe using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340547B1 (en) 1997-11-25 2002-07-18 이구택 A method of manufacturing 500MPa high strength steel having superior strength and low temperature-impact toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300653A (en) * 1994-04-28 1995-11-14 Nippon Steel Corp High strength steel bar excellent in delayed fracture resistance and its production
KR20010060760A (en) * 1999-12-28 2001-07-07 이구택 structural steel having High strength and method for menufactreing it
KR20020043028A (en) * 2000-12-01 2002-06-08 이구택 Thermo-mechanical controlled processing plate cooling method for thick sheet construction
KR20130028514A (en) * 2011-09-09 2013-03-19 중앙대학교 산학협력단 On-and-off cooling method for work roll in rolling mill and apparatus thereof
KR20200072968A (en) * 2018-12-13 2020-06-23 주식회사 포스코 The steel plate having excellent fatigue resistance, method for manufacturing thereof, and steel pipe using thereof

Also Published As

Publication number Publication date
KR20220085576A (en) 2022-06-22
KR102523765B1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2018117501A1 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2018117497A1 (en) Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2018030737A1 (en) Ultra-thick steel material having excellent resistance to brittle crack propagation and preparing method therefor
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
WO2020111639A1 (en) Ultra-high strength hot rolled steel sheet having excellent shape quality and bendability, and method for manufacturing same
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2022131783A1 (en) Thick steel plate having high-strength and high-ductility, and manufacturing method therefor
WO2021091140A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same
WO2020130329A1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same
WO2022131608A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
WO2021040332A1 (en) Thin steel plate having excellent low-temperature toughness and ctod properties, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21907087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21907087

Country of ref document: EP

Kind code of ref document: A1