WO2024090473A1 - Substrate-processing device and substrate-processing method - Google Patents

Substrate-processing device and substrate-processing method Download PDF

Info

Publication number
WO2024090473A1
WO2024090473A1 PCT/JP2023/038501 JP2023038501W WO2024090473A1 WO 2024090473 A1 WO2024090473 A1 WO 2024090473A1 JP 2023038501 W JP2023038501 W JP 2023038501W WO 2024090473 A1 WO2024090473 A1 WO 2024090473A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
superheated steam
unit
hydrogen peroxide
control unit
Prior art date
Application number
PCT/JP2023/038501
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 浦田
淳一 新庄
喬 太田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2024090473A1 publication Critical patent/WO2024090473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • Single-wafer substrate processing apparatuses are known that process substrates one by one using SPM (a mixture of sulfuric acid and hydrogen peroxide) (see, for example, Patent Document 1).
  • SPM a mixture of sulfuric acid and hydrogen peroxide
  • Such substrate processing apparatuses rotate the substrate while holding it horizontally, and eject SPM toward the top surface of the substrate as it rotates.
  • the efficiency of resist removal using SPM depends on the temperature of the substrate. Specifically, the lower the substrate temperature, the less efficient the resist removal.
  • the substrate temperature is approximately equal to room temperature, and the supply of SPM causes the substrate temperature to rise.
  • the present invention was made in consideration of the above problems, and its purpose is to provide a substrate processing apparatus and a substrate processing method that can reduce the consumption of sulfuric acid.
  • a substrate processing apparatus includes a chamber, a substrate holding unit, a processing space forming unit, a substrate rotating unit, a processing liquid supply unit, and a superheated steam blowing unit.
  • the chamber accommodates a substrate.
  • the substrate holding unit holds the substrate within the chamber.
  • the processing space forming unit includes an opposing member. The opposing member faces the substrate held by the substrate holding unit.
  • the processing space forming unit forms a processing space in which processing of the substrate is performed.
  • the substrate rotating unit rotates the substrate held by the substrate holding unit.
  • the processing liquid supply unit supplies a first mixture of sulfuric acid and hydrogen peroxide to the substrate rotated by the substrate rotating unit.
  • the superheated steam blowing unit blows superheated steam into the processing space.
  • the superheated steam blowing section includes a first superheated steam blowing section that is positioned above the substrate.
  • the first superheated steam blowing section is supported by the opposing member.
  • the first superheated steam blowing section is included in the treatment liquid supply section.
  • the processing space forming section further includes a liquid receiving section.
  • the liquid receiving section receives the first mixed liquid discharged from the substrate rotated by the substrate rotating section.
  • the superheated steam blowing section includes a second superheated steam blowing section supported by the liquid receiving section.
  • the substrate processing apparatus further includes a control unit.
  • the control unit controls the supply of the first mixed liquid and the blowing of the superheated steam.
  • the control unit blows out the superheated steam when the first mixed liquid is supplied.
  • control unit further controls the rotation of the substrate by the substrate rotation unit.
  • the control unit controls the rotation speed of the substrate when the first mixed liquid is being supplied to form a liquid film of the first mixed liquid on the upper surface of the substrate.
  • the control unit stops the supply of the first mixed liquid and controls the rotation speed of the substrate to form a paddle state in which the liquid film is supported on the upper surface of the substrate.
  • the control unit blows out the superheated water vapor when the paddle state is formed.
  • the processing liquid supply unit exclusively supplies the first mixed liquid and hydrogen peroxide solution to the substrate.
  • the control unit further controls the supply of the hydrogen peroxide solution.
  • the control unit stops blowing the superheated water vapor when the hydrogen peroxide solution is being supplied.
  • the processing liquid supply unit exclusively supplies the first mixed liquid and hydrogen peroxide solution to the substrate.
  • the control unit further controls the supply of the hydrogen peroxide solution.
  • the control unit blows the superheated water vapor at a first flow rate when the first mixed liquid is supplied.
  • the control unit blows the superheated water vapor at a second flow rate that is smaller than the first flow rate when the hydrogen peroxide solution is supplied.
  • the processing liquid supply unit exclusively supplies the first mixed liquid and a second mixed liquid obtained by mixing ammonia water, hydrogen peroxide solution, and pure water to the substrate.
  • the control unit further controls the supply of the second mixed liquid.
  • the control unit blows out the superheated water vapor when the second mixed liquid is supplied.
  • the substrate processing method includes the steps of holding a substrate in a chamber by a substrate holding unit, forming a processing space in which the substrate is processed by a processing space forming unit including an opposing member that faces the substrate held by the substrate holding unit, and blowing superheated steam into the processing space.
  • the substrate processing method further includes a step of rotating the substrate held by the substrate holder, and a step of supplying a first mixture of sulfuric acid and hydrogen peroxide to the substrate while the substrate is rotating. The superheated water vapor is blown out when the first mixture is supplied.
  • the substrate processing method further includes a step of controlling the rotation speed of the substrate while the first mixed liquid is being supplied to form a liquid film of the first mixed liquid on the upper surface of the substrate, and a step of stopping the supply of the first mixed liquid and controlling the rotation speed of the substrate to form a paddle state in which the liquid film is supported on the upper surface of the substrate.
  • the paddle state is formed, the superheated water vapor is blown out.
  • the substrate processing method further includes a step of supplying hydrogen peroxide to the substrate while it is rotating. When the hydrogen peroxide is being supplied, the blowing of the superheated steam is stopped.
  • the substrate processing method further includes a step of supplying hydrogen peroxide to the substrate while it is rotating.
  • the superheated water vapor is blown out at a first flow rate.
  • the hydrogen peroxide is being supplied, the superheated water vapor is blown out at a second flow rate that is smaller than the first flow rate.
  • the substrate processing method further includes a step of rotating the substrate held by the substrate holder, and a step of supplying a second mixture of ammonia water, hydrogen peroxide, and pure water to the substrate while the substrate is rotating.
  • the superheated water vapor is blown out when the second mixture is supplied.
  • the substrate processing apparatus and substrate processing method according to the present invention can reduce the consumption of sulfuric acid.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to an embodiment of the present invention
  • 1 is a cross-sectional view illustrating a schematic configuration of a substrate processing section included in a substrate processing apparatus according to an embodiment of the present invention.
  • 11 is another cross-sectional view showing a schematic configuration of a substrate processing section included in the substrate processing apparatus according to the embodiment of the present invention.
  • FIG. 1A is a bottom view of a nozzle included in a substrate processing apparatus according to an embodiment of the present invention
  • FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus according to an embodiment of the present invention
  • 2 is a flowchart showing a substrate processing method according to an embodiment of the present invention
  • 2 is a flowchart showing a substrate process and a superheated steam process included in a substrate processing method according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a substrate processing section during pre-heating.
  • FIG. 2 is a diagram showing a schematic view of a substrate processing section during SPM processing.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus according to an embodiment of the present invention
  • 2 is a flowchart showing a substrate processing method according to an embodiment of the present invention
  • 2 is a flowchart showing a substrate process and a superheated steam process included in a substrate processing method according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a substrate processing section during pre-heating.
  • FIG. 2 is a diagram showing
  • FIG. 2 is a diagram showing a schematic view of a substrate processing section during puddle processing
  • 1 is a diagram showing a substrate processing section when processing a substrate with hydrogen peroxide solution
  • FIG. 2 is a diagram illustrating a substrate processing section during a rinsing process.
  • 2 is a diagram showing a schematic view of a substrate processing section when a substrate is processed by SC1;
  • FIG. 2 is a diagram illustrating a substrate processing section during a drying process.
  • 1A is a bottom view of a nozzle included in a first modified example of a substrate processing apparatus according to an embodiment of the present invention
  • FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the first modified example of the substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 1A is a bottom view of a nozzle included in a second modified example of a substrate processing apparatus according to an embodiment of the present invention
  • FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the second modified example of the substrate processing apparatus according to an embodiment of the present invention
  • 1A is a bottom view of a nozzle included in a third modified example of a substrate processing apparatus according to an embodiment of the present invention
  • FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the third modified example of the substrate processing apparatus according to an embodiment of the present invention.
  • the "substrate" to be processed can be a variety of substrates, such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • substrates such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • FEDs Field Emission Displays
  • substrates for optical disks substrates for magnetic disks
  • substrates for magneto-optical disks substrates, such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disk
  • FIG. 1 is a schematic diagram of the substrate processing apparatus 100 of this embodiment. More specifically, FIG. 1 is a schematic plan view of the substrate processing apparatus 100 of this embodiment.
  • the substrate processing apparatus 100 processes substrates W with a processing liquid. More specifically, the substrate processing apparatus 100 is a single-wafer type apparatus, and processes substrates W one by one.
  • the substrate processing apparatus 100 includes a plurality of substrate processing units 2, a fluid cabinet 10A, a plurality of fluid boxes 10B, a plurality of load ports LP, an indexer robot IR, a center robot CR, and a control device 101.
  • Each load port LP accommodates a stack of multiple substrates W.
  • each unprocessed substrate W substrate W before processing
  • has an unwanted resist mask resist film attached to it.
  • the indexer robot IR transports substrates W between the load port LP and the center robot CR.
  • the center robot CR transports substrates W between the indexer robot IR and the substrate processing unit 2.
  • a placement stage (path) on which substrates W are temporarily placed may be provided between the indexer robot IR and the center robot CR, and the device may be configured to indirectly transfer substrates W between the indexer robot IR and the center robot CR via the placement stage.
  • the multiple substrate processing units 2 form multiple towers TW (four towers TW in FIG. 1).
  • the multiple towers TW are arranged to surround the center robot CR in a plan view.
  • Each tower TW includes multiple substrate processing units 2 (three substrate processing units 2 in FIG. 1) stacked one above the other.
  • the fluid cabinet 10A contains fluids.
  • the fluids include an inert gas and a processing liquid.
  • Each of the fluid boxes 10B corresponds to one of the multiple towers TW.
  • the inert gas and processing liquid in the fluid cabinet 10A are supplied to all of the substrate processing units 2 included in the tower TW corresponding to the fluid box 10B via one of the fluid boxes 10B.
  • the inert gas is, for example, nitrogen gas.
  • the processing liquid includes sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ), ammonia water (NH 4 OH), and a rinse liquid.
  • the rinse liquid is pure water.
  • the pure water is, for example, deionized water (DIW).
  • the rinse liquid may be, for example, carbonated water, electrolytic ionized water, hydrogen water, ozone water, ammonia water, or diluted hydrochloric acid water (for example, hydrochloric acid water with a concentration of about 10 ppm to 100 ppm). If the rinse liquid is not pure water, the fluid in the fluid cabinet 10A further includes pure water.
  • Each of the substrate processing units 2 supplies processing liquid to the upper surface of the substrate W.
  • the substrate processing units 2 supply a sulfuric acid/hydrogen peroxide mixture (SPM), hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid.
  • SPM sulfuric acid/hydrogen peroxide mixture
  • SC1 is a mixture of ammonia water, hydrogen peroxide, and pure water.
  • SC1 When SPM is supplied to the upper surface of the substrate W, the resist film (organic matter) is peeled off from the upper surface of the substrate W, and the resist film is removed from the upper surface of the substrate W.
  • SC1 When SC1 is supplied to the upper surface of the substrate W, particles adhering to the upper surface of the substrate W are removed. More specifically, the hydrogen peroxide contained in SC1 oxidizes silicon on the main surface of the substrate W, the silicon oxide is etched by ammonia, and various particles are removed by lift-off. Thus, SC1 peels off and removes resist film residue and insoluble particles.
  • the control device 101 controls the operation of each part of the substrate processing apparatus 100.
  • the control device 101 controls the load port LP, the indexer robot IR, the center robot CR, and the substrate processing unit 2.
  • the control device 101 includes a control unit 102 and a memory unit 103.
  • the control unit 102 controls the operation of each part of the substrate processing apparatus 100 based on various information stored in the memory unit 103.
  • the control unit 102 has, for example, a processor.
  • the control unit 102 may have a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) as the processor.
  • the control unit 102 may have a general-purpose computing device or a dedicated computing device.
  • the memory unit 103 stores various information for controlling the operation of the substrate processing apparatus 100.
  • the memory unit 103 stores data and computer programs.
  • the data includes various recipe data.
  • the recipe data includes, for example, a process recipe.
  • a process recipe is data that specifies the procedure for substrate processing. Specifically, a process recipe specifies the execution order of a series of processes included in the substrate processing, the content of each process, and the conditions (parameter setting values) for each process.
  • the storage unit 103 has a main storage device.
  • the main storage device is, for example, a semiconductor memory.
  • the storage unit 103 may further have an auxiliary storage device.
  • the auxiliary storage device includes, for example, at least one of a semiconductor memory and a hard disk drive.
  • the storage unit 103 may include removable media.
  • Figure 2 is a cross-sectional view that shows a schematic configuration of the substrate processing unit 2 included in the substrate processing apparatus 100 of this embodiment.
  • Figure 3 is another cross-sectional view that shows a schematic configuration of the substrate processing unit 2 included in the substrate processing apparatus 100 of this embodiment.
  • the substrate processing unit 2 includes a chamber 201, an exhaust duct 202, a spin chuck 3, a spin motor unit 4, a substrate heating unit 5, a nozzle 6 included in a fluid supply unit 600, a blowing unit 8, a moving mechanism 20, and a processing space forming unit 70.
  • the fluid supply unit 600 is an example of a processing liquid supply unit.
  • the chamber 201 has a roughly box-like shape.
  • the chamber 201 houses the substrate W, part of the exhaust duct 202, the spin chuck 3, the spin motor unit 4, part of the substrate heating unit 5, the nozzle 6, the blowing unit 8, the moving mechanism 20, and the processing space forming unit 70.
  • the spin chuck 3 holds the substrate W in the chamber 201.
  • the spin chuck 3 is an example of a substrate holding unit. More specifically, the spin chuck 3 holds the substrate W in a horizontal position. As shown in FIG. 2, the spin chuck 3 may have multiple chuck members 31 and a spin base 32.
  • the spin base 32 is approximately disk-shaped and supports multiple chuck members 31 in a horizontal position.
  • the multiple chuck members 31 are arranged on the periphery of the spin base 32.
  • the multiple chuck members 31 clamp the periphery of the substrate W.
  • the multiple chuck members 31 hold the substrate W in a horizontal position.
  • the operation of the multiple chuck members 31 is controlled by the control device 101 (control unit 102).
  • the spin motor unit 4 rotates the substrate W held by the spin chuck 3.
  • the spin motor unit 4 is an example of a substrate rotation unit. More specifically, the spin motor unit 4 rotates the substrate W and the spin chuck 3 together around a rotation axis AX that extends vertically.
  • the control device 101 controls the rotation of the substrate W by the spin motor unit 4.
  • the rotation axis AX passes through the center of the spin base 32.
  • the multiple chuck members 31 are arranged so that the center of the substrate W coincides with the center of the spin base 32. Therefore, the substrate W rotates around the center of the substrate W as the center of rotation.
  • the spin motor unit 4 may have a shaft 41 and a motor body 42.
  • the shaft 41 is coupled to the spin base 32.
  • the motor body 42 rotates the shaft 41.
  • the spin base 32 rotates.
  • the operation of the motor body 42 is controlled by the control device 101 (control unit 102).
  • the processing space forming part 70 includes a blocking member 72.
  • the blocking member 72 faces the substrate W held by the spin chuck 3.
  • the blocking member 72 is an example of a facing member. More specifically, the blocking member 72 is located above the substrate W held by the spin chuck 3.
  • the processing space forming part 70 forms a processing space in which processing of the substrate W (substrate processing) is performed.
  • the processing space is a space that is substantially isolated from the atmosphere outside the processing space. In other words, the processing space is a local space formed inside the chamber 201.
  • the processing space is substantially isolated from the atmosphere inside the chamber 201.
  • the blocking member 72 has a canopy portion 721 and a sidewall portion 722.
  • the canopy portion 721 is a substantially disk-shaped member.
  • the lower surface of the canopy portion 721 faces the upper surface of the substrate W held by the spin chuck 3.
  • the lower surface of the canopy portion 721 faces the spin chuck 3.
  • the sidewall portion 722 is a substantially cylindrical member. The sidewall portion 722 protrudes downward from the outer periphery of the canopy portion 721.
  • the canopy portion 721 extends along a substantially horizontal plane.
  • the diameter of the canopy portion 721 is, for example, larger than the diameter of the substrate W.
  • the diameter of the canopy portion 721 may be larger than the diameter of the spin base 32.
  • the center of the canopy portion 721 may be located on the rotation axis AX.
  • the canopy portion 721 may be a substantially disk-shaped member centered on the rotation axis AX.
  • the side wall portion 722 may be a substantially cylindrical member centered on the rotation axis AX.
  • the blocking member 72 also has a through hole 72a.
  • the through hole 72a penetrates the canopy portion 721.
  • One end of the through hole 72a is located on the lower surface of the canopy portion 721. Therefore, one end of the through hole 72a faces the substrate W held by the spin chuck 3. In other words, one end of the through hole 72a faces the spin chuck 3.
  • the nozzle 6 ejects an inert gas during substrate processing.
  • the nozzle 6 also supplies processing liquid to the substrate W rotated by the spin motor unit 4. More specifically, the nozzle 6 ejects processing liquid toward the substrate W positioned in the processing space.
  • the nozzle 6 supplies SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid.
  • the nozzle 6 exclusively supplies SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W.
  • the nozzle 6 is housed in the through hole 72a of the blocking member 72.
  • the tip of the nozzle 6 is exposed from one end of the through hole 72a.
  • the inert gas and processing liquid are ejected from the tip of the nozzle 6.
  • the tip of the nozzle 6 may be located inside the through hole 72a.
  • the tip of the nozzle 6 may be located outside the through hole 72a. In other words, the tip of the nozzle 6 may protrude from the through hole 72a toward the spin chuck 3.
  • the through hole 72a and the nozzle 6 extend in a substantially vertical direction.
  • One end of the through hole 72a is the lower end of the through hole 72a, and the tip of the nozzle 6 is the lower end of the nozzle 6.
  • the through hole 72a is, for example, substantially circular in a plan view.
  • the diameter of the through hole 72a is sufficiently smaller than the diameter of the substrate W.
  • the through hole 72a is, for example, disposed on the rotation axis AX. In this case, the nozzle 6 faces the center of the substrate W held by the spin chuck 3. Therefore, the processing liquid is ejected from the nozzle 6 toward the center of the substrate W.
  • the moving mechanism 20 moves the blocking member 72 in the vertical direction.
  • the moving mechanism 20 includes a holding unit 21, an arm unit 22, an arm base 23, and a lifting unit 24.
  • the arm base 23 extends vertically.
  • the base end of the arm portion 22 is connected to the arm base 23.
  • the arm portion 22 extends horizontally from the arm base 23.
  • the holding portion 21 is connected to the tip of the arm portion 22.
  • the holding portion 21 holds the blocking member 72. More specifically, the holding portion 21 holds the blocking member 72 so that the canopy portion 721 is in a substantially horizontal position.
  • the lifting unit 24 raises and lowers the arm base 23 in the vertical direction. As a result, the blocking member 72 moves up and down. More specifically, the lifting unit 24 raises and lowers the blocking member 72 between the blocking position and the retracted position.
  • Figure 2 shows the blocking member 72 in the blocking position.
  • Figure 3 shows the blocking member 72 in the retracted position. As shown in Figures 2 and 3, the blocking position is a position below the retracted position. In other words, the blocking position is closer to the substrate W held by the spin chuck 3 than the retracted position.
  • the operation of the lifting unit 24 is controlled by the control device 101 (control unit 102).
  • the lifting unit 24 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
  • the control device 101 moves the blocking member 72 from the blocking position to the retracted position, for example, when the substrate W is transferred between the center robot CR and the spin chuck 3 described with reference to FIG. 1. That is, when the substrate W is loaded into the chamber 201, the blocking member 72 retracts to the retracted position. Also, when the substrate W is unloaded from the chamber 201, the blocking member 72 retracts to the retracted position.
  • the retracted position is a position where the hand of the center robot CR can enter the gap between the blocking member 72 and the spin chuck 3.
  • control device 101 moves the blocking member 72 from the retracted position to the blocking position.
  • the processing space is formed by moving the blocking member 72 to the blocking position.
  • the processing space forming unit 70 further includes a liquid receiving unit 71.
  • the liquid receiving unit 71 receives the processing liquid discharged from the substrate W rotated by the spin motor unit 4. As shown in FIG. 2, the liquid receiving unit 71 may have a guard 711 and a guard lifting unit 714.
  • the guard 711 is approximately cylindrical and surrounds the substrate W held by the spin chuck 3.
  • the guard 711 receives the processing liquid discharged from the substrate W. More specifically, the guard 711 receives the processing liquid that splashes from the rotating substrate W.
  • the guard 711 may include a cylindrical guide portion 712 and a cylindrical inclined portion 713.
  • the inclined portion 713 extends obliquely upward toward the rotation axis AX.
  • the guide portion 712 extends downward from the lower end of the inclined portion 713.
  • the inclined portion 713 includes an annular upper end 71a.
  • the upper end 71a of the inclined portion 713 has an inner diameter larger than the blocking member 72.
  • the upper end 71a of the inclined portion 713 corresponds to the upper end of the guard 711.
  • the upper end 71a of the inclined portion 713 may be referred to as the "upper end 71a of the guard 711."
  • the guard lifting section 714 lifts and lowers the guard 711 between a first lower position shown by a two-dot chain line in FIG. 2 and a first upper position shown by a solid line in FIG. 2.
  • the first lower position indicates a position where the upper end 71a of the guard 711 is positioned below the substrate W.
  • the first upper position indicates a position where the upper end 71a of the guard 711 is positioned above the substrate W.
  • the guard lifting unit 714 is controlled by the control device 101 (control unit 102).
  • the guard lifting unit 714 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
  • the control device 101 moves the guard 711 from the first lower position to the first upper position.
  • the guard 711 can receive processing liquid splashed from the substrate W.
  • the control device 101 moves the guard 711 from the first upper position to the first lower position when the substrate W is unloaded from the chamber 201.
  • the substrate W can be transferred between the center robot CR and the spin chuck 3 described with reference to FIG. 1.
  • the guard 711 moves to the first upper position and the blocking member 72 moves to the blocking position, thereby forming a processing space inside the chamber 201.
  • the upper end 71a of the guard 711 arranged in the first upper position surrounds the side wall portion 722 of the blocking member 72 arranged in the blocking position. As a result, a local space (processing space) that is substantially blocked off from the atmosphere inside the chamber 201 is formed.
  • the nozzle 6 ejects an inert gas when processing the substrate W.
  • the inert gas is supplied to the processing space. Since the processing space is substantially isolated from the atmosphere outside the processing space, the processing space is filled with the inert gas. More specifically, the inert gas is constantly supplied to the processing space while the processing space is formed.
  • the holding portion 21 holds the blocking member 72 rotatably.
  • the blocking member 72 moves to the blocking position, it engages with the spin chuck 3.
  • the spin chuck 3 rotates, the blocking member 72 rotates together with the spin chuck 3.
  • the exhaust duct 202 exhausts the gas in the chamber 201 to the outside of the chamber 201. Specifically, the gas in the exhaust duct 202 is constantly sucked in by exhaust equipment (not shown) provided in the factory where the substrate processing apparatus 100 is installed.
  • the upstream end of the exhaust duct 202 is connected to the processing space formed by the processing space forming part 70 below the spin base 32. Therefore, during substrate processing, the inert gas in the processing space is drawn to the upstream end of the exhaust duct 202 by the suction force of the exhaust equipment transmitted through the exhaust duct 202. As a result, the inert gas in the processing space is exhausted outside the chamber 201 through the exhaust duct 202.
  • the chemical atmosphere in the processing space is exhausted to the outside of the chamber 201 through the exhaust duct 202 together with the inert gas.
  • the chemical atmosphere is generated from the tip of the nozzle 6 when the chemical is discharged from the nozzle 6.
  • the chemical atmosphere is also generated from the upper surface of the substrate W when the chemical collides with the upper surface of the substrate W.
  • the chemical atmosphere is also generated when the chemical collides with the peripheral components of the substrate W, such as the spin chuck 3 and the liquid receiving portion 71.
  • the water contained in the SPM evaporates, causing droplets or mist of the SPM to be ejected from the nozzle 6.
  • Fumes may be generated from the substrate W due to the reaction between the SPM and the resist film.
  • the substrate heating unit 5 heats the substrate W held by the spin chuck 3.
  • the substrate heating unit 5 may have a heating member 51, a lifting shaft 52, a power supply unit 53, and a heater lifting unit 54.
  • the heating member 51 is approximately disk-shaped and is located between the substrate W held by the chuck member 31 and the spin base 32.
  • a heater is embedded in the heating member 51.
  • the heater includes, for example, a resistor.
  • the power supply unit 53 applies electricity to the heater embedded in the heating member 51 to heat the heating member 51.
  • the power supply unit 53 is controlled by the control device 101 (control unit 102).
  • the lifting shaft 52 is a generally rod-shaped member that extends generally vertically.
  • the lifting shaft 52 is connected to the heating member 51.
  • the heater lifting unit 54 raises and lowers the heating member 51 by raising and lowering the lifting shaft 52. Specifically, the heater lifting unit 54 raises and lowers the heating member 51 between the lower surface of the substrate W held by the chuck member 31 and the upper surface of the spin base 32.
  • the heater lifting unit 54 is controlled by the control device 101 (control unit 102).
  • the heater lifting unit 54 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
  • the blowing section 8 blows out superheated steam into the processing space.
  • the superheated steam fills the processing space.
  • the blowing section 8 is an example of a superheated steam blowing section. Note that superheated steam is generated by heating water vapor. Therefore, the temperature of superheated steam is higher than that of water vapor. Specifically, the temperature of water vapor when it is generated is 100°C, and the temperature of superheated steam when it is generated is higher than 100°C.
  • the blowing section 8 includes a first blowing section 81 and a second blowing section 82.
  • the first blowing section 81 is disposed above the substrate W held by the spin chuck 3.
  • the first blowing section 81 is an example of a first superheated steam blowing section.
  • the first blowing section 81 is supported on the inner wall surface of the blocking member 72.
  • the second blowing section 82 is supported on the liquid receiving section 71.
  • the second blowing section 82 is supported on the inner wall surface of the guard 711.
  • the second blowing section 82 is an example of a second superheated steam blowing section.
  • the first blowing section 81 may be fixed to the blocking member 72 via a bracket.
  • the second blowing section 82 may be fixed to the guard 711 via a bracket.
  • control device 101 controls the blowing of superheated steam from blowing section 8 by control device 101 (control section 102).
  • control device 101 controls superheated steam to be blown from blowing section 8 when SPM is being supplied to substrate W.
  • substrate processing using SPM may be referred to as "SPM processing.”
  • the processing space can be filled with superheated water vapor during SPM processing. Therefore, the time required to raise the temperature of the substrate W can be shortened compared to a configuration in which the temperature of the substrate W is raised only by the temperature of the SPM. As a result, the processing time can be shortened and the amount of SPM consumed can be reduced. Therefore, the amount of sulfuric acid consumed can be reduced.
  • SPM flows on the upper surface of the substrate W.
  • the SPM discharged onto the upper surface of the substrate W flows from the center to the periphery of the substrate W and is discharged from the substrate W.
  • the processing space is filled with superheated water vapor, so that heat can be applied to the substrate W from its lower surface. Therefore, the temperature of the substrate W can be raised efficiently.
  • the processing space is filled with superheated water steam, so that the temperatures of the components arranged around the substrate W, such as the spin chuck 3, the liquid receiving portion 71, and the blocking member 72, can be increased by the superheated water steam. Therefore, the time required to increase the temperature of the substrate W can be shortened.
  • superheated steam contains a small amount of moisture. Therefore, when the moisture contained in the superheated steam comes into contact with the SPM and reacts with the SPM, the heat generated can be used to raise the temperature of the substrate W.
  • the superheated water vapor is sucked together with the inert gas to the upstream end of the exhaust duct 202 by the suction force of the exhaust equipment transmitted through the exhaust duct 202.
  • the droplets contained in the superheated water vapor collide with the chemical components floating in the processing space.
  • the chemical components are accelerated toward the upstream end of the exhaust duct 202, and the chemical atmosphere is efficiently exhausted outside the chamber 201 through the exhaust duct 202.
  • the first blowing section 81 is disposed above the substrate W. Therefore, the superheated water vapor droplets are likely to collide with the chemical components generated from the substrate W before the chemical components generated from the substrate W adhere to the members surrounding the substrate W. This makes it possible to efficiently suppress the diffusion of the chemical atmosphere.
  • the first blowing section 81 is supported by the blocking member 72. Therefore, the superheated water vapor droplets are likely to collide with the chemical components generated from the nozzle 6 before the chemical components are deposited on the members surrounding the substrate W. This makes it possible to efficiently suppress the diffusion of the chemical atmosphere.
  • the first blowing section 81 will now be described further.
  • the first blowing section 81 is located outside the substrate W held by the spin chuck 3 in a plan view. Therefore, even if water droplets drip from the first blowing section 81, the water droplets are unlikely to fall onto the substrate W.
  • the first blowing section 81 is supported on the inner circumferential surface of the side wall section 722. Therefore, the first blowing section 81 is disposed at a position relatively far from the nozzle 6. Therefore, the superheated water steam is less likely to be attracted to the SPM discharged from the nozzle 6. As a result, the superheated water steam is less likely to be unevenly distributed within the processing space, and the substrate W and the components disposed around the substrate W can be efficiently heated by the superheated water steam.
  • the second blowing section 82 is positioned below the substrate W.
  • the second blowing section 82 is supported by the inner circumferential surface of the guide section 712.
  • the substrate processing apparatus 100 has two blowing sections 8 (first blowing section 81 and second blowing section 82), but the number of blowing sections 8 may be one or three or more.
  • the blowing section 8 may include only one of the first blowing section 81 and the second blowing section 82.
  • the substrate processing apparatus 100 may have two or more blowing sections 8 supported by the blocking member 72, or two or more blowing sections 8 supported by the liquid receiving section 71.
  • Figure 4(a) is a bottom view of the nozzle 6 included in the substrate processing apparatus 100 of this embodiment, as viewed from below.
  • Figure 4(b) is a diagram showing the configuration of a fluid supply unit 600 included in the substrate processing apparatus 100 of this embodiment.
  • the nozzle 6 has a first outlet 61 to a fourth outlet 64.
  • the first outlet 61 to the fourth outlet 64 open on the bottom surface (tip) of the nozzle 6.
  • the fourth outlet 64 is annular.
  • the fourth outlet 64 extends along the outer periphery of the nozzle 6 on the bottom surface (tip) of the nozzle 6.
  • SPM and hydrogen peroxide solution are exclusively ejected from the first outlet 61.
  • SC1 is ejected from the second outlet 62.
  • Rinse liquid is ejected from the third outlet 63.
  • An inert gas is ejected from the fourth outlet 64.
  • the inert gas is nitrogen gas.
  • the fluid supply unit 600 further includes a first chemical liquid supply unit 610, a second chemical liquid supply unit 620, a rinsing liquid supply unit 630, and a gas supply unit 640.
  • control device 101 controls the ejection of SPM from nozzle 6 and the ejection of hydrogen peroxide solution from nozzle 6 by controlling first chemical liquid supply unit 610.
  • the first chemical liquid supply unit 610 exclusively supplies SPM and hydrogen peroxide solution to the nozzle 6.
  • the SPM supplied from the first chemical liquid supply unit 610 to the nozzle 6 is discharged from the first outlet 61 described with reference to FIG. 4(a).
  • the hydrogen peroxide solution supplied from the first chemical liquid supply unit 610 to the nozzle 6 is discharged from the first outlet 61 described with reference to FIG. 4(a).
  • the first chemical liquid supply unit 610 may have a first chemical liquid supply pipe 611, a first component on-off valve 613, a second component on-off valve 615, and a heater 617.
  • a portion of the first chemical liquid supply pipe 611 is housed in the chamber 201 described with reference to FIG. 2.
  • the first component on-off valve 613, the second component on-off valve 615, and the heater 617 are housed in the fluid box 10B described with reference to FIG. 1.
  • the first chemical supply pipe 611 exclusively supplies SPM and hydrogen peroxide to the nozzle 6.
  • the first chemical supply pipe 611 is a tubular member, and distributes SPM and hydrogen peroxide to the nozzle 6.
  • the first chemical supply pipe 611 includes a first pipe 611a and a second pipe 611b. One end of the first pipe 611a is connected to the nozzle 6. One end of the second pipe 611b is connected to the first pipe 611a. Sulfuric acid flows into the first pipe 611a. Hydrogen peroxide flows into the second pipe 611b.
  • the heater 617 is installed in the first pipe 611a.
  • the heater 617 is installed in the first pipe 611a upstream of the first component on-off valve 613.
  • the heater 617 heats the sulfuric acid flowing through the first pipe 611a.
  • the first component on-off valve 613 is disposed in the first pipe 611a. Specifically, the first component on-off valve 613 is disposed upstream of the connection point CP between the first pipe 611a and the second pipe 611b.
  • the second component on-off valve 615 is disposed in the second pipe 611b.
  • the first component opening/closing valve 613 and the second component opening/closing valve 615 can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operations of the first component opening/closing valve 613 and the second component opening/closing valve 615.
  • the actuators of the first component opening/closing valve 613 and the second component opening/closing valve 615 are, for example, pneumatic actuators or electric actuators.
  • the control device 101 When supplying SPM to the substrate W, the control device 101 (control unit 102) opens the first component on-off valve 613 and the second component on-off valve 615.
  • the first component on-off valve 613 and the second component on-off valve 615 are opened, sulfuric acid flows through the first pipe 611a toward the nozzle 6, and hydrogen peroxide flows through the second pipe 611b toward the connection point CP.
  • the sulfuric acid and hydrogen peroxide are mixed at the connection point CP to generate SPM.
  • the SPM flows through the first pipe 611a toward the nozzle 6, and is ejected from the nozzle 6 toward the substrate W.
  • the control device 101 When supplying hydrogen peroxide to the substrate W, the control device 101 (control unit 102) closes the first component on-off valve 613 and opens the second component on-off valve 615.
  • the first component on-off valve 613 is closed and the second component on-off valve 615 is opened, the flow of sulfuric acid through the first pipe 611a stops, and the hydrogen peroxide flows through the second pipe 611b toward the connection point CP.
  • the hydrogen peroxide that has flowed into the first pipe 611a flows through the first pipe 611a toward the nozzle 6, and the hydrogen peroxide is ejected from the nozzle 6 toward the substrate W.
  • control device 101 stops the ejection of SPM and hydrogen peroxide solution from the nozzle 6, it closes the first component opening/closing valve 613 and the second component opening/closing valve 615.
  • the first component opening/closing valve 613 and the second component opening/closing valve 615 are closed, the flow of sulfuric acid through the first pipe 611a stops, and the flow of hydrogen peroxide solution through the second pipe 611b stops.
  • the ejection of SC1 from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the ejection of SC1 from the nozzle 6 by controlling the second chemical liquid supply unit 620.
  • the second chemical liquid supply unit 620 supplies SC1 to the nozzle 6.
  • the SC1 supplied from the second chemical liquid supply unit 620 to the nozzle 6 is discharged from the second discharge port 62 described with reference to FIG. 4(a).
  • the second chemical liquid supply unit 620 may have a second chemical liquid supply pipe 621 and a chemical liquid on-off valve 623.
  • a portion of the second chemical liquid supply pipe 621 is housed in the chamber 201 described with reference to FIG. 2.
  • the chemical liquid on-off valve 623 is housed in the fluid box 10B described with reference to FIG. 1.
  • the second chemical supply pipe 621 supplies SC1 to the nozzle 6.
  • the second chemical supply pipe 621 is a tubular member that distributes SC1 to the nozzle 6.
  • the chemical liquid on-off valve 623 is disposed in the second chemical liquid supply pipe 621.
  • the chemical liquid on-off valve 623 can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the chemical liquid on-off valve 623.
  • the actuator of the chemical liquid on-off valve 623 is, for example, a pneumatic actuator or an electric actuator.
  • the control device 101 opens the chemical liquid on-off valve 623 when supplying SC1 to the substrate W.
  • SC1 flows through the second chemical liquid supply pipe 621 toward the nozzle 6.
  • SC1 is ejected from the nozzle 6 toward the substrate W.
  • control device 101 stops the discharge of SC1 from the nozzle 6, it closes the chemical solution opening/closing valve 623.
  • the chemical solution opening/closing valve 623 is closed, the flow of SC1 through the second chemical solution supply pipe 621 is stopped.
  • the discharge of the rinsing liquid from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the discharge of the rinsing liquid from the nozzle 6 by controlling the rinsing liquid supply unit 630.
  • the rinse liquid supply unit 630 supplies the rinse liquid to the nozzle 6.
  • the rinse liquid supplied from the rinse liquid supply unit 630 to the nozzle 6 is discharged from the third discharge port 63 described with reference to FIG. 4(a).
  • the rinse liquid supply unit 630 may have a rinse liquid supply pipe 631 and a rinse liquid opening/closing valve 633.
  • a portion of the rinse liquid supply pipe 631 is housed in the chamber 201 described with reference to FIG. 2.
  • the rinse liquid opening/closing valve 633 is housed in the fluid box 10B described with reference to FIG. 1.
  • the rinse liquid supply pipe 631 supplies rinse liquid to the nozzle 6.
  • the rinse liquid supply pipe 631 is a tubular member that circulates the rinse liquid to the nozzle 6.
  • the rinse liquid opening/closing valve 633 is disposed in the rinse liquid supply pipe 631.
  • the rinse liquid opening/closing valve 633 can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the rinse liquid opening/closing valve 633.
  • the actuator of the rinse liquid opening/closing valve 633 is, for example, a pneumatic actuator or an electric actuator.
  • the control device 101 opens the rinse liquid opening/closing valve 633 when supplying rinse liquid to the substrate W.
  • the rinse liquid opening/closing valve 633 is opened, the rinse liquid flows through the rinse liquid supply pipe 631 toward the nozzle 6. As a result, the rinse liquid is ejected from the nozzle 6 toward the substrate W.
  • control device 101 stops the discharge of the rinse liquid from the nozzle 6, it closes the rinse liquid opening/closing valve 633.
  • the rinse liquid opening/closing valve 633 is closed, the flow of the rinse liquid through the rinse liquid supply pipe 631 stops.
  • the discharge of nitrogen gas from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the discharge of nitrogen gas from the nozzle 6 by controlling the gas supply unit 640.
  • the gas supply unit 640 supplies nitrogen gas to the nozzle 6.
  • the nitrogen gas supplied from the gas supply unit 640 to the nozzle 6 is discharged from the fourth outlet 64 described with reference to FIG. 4(a).
  • the gas supply unit 640 may have a gas supply pipe 641 and a gas on-off valve 643.
  • a portion of the gas supply pipe 641 is housed in the chamber 201 described with reference to FIG. 2.
  • the gas on-off valve 643 is housed in the fluid box 10B described with reference to FIG. 1.
  • the gas supply pipe 641 supplies nitrogen gas to the nozzle 6.
  • the gas supply pipe 641 is a tubular member that distributes the nitrogen gas to the nozzle 6.
  • the gas on-off valve 643 is disposed in the gas supply pipe 641.
  • the gas on-off valve 643 can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the gas on-off valve 643.
  • the actuator of the gas on-off valve 643 is, for example, a pneumatic actuator or an electric actuator.
  • the control device 101 opens the gas on-off valve 643.
  • the control device 101 opens the gas on-off valve 643.
  • nitrogen gas flows through the gas supply pipe 641 toward the nozzle 6, and the nitrogen gas is discharged from the nozzle 6. As a result, nitrogen gas is supplied from the nozzle 6 to the processing space.
  • control device 101 closes the gas on-off valve 643.
  • the gas on-off valve 643 is closed, the flow of nitrogen gas through the gas supply pipe 641 stops, and the discharge of nitrogen gas from the nozzle 6 stops.
  • SPM and hydrogen peroxide are exclusively discharged from the first outlet 61 of the nozzle 6, but the nozzle 6 may have separate outlets for discharging SPM and hydrogen peroxide.
  • the fluid supply unit 600 is provided with separate chemical supply lines for supplying SPM to the nozzle 6 and hydrogen peroxide to the nozzle 6.
  • FIG. 5 is a diagram showing the configuration of the first blowing section 81 and the superheated steam supply section 800 included in the substrate processing apparatus 100 of this embodiment.
  • the first blowing section 81 is annular and extends along the inner circumferential surface of the side wall portion 722 of the blocking member 72 described with reference to FIG. 2.
  • the first blowing section 81 is a tubular member, and superheated steam flows through the inside of the first blowing section 81.
  • At least one blowing outlet (not shown) is formed on the inner circumferential side of the first blowing section 81.
  • the blowing outlet is an opening, and the superheated steam flowing through the first blowing section 81 is blown out from the blowing outlet of the first blowing section 81 and supplied to the treatment space.
  • FIG. 5 illustrates a first blowing section 81 having four blowing outlets. The arrows in FIG. 5 indicate the superheated steam blown out from the first blowing section 81.
  • the configuration of the second blowing section 82 described with reference to FIG. 2 is the same as that of the first blowing section 81.
  • the second blowing section 82 is annular and extends along the inner circumferential surface of the guard 711 described with reference to FIG. 2.
  • the second blowing section 82 is a tubular member, and superheated steam flows through the interior of the second blowing section 82.
  • At least one blowing port (not shown) is formed on the inner circumferential side of the second blowing section 82.
  • the blowing port is an opening, and the superheated steam flowing through the second blowing section 82 is blown out from the blowing port of the second blowing section 82 and supplied to the treatment space.
  • the first blowing section 81 is annular, by forming multiple blowing outlets in the first blowing section 81, superheated steam can be supplied to the treatment space without bias.
  • the number of blowing outlets in the first blowing section 81 may be one.
  • the second blowing section 82 is annular, forming multiple blowing outlets in the second blowing section 82 allows superheated steam to be supplied to the treatment space without bias.
  • the number of blowing outlets in the second blowing section 82 may be one.
  • the configuration of the substrate processing apparatus 100 is simpler than, for example, the case where the first blowing section 81 is formed of multiple nozzles arranged along a circumference, making it easier to manufacture the substrate processing apparatus 100.
  • the configuration of the substrate processing apparatus 100 is simpler than, for example, the case where the second blowing section 82 is formed of multiple nozzles arranged along a circumference, making it easier to manufacture the substrate processing apparatus 100.
  • the first blowing section 81 may be formed of at least one nozzle.
  • the second blowing section 82 may be formed of at least one nozzle.
  • FIG. 6 is a diagram showing the configuration of the substrate processing apparatus 100 of this embodiment.
  • the substrate processing apparatus 100 further includes a superheated steam supply unit 800.
  • the superheated steam supply unit 800 supplies superheated steam to the first blowing unit 81.
  • the superheated steam supply unit 800 supplies superheated steam to the second blowing unit 82.
  • the superheated steam supply unit 800 has a steam generation unit 800A, a first steam pipe 811, a superheated steam valve 812, a flow control valve 813, and a superheated steam generation heater 803. As shown in FIG. 6, the superheated steam supply unit 800 further has a second steam pipe 821.
  • the water vapor generating unit 800A is housed in the fluid cabinet 10A described with reference to FIG. 1.
  • the superheated water vapor valve 812, the flow control valve 813, and the superheated water vapor generating heater 803 are housed in the fluid box 10B described with reference to FIG. 1.
  • a portion of the first water vapor pipe 811 and a portion of the second water vapor pipe 821 are housed in the chamber 201 described with reference to FIG. 2.
  • the water vapor generating unit 800A generates water vapor. As shown in FIG. 5, the water vapor generated from the water vapor generating unit 800A flows into the first water vapor pipe 811. Specifically, the water vapor generating unit 800A has a storage unit 801 and a water vapor generation heater 802. The storage unit 801 stores pure water. The water vapor generation heater 802 heats the pure water stored in the storage unit 801 to generate water vapor. One end of the first water vapor pipe 811 is connected to the storage unit 801. The operation of the water vapor generation heater 802 is controlled by the control device 101 (control unit 102).
  • the other end of the first steam pipe 811 is connected to the first blowing section 81.
  • a superheated steam valve 812, a flow control valve 813, and a superheated steam generating heater 803 are interposed in the first steam pipe 811.
  • the first steam pipe 811 is a tubular member through which water vapor and superheated steam flow.
  • the superheated steam generation heater 803 heats the water vapor that flows from the storage section 801 into the first steam pipe 811 to generate superheated steam.
  • the superheated steam flows through the first steam pipe 811 and flows into the first blowing section 81.
  • the second steam pipe 821 is a tubular member through which superheated steam flows. As shown in FIG. 6, one end of the second steam pipe 821 is connected to the first steam pipe 811 downstream of the superheated steam valve 812. Therefore, superheated steam flows from the first steam pipe 811 to the second steam pipe 821. The other end of the second steam pipe 821 is connected to the second blowing section 82. The superheated steam that flows into the second steam pipe 821 flows through the second steam pipe 821 and into the second blowing section 82.
  • the superheated steam valve 812 is an opening/closing valve and can be switched between an open state and a closed state.
  • the control device 101 controls the opening/closing operation of the superheated steam valve 812.
  • the actuator of the superheated steam valve 812 is, for example, an air actuator or an electric actuator.
  • the flow control valve 813 controls the flow rate of superheated steam flowing through the first steam pipe 811 and the second steam pipe 821. Specifically, the opening degree of the flow control valve 813 can be controlled, and the flow rate of superheated steam flowing through the first steam pipe 811 and the second steam pipe 821 corresponds to the opening degree of the flow control valve 813.
  • the actuator of the flow control valve 813 is, for example, an electric actuator.
  • the flow control valve 813 may be, for example, a motor needle valve.
  • the opening degree of the flow control valve 813 is controlled by the control device 101 (control unit 102).
  • FIG. 7 is a flowchart showing the substrate processing method of this embodiment.
  • Figure 7 shows the flow of processing by the control device 101 (control unit 102).
  • the substrate processing method of this embodiment includes steps S1 to S8.
  • the control device 101 control unit 102 first controls the center robot CR to load the substrate W into the chamber 201 (step S1).
  • the control device 101 (control unit 102) controls the spin chuck 3 to hold the substrate W loaded by the center robot CR (step S2).
  • the spin chuck 3 holds the substrate W in the chamber 201.
  • control device 101 controls the moving mechanism 20 to lower the blocking member 72 from the retracted position to the blocking position (step S3). As a result, a local space (processing space) surrounded by the blocking member 72 and the liquid receiving portion 71 is formed.
  • the control device 101 controls the substrate processing unit 2 to perform substrate processing (step S4). Specifically, the control device 101 (controller 102) controls the substrate processing unit 2 to supply SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid.
  • control device 101 controls the gas supply unit 640 described with reference to FIG. 4(b) to supply an inert gas (nitrogen gas) to the processing space. More specifically, the control device 101 (control unit 102) causes the gas supply unit 640 to continue supplying the inert gas (nitrogen gas) while the processing space is being formed by the processing space forming unit 70. Thus, while the processing space is being formed, the inert gas (nitrogen gas) fills the processing space. In other words, while the substrate processing is being performed, the inert gas (nitrogen gas) fills the processing space.
  • control device 101 causes the substrate processing unit 2 to execute superheated steam processing in parallel with the substrate processing (step S5). Specifically, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to Figures 5 and 6 to blow superheated steam from the blowing unit 8 into the processing space. For example, the control device 101 (control unit 102) blows superheated steam from the blowing unit 8 during SPM processing.
  • control device 101 controls the gas supply unit 640 described with reference to FIG. 4(b) to stop the supply of the inert gas (nitrogen gas) to the processing space. After that, the control device 101 (control unit 102) controls the movement mechanism 20 to raise the blocking member 72 from the blocking position to the retracted position (step S6).
  • control device 101 controls the spin chuck 3 to release its hold on the substrate W (step S7).
  • control device 101 controls the center robot CR to unload the substrate W from the chamber 201 (step S8). As a result, the process shown in FIG. 7 is completed.
  • FIG. 8 is a flow chart showing the substrate processing (step S4) and superheated steam processing (step S5) included in the substrate processing method of this embodiment.
  • FIG. 9 is a diagram showing the substrate processing section 2 during pre-heating.
  • FIG. 10 is a diagram showing the substrate processing section 2 during SPM processing.
  • FIG. 11 is a diagram showing the substrate processing section 2 during puddle processing.
  • FIG. 12 is a diagram showing the substrate processing section 2 when processing a substrate W with hydrogen peroxide solution.
  • FIG. 13 is a diagram showing the substrate processing section 2 during rinsing processing.
  • FIG. 14 is a diagram showing the substrate processing section 2 when processing a substrate W with SC1.
  • FIG. 15 is a diagram showing the substrate processing section 2 during drying processing.
  • control device 101 controls the substrate heating unit 5 to heat the substrate W (step S41).
  • the temperature of the substrate W is raised before the SPM processing is performed.
  • the efficiency of resist film stripping by SPM is improved.
  • control device 101 controls the power supply unit 53 to energize the heater embedded in the heating member 51. As a result, the heating member 51 is heated.
  • the control device 101 also controls the heater lift unit 54 to lift the heating member 51 from the second lower position to the second upper position.
  • the second lower position is a position where the heating member 51 is close to the upper surface of the spin base 32.
  • the second lower position may be a position where the heating member 51 is in contact with the upper surface of the spin base 32.
  • the second upper position is a position where the heating member 51 is close to the lower surface of the substrate W.
  • control device 101 preheats the substrate W for a predetermined time, and then controls the spin motor unit 4 to start the rotation of the substrate W held by the spin chuck 3 (see FIG. 10).
  • the control device 101 controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to eject SPM from the nozzle 6 toward the rotating substrate W (step S42).
  • SPM is supplied to the upper surface of the rotating substrate W, and a liquid film of SPM is formed on the upper surface of the substrate W.
  • the control device 101 controls the rotation speed of the substrate W when SPM is supplied to the substrate W to form a liquid film of SPM on the upper surface of the substrate W.
  • control device 101 performs a first superheated steam treatment when supplying SPM to the substrate W (step S51). Specifically, as shown in FIG. 10, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIGS. 5 and 6 to blow superheated steam from the blowing unit 8 (first blowing unit 81 and second blowing unit 82) into the processing space.
  • the processing space can be filled with superheated water vapor during SPM processing. Therefore, as already explained, the time required to raise the temperature of the substrate W can be shortened. As a result, the processing time can be shortened and the consumption of SPM can be reduced. Therefore, the consumption of sulfuric acid can be reduced. Furthermore, according to this embodiment, as already explained, the diffusion of the chemical atmosphere can be suppressed by the superheated water vapor.
  • the timing to start blowing out superheated steam from the blowing section 8 may be before the start of ejection of SPM, or may be the same timing as the start of ejection of SPM. Alternatively, the timing to start blowing out superheated steam from the blowing section 8 may be after the start of ejection of SPM.
  • the control device 101 (control section 102) may cause the blowing section 8 to blow out superheated steam continuously or intermittently.
  • the control device 101 may cause the blowing unit 8 to blow superheated steam only before the ejection of SPM starts, or may cause the blowing unit 8 to blow superheated steam only when the ejection of SPM starts.
  • the control device 101 may cause the blowing unit 8 to blow superheated steam for a period between the start and end of ejection of SPM, which is shorter than the period between the start and end of ejection of SPM.
  • control device 101 may control the heater lifting unit 54 to lower the heating member 51 from the second upper position to the second lower position before starting to eject SPM.
  • the control device 101 controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to stop the discharge of SPM. Then, the control device 101 (control unit 102) controls the rotation speed of the substrate W by the spin motor unit 4 to form a paddle state in which the SPM liquid film is supported on the upper surface of the substrate W (step S43). For example, the control device 101 (control unit 102) may stop the rotation of the substrate W to form the paddle state (see FIG. 11). Alternatively, the control device 101 (control unit 102) may rotate the substrate W at a low speed to form the paddle state. By forming the paddle state, the efficiency of resist stripping by SPM can be improved.
  • the control device 101 performs a second superheated steam treatment when the paddle state is formed (during paddle treatment) (step S52). Specifically, as shown in FIG. 11, the control device 101 (control unit 102) controls the superheated steam supply unit 800 to blow out superheated steam from the blowing unit 8. The control device 101 (control unit 102) may continue to supply superheated steam from the SPM treatment to the paddle treatment.
  • the processing space can be filled with superheated water vapor during paddle processing. Therefore, the temperature of the substrate W is less likely to drop during paddle processing. This improves the efficiency of resist stripping using SPM. As a result, the processing time can be shortened and the consumption of SPM can be reduced. In other words, the consumption of sulfuric acid can be reduced. Furthermore, according to this embodiment, as already explained, the diffusion of the chemical atmosphere can be suppressed by the superheated water vapor.
  • the processing space can be filled with superheated water steam, so heat can be applied directly to the substrate W from the lower surface side of the substrate W.
  • the temperature of the substrate W is less likely to drop during puddle processing. This makes it possible to improve the efficiency of resist stripping by SPM.
  • superheated water steam can be efficiently supplied from the second blowing section 82 toward the lower surface of the substrate W, making it possible to further suppress a drop in the temperature of the substrate W during puddle processing.
  • control device 101 may control the heater lifting unit 54 to raise the heating member 51 from the second lower position to the second upper position, thereby heating the substrate W with the heating member 51.
  • control device 101 controls the spin motor unit 4 to start rotating the substrate W held by the spin chuck 3 (see FIG. 12).
  • the control device 101 controls the spin motor unit 4 to increase the rotation speed of the substrate W.
  • the control device 101 controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to eject hydrogen peroxide solution from the nozzle 6 toward the rotating substrate W (step S44).
  • hydrogen peroxide solution is supplied to the upper surface of the rotating substrate W, and a liquid film of hydrogen peroxide solution is formed on the upper surface of the substrate W.
  • the control device 101 controls the rotation speed of the substrate W to form a liquid film of hydrogen peroxide solution on the upper surface of the substrate W.
  • the ejection of hydrogen peroxide solution causes SPM to be discharged from the upper surface of the substrate W, and the liquid film of SPM is replaced with a liquid film of hydrogen peroxide solution.
  • the control device 101 performs a third superheated steam treatment (step S53) when hydrogen peroxide solution is supplied to the substrate W. Specifically, as shown in FIG. 12, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIG. 5 and FIG. 6 to reduce the flow rate of superheated steam blown out from the blowing unit 8 (first blowing unit 81 and second blowing unit 82).
  • control device 101 blows superheated water steam from the blowing unit 8 at a first flow rate during SPM processing and puddle processing, and blows superheated water steam from the blowing unit 8 at a second flow rate smaller than the first flow rate when hydrogen peroxide solution is supplied to the substrate W.
  • the control device 101 adjusts the flow rate of the superheated water steam by controlling the flow control valve 813 shown in Figures 5 and 6.
  • control device 101 may heat the substrate W using the heating member 51 when supplying hydrogen peroxide solution to the substrate W.
  • Hydrogen peroxide has the potential to oxidize the substrate W.
  • the higher the temperature of the hydrogen peroxide the more easily the substrate W is oxidized.
  • the higher the temperature of the substrate W the more easily the substrate W is oxidized.
  • the amount of superheated water steam supplied to the processing space when hydrogen peroxide is supplied to the substrate W can be reduced.
  • the increase in temperature of the hydrogen peroxide due to the superheated water steam is suppressed, and the temperature of the substrate W is more likely to decrease, so that oxidation of the substrate W due to hydrogen peroxide can be suppressed.
  • control device 101 controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to stop the discharge of hydrogen peroxide solution.
  • the control device 101 controls the rinse liquid supply unit 630 described with reference to FIG. 4(b) to discharge the rinse liquid from the nozzle 6 toward the rotating substrate W while rotating the substrate W held by the spin chuck 3 (step S45).
  • the rinse liquid is supplied to the upper surface of the rotating substrate W, and a liquid film of the rinse liquid is formed on the upper surface of the substrate W.
  • the control device 101 controls the rotation speed of the substrate W to form a liquid film of the rinse liquid on the upper surface of the substrate W.
  • the hydrogen peroxide solution is discharged from the upper surface of the substrate W by the discharge of the rinse liquid, and the liquid film of the hydrogen peroxide solution is replaced with a liquid film of the rinse liquid.
  • control device 101 controls the superheated water vapor supply unit 800 described with reference to FIG. 5 and FIG. 6 to stop the blowing of superheated water vapor from the blowing unit 8 before starting the supply of rinsing liquid to the substrate W.
  • control device 101 stops the supply of superheated water vapor to the processing space.
  • the supply of superheated water vapor to the processing space is stopped before the supply of rinsing liquid to the substrate W is started, so the rinsing liquid is less likely to evaporate from the top surface of the substrate W than when the supply of superheated water vapor to the processing space is continued.
  • control device 101 may control the heater lifting unit 54 to lower the heating member 51 from the second upper position to the second lower position before starting to discharge the rinsing liquid. This makes it difficult for the rinsing liquid to evaporate from the upper surface of the substrate W.
  • control device 101 controls the rinsing liquid supply unit 630 described with reference to FIG. 4(b) to stop the discharge of the rinsing liquid.
  • control device 101 controls the second chemical liquid supply unit 620 described with reference to FIG. 4(b) to discharge SC1 from the nozzle 6 toward the rotating substrate W while rotating the substrate W held by the spin chuck 3 (step S46).
  • SC1 is supplied to the upper surface of the rotating substrate W, and a liquid film of SC1 is formed on the upper surface of the substrate W.
  • control device 101 controls the rotation speed of the substrate W to form a liquid film of SC1 on the upper surface of the substrate W.
  • the discharge of SC1 causes the rinsing liquid to be discharged from the upper surface of the substrate W, and the liquid film of the rinsing liquid is replaced with a liquid film of SC1.
  • the control device 101 performs the fourth superheated steam treatment when supplying SC1 to the substrate W (step S54). Specifically, as shown in FIG. 14, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIG. 5 and FIG. 6 to blow out superheated steam from the blowing unit 8 (first blowing unit 81 and second blowing unit 82).
  • superheated steam is supplied to the processing space when SC1 is supplied to the substrate W, so the temperature of the SC1 supplied to the upper surface of the substrate W can be raised. As a result, the main surface of the substrate W becomes susceptible to oxidation by SC1.
  • control device 101 controls the second chemical liquid supply unit 620 described with reference to FIG. 4(b) to stop the discharge of SC1.
  • control device 101 After stopping the supply of SC1 to the substrate W, the control device 101 (control unit 102) ejects the rinse liquid from the nozzle 6 toward the rotating substrate W, similar to step S45 (step S47). As a result, the ejection of the rinse liquid causes SC1 to be discharged from the top surface of the substrate W, and a liquid film of the rinse liquid is formed on the top surface of the substrate W.
  • control device 101 stops the blowing of superheated steam from the blowing unit 8 during the rinsing process. In other words, the control device 101 (control unit 102) stops the supply of superheated steam to the processing space.
  • control device 101 controls the rinsing liquid supply unit 630 described with reference to FIG. 4(b) to stop the discharge of the rinsing liquid.
  • control device 101 controls the rotation speed of the substrate W by the spin motor unit 4 to perform a drying process to remove the rinsing liquid from the upper surface of the substrate W and dry the upper surface of the substrate W (step S48). As a result, the process shown in FIG. 8 is completed.
  • control device 101 controls the spin motor unit 4 to rotate the substrate W at high speed.
  • the control device 101 controls the spin motor unit 4 to rotate the substrate W at high speed.
  • the control device 101 stops the blowing of superheated water steam from the blowing unit 8. More specifically, the blowing of superheated water steam is kept stopped from the rinsing process (step S47) through the drying process.
  • superheated steam is not supplied to the processing space during the drying process, so the humidity in the processing space can be reduced compared to when superheated steam is supplied. As a result, the substrate W can be dried efficiently.
  • the processing space can be filled with superheated water vapor, thereby raising the temperature of the substrate W and the members surrounding the substrate W.
  • the temperature of the rinsing liquid is raised by the residual heat, which makes it easier for the rinsing liquid to evaporate during the drying process, allowing the substrate W to be dried efficiently.
  • FIG. 16(a) is a bottom view of the nozzle 6 included in the first modified example of the substrate processing apparatus 100 of this embodiment, viewed from below.
  • FIG. 16(b) is a diagram showing the configuration of the fluid supply unit 600 included in the first modified example of the substrate processing apparatus 100 of this embodiment.
  • the nozzle 6 of the first modified example may be referred to as "nozzle 6a.”
  • the nozzle 6a has an additional blowing outlet 8a.
  • Superheated steam is blown out from the blowing outlet 8a.
  • the nozzle 6a functions as a blowing section that blows out superheated steam.
  • the blowing section that blows out superheated steam may be included in the fluid supply section 600.
  • superheated steam is supplied to the nozzle 6a from a superheated steam supply unit 800.
  • the superheated steam supplied to the nozzle 6a from the superheated steam supply unit 800 is blown out from the blowing port 8a described with reference to FIG. 16(a).
  • the blowing section 8 described with reference to FIG. 2 may or may not be omitted.
  • FIG. 17(a) is a bottom view of the nozzle 6 included in the second modified example of the substrate processing apparatus 100 of this embodiment, viewed from below.
  • FIG. 17(b) is a diagram showing the configuration of the fluid supply unit 600 included in the second modified example of the substrate processing apparatus 100 of this embodiment.
  • the nozzle 6 of the second modified example may be referred to as "nozzle 6b.”
  • the nozzle 6b has a first outlet 61b to a fifth outlet 65b.
  • the first outlet 61b to the fifth outlet 65b open on the bottom surface (tip) of the nozzle 6b.
  • the fifth outlet 65b is annular.
  • the fifth outlet 65b extends along the outer periphery of the nozzle 6b on the bottom surface (tip) of the nozzle 6b.
  • Sulfuric acid is discharged from the first outlet 61b.
  • Hydrogen peroxide solution is discharged from the second outlet 62b.
  • Ammonia water is discharged from the third outlet 63b. Pure water is discharged from the fourth outlet 64b.
  • An inert gas is discharged from the fifth outlet 65b. In the second modified example, the inert gas is nitrogen gas.
  • the fluid supply unit 600 includes a nozzle 6b, a first chemical liquid supply unit 610b, a second chemical liquid supply unit 620b, a third chemical liquid supply unit 630b, a pure water supply unit 640b, and a gas supply unit 650b.
  • the first chemical liquid supply unit 610b supplies sulfuric acid to the nozzle 6b.
  • the sulfuric acid supplied from the first chemical liquid supply unit 610b to the nozzle 6b is discharged from the first discharge port 61b described with reference to FIG. 17(a).
  • the first chemical liquid supply unit 610b has a first chemical liquid supply pipe 612b, a first chemical liquid opening/closing valve 614b, and a heater 616b.
  • a portion of the first chemical liquid supply pipe 612b is housed in the chamber 201 described with reference to FIG. 2.
  • the first chemical liquid opening/closing valve 614b and the heater 616b are housed in the fluid box 10B described with reference to FIG. 1.
  • the first chemical liquid supply pipe 612b supplies sulfuric acid to the nozzle 6b.
  • the first chemical liquid supply pipe 612b is a tubular member that circulates the sulfuric acid to the nozzle 6b.
  • the heater 616b is installed in the first chemical liquid supply pipe 612b. The heater 616b heats the sulfuric acid flowing through the first chemical liquid supply pipe 612b.
  • the first chemical liquid on-off valve 614b is disposed in the first chemical liquid supply pipe 612b.
  • the first chemical liquid on-off valve 614b can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the first chemical liquid on-off valve 614b.
  • the actuator of the first chemical liquid on-off valve 614b is, for example, a pneumatic actuator or an electric actuator.
  • the second chemical supply unit 620b supplies hydrogen peroxide to the nozzle 6b.
  • the hydrogen peroxide supplied from the second chemical supply unit 620b to the nozzle 6b is discharged from the second discharge port 62b described with reference to FIG. 17(a).
  • the second chemical liquid supply unit 620b has a second chemical liquid supply pipe 622b and a second chemical liquid opening/closing valve 624b.
  • a portion of the second chemical liquid supply pipe 622b is housed in the chamber 201 described with reference to FIG. 2.
  • the second chemical liquid opening/closing valve 624b is housed in the fluid box 10B described with reference to FIG. 1.
  • the second chemical supply pipe 622b supplies hydrogen peroxide to the nozzle 6b.
  • the second chemical supply pipe 622b is a tubular member that circulates hydrogen peroxide to the nozzle 6b.
  • the second chemical liquid on-off valve 624b is disposed in the second chemical liquid supply pipe 622b.
  • the second chemical liquid on-off valve 624b can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the second chemical liquid on-off valve 624b.
  • the actuator of the second chemical liquid on-off valve 624b is, for example, a pneumatic actuator or an electric actuator.
  • the control device 101 opens the first chemical liquid opening/closing valve 614b and the second chemical liquid opening/closing valve 624b when supplying SPM to the substrate W.
  • the sulfuric acid and hydrogen peroxide are mixed on the upper surface of the substrate W, and SPM is supplied to the upper surface of the substrate W.
  • the third chemical supply unit 630b supplies ammonia water to the nozzle 6b.
  • the ammonia water supplied from the third chemical supply unit 630b to the nozzle 6b is discharged from the third discharge port 63b described with reference to FIG. 17(a).
  • the third chemical liquid supply unit 630b has a third chemical liquid supply pipe 632b and a third chemical liquid on-off valve 634b.
  • a portion of the third chemical liquid supply pipe 632b is housed in the chamber 201 described with reference to FIG. 2.
  • the third chemical liquid on-off valve 634b is housed in the fluid box 10B described with reference to FIG. 1.
  • the third chemical liquid supply pipe 632b supplies ammonia water to the nozzle 6b.
  • the third chemical liquid opening and closing valve 634b is interposed in the third chemical liquid supply pipe 632b.
  • the third chemical liquid opening and closing valve 634b can be switched between an open state and a closed state.
  • ammonia water flows through the third chemical liquid supply pipe 632b and the ammonia water is supplied to the nozzle 6b.
  • the third chemical liquid opening and closing valve 634b is in the closed state, the supply of ammonia water to the nozzle 6b is stopped.
  • the control device 101 controls the opening and closing operation of the third chemical liquid opening and closing valve 634b.
  • the configuration of the third chemical liquid supply unit 630b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
  • the pure water supply unit 640b supplies pure water to the nozzle 6b.
  • the pure water supplied from the pure water supply unit 640b to the nozzle 6b is discharged from the fourth discharge port 64b described with reference to FIG. 17(a).
  • the pure water supply unit 640b has a pure water supply pipe 642b and a pure water on-off valve 644b.
  • a portion of the pure water supply pipe 642b is housed in the chamber 201 described with reference to FIG. 2.
  • the pure water on-off valve 644b is housed in the fluid box 10B described with reference to FIG. 1.
  • the pure water supply pipe 642b supplies pure water to the nozzle 6b.
  • the pure water on-off valve 644b is interposed in the pure water supply pipe 642b.
  • the pure water on-off valve 644b can be switched between an open state and a closed state.
  • the control device 101 controls the opening and closing operation of the pure water on-off valve 644b.
  • the configuration of the pure water supply unit 640b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
  • control device 101 When supplying SC1 to the substrate W, the control device 101 (control unit 102) opens the second chemical liquid opening/closing valve 624b, the third chemical liquid opening/closing valve 634b, and the pure water opening/closing valve 644b. As a result, the ammonia water, hydrogen peroxide solution, and pure water are mixed on the upper surface of the substrate W, and SC1 is supplied to the upper surface of the substrate W.
  • the rinse liquid is pure water.
  • the control device 101 controls the pure water opening and closing valve 644b during the rinse process.
  • the gas supply unit 650b supplies nitrogen gas to the nozzle 6b.
  • the nitrogen gas supplied from the gas supply unit 650b to the nozzle 6b is discharged from the fifth discharge port 65b described with reference to FIG. 17(a).
  • the gas supply unit 650b has a gas supply pipe 652b and a gas on-off valve 654b.
  • a portion of the gas supply pipe 652b is housed in the chamber 201 described with reference to FIG. 2.
  • the gas on-off valve 654b is housed in the fluid box 10B described with reference to FIG. 1.
  • the gas supply pipe 652b supplies nitrogen gas to the nozzle 6b.
  • the gas on-off valve 654b is interposed in the gas supply pipe 652b.
  • the gas on-off valve 654b can be switched between an open state and a closed state.
  • nitrogen gas flows through the gas supply pipe 652b and is supplied to the nozzle 6b.
  • the control device 101 controls the opening and closing operation of the gas on-off valve 654b.
  • the configuration of the gas supply unit 650b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
  • FIG. 18(a) is a bottom view of the nozzle 6 included in the third modified example of the substrate processing apparatus 100 of this embodiment, viewed from below.
  • FIG. 18(b) is a diagram showing the configuration of the fluid supply unit 600 included in the third modified example of the substrate processing apparatus 100 of this embodiment.
  • the nozzle 6 of the third modified example may be referred to as "nozzle 6c.”
  • the nozzle 6c has a first outlet 61c, a second outlet 62c, a third outlet 63c, a fourth outlet 64c, a fifth outlet 65c, and an outlet 8a.
  • the first outlet 61c to the fifth outlet 65c of the nozzle 6c correspond to the first outlet 61b to the fifth outlet 65b of the nozzle 6b shown in FIG. 17(a).
  • the nozzle 6c has an additional outlet 8a.
  • Superheated steam is blown out from the outlet 8a. Therefore, the nozzle 6c functions as a blowing section that blows out superheated steam. In this way, the blowing section that blows out superheated steam may be included in the fluid supply section 600.
  • superheated steam is supplied to the nozzle 6c from the superheated steam supply unit 800.
  • the superheated steam supplied to the nozzle 6c from the superheated steam supply unit 800 is blown out from the blowing port 8a described with reference to FIG. 18(a).
  • blowing section 8 described with reference to FIG. 2 may or may not be omitted.
  • the spin chuck 3 is a clamping type chuck that brings multiple chuck members 31 into contact with the peripheral edge surface of the substrate W, but the method of holding the substrate W is not particularly limited as long as it can hold the substrate W horizontally.
  • the spin chuck 3 may be a vacuum type chuck or a Bernoulli type chuck.
  • control device 101 when hydrogen peroxide is supplied to the substrate W (step S44 in Figure 8), the control device 101 (controller 102) reduces the flow rate of superheated water steam blown out from the blower 8. However, when hydrogen peroxide is supplied to the substrate W (step S44 in Figure 8), the control device 101 (controller 102) may stop the blowing of superheated water steam from the blower 8. In this case, the control device 101 (controller 102) continues to stop the supply of superheated water steam to the processing space during the rinsing process (step S45 in Figure 8).
  • the substrate heating unit 5 heats the substrate W with a heater, but the material used by the substrate heating unit 5 to heat the substrate W is not particularly limited as long as it is a material capable of heating the substrate W.
  • the substrate heating unit 5 may heat the substrate W by laser irradiation or light irradiation.
  • the substrate processing apparatus 100 is provided with a substrate heating unit 5, but the substrate heating unit 5 may be omitted. In this case, pre-heating may be performed using superheated steam.
  • paddle processing is performed, but paddle processing may be omitted.
  • the substrate processing apparatus 100 may also supply superheated steam from the blowing section 8 to the processing space when cleaning the inside of the processing space. As a result, after cleaning the inside of the processing space, it becomes easier to dry the processing space forming section 70 and the members placed within the processing space.
  • an inert gas such as nitrogen gas is supplied to the processing space to dry the processing space forming part 70 and the members placed within the processing space.
  • an inert gas such as nitrogen gas
  • a large amount of pure water is used when cleaning the inside of the processing space. Therefore, the inside of the processing space after cleaning is difficult to dry.
  • by supplying superheated steam from the blowing part 8 to the processing space when cleaning the inside of the processing space it is possible to raise the temperature of the processing space forming part 70 and the members placed within the processing space.
  • the cleaning of the inside of the processing space may be performed, for example, every time the substrate processing unit 2 processes a predetermined number of substrates W (e.g., 24 substrates). Alternatively, the cleaning of the inside of the processing space may be performed every time a predetermined time has elapsed.
  • the present invention is useful for substrate processing devices and has industrial applicability.
  • Substrate processing unit 3 Spin chuck 4: Spin motor unit 6: Nozzle 6a: Nozzle 6b: Nozzle 6c: Nozzle 8: Blowing unit 8a: Blowing outlet 70: Processing space forming unit 71: Liquid receiving unit 72: Blocking member 81: First blowing unit 82: Second blowing unit 100: Substrate processing apparatus 101: Control device 102: Control unit 103: Memory unit 201: Chamber 600: Fluid supply unit 800: Superheated steam supply unit W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

In the present invention a substrate-processing device (100) comprises a chamber (201); a substrate-holding unit (3), a processing-space-forming part (70), a substrate-rotating unit (4); a processing-liquid-supplying unit (600), and a superheated steam blowout part (8). The chamber (201) houses a substrate (W). The substrate-holding unit (3) holds the substrate (W) inside the chamber (201). The processing-space-forming part (70) includes a facing member (72). The facing member (72) faces the substrate (W) held by the substrate holding unit (3). The processing-space-forming part (70) forms a processing space in which the substrate (W) is processed. The substrate-rotating unit (4) causes the substrate (W) held by the substrate holding unit (3) to rotate. The processing-liquid-supplying unit (600) supplies a first liquid mixture (SPM) in which sulfuric acid and a hydrogen peroxide solution are mixed to the substrate (W) caused to rotate by the substrate rotating unit (4). The superheated steam blowout part (8) blows out superheated steam inside the processing space.

Description

基板処理装置、及び基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板処理装置、及び基板処理方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing method.
 SPM(硫酸過酸化水素混合液)を用いて基板を1枚ずつ処理する枚葉式の基板処理装置が知られている(例えば、特許文献1参照。)。このような基板処理装置は、基板を水平に保持しながら回転させて、回転中の基板の上面に向けてSPMを吐出する。 Single-wafer substrate processing apparatuses are known that process substrates one by one using SPM (a mixture of sulfuric acid and hydrogen peroxide) (see, for example, Patent Document 1). Such substrate processing apparatuses rotate the substrate while holding it horizontally, and eject SPM toward the top surface of the substrate as it rotates.
 SPMによるレジスト除去の効率は、基板の温度に依存する。具体的には、基板の温度が低温であるほど、レジスト除去の効率が低下する。基板へのSPMの供給開始時の基板の温度は室温と略同等であり、SPMの供給により基板の温度は昇温する。 The efficiency of resist removal using SPM depends on the temperature of the substrate. Specifically, the lower the substrate temperature, the less efficient the resist removal. When the supply of SPM to the substrate begins, the substrate temperature is approximately equal to room temperature, and the supply of SPM causes the substrate temperature to rise.
特開2009-272548号公報JP 2009-272548 A
 しかしながら、基板の周囲の雰囲気の温度はSPMの温度より低いため、SPMの供給によって基板の温度を昇温させる構成では、基板の温度の昇温に時間がかかり、処理時間が長くなる。処理期間が長くなると、SPMの消費量が増大する。したがって、硫酸の消費量が増大する。 However, because the temperature of the atmosphere surrounding the substrate is lower than the temperature of the SPM, in a configuration in which the temperature of the substrate is raised by supplying SPM, it takes time to raise the temperature of the substrate, resulting in a longer processing time. As the processing period becomes longer, the amount of SPM consumed increases. Therefore, the amount of sulfuric acid consumed increases.
 本発明は上記課題に鑑みてなされたものであり、その目的は、硫酸の消費量の低減を図ることができる基板処理装置、及び基板処理方法を提供することにある。 The present invention was made in consideration of the above problems, and its purpose is to provide a substrate processing apparatus and a substrate processing method that can reduce the consumption of sulfuric acid.
 本発明の一局面によれば、基板処理装置は、チャンバーと、基板保持部と、処理空間形成部と、基板回転部と、処理液供給部と、過熱水蒸気吹出部とを備える。前記チャンバーは、基板を収容する。前記基板保持部は、前記チャンバー内で前記基板を保持する。前記処理空間形成部は、対向部材を含む。前記対向部材は、前記基板保持部に保持された前記基板と対向する。前記処理空間形成部は、前記基板の処理が行われる処理空間を形成する。前記基板回転部は、前記基板保持部が保持する前記基板を回転させる。前記処理液供給部は、前記基板回転部により回転される前記基板に、硫酸と過酸化水素水とが混合された第1混合液を供給する。前記過熱水蒸気吹出部は、前記処理空間内に過熱水蒸気を吹き出す。 According to one aspect of the present invention, a substrate processing apparatus includes a chamber, a substrate holding unit, a processing space forming unit, a substrate rotating unit, a processing liquid supply unit, and a superheated steam blowing unit. The chamber accommodates a substrate. The substrate holding unit holds the substrate within the chamber. The processing space forming unit includes an opposing member. The opposing member faces the substrate held by the substrate holding unit. The processing space forming unit forms a processing space in which processing of the substrate is performed. The substrate rotating unit rotates the substrate held by the substrate holding unit. The processing liquid supply unit supplies a first mixture of sulfuric acid and hydrogen peroxide to the substrate rotated by the substrate rotating unit. The superheated steam blowing unit blows superheated steam into the processing space.
 ある実施形態において、前記過熱水蒸気吹出部は、前記基板よりも上方に配置される第1過熱水蒸気吹出部を含む。 In one embodiment, the superheated steam blowing section includes a first superheated steam blowing section that is positioned above the substrate.
 ある実施形態において、前記第1過熱水蒸気吹出部は、前記対向部材に支持される。 In one embodiment, the first superheated steam blowing section is supported by the opposing member.
 ある実施形態において、前記第1過熱水蒸気吹出部は、前記処理液供給部に含まれる。 In one embodiment, the first superheated steam blowing section is included in the treatment liquid supply section.
 ある実施形態において、前記処理空間形成部は、液受け部を更に含む。前記液受け部は、前記基板回転部により回転される前記基板から排出される前記第1混合液を受け止める。前記過熱水蒸気吹出部は、前記液受け部に支持される第2過熱水蒸気吹出部を含む。 In one embodiment, the processing space forming section further includes a liquid receiving section. The liquid receiving section receives the first mixed liquid discharged from the substrate rotated by the substrate rotating section. The superheated steam blowing section includes a second superheated steam blowing section supported by the liquid receiving section.
 ある実施形態において、上記の基板処理装置は、制御部を更に備える。前記制御部は、前記第1混合液の供給と、前記過熱水蒸気の吹き出しとを制御する。前記制御部は、前記第1混合液の供給時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the substrate processing apparatus further includes a control unit. The control unit controls the supply of the first mixed liquid and the blowing of the superheated steam. The control unit blows out the superheated steam when the first mixed liquid is supplied.
 ある実施形態において、前記制御部は、前記基板回転部による前記基板の回転を更に制御する。前記制御部は、前記第1混合液の供給時に、前記基板の回転速度を制御して、前記基板の上面に前記第1混合液の液膜を形成させる。前記制御部は、前記第1混合液の供給を停止させ、かつ、前記基板の回転速度を制御して、前記液膜が前記基板の上面に支持されたパドル状態を形成する。前記制御部は、前記パドル状態の形成時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the control unit further controls the rotation of the substrate by the substrate rotation unit. The control unit controls the rotation speed of the substrate when the first mixed liquid is being supplied to form a liquid film of the first mixed liquid on the upper surface of the substrate. The control unit stops the supply of the first mixed liquid and controls the rotation speed of the substrate to form a paddle state in which the liquid film is supported on the upper surface of the substrate. The control unit blows out the superheated water vapor when the paddle state is formed.
 ある実施形態において、前記処理液供給部は、前記第1混合液と過酸化水素水とを排他的に前記基板に供給する。前記制御部は、前記過酸化水素水の供給を更に制御する。前記制御部は、前記過酸化水素水の供給時に、前記過熱水蒸気の吹き出しを停止させる。 In one embodiment, the processing liquid supply unit exclusively supplies the first mixed liquid and hydrogen peroxide solution to the substrate. The control unit further controls the supply of the hydrogen peroxide solution. The control unit stops blowing the superheated water vapor when the hydrogen peroxide solution is being supplied.
 ある実施形態において、前記処理液供給部は、前記第1混合液と過酸化水素水とを排他的に前記基板に供給する。前記制御部は、前記過酸化水素水の供給を更に制御する。前記制御部は、前記第1混合液の供給時に、前記過熱水蒸気を第1流量で吹き出させる。前記制御部は、前記過酸化水素水の供給時に、前記過熱水蒸気を、前記第1流量より小さい第2流量で吹き出させる。 In one embodiment, the processing liquid supply unit exclusively supplies the first mixed liquid and hydrogen peroxide solution to the substrate. The control unit further controls the supply of the hydrogen peroxide solution. The control unit blows the superheated water vapor at a first flow rate when the first mixed liquid is supplied. The control unit blows the superheated water vapor at a second flow rate that is smaller than the first flow rate when the hydrogen peroxide solution is supplied.
 ある実施形態において、前記処理液供給部は、アンモニア水と、過酸化水素水と、純水とが混合された第2混合液と、前記第1混合液とを排他的に前記基板に供給する。前記制御部は、前記第2混合液の供給を更に制御する。前記制御部は、前記第2混合液の供給時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the processing liquid supply unit exclusively supplies the first mixed liquid and a second mixed liquid obtained by mixing ammonia water, hydrogen peroxide solution, and pure water to the substrate. The control unit further controls the supply of the second mixed liquid. The control unit blows out the superheated water vapor when the second mixed liquid is supplied.
 本発明の他の局面によれば、基板処理方法は、基板保持部により、チャンバー内で基板を保持する工程と、前記基板保持部に保持された前記基板と対向する対向部材を含む処理空間形成部により、前記基板の処理が行われる処理空間を形成する工程と、前記処理空間に過熱水蒸気を吹き出す工程とを含む。 According to another aspect of the present invention, the substrate processing method includes the steps of holding a substrate in a chamber by a substrate holding unit, forming a processing space in which the substrate is processed by a processing space forming unit including an opposing member that faces the substrate held by the substrate holding unit, and blowing superheated steam into the processing space.
 ある実施形態において、上記の基板処理方法は、前記基板保持部が保持する前記基板を回転させる工程と、回転中の前記基板に、硫酸と過酸化水素水とが混合された第1混合液を供給する工程とを更に含む。前記第1混合液の供給時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the substrate processing method further includes a step of rotating the substrate held by the substrate holder, and a step of supplying a first mixture of sulfuric acid and hydrogen peroxide to the substrate while the substrate is rotating. The superheated water vapor is blown out when the first mixture is supplied.
 ある実施形態において、上記の基板処理方法は、前記第1混合液の供給時に、前記基板の回転速度を制御して、前記基板の上面に前記第1混合液の液膜を形成させる工程と、前記第1混合液の供給を停止させ、かつ、前記基板の回転速度を制御して、前記液膜が前記基板の上面に支持されたパドル状態を形成する工程とを更に含む。前記パドル状態の形成時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the substrate processing method further includes a step of controlling the rotation speed of the substrate while the first mixed liquid is being supplied to form a liquid film of the first mixed liquid on the upper surface of the substrate, and a step of stopping the supply of the first mixed liquid and controlling the rotation speed of the substrate to form a paddle state in which the liquid film is supported on the upper surface of the substrate. When the paddle state is formed, the superheated water vapor is blown out.
 ある実施形態において、上記の基板処理方法は、回転中の前記基板に過酸化水素水を供給する工程を更に含む。前記過酸化水素水の供給時に、前記過熱水蒸気の吹き出しを停止させる。 In one embodiment, the substrate processing method further includes a step of supplying hydrogen peroxide to the substrate while it is rotating. When the hydrogen peroxide is being supplied, the blowing of the superheated steam is stopped.
 ある実施形態において、上記の基板処理方法は、回転中の前記基板に過酸化水素水を供給する工程を更に含む。前記第1混合液の供給時に、前記過熱水蒸気を第1流量で吹き出させる。前記過酸化水素水の供給時に、前記過熱水蒸気を、前記第1流量より小さい第2流量で吹き出させる。 In one embodiment, the substrate processing method further includes a step of supplying hydrogen peroxide to the substrate while it is rotating. When the first mixture is being supplied, the superheated water vapor is blown out at a first flow rate. When the hydrogen peroxide is being supplied, the superheated water vapor is blown out at a second flow rate that is smaller than the first flow rate.
 ある実施形態において、上記の基板処理方法は、前記基板保持部が保持する前記基板を回転させる工程と、回転中の前記基板に、アンモニア水と、過酸化水素水と、純水とが混合された第2混合液を供給する工程とを更に含む。前記第2混合液の供給時に、前記過熱水蒸気を吹き出させる。 In one embodiment, the substrate processing method further includes a step of rotating the substrate held by the substrate holder, and a step of supplying a second mixture of ammonia water, hydrogen peroxide, and pure water to the substrate while the substrate is rotating. The superheated water vapor is blown out when the second mixture is supplied.
 本発明に係る基板処理装置、及び基板処理方法によれば、硫酸の消費量の低減を図ることができる。 The substrate processing apparatus and substrate processing method according to the present invention can reduce the consumption of sulfuric acid.
本発明の実施形態に係る基板処理装置の模式図である。1 is a schematic diagram of a substrate processing apparatus according to an embodiment of the present invention; 本発明の実施形態に係る基板処理装置に含まれる基板処理部の構成を模式的に示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a substrate processing section included in a substrate processing apparatus according to an embodiment of the present invention. 本発明の実施形態に係る基板処理装置に含まれる基板処理部の構成を模式的に示す他の断面図である。11 is another cross-sectional view showing a schematic configuration of a substrate processing section included in the substrate processing apparatus according to the embodiment of the present invention. FIG. (a)は、本発明の実施形態に係る基板処理装置に含まれるノズルを下から視た下面図である。(b)は、本発明の実施形態に係る基板処理装置に含まれる流体供給部の構成を示す図である。1A is a bottom view of a nozzle included in a substrate processing apparatus according to an embodiment of the present invention, and FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the substrate processing apparatus according to an embodiment of the present invention. 本発明の実施形態に係る基板処理装置に含まれる第1吹出部及び過熱水蒸気供給部の構成を示す図である。2 is a diagram showing the configuration of a first blowing unit and a superheated steam supplying unit included in the substrate processing apparatus according to the embodiment of the present invention. FIG. 本発明の実施形態に係る基板処理装置の構成を示す図である。1 is a diagram showing a configuration of a substrate processing apparatus according to an embodiment of the present invention; 本発明の実施形態に係る基板処理方法を示すフローチャートである。2 is a flowchart showing a substrate processing method according to an embodiment of the present invention. 本発明の実施形態に係る基板処理方法に含まれる基板処理及び過熱水蒸気処理を示すフローチャートである。2 is a flowchart showing a substrate process and a superheated steam process included in a substrate processing method according to an embodiment of the present invention. 事前加熱時の基板処理部を模式的に示す図である。FIG. 2 is a diagram illustrating a substrate processing section during pre-heating. SPM処理時の基板処理部を模式的に示す図である。FIG. 2 is a diagram showing a schematic view of a substrate processing section during SPM processing. パドル処理時の基板処理部を模式的に示す図である。FIG. 2 is a diagram showing a schematic view of a substrate processing section during puddle processing; 過酸化水素水により基板を処理する際の基板処理部を模式的に示す図である。1 is a diagram showing a substrate processing section when processing a substrate with hydrogen peroxide solution; リンス処理時の基板処理部を模式的に示す図である。FIG. 2 is a diagram illustrating a substrate processing section during a rinsing process. SC1により基板を処理する際の基板処理部を模式的に示す図である。2 is a diagram showing a schematic view of a substrate processing section when a substrate is processed by SC1; FIG. 乾燥処理時の基板処理部を模式的に示す図である。FIG. 2 is a diagram illustrating a substrate processing section during a drying process. (a)は、本発明の実施形態に係る基板処理装置の第1変形例に含まれるノズルを下から視た下面図である。(b)は、本発明の実施形態に係る基板処理装置の第1変形例に含まれる流体供給部の構成を示す図である。1A is a bottom view of a nozzle included in a first modified example of a substrate processing apparatus according to an embodiment of the present invention, and FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the first modified example of the substrate processing apparatus according to an embodiment of the present invention. (a)は、本発明の実施形態に係る基板処理装置の第2変形例に含まれるノズルを下から視た下面図である。(b)は、本発明の実施形態に係る基板処理装置の第2変形例に含まれる流体供給部の構成を示す図である。1A is a bottom view of a nozzle included in a second modified example of a substrate processing apparatus according to an embodiment of the present invention, and FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the second modified example of the substrate processing apparatus according to an embodiment of the present invention. (a)は、本発明の実施形態に係る基板処理装置の第3変形例に含まれるノズルを下から視た下面図である。(b)は、本発明の実施形態に係る基板処理装置の第3変形例に含まれる流体供給部の構成を示す図である。1A is a bottom view of a nozzle included in a third modified example of a substrate processing apparatus according to an embodiment of the present invention, and FIG. 1B is a diagram showing a configuration of a fluid supply unit included in the third modified example of the substrate processing apparatus according to an embodiment of the present invention.
 以下、図面(図1~図18(b))を参照して本発明の基板処理装置、及び基板処理方法に係る実施形態を説明する。但し、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。なお、説明が重複する箇所については、適宜説明を省略する場合がある。また、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 Below, an embodiment of the substrate processing apparatus and substrate processing method of the present invention will be described with reference to the drawings (Figs. 1 to 18(b)). However, the present invention is not limited to the following embodiment, and can be embodied in various forms without departing from the gist of the invention. Note that where explanations overlap, they may be omitted as appropriate. Also, in the drawings, the same or equivalent parts are given the same reference symbols, and explanations will not be repeated.
 本発明に係る基板処理装置、及び基板処理方法において、基板処理の対象となる「基板」には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び光磁気ディスク用基板などの各種の基板を適用可能である。以下では主として、円盤状の半導体ウエハを基板処理の対象とする場合を例に本発明の実施形態を説明するが、本発明に係る基板処理装置、及び基板処理方法は、上記した半導体ウエハ以外の各種の基板に対しても同様に適用可能である。また、基板の形状についても、円盤状に限定されず、本発明に係る基板処理装置、及び基板処理方法は、各種の形状の基板に対して適用可能である。 In the substrate processing apparatus and substrate processing method according to the present invention, the "substrate" to be processed can be a variety of substrates, such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks. In the following, an embodiment of the present invention will be described mainly using as an example a case in which a disk-shaped semiconductor wafer is the substrate to be processed, but the substrate processing apparatus and substrate processing method according to the present invention can be similarly applied to various substrates other than the semiconductor wafers mentioned above. Furthermore, the shape of the substrate is not limited to a disk shape, and the substrate processing apparatus and substrate processing method according to the present invention can be applied to substrates of various shapes.
 まず、図1を参照して、本実施形態の基板処理装置100を説明する。図1は、本実施形態の基板処理装置100の模式図である。詳しくは、図1は、本実施形態の基板処理装置100の模式的な平面図である。基板処理装置100は、処理液により基板Wを処理する。より具体的には、基板処理装置100は、枚葉式の装置であり、1枚ずつ基板Wを処理する。 First, the substrate processing apparatus 100 of this embodiment will be described with reference to FIG. 1. FIG. 1 is a schematic diagram of the substrate processing apparatus 100 of this embodiment. More specifically, FIG. 1 is a schematic plan view of the substrate processing apparatus 100 of this embodiment. The substrate processing apparatus 100 processes substrates W with a processing liquid. More specifically, the substrate processing apparatus 100 is a single-wafer type apparatus, and processes substrates W one by one.
 図1に示すように、基板処理装置100は、複数の基板処理部2と、流体キャビネット10Aと、複数の流体ボックス10Bと、複数のロードポートLPと、インデクサーロボットIRと、センターロボットCRと、制御装置101とを備える。 As shown in FIG. 1, the substrate processing apparatus 100 includes a plurality of substrate processing units 2, a fluid cabinet 10A, a plurality of fluid boxes 10B, a plurality of load ports LP, an indexer robot IR, a center robot CR, and a control device 101.
 ロードポートLPの各々は、複数枚の基板Wを積層して収容する。本実施形態では、未処理の基板W(処理前の基板W)の各々に、不要になったレジストのマスク(レジスト膜)が付着している。 Each load port LP accommodates a stack of multiple substrates W. In this embodiment, each unprocessed substrate W (substrate W before processing) has an unwanted resist mask (resist film) attached to it.
 インデクサーロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、インデクサーロボットIRと基板処理部2との間で基板Wを搬送する。なお、インデクサーロボットIRとセンターロボットCRとの間に、基板Wを一時的に載置する載置台(パス)を設けて、インデクサーロボットIRとセンターロボットCRとの間で載置台を介して間接的に基板Wを受け渡しする装置構成としてもよい。 The indexer robot IR transports substrates W between the load port LP and the center robot CR. The center robot CR transports substrates W between the indexer robot IR and the substrate processing unit 2. Note that a placement stage (path) on which substrates W are temporarily placed may be provided between the indexer robot IR and the center robot CR, and the device may be configured to indirectly transfer substrates W between the indexer robot IR and the center robot CR via the placement stage.
 複数の基板処理部2は、複数のタワーTW(図1では4つのタワーTW)を形成している。複数のタワーTWは、平面視においてセンターロボットCRを取り囲むように配置される。各タワーTWは、上下に積層された複数の基板処理部2(図1では3つの基板処理部2)を含む。 The multiple substrate processing units 2 form multiple towers TW (four towers TW in FIG. 1). The multiple towers TW are arranged to surround the center robot CR in a plan view. Each tower TW includes multiple substrate processing units 2 (three substrate processing units 2 in FIG. 1) stacked one above the other.
 流体キャビネット10Aは、流体を収容する。流体は、不活性ガス及び処理液を含む。流体ボックス10Bはそれぞれ、複数のタワーTWのうちの1つに対応している。流体キャビネット10A内の不活性ガス及び処理液は、いずれかの流体ボックス10Bを介して、流体ボックス10Bに対応するタワーTWに含まれる全ての基板処理部2に供給される。 The fluid cabinet 10A contains fluids. The fluids include an inert gas and a processing liquid. Each of the fluid boxes 10B corresponds to one of the multiple towers TW. The inert gas and processing liquid in the fluid cabinet 10A are supplied to all of the substrate processing units 2 included in the tower TW corresponding to the fluid box 10B via one of the fluid boxes 10B.
 不活性ガスは、例えば、窒素ガスである。処理液は、硫酸(H2SO4)、過酸化水素水(H22)、アンモニア水(NH4OH)、及びリンス液を含む。本実施形態において、リンス液は、純水である。純水は、例えば、脱イオン水(DIW:Deionzied Water)である。なお、リンス液は、例えば、炭酸水、電解イオン水、水素水、オゾン水、アンモニア水、又は希釈された塩酸水(例えば、濃度が10ppm~100ppm程度の塩酸水)であってもよい。リンス液が純水でない場合、流体キャビネット10A内の流体は、純水を更に含む。 The inert gas is, for example, nitrogen gas. The processing liquid includes sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ), ammonia water (NH 4 OH), and a rinse liquid. In this embodiment, the rinse liquid is pure water. The pure water is, for example, deionized water (DIW). The rinse liquid may be, for example, carbonated water, electrolytic ionized water, hydrogen water, ozone water, ammonia water, or diluted hydrochloric acid water (for example, hydrochloric acid water with a concentration of about 10 ppm to 100 ppm). If the rinse liquid is not pure water, the fluid in the fluid cabinet 10A further includes pure water.
 基板処理部2の各々は、処理液を基板Wの上面に供給する。具体的には、基板処理部2は、硫酸過酸化水素混合液(SPM:Sulfuric Acid Hydrogen Peroxide Mixture)、過酸化水素水、リンス液、及びSC1を、SPM、過酸化水素水、リンス液、SC1、リンス液の順に基板Wに供給する。硫酸過酸化水素混合液は、硫酸と過酸化水素水とが混合された混合液である。SC1は、アンモニア水と、過酸化水素水と、純水とが混合された混合液である。 Each of the substrate processing units 2 supplies processing liquid to the upper surface of the substrate W. Specifically, the substrate processing units 2 supply a sulfuric acid/hydrogen peroxide mixture (SPM), hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid. The sulfuric acid/hydrogen peroxide mixture is a mixture of sulfuric acid and hydrogen peroxide. SC1 is a mixture of ammonia water, hydrogen peroxide, and pure water.
 基板Wの上面にSPMが供給されると、基板Wの上面からレジスト膜(有機物)が剥離されて、基板Wの上面からレジスト膜が除去される。基板Wの上面にSC1が供給されると、基板Wの上面に付着しているパーティクルが除去される。より具体的には、SC1に含まれる過酸化水素水により基板Wの本体表面のシリコンが酸化し、シリコン酸化物がアンモニアによりエッチングされて、リフトオフにより各種パーティクルが除去される。したがって、SC1により、レジスト膜の残渣物、及び非溶解性のパーティクルが剥離除去される。 When SPM is supplied to the upper surface of the substrate W, the resist film (organic matter) is peeled off from the upper surface of the substrate W, and the resist film is removed from the upper surface of the substrate W. When SC1 is supplied to the upper surface of the substrate W, particles adhering to the upper surface of the substrate W are removed. More specifically, the hydrogen peroxide contained in SC1 oxidizes silicon on the main surface of the substrate W, the silicon oxide is etched by ammonia, and various particles are removed by lift-off. Thus, SC1 peels off and removes resist film residue and insoluble particles.
 制御装置101は、基板処理装置100の各部の動作を制御する。例えば、制御装置101は、ロードポートLP、インデクサーロボットIR、センターロボットCR、及び基板処理部2を制御する。制御装置101は、制御部102と、記憶部103とを含む。 The control device 101 controls the operation of each part of the substrate processing apparatus 100. For example, the control device 101 controls the load port LP, the indexer robot IR, the center robot CR, and the substrate processing unit 2. The control device 101 includes a control unit 102 and a memory unit 103.
 制御部102は、記憶部103に記憶されている各種情報に基づいて基板処理装置100の各部の動作を制御する。制御部102は、例えば、プロセッサを有する。制御部102は、プロセッサとして、CPU(Central Processing Unit)、又は、MPU(Micro Processing Unit)を有してもよい。あるいは、制御部102は、汎用演算機又は専用演算器を有してもよい。 The control unit 102 controls the operation of each part of the substrate processing apparatus 100 based on various information stored in the memory unit 103. The control unit 102 has, for example, a processor. The control unit 102 may have a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) as the processor. Alternatively, the control unit 102 may have a general-purpose computing device or a dedicated computing device.
 記憶部103は、基板処理装置100の動作を制御するための各種情報を記憶する。例えば、記憶部103は、データ及びコンピュータプログラムを記憶する。データは、種々のレシピデータを含む。レシピデータは、例えば、プロセスレシピを含む。プロセスレシピは、基板処理の手順を規定するデータである。具体的には、プロセスレシピは、基板処理に含まる一連の処理の実行順序、各処理の内容、及び各処理の条件(パラメータの設定値)を規定する。 The memory unit 103 stores various information for controlling the operation of the substrate processing apparatus 100. For example, the memory unit 103 stores data and computer programs. The data includes various recipe data. The recipe data includes, for example, a process recipe. A process recipe is data that specifies the procedure for substrate processing. Specifically, a process recipe specifies the execution order of a series of processes included in the substrate processing, the content of each process, and the conditions (parameter setting values) for each process.
 記憶部103は、主記憶装置を有する。主記憶装置は、例えば、半導体メモリである。記憶部103は、補助記憶装置を更に有してもよい。補助記憶装置は、例えば、半導体メモリ及びハードディスクドライブの少なくも一方を含む。記憶部103はリムーバブルメディアを含んでもよい。 The storage unit 103 has a main storage device. The main storage device is, for example, a semiconductor memory. The storage unit 103 may further have an auxiliary storage device. The auxiliary storage device includes, for example, at least one of a semiconductor memory and a hard disk drive. The storage unit 103 may include removable media.
 続いて、図1~図3を参照して、本実施形態の基板処理装置100を説明する。図2は、本実施形態の基板処理装置100に含まれる基板処理部2の構成を模式的に示す断面図である。図3は、本実施形態の基板処理装置100に含まれる基板処理部2の構成を模式的に示す他の断面図である。 Next, the substrate processing apparatus 100 of this embodiment will be described with reference to Figures 1 to 3. Figure 2 is a cross-sectional view that shows a schematic configuration of the substrate processing unit 2 included in the substrate processing apparatus 100 of this embodiment. Figure 3 is another cross-sectional view that shows a schematic configuration of the substrate processing unit 2 included in the substrate processing apparatus 100 of this embodiment.
 図2に示すように、基板処理部2は、チャンバー201と、排気ダクト202と、スピンチャック3と、スピンモータ部4と、基板加熱部5と、流体供給部600に含まれるノズル6と、吹出部8と、移動機構20と、処理空間形成部70とを備える。流体供給部600は、処理液供給部の一例である。 As shown in FIG. 2, the substrate processing unit 2 includes a chamber 201, an exhaust duct 202, a spin chuck 3, a spin motor unit 4, a substrate heating unit 5, a nozzle 6 included in a fluid supply unit 600, a blowing unit 8, a moving mechanism 20, and a processing space forming unit 70. The fluid supply unit 600 is an example of a processing liquid supply unit.
 チャンバー201は、略箱形状を有する。チャンバー201は、基板Wと、排気ダクト202の一部と、スピンチャック3と、スピンモータ部4と、基板加熱部5の一部と、ノズル6と、吹出部8と、移動機構20と、処理空間形成部70とを収容する。 The chamber 201 has a roughly box-like shape. The chamber 201 houses the substrate W, part of the exhaust duct 202, the spin chuck 3, the spin motor unit 4, part of the substrate heating unit 5, the nozzle 6, the blowing unit 8, the moving mechanism 20, and the processing space forming unit 70.
 スピンチャック3は、チャンバー201内で基板Wを保持する。スピンチャック3は、基板保持部の一例である。より具体的には、スピンチャック3は、基板Wを水平な姿勢で保持する。図2に示すように、スピンチャック3は、複数のチャック部材31と、スピンベース32とを有してもよい。 The spin chuck 3 holds the substrate W in the chamber 201. The spin chuck 3 is an example of a substrate holding unit. More specifically, the spin chuck 3 holds the substrate W in a horizontal position. As shown in FIG. 2, the spin chuck 3 may have multiple chuck members 31 and a spin base 32.
 スピンベース32は、略円盤状であり、水平な姿勢で複数のチャック部材31を支持する。複数のチャック部材31は、スピンベース32の周縁部に配置される。複数のチャック部材31は、基板Wの周縁部を挟持する。複数のチャック部材31により、基板Wが水平な姿勢で保持される。複数のチャック部材31の動作は、制御装置101(制御部102)によって制御される。 The spin base 32 is approximately disk-shaped and supports multiple chuck members 31 in a horizontal position. The multiple chuck members 31 are arranged on the periphery of the spin base 32. The multiple chuck members 31 clamp the periphery of the substrate W. The multiple chuck members 31 hold the substrate W in a horizontal position. The operation of the multiple chuck members 31 is controlled by the control device 101 (control unit 102).
 スピンモータ部4は、スピンチャック3に保持された基板Wを回転させる。スピンモータ部4は、基板回転部の一例である。より具体的には、スピンモータ部4は、鉛直方向に延びる回転軸線AXを中心として、基板Wとスピンチャック3とを一体に回転させる。制御装置101(制御部102)は、スピンモータ部4による基板Wの回転を制御する。 The spin motor unit 4 rotates the substrate W held by the spin chuck 3. The spin motor unit 4 is an example of a substrate rotation unit. More specifically, the spin motor unit 4 rotates the substrate W and the spin chuck 3 together around a rotation axis AX that extends vertically. The control device 101 (control unit 102) controls the rotation of the substrate W by the spin motor unit 4.
 詳しくは、回転軸線AXは、スピンベース32の中心を通る。複数のチャック部材31は、基板Wの中心がスピンベース32の中心と一致するように配置されている。したがって、基板Wは、基板Wの中心を回転中心として回転する。 To be more specific, the rotation axis AX passes through the center of the spin base 32. The multiple chuck members 31 are arranged so that the center of the substrate W coincides with the center of the spin base 32. Therefore, the substrate W rotates around the center of the substrate W as the center of rotation.
 図2に示すように、スピンモータ部4は、シャフト41と、モータ本体42とを有してもよい。シャフト41はスピンベース32に結合される。モータ本体42は、シャフト41を回転させる。その結果、スピンベース32が回転する。モータ本体42の動作は、制御装置101(制御部102)によって制御される。 As shown in FIG. 2, the spin motor unit 4 may have a shaft 41 and a motor body 42. The shaft 41 is coupled to the spin base 32. The motor body 42 rotates the shaft 41. As a result, the spin base 32 rotates. The operation of the motor body 42 is controlled by the control device 101 (control unit 102).
 処理空間形成部70は、遮断部材72を含む。遮断部材72は、スピンチャック3に保持された基板Wと対向する。遮断部材72は、対向部材の一例である。より具体的には、遮断部材72は、スピンチャック3に保持された基板Wの上方に位置する。処理空間形成部70は、基板Wの処理(基板処理)が行われる処理空間を形成する。処理空間は、処理空間の外部の雰囲気から略遮断された空間である。つまり、処理空間は、チャンバー201の内部に形成される局所空間である。処理空間は、チャンバー201内部の雰囲気から略遮断される。 The processing space forming part 70 includes a blocking member 72. The blocking member 72 faces the substrate W held by the spin chuck 3. The blocking member 72 is an example of a facing member. More specifically, the blocking member 72 is located above the substrate W held by the spin chuck 3. The processing space forming part 70 forms a processing space in which processing of the substrate W (substrate processing) is performed. The processing space is a space that is substantially isolated from the atmosphere outside the processing space. In other words, the processing space is a local space formed inside the chamber 201. The processing space is substantially isolated from the atmosphere inside the chamber 201.
 詳しくは、遮断部材72は、天蓋部721と、側壁部722とを有する。天蓋部721は、略円盤状の部材である。天蓋部721の下面は、スピンチャック3に保持された基板Wの上面に対向する。つまり、天蓋部721の下面は、スピンチャック3に対向する。側壁部722は、略円筒状の部材である。側壁部722は、天蓋部721の外周部から下方に突出する。 In more detail, the blocking member 72 has a canopy portion 721 and a sidewall portion 722. The canopy portion 721 is a substantially disk-shaped member. The lower surface of the canopy portion 721 faces the upper surface of the substrate W held by the spin chuck 3. In other words, the lower surface of the canopy portion 721 faces the spin chuck 3. The sidewall portion 722 is a substantially cylindrical member. The sidewall portion 722 protrudes downward from the outer periphery of the canopy portion 721.
 より具体的には、天蓋部721は、略水平面に沿って拡がる。天蓋部721の直径は、例えば、基板Wの直径より大きい。天蓋部721の直径は、スピンベース32の直径より大きくてもよい。天蓋部721の中心は、回転軸線AX上に位置してもよい。つまり、天蓋部721は、回転軸線AXを中心とする略円盤状の部材であってもよい。同様に、側壁部722は、回転軸線AXを中心とする略円筒状の部材であってもよい。 More specifically, the canopy portion 721 extends along a substantially horizontal plane. The diameter of the canopy portion 721 is, for example, larger than the diameter of the substrate W. The diameter of the canopy portion 721 may be larger than the diameter of the spin base 32. The center of the canopy portion 721 may be located on the rotation axis AX. In other words, the canopy portion 721 may be a substantially disk-shaped member centered on the rotation axis AX. Similarly, the side wall portion 722 may be a substantially cylindrical member centered on the rotation axis AX.
 また、遮断部材72は、貫通穴72aを有する。貫通穴72aは、天蓋部721を貫通する。貫通穴72aの一端は、天蓋部721の下面に位置する。したがって、貫通穴72aの一端は、スピンチャック3に保持された基板Wに対向する。つまり、貫通穴72aの一端は、スピンチャック3に対向する。 The blocking member 72 also has a through hole 72a. The through hole 72a penetrates the canopy portion 721. One end of the through hole 72a is located on the lower surface of the canopy portion 721. Therefore, one end of the through hole 72a faces the substrate W held by the spin chuck 3. In other words, one end of the through hole 72a faces the spin chuck 3.
 ノズル6は、基板処理の際に、不活性ガスを吐出する。また、ノズル6は、スピンモータ部4により回転される基板Wに処理液を供給する。より具体的には、ノズル6は、処理空間内に位置する基板Wに向けて処理液を吐出する。本実施形態において、ノズル6は、SPM、過酸化水素水、リンス液、及びSC1を、SPM、過酸化水素水、リンス液、SC1、リンス液の順に基板Wに供給する。つまり、ノズル6は、SPM、過酸化水素水、リンス液、及びSC1を排他的に基板Wに供給する。 The nozzle 6 ejects an inert gas during substrate processing. The nozzle 6 also supplies processing liquid to the substrate W rotated by the spin motor unit 4. More specifically, the nozzle 6 ejects processing liquid toward the substrate W positioned in the processing space. In this embodiment, the nozzle 6 supplies SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid. In other words, the nozzle 6 exclusively supplies SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W.
 ノズル6は、遮断部材72の貫通穴72aに収容される。ノズル6の先端は、貫通穴72aの一端から露出する。ノズル6の先端から不活性ガス及び処理液が吐出される。ノズル6の先端は、貫通穴72a内に位置してもよい。あるいは、ノズル6の先端は、貫通穴72aの外に位置してもよい。つまり、ノズル6の先端部は貫通穴72aからスピンチャック3に向かって突出してもよい。 The nozzle 6 is housed in the through hole 72a of the blocking member 72. The tip of the nozzle 6 is exposed from one end of the through hole 72a. The inert gas and processing liquid are ejected from the tip of the nozzle 6. The tip of the nozzle 6 may be located inside the through hole 72a. Alternatively, the tip of the nozzle 6 may be located outside the through hole 72a. In other words, the tip of the nozzle 6 may protrude from the through hole 72a toward the spin chuck 3.
 より具体的には、貫通穴72a及びノズル6は、略鉛直方向に延びる。貫通穴72aの一端は、貫通穴72aの下端であり、ノズル6の先端は、ノズル6の下端である。貫通穴72aは、例えば、平面視において略円形である。貫通穴72aの直径は、基板Wの直径に比べて十分に小さい。貫通穴72aは、例えば、回転軸線AX上に配置される。この場合、ノズル6は、スピンチャック3に保持された基板Wの中央部に対向する。したがって、ノズル6から基板Wの中央部に向けて処理液が吐出される。 More specifically, the through hole 72a and the nozzle 6 extend in a substantially vertical direction. One end of the through hole 72a is the lower end of the through hole 72a, and the tip of the nozzle 6 is the lower end of the nozzle 6. The through hole 72a is, for example, substantially circular in a plan view. The diameter of the through hole 72a is sufficiently smaller than the diameter of the substrate W. The through hole 72a is, for example, disposed on the rotation axis AX. In this case, the nozzle 6 faces the center of the substrate W held by the spin chuck 3. Therefore, the processing liquid is ejected from the nozzle 6 toward the center of the substrate W.
 移動機構20は、遮断部材72を上下方向に移動させる。具体的には、移動機構20は、保持部21と、アーム部22と、アーム基台23と、昇降部24とを備える。 The moving mechanism 20 moves the blocking member 72 in the vertical direction. Specifically, the moving mechanism 20 includes a holding unit 21, an arm unit 22, an arm base 23, and a lifting unit 24.
 アーム基台23は鉛直方向に延びる。アーム部22の基端部はアーム基台23に結合している。アーム部22は、アーム基台23から水平方向に延びる。保持部21は、アーム部22の先端に結合している。保持部21は、遮断部材72を保持する。より具体的には、保持部21は、天蓋部721が略水平な姿勢となるように遮断部材72を保持する。 The arm base 23 extends vertically. The base end of the arm portion 22 is connected to the arm base 23. The arm portion 22 extends horizontally from the arm base 23. The holding portion 21 is connected to the tip of the arm portion 22. The holding portion 21 holds the blocking member 72. More specifically, the holding portion 21 holds the blocking member 72 so that the canopy portion 721 is in a substantially horizontal position.
 昇降部24は、鉛直方向にアーム基台23を昇降させる。この結果、遮断部材72が上下方向に移動する。より具体的には、昇降部24は、遮断位置と退避位置との間で遮断部材72を昇降させる。図2は、遮断位置に位置する遮断部材72を示す。図3は、退避位置に位置する遮断部材72を示す。図2及び図3に示すように、遮断位置は、退避位置の下方の位置である。つまり、遮断位置は、退避位置と比べて、スピンチャック3に保持された基板Wに近い位置である。 The lifting unit 24 raises and lowers the arm base 23 in the vertical direction. As a result, the blocking member 72 moves up and down. More specifically, the lifting unit 24 raises and lowers the blocking member 72 between the blocking position and the retracted position. Figure 2 shows the blocking member 72 in the blocking position. Figure 3 shows the blocking member 72 in the retracted position. As shown in Figures 2 and 3, the blocking position is a position below the retracted position. In other words, the blocking position is closer to the substrate W held by the spin chuck 3 than the retracted position.
 昇降部24の動作は、制御装置101(制御部102)によって制御される。昇降部24は、例えば、ボールねじ機構と、ボールねじ機構に駆動力を与える電動モータとを備えてもよい。 The operation of the lifting unit 24 is controlled by the control device 101 (control unit 102). The lifting unit 24 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
 制御装置101(制御部102)は、例えば、図1を参照して説明したセンターロボットCRとスピンチャック3との間で基板Wの受け渡しが行われる際に、遮断部材72を遮断位置から退避位置へ移動させる。つまり、チャンバー201内に基板Wが搬入される際に、遮断部材72は退避位置に退避する。また、チャンバー201から基板Wが搬出される際に、遮断部材72は退避位置に退避する。退避位置は、遮断部材72とスピンチャック3との間の隙間へのセンターロボットCRのハンドの進入が可能となる位置である。 The control device 101 (control unit 102) moves the blocking member 72 from the blocking position to the retracted position, for example, when the substrate W is transferred between the center robot CR and the spin chuck 3 described with reference to FIG. 1. That is, when the substrate W is loaded into the chamber 201, the blocking member 72 retracts to the retracted position. Also, when the substrate W is unloaded from the chamber 201, the blocking member 72 retracts to the retracted position. The retracted position is a position where the hand of the center robot CR can enter the gap between the blocking member 72 and the spin chuck 3.
 制御装置101(制御部102)は、処理空間内で基板Wを処理する際に、遮断部材72を退避位置から遮断位置へ移動させる。遮断部材72が遮断位置へ移動することにより、処理空間が形成される。 When processing the substrate W in the processing space, the control device 101 (control unit 102) moves the blocking member 72 from the retracted position to the blocking position. The processing space is formed by moving the blocking member 72 to the blocking position.
 本実施形態において、処理空間形成部70は、液受け部71を更に含む。液受け部71は、スピンモータ部4により回転される基板Wから排出される処理液を受け止める。図2に示すように、液受け部71は、ガード711と、ガード昇降部714とを有してもよい。 In this embodiment, the processing space forming unit 70 further includes a liquid receiving unit 71. The liquid receiving unit 71 receives the processing liquid discharged from the substrate W rotated by the spin motor unit 4. As shown in FIG. 2, the liquid receiving unit 71 may have a guard 711 and a guard lifting unit 714.
 ガード711は、略円筒状であり、スピンチャック3に保持されている基板Wの周囲を取り囲む。ガード711は、基板Wから排出された処理液を受け止める。より具体的には、ガード711は、回転する基板Wから飛散する処理液を受け止める。 The guard 711 is approximately cylindrical and surrounds the substrate W held by the spin chuck 3. The guard 711 receives the processing liquid discharged from the substrate W. More specifically, the guard 711 receives the processing liquid that splashes from the rotating substrate W.
 図2に示すように、ガード711は、筒状の案内部712と、筒状の傾斜部713とを含んでもよい。傾斜部713は、回転軸線AXに向かって斜め上に延びる。案内部712は、傾斜部713の下端部から下方に延びる。傾斜部713は、円環状の上端71aを含む。傾斜部713の上端71aは、遮断部材72よりも大きい内径を有する。傾斜部713の上端71aは、ガード711の上端に相当する。以下、傾斜部713の上端71aを、「ガード711の上端71a」と記載する場合がある。 As shown in FIG. 2, the guard 711 may include a cylindrical guide portion 712 and a cylindrical inclined portion 713. The inclined portion 713 extends obliquely upward toward the rotation axis AX. The guide portion 712 extends downward from the lower end of the inclined portion 713. The inclined portion 713 includes an annular upper end 71a. The upper end 71a of the inclined portion 713 has an inner diameter larger than the blocking member 72. The upper end 71a of the inclined portion 713 corresponds to the upper end of the guard 711. Hereinafter, the upper end 71a of the inclined portion 713 may be referred to as the "upper end 71a of the guard 711."
 ガード昇降部714は、図2において二点鎖線で示す第1下位置と、図2において実線で示す第1上位置との間でガード711を昇降させる。ここで、第1下位置は、ガード711の上端71aが基板Wよりも下方に配置される位置を示す。第1上位置は、ガード711の上端71aが基板Wよりも上方に配置される位置を示す。 The guard lifting section 714 lifts and lowers the guard 711 between a first lower position shown by a two-dot chain line in FIG. 2 and a first upper position shown by a solid line in FIG. 2. Here, the first lower position indicates a position where the upper end 71a of the guard 711 is positioned below the substrate W. The first upper position indicates a position where the upper end 71a of the guard 711 is positioned above the substrate W.
 ガード昇降部714は、制御装置101(制御部102)によって制御される。ガード昇降部714は、例えば、ボールねじ機構と、ボールねじ機構に駆動力を与える電動モータとを備えてもよい。 The guard lifting unit 714 is controlled by the control device 101 (control unit 102). The guard lifting unit 714 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
 例えば、制御装置101(制御部102)は、基板Wがスピンチャック3によって保持された後に、ガード711を第1下位置から第1上位置へ移動させる。ガード711が第1上位置に移動することで、基板Wから飛散する処理液をガード711によって受け止めることができる。また、制御装置101(制御部102)は、基板Wがチャンバー201から搬出される際に、ガード711を第1上位置から第1下位置へ移動させる。ガード711が第1下位置に移動することで、図1を参照して説明したセンターロボットCRとスピンチャック3との間での基板Wの受け渡しが可能となる。 For example, after the substrate W is held by the spin chuck 3, the control device 101 (controller 102) moves the guard 711 from the first lower position to the first upper position. By moving the guard 711 to the first upper position, the guard 711 can receive processing liquid splashed from the substrate W. In addition, the control device 101 (controller 102) moves the guard 711 from the first upper position to the first lower position when the substrate W is unloaded from the chamber 201. By moving the guard 711 to the first lower position, the substrate W can be transferred between the center robot CR and the spin chuck 3 described with reference to FIG. 1.
 本実施形態では、ガード711が第1上位置に移動し、遮断部材72が遮断位置に移動することにより、チャンバー201の内部に処理空間が形成される。詳しくは、第1上位置に配置されたガード711の上端71aは、遮断位置に配置された遮断部材72の側壁部722を取り囲む。この結果、チャンバー201内部の雰囲気から略遮断された局所空間(処理空間)が形成される。 In this embodiment, the guard 711 moves to the first upper position and the blocking member 72 moves to the blocking position, thereby forming a processing space inside the chamber 201. In detail, the upper end 71a of the guard 711 arranged in the first upper position surrounds the side wall portion 722 of the blocking member 72 arranged in the blocking position. As a result, a local space (processing space) that is substantially blocked off from the atmosphere inside the chamber 201 is formed.
 既に説明したように、ノズル6は、基板Wを処理する際に不活性ガスを吐出する。不活性ガスは、処理空間に供給される。処理空間は、処理空間の外部の雰囲気から略遮断されるため、不活性ガスは処理空間内に充満する。詳しくは、不活性ガスは、処理空間が形成されている間、処理空間に常時供給される。 As already explained, the nozzle 6 ejects an inert gas when processing the substrate W. The inert gas is supplied to the processing space. Since the processing space is substantially isolated from the atmosphere outside the processing space, the processing space is filled with the inert gas. More specifically, the inert gas is constantly supplied to the processing space while the processing space is formed.
 なお、本実施形態では、保持部21が遮断部材72を回転自在に保持する。遮断部材72は、遮断位置に移動すると、スピンチャック3に係合する。遮断部材72は、スピンチャック3が回転すると、スピンチャック3と共に回転する。 In this embodiment, the holding portion 21 holds the blocking member 72 rotatably. When the blocking member 72 moves to the blocking position, it engages with the spin chuck 3. When the spin chuck 3 rotates, the blocking member 72 rotates together with the spin chuck 3.
 排気ダクト202は、チャンバー201内の気体をチャンバー201の外に排出する。具体的には、排気ダクト202内の気体は、基板処理装置100が設置される工場に設けられた排気設備(図示せず)によって常時吸引される。 The exhaust duct 202 exhausts the gas in the chamber 201 to the outside of the chamber 201. Specifically, the gas in the exhaust duct 202 is constantly sucked in by exhaust equipment (not shown) provided in the factory where the substrate processing apparatus 100 is installed.
 排気ダクト202の上流端は、スピンベース32よりも下方において、処理空間形成部70により形成される処理空間に連通する。したがって、基板処理時に、処理空間内の不活性ガスが、排気ダクト202を通じて伝達される排気設備の吸引力によって、排気ダクト202の上流端に吸い寄せられる。その結果、処理空間内の不活性ガスは、排気ダクト202を通じてチャンバー201の外に排出される。 The upstream end of the exhaust duct 202 is connected to the processing space formed by the processing space forming part 70 below the spin base 32. Therefore, during substrate processing, the inert gas in the processing space is drawn to the upstream end of the exhaust duct 202 by the suction force of the exhaust equipment transmitted through the exhaust duct 202. As a result, the inert gas in the processing space is exhausted outside the chamber 201 through the exhaust duct 202.
 更に、処理空間内の薬液雰囲気が、不活性ガスと共に、排気ダクト202を通じてチャンバー201の外に排出される。薬液雰囲気は、ノズル6から薬液が吐出される際に、ノズル6の先端から発生する。また、薬液が基板Wの上面に衝突することにより、基板Wの上面から薬液雰囲気が発生する。スピンチャック3や液受け部71等の基板Wの周辺の部材に薬液が衝突したときにも、薬液雰囲気が発生する。特に、100℃以上のSPMがノズル6から吐出される場合には、SPMに含まれる水の蒸発により、SPMの液滴やミストがノズル6から噴出する。SPMとレジスト膜との反応により基板Wからヒューム(煙のような気体)が発生する場合もある。 Furthermore, the chemical atmosphere in the processing space is exhausted to the outside of the chamber 201 through the exhaust duct 202 together with the inert gas. The chemical atmosphere is generated from the tip of the nozzle 6 when the chemical is discharged from the nozzle 6. The chemical atmosphere is also generated from the upper surface of the substrate W when the chemical collides with the upper surface of the substrate W. The chemical atmosphere is also generated when the chemical collides with the peripheral components of the substrate W, such as the spin chuck 3 and the liquid receiving portion 71. In particular, when SPM at 100° C. or higher is discharged from the nozzle 6, the water contained in the SPM evaporates, causing droplets or mist of the SPM to be ejected from the nozzle 6. Fumes (smoke-like gas) may be generated from the substrate W due to the reaction between the SPM and the resist film.
 基板加熱部5は、スピンチャック3に保持された基板Wを加熱する。例えば、図2に示すように、基板加熱部5は、加熱部材51と、昇降軸52と、給電部53と、ヒータ昇降部54とを有してもよい。 The substrate heating unit 5 heats the substrate W held by the spin chuck 3. For example, as shown in FIG. 2, the substrate heating unit 5 may have a heating member 51, a lifting shaft 52, a power supply unit 53, and a heater lifting unit 54.
 加熱部材51は、略円盤状であり、チャック部材31に保持された基板Wとスピンベース32との間に位置する。加熱部材51には、ヒータが埋め込まれている。ヒータは、例えば、抵抗体を含む。給電部53は、加熱部材51に埋め込まれたヒータに通電して、加熱部材51を加熱させる。給電部53は、制御装置101(制御部102)によって制御される。 The heating member 51 is approximately disk-shaped and is located between the substrate W held by the chuck member 31 and the spin base 32. A heater is embedded in the heating member 51. The heater includes, for example, a resistor. The power supply unit 53 applies electricity to the heater embedded in the heating member 51 to heat the heating member 51. The power supply unit 53 is controlled by the control device 101 (control unit 102).
 昇降軸52は略棒状の部材であり、略鉛直方向に延びる。昇降軸52は、加熱部材51に結合する。ヒータ昇降部54は、昇降軸52を昇降させることにより、加熱部材51を昇降させる。具体的には、ヒータ昇降部54は、チャック部材31に保持された基板Wの下面とスピンベース32の上面との間で加熱部材51を昇降させる。ヒータ昇降部54は、制御装置101(制御部102)によって制御される。ヒータ昇降部54は、例えば、ボールねじ機構と、ボールねじ機構に駆動力を与える電動モータとを備えてもよい。 The lifting shaft 52 is a generally rod-shaped member that extends generally vertically. The lifting shaft 52 is connected to the heating member 51. The heater lifting unit 54 raises and lowers the heating member 51 by raising and lowering the lifting shaft 52. Specifically, the heater lifting unit 54 raises and lowers the heating member 51 between the lower surface of the substrate W held by the chuck member 31 and the upper surface of the spin base 32. The heater lifting unit 54 is controlled by the control device 101 (control unit 102). The heater lifting unit 54 may include, for example, a ball screw mechanism and an electric motor that provides a driving force to the ball screw mechanism.
 吹出部8は、処理空間内に過熱水蒸気を吹き出す。過熱水蒸気は、処理空間内に充満する。吹出部8は、過熱水蒸気吹出部の一例である。なお、過熱水蒸気は、水蒸気を加熱することにより生成される。したがって、過熱水蒸気は、水蒸気の温度より高温である。具体的には、水蒸気の発生時の温度は100℃であり、過熱水蒸気の生成時の温度は100℃より高温である。 The blowing section 8 blows out superheated steam into the processing space. The superheated steam fills the processing space. The blowing section 8 is an example of a superheated steam blowing section. Note that superheated steam is generated by heating water vapor. Therefore, the temperature of superheated steam is higher than that of water vapor. Specifically, the temperature of water vapor when it is generated is 100°C, and the temperature of superheated steam when it is generated is higher than 100°C.
 本実施形態では、吹出部8は、第1吹出部81と、第2吹出部82とを含む。第1吹出部81は、スピンチャック3に保持された基板Wよりも上方に配置される。第1吹出部81は、第1過熱水蒸気吹出部の一例である。本実施形態では、第1吹出部81は、遮断部材72の内壁面に支持される。第2吹出部82は、液受け部71に支持される。具体的には、第2吹出部82は、ガード711の内壁面に支持される。第2吹出部82は、第2過熱水蒸気吹出部の一例である。例えば、第1吹出部81は、ブラケットを介して遮断部材72に固定されてもよい。同様に、第2吹出部82は、ブラケットを介してガード711に固定されてもよい。 In this embodiment, the blowing section 8 includes a first blowing section 81 and a second blowing section 82. The first blowing section 81 is disposed above the substrate W held by the spin chuck 3. The first blowing section 81 is an example of a first superheated steam blowing section. In this embodiment, the first blowing section 81 is supported on the inner wall surface of the blocking member 72. The second blowing section 82 is supported on the liquid receiving section 71. Specifically, the second blowing section 82 is supported on the inner wall surface of the guard 711. The second blowing section 82 is an example of a second superheated steam blowing section. For example, the first blowing section 81 may be fixed to the blocking member 72 via a bracket. Similarly, the second blowing section 82 may be fixed to the guard 711 via a bracket.
 吹出部8からの過熱水蒸気の吹き出しは、制御装置101(制御部102)によって制御される。例えば、制御装置101(制御部102)は、基板WにSPMが供給されている際に、吹出部8から過熱水蒸気を吹き出させる。以下、SPMによる基板処理を、「SPM処理」と記載する場合がある。 The blowing of superheated steam from blowing section 8 is controlled by control device 101 (control section 102). For example, control device 101 (control section 102) causes superheated steam to be blown from blowing section 8 when SPM is being supplied to substrate W. Hereinafter, substrate processing using SPM may be referred to as "SPM processing."
 本実施形態によれば、SPM処理時に、処理空間内に過熱水蒸気を充満させることができる。したがって、SPMの温度のみによって基板Wの温度を昇温させる構成と比べて、基板Wの温度の昇温に必要な時間を短縮することができる。その結果、処理時間を短くして、SPMの消費量の低減を図ることができる。よって、硫酸の消費量の低減を図ることができる。 According to this embodiment, the processing space can be filled with superheated water vapor during SPM processing. Therefore, the time required to raise the temperature of the substrate W can be shortened compared to a configuration in which the temperature of the substrate W is raised only by the temperature of the SPM. As a result, the processing time can be shortened and the amount of SPM consumed can be reduced. Therefore, the amount of sulfuric acid consumed can be reduced.
 また、SPM処理の際には、基板Wの上面においてSPMが流れる。具体的には、基板Wの上面に吐出されたSPMが基板Wの中央部から周縁部へ流れて、基板Wから排出される。そのため、基板Wの上面は熱を与え難い。これに対し、本実施形態によれば、処理空間内に過熱水蒸気が充満するため、基板Wの下面から基板Wに熱を与えることができる。よって、基板Wの温度を効率的に昇温させることができる。 Furthermore, during SPM processing, SPM flows on the upper surface of the substrate W. Specifically, the SPM discharged onto the upper surface of the substrate W flows from the center to the periphery of the substrate W and is discharged from the substrate W. As a result, it is difficult to apply heat to the upper surface of the substrate W. In contrast, according to this embodiment, the processing space is filled with superheated water vapor, so that heat can be applied to the substrate W from its lower surface. Therefore, the temperature of the substrate W can be raised efficiently.
 また、基板Wの周囲に配置される部材の温度が低い場合、基板Wの周囲に配置される部材の温度に起因して基板Wの温度が昇温し難くなる。これに対し、本実施形態によれば、処理空間内に過熱水蒸気が充満するため、スピンチャック3、液受け部71、及び遮断部材72等の基板Wの周囲に配置される部材の温度を過熱水蒸気により昇温させることができる。したがって、基板Wの温度の昇温に必要な時間を短縮することができる。 Furthermore, when the temperatures of the components arranged around the substrate W are low, the temperature of the substrate W is difficult to increase due to the temperatures of the components arranged around the substrate W. In contrast, according to this embodiment, the processing space is filled with superheated water steam, so that the temperatures of the components arranged around the substrate W, such as the spin chuck 3, the liquid receiving portion 71, and the blocking member 72, can be increased by the superheated water steam. Therefore, the time required to increase the temperature of the substrate W can be shortened.
 また、過熱水蒸気には若干の水分が含まれる。したがって、過熱水蒸気に含まれる水分がSPMに接触して、SPMと水分とが反応する際に発生する熱により、基板Wの温度を昇温させることができる。 Furthermore, superheated steam contains a small amount of moisture. Therefore, when the moisture contained in the superheated steam comes into contact with the SPM and reacts with the SPM, the heat generated can be used to raise the temperature of the substrate W.
 また、過熱水蒸気を供給することにより、処理空間の湿度が高くなる。その結果、基板Wの上面においてSPMが拡がり易くなり、基板Wを効率よく処理することが可能となる。 In addition, by supplying superheated steam, the humidity in the processing space increases. As a result, SPM spreads more easily on the upper surface of the substrate W, making it possible to process the substrate W more efficiently.
 また、基板処理時に処理空間内で発生した薬液雰囲気の殆どは、不活性ガスと共に、排気ダクト202を通じてチャンバー201の外に排出されるが、一部の薬液雰囲気が処理空間内で拡散して、基板Wの周囲の部材に付着する場合がある。この場合、基板Wが汚染されるおそれがある。これに対し、本実施形態によれば、過熱水蒸気により、薬液雰囲気の拡散を抑制することができる。したがって、薬液雰囲気に起因する基板Wの汚染を低減させることができる。 Moreover, most of the chemical atmosphere generated in the processing space during substrate processing is exhausted outside the chamber 201 through the exhaust duct 202 together with the inert gas, but some of the chemical atmosphere may diffuse within the processing space and adhere to the components surrounding the substrate W. In this case, there is a risk of contamination of the substrate W. In contrast, according to this embodiment, the diffusion of the chemical atmosphere can be suppressed by the use of superheated water vapor. Therefore, contamination of the substrate W caused by the chemical atmosphere can be reduced.
 具体的には、過熱水蒸気は、排気ダクト202を通じて伝達される排気設備の吸引力によって、不活性ガスと共に、排気ダクト202の上流端に吸い寄せられる。その際、過熱水蒸気に含まれる液滴が、処理空間を漂う薬液成分に衝突する。この結果、薬液成分に排気ダクト202の上流端へ向かう加速度が与えられて、薬液雰囲気が、排気ダクト202を通じてチャンバー201の外に効率的に排出される。 Specifically, the superheated water vapor is sucked together with the inert gas to the upstream end of the exhaust duct 202 by the suction force of the exhaust equipment transmitted through the exhaust duct 202. At that time, the droplets contained in the superheated water vapor collide with the chemical components floating in the processing space. As a result, the chemical components are accelerated toward the upstream end of the exhaust duct 202, and the chemical atmosphere is efficiently exhausted outside the chamber 201 through the exhaust duct 202.
 特に、本実施形態では、第1吹出部81が基板Wの上方に配置される。よって、基板Wから発生する薬液成分が基板Wの周囲の部材に付着する前に、基板Wから発生する薬液成分に過熱水蒸気の液滴が衝突し易い。よって、薬液雰囲気の拡散を効率よく抑制することができる。 In particular, in this embodiment, the first blowing section 81 is disposed above the substrate W. Therefore, the superheated water vapor droplets are likely to collide with the chemical components generated from the substrate W before the chemical components generated from the substrate W adhere to the members surrounding the substrate W. This makes it possible to efficiently suppress the diffusion of the chemical atmosphere.
 また、本実施形態では、第1吹出部81が遮断部材72に支持される。よって、ノズル6から発生する薬液成分が基板Wの周囲の部材に付着する前に、ノズル6から発生する薬液成分に過熱水蒸気の液滴が衝突し易い。よって、薬液雰囲気の拡散を効率よく抑制することができる。 In addition, in this embodiment, the first blowing section 81 is supported by the blocking member 72. Therefore, the superheated water vapor droplets are likely to collide with the chemical components generated from the nozzle 6 before the chemical components are deposited on the members surrounding the substrate W. This makes it possible to efficiently suppress the diffusion of the chemical atmosphere.
 第1吹出部81について更に説明する。本実施形態では、第1吹出部81は、平面視において、スピンチャック3に保持された基板Wの外側に位置する。したがって、第1吹出部81から水滴のぼた落ちが発生しても、その水滴は基板Wに落下し難い。 The first blowing section 81 will now be described further. In this embodiment, the first blowing section 81 is located outside the substrate W held by the spin chuck 3 in a plan view. Therefore, even if water droplets drip from the first blowing section 81, the water droplets are unlikely to fall onto the substrate W.
 また、本実施形態では、第1吹出部81は、側壁部722の内周面に支持される。したがって、ノズル6から比較的遠い位置に第1吹出部81が配置される。よって、ノズル6から吐出されるSPMに過熱水蒸気が引き寄せられ難い。その結果、過熱水蒸気が処理空間内で偏在し難くなるため、過熱水蒸気によって、基板Wや、基板Wの周囲に配置されている部材を効率よく昇温させることができる。 In addition, in this embodiment, the first blowing section 81 is supported on the inner circumferential surface of the side wall section 722. Therefore, the first blowing section 81 is disposed at a position relatively far from the nozzle 6. Therefore, the superheated water steam is less likely to be attracted to the SPM discharged from the nozzle 6. As a result, the superheated water steam is less likely to be unevenly distributed within the processing space, and the substrate W and the components disposed around the substrate W can be efficiently heated by the superheated water steam.
 続いて、第2吹出部82について更に説明する。本実施形態では、第2吹出部82は、基板Wよりも下方に配置される。例えば、第2吹出部82は、案内部712の内周面に支持される。基板Wよりも下方に第2吹出部82を配置することにより、第2吹出部82から基板Wの下面に向けて過熱水蒸気を効率よく供給することができる。したがって、基板Wの下面から効率よく基板Wの温度を昇温させることができる。 Next, the second blowing section 82 will be further described. In this embodiment, the second blowing section 82 is positioned below the substrate W. For example, the second blowing section 82 is supported by the inner circumferential surface of the guide section 712. By positioning the second blowing section 82 below the substrate W, superheated steam can be efficiently supplied from the second blowing section 82 toward the underside of the substrate W. Therefore, the temperature of the substrate W can be efficiently raised from the underside of the substrate W.
 なお、本実施形態では、基板処理装置100は、2つの吹出部8(第1吹出部81及び第2吹出部82)を備えるが、吹出部8の数は1つであってもよいし、3つ以上であってもよい。例えば、吹出部8は、第1吹出部81と、第2吹出部82とのうちの一方のみを含んでもよい。また、基板処理装置100は、遮断部材72に支持される2つ以上の吹出部8を備えてもよいし、液受け部71に支持される2つ以上の吹出部8を備えてもよい。 In this embodiment, the substrate processing apparatus 100 has two blowing sections 8 (first blowing section 81 and second blowing section 82), but the number of blowing sections 8 may be one or three or more. For example, the blowing section 8 may include only one of the first blowing section 81 and the second blowing section 82. In addition, the substrate processing apparatus 100 may have two or more blowing sections 8 supported by the blocking member 72, or two or more blowing sections 8 supported by the liquid receiving section 71.
 続いて、図4(a)及び図4(b)を参照して、本実施形態の基板処理装置100を説明する。図4(a)は、本実施形態の基板処理装置100に含まれるノズル6を下から視た下面図である。図4(b)は、本実施形態の基板処理装置100に含まれる流体供給部600の構成を示す図である。 Next, the substrate processing apparatus 100 of this embodiment will be described with reference to Figures 4(a) and 4(b). Figure 4(a) is a bottom view of the nozzle 6 included in the substrate processing apparatus 100 of this embodiment, as viewed from below. Figure 4(b) is a diagram showing the configuration of a fluid supply unit 600 included in the substrate processing apparatus 100 of this embodiment.
 図4(a)に示すように、ノズル6は、第1吐出口61~第4吐出口64を有する。第1吐出口61~第4吐出口64は、ノズル6の下面(先端)に開口している。なお、第4吐出口64は、円環状である。第4吐出口64は、ノズル6の下面(先端)においてノズル6の外周部に沿って延びる。第1吐出口61から、SPMと過酸化水素水とが排他的に吐出される。第2吐出口62からSC1が吐出される。第3吐出口63からリンス液が吐出される。第4吐出口64から不活性ガスが吐出される。なお、本実施形態において、不活性ガスは、窒素ガスである。 As shown in FIG. 4(a), the nozzle 6 has a first outlet 61 to a fourth outlet 64. The first outlet 61 to the fourth outlet 64 open on the bottom surface (tip) of the nozzle 6. The fourth outlet 64 is annular. The fourth outlet 64 extends along the outer periphery of the nozzle 6 on the bottom surface (tip) of the nozzle 6. SPM and hydrogen peroxide solution are exclusively ejected from the first outlet 61. SC1 is ejected from the second outlet 62. Rinse liquid is ejected from the third outlet 63. An inert gas is ejected from the fourth outlet 64. In this embodiment, the inert gas is nitrogen gas.
 図4(b)に示すように、流体供給部600は、ノズル6に加えて、第1薬液供給部610と、第2薬液供給部620と、リンス液供給部630と、ガス供給部640とを更に含む。 As shown in FIG. 4(b), in addition to the nozzle 6, the fluid supply unit 600 further includes a first chemical liquid supply unit 610, a second chemical liquid supply unit 620, a rinsing liquid supply unit 630, and a gas supply unit 640.
 ノズル6からのSPMの吐出と、ノズル6からの過酸化水素水の吐出とは、制御装置101(制御部102)によって制御される。具体的には、制御装置101(制御部102)は、第1薬液供給部610を制御することにより、ノズル6からのSPMの吐出と、ノズル6からの過酸化水素水の吐出とを制御する。 The ejection of SPM from nozzle 6 and the ejection of hydrogen peroxide solution from nozzle 6 are controlled by control device 101 (control unit 102). Specifically, control device 101 (control unit 102) controls the ejection of SPM from nozzle 6 and the ejection of hydrogen peroxide solution from nozzle 6 by controlling first chemical liquid supply unit 610.
 第1薬液供給部610は、SPMと過酸化水素水とを排他的にノズル6へ供給する。第1薬液供給部610からノズル6へ供給されたSPMは、図4(a)を参照して説明した第1吐出口61から吐出される。同様に、第1薬液供給部610からノズル6へ供給された過酸化水素水は、図4(a)を参照して説明した第1吐出口61から吐出される。 The first chemical liquid supply unit 610 exclusively supplies SPM and hydrogen peroxide solution to the nozzle 6. The SPM supplied from the first chemical liquid supply unit 610 to the nozzle 6 is discharged from the first outlet 61 described with reference to FIG. 4(a). Similarly, the hydrogen peroxide solution supplied from the first chemical liquid supply unit 610 to the nozzle 6 is discharged from the first outlet 61 described with reference to FIG. 4(a).
 具体的には、第1薬液供給部610は、第1薬液供給配管611と、第1成分開閉バルブ613と、第2成分開閉バルブ615と、ヒータ617とを有してもよい。第1薬液供給配管611の一部は、図2を参照して説明したチャンバー201内に収容される。第1成分開閉バルブ613、第2成分開閉バルブ615、及びヒータ617は、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the first chemical liquid supply unit 610 may have a first chemical liquid supply pipe 611, a first component on-off valve 613, a second component on-off valve 615, and a heater 617. A portion of the first chemical liquid supply pipe 611 is housed in the chamber 201 described with reference to FIG. 2. The first component on-off valve 613, the second component on-off valve 615, and the heater 617 are housed in the fluid box 10B described with reference to FIG. 1.
 第1薬液供給配管611は、ノズル6にSPMと過酸化水素水とを排他的に供給する。具体的には、第1薬液供給配管611は、管状の部材であり、SPM及び過酸化水素水をノズル6まで流通させる。 The first chemical supply pipe 611 exclusively supplies SPM and hydrogen peroxide to the nozzle 6. Specifically, the first chemical supply pipe 611 is a tubular member, and distributes SPM and hydrogen peroxide to the nozzle 6.
 詳しくは、第1薬液供給配管611は、第1配管611aと、第2配管611bとを含む。第1配管611aの一端は、ノズル6に接続する。第2配管611bの一端は、第1配管611aに接続する。第1配管611aには、硫酸が流入する。第2配管611bには過酸化水素水が流入する。 In more detail, the first chemical supply pipe 611 includes a first pipe 611a and a second pipe 611b. One end of the first pipe 611a is connected to the nozzle 6. One end of the second pipe 611b is connected to the first pipe 611a. Sulfuric acid flows into the first pipe 611a. Hydrogen peroxide flows into the second pipe 611b.
 ヒータ617は、第1配管611aに介装される。例えば、ヒータ617は、第1成分開閉バルブ613よりも上流側において、第1配管611aに介装される。ヒータ617は、第1配管611aを流通する硫酸を加熱する。 The heater 617 is installed in the first pipe 611a. For example, the heater 617 is installed in the first pipe 611a upstream of the first component on-off valve 613. The heater 617 heats the sulfuric acid flowing through the first pipe 611a.
 第1成分開閉バルブ613は、第1配管611aに介装される。具体的には、第1成分開閉バルブ613は、第1配管611aと第2配管611bとの接続箇所CPよりも上流側に配置される。第2成分開閉バルブ615は、第2配管611bに介装される。 The first component on-off valve 613 is disposed in the first pipe 611a. Specifically, the first component on-off valve 613 is disposed upstream of the connection point CP between the first pipe 611a and the second pipe 611b. The second component on-off valve 615 is disposed in the second pipe 611b.
 第1成分開閉バルブ613及び第2成分開閉バルブ615は、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、第1成分開閉バルブ613及び第2成分開閉バルブ615の開閉動作を制御する。第1成分開閉バルブ613及び第2成分開閉バルブ615のアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The first component opening/closing valve 613 and the second component opening/closing valve 615 can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operations of the first component opening/closing valve 613 and the second component opening/closing valve 615. The actuators of the first component opening/closing valve 613 and the second component opening/closing valve 615 are, for example, pneumatic actuators or electric actuators.
 制御装置101(制御部102)は、基板WにSPMを供給する際に、第1成分開閉バルブ613及び第2成分開閉バルブ615を開状態にする。第1成分開閉バルブ613及び第2成分開閉バルブ615を開状態にすると、硫酸がノズル6に向かって第1配管611aを流通し、過酸化水素水が接続箇所CPに向かって第2配管611bを流通する。この結果、接続箇所CPにおいて硫酸と過酸化水素水とが混合されて、SPMが生成される。SPMは、ノズル6に向かって第1配管611aを流通し、ノズル6から基板Wに向けてSPMが吐出される。 When supplying SPM to the substrate W, the control device 101 (control unit 102) opens the first component on-off valve 613 and the second component on-off valve 615. When the first component on-off valve 613 and the second component on-off valve 615 are opened, sulfuric acid flows through the first pipe 611a toward the nozzle 6, and hydrogen peroxide flows through the second pipe 611b toward the connection point CP. As a result, the sulfuric acid and hydrogen peroxide are mixed at the connection point CP to generate SPM. The SPM flows through the first pipe 611a toward the nozzle 6, and is ejected from the nozzle 6 toward the substrate W.
 制御装置101(制御部102)は、基板Wに過酸化水素水を供給する際に、第1成分開閉バルブ613を閉状態にし、第2成分開閉バルブ615を開状態にする。第1成分開閉バルブ613を閉状態にし、第2成分開閉バルブ615を開状態にすると、第1配管611aを介した硫酸の流通が停止し、過酸化水素水が接続箇所CPに向かって第2配管611bを流通する。この結果、第1配管611aに流入した過酸化水素水が、ノズル6に向かって第1配管611aを流通し、ノズル6から基板Wに向けて過酸化水素水が吐出される。 When supplying hydrogen peroxide to the substrate W, the control device 101 (control unit 102) closes the first component on-off valve 613 and opens the second component on-off valve 615. When the first component on-off valve 613 is closed and the second component on-off valve 615 is opened, the flow of sulfuric acid through the first pipe 611a stops, and the hydrogen peroxide flows through the second pipe 611b toward the connection point CP. As a result, the hydrogen peroxide that has flowed into the first pipe 611a flows through the first pipe 611a toward the nozzle 6, and the hydrogen peroxide is ejected from the nozzle 6 toward the substrate W.
 制御装置101(制御部102)は、ノズル6からのSPM及び過酸化水素水の吐出を停止させる際に、第1成分開閉バルブ613及び第2成分開閉バルブ615を閉状態にする。第1成分開閉バルブ613及び第2成分開閉バルブ615を閉状態にすると、第1配管611aを介した硫酸の流通が停止し、第2配管611bを介した過酸化水素水の流通が停止する。 When the control device 101 (control unit 102) stops the ejection of SPM and hydrogen peroxide solution from the nozzle 6, it closes the first component opening/closing valve 613 and the second component opening/closing valve 615. When the first component opening/closing valve 613 and the second component opening/closing valve 615 are closed, the flow of sulfuric acid through the first pipe 611a stops, and the flow of hydrogen peroxide solution through the second pipe 611b stops.
 ノズル6からのSC1の吐出は、制御装置101(制御部102)によって制御される。具体的には、制御装置101(制御部102)は、第2薬液供給部620を制御することにより、ノズル6からのSC1の吐出を制御する。 The ejection of SC1 from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the ejection of SC1 from the nozzle 6 by controlling the second chemical liquid supply unit 620.
 第2薬液供給部620は、SC1をノズル6へ供給する。第2薬液供給部620からノズル6へ供給されたSC1は、図4(a)を参照して説明した第2吐出口62から吐出される。 The second chemical liquid supply unit 620 supplies SC1 to the nozzle 6. The SC1 supplied from the second chemical liquid supply unit 620 to the nozzle 6 is discharged from the second discharge port 62 described with reference to FIG. 4(a).
 具体的には、第2薬液供給部620は、第2薬液供給配管621と、薬液開閉バルブ623とを有してもよい。第2薬液供給配管621の一部は、図2を参照して説明したチャンバー201内に収容される。薬液開閉バルブ623は、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the second chemical liquid supply unit 620 may have a second chemical liquid supply pipe 621 and a chemical liquid on-off valve 623. A portion of the second chemical liquid supply pipe 621 is housed in the chamber 201 described with reference to FIG. 2. The chemical liquid on-off valve 623 is housed in the fluid box 10B described with reference to FIG. 1.
 第2薬液供給配管621は、ノズル6にSC1を供給する。具体的には、第2薬液供給配管621は、管状の部材であり、SC1をノズル6まで流通させる。 The second chemical supply pipe 621 supplies SC1 to the nozzle 6. Specifically, the second chemical supply pipe 621 is a tubular member that distributes SC1 to the nozzle 6.
 薬液開閉バルブ623は、第2薬液供給配管621に介装される。薬液開閉バルブ623は、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、薬液開閉バルブ623の開閉動作を制御する。薬液開閉バルブ623のアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The chemical liquid on-off valve 623 is disposed in the second chemical liquid supply pipe 621. The chemical liquid on-off valve 623 can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operation of the chemical liquid on-off valve 623. The actuator of the chemical liquid on-off valve 623 is, for example, a pneumatic actuator or an electric actuator.
 制御装置101(制御部102)は、基板WにSC1を供給する際に、薬液開閉バルブ623を開状態にする。薬液開閉バルブ623を開状態にすると、SC1がノズル6に向かって第2薬液供給配管621を流通する。この結果、ノズル6から基板Wに向けてSC1が吐出される。 The control device 101 (control unit 102) opens the chemical liquid on-off valve 623 when supplying SC1 to the substrate W. When the chemical liquid on-off valve 623 is opened, SC1 flows through the second chemical liquid supply pipe 621 toward the nozzle 6. As a result, SC1 is ejected from the nozzle 6 toward the substrate W.
 制御装置101(制御部102)は、ノズル6からのSC1の吐出を停止させる際に、薬液開閉バルブ623を閉状態にする。薬液開閉バルブ623を閉状態にすると、第2薬液供給配管621を介したSC1の流通が停止する。 When the control device 101 (control unit 102) stops the discharge of SC1 from the nozzle 6, it closes the chemical solution opening/closing valve 623. When the chemical solution opening/closing valve 623 is closed, the flow of SC1 through the second chemical solution supply pipe 621 is stopped.
 ノズル6からのリンス液の吐出は、制御装置101(制御部102)によって制御される。具体的には、制御装置101(制御部102)は、リンス液供給部630を制御することにより、ノズル6からのリンス液の吐出を制御する。 The discharge of the rinsing liquid from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the discharge of the rinsing liquid from the nozzle 6 by controlling the rinsing liquid supply unit 630.
 リンス液供給部630は、リンス液をノズル6へ供給する。リンス液供給部630からノズル6へ供給されたリンス液は、図4(a)を参照して説明した第3吐出口63から吐出される。 The rinse liquid supply unit 630 supplies the rinse liquid to the nozzle 6. The rinse liquid supplied from the rinse liquid supply unit 630 to the nozzle 6 is discharged from the third discharge port 63 described with reference to FIG. 4(a).
 具体的には、リンス液供給部630は、リンス液供給配管631と、リンス液開閉バルブ633とを有してもよい。リンス液供給配管631の一部は、図2を参照して説明したチャンバー201内に収容される。リンス液開閉バルブ633は、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the rinse liquid supply unit 630 may have a rinse liquid supply pipe 631 and a rinse liquid opening/closing valve 633. A portion of the rinse liquid supply pipe 631 is housed in the chamber 201 described with reference to FIG. 2. The rinse liquid opening/closing valve 633 is housed in the fluid box 10B described with reference to FIG. 1.
 リンス液供給配管631は、ノズル6にリンス液を供給する。具体的には、リンス液供給配管631は、管状の部材であり、リンス液をノズル6まで流通させる。 The rinse liquid supply pipe 631 supplies rinse liquid to the nozzle 6. Specifically, the rinse liquid supply pipe 631 is a tubular member that circulates the rinse liquid to the nozzle 6.
 リンス液開閉バルブ633は、リンス液供給配管631に介装される。リンス液開閉バルブ633は、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、リンス液開閉バルブ633の開閉動作を制御する。リンス液開閉バルブ633のアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The rinse liquid opening/closing valve 633 is disposed in the rinse liquid supply pipe 631. The rinse liquid opening/closing valve 633 can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operation of the rinse liquid opening/closing valve 633. The actuator of the rinse liquid opening/closing valve 633 is, for example, a pneumatic actuator or an electric actuator.
 制御装置101(制御部102)は、基板Wにリンス液を供給する際に、リンス液開閉バルブ633を開状態にする。リンス液開閉バルブ633を開状態にすると、リンス液がノズル6に向かってリンス液供給配管631を流通する。この結果、ノズル6から基板Wに向けてリンス液が吐出される。 The control device 101 (control unit 102) opens the rinse liquid opening/closing valve 633 when supplying rinse liquid to the substrate W. When the rinse liquid opening/closing valve 633 is opened, the rinse liquid flows through the rinse liquid supply pipe 631 toward the nozzle 6. As a result, the rinse liquid is ejected from the nozzle 6 toward the substrate W.
 制御装置101(制御部102)は、ノズル6からのリンス液の吐出を停止させる際に、リンス液開閉バルブ633を閉状態にする。リンス液開閉バルブ633を閉状態にすると、リンス液供給配管631を介したリンス液の流通が停止する。 When the control device 101 (control unit 102) stops the discharge of the rinse liquid from the nozzle 6, it closes the rinse liquid opening/closing valve 633. When the rinse liquid opening/closing valve 633 is closed, the flow of the rinse liquid through the rinse liquid supply pipe 631 stops.
 ノズル6からの窒素ガスの吐出は、制御装置101(制御部102)によって制御される。具体的には、制御装置101(制御部102)は、ガス供給部640を制御することにより、ノズル6からの窒素ガスの吐出を制御する。 The discharge of nitrogen gas from the nozzle 6 is controlled by the control device 101 (control unit 102). Specifically, the control device 101 (control unit 102) controls the discharge of nitrogen gas from the nozzle 6 by controlling the gas supply unit 640.
 ガス供給部640は、窒素ガスをノズル6へ供給する。ガス供給部640からノズル6へ供給された窒素ガスは、図4(a)を参照して説明した第4吐出口64から吐出される。 The gas supply unit 640 supplies nitrogen gas to the nozzle 6. The nitrogen gas supplied from the gas supply unit 640 to the nozzle 6 is discharged from the fourth outlet 64 described with reference to FIG. 4(a).
 具体的には、ガス供給部640は、ガス供給配管641と、ガス開閉バルブ643とを有してもよい。ガス供給配管641の一部は、図2を参照して説明したチャンバー201内に収容される。ガス開閉バルブ643は、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the gas supply unit 640 may have a gas supply pipe 641 and a gas on-off valve 643. A portion of the gas supply pipe 641 is housed in the chamber 201 described with reference to FIG. 2. The gas on-off valve 643 is housed in the fluid box 10B described with reference to FIG. 1.
 ガス供給配管641は、ノズル6に窒素ガスを供給する。具体的には、ガス供給配管641は、管状の部材であり、窒素ガスをノズル6まで流通させる。 The gas supply pipe 641 supplies nitrogen gas to the nozzle 6. Specifically, the gas supply pipe 641 is a tubular member that distributes the nitrogen gas to the nozzle 6.
 ガス開閉バルブ643は、ガス供給配管641に介装される。ガス開閉バルブ643は、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、ガス開閉バルブ643の開閉動作を制御する。ガス開閉バルブ643のアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The gas on-off valve 643 is disposed in the gas supply pipe 641. The gas on-off valve 643 can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operation of the gas on-off valve 643. The actuator of the gas on-off valve 643 is, for example, a pneumatic actuator or an electric actuator.
 制御装置101(制御部102)は、図2を参照して説明した遮断部材72が遮断位置に移動すると、ガス開閉バルブ643を開状態にする。換言すると、制御装置101(制御部102)は、図2を参照して説明した処理空間形成部70によって処理空間が形成されると、ガス開閉バルブ643を開状態にする。ガス開閉バルブ643を開状態にすると、窒素ガスがノズル6に向かってガス供給配管641を流通して、ノズル6から窒素ガスが吐出される。この結果、ノズル6から処理空間に窒素ガスが供給される。 When the blocking member 72 described with reference to FIG. 2 moves to the blocking position, the control device 101 (control unit 102) opens the gas on-off valve 643. In other words, when a processing space is formed by the processing space forming unit 70 described with reference to FIG. 2, the control device 101 (control unit 102) opens the gas on-off valve 643. When the gas on-off valve 643 is opened, nitrogen gas flows through the gas supply pipe 641 toward the nozzle 6, and the nitrogen gas is discharged from the nozzle 6. As a result, nitrogen gas is supplied from the nozzle 6 to the processing space.
 制御装置101(制御部102)は、図2を参照して説明した遮断部材72が退避位置に移動すると、ガス開閉バルブ643を閉状態にする。ガス開閉バルブ643を閉状態にすると、ガス供給配管641を介した窒素ガスの流通が停止して、ノズル6からの窒素ガスの吐出が停止する。 When the blocking member 72 described with reference to FIG. 2 moves to the retracted position, the control device 101 (control unit 102) closes the gas on-off valve 643. When the gas on-off valve 643 is closed, the flow of nitrogen gas through the gas supply pipe 641 stops, and the discharge of nitrogen gas from the nozzle 6 stops.
 なお、図4(a)及び図4(b)を参照して説明した流体供給部600では、ノズル6の第1吐出口61から、SPMと過酸化水素水とが排他的に吐出されたが、ノズル6は、SPMを吐出する吐出口と、過酸化水素水を吐出する吐出口とを個別に有してもよい。この場合、流体供給部600は、SPMをノズル6へ供給する薬液供給ラインと、過酸化水素水をノズル6へ供給する薬液供給ラインとを個別に備える。 In the fluid supply unit 600 described with reference to Figures 4(a) and 4(b), SPM and hydrogen peroxide are exclusively discharged from the first outlet 61 of the nozzle 6, but the nozzle 6 may have separate outlets for discharging SPM and hydrogen peroxide. In this case, the fluid supply unit 600 is provided with separate chemical supply lines for supplying SPM to the nozzle 6 and hydrogen peroxide to the nozzle 6.
 続いて、図5を参照して、本実施形態の基板処理装置100を説明する。図5は、本実施形態の基板処理装置100に含まれる第1吹出部81及び過熱水蒸気供給部800の構成を示す図である。 Next, the substrate processing apparatus 100 of this embodiment will be described with reference to FIG. 5. FIG. 5 is a diagram showing the configuration of the first blowing section 81 and the superheated steam supply section 800 included in the substrate processing apparatus 100 of this embodiment.
 図5に示すように、第1吹出部81は円環状であり、図2を参照して説明した遮断部材72の側壁部722の内周面に沿って延びる。第1吹出部81は、管状の部材であり、過熱水蒸気は第1吹出部81の内部を流通する。第1吹出部81の内周側には、少なくとも1つの吹出口(図示せず)が形成されている。吹出口は開口であり、第1吹出部81を流通する過熱水蒸気は、第1吹出部81の吹出口から吹き出して、処理空間に供給される。なお、図5は、4つの吹出口を有する第1吹出部81を例示している。図5の矢印は、第1吹出部81から吹き出る過熱水蒸気を示す。 As shown in FIG. 5, the first blowing section 81 is annular and extends along the inner circumferential surface of the side wall portion 722 of the blocking member 72 described with reference to FIG. 2. The first blowing section 81 is a tubular member, and superheated steam flows through the inside of the first blowing section 81. At least one blowing outlet (not shown) is formed on the inner circumferential side of the first blowing section 81. The blowing outlet is an opening, and the superheated steam flowing through the first blowing section 81 is blown out from the blowing outlet of the first blowing section 81 and supplied to the treatment space. Note that FIG. 5 illustrates a first blowing section 81 having four blowing outlets. The arrows in FIG. 5 indicate the superheated steam blown out from the first blowing section 81.
 なお、図2を参照して説明した第2吹出部82の構成も第1吹出部81と同様である。具体的には、第2吹出部82は円環状であり、図2を参照して説明したガード711の内周面に沿って延びる。第2吹出部82は、管状の部材であり、過熱水蒸気は第2吹出部82の内部を流通する。第2吹出部82の内周側には、少なくとも1つの吹出口(図示せず)が形成されている。吹出口は開口であり、第2吹出部82を流通する過熱水蒸気は、第2吹出部82の吹出口から吹き出して、処理空間に供給される。 The configuration of the second blowing section 82 described with reference to FIG. 2 is the same as that of the first blowing section 81. Specifically, the second blowing section 82 is annular and extends along the inner circumferential surface of the guard 711 described with reference to FIG. 2. The second blowing section 82 is a tubular member, and superheated steam flows through the interior of the second blowing section 82. At least one blowing port (not shown) is formed on the inner circumferential side of the second blowing section 82. The blowing port is an opening, and the superheated steam flowing through the second blowing section 82 is blown out from the blowing port of the second blowing section 82 and supplied to the treatment space.
 本実施形態によれば、第1吹出部81が円環状であるため、第1吹出部81に複数の吹出口を形成することにより、処理空間に偏りなく過熱水蒸気を供給することができる。但し、第1吹出部81の吹出口の数は1つであってもよい。 In this embodiment, since the first blowing section 81 is annular, by forming multiple blowing outlets in the first blowing section 81, superheated steam can be supplied to the treatment space without bias. However, the number of blowing outlets in the first blowing section 81 may be one.
 同様に、第2吹出部82が円環状であるため、第2吹出部82に複数の吹出口を形成することにより、処理空間に偏りなく過熱水蒸気を供給することができる。但し、第2吹出部82の吹出口の数は1つであってもよい。 Similarly, since the second blowing section 82 is annular, forming multiple blowing outlets in the second blowing section 82 allows superheated steam to be supplied to the treatment space without bias. However, the number of blowing outlets in the second blowing section 82 may be one.
 また、本実施形態によれば、例えば、円周に沿って配列された複数のノズルにより第1吹出部81を構成する場合と比べて、基板処理装置100の構成が簡易な構成となり、基板処理装置100の製造が容易になる。同様に、円周に沿って配列された複数のノズルにより第2吹出部82を構成する場合と比べて、基板処理装置100の構成が簡易な構成となり、基板処理装置100の製造が容易になる。但し、第1吹出部81は、少なくとも1つのノズルによって構成されてもよい。同様に、第2吹出部82は、少なくとも1つのノズルによって構成されてもよい。 Furthermore, according to this embodiment, the configuration of the substrate processing apparatus 100 is simpler than, for example, the case where the first blowing section 81 is formed of multiple nozzles arranged along a circumference, making it easier to manufacture the substrate processing apparatus 100. Similarly, the configuration of the substrate processing apparatus 100 is simpler than, for example, the case where the second blowing section 82 is formed of multiple nozzles arranged along a circumference, making it easier to manufacture the substrate processing apparatus 100. However, the first blowing section 81 may be formed of at least one nozzle. Similarly, the second blowing section 82 may be formed of at least one nozzle.
 続いて、図5及び図6を参照して、本実施形態の基板処理装置100を更に説明する。図6は、本実施形態の基板処理装置100の構成を示す図である。図5に示すように、基板処理装置100は、過熱水蒸気供給部800を更に備える。過熱水蒸気供給部800は、第1吹出部81に過熱水蒸気を供給する。また、図6に示すように、過熱水蒸気供給部800は、第2吹出部82に過熱水蒸気を供給する。 Next, the substrate processing apparatus 100 of this embodiment will be further described with reference to Figures 5 and 6. Figure 6 is a diagram showing the configuration of the substrate processing apparatus 100 of this embodiment. As shown in Figure 5, the substrate processing apparatus 100 further includes a superheated steam supply unit 800. The superheated steam supply unit 800 supplies superheated steam to the first blowing unit 81. Furthermore, as shown in Figure 6, the superheated steam supply unit 800 supplies superheated steam to the second blowing unit 82.
 図5に示すように、過熱水蒸気供給部800は、水蒸気発生部800Aと、第1水蒸気配管811と、過熱水蒸気バルブ812と、流量制御バルブ813と、過熱水蒸気生成ヒータ803とを有する。図6に示すように、過熱水蒸気供給部800は、第2水蒸気配管821を更に有する。 As shown in FIG. 5, the superheated steam supply unit 800 has a steam generation unit 800A, a first steam pipe 811, a superheated steam valve 812, a flow control valve 813, and a superheated steam generation heater 803. As shown in FIG. 6, the superheated steam supply unit 800 further has a second steam pipe 821.
 水蒸気発生部800Aは、図1を参照して説明した流体キャビネット10Aに収容される。過熱水蒸気バルブ812、流量制御バルブ813、及び過熱水蒸気生成ヒータ803は、図1を参照して説明した流体ボックス10Bに収容される。第1水蒸気配管811の一部、及び第2水蒸気配管821の一部は、図2を参照して説明したチャンバー201内に収容される。 The water vapor generating unit 800A is housed in the fluid cabinet 10A described with reference to FIG. 1. The superheated water vapor valve 812, the flow control valve 813, and the superheated water vapor generating heater 803 are housed in the fluid box 10B described with reference to FIG. 1. A portion of the first water vapor pipe 811 and a portion of the second water vapor pipe 821 are housed in the chamber 201 described with reference to FIG. 2.
 水蒸気発生部800Aは、水蒸気を発生させる。図5に示すように、水蒸気発生部800Aから発生した水蒸気は、第1水蒸気配管811に流入する。具体的には、水蒸気発生部800Aは、貯留部801と、水蒸気生成ヒータ802とを有する。貯留部801は、純水を貯留する。水蒸気生成ヒータ802は、貯留部801に貯留されている純水を加熱して、水蒸気を発生させる。貯留部801には第1水蒸気配管811の一端が接続されている。水蒸気生成ヒータ802の動作は、制御装置101(制御部102)によって制御される。 The water vapor generating unit 800A generates water vapor. As shown in FIG. 5, the water vapor generated from the water vapor generating unit 800A flows into the first water vapor pipe 811. Specifically, the water vapor generating unit 800A has a storage unit 801 and a water vapor generation heater 802. The storage unit 801 stores pure water. The water vapor generation heater 802 heats the pure water stored in the storage unit 801 to generate water vapor. One end of the first water vapor pipe 811 is connected to the storage unit 801. The operation of the water vapor generation heater 802 is controlled by the control device 101 (control unit 102).
 第1水蒸気配管811の他端は、第1吹出部81に接続している。第1水蒸気配管811には、過熱水蒸気バルブ812と、流量制御バルブ813と、過熱水蒸気生成ヒータ803とが介装されている。 The other end of the first steam pipe 811 is connected to the first blowing section 81. A superheated steam valve 812, a flow control valve 813, and a superheated steam generating heater 803 are interposed in the first steam pipe 811.
 第1水蒸気配管811は、水蒸気及び過熱水蒸気が流通する管状の部材である。過熱水蒸気生成ヒータ803は、貯留部801から第1水蒸気配管811に流入した水蒸気を加熱して、過熱水蒸気を生成する。過熱水蒸気は、第1水蒸気配管811を流通して、第1吹出部81に流入する。 The first steam pipe 811 is a tubular member through which water vapor and superheated steam flow. The superheated steam generation heater 803 heats the water vapor that flows from the storage section 801 into the first steam pipe 811 to generate superheated steam. The superheated steam flows through the first steam pipe 811 and flows into the first blowing section 81.
 第2水蒸気配管821は、過熱水蒸気が流通する管状の部材である。図6に示すように、第2水蒸気配管821の一端は、過熱水蒸気バルブ812よりも下流側において第1水蒸気配管811に接続している。したがって、第1水蒸気配管811から第2水蒸気配管821に過熱水蒸気が流入する。第2水蒸気配管821の他端は、第2吹出部82に接続している。第2水蒸気配管821に流入した過熱水蒸気は、第2水蒸気配管821を流通して、第2吹出部82に流入する。 The second steam pipe 821 is a tubular member through which superheated steam flows. As shown in FIG. 6, one end of the second steam pipe 821 is connected to the first steam pipe 811 downstream of the superheated steam valve 812. Therefore, superheated steam flows from the first steam pipe 811 to the second steam pipe 821. The other end of the second steam pipe 821 is connected to the second blowing section 82. The superheated steam that flows into the second steam pipe 821 flows through the second steam pipe 821 and into the second blowing section 82.
 過熱水蒸気バルブ812は開閉バルブであり、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、過熱水蒸気バルブ812の開閉動作を制御する。過熱水蒸気バルブ812のアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。過熱水蒸気バルブ812が開くことにより、過熱水蒸気が第1水蒸気配管811を介して第1吹出部81まで流通して、第1吹出部81に過熱水蒸気が供給される。また、過熱水蒸気バルブ812が開くことにより、過熱水蒸気が第2水蒸気配管821を介して第2吹出部82まで流通して、第2吹出部82に過熱水蒸気が供給される。過熱水蒸気バルブ812が閉じることにより、第1吹出部81及び第2吹出部82への過熱水蒸気の供給が停止する。 The superheated steam valve 812 is an opening/closing valve and can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening/closing operation of the superheated steam valve 812. The actuator of the superheated steam valve 812 is, for example, an air actuator or an electric actuator. When the superheated steam valve 812 opens, superheated steam flows through the first steam pipe 811 to the first blowing section 81, and the superheated steam is supplied to the first blowing section 81. When the superheated steam valve 812 opens, superheated steam flows through the second steam pipe 821 to the second blowing section 82, and the superheated steam is supplied to the second blowing section 82. When the superheated steam valve 812 closes, the supply of superheated steam to the first blowing section 81 and the second blowing section 82 is stopped.
 流量制御バルブ813は、第1水蒸気配管811及び第2水蒸気配管821を流通する過熱水蒸気の流量を制御する。具体的には、流量制御バルブ813は、開度の制御が可能であり、第1水蒸気配管811及び第2水蒸気配管821を流通する過熱水蒸気の流量は、流量制御バルブ813の開度に応じた大きさになる。流量制御バルブ813のアクチュエータは、例えば、電動アクチュエータである。流量制御バルブ813は、例えば、モーターニードルバルブであってもよい。流量制御バルブ813の開度は、制御装置101(制御部102)によって制御される。 The flow control valve 813 controls the flow rate of superheated steam flowing through the first steam pipe 811 and the second steam pipe 821. Specifically, the opening degree of the flow control valve 813 can be controlled, and the flow rate of superheated steam flowing through the first steam pipe 811 and the second steam pipe 821 corresponds to the opening degree of the flow control valve 813. The actuator of the flow control valve 813 is, for example, an electric actuator. The flow control valve 813 may be, for example, a motor needle valve. The opening degree of the flow control valve 813 is controlled by the control device 101 (control unit 102).
 続いて、図1~図7を参照して、本実施形態の基板処理方法を説明する。本実施形態の基板処理方法は、例えば、図1~図6を参照して説明した基板処理装置100により実行される。図7は、本実施形態の基板処理方法を示すフローチャートである。詳しくは、図7は、制御装置101(制御部102)による処理の流れを示す。 Next, the substrate processing method of this embodiment will be described with reference to Figures 1 to 7. The substrate processing method of this embodiment is executed, for example, by the substrate processing apparatus 100 described with reference to Figures 1 to 6. Figure 7 is a flowchart showing the substrate processing method of this embodiment. In detail, Figure 7 shows the flow of processing by the control device 101 (control unit 102).
 図7に示すように、本実施形態の基板処理方法は、ステップS1~ステップS8を含む。図7に示す処理を開始すると、制御装置101(制御部102)は、まず、センターロボットCRを制御して、チャンバー201内に基板Wを搬入させる(ステップS1)。制御装置101(制御部102)は、スピンチャック3を制御して、センターロボットCRが搬入した基板Wを保持させる(ステップS2)。この結果、スピンチャック3により、チャンバー201内で基板Wが保持される。 As shown in FIG. 7, the substrate processing method of this embodiment includes steps S1 to S8. When the process shown in FIG. 7 is started, the control device 101 (control unit 102) first controls the center robot CR to load the substrate W into the chamber 201 (step S1). The control device 101 (control unit 102) controls the spin chuck 3 to hold the substrate W loaded by the center robot CR (step S2). As a result, the spin chuck 3 holds the substrate W in the chamber 201.
 スピンチャック3により基板Wが保持されると、制御装置101(制御部102)は、移動機構20を制御して、遮断部材72を退避位置から遮断位置まで下降させる(ステップS3)。この結果、遮断部材72と液受け部71とによって囲まれる局所空間(処理空間)が形成される。 When the substrate W is held by the spin chuck 3, the control device 101 (control unit 102) controls the moving mechanism 20 to lower the blocking member 72 from the retracted position to the blocking position (step S3). As a result, a local space (processing space) surrounded by the blocking member 72 and the liquid receiving portion 71 is formed.
 制御装置101(制御部102)は、処理空間が形成されると、基板処理部2を制御して、基板処理を実行させる(ステップS4)。具体的には、制御装置101(制御部102)は、基板処理部2を制御して、SPM、過酸化水素水、リンス液、及びSC1を、SPM、過酸化水素水、リンス液、SC1、リンス液の順に基板Wに供給させる。 When the processing space is formed, the control device 101 (controller 102) controls the substrate processing unit 2 to perform substrate processing (step S4). Specifically, the control device 101 (controller 102) controls the substrate processing unit 2 to supply SPM, hydrogen peroxide, rinsing liquid, and SC1 to the substrate W in the following order: SPM, hydrogen peroxide, rinsing liquid, SC1, rinsing liquid.
 また、制御装置101(制御部102)は、処理空間が形成されると、図4(b)を参照して説明したガス供給部640を制御して、処理空間に不活性ガス(窒素ガス)を供給する。より詳しくは、制御装置101(制御部102)は、処理空間形成部70によって処理空間が形成されている間、ガス供給部640による不活性ガス(窒素ガス)の供給を継続させる。よって、処理空間が形成されている間、不活性ガス(窒素ガス)が処理空間に充満する。換言すると、基板処理が行われている間、不活性ガス(窒素ガス)が処理空間に充満する。 Furthermore, when the processing space is formed, the control device 101 (control unit 102) controls the gas supply unit 640 described with reference to FIG. 4(b) to supply an inert gas (nitrogen gas) to the processing space. More specifically, the control device 101 (control unit 102) causes the gas supply unit 640 to continue supplying the inert gas (nitrogen gas) while the processing space is being formed by the processing space forming unit 70. Thus, while the processing space is being formed, the inert gas (nitrogen gas) fills the processing space. In other words, while the substrate processing is being performed, the inert gas (nitrogen gas) fills the processing space.
 更に、制御装置101(制御部102)は、基板処理と並行して、基板処理部2に過熱水蒸気処理を実行させる(ステップS5)。具体的には、制御装置101(制御部102)は、図5及び図6を参照して説明した過熱水蒸気供給部800を制御して、吹出部8から処理空間に過熱水蒸気を吹き出させる。例えば、制御装置101(制御部102)は、SPM処理の際に、吹出部8から過熱水蒸気を吹き出させる。 Furthermore, the control device 101 (control unit 102) causes the substrate processing unit 2 to execute superheated steam processing in parallel with the substrate processing (step S5). Specifically, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to Figures 5 and 6 to blow superheated steam from the blowing unit 8 into the processing space. For example, the control device 101 (control unit 102) blows superheated steam from the blowing unit 8 during SPM processing.
 制御装置101(制御部102)は、基板処理が終了すると、図4(b)を参照して説明したガス供給部640を制御して、処理空間への不活性ガス(窒素ガス)の供給を停止させる。その後、制御装置101(制御部102)は、移動機構20を制御して、遮断部材72を遮断位置から退避位置まで上昇させる(ステップS6)。 When the substrate processing is completed, the control device 101 (control unit 102) controls the gas supply unit 640 described with reference to FIG. 4(b) to stop the supply of the inert gas (nitrogen gas) to the processing space. After that, the control device 101 (control unit 102) controls the movement mechanism 20 to raise the blocking member 72 from the blocking position to the retracted position (step S6).
 制御装置101(制御部102)は、遮断部材72が遮断位置から退避位置まで上昇すると、スピンチャック3を制御して、基板Wの保持を解除させる(ステップS7)。スピンチャック3による基板Wの保持が解除されると、制御装置101(制御部102)は、センターロボットCRを制御して、基板Wをチャンバー201から搬出させる(ステップS8)。この結果、図7に示す処理が終了する。 When the blocking member 72 rises from the blocking position to the retracted position, the control device 101 (control unit 102) controls the spin chuck 3 to release its hold on the substrate W (step S7). When the spin chuck 3 releases its hold on the substrate W, the control device 101 (control unit 102) controls the center robot CR to unload the substrate W from the chamber 201 (step S8). As a result, the process shown in FIG. 7 is completed.
 続いて、図1~図15を参照して、図7に示す基板処理(ステップS4)及び過熱水蒸気処理(ステップS5)を説明する。図8は、本実施形態の基板処理方法に含まれる基板処理(ステップS4)及び過熱水蒸気処理(ステップS5)を示すフローチャートである。図9は、事前加熱時の基板処理部2を模式的に示す図である。図10は、SPM処理時の基板処理部2を模式的に示す図である。図11は、パドル処理時の基板処理部2を模式的に示す図である。図12は、過酸化水素水により基板Wを処理する際の基板処理部2を模式的に示す図である。図13は、リンス処理時の基板処理部2を模式的に示す図である。図14は、SC1により基板Wを処理する際の基板処理部2を模式的に示す図である。図15は、乾燥処理時の基板処理部2を模式的に示す図である。 Next, the substrate processing (step S4) and superheated steam processing (step S5) shown in FIG. 7 will be described with reference to FIGS. 1 to 15. FIG. 8 is a flow chart showing the substrate processing (step S4) and superheated steam processing (step S5) included in the substrate processing method of this embodiment. FIG. 9 is a diagram showing the substrate processing section 2 during pre-heating. FIG. 10 is a diagram showing the substrate processing section 2 during SPM processing. FIG. 11 is a diagram showing the substrate processing section 2 during puddle processing. FIG. 12 is a diagram showing the substrate processing section 2 when processing a substrate W with hydrogen peroxide solution. FIG. 13 is a diagram showing the substrate processing section 2 during rinsing processing. FIG. 14 is a diagram showing the substrate processing section 2 when processing a substrate W with SC1. FIG. 15 is a diagram showing the substrate processing section 2 during drying processing.
 図8に示すように、基板処理を開始すると、制御装置101(制御部102)は、まず、基板加熱部5を制御して、基板Wを加熱させる(ステップS41)。つまり、SPM処理の実行前に基板Wを昇温させる。事前に基板Wを昇温させることにより、SPMによるレジスト膜の剥離の効率が向上する。 As shown in FIG. 8, when substrate processing is started, the control device 101 (control unit 102) first controls the substrate heating unit 5 to heat the substrate W (step S41). In other words, the temperature of the substrate W is raised before the SPM processing is performed. By raising the temperature of the substrate W in advance, the efficiency of resist film stripping by SPM is improved.
 詳しくは、図9に示すように、制御装置101(制御部102)は、給電部53を制御して、加熱部材51に埋め込まれたヒータに通電させる。この結果、加熱部材51が加熱される。また、制御装置101(制御部102)は、ヒータ昇降部54を制御して、加熱部材51を第2下位置から第2上位置まで上昇させる。 In more detail, as shown in FIG. 9, the control device 101 (control unit 102) controls the power supply unit 53 to energize the heater embedded in the heating member 51. As a result, the heating member 51 is heated. The control device 101 (control unit 102) also controls the heater lift unit 54 to lift the heating member 51 from the second lower position to the second upper position.
 ここで、第2下位置は、スピンベース32の上面に加熱部材51が近接する位置である。第2下位置は、スピンベース32の上面に加熱部材51が接触する位置であってもよい。第2上位置は、基板Wの下面に加熱部材51が近接する位置である。加熱部材51を第2上位置まで上昇させると、加熱部材51からの輻射熱によって基板Wが加熱される。なお、事前加熱時に過熱水蒸気は処理空間に供給されない。 Here, the second lower position is a position where the heating member 51 is close to the upper surface of the spin base 32. The second lower position may be a position where the heating member 51 is in contact with the upper surface of the spin base 32. The second upper position is a position where the heating member 51 is close to the lower surface of the substrate W. When the heating member 51 is raised to the second upper position, the substrate W is heated by radiant heat from the heating member 51. Note that superheated water vapor is not supplied to the processing space during pre-heating.
 制御装置101(制御部102)は、予め定められた時間、基板Wを事前加熱した後、スピンモータ部4を制御して、スピンチャック3に保持させた基板Wの回転を開始させる(図10参照)。 The control device 101 (control unit 102) preheats the substrate W for a predetermined time, and then controls the spin motor unit 4 to start the rotation of the substrate W held by the spin chuck 3 (see FIG. 10).
 制御装置101(制御部102)は、基板Wの回転速度が予め定められた回転速度に達すると、図4(b)を参照して説明した第1薬液供給部610を制御して、回転中の基板Wに向けてノズル6からSPMを吐出させる(ステップS42)。この結果、図10に示すように、回転中の基板Wの上面にSPMが供給されて、基板Wの上面にSPMの液膜が形成される。つまり、制御装置101(制御部102)は、基板WへのSPMの供給時に、基板Wの回転速度を制御して、基板Wの上面にSPMの液膜を形成させる。 When the rotation speed of the substrate W reaches a predetermined rotation speed, the control device 101 (control unit 102) controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to eject SPM from the nozzle 6 toward the rotating substrate W (step S42). As a result, as shown in FIG. 10, SPM is supplied to the upper surface of the rotating substrate W, and a liquid film of SPM is formed on the upper surface of the substrate W. In other words, the control device 101 (control unit 102) controls the rotation speed of the substrate W when SPM is supplied to the substrate W to form a liquid film of SPM on the upper surface of the substrate W.
 更に、制御装置101(制御部102)は、基板WへのSPMの供給時に、第1過熱水蒸気処理を行う(ステップS51)。具体的には、図10に示すように、制御装置101(制御部102)は、図5及び図6を参照して説明した過熱水蒸気供給部800を制御して、吹出部8(第1吹出部81及び第2吹出部82)から処理空間に過熱水蒸気を吹き出させる。 Furthermore, the control device 101 (control unit 102) performs a first superheated steam treatment when supplying SPM to the substrate W (step S51). Specifically, as shown in FIG. 10, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIGS. 5 and 6 to blow superheated steam from the blowing unit 8 (first blowing unit 81 and second blowing unit 82) into the processing space.
 本実施形態によれば、SPM処理時に、処理空間内に過熱水蒸気を充満させることができる。したがって、既に説明したように、基板Wの温度の昇温に必要な時間を短縮することができる。その結果、処理時間を短くして、SPMの消費量の低減を図ることができる。よって、硫酸の消費量の低減を図ることができる。更に、本実施形態によれば、既に説明したように、過熱水蒸気により、薬液雰囲気の拡散を抑制することができる。 According to this embodiment, the processing space can be filled with superheated water vapor during SPM processing. Therefore, as already explained, the time required to raise the temperature of the substrate W can be shortened. As a result, the processing time can be shortened and the consumption of SPM can be reduced. Therefore, the consumption of sulfuric acid can be reduced. Furthermore, according to this embodiment, as already explained, the diffusion of the chemical atmosphere can be suppressed by the superheated water vapor.
 吹出部8からの過熱水蒸気の吹き出しを開始するタイミングは、SPMの吐出開始前であってもよいし、SPMの吐出開始タイミングと同じタイミングであってもよい。あるいは、吹出部8からの過熱水蒸気の吹き出しを開始するタイミングは、SPMの吐出開始後であってもよい。制御装置101(制御部102)は、吹出部8から過熱水蒸気を連続して吹き出させてもよいし、間欠的に吹き出させてもよい。 The timing to start blowing out superheated steam from the blowing section 8 may be before the start of ejection of SPM, or may be the same timing as the start of ejection of SPM. Alternatively, the timing to start blowing out superheated steam from the blowing section 8 may be after the start of ejection of SPM. The control device 101 (control section 102) may cause the blowing section 8 to blow out superheated steam continuously or intermittently.
 制御装置101(制御部102)は、SPMの吐出開始前にのみ吹出部8から過熱水蒸気を吹き出させてもよいし、SPMの吐出開始時にのみ吹出部8から過熱水蒸気を吹き出させてもよい。あるいは、制御装置101(制御部102)は、SPMの吐出開始から吐出終了までの間に、SPMの吐出開始から吐出終了までの期間よりも短い期間、吹出部8から過熱水蒸気を吹き出させてもよい。 The control device 101 (control unit 102) may cause the blowing unit 8 to blow superheated steam only before the ejection of SPM starts, or may cause the blowing unit 8 to blow superheated steam only when the ejection of SPM starts. Alternatively, the control device 101 (control unit 102) may cause the blowing unit 8 to blow superheated steam for a period between the start and end of ejection of SPM, which is shorter than the period between the start and end of ejection of SPM.
 なお、図10に示すように、制御装置101(制御部102)は、SPMの吐出開始前に、ヒータ昇降部54を制御して、加熱部材51を第2上位置から第2下位置まで下降させてもよい。 As shown in FIG. 10, the control device 101 (control unit 102) may control the heater lifting unit 54 to lower the heating member 51 from the second upper position to the second lower position before starting to eject SPM.
 制御装置101(制御部102)は、SPMの吐出を開始してから予め定められた時間が経過した後、図4(b)を参照して説明した第1薬液供給部610を制御して、SPMの吐出を停止させる。そして、制御装置101(制御部102)は、スピンモータ部4により基板Wの回転速度を制御して、SPMの液膜が基板Wの上面に支持されたパドル状態を形成する(ステップS43)。例えば、制御装置101(制御部102)は、基板Wの回転を停止させて、パドル状態を形成してもよい(図11参照)。あるいは、制御装置101(制御部102)は、基板Wを低速回転させて、パドル状態を形成してもよい。パドル状態を形成することにより、SPMによるレジスト剥離の効率を向上させることができる。 After a predetermined time has elapsed since the start of the discharge of SPM, the control device 101 (control unit 102) controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to stop the discharge of SPM. Then, the control device 101 (control unit 102) controls the rotation speed of the substrate W by the spin motor unit 4 to form a paddle state in which the SPM liquid film is supported on the upper surface of the substrate W (step S43). For example, the control device 101 (control unit 102) may stop the rotation of the substrate W to form the paddle state (see FIG. 11). Alternatively, the control device 101 (control unit 102) may rotate the substrate W at a low speed to form the paddle state. By forming the paddle state, the efficiency of resist stripping by SPM can be improved.
 制御装置101(制御部102)は、パドル状態の形成時(パドル処理時)に、第2過熱水蒸気処理を行う(ステップS52)。具体的には、図11に示すように、制御装置101(制御部102)は、過熱水蒸気供給部800を制御して、吹出部8から過熱水蒸気を吹き出させる。制御装置101(制御部102)は、SPM処理からパドル処理にかけて、過熱水蒸気の供給を継続させてもよい。 The control device 101 (control unit 102) performs a second superheated steam treatment when the paddle state is formed (during paddle treatment) (step S52). Specifically, as shown in FIG. 11, the control device 101 (control unit 102) controls the superheated steam supply unit 800 to blow out superheated steam from the blowing unit 8. The control device 101 (control unit 102) may continue to supply superheated steam from the SPM treatment to the paddle treatment.
 本実施形態によれば、パドル処理時に、処理空間内に過熱水蒸気を充満させることができる。したがって、パドル処理時に基板Wの温度が低下し難い。よって、SPMによるレジスト剥離の効率を向上させることができる。その結果、処理時間を短くして、SPMの消費量の低減を図ることができる。つまり、硫酸の消費量の低減を図ることができる。更に、本実施形態によれば、既に説明したように、過熱水蒸気により、薬液雰囲気の拡散を抑制することができる。 According to this embodiment, the processing space can be filled with superheated water vapor during paddle processing. Therefore, the temperature of the substrate W is less likely to drop during paddle processing. This improves the efficiency of resist stripping using SPM. As a result, the processing time can be shortened and the consumption of SPM can be reduced. In other words, the consumption of sulfuric acid can be reduced. Furthermore, according to this embodiment, as already explained, the diffusion of the chemical atmosphere can be suppressed by the superheated water vapor.
 また、基板Wの上面にはSPMの液膜が形成されているため、基板Wの上面側からは、基板Wに熱を直接与えることができない。これに対し、本実施形態では、処理空間内に過熱水蒸気を充満させることができるため、基板Wの下面側から基板Wに熱を直接与えることができる。よって、パドル処理中に基板Wの温度が低下し難い。したがって、SPMによるレジスト剥離の効率を向上させることができる。更に、本実施形態によれば、第2吹出部82から基板Wの下面に向けて過熱水蒸気を効率よく供給することができるため、パドル処理中に基板Wの温度が低下することを、より抑制することができる。 In addition, since a liquid film of SPM is formed on the upper surface of the substrate W, heat cannot be applied directly to the substrate W from the upper surface side of the substrate W. In contrast, in this embodiment, the processing space can be filled with superheated water steam, so heat can be applied directly to the substrate W from the lower surface side of the substrate W. As a result, the temperature of the substrate W is less likely to drop during puddle processing. This makes it possible to improve the efficiency of resist stripping by SPM. Furthermore, according to this embodiment, superheated water steam can be efficiently supplied from the second blowing section 82 toward the lower surface of the substrate W, making it possible to further suppress a drop in the temperature of the substrate W during puddle processing.
 なお、図11に示すように、制御装置101(制御部102)は、パドル状態の形成時に、ヒータ昇降部54を制御して、加熱部材51を第2下位置から第2上位置まで上昇させて、加熱部材51により基板Wを加熱させてもよい。 As shown in FIG. 11, when the paddle state is formed, the control device 101 (control unit 102) may control the heater lifting unit 54 to raise the heating member 51 from the second lower position to the second upper position, thereby heating the substrate W with the heating member 51.
 制御装置101(制御部102)は、パドル状態の形成を開始してから予め定められた時間が経過すると、スピンモータ部4を制御して、スピンチャック3に保持させた基板Wの回転を開始させる(図12参照)。あるいは、制御装置101(制御部102)は、パドル状態の形成を開始してから予め定められた時間が経過すると、スピンモータ部4を制御して、基板Wの回転速度を増加させる。 When a predetermined time has elapsed since the start of the formation of the paddle state, the control device 101 (control unit 102) controls the spin motor unit 4 to start rotating the substrate W held by the spin chuck 3 (see FIG. 12). Alternatively, when a predetermined time has elapsed since the start of the formation of the paddle state, the control device 101 (control unit 102) controls the spin motor unit 4 to increase the rotation speed of the substrate W.
 制御装置101(制御部102)は、基板Wの回転速度が予め定められた回転速度に達すると、図4(b)を参照して説明した第1薬液供給部610を制御して、回転中の基板Wに向けてノズル6から過酸化水素水を吐出させる(ステップS44)。この結果、図12に示すように、回転中の基板Wの上面に過酸化水素水が供給されて、基板Wの上面に過酸化水素水の液膜が形成される。つまり、制御装置101(制御部102)は、基板Wへの過酸化水素水の供給時に、基板Wの回転速度を制御して、基板Wの上面に過酸化水素水の液膜を形成させる。詳しくは、過酸化水素水の吐出によって、SPMが基板Wの上面から排出されて、SPMの液膜が過酸化水素水の液膜に置換される。 When the rotation speed of the substrate W reaches a predetermined rotation speed, the control device 101 (control unit 102) controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to eject hydrogen peroxide solution from the nozzle 6 toward the rotating substrate W (step S44). As a result, as shown in FIG. 12, hydrogen peroxide solution is supplied to the upper surface of the rotating substrate W, and a liquid film of hydrogen peroxide solution is formed on the upper surface of the substrate W. In other words, when hydrogen peroxide solution is supplied to the substrate W, the control device 101 (control unit 102) controls the rotation speed of the substrate W to form a liquid film of hydrogen peroxide solution on the upper surface of the substrate W. In more detail, the ejection of hydrogen peroxide solution causes SPM to be discharged from the upper surface of the substrate W, and the liquid film of SPM is replaced with a liquid film of hydrogen peroxide solution.
 制御装置101(制御部102)は、基板Wへの過酸化水素水の供給時に、第3過熱水蒸気処理を行う(ステップS53)。具体的には、図12に示すように、制御装置101(制御部102)は、図5及び図6を参照して説明した過熱水蒸気供給部800を制御して、吹出部8(第1吹出部81及び第2吹出部82)から吹き出させる過熱水蒸気の流量を減少させる。 The control device 101 (control unit 102) performs a third superheated steam treatment (step S53) when hydrogen peroxide solution is supplied to the substrate W. Specifically, as shown in FIG. 12, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIG. 5 and FIG. 6 to reduce the flow rate of superheated steam blown out from the blowing unit 8 (first blowing unit 81 and second blowing unit 82).
 詳しくは、制御装置101(制御部102)は、SPM処理時及びパドル処理時に、吹出部8から過熱水蒸気を第1流量で吹き出させ、基板Wへの過酸化水素水の供給時に、吹出部8から過熱水蒸気を、第1流量より小さい第2流量で吹き出させる。制御装置101(制御部102)は、図5及び図6に示す流量制御バルブ813を制御することにより過熱水蒸気の流量を調整する。 In more detail, the control device 101 (control unit 102) blows superheated water steam from the blowing unit 8 at a first flow rate during SPM processing and puddle processing, and blows superheated water steam from the blowing unit 8 at a second flow rate smaller than the first flow rate when hydrogen peroxide solution is supplied to the substrate W. The control device 101 (control unit 102) adjusts the flow rate of the superheated water steam by controlling the flow control valve 813 shown in Figures 5 and 6.
 なお、図12に示すように、制御装置101(制御部102)は、基板Wへの過酸化水素水の供給時に、加熱部材51により基板Wを加熱させてもよい。 As shown in FIG. 12, the control device 101 (control unit 102) may heat the substrate W using the heating member 51 when supplying hydrogen peroxide solution to the substrate W.
 過酸化水素水は、基板Wを酸化させる可能性がある。特に、過酸化水素水の温度が高いほど、基板Wは酸化され易い。また、基板Wの温度が高いほど、基板Wは酸化され易い。これに対し、本実施形態によれば、基板Wへの過酸化水素水の供給時に処理空間へ供給する過熱水蒸気の量を減少させることができる。この結果、過熱水蒸気による過酸化水素水の温度の上昇が抑制されるとともに、基板Wの温度が低下し易くなるため、過酸化水素水による基板Wの酸化を抑制することができる。 Hydrogen peroxide has the potential to oxidize the substrate W. In particular, the higher the temperature of the hydrogen peroxide, the more easily the substrate W is oxidized. Furthermore, the higher the temperature of the substrate W, the more easily the substrate W is oxidized. In contrast, according to this embodiment, the amount of superheated water steam supplied to the processing space when hydrogen peroxide is supplied to the substrate W can be reduced. As a result, the increase in temperature of the hydrogen peroxide due to the superheated water steam is suppressed, and the temperature of the substrate W is more likely to decrease, so that oxidation of the substrate W due to hydrogen peroxide can be suppressed.
 また、基板Wへの過酸化水素水の供給時には、基板Wから大量のヒュームが発生する。更に、基板Wへの過酸化水素水の供給時には、ノズル6からヒュームが発生し易い。本実施形態によれば、基板Wへの過酸化水素水の供給時に過熱水蒸気を供給することにより、ヒュームの拡散を抑制することができる。 In addition, when hydrogen peroxide is supplied to the substrate W, a large amount of fumes are generated from the substrate W. Furthermore, when hydrogen peroxide is supplied to the substrate W, fumes are likely to be generated from the nozzle 6. According to this embodiment, by supplying superheated water vapor when hydrogen peroxide is supplied to the substrate W, the diffusion of fumes can be suppressed.
 また、基板Wへの過酸化水素水の供給時には、高温のSPMの液膜が形成されている基板Wに向けて、常温の過酸化水素水が吐出される。この結果、基板Wの面内に温度勾配が発生して、基板Wが振動する。これに対し、本実施形態によれば、基板Wへの過酸化水素水の供給時に過熱水蒸気を供給することにより、温度勾配の発生を抑制することができる。したがって、基板Wの振動を抑制することができる。 In addition, when hydrogen peroxide is supplied to the substrate W, hydrogen peroxide at room temperature is ejected toward the substrate W on which a high-temperature SPM liquid film has been formed. As a result, a temperature gradient occurs within the surface of the substrate W, causing the substrate W to vibrate. In contrast, according to this embodiment, the occurrence of a temperature gradient can be suppressed by supplying superheated water vapor when hydrogen peroxide is supplied to the substrate W. Therefore, vibration of the substrate W can be suppressed.
 制御装置101(制御部102)は、過酸化水素水の吐出を開始してから予め定められた時間が経過した後、図4(b)を参照して説明した第1薬液供給部610を制御して、過酸化水素水の吐出を停止させる。 After a predetermined time has elapsed since the start of the discharge of hydrogen peroxide solution, the control device 101 (control unit 102) controls the first chemical liquid supply unit 610 described with reference to FIG. 4(b) to stop the discharge of hydrogen peroxide solution.
 制御装置101(制御部102)は、過酸化水素水の吐出を停止させた後、スピンチャック3に保持された基板Wを回転させた状態で、図4(b)を参照して説明したリンス液供給部630を制御して、回転中の基板Wに向けてノズル6からリンス液を吐出させる(ステップS45)。この結果、図13に示すように、回転中の基板Wの上面にリンス液が供給されて、基板Wの上面にリンス液の液膜が形成される。つまり、制御装置101(制御部102)は、基板Wへのリンス液の供給時に、基板Wの回転速度を制御して、基板Wの上面にリンス液の液膜を形成させる。詳しくは、リンス液の吐出によって、過酸化水素水が基板Wの上面から排出されて、過酸化水素水の液膜がリンス液の液膜に置換される。 After stopping the discharge of the hydrogen peroxide solution, the control device 101 (control unit 102) controls the rinse liquid supply unit 630 described with reference to FIG. 4(b) to discharge the rinse liquid from the nozzle 6 toward the rotating substrate W while rotating the substrate W held by the spin chuck 3 (step S45). As a result, as shown in FIG. 13, the rinse liquid is supplied to the upper surface of the rotating substrate W, and a liquid film of the rinse liquid is formed on the upper surface of the substrate W. In other words, when supplying the rinse liquid to the substrate W, the control device 101 (control unit 102) controls the rotation speed of the substrate W to form a liquid film of the rinse liquid on the upper surface of the substrate W. In more detail, the hydrogen peroxide solution is discharged from the upper surface of the substrate W by the discharge of the rinse liquid, and the liquid film of the hydrogen peroxide solution is replaced with a liquid film of the rinse liquid.
 図13に示すように、制御装置101(制御部102)は、過酸化水素水の吐出を停止させた後、基板Wへのリンス液の供給を開始する前に、図5及び図6を参照して説明した過熱水蒸気供給部800を制御して、吹出部8からの過熱水蒸気の吹き出しを停止させる。つまり、制御装置101(制御部102)は、処理空間への過熱水蒸気の供給を停止させる。 As shown in FIG. 13, after stopping the discharge of hydrogen peroxide solution, the control device 101 (control unit 102) controls the superheated water vapor supply unit 800 described with reference to FIG. 5 and FIG. 6 to stop the blowing of superheated water vapor from the blowing unit 8 before starting the supply of rinsing liquid to the substrate W. In other words, the control device 101 (control unit 102) stops the supply of superheated water vapor to the processing space.
 本実施形態によれば、基板Wへのリンス液の供給を開始する前に、処理空間への過熱水蒸気の供給を停止させるため、処理空間への過熱水蒸気の供給を継続させる場合と比べて、基板Wの上面からリンス液が蒸発し難くなる。 In this embodiment, the supply of superheated water vapor to the processing space is stopped before the supply of rinsing liquid to the substrate W is started, so the rinsing liquid is less likely to evaporate from the top surface of the substrate W than when the supply of superheated water vapor to the processing space is continued.
 なお、図13に示すように、制御装置101(制御部102)は、リンス液の吐出開始前に、ヒータ昇降部54を制御して、加熱部材51を第2上位置から第2下位置まで下降させてもよい。これにより、基板Wの上面からリンス液が蒸発し難くなる。 As shown in FIG. 13, the control device 101 (control unit 102) may control the heater lifting unit 54 to lower the heating member 51 from the second upper position to the second lower position before starting to discharge the rinsing liquid. This makes it difficult for the rinsing liquid to evaporate from the upper surface of the substrate W.
 制御装置101(制御部102)は、リンス液の吐出を開始してから予め定められた時間が経過した後、図4(b)を参照して説明したリンス液供給部630を制御して、リンス液の吐出を停止させる。制御装置101(制御部102)は、リンス液の吐出を停止させた後、スピンチャック3に保持された基板Wを回転させた状態で、図4(b)を参照して説明した第2薬液供給部620を制御して、回転中の基板Wに向けてノズル6からSC1を吐出させる(ステップS46)。この結果、図14に示すように、回転中の基板Wの上面にSC1が供給されて、基板Wの上面にSC1の液膜が形成される。つまり、制御装置101(制御部102)は、基板WへのSC1の供給時に、基板Wの回転速度を制御して、基板Wの上面にSC1の液膜を形成させる。詳しくは、SC1の吐出によって、リンス液が基板Wの上面から排出されて、リンス液の液膜がSC1の液膜に置換される。 After a predetermined time has elapsed since the start of the discharge of the rinsing liquid, the control device 101 (control unit 102) controls the rinsing liquid supply unit 630 described with reference to FIG. 4(b) to stop the discharge of the rinsing liquid. After stopping the discharge of the rinsing liquid, the control device 101 (control unit 102) controls the second chemical liquid supply unit 620 described with reference to FIG. 4(b) to discharge SC1 from the nozzle 6 toward the rotating substrate W while rotating the substrate W held by the spin chuck 3 (step S46). As a result, as shown in FIG. 14, SC1 is supplied to the upper surface of the rotating substrate W, and a liquid film of SC1 is formed on the upper surface of the substrate W. That is, when SC1 is supplied to the substrate W, the control device 101 (control unit 102) controls the rotation speed of the substrate W to form a liquid film of SC1 on the upper surface of the substrate W. In more detail, the discharge of SC1 causes the rinsing liquid to be discharged from the upper surface of the substrate W, and the liquid film of the rinsing liquid is replaced with a liquid film of SC1.
 制御装置101(制御部102)は、基板WへのSC1の供給時に、第4過熱水蒸気処理を行う(ステップS54)。具体的には、図14に示すように、制御装置101(制御部102)は、図5及び図6を参照して説明した過熱水蒸気供給部800を制御して、吹出部8(第1吹出部81及び第2吹出部82)から過熱水蒸気を吹き出させる。 The control device 101 (control unit 102) performs the fourth superheated steam treatment when supplying SC1 to the substrate W (step S54). Specifically, as shown in FIG. 14, the control device 101 (control unit 102) controls the superheated steam supply unit 800 described with reference to FIG. 5 and FIG. 6 to blow out superheated steam from the blowing unit 8 (first blowing unit 81 and second blowing unit 82).
 本実施形態によれば、基板WへのSC1の供給時に処理空間に過熱水蒸気が供給されるため、基板Wの上面に供給されたSC1を昇温させることができる。この結果、基板Wの本体表面がSC1によって酸化され易い状態となる。 In this embodiment, superheated steam is supplied to the processing space when SC1 is supplied to the substrate W, so the temperature of the SC1 supplied to the upper surface of the substrate W can be raised. As a result, the main surface of the substrate W becomes susceptible to oxidation by SC1.
 制御装置101(制御部102)は、SC1の吐出を開始してから予め定められた時間が経過した後、図4(b)を参照して説明した第2薬液供給部620を制御して、SC1の吐出を停止させる。 After a predetermined time has elapsed since starting the discharge of SC1, the control device 101 (control unit 102) controls the second chemical liquid supply unit 620 described with reference to FIG. 4(b) to stop the discharge of SC1.
 制御装置101(制御部102)は、基板WへのSC1の供給を停止させた後、ステップS45と同様に、回転中の基板Wに向けてノズル6からリンス液を吐出させる(ステップS47)。この結果、リンス液の吐出によって、SC1が基板Wの上面から排出されて、基板Wの上面にリンス液の液膜が形成される。 After stopping the supply of SC1 to the substrate W, the control device 101 (control unit 102) ejects the rinse liquid from the nozzle 6 toward the rotating substrate W, similar to step S45 (step S47). As a result, the ejection of the rinse liquid causes SC1 to be discharged from the top surface of the substrate W, and a liquid film of the rinse liquid is formed on the top surface of the substrate W.
 また、既に説明したように、制御装置101(制御部102)は、リンス処理時に、吹出部8からの過熱水蒸気の吹き出しを停止させる。つまり、制御装置101(制御部102)は、処理空間への過熱水蒸気の供給を停止させる。 As already explained, the control device 101 (control unit 102) stops the blowing of superheated steam from the blowing unit 8 during the rinsing process. In other words, the control device 101 (control unit 102) stops the supply of superheated steam to the processing space.
 制御装置101(制御部102)は、リンス液の吐出を開始してから予め定められた時間が経過した後、図4(b)を参照して説明したリンス液供給部630を制御して、リンス液の吐出を停止させる。制御装置101(制御部102)は、リンス液の吐出を停止させた後、スピンモータ部4により基板Wの回転速度を制御して、基板Wの上面からリンス液を除去して基板Wの上面を乾燥させる乾燥処理を実行する(ステップS48)。この結果、図8に示す処理が終了する。 After a predetermined time has elapsed since the start of the discharge of the rinsing liquid, the control device 101 (control unit 102) controls the rinsing liquid supply unit 630 described with reference to FIG. 4(b) to stop the discharge of the rinsing liquid. After stopping the discharge of the rinsing liquid, the control device 101 (control unit 102) controls the rotation speed of the substrate W by the spin motor unit 4 to perform a drying process to remove the rinsing liquid from the upper surface of the substrate W and dry the upper surface of the substrate W (step S48). As a result, the process shown in FIG. 8 is completed.
 具体的には、制御装置101(制御部102)は、スピンモータ部4を制御して、基板Wを高速回転させる。基板Wを高速回転させることにより、基板Wに付着しているリンス液が振り切られる。この結果、基板Wが乾燥する。また、図15に示すように、乾燥処理の際に、制御装置101(制御部102)は、吹出部8からの過熱水蒸気の吹き出しを停止させる。詳しくは、リンス処理(ステップS47)から乾燥処理にかけて、過熱水蒸気の吹き出しの停止を継続させる。 Specifically, the control device 101 (control unit 102) controls the spin motor unit 4 to rotate the substrate W at high speed. By rotating the substrate W at high speed, the rinsing liquid adhering to the substrate W is shaken off. As a result, the substrate W is dried. Also, as shown in FIG. 15, during the drying process, the control device 101 (control unit 102) stops the blowing of superheated water steam from the blowing unit 8. More specifically, the blowing of superheated water steam is kept stopped from the rinsing process (step S47) through the drying process.
 本実施形態によれば、乾燥処理の際に過熱水蒸気が処理空間に供給されないため、過熱水蒸気が供給される場合と比べて、処理空間の湿度を低下させることができる。よって、基板Wを効率よく乾燥させることができる。 According to this embodiment, superheated steam is not supplied to the processing space during the drying process, so the humidity in the processing space can be reduced compared to when superheated steam is supplied. As a result, the substrate W can be dried efficiently.
 更に、本実施形態によれば、基板WへのSC1の供給時(ステップS46)に、処理空間に過熱水蒸気を充満させて、基板Wや基板Wの周囲の部材の温度を昇温させることができる。その結果、余熱によってリンス液が昇温するため、乾燥処理の際に、リンス液が蒸発し易くなり、基板Wを効率よく乾燥させることができる。 Furthermore, according to this embodiment, when SC1 is supplied to the substrate W (step S46), the processing space can be filled with superheated water vapor, thereby raising the temperature of the substrate W and the members surrounding the substrate W. As a result, the temperature of the rinsing liquid is raised by the residual heat, which makes it easier for the rinsing liquid to evaporate during the drying process, allowing the substrate W to be dried efficiently.
 続いて、図16(a)及び図16(b)を参照して、本実施形態の基板処理装置100の第1変形例を説明する。第1変形例では、ノズル6から処理空間に向けて過熱水蒸気が供給される。 Next, a first modified example of the substrate processing apparatus 100 of this embodiment will be described with reference to Figures 16(a) and 16(b). In the first modified example, superheated steam is supplied from the nozzle 6 toward the processing space.
 図16(a)は、本実施形態の基板処理装置100の第1変形例に含まれるノズル6を下から視た下面図である。図16(b)は、本実施形態の基板処理装置100の第1変形例に含まれる流体供給部600の構成を示す図である。以下、第1変形例のノズル6を、「ノズル6a」と記載する場合がある。 FIG. 16(a) is a bottom view of the nozzle 6 included in the first modified example of the substrate processing apparatus 100 of this embodiment, viewed from below. FIG. 16(b) is a diagram showing the configuration of the fluid supply unit 600 included in the first modified example of the substrate processing apparatus 100 of this embodiment. Hereinafter, the nozzle 6 of the first modified example may be referred to as "nozzle 6a."
 図16(a)に示すように、ノズル6aは、図4(a)を参照して説明したノズル6と比べて、吹出口8aが追加されている。吹出口8aからは、過熱水蒸気が吹き出る。つまり、ノズル6aは、過熱水蒸気を吹き出す吹出部として機能する。このように、過熱水蒸気を吹き出す吹出部は、流体供給部600に含まれてもよい。 As shown in FIG. 16(a), compared to the nozzle 6 described with reference to FIG. 4(a), the nozzle 6a has an additional blowing outlet 8a. Superheated steam is blown out from the blowing outlet 8a. In other words, the nozzle 6a functions as a blowing section that blows out superheated steam. In this way, the blowing section that blows out superheated steam may be included in the fluid supply section 600.
 図16(b)に示すように、第1変形例では、ノズル6aに過熱水蒸気供給部800から過熱水蒸気が供給される。過熱水蒸気供給部800からノズル6aへ供給された過熱水蒸気は、図16(a)を参照して説明した吹出口8aから吹き出る。 As shown in FIG. 16(b), in the first modified example, superheated steam is supplied to the nozzle 6a from a superheated steam supply unit 800. The superheated steam supplied to the nozzle 6a from the superheated steam supply unit 800 is blown out from the blowing port 8a described with reference to FIG. 16(a).
 なお、図2を参照して説明した吹出部8は、省略されてもよいし、省略されなくてもよい。 The blowing section 8 described with reference to FIG. 2 may or may not be omitted.
 続いて、図17(a)及び図17(b)を参照して、本実施形態の基板処理装置100の第2変形例を説明する。第2変形例では、ノズル6から基板Wに向けて、硫酸、過酸化水素水、純水、及びアンモニア水が吐出される。また、ノズル6から処理空間に向けて窒素ガスが供給される。 Next, a second modified example of the substrate processing apparatus 100 of this embodiment will be described with reference to Figures 17(a) and 17(b). In the second modified example, sulfuric acid, hydrogen peroxide, pure water, and ammonia water are discharged from the nozzle 6 toward the substrate W. In addition, nitrogen gas is supplied from the nozzle 6 toward the processing space.
 図17(a)は、本実施形態の基板処理装置100の第2変形例に含まれるノズル6を下から視た下面図である。図17(b)は、本実施形態の基板処理装置100の第2変形例に含まれる流体供給部600の構成を示す図である。以下、第2変形例のノズル6を、「ノズル6b」と記載する場合がある。 FIG. 17(a) is a bottom view of the nozzle 6 included in the second modified example of the substrate processing apparatus 100 of this embodiment, viewed from below. FIG. 17(b) is a diagram showing the configuration of the fluid supply unit 600 included in the second modified example of the substrate processing apparatus 100 of this embodiment. Hereinafter, the nozzle 6 of the second modified example may be referred to as "nozzle 6b."
 図17(a)に示すように、ノズル6bは、第1吐出口61b~第5吐出口65bを有する。第1吐出口61b~第5吐出口65bは、ノズル6bの下面(先端)に開口している。なお、第5吐出口65bは、円環状である。第5吐出口65bは、ノズル6bの下面(先端)においてノズル6bの外周部に沿って延びる。第1吐出口61bから、硫酸が吐出される。第2吐出口62bから過酸化水素水が吐出される。第3吐出口63bからアンモニア水が吐出される。第4吐出口64bから純水が吐出される。第5吐出口65bから不活性ガスが吐出される。第2変形例において、不活性ガスは、窒素ガスである。 As shown in FIG. 17(a), the nozzle 6b has a first outlet 61b to a fifth outlet 65b. The first outlet 61b to the fifth outlet 65b open on the bottom surface (tip) of the nozzle 6b. The fifth outlet 65b is annular. The fifth outlet 65b extends along the outer periphery of the nozzle 6b on the bottom surface (tip) of the nozzle 6b. Sulfuric acid is discharged from the first outlet 61b. Hydrogen peroxide solution is discharged from the second outlet 62b. Ammonia water is discharged from the third outlet 63b. Pure water is discharged from the fourth outlet 64b. An inert gas is discharged from the fifth outlet 65b. In the second modified example, the inert gas is nitrogen gas.
 図17(b)に示すように、第2変形例において、流体供給部600は、ノズル6bと、第1薬液供給部610bと、第2薬液供給部620bと、第3薬液供給部630bと、純水供給部640bと、ガス供給部650bとを含む。 As shown in FIG. 17(b), in the second modified example, the fluid supply unit 600 includes a nozzle 6b, a first chemical liquid supply unit 610b, a second chemical liquid supply unit 620b, a third chemical liquid supply unit 630b, a pure water supply unit 640b, and a gas supply unit 650b.
 第1薬液供給部610bは、硫酸をノズル6bへ供給する。第1薬液供給部610bからノズル6bへ供給された硫酸は、図17(a)を参照して説明した第1吐出口61bから吐出される。 The first chemical liquid supply unit 610b supplies sulfuric acid to the nozzle 6b. The sulfuric acid supplied from the first chemical liquid supply unit 610b to the nozzle 6b is discharged from the first discharge port 61b described with reference to FIG. 17(a).
 具体的には、第1薬液供給部610bは、第1薬液供給配管612bと、第1薬液開閉バルブ614bと、ヒータ616bとを有する。第1薬液供給配管612bの一部は、図2を参照して説明したチャンバー201内に収容される。第1薬液開閉バルブ614b、及びヒータ616bは、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the first chemical liquid supply unit 610b has a first chemical liquid supply pipe 612b, a first chemical liquid opening/closing valve 614b, and a heater 616b. A portion of the first chemical liquid supply pipe 612b is housed in the chamber 201 described with reference to FIG. 2. The first chemical liquid opening/closing valve 614b and the heater 616b are housed in the fluid box 10B described with reference to FIG. 1.
 第1薬液供給配管612bは、ノズル6bに硫酸を供給する。具体的には、第1薬液供給配管612bは、管状の部材であり、硫酸をノズル6bまで流通させる。ヒータ616bは、第1薬液供給配管612bに介装される。ヒータ616bは、第1薬液供給配管612bを流通する硫酸を加熱する。 The first chemical liquid supply pipe 612b supplies sulfuric acid to the nozzle 6b. Specifically, the first chemical liquid supply pipe 612b is a tubular member that circulates the sulfuric acid to the nozzle 6b. The heater 616b is installed in the first chemical liquid supply pipe 612b. The heater 616b heats the sulfuric acid flowing through the first chemical liquid supply pipe 612b.
 第1薬液開閉バルブ614bは、第1薬液供給配管612bに介装される。第1薬液開閉バルブ614bは、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、第1薬液開閉バルブ614bの開閉動作を制御する。第1薬液開閉バルブ614bのアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The first chemical liquid on-off valve 614b is disposed in the first chemical liquid supply pipe 612b. The first chemical liquid on-off valve 614b can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operation of the first chemical liquid on-off valve 614b. The actuator of the first chemical liquid on-off valve 614b is, for example, a pneumatic actuator or an electric actuator.
 第1薬液開閉バルブ614bを開状態にすると、硫酸がノズル6bに向かって第1薬液供給配管612bを流通する。この結果、ノズル6bから基板Wに向けて硫酸が吐出される。第1薬液開閉バルブ614bを閉状態にすると、第1薬液供給配管612bを介した硫酸の流通が停止する。したがって、ノズル6bから基板Wへの硫酸の供給が停止する。 When the first chemical liquid opening/closing valve 614b is opened, sulfuric acid flows through the first chemical liquid supply pipe 612b toward the nozzle 6b. As a result, sulfuric acid is ejected from the nozzle 6b toward the substrate W. When the first chemical liquid opening/closing valve 614b is closed, the flow of sulfuric acid through the first chemical liquid supply pipe 612b stops. Therefore, the supply of sulfuric acid from the nozzle 6b to the substrate W stops.
 第2薬液供給部620bは過酸化水素水をノズル6bへ供給する。第2薬液供給部620bからノズル6bへ供給された過酸化水素水は、図17(a)を参照して説明した第2吐出口62bから吐出される。 The second chemical supply unit 620b supplies hydrogen peroxide to the nozzle 6b. The hydrogen peroxide supplied from the second chemical supply unit 620b to the nozzle 6b is discharged from the second discharge port 62b described with reference to FIG. 17(a).
 具体的には、第2薬液供給部620bは、第2薬液供給配管622bと、第2薬液開閉バルブ624bとを有する。第2薬液供給配管622bの一部は、図2を参照して説明したチャンバー201内に収容される。第2薬液開閉バルブ624bは、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the second chemical liquid supply unit 620b has a second chemical liquid supply pipe 622b and a second chemical liquid opening/closing valve 624b. A portion of the second chemical liquid supply pipe 622b is housed in the chamber 201 described with reference to FIG. 2. The second chemical liquid opening/closing valve 624b is housed in the fluid box 10B described with reference to FIG. 1.
 第2薬液供給配管622bは、ノズル6bに過酸化水素水を供給する。具体的には、第2薬液供給配管622bは、管状の部材であり、過酸化水素水をノズル6bまで流通させる。 The second chemical supply pipe 622b supplies hydrogen peroxide to the nozzle 6b. Specifically, the second chemical supply pipe 622b is a tubular member that circulates hydrogen peroxide to the nozzle 6b.
 第2薬液開閉バルブ624bは、第2薬液供給配管622bに介装される。第2薬液開閉バルブ624bは、開状態と閉状態との間で切り替え可能である。制御装置101(制御部102)は、第2薬液開閉バルブ624bの開閉動作を制御する。第2薬液開閉バルブ624bのアクチュエータは、例えば、空圧アクチュエータ、又は電動アクチュエータである。 The second chemical liquid on-off valve 624b is disposed in the second chemical liquid supply pipe 622b. The second chemical liquid on-off valve 624b can be switched between an open state and a closed state. The control device 101 (control unit 102) controls the opening and closing operation of the second chemical liquid on-off valve 624b. The actuator of the second chemical liquid on-off valve 624b is, for example, a pneumatic actuator or an electric actuator.
 第2薬液開閉バルブ624bを開状態にすると、過酸化水素水がノズル6bに向かって第2薬液供給配管622bを流通する。この結果、ノズル6bから基板Wに向けて過酸化水素水が吐出される。第2薬液開閉バルブ624bを閉状態にすると、第2薬液供給配管622bを介した硫酸の流通が停止する。したがって、ノズル6bから基板Wへの過酸化水素水の供給が停止する。 When the second chemical liquid opening/closing valve 624b is opened, hydrogen peroxide flows through the second chemical liquid supply pipe 622b toward the nozzle 6b. As a result, hydrogen peroxide is ejected from the nozzle 6b toward the substrate W. When the second chemical liquid opening/closing valve 624b is closed, the flow of sulfuric acid through the second chemical liquid supply pipe 622b stops. Therefore, the supply of hydrogen peroxide from the nozzle 6b to the substrate W stops.
 制御装置101(制御部102)は、基板WにSPMを供給する際に、第1薬液開閉バルブ614b及び第2薬液開閉バルブ624bを開状態にする。この結果、基板Wの上面において硫酸と過酸化水素水とが混合されて、基板Wの上面にSPMが供給される。 The control device 101 (control unit 102) opens the first chemical liquid opening/closing valve 614b and the second chemical liquid opening/closing valve 624b when supplying SPM to the substrate W. As a result, the sulfuric acid and hydrogen peroxide are mixed on the upper surface of the substrate W, and SPM is supplied to the upper surface of the substrate W.
 第3薬液供給部630bはアンモニア水をノズル6bへ供給する。第3薬液供給部630bからノズル6bへ供給されたアンモニア水は、図17(a)を参照して説明した第3吐出口63bから吐出される。 The third chemical supply unit 630b supplies ammonia water to the nozzle 6b. The ammonia water supplied from the third chemical supply unit 630b to the nozzle 6b is discharged from the third discharge port 63b described with reference to FIG. 17(a).
 具体的には、第3薬液供給部630bは、第3薬液供給配管632bと、第3薬液開閉バルブ634bとを有する。第3薬液供給配管632bの一部は、図2を参照して説明したチャンバー201内に収容される。第3薬液開閉バルブ634bは、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the third chemical liquid supply unit 630b has a third chemical liquid supply pipe 632b and a third chemical liquid on-off valve 634b. A portion of the third chemical liquid supply pipe 632b is housed in the chamber 201 described with reference to FIG. 2. The third chemical liquid on-off valve 634b is housed in the fluid box 10B described with reference to FIG. 1.
 第3薬液供給配管632bは、ノズル6bにアンモニア水を供給する。第3薬液開閉バルブ634bは、第3薬液供給配管632bに介装される。第3薬液開閉バルブ634bは、開状態と閉状態との間で切り替え可能である。第3薬液開閉バルブ634bが開状態になると、アンモニア水が第3薬液供給配管632bを流通して、ノズル6bにアンモニア水が供給される。第3薬液開閉バルブ634bが閉状態になると、ノズル6bへのアンモニア水の供給が停止される。制御装置101(制御部102)は、第3薬液開閉バルブ634bの開閉動作を制御する。第3薬液供給部630bの構成は、第2薬液供給部620bと略同様であるため、その詳しい説明は割愛する。 The third chemical liquid supply pipe 632b supplies ammonia water to the nozzle 6b. The third chemical liquid opening and closing valve 634b is interposed in the third chemical liquid supply pipe 632b. The third chemical liquid opening and closing valve 634b can be switched between an open state and a closed state. When the third chemical liquid opening and closing valve 634b is in the open state, ammonia water flows through the third chemical liquid supply pipe 632b and the ammonia water is supplied to the nozzle 6b. When the third chemical liquid opening and closing valve 634b is in the closed state, the supply of ammonia water to the nozzle 6b is stopped. The control device 101 (control unit 102) controls the opening and closing operation of the third chemical liquid opening and closing valve 634b. The configuration of the third chemical liquid supply unit 630b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
 純水供給部640bは、純水をノズル6bへ供給する。純水供給部640bからノズル6bへ供給された純水は、図17(a)を参照して説明した第4吐出口64bから吐出される。 The pure water supply unit 640b supplies pure water to the nozzle 6b. The pure water supplied from the pure water supply unit 640b to the nozzle 6b is discharged from the fourth discharge port 64b described with reference to FIG. 17(a).
 具体的には、純水供給部640bは、純水供給配管642bと、純水開閉バルブ644bとを有する。純水供給配管642bの一部は、図2を参照して説明したチャンバー201内に収容される。純水開閉バルブ644bは、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the pure water supply unit 640b has a pure water supply pipe 642b and a pure water on-off valve 644b. A portion of the pure water supply pipe 642b is housed in the chamber 201 described with reference to FIG. 2. The pure water on-off valve 644b is housed in the fluid box 10B described with reference to FIG. 1.
 純水供給配管642bは、ノズル6bに純水を供給する。純水開閉バルブ644bは、純水供給配管642bに介装される。純水開閉バルブ644bは、開状態と閉状態との間で切り替え可能である。純水開閉バルブ644bが開状態になると、純水が純水供給配管642bを流通して、ノズル6bに純水が供給される。純水開閉バルブ644bが閉状態になると、ノズル6bへの純水の供給が停止される。制御装置101(制御部102)は、純水開閉バルブ644bの開閉動作を制御する。純水供給部640bの構成は、第2薬液供給部620bと略同様であるため、その詳しい説明は割愛する。 The pure water supply pipe 642b supplies pure water to the nozzle 6b. The pure water on-off valve 644b is interposed in the pure water supply pipe 642b. The pure water on-off valve 644b can be switched between an open state and a closed state. When the pure water on-off valve 644b is in an open state, pure water flows through the pure water supply pipe 642b and is supplied to the nozzle 6b. When the pure water on-off valve 644b is in a closed state, the supply of pure water to the nozzle 6b is stopped. The control device 101 (control unit 102) controls the opening and closing operation of the pure water on-off valve 644b. The configuration of the pure water supply unit 640b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
 制御装置101(制御部102)は、基板WにSC1を供給する際に、第2薬液開閉バルブ624b、第3薬液開閉バルブ634b、及び純水開閉バルブ644bを開状態にする。この結果、基板Wの上面において、アンモニア水と、過酸化水素水と、純水とが混合されて、基板Wの上面にSC1が供給される。 When supplying SC1 to the substrate W, the control device 101 (control unit 102) opens the second chemical liquid opening/closing valve 624b, the third chemical liquid opening/closing valve 634b, and the pure water opening/closing valve 644b. As a result, the ammonia water, hydrogen peroxide solution, and pure water are mixed on the upper surface of the substrate W, and SC1 is supplied to the upper surface of the substrate W.
 また、第2変形例において、リンス液は純水である。制御装置101(制御部102)は、リンス処理の際に、純水開閉バルブ644bを開状態にする。 In the second modified example, the rinse liquid is pure water. The control device 101 (control unit 102) opens the pure water opening and closing valve 644b during the rinse process.
 ガス供給部650bは、窒素ガスをノズル6bへ供給する。ガス供給部650bからノズル6bへ供給された窒素ガスは、図17(a)を参照して説明した第5吐出口65bから吐出される。 The gas supply unit 650b supplies nitrogen gas to the nozzle 6b. The nitrogen gas supplied from the gas supply unit 650b to the nozzle 6b is discharged from the fifth discharge port 65b described with reference to FIG. 17(a).
 具体的には、ガス供給部650bは、ガス供給配管652bと、ガス開閉バルブ654bとを有する。ガス供給配管652bの一部は、図2を参照して説明したチャンバー201内に収容される。ガス開閉バルブ654bは、図1を参照して説明した流体ボックス10Bに収容される。 Specifically, the gas supply unit 650b has a gas supply pipe 652b and a gas on-off valve 654b. A portion of the gas supply pipe 652b is housed in the chamber 201 described with reference to FIG. 2. The gas on-off valve 654b is housed in the fluid box 10B described with reference to FIG. 1.
 ガス供給配管652bは、ノズル6bに窒素ガスを供給する。ガス開閉バルブ654bは、ガス供給配管652bに介装される。ガス開閉バルブ654bは、開状態と閉状態との間で切り替え可能である。ガス開閉バルブ654bが開状態になると、窒素ガスがガス供給配管652bを流通して、ノズル6bに窒素ガスが供給される。ガス開閉バルブ654bが閉状態になると、ノズル6bへの窒素ガスの供給が停止される。制御装置101(制御部102)は、ガス開閉バルブ654bの開閉動作を制御する。ガス供給部650bの構成は、第2薬液供給部620bと略同様であるため、その詳しい説明は割愛する。 The gas supply pipe 652b supplies nitrogen gas to the nozzle 6b. The gas on-off valve 654b is interposed in the gas supply pipe 652b. The gas on-off valve 654b can be switched between an open state and a closed state. When the gas on-off valve 654b is in the open state, nitrogen gas flows through the gas supply pipe 652b and is supplied to the nozzle 6b. When the gas on-off valve 654b is in the closed state, the supply of nitrogen gas to the nozzle 6b is stopped. The control device 101 (control unit 102) controls the opening and closing operation of the gas on-off valve 654b. The configuration of the gas supply unit 650b is substantially the same as that of the second chemical liquid supply unit 620b, so a detailed description thereof will be omitted.
 続いて、図18(a)及び図18(b)を参照して、本実施形態の基板処理装置100の第3変形例を説明する。第3変形例では、ノズル6から処理空間に向けて過熱水蒸気が供給される。 Next, a third modified example of the substrate processing apparatus 100 of this embodiment will be described with reference to Figures 18(a) and 18(b). In the third modified example, superheated steam is supplied from the nozzle 6 toward the processing space.
 図18(a)は、本実施形態の基板処理装置100の第3変形例に含まれるノズル6を下から視た下面図である。図18(b)は、本実施形態の基板処理装置100の第3変形例に含まれる流体供給部600の構成を示す図である。以下、第3変形例のノズル6を、「ノズル6c」と記載する場合がある。 FIG. 18(a) is a bottom view of the nozzle 6 included in the third modified example of the substrate processing apparatus 100 of this embodiment, viewed from below. FIG. 18(b) is a diagram showing the configuration of the fluid supply unit 600 included in the third modified example of the substrate processing apparatus 100 of this embodiment. Hereinafter, the nozzle 6 of the third modified example may be referred to as "nozzle 6c."
 図18(a)に示すように、ノズル6cは、第1吐出口61cと、第2吐出口62cと、第3吐出口63cと、第4吐出口64cと、第5吐出口65cと、吹出口8aとを有する。ノズル6cの第1吐出口61c~第5吐出口65cは、図17(a)に示すノズル6bの第1吐出口61b~第5吐出口65bに相当する。つまり、ノズル6cは、図17(a)を参照して説明したノズル6bと比べて、吹出口8aが追加されている。吹出口8aからは、過熱水蒸気が吹き出る。したがって、ノズル6cは、過熱水蒸気を吹き出す吹出部として機能する。このように、過熱水蒸気を吹き出す吹出部は、流体供給部600に含まれてもよい。 As shown in FIG. 18(a), the nozzle 6c has a first outlet 61c, a second outlet 62c, a third outlet 63c, a fourth outlet 64c, a fifth outlet 65c, and an outlet 8a. The first outlet 61c to the fifth outlet 65c of the nozzle 6c correspond to the first outlet 61b to the fifth outlet 65b of the nozzle 6b shown in FIG. 17(a). In other words, compared to the nozzle 6b described with reference to FIG. 17(a), the nozzle 6c has an additional outlet 8a. Superheated steam is blown out from the outlet 8a. Therefore, the nozzle 6c functions as a blowing section that blows out superheated steam. In this way, the blowing section that blows out superheated steam may be included in the fluid supply section 600.
 図18(b)に示すように、第3変形例では、ノズル6cに対し、過熱水蒸気供給部800から過熱水蒸気が供給される。過熱水蒸気供給部800からノズル6cへ供給された過熱水蒸気は、図18(a)を参照して説明した吹出口8aから吹き出る。 As shown in FIG. 18(b), in the third modified example, superheated steam is supplied to the nozzle 6c from the superheated steam supply unit 800. The superheated steam supplied to the nozzle 6c from the superheated steam supply unit 800 is blown out from the blowing port 8a described with reference to FIG. 18(a).
 なお、図2を参照して説明した吹出部8は、省略されてもよいし、省略されなくてもよい。 Note that the blowing section 8 described with reference to FIG. 2 may or may not be omitted.
 以上、図面(図1~図18(b))を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施できる。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、又は、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。 The above describes embodiments of the present invention with reference to the drawings (Figs. 1 to 18(b)). However, the present invention is not limited to the above embodiments, and can be implemented in various aspects without departing from the gist of the present invention. Furthermore, the multiple components disclosed in the above embodiments can be modified as appropriate. For example, a certain component among all the components shown in one embodiment may be added to a component of another embodiment, or some of all the components shown in one embodiment may be deleted from the embodiment.
 図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。 The drawings are primarily schematic illustrations of each component to facilitate understanding of the invention, and the thickness, length, number, spacing, etc. of each component shown may differ from the actual ones due to the convenience of creating the drawings. Furthermore, the configuration of each component shown in the above embodiment is merely an example and is not particularly limiting, and it goes without saying that various modifications are possible within a range that does not substantially deviate from the effects of the present invention.
 例えば、図1~図18(b)を参照して説明した実施形態において、スピンチャック3は、複数のチャック部材31を基板Wの周端面に接触させる挟持式のチャックであったが、基板Wを保持する方式は、基板Wを水平に保持できる限り、特に限定されない。例えば、スピンチャック3は、バキューム式のチャックであってもよいし、ベルヌーイ式のチャックであってもよい。 For example, in the embodiment described with reference to Figures 1 to 18(b), the spin chuck 3 is a clamping type chuck that brings multiple chuck members 31 into contact with the peripheral edge surface of the substrate W, but the method of holding the substrate W is not particularly limited as long as it can hold the substrate W horizontally. For example, the spin chuck 3 may be a vacuum type chuck or a Bernoulli type chuck.
 また、図1~図18(b)を参照して説明した実施形態では、基板Wへ過酸化水素水を供給する際(図8のステップS44)、制御装置101(制御部102)は、吹出部8から吹き出させる過熱水蒸気の流量を減少させたが、基板Wへ過酸化水素水を供給する際(図8のステップS44)、制御装置101(制御部102)は、吹出部8からの過熱水蒸気の吹き出しを停止させてもよい。なお、この場合、制御装置101(制御部102)は、リンス処理時(図8のステップS45)にかけて、処理空間への過熱水蒸気の供給停止を継続させる。 In the embodiment described with reference to Figures 1 to 18(b), when hydrogen peroxide is supplied to the substrate W (step S44 in Figure 8), the control device 101 (controller 102) reduces the flow rate of superheated water steam blown out from the blower 8. However, when hydrogen peroxide is supplied to the substrate W (step S44 in Figure 8), the control device 101 (controller 102) may stop the blowing of superheated water steam from the blower 8. In this case, the control device 101 (controller 102) continues to stop the supply of superheated water steam to the processing space during the rinsing process (step S45 in Figure 8).
 また、図1~図18(b)を参照して説明した実施形態では、基板加熱部5はヒータにより基板Wを加熱したが、基板加熱部5が基板Wの加熱に用いる部材は、基板Wを加熱できる部材である限り、特に限定されない。例えば、基板加熱部5は、レーザ照射又は光照射により基板Wを加熱してもよい。 In the embodiment described with reference to Figures 1 to 18(b), the substrate heating unit 5 heats the substrate W with a heater, but the material used by the substrate heating unit 5 to heat the substrate W is not particularly limited as long as it is a material capable of heating the substrate W. For example, the substrate heating unit 5 may heat the substrate W by laser irradiation or light irradiation.
 また、図1~図18(b)を参照して説明した実施形態では、基板処理装置100に基板加熱部5が設けられたが、基板加熱部5は省略されてもよい。この場合、過熱水蒸気を用いて事前加熱を行ってもよい。 In the embodiment described with reference to Figures 1 to 18(b), the substrate processing apparatus 100 is provided with a substrate heating unit 5, but the substrate heating unit 5 may be omitted. In this case, pre-heating may be performed using superheated steam.
 また、図1~図18(b)を参照して説明した実施形態では、パドル処理が行われたが、パドル処理は省略されてもよい。 In addition, in the embodiment described with reference to Figures 1 to 18(b), paddle processing is performed, but paddle processing may be omitted.
 また、基板処理装置100は、処理空間の内部の洗浄時に吹出部8から処理空間へ過熱水蒸気を供給させてもよい。この結果、処理空間の内部の洗浄後に、処理空間形成部70や、処理空間内に配置される部材を乾燥させ易くなる。 The substrate processing apparatus 100 may also supply superheated steam from the blowing section 8 to the processing space when cleaning the inside of the processing space. As a result, after cleaning the inside of the processing space, it becomes easier to dry the processing space forming section 70 and the members placed within the processing space.
 詳しくは、処理空間の内部の洗浄後、処理空間に窒素ガスのような不活性ガスを供給して、処理空間形成部70や、処理空間内に配置される部材を乾燥させる処理が行われる。しかしながら、処理空間の内部を洗浄する際には、大量の純水が使用される。そのため、洗浄後の処理空間の内部は乾燥し難い状態となる。これに対し、処理空間の内部の洗浄時に吹出部8から処理空間へ過熱水蒸気を供給することで、処理空間形成部70や、処理空間内に配置される部材の温度を昇温させることができる。その結果、処理空間の内部の洗浄後に、処理空間形成部70や、処理空間内に配置される部材を効率よく乾燥させることができる。 More specifically, after the inside of the processing space is cleaned, an inert gas such as nitrogen gas is supplied to the processing space to dry the processing space forming part 70 and the members placed within the processing space. However, a large amount of pure water is used when cleaning the inside of the processing space. Therefore, the inside of the processing space after cleaning is difficult to dry. In response to this, by supplying superheated steam from the blowing part 8 to the processing space when cleaning the inside of the processing space, it is possible to raise the temperature of the processing space forming part 70 and the members placed within the processing space. As a result, after the inside of the processing space is cleaned, it is possible to efficiently dry the processing space forming part 70 and the members placed within the processing space.
 なお、処理空間の内部の洗浄は、例えば、基板処理部2が予め定められた枚数(例えば、24枚)の基板Wを処理する度に実行されてもよい。あるいは、処理空間の内部の洗浄は、予め定められた時間が経過する度に実行されてもよい。 The cleaning of the inside of the processing space may be performed, for example, every time the substrate processing unit 2 processes a predetermined number of substrates W (e.g., 24 substrates). Alternatively, the cleaning of the inside of the processing space may be performed every time a predetermined time has elapsed.
 本発明は、基板を処理する装置に有用であり、産業上の利用可能性を有する。 The present invention is useful for substrate processing devices and has industrial applicability.
2    :基板処理部
3    :スピンチャック
4    :スピンモータ部
6    :ノズル
6a   :ノズル
6b   :ノズル
6c   :ノズル
8    :吹出部
8a   :吹出口
70   :処理空間形成部
71   :液受け部
72   :遮断部材
81   :第1吹出部
82   :第2吹出部
100  :基板処理装置
101  :制御装置
102  :制御部
103  :記憶部
201  :チャンバー
600  :流体供給部
800  :過熱水蒸気供給部
W    :基板
2: Substrate processing unit 3: Spin chuck 4: Spin motor unit 6: Nozzle 6a: Nozzle 6b: Nozzle 6c: Nozzle 8: Blowing unit 8a: Blowing outlet 70: Processing space forming unit 71: Liquid receiving unit 72: Blocking member 81: First blowing unit 82: Second blowing unit 100: Substrate processing apparatus 101: Control device 102: Control unit 103: Memory unit 201: Chamber 600: Fluid supply unit 800: Superheated steam supply unit W: Substrate

Claims (16)

  1.  基板を収容するチャンバーと、
     前記チャンバー内で前記基板を保持する基板保持部と、
     前記基板保持部に保持された前記基板と対向する対向部材を含み、前記基板の処理が行われる処理空間を形成する処理空間形成部と、
     前記基板保持部が保持する前記基板を回転させる基板回転部と、
     前記基板回転部により回転される前記基板に、硫酸と過酸化水素水とが混合された第1混合液を供給する処理液供給部と、
     前記処理空間内に過熱水蒸気を吹き出す過熱水蒸気吹出部と
     を備える、基板処理装置。
    a chamber for housing a substrate;
    a substrate holder for holding the substrate within the chamber;
    a processing space forming part including an opposing member facing the substrate held by the substrate holding part and forming a processing space in which the substrate is processed;
    a substrate rotation unit that rotates the substrate held by the substrate holding unit;
    a processing liquid supply unit that supplies a first mixed liquid, which is a mixture of sulfuric acid and hydrogen peroxide, to the substrate rotated by the substrate rotation unit;
    and a superheated steam blowing unit that blows superheated steam into the processing space.
  2.  前記過熱水蒸気吹出部は、前記基板よりも上方に配置される第1過熱水蒸気吹出部を含む、請求項1に記載の基板処理装置。 The substrate processing apparatus of claim 1, wherein the superheated steam blowing section includes a first superheated steam blowing section that is positioned above the substrate.
  3.  前記第1過熱水蒸気吹出部は、前記対向部材に支持される、請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the first superheated steam blowing section is supported by the opposing member.
  4.  前記第1過熱水蒸気吹出部は、前記処理液供給部に含まれる、請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the first superheated steam blowing section is included in the processing liquid supply section.
  5.  前記処理空間形成部は、前記基板回転部により回転される前記基板から排出される前記第1混合液を受け止める液受け部を更に含み、
     前記過熱水蒸気吹出部は、前記液受け部に支持される第2過熱水蒸気吹出部を含む、請求項1から請求項4のいずれか1項に記載の基板処理装置。
    the processing space forming unit further includes a liquid receiving unit configured to receive the first mixed liquid discharged from the substrate rotated by the substrate rotating unit,
    The substrate processing apparatus according to claim 1 , wherein the superheated steam blowing section includes a second superheated steam blowing section supported by the liquid receiving section.
  6.  前記第1混合液の供給と、前記過熱水蒸気の吹き出しとを制御する制御部を更に備え、
     前記制御部は、前記第1混合液の供給時に、前記過熱水蒸気を吹き出させる、請求項1に記載の基板処理装置。
    a control unit that controls the supply of the first mixed liquid and the blowing of the superheated steam,
    The substrate processing apparatus according to claim 1 , wherein the control unit causes the superheated steam to be ejected when the first mixed liquid is supplied.
  7.  前記制御部は、前記基板回転部による前記基板の回転を更に制御し、
     前記制御部は、前記第1混合液の供給時に、前記基板の回転速度を制御して、前記基板の上面に前記第1混合液の液膜を形成させ、
     前記制御部は、前記第1混合液の供給を停止させ、かつ、前記基板の回転速度を制御して、前記液膜が前記基板の上面に支持されたパドル状態を形成し、
     前記制御部は、前記パドル状態の形成時に、前記過熱水蒸気を吹き出させる、請求項6に記載の基板処理装置。
    The control unit further controls the rotation of the substrate by the substrate rotation unit,
    the control unit controls a rotation speed of the substrate during supply of the first mixed liquid to form a liquid film of the first mixed liquid on an upper surface of the substrate;
    the control unit stops supplying the first mixed liquid and controls a rotation speed of the substrate to form a puddle state in which the liquid film is supported on the upper surface of the substrate;
    The substrate processing apparatus according to claim 6 , wherein the control unit causes the superheated steam to be ejected when the puddle state is formed.
  8.  前記処理液供給部は、前記第1混合液と過酸化水素水とを排他的に前記基板に供給し、
     前記制御部は、前記過酸化水素水の供給を更に制御し、
     前記制御部は、前記過酸化水素水の供給時に、前記過熱水蒸気の吹き出しを停止させる、請求項6又は請求項7に記載の基板処理装置。
    the processing liquid supply unit supplies the first mixed liquid and hydrogen peroxide solution exclusively to the substrate;
    The control unit further controls the supply of the hydrogen peroxide solution,
    The substrate processing apparatus according to claim 6 , wherein the control unit stops blowing out the superheated steam when the hydrogen peroxide solution is being supplied.
  9.  前記処理液供給部は、前記第1混合液と過酸化水素水とを排他的に前記基板に供給し、
     前記制御部は、前記過酸化水素水の供給を更に制御し、
     前記制御部は、前記第1混合液の供給時に、前記過熱水蒸気を第1流量で吹き出させ、
     前記制御部は、前記過酸化水素水の供給時に、前記過熱水蒸気を、前記第1流量より小さい第2流量で吹き出させる、請求項6又は請求項7に記載の基板処理装置。
    the processing liquid supply unit supplies the first mixed liquid and hydrogen peroxide solution exclusively to the substrate;
    The control unit further controls the supply of the hydrogen peroxide solution,
    The control unit causes the superheated steam to be blown out at a first flow rate when the first mixed liquid is supplied,
    8 . The substrate processing apparatus according to claim 6 , wherein the control unit causes the superheated water vapor to be blown out at a second flow rate lower than the first flow rate when the hydrogen peroxide solution is supplied.
  10.  前記処理液供給部は、アンモニア水と、過酸化水素水と、純水とが混合された第2混合液と、前記第1混合液とを排他的に前記基板に供給し、
     前記制御部は、前記第2混合液の供給を更に制御し、
     前記制御部は、前記第2混合液の供給時に、前記過熱水蒸気を吹き出させる、請求項6又は請求項7に記載の基板処理装置。
    the processing liquid supply unit supplies a second mixed liquid, which is a mixture of ammonia water, hydrogen peroxide solution, and pure water, and the first mixed liquid exclusively to the substrate;
    The control unit further controls the supply of the second mixed liquid,
    The substrate processing apparatus according to claim 6 , wherein the control unit causes the superheated steam to be ejected when the second mixed liquid is supplied.
  11.  基板保持部により、チャンバー内で基板を保持する工程と、
     前記基板保持部に保持された前記基板と対向する対向部材を含む処理空間形成部により、前記基板の処理が行われる処理空間を形成する工程と、
     前記処理空間に過熱水蒸気を吹き出す工程と
     を含む、基板処理方法。
    holding the substrate within the chamber by a substrate holder;
    forming a processing space in which the substrate is processed by a processing space forming part including an opposing member opposed to the substrate held by the substrate holding part;
    and blowing superheated steam into the processing space.
  12.  前記基板保持部が保持する前記基板を回転させる工程と、
     回転中の前記基板に、硫酸と過酸化水素水とが混合された第1混合液を供給する工程と
     を更に含み、
     前記第1混合液の供給時に、前記過熱水蒸気を吹き出させる、請求項11に記載の基板処理方法。
    rotating the substrate held by the substrate holder;
    supplying a first mixture of sulfuric acid and hydrogen peroxide to the rotating substrate;
    The substrate processing method according to claim 11 , wherein the superheated steam is blown out when the first mixed liquid is supplied.
  13.  前記第1混合液の供給時に、前記基板の回転速度を制御して、前記基板の上面に前記第1混合液の液膜を形成させる工程と、
     前記第1混合液の供給を停止させ、かつ、前記基板の回転速度を制御して、前記液膜が前記基板の上面に支持されたパドル状態を形成する工程と
     を更に含み、
     前記パドル状態の形成時に、前記過熱水蒸気を吹き出させる、請求項12に記載の基板処理方法。
    controlling a rotation speed of the substrate during supply of the first mixed liquid to form a liquid film of the first mixed liquid on the upper surface of the substrate;
    stopping the supply of the first mixed liquid and controlling a rotation speed of the substrate to form a puddle state in which the liquid film is supported on the upper surface of the substrate,
    The substrate processing method according to claim 12 , wherein the superheated steam is ejected when the puddle state is formed.
  14.  回転中の前記基板に過酸化水素水を供給する工程を更に含み、
     前記過酸化水素水の供給時に、前記過熱水蒸気の吹き出しを停止させる、請求項12又は請求項13に記載の基板処理方法。
    The method further includes the step of supplying hydrogen peroxide to the substrate while rotating;
    14. The substrate processing method according to claim 12, wherein blowing of the superheated steam is stopped during the supply of the hydrogen peroxide solution.
  15.  回転中の前記基板に過酸化水素水を供給する工程を更に含み、
     前記第1混合液の供給時に、前記過熱水蒸気を第1流量で吹き出させ、
     前記過酸化水素水の供給時に、前記過熱水蒸気を、前記第1流量より小さい第2流量で吹き出させる、請求項12又は請求項13に記載の基板処理方法。
    The method further includes the step of supplying hydrogen peroxide to the substrate while rotating;
    When the first mixed liquid is supplied, the superheated steam is blown out at a first flow rate;
    14. The substrate processing method according to claim 12, wherein the superheated water vapor is blown out at a second flow rate lower than the first flow rate when the hydrogen peroxide solution is supplied.
  16.  前記基板保持部が保持する前記基板を回転させる工程と、
     回転中の前記基板に、アンモニア水と、過酸化水素水と、純水とが混合された第2混合液を供給する工程と
     を更に含み、
     前記第2混合液の供給時に、前記過熱水蒸気を吹き出させる、請求項11から請求項13のいずれか1項に記載の基板処理方法。
    rotating the substrate held by the substrate holder;
    supplying a second mixture of ammonia water, hydrogen peroxide, and pure water to the substrate while the substrate is rotating;
    The substrate processing method according to claim 11 , wherein the superheated steam is blown out when the second mixed liquid is supplied.
PCT/JP2023/038501 2022-10-28 2023-10-25 Substrate-processing device and substrate-processing method WO2024090473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-173652 2022-10-28
JP2022173652A JP2024064787A (en) 2022-10-28 2022-10-28 Substrate processing apparatus and substrate processing method

Publications (1)

Publication Number Publication Date
WO2024090473A1 true WO2024090473A1 (en) 2024-05-02

Family

ID=90830797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038501 WO2024090473A1 (en) 2022-10-28 2023-10-25 Substrate-processing device and substrate-processing method

Country Status (2)

Country Link
JP (1) JP2024064787A (en)
WO (1) WO2024090473A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004878A (en) * 2006-06-26 2008-01-10 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2010087419A (en) * 2008-10-02 2010-04-15 Shibaura Mechatronics Corp Apparatus and method for stripping resist
JP2015050351A (en) * 2013-09-02 2015-03-16 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2015056447A (en) * 2013-09-10 2015-03-23 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2015115409A (en) * 2013-12-10 2015-06-22 株式会社Screenホールディングス Substrate processing method and substrate processing device
WO2018198885A1 (en) * 2017-04-28 2018-11-01 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020088208A (en) * 2018-11-27 2020-06-04 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2022052835A (en) * 2020-09-24 2022-04-05 株式会社Screenホールディングス Substrate processing device and substrate position adjusting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004878A (en) * 2006-06-26 2008-01-10 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2010087419A (en) * 2008-10-02 2010-04-15 Shibaura Mechatronics Corp Apparatus and method for stripping resist
JP2015050351A (en) * 2013-09-02 2015-03-16 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2015056447A (en) * 2013-09-10 2015-03-23 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2015115409A (en) * 2013-12-10 2015-06-22 株式会社Screenホールディングス Substrate processing method and substrate processing device
WO2018198885A1 (en) * 2017-04-28 2018-11-01 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020088208A (en) * 2018-11-27 2020-06-04 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2022052835A (en) * 2020-09-24 2022-04-05 株式会社Screenホールディングス Substrate processing device and substrate position adjusting method

Also Published As

Publication number Publication date
JP2024064787A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
CN110364431B (en) Substrate processing method and substrate processing apparatus
KR100848981B1 (en) Substrate processing method and substrate processing apparatus
US8133327B2 (en) Substrate processing method, storage medium and substrate processing apparatus
JP5106800B2 (en) Substrate processing method and substrate processing apparatus
US11501985B2 (en) Substrate processing method and substrate processing device
KR20070041342A (en) Substrate processing method and substrate processing apparatus
JP6493839B2 (en) Substrate processing method and substrate processing apparatus
CN110364453B (en) Substrate processing method and substrate processing apparatus
JP2015056448A (en) Substrate processing method and substrate processing apparatus
JP2007103732A (en) Method and apparatus for processing substrate
CN110692122A (en) Substrate processing method and substrate processing apparatus
JP6698396B2 (en) Substrate processing method and substrate processing apparatus
WO2024090473A1 (en) Substrate-processing device and substrate-processing method
TWI818297B (en) Substrate processing method and substrate processing device
WO2024090475A1 (en) Substrate treatment device, substrate treatment process, and chamber cleaning method
JP4299638B2 (en) Substrate processing apparatus and substrate processing method
JP4377285B2 (en) Substrate processing method and substrate processing apparatus
WO2022259754A1 (en) Substrate processing method and substrate processing device
JP4928175B2 (en) Substrate processing apparatus and substrate processing method
WO2023223768A1 (en) Substrate processing method and substrate processing apparatus
JP2022144266A (en) Substrate processing method and substrate processing apparatus
JP2008028068A (en) Substrate processing apparatus and method
JP2010238771A (en) Substrate processing device, and substrate processing method