WO2024090063A1 - 描画装置、および描画物の形成方法 - Google Patents

描画装置、および描画物の形成方法 Download PDF

Info

Publication number
WO2024090063A1
WO2024090063A1 PCT/JP2023/033411 JP2023033411W WO2024090063A1 WO 2024090063 A1 WO2024090063 A1 WO 2024090063A1 JP 2023033411 W JP2023033411 W JP 2023033411W WO 2024090063 A1 WO2024090063 A1 WO 2024090063A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
recording medium
laser beams
color
beam shape
Prior art date
Application number
PCT/JP2023/033411
Other languages
English (en)
French (fr)
Inventor
研一 栗原
聡子 浅岡
功 高橋
英樹 佐藤
英司 野村
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024090063A1 publication Critical patent/WO2024090063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0033Recording, reproducing or erasing systems characterised by the shape or form of the carrier with cards or other card-like flat carriers, e.g. flat sheets of optical film
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24003Shapes of record carriers other than disc shape
    • G11B7/24012Optical cards
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • G11B7/24041Multiple laminated recording layers with different recording characteristics
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24094Indication parts or information parts for identification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only

Definitions

  • This disclosure relates to a drawing device and a method for forming a drawing object.
  • Patent Documents 1 to 3 disclose technologies for drawing images on a recording medium using laser light.
  • color recording media In order to further improve security, there is a demand for color recording media.
  • color recording media has the problem that it is inferior in image quality and drawing takt time compared to existing inkjet and thermal transfer methods. Therefore, it is desirable to provide a drawing device and a method for forming a drawing object that can achieve both high image quality and short takt time.
  • a drawing device is a drawing device that draws on a recording medium in which a plurality of color-developing layers, each of which contains a different color-developing compound and a different photothermal conversion agent, are stacked via an intermediate layer.
  • This drawing device includes a light source unit and a scanning unit.
  • the light source unit generates a plurality of laser beams having different wavelengths and including a wavelength corresponding to the absorption wavelength of the photothermal conversion agent.
  • the scanning unit irradiates the surface of the recording medium with the plurality of laser beams generated by the light source unit, and scans the surface of the recording medium with the plurality of laser beams.
  • the light source unit generates a plurality of laser beams such that the beam shape of at least one of the plurality of laser beams at the position of the recording medium satisfies the following relational expression, and the length of the beam shape in a direction parallel to the scanning direction of the laser beam is 0 degrees or more and 20 degrees or less with respect to the scanning direction of the laser beam.
  • Lx length of the beam shape in a direction parallel to the scanning direction of the laser light
  • Ly length of the beam shape in a direction perpendicular to the scanning direction of the laser light
  • d pixel size
  • a method for forming a drawn object according to a second aspect of the present disclosure is a method for forming a drawn object by drawing on a recording medium on which a plurality of color-developing layers, each of which contains a different color-developing compound and a different photothermal conversion agent, are laminated via an intermediate layer. This method includes the following three steps.
  • At least one of the multiple laser beams is generated such that the beam shape of at least one of the multiple laser beams at the position of the recording medium satisfies the above-mentioned relational expression, and the length of the beam shape in a direction parallel to the scanning direction of the laser beam is between 0 degrees and 20 degrees relative to the scanning direction of the laser beam.
  • FIG. 1 is a diagram illustrating an example of a perspective configuration of a laminate according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of a cross-sectional configuration of the laminate of FIG.
  • FIG. 3 is a diagram showing an example of a cross-sectional configuration of the recording medium of FIG.
  • FIG. 4 is a diagram showing a modified example of the cross-sectional structure of the recording medium of FIG.
  • FIG. 5 is a diagram showing a modified example of the cross-sectional structure of the recording medium of FIG.
  • FIG. 6 is a diagram showing a modified example of the cross-sectional structure of the recording medium of FIG.
  • FIG. 7 is a perspective view showing a modified example of the laminate of FIG. FIG.
  • FIG. 8 is a diagram illustrating an example of a cross-sectional configuration of the laminate of FIG.
  • FIG. 9 is a diagram showing a modified example of the cross-sectional configuration of the laminate of FIG.
  • FIG. 10 is a diagram showing a modified example of the cross-sectional configuration of the laminate of FIG.
  • FIG. 11 is a diagram showing a modified example of the cross-sectional configuration of the laminate of FIG. 12A and 12B are plan views of the front and rear surfaces of the smartphone, respectively.
  • FIG. 13 is a perspective view of a notebook personal computer.
  • FIG. 14 is a perspective view of a cosmetic container.
  • FIG. 15 is a perspective view of the booklet.
  • FIG. 16 is a diagram showing an example of the schematic configuration of a drawing system for drawing on a recording medium provided on the laminate shown in FIG.
  • FIG. 17 is a diagram illustrating an example of a schematic configuration of the drawing unit in FIG.
  • FIG. 18 is a diagram showing an example of the light output and the drawing mark when the laser light output from the light source unit in FIG. 17 is a continuous wave.
  • FIG. 19 is a diagram showing an example of the light output and the drawing mark when the laser light output from the light source unit in FIG. 17 is a pulse wave.
  • FIG. 20 is a diagram showing an example of a beam shape of a laser light.
  • FIG. 21 is a diagram showing an appropriate range for the beam shape of a laser beam.
  • FIG. 22 is a diagram showing an example of the relationship between the height of the irradiation surface and the minor axis length of the beam shape when the beam rotation angle is 0 degrees.
  • FIG. 23 is a diagram showing an example of a beam shape of a laser beam.
  • FIG. 24 is a diagram showing an example of the relationship between the height of the irradiation surface and the minor axis length of the beam shape when the beam rotation angle is 3 degrees.
  • Fig. 25(A) is a diagram showing an example of a mark drawn when the beam rotation angle is 0 degrees
  • Fig. 25(B) is a diagram showing an example of a mark drawn when the beam rotation angle is 3 degrees.
  • FIG. 26 is a diagram showing an example of the evaluation results of image quality when tests were performed under conditions 1 to 24.
  • FIG. 27 is a diagram illustrating an example of an optical configuration of the light source unit in FIG.
  • FIG. 28 is a diagram illustrating an example of the optical configuration shown in FIG.
  • FIG. 29 is a diagram showing an example of a rotation mechanism for rotating a part of the optical configuration shown in FIG. 27 about the Z axis.
  • FIG. 30 is a diagram showing a modified example of the schematic configuration of the drawing unit in FIG.
  • FIG. 31 is a diagram showing an example of a drawing method in a drawing system including the drawing unit of FIG.
  • FIG. 32 is a diagram showing a modified example of a drawing method in a drawing system including the drawing unit of FIG.
  • FIG. 33 is a diagram illustrating a modified example of the schematic configuration of the drawing unit in FIG.
  • FIG. 34 is a diagram showing a modified example of the schematic configuration of the drawing unit in FIG.
  • FIG. 1 shows a perspective view of a laminate 10 including a recording medium according to an embodiment of the present disclosure.
  • Fig. 2 shows a cross-sectional view of the laminate 10 of Fig. 1 taken along line A-A.
  • the laminate 10 comprises a substrate 11, an adhesive layer 12, a spacer layer 13, an adhesive layer 14, an overlay layer 15, and a recording medium 20.
  • the laminate 10 may be, for example, a card such as a security card, a financial payment card, an ID card, or a personal transaction card (hereinafter referred to as a "security card, etc.”).
  • financial payment cards include credit carts and cash cards.
  • ID cards include driver's licenses, employee ID cards, membership cards, and student ID cards.
  • personal transaction cards include prepaid cards and point cards.
  • the substrate 11 is a support that supports the recording medium 20 and the spacer layer 13.
  • the substrate 11 may have a color such as white.
  • a pattern, picture, photograph, text, or a combination of two or more of these hereinafter referred to as "pattern, etc." may be printed.
  • the substrate 11 includes, for example, plastic.
  • the substrate 11 may include at least one selected from the group consisting of a colorant, an antistatic agent, a flame retardant, a surface modifier, etc., as necessary.
  • a reflective layer (not shown) may be provided on at least one of the main surfaces of the substrate 11, or the substrate 11 itself may function as a reflective layer.
  • the plastic used in the substrate 11 includes at least one selected from the group consisting of, for example, ester resins, amide resins, olefin resins, vinyl resins, acrylic resins, imide resins, styrene resins, and engineering plastics.
  • the substrate 11 includes two or more types of resins, the two or more types of resins may be mixed, copolymerized, or laminated.
  • the above ester-based resin includes, for example, at least one selected from the group consisting of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyethylene terephthalate-isophthalate copolymer, and terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer.
  • the above amide-based resin includes, for example, at least one selected from the group consisting of nylon 6, nylon 66, and nylon 610.
  • the above olefin-based resin includes, for example, at least one selected from the group consisting of polyethylene (PE), polypropylene (PP), and polymethylpentene (PMP).
  • the above vinyl-based resin includes, for example, polyvinyl chloride (PVC).
  • the acrylic resin includes at least one selected from the group consisting of polyacrylate, polymethacrylate, and polymethyl methacrylate (PMMA).
  • the imide resin includes at least one selected from the group consisting of polyimide (PI), polyamideimide (PAI), and polyetherimide (PEI).
  • the styrene resin includes at least one selected from the group consisting of polystyrene (PS), high impact polystyrene, acrylonitrile-styrene resin (AS resin), and acrylonitrile-butadiene-styrene resin (ABS resin).
  • the engineering plastic includes at least one selected from the group consisting of polycarbonate (PC), polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyether ketone (PEK), polyether-ether ketone (PEEK), polyphenylene oxide (PPO), and polyether sulfite.
  • PC polycarbonate
  • PAR polyarylate
  • PES polysulfone
  • PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PEK polyether ketone
  • PEEK polyether-ether ketone
  • PPO polyphenylene oxide
  • PPO polyether sulfite
  • the substrate 11 may include a laser marking layer.
  • the laser marking layer used in the substrate 11 may be a known laser marking sheet.
  • the laser marking layer is configured so as to be laser marked by at least one of the following methods (1) to (5), for example.
  • (1) A method of foaming a resin material to develop color.
  • (2) A method of adding an additive that absorbs laser light to a resin material, causing the additive itself to develop color.
  • (3) A method of adding an additive that absorbs laser light to a resin material, causing the additive to heat up and carbonize the surrounding resin material to develop color.
  • (4) A method of etching the surface of a resin layer by irradiating it with a laser, utilizing the change in the surface condition.
  • (5) A method of marking by irradiating a black or dark colored resin material with laser light, causing the colorant (carbon black) to sublimate (decompose) and decolorize (exposing the base color of the resin material).
  • the laser marking layer includes, for example, a light-to-heat conversion agent and a resin material.
  • the resin material used in the laser marking layer includes, for example, a polycarbonate-based resin.
  • the light-to-heat conversion agent used in the laser marking layer includes, for example, carbon.
  • the spacer layer 13 is provided on one main surface of the substrate 11, and an adhesive layer 12 is sandwiched between the substrate 11 and the spacer layer 13.
  • the spacer layer 13 has a storage section 13A for storing the recording medium 20.
  • the storage section 13A is provided in a part of the surface of the spacer layer 13.
  • the storage section 13A may be a through hole that penetrates the spacer layer 13 in the thickness direction.
  • the spacer layer 13 is intended to suppress a step formed by the recording medium 20 when the recording medium 20 is sandwiched between the substrate 11 and the overlay layer 15.
  • the spacer layer 13 has approximately the same thickness as the recording medium 20, and covers one main surface of the substrate 11 except for the area where the recording medium 20 is provided.
  • the spacer layer 13 is in the form of a film.
  • the spacer layer 13 may be transparent.
  • the spacer layer 13 includes a plastic.
  • the plastic used in the spacer layer 13 may be the same material as that used in the substrate 11.
  • the spacer layer 13 may include a laser marking layer.
  • the laser marking layer used in the spacer layer 13 may be, for example, the same layer as the laser marking layer that may be used in the substrate 11.
  • the overlay layer 15 is provided on the spacer layer 13 and the recording medium 20, and covers the spacer layer 13 and the recording medium 20.
  • An adhesive layer 14 is sandwiched between the spacer layer 13 and the recording medium 20 and the overlay layer 15.
  • the overlay layer 15 protects the internal members of the laminate 10 (i.e., the recording medium 20 and the spacer layer 13) and maintains the mechanical reliability of the laminate 10.
  • the overlay layer 15 is in the form of a film.
  • the overlay layer 15 is transparent.
  • the overlay layer 15 includes a plastic.
  • the plastic used in the overlay layer 15 may be the same material as that used in the substrate 11.
  • a pattern or the like may be printed on at least one of the main surfaces of the overlay layer 15.
  • the overlay layer 15 may include a laser marking layer.
  • the laser marking layer used in the overlay layer 15 may be, for example, the same layer as the laser marking layer that may be used in the substrate 11.
  • the adhesive layer 12 is provided between the substrate 11 and the spacer layer 13, and bonds the substrate 11 and the spacer layer 13 to each other.
  • the adhesive layer 14 is provided between the spacer layer 13 and the overlay layer 15, and bonds the spacer layer 13 and the overlay layer 15 to each other.
  • the adhesive layers 12 and 14 are transparent.
  • the adhesive layers 12 and 14 contain a thermal adhesive.
  • the thermal adhesive used in the adhesive layers 12 and 14 contains a thermosetting resin.
  • the thermosetting resin used in the adhesive layers 12 and 14 contains at least one type selected from the group consisting of, for example, epoxy resins and urethane resins.
  • the curing temperature of the thermal adhesive is preferably in the range of 100°C to 120°C from the viewpoint of reducing damage to the recording medium 20.
  • FIG. 3 shows an example of a cross-sectional structure of the recording medium 20.
  • the recording medium 20 is configured so that the coloring state can be changed by an external stimulus.
  • This change in coloring state makes it possible to record, for example, a pattern or the like on the recording medium 20.
  • the external stimulus is irradiation with laser light.
  • the change in coloring state is an irreversible change.
  • the method of the recording medium 20 is preferably a write-once method in which a pattern or the like can be written only once. It is preferable that the recording medium 20 is fitted into the storage portion 13A of the spacer layer 13, and the recording medium 20 and the spacer layer 13 are integrated. This makes it possible to make it difficult to visually recognize the boundary between the recording medium 20 and the spacer layer 13 in the in-plane direction of the laminate 10. Therefore, it is possible to improve the anti-counterfeiting properties.
  • the recording medium 20 includes, for example, a substrate 21, an intermediate layer 22, a color-developing layer 23, an intermediate layer 24, a color-developing layer 25, an intermediate layer 26, and a color-developing layer 27 in this order.
  • An adhesive layer may be provided between the substrate 21 and the intermediate layer 22, between the intermediate layer 22 and the color-developing layer 23, between the color-developing layer 23 and the intermediate layer 24, between the intermediate layer 24 and the color-developing layer 25, between the color-developing layer 25 and the intermediate layer 26, and between the intermediate layer 26 and the color-developing layer 27.
  • a protective layer 28 may be provided on the outermost surface of the recording medium 20, for example, as shown in FIG. 3, or the outermost surface of the recording medium 20 may be a color-developing layer 27, for example, as shown in FIG. 4.
  • the substrate 21 is a support for supporting the color-developing layers 23, 25, 27, etc.
  • the substrate 21 is preferably made of a material that has excellent heat resistance and excellent dimensional stability in the planar direction.
  • the substrate 21 may have either light-transmitting or non-light-transmitting properties.
  • the substrate 21 may be, for example, a rigid substrate such as a wafer, or may be flexible thin-layer glass, film, paper, etc. By using a flexible substrate as the substrate 21, a flexible (bendable) recording medium can be realized.
  • the constituent material of the substrate 21 examples include inorganic materials, metal materials, and plastics.
  • the inorganic material used for the substrate 21 includes at least one selected from the group consisting of silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ).
  • the silicon oxide includes glass and spin-on glass (SOG).
  • the metal material used for the substrate 21 includes at least one selected from the group consisting of aluminum (Al), nickel (Ni), and stainless steel.
  • Examples of the plastic used for the substrate 21 include the same materials as those for the substrate 11.
  • a reflective layer (not shown) may be provided on at least one of the main surfaces of the substrate 21, or the substrate 21 itself may also function as a reflective layer.
  • the color-developing layers 23, 25, and 27 are configured so that the coloring state can be changed by an external stimulus such as laser light or heat.
  • the color-developing layers 23, 25, and 27 are configured using a material that allows stable recording and can control the coloring state.
  • the color-developing layers 23, 25, and 27 contain a color-developing compound having electron-donating properties, a color developer having electron-accepting properties and corresponding to the color-developing compound, a matrix polymer (binder), and a photothermal conversion agent.
  • the color-developing layers 23, 25, and 27 may contain at least one additive selected from the group consisting of, for example, a sensitizer and an ultraviolet absorbing material, if necessary.
  • the color-developing layers 23, 25, and 27 contain color-developing compounds with different color hues. That is, the color-developing compounds contained in the color-developing layers 23, 25, and 27 exhibit different colors in the color-developed state.
  • the color-developing compound contained in the color-developing layer 23 exhibits, for example, a cyan color in the color-developed state.
  • the color-developing compound contained in the color-developing layer 25 exhibits, for example, a magenta color in the color-developed state.
  • the color-developing compound contained in the color-developing layer 27 exhibits, for example, a yellow color in the color-developed state.
  • the photothermal conversion agents contained in the color-developing layers 23, 25, and 27 absorb laser light of different wavelength ranges (for example, different near-infrared laser light) and generate heat.
  • the thickness of each of the color-developing layers 23, 25, 27 is preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 2 ⁇ m or more and 15 ⁇ m or less. If the thickness of each of the color-developing layers 23, 25, 27 is 1 ⁇ m or more, sufficient color density can be obtained. On the other hand, if the thickness of each of the color-developing layers 23, 25, 27 is 20 ⁇ m or less, the amount of heat used by each of the color-developing layers 23, 25, 27 can be prevented from becoming too large. Therefore, deterioration of color development can be prevented.
  • the color-developing compound is, for example, a leuco dye.
  • the leuco dye may be, for example, a dye for existing thermal paper.
  • a specific example is a compound represented by the following formula (1) that contains an electron-donating group in the molecule.
  • the color-developing compound is not particularly limited and can be appropriately selected according to the purpose.
  • Specific color-developing compounds include, in addition to the compound shown in formula (1) above, fluoran compounds, triphenylmethanephthalide compounds, azaphthalide compounds, phenothiazine compounds, leucoauramine compounds, and indolinophthalide compounds.
  • 2-anilino-3-methyl-6-diethylaminofluoran 2-anilino-3-methyl-6-di(n-butylamino)fluoran
  • 2-anilino-3-methyl-6-(N-n-propyl-N-methylamino)fluoran 2-anilino-3-methyl-6-(N-isopropyl-N-methylamino)fluoran
  • the developer may contain a compound represented by the following formula (2).
  • X 0 is a divalent group containing at least one benzene ring.
  • Y 01 and Y 02 are each independently a monovalent group.
  • n01 and n02 are each independently an integer of 0 to 5. When n01 is an integer of 2 to 5, Y 01 may be the same as or different from each other. When n02 is an integer of 2 to 5, Y 02 may be the same as or different from each other.
  • Z 01 and Z 02 are each independently a hydrogen-bonding group.
  • the melting point can be increased compared to when X 0 is an aliphatic hydrocarbon group (e.g., a normal alkyl chain), and therefore the color retention characteristics during high-temperature, high-humidity storage (hereinafter referred to as "high-temperature, high-humidity storage characteristics") can be improved.
  • X 0 includes at least two benzene rings.
  • the high-temperature, high-humidity storage characteristics are, for example, storage characteristics under an environment of 80°C and 60% RH.
  • X 0 includes at least two benzene rings
  • at least two benzene rings may be condensed.
  • it may be naphthalene or anthracene.
  • the color developers tend to exist in a state of being solidified to some extent via hydrogen bonds, thereby improving the stability of the color developers in the color-forming layers 23, 25, and 27.
  • the hydrogen-bonding group means a functional group that contains an atom that can form a hydrogen bond with another functional group or an atom present in another compound, etc.
  • the developer preferably contains a compound represented by the following formula (3).
  • X1 is a divalent group containing at least one benzene ring.
  • Y11 , Y12 , Y13 , and Y14 are each independently a monovalent group.
  • Z11 and Z12 are each independently a hydrogen-bonding group.
  • the melting point can be increased compared to when X 1 is an aliphatic hydrocarbon group (e.g., a normal alkyl chain), and therefore the high-temperature, high-humidity storage characteristics can be improved.
  • X 1 contains at least two benzene rings.
  • at least two benzene rings may be condensed. For example, it may be naphthalene or anthracene.
  • the color developers tend to exist in a state of being solidified to some extent via hydrogen bonds, and the stability of the color developers in the color-forming layers 23, 25, and 27 is improved.
  • the hydrocarbon group is a general term for a group composed of carbon (C) and hydrogen (H), and may be a saturated or unsaturated hydrocarbon group.
  • a saturated hydrocarbon group is an aliphatic hydrocarbon group that does not have a carbon-carbon multiple bond
  • an unsaturated hydrocarbon group is an aliphatic hydrocarbon group that has a carbon-carbon multiple bond (carbon-carbon double bond or carbon-carbon triple bond).
  • formula (2) and formula (3) contain a hydrocarbon group
  • the hydrocarbon group may be chain-like or may contain one or more rings.
  • the chain-like may be linear or branched with one or more side chains, etc.
  • X0 in formula (2) and X1 in formula (3) are, for example, a divalent group containing one benzene ring.
  • the divalent group is, for example, represented by the following formula (4).
  • X21 may be present or absent, and when X21 is present, X21 is a divalent group.
  • X22 may be present or absent, and when X22 is present, X22 is a divalent group.
  • R21 is a monovalent group.
  • n21 is an integer of 0 to 4. When n21 is an integer of 2 to 4, R21 may be the same or different from each other. * represents a bond.
  • the bonding positions of X21 and X22 to the benzene ring are not limited. That is, the bonding positions of X21 and X22 to the benzene ring may be any of the ortho, meta and para positions.
  • the divalent group containing one benzene ring is preferably represented by the following formula (5).
  • R 22 is a monovalent group. n22 is an integer of 0 to 4. When n22 is an integer of 2 to 4, R 22 may be the same or different. * represents a bond.
  • the bonding positions of Z01 and Z02 to the benzene ring in formula (5) are not limited. That is, the bonding positions of Z01 and Z02 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Z 11 and Z 12 to the benzene ring in formula (5) are not limited. That is, the bonding positions of Z 11 and Z 12 to the benzene ring may be any of the ortho, meta, and para positions.
  • X21 , X22 ) X21 and X22 in formula (4) may each independently be a divalent group, and are not particularly limited, but may be, for example, a hydrocarbon group which may have a substituent.
  • the hydrocarbon group is preferably chain-like.
  • the melting point of the color developer can be reduced, so that the color developer melts upon irradiation with laser light, and the color former can easily develop color.
  • a normal alkyl chain is particularly preferable.
  • the number of carbon atoms in the hydrocarbon group, which may have a substituent is, for example, 1 to 15, 1 to 13, 1 to 12, 1 to 10, 1 to 6, or 1 to 3.
  • the number of carbon atoms of the normal alkyl group is preferably 8 or less, more preferably 6 or less, even more preferably 5 or less, and particularly preferably 3 or less, from the viewpoint of high-temperature storage stability.
  • the normal alkyl group has 8 or less carbon atoms, the normal alkyl group is short in length, so that thermal disturbance is unlikely to occur in the color developer during high-temperature storage, and it is considered that the site that interacted with the color former such as the leuco dye during color development is unlikely to be dissociated. Therefore, the color former such as the leuco dye is unlikely to fade during high-temperature storage, and high-temperature storage stability is improved.
  • the hydrocarbon group may have include a halogen group (e.g., a fluorine group) and an alkyl group having a halogen group (e.g., a fluorine group).
  • the hydrocarbon group that may have a substituent may be one in which some of the carbon atoms of the hydrocarbon group (e.g., some of the carbon atoms contained in the main chain of the hydrocarbon group) are replaced with an element such as oxygen.
  • R21 ) R21 in formula (4) is not particularly limited as long as it is a monovalent group, but examples thereof include a halogen group or a hydrocarbon group which may have a substituent.
  • the halogen group include a fluorine group (-F), a chlorine group (-Cl), a bromine group (-Br), and an iodine group (-I).
  • the number of carbon atoms in the hydrocarbon group, which may have a substituent is, for example, 1 to 15, 1 to 13, 1 to 12, 1 to 10, 1 to 6, or 1 to 3.
  • substituent that the hydrocarbon group may have include a halogen group (e.g., a fluorine group) or an alkyl group having a halogen group (e.g., a fluorine group).
  • the hydrocarbon group, which may have a substituent may have some of the carbon atoms of the hydrocarbon group (e.g., some of the carbon atoms contained in the main chain of the hydrocarbon group) substituted with an element such as oxygen.
  • R22 ) R22 in formula (5) is not particularly limited as long as it is a monovalent group, but examples thereof include a halogen group or a hydrocarbon group which may have a substituent.
  • the halogen group and the hydrocarbon group which may have a substituent are the same as R21 in formula (2) above.
  • X0 in formula (2) and X1 in formula (3) are, for example, a divalent group containing two benzene rings.
  • the divalent group is, for example, represented by the following formula (6).
  • X31 may be present or absent, and when X31 is present, X31 is a divalent group.
  • X32 may be present or absent, and when X32 is present, X32 is a divalent group.
  • X33 may be present or absent, and when X33 is present, X33 is a divalent group.
  • R31 and R32 are each independently a monovalent group.
  • n31 and n32 are each independently an integer of 0 to 4. When n31 is an integer of 2 to 4, R31 may be the same as or different from each other. When n32 is an integer of 2 to 4, R32 may be the same as or different from each other. * represents a bond.
  • the bonding positions of X31 and X32 to the benzene ring are not limited. That is, the bonding positions of X31 and X32 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of X32 and X33 to the benzene ring are not limited. That is, the bonding positions of X32 and X33 to the benzene ring may be any of the ortho, meta, and para positions.
  • the divalent group containing two benzene rings is preferably represented by the following formula (7).
  • X34 is a divalent group.
  • R33 and R34 are each independently a monovalent group.
  • n33 and n34 are each independently an integer of 0 to 4. When n33 is an integer of 2 to 4, R33 may be the same as or different from each other. When n34 is an integer of 2 to 4, R34 may be the same as or different from each other. * represents a bond.
  • the bonding positions of Z 01 and X 34 to the benzene ring in formula (7) are not limited. That is, the bonding positions of Z 01 and X 34 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Z 02 and X 34 to the benzene ring in formula (7) are not limited. That is, the bonding positions of Z 02 and X 34 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Z 11 and X 34 to the benzene ring are not limited. That is, the bonding positions of Z 11 and X 34 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Z 12 and X 34 to the benzene ring are not limited. That is, the bonding positions of Z 12 and X 34 to the benzene ring may be any of the ortho, meta, and para positions.
  • X 31 , X 32 , and X 33 in formula (6) are each independently a divalent group and are not particularly limited, but may be, for example, a hydrocarbon group which may have a substituent.
  • the hydrocarbon group is the same as X 21 and X 22 in formula (4) above.
  • X34 in formula (7) is not particularly limited as long as it is a divalent group, but an example thereof is a hydrocarbon group which may have a substituent.
  • the hydrocarbon group is the same as X21 and X22 in formula (4) above.
  • R31 , R32 ) R 31 and R 32 in formula (6) are not particularly limited as long as they are monovalent groups, but examples thereof include halogen groups and optionally substituted hydrocarbon groups.
  • the halogen groups and optionally substituted hydrocarbon groups are the same as R 21 in formula (4) above.
  • R33 , R34 R 33 and R 34 in formula (7) are not particularly limited as long as they are monovalent groups, but examples thereof include halogen groups and optionally substituted hydrocarbon groups.
  • the halogen groups and optionally substituted hydrocarbon groups are the same as R 21 in formula (4) above.
  • Y 01 and Y 02 are each independently, for example, a hydrogen group (-H), a hydroxyl group (-OH), a halogen group (-X), a carboxyl group (-COOH), an ester group (-COOR), or a hydrocarbon group which may have a substituent.
  • halogen group include a fluorine group (-F), a chlorine group (-Cl), a bromine group (-Br), or an iodine group (-I).
  • the number of carbon atoms in the hydrocarbon group, which may have a substituent is, for example, 1 to 15, 1 to 13, 1 to 12, 1 to 10, 1 to 6, or 1 to 3.
  • substituent that the hydrocarbon group may have include a halogen group (e.g., a fluorine group) or an alkyl group having a halogen group (e.g., a fluorine group).
  • the hydrocarbon group, which may have a substituent may have some of the carbon atoms of the hydrocarbon group (e.g., some of the carbon atoms contained in the main chain of the hydrocarbon group) substituted with an element such as oxygen.
  • one of (Y 01 ) n01 and/or one of (Y 02 ) n02 is a hydroxy group (-OH).
  • one of (Y 01 ) n01 and/or one of (Y 02 ) n02 is a hydroxy group (-OH)
  • the display quality and light resistance can be improved.
  • the bonding positions of Y11 and Y12 to the benzene ring are not limited. That is, the bonding positions of Y11 and Y12 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Y13 and Y14 to the benzene ring are not limited. That is, the bonding positions of Y13 and Y14 to the benzene ring may be any of the ortho, meta, and para positions.
  • the bonding positions of Y11 and Y12 to one benzene and the bonding positions of Y13 and Y14 to the other benzene may be the same or different.
  • Y 11 , Y 12 , Y 13 and Y 14 are each independently, for example, a hydrogen group (-H), a hydroxyl group (-OH), a halogen group, a carboxyl group (-COOH), an ester group (-COOR) or a hydrocarbon group which may have a substituent.
  • the halogen group and the hydrocarbon group which may have a substituent are the same as Y 01 and Y 02 in formula (2) above.
  • Y 11 and/or Y 13 is a hydroxy group (-OH).
  • Y 11 and/or Y 13 is a hydroxy group (-OH)
  • the display quality and light resistance can be improved.
  • Z 01 and Z 02 are each independently, for example, a urea bond (-NHCONH-), an amide bond (-NHCO-, -OCHN-) or a hydrazide bond (-NHCOCONH-). From the viewpoint of improving high-temperature and high-humidity storage properties, Z 01 and Z 02 are preferably urea bonds.
  • Z 01 is an amide bond
  • the nitrogen contained in the amide bond may be bonded to benzene, or the carbon contained in the amide bond may be bonded to benzene.
  • Z 02 is an amide bond
  • the nitrogen contained in the amide bond may be bonded to benzene, or the carbon contained in the amide bond may be bonded to benzene.
  • Z 11 and Z 12 are each independently, for example, a urea bond (-NHCONH-), an amide bond (-NHCO-, -OCHN-) or a hydrazide bond (-NHCOCONH-). From the viewpoint of improving high-temperature and high-humidity storage properties, Z 11 and Z 12 are preferably urea bonds.
  • Z 11 is an amide bond
  • the nitrogen contained in the amide bond may be bonded to benzene, or the carbon contained in the amide bond may be bonded to benzene.
  • Z 12 is an amide bond
  • the nitrogen contained in the amide bond may be bonded to benzene, or the carbon contained in the amide bond may be bonded to benzene.
  • the developer in which X 0 in formula (2) and X 1 in formula (3) each contain one benzene ring specifically includes, for example, at least one selected from the group consisting of compounds represented by the following formulas (8-1) to (8-6).
  • the developer in which X 0 in formula (2) and X 1 in formula (3) each contain two benzene rings specifically includes, for example, at least one selected from the group consisting of compounds represented by the following formulas (9-1) to (9-8).
  • the matrix polymer preferably functions as a binder.
  • the matrix polymer is preferably one in which the color-developing compound, the color developer, and the light-to-heat conversion agent are easily dispersed homogeneously.
  • the matrix polymer may be, for example, at least one selected from the group consisting of thermosetting resins and thermoplastic resins.
  • Specific examples include at least one selected from the group consisting of polyvinyl chloride resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, ethyl cellulose resins, polystyrene resins, styrene copolymer resins, phenoxy resin resins, polyester resins, aromatic polyester resins, polyurethane resins, polycarbonate resins, polyacrylic acid ester resins, polymethacrylic acid ester resins, acrylic acid copolymer resins, maleic acid polymer resins, polyvinyl alcohol resins, modified polyvinyl alcohol resins, hydroxyethyl cellulose resins, carboxymethyl cellulose resins, and starch.
  • the matrix polymer preferably contains a polycarbonate-based resin.
  • the photothermal conversion agent used in the coloring layers 23, 25, and 27 absorbs light in a predetermined wavelength range in the near-infrared region and generates heat.
  • a near-infrared absorbing dye that has an absorption peak in the wavelength range of 700 nm to 2000 nm and has almost no absorption in the visible region.
  • at least one selected from the group consisting of compounds having a phthalocyanine skeleton (phthalocyanine dyes), compounds having a squarylium skeleton (squarylium dyes), and inorganic compounds, etc. can be mentioned.
  • the inorganic compound at least one selected from the group consisting of metal complexes such as dithio complexes, diimonium salts, aminium salts, and inorganic compounds, etc. can be mentioned.
  • metal complexes such as dithio complexes, diimonium salts, aminium salts, and inorganic compounds, etc.
  • the inorganic compound at least one selected from the group consisting of graphite, carbon black, metal powder particles, tricobalt tetroxide, iron oxide, chromium oxide, copper oxide, titanium black, metal oxides such as ITO (indium tin oxide), metal nitrides such as niobium nitride, metal carbides such as tantalum carbide, metal sulfides, and various magnetic powders, etc.
  • ITO indium tin oxide
  • metal nitrides such as niobium nitride
  • metal carbides such as tantalum carbide, metal sulfides, and
  • a compound (cyanine dye) having a cyanine skeleton with excellent light resistance and heat resistance may be used.
  • excellent light resistance means that the compound does not decompose under the use environment, for example, by irradiation with light from a fluorescent lamp.
  • excellent heat resistance means that the maximum absorption peak value of the absorption spectrum does not change by 20% or more when the compound is formed into a film together with a polymer material and stored at 150°C for 30 minutes.
  • Examples of such a compound having a cyanine skeleton include a compound having at least one of a counter ion of SbF 6 , PF 6 , BF 4 , ClO 4 , CF 3 SO 3 and (CF 3 SO 3 ) 2 N and a methine chain containing a 5-membered ring or a 6-membered ring in the molecule.
  • the compound having a cyanine skeleton used in the recording medium 20 preferably has both one of the counter ions and a cyclic structure such as a 5-membered ring or a 6-membered ring in the methine chain, but sufficient light resistance and heat resistance are guaranteed if the compound has at least one of the counter ions.
  • a photothermal conversion agent that has a narrow light absorption band, for example in the wavelength range of 700 nm to 2000 nm, and whose light absorption bands do not overlap in the color-producing layers 23, 25, and 27. This makes it possible to selectively color the desired layer among the color-producing layers 23, 25, and 27.
  • the intermediate layer 22 is provided between the substrate 21 and the color-developing layer 23.
  • the intermediate layer 24 is provided between the color-developing layer 23 and the color-developing layer 25.
  • the intermediate layer 26 is provided between the color-developing layer 25 and the color-developing layer 27.
  • the intermediate layers 22, 24, and 26 may be capable of insulating the layers from each other and suppressing the diffusion of the constituent materials.
  • the intermediate layers 22, 24, and 26 include, for example, a polymeric material having general light-transmitting properties.
  • the material include at least one selected from the group consisting of acrylic resins, polyvinyl chloride resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, ethyl cellulose resins, polystyrene resins, styrene copolymer resins, phenoxy resin resins, polyester resins, aromatic polyester resins, polyurethane resins, polycarbonate resins, polyacrylic acid ester resins, polymethacrylic acid ester resins, acrylic acid copolymer resins, maleic acid polymer resins, polyvinyl alcohol resins, modified polyvinyl alcohol resins, hydroxyethyl cellulose resins, carboxymethyl cellulose resins, and starch.
  • the intermediate layers 22, 24, and 26 may include various additives such as ultraviolet absorbers.
  • the intermediate layers 22, 24, and 26 may be ultraviolet-cured resin layers.
  • the ultraviolet-cured resin layers contain an ultraviolet-cured resin composition that has undergone a polymerization reaction and solidified. More specifically, for example, the ultraviolet-cured resin layer contains a polymer of a polymerizable compound and a polymerization initiator that has undergone a structural change due to the generation of active species by irradiation with external energy (ultraviolet rays).
  • the ultraviolet-cured resin composition contains, for example, at least one type selected from the group consisting of radical polymerization type ultraviolet-cured resin compositions and cationic polymerization type ultraviolet-cured resin compositions.
  • the ultraviolet-cured resin composition may contain at least one type selected from the group consisting of sensitizers, fillers, stabilizers, leveling agents, defoamers, viscosity adjusters, etc., as necessary.
  • the ultraviolet-cured resin composition may be an ultraviolet-cured resin composition for hard coats.
  • the ultraviolet-cured resin composition may be an acrylic ultraviolet-cured resin composition.
  • the intermediate layers 22, 24, and 26 may contain an inorganic material that is translucent.
  • porous silica, alumina, titania, carbon, or a composite of these materials is preferable because it has low thermal conductivity and high insulating effect.
  • the intermediate layers 22, 24, and 26 can be formed, for example, by the sol-gel method.
  • the thickness of the intermediate layers 22, 24, 26 may be adjusted to make the thickness of the recording medium 20 the same as that of the spacer layer 13, thereby suppressing the occurrence of physical steps.
  • the thickness of the intermediate layers 22, 24, 26 is preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness of the intermediate layers 22, 24, 26 is 3 ⁇ m or more, a sufficient heat insulating effect can be obtained. On the other hand, if the thickness of the intermediate layers 22, 24, 26 is 100 ⁇ m or less, a decrease in translucency can be suppressed. In addition, a decrease in the bending resistance of the recording medium 20 can be suppressed, making it less likely that defects such as cracks will occur.
  • the intermediate layers 22, 24, and 26 may contain an adhesive.
  • the adhesive may include at least one selected from the group consisting of acrylic resins, silicone resins, urethane resins, epoxy resins, and elastomer materials.
  • the protective layer 28 is for protecting the surface of the recording medium 20, and is formed, for example, using at least one of an ultraviolet-curable resin and a thermosetting resin.
  • the protective layer 28 may be a hard coat layer.
  • the protective layer 28 may be made of a matrix polymer or a plastic film similar to that of the substrate 21.
  • multiple protective layers may be bonded together, for example, using an adhesive.
  • the thickness of the protective layer 28 is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the recording medium 20 may have a laser marking layer 31 on the outermost surface of the recording medium 20, for example, as shown in FIG. 5.
  • the laser marking layer 31 may have a common structure with the laser marking layer described as the laser marking layer used for the substrate 11.
  • the recording medium 20 may have a laser marking layer 32 between the substrate 21 and the intermediate layer 22, for example, as shown in FIG. 6.
  • the laser marking layer 32 may have a common structure with the laser marking layer described as the laser marking layer used for the substrate 11.
  • thermosetting resin is applied as a thermal adhesive to one of the main surfaces of the substrate 11 to form an adhesive layer 12.
  • the spacer layer 13 is placed on the adhesive layer 12, and then the recording medium 20 is fitted into the storage section 13A of the spacer layer 13.
  • the spacer layer 13 in which the recording medium 20 has been fitted in the storage section 13A may be placed on the adhesive layer 12.
  • the adhesive layer 12 may also be formed by applying a thermosetting resin onto the spacer layer 13 in which the recording medium 20 has been fitted in the storage section 13A, and then placing the spacer layer 13 on the main surface of the substrate 11 with the coating sandwiched between them.
  • the adhesive layer 12 may be formed by bonding a sheet formed in advance by applying a thermosetting resin to a separator, or the like, to the main surface of the substrate 11 or the spacer layer 13 in which the recording medium 20 has been fitted in the storage section 13A by means of thermal lamination or the like.
  • thermosetting resin is applied as a thermal adhesive onto the spacer layer 13 to form an adhesive layer 14, and then the overlay layer 15 is placed on the adhesive layer 14.
  • the resulting laminate 10 is sandwiched between metal plates and pressurized while being heated to thermally cure the adhesive layer 14.
  • the temperature applied to the laminate 10 during thermal curing is preferably 100°C or higher and 120°C or lower from the viewpoint of reducing damage to the recording medium 20. This results in the desired laminate 10.
  • the adhesive layer 14 may be formed by applying a thermosetting resin to the overlay layer 15, and then placing the overlay layer 15 on the spacer layer 13 so as to sandwich the coating film therebetween.
  • the adhesive layer 14 may also be formed by bonding a sheet previously formed by applying a thermosetting resin to a separator to the overlay layer 15 or the spacer layer 13 by means of thermal lamination or the like.
  • a pattern or the like can be recorded on the recording medium 20 as follows.
  • the color-developing layers 23, 25, and 27 exhibit cyan, magenta, and yellow colors, respectively.
  • infrared rays having a specified wavelength and a specified output are irradiated onto the recording medium 20 through the overlay layer 15 by a semiconductor laser or the like.
  • infrared rays having a wavelength ⁇ 1 are irradiated onto the color-forming layer 23 with enough energy to cause the color-forming layer 23 to reach its color-forming temperature.
  • This causes the photothermal conversion material contained in the color-forming layer 23 to generate heat, causing a color reaction (color-developing reaction) between the color-forming compound and the color developer, and the irradiated portion develops a cyan color.
  • infrared rays of wavelength ⁇ 2 are irradiated onto the color-forming layer 25 with enough energy to cause the color-forming layer 25 to reach its color-developing temperature.
  • infrared rays of wavelength ⁇ 3 are irradiated onto the color-forming layer 27 with enough energy to cause the color-forming layer 27 to reach its color-developing temperature.
  • This causes the photothermal conversion materials contained in the color-forming layers 25 and 27 to generate heat, causing a color reaction between the color-developing compound and the color developer, and the irradiated portions develop magenta and yellow, respectively.
  • a pattern or the like for example, a full-color pattern or the like.
  • the recording medium 20 may be provided over the entire surface of the laminate 10 in plan view, as shown in Fig. 7.
  • the spacer layer 13 is omitted from the laminate 10, as shown in Fig. 8.
  • Fig. 7 shows a modified example of the perspective configuration of the laminate 10.
  • Fig. 8 shows an example of the cross-sectional configuration of the laminate 10 in Fig. 7 taken along line A-A.
  • the adhesive layers 12 and 14 may be omitted, and the base material 11 and the spacer layer 13 may be bonded to each other by fusion, and the spacer layer 13 and the overlay layer 15 may be bonded to each other by fusion.
  • the substrate 11, the spacer layer 13, and the overlay layer 15 contain a thermoplastic resin as the plastic.
  • a thermoplastic resin in the substrate 11, the spacer layer 13, and the overlay layer 15, it is possible to increase the interlayer adhesion strength by fusion.
  • the thermoplastic resin is capable of heat-sealing the layers of the laminate 10 in a temperature range of 130°C or higher and 200°C or lower.
  • the substrate 11, the spacer layer 13, and the overlay layer 15 may contain the same type of thermoplastic resin, or they may not contain the same type of thermoplastic resin. If the substrate 11, the spacer layer 13, and the overlay layer 15 do not contain the same type of thermoplastic resin, one of the substrate 11, the spacer layer 13, and the overlay layer 15 may contain a different type of thermoplastic resin from the other two layers. If the substrate 11, the spacer layer 13, and the overlay layer 15 do not contain the same type of thermoplastic resin, the substrate 11, the spacer layer 13, and the overlay layer 15 may each contain a different type of thermoplastic resin.
  • the substrate 11, the spacer layer 13, and the overlay layer 15 contain the same type of thermoplastic resin
  • the semi-crystalline thermoplastic resin includes at least one selected from the group consisting of polypropylene (PP), polyethylene (PE), polyacetal (POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), etc.
  • PP polypropylene
  • PE polyethylene
  • POM polyacetal
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • the non-crystalline thermoplastic resin includes, for example, at least one selected from the group consisting of ABS resin, polycarbonate (PC), a polymer alloy of ABS resin and PC (hereinafter referred to as "ABS/PC polymer alloy"), AS resin, polystyrene (PS), polymethyl methacrylate (PMMA), polyphenylene oxide (PPO), polysulfone (PSU), polyvinyl chloride (PVC), polyetherimide (PEI), and polyethersulfone (PES).
  • ABS resin polycarbonate
  • PC polymer alloy of ABS resin and PC
  • ABS/PC polymer alloy a polymer alloy of ABS resin and PC
  • AS resin AS resin
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PPO polyphenylene oxide
  • PSU polysulfone
  • PVC polyvinyl chloride
  • PEI polyetherimide
  • PES polyethersulfone
  • the substrate 11, the spacer layer 13, and the overlay layer 15 do not contain the same type of thermoplastic resin, it is preferable that the substrate 11, the spacer layer 13, and the overlay layer 15 contain a non-crystalline thermoplastic resin from the viewpoint of improving the interlayer adhesion strength by fusion.
  • the amorphous thermoplastic resins contained in each of the two adjacent layers of the laminate 10 contains ABS resin
  • the other layer contains at least one selected from the group consisting of ABS/PC polymer alloy, polycarbonate (PC), AS resin, polystyrene (PS), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC).
  • the other layer contains at least one selected from the group consisting of ABS resin, polycarbonate (PC), and polymethyl methacrylate (PMMA).
  • the other layer contains at least one selected from the group consisting of ABS resin, ABS/PC polymer alloy, and polymethyl methacrylate (PMMA).
  • the other layer contains at least one selected from the group consisting of ABS resin, polystyrene (PS), polymethyl methacrylate (PMMA) and polyphenylene oxide (PPO).
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PPO polyphenylene oxide
  • the other layer contains at least one selected from the group consisting of AS resin and polyphenylene oxide (PPO).
  • the other layer contains at least one selected from the group consisting of ABS resin, ABS/PC polymer alloy, AS resin, and polyphenylene oxide (PPO).
  • the other layer contains at least one selected from the group consisting of polycarbonate (PC), AS resin, polystyrene (PS), and polymethyl methacrylate (PMMA).
  • the other layer contains polycarbonate (PC).
  • PC polycarbonate
  • PVC polyvinyl chloride
  • the recording medium 20 is placed on one main surface of the substrate 11.
  • the overlay layer 15 is placed on the recording medium 20.
  • the laminate consisting of the substrate 11, the recording medium 20, and the overlay layer 15 is sandwiched between metal plates and heated and pressurized to thermally fuse the substrate 11 and the recording medium 20, and also to thermally fuse the recording medium 20 and the overlay layer 15.
  • the temperature applied to the laminate during thermal fusion is preferably 130°C or higher and 200°C or lower, from the viewpoint of reducing damage to the recording medium 20 and from the viewpoint of achieving sufficient fusion strength. This results in the laminate 10 according to this modified example.
  • a bottomed recess (accommodating portion 13B) recessed in the thickness direction of the spacer layer 13 may be provided instead of the accommodating portion 13A.
  • the accommodating portion 13B may be provided on one of the two main surfaces of the spacer layer 13, which faces the overlay layer 15, or on the main surface which faces the substrate 11.
  • the recording medium 20 may have a color-developing layer capable of displaying multiple colors even with a single layer structure.
  • Fig. 11 shows an example of a cross-sectional configuration of the recording medium 20 capable of displaying multiple colors even with a single layer structure.
  • the recording medium 20 according to this modified example has a base material 21, a color-developing layer 29, and a protective layer 28 in this order.
  • the color-developing layer 29 includes three types of microcapsules 29C, 29M, and 29Y that have different color hues. That is, the color-developing layer 29 includes three types of microcapsules 29C, 29M, and 29Y that exhibit different colors in the colored state.
  • the color-developing layer 29 may include a first matrix polymer as necessary.
  • Each of the three types of microcapsules 29C, 29M, and 29Y includes, for example, a color-developing compound that exhibits a different color (e.g., cyan (C), magenta (M), and yellow (Y)), a color developer corresponding to each color-developing compound, a photothermal conversion agent that absorbs light in different wavelength ranges and generates heat, and a second matrix polymer.
  • a color-developing compound that exhibits a different color (e.g., cyan (C), magenta (M), and yellow (Y)
  • a color developer corresponding to each color-developing compound e.g., cyan
  • the recording medium 20 may include a plurality of color-forming layers capable of displaying n or more colors (n is an integer of 4 or more).
  • the first to n-th color-forming layers may contain color-forming compounds having different color hues.
  • the laminate 10 is applied to a card.
  • the laminate 10 may be applied to medical supplies, automobile parts, automobiles, toys, food, cosmetics, clothing accessories, documents (e.g., passports, etc.), exterior members, or housings of electronic devices, etc.
  • Exterior members include, for example, the interior or exterior of a wall of a building, or the exterior of furniture such as a desk.
  • electronic devices include personal computers (hereinafter referred to as "PCs"), mobile devices, mobile phones (e.g., smartphones), tablet computers, display devices, photographing devices, audio devices, game devices, industrial tools, medical devices, robots, or wearable terminals, etc.
  • wearable terminals include clothing accessories such as watches (wristwatches), bags, clothes, hats, glasses, or shoes.
  • the laminate 10 is applied to a smartphone, a notebook personal computer, and a cosmetic container.
  • Fig. 12A shows the external configuration of the front side of the smartphone 30, and Fig. 12B shows the external configuration of the back side of the smartphone 30 shown in Fig. 12A.
  • the smartphone 30 includes, for example, a display unit 33 and a housing 34.
  • a recording medium 20 is provided on the back side of the housing 34.
  • the housing 34 is configured to include a laminate 10.
  • the laminate 10 has the same configuration as any of the laminates 10 according to the above embodiment and the modified examples thereof, except that the base material 11 has the housing shape of the smartphone 30. This can improve the counterfeit prevention properties, etc. of the smartphone 30.
  • [Application example 2] 13 shows the external configuration of a notebook PC 40.
  • the notebook PC 40 includes a computer main body 41 and a display 42.
  • the computer main body 41 includes a housing 41a, a keyboard 41b, a wheel/pad operation unit 41c, and click buttons 41d and 41e.
  • the housing 41a is provided with a recording medium 20.
  • the housing 41a includes a laminate 10.
  • the laminate 10 has the same configuration as any of the laminates 10 according to the above-described embodiments and their modified examples, except that the base material 11 has the housing shape of the notebook PC 40. This can improve the counterfeit prevention properties, etc. of the notebook PC 40.
  • FIG. 14 shows the external appearance of a cosmetic container 50.
  • This cosmetic container 50 includes a storage section 511 and a lid section 59 that covers the storage section 58.
  • the lid section 59 is provided with a recording medium 20.
  • the lid section 59 is configured to include a laminate 10.
  • This laminate 10 has the same configuration as any of the laminates 10 according to the above embodiment and its modified examples, except that the base material 11 has a shape corresponding to the lid section 59. This can improve the counterfeit prevention properties, etc. of the cosmetic container 50.
  • FIG. 15 shows the appearance of a booklet 60.
  • the booklet 60 is a passport.
  • a passport is an example of a booklet-type identification card.
  • the booklet 60 includes a plurality of sheets 61.
  • the plurality of sheets 61 are saddle-stitched.
  • a recording medium 20 or the like is provided on at least one or both sides of the sheet 61.
  • a facial photograph or the like is drawn on the recording medium 20 or the like.
  • the sheet 61 is configured to include a configuration similar to any of the laminates 10 according to the above-mentioned embodiment and its modified examples.
  • the base material 11 may be paper or the like. This can improve the forgery prevention properties, etc. of the booklet 60.
  • FIG. 16 shows an example of a schematic configuration of a drawing device 100 as a recording device for recording on the laminate 10.
  • the drawing device 100 writes (draws) information on a recording medium 20 provided on the laminate 10.
  • the drawing device 100 converts, for example, image data described in a device-dependent color space input from the outside (hereinafter referred to as "input image data") into image data described in the color space of the recording medium 20 (hereinafter referred to as "drawing image data").
  • the device-dependent color space is, for example, an RGB color space such as sRGB or Adobe (registered trademark) RGB.
  • the color space of the recording medium 20 is a color space that the recording medium 20 has as a characteristic.
  • the drawing device 100 further converts, for example, the drawing image data obtained by the conversion into an output setting value of a drawing unit 150 described later, and inputs the output setting value obtained by the conversion to the drawing unit 150, thereby drawing on the recording medium 20.
  • the drawing device 100 includes, for example, a communication unit 110, an input unit 120, a display unit 130, a storage unit 140, a drawing unit 150, and an information processing unit 160.
  • the drawing device 100 is connected to a network, for example, via the communication unit 110.
  • the network is, for example, a communication line such as a LAN or a WAN.
  • a terminal device is connected to the network.
  • the drawing device 100 is configured, for example, to be able to communicate with the terminal device via the network.
  • the terminal device is, for example, a mobile terminal, and is configured to be able to communicate with the drawing device 100 via the network.
  • the communication unit 110 communicates with external devices such as terminal devices.
  • the communication unit 110 transmits input image data received from an external device such as a mobile terminal to the information processing unit 160.
  • the input image data is data in which the gradation value of each drawing coordinate is described in a device-dependent color space.
  • the gradation value of each drawing coordinate is composed of, for example, an 8-bit red gradation value, an 8-bit green gradation value, and an 8-bit blue gradation value.
  • the input unit 120 accepts input from the user (e.g., execution instructions, data input, etc.).
  • the input unit 120 transmits the information input by the user to the information processing unit 160.
  • the display unit 130 displays a screen based on various screen data created by the information processing unit 160.
  • the display unit 130 is composed of, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel.
  • the storage unit 140 stores, for example, various programs.
  • the storage unit 140 stores, for example, a program that converts input image data described in a device-dependent color space into drawing image data described in the color space of the recording medium 20.
  • the drawing image data is, for example, data in which the gradation values of each drawing coordinate are described in the color space of the recording medium 20.
  • the gradation values of each drawing coordinate in the drawing image data are composed of, for example, an 8-bit magenta gradation value, an 8-bit cyan gradation value, and an 8-bit yellow gradation value.
  • the storage unit 140 stores, for example, a program that derives the output setting value of the drawing unit 150 for each drawing coordinate based on the gradation values of the drawing image data obtained by conversion. In FIG. 16, these programs are collectively represented as program 141.
  • the information processing unit 160 is configured to include, for example, a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and executes various programs (for example, program 141) stored in the storage unit 140. For example, when program 141 is loaded, the information processing unit 160 executes a series of procedures described in program 141.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • FIG. 17 shows an example of the schematic configuration of the drawing unit 150.
  • the drawing unit 150 has, for example, a signal processing circuit 51, a laser driving circuit 52, a light source unit 53, an X-scanner driving circuit 54, an X-scanner unit 55, a Y-stage driving circuit 56, and a Y-stage 57.
  • the drawing unit 150 performs drawing on the recording medium 20 by controlling the output of the light source unit 53 based on a voltage value file (a list of command voltage values) input from the information processing unit 160.
  • a voltage value file a list of command voltage values
  • the signal processing circuit 51 acquires the voltage value file (list of command voltage values) input from the information processing unit 160 as an image signal Din. For example, the signal processing circuit 51 generates a pixel signal Dout from the image signal Din according to the scanner operation of the X scanner unit 55.
  • the pixel signal Dout causes the light source unit 53 (for example, each of the laser elements 53A, 53B, and 53C described below) to output laser light with a power according to the command voltage value.
  • the signal processing circuit 51 controls the peak value of the current applied to the light source unit 53 (for example, each of the laser elements 53A, 53B, and 53C) according to the pixel signal Dout.
  • the laser driving circuit 52 drives each of the laser elements 53A, 53B, and 53C of the light source unit 53 according to, for example, the pixel signal Dout.
  • the laser driving circuit 52 controls the luminance (lightness) of the laser light to draw an image according to, for example, the pixel signal Dout.
  • the laser driving circuit 52 has, for example, a driving circuit 52A that drives the laser element 53A, a driving circuit 52B that drives the laser element 53B, and a driving circuit 52C that drives the laser element 53C.
  • the laser elements 53A, 53B, and 53C perform drawing on the recording medium 20 by outputting laser light of a power according to the command voltage value to the recording medium 20.
  • the laser elements 53A, 53B, and 53C emit laser light in the near-infrared range.
  • the laser element 53A is, for example, a semiconductor laser that emits laser light La with an emission wavelength ⁇ 1.
  • the laser element 53B is, for example, a semiconductor laser that emits laser light Lb with an emission wavelength ⁇ 2.
  • the laser element 53C is, for example, a semiconductor laser that emits laser light Lc with an emission wavelength ⁇ 3.
  • the light source unit 53 has a plurality of laser elements (e.g., three laser elements 53A, 53B, 53C) with different emission wavelengths in the near-infrared range.
  • Each laser element e.g., each laser element 53A, 53B, 53C
  • the light source unit 53 further has, for example, an optical system that combines a plurality of laser lights (e.g., three laser lights La, Lb, Lc) emitted from the plurality of laser elements (e.g., three laser elements 53A, 53B, 53C).
  • This optical system outputs a combined light (laser light Lm) of the plurality of laser lights La, Lb, Lc to the X scanner unit 55 so that, for example, a plurality of irradiation spots Pa, Pb, Pc generated on the recording medium 20 by the plurality of laser lights La, Lb, Lc overlap each other on the Y stage 57.
  • the X-axis direction is perpendicular to the movement direction (Y-axis direction) of the Y-stage 57 and parallel to the scanning direction of the one-axis scanner 55a described below.
  • the light source unit 53 has, as such an optical system, for example, two reflecting mirrors 53a and 53d and two dichroic mirrors 53b and 53c.
  • the laser beams La and Lb emitted from the two laser elements 53A and 53B are made into nearly parallel beams (collimated beams) by, for example, a collimating lens. After that, for example, the laser beam La is reflected by the reflecting mirror 53a and the dichroic mirror 53b, and the laser beam Lb passes through the dichroic mirror 53b. This causes the laser beams La and Lb to be combined. The combined beam of the laser beams La and La passes through the dichroic mirror 53c.
  • the laser light Lc emitted from the laser element 53C is, for example, made into a nearly parallel light (collimated light) by a collimating lens.
  • the laser light Lc is then, for example, reflected by a reflecting mirror 53d and a dichroic mirror 53c.
  • the light source unit 53 outputs the light (laser light Lm) obtained by the combination by the above optical system to the X-scanner unit 55, for example.
  • the X-scanner drive circuit 54 drives the X-scanner unit 55 based on, for example, a control signal input from the signal processing circuit 51. Also, when a signal regarding the irradiation angle of the one-axis scanner 55a (described below) or the like is input from the X-scanner unit 55, the X-scanner drive circuit 54 drives the X-scanner unit 55 based on that signal so that the desired irradiation angle is achieved.
  • the X-scanner unit 55 scans the laser light Lm incident from the light source unit 53 in the X-axis direction on the surface of the recording medium 20.
  • the X-scanner unit 55 has, for example, a 1-axis scanner 55a and an f ⁇ lens 55b.
  • the 1-axis scanner 55a is, for example, a galvanometer mirror or polygon mirror that scans the laser light Lm incident from the light source unit 53 in the X-axis direction on the surface of the recording medium 20 based on a drive signal input from the X-scanner drive circuit 54.
  • the f ⁇ lens 55b converts the uniform rotational motion of the 1-axis scanner 55a into uniform linear motion of a spot moving on the focal plane (surface of the recording medium 20).
  • the Y stage drive circuit 56 drives the Y stage 57 based on, for example, a control signal input from the signal processing circuit 51.
  • the Y stage 57 displaces the Y stage 57 in the Y axis direction at a predetermined speed, thereby moving the laminate 10 (recording medium 20) placed on the Y stage 57 in the Y axis direction at a predetermined speed relative to the X scanner unit 55.
  • the coordinated operation of the X scanner unit 55 and the Y stage 57 causes the laser light Lm to raster scan the surface of the laminate 10 (recording medium 20).
  • the user prepares the laminate 10 including the uncolored recording medium 20 and places it on the Y stage 57.
  • the user transmits input image data described in the RGB color space from the terminal device to the drawing device 100 via the network.
  • the drawing device 100 receives the input image data via the network, it executes the following drawing process.
  • the information processing unit 160 when the information processing unit 160 receives input image data via the communication unit 110, it converts the input image data described in the RGB color space into leuco image data described in the leuco color space. Next, the information processing unit 160 derives a voltage value file (a list of command voltage values) based on the gradation values of each color at each drawing coordinate of the leuco image data obtained by the conversion. The information processing unit 160 transmits the derived voltage value file (list of command voltage values) to the drawing unit 150.
  • a voltage value file a list of command voltage values
  • the signal processing circuit 51 of the drawing unit 150 acquires the voltage value file (list of command voltage values) input from the information processing unit 160 as an image signal Din.
  • the signal processing circuit 51 generates an image signal from the image signal Din in synchronization with the scanner operation of the X scanner unit 55, according to characteristics such as the wavelength of the laser light.
  • the signal processing circuit 51 converts one line of image signals corresponding to one scanner operation into a continuous signal that outputs laser light continuously over time.
  • the signal processing circuit 51 outputs the projection image signal generated in this way to the laser driving circuit 52 of the drawing unit 150.
  • the projection image signal is, for example, a signal that causes each of the laser elements 53A, 53B, and 53C to output one line of laser light continuously over time.
  • the projection image signal may also be, for example, a signal that causes each of the laser elements 53A, 53B, and 53C to output one line of laser light intermittently over time.
  • the projection image signal is a signal that, when the laser elements are driven by this projection image signal, one line of an area of the recording medium 20 is continuously irradiated with one line of multiple pulsed laser lights.
  • the laser driving circuit 52 drives each of the laser elements 53A, 53B, and 53C of the light source unit 53 according to a projection video signal corresponding to each wavelength. At this time, the laser driving circuit 52 emits at least one of the laser beams La, Lb, and Lc from at least one of the light sources, for example, the laser element 53A, the laser element 53B, and the laser element 53C. This makes it possible to generate at least one of the laser beams La, Lb, and Lc from at least one of the light sources, for example, the laser element 53A, the laser element 53B, and the laser element 53C.
  • the projection image signal is a signal that causes each of the laser elements 53A, 53B, and 53C to output one line of laser light continuously over time
  • at least one of the light sources among the laser elements 53A, 53B, and 53C outputs one line of laser light that continues over time, as shown in FIG. 18(A), for example.
  • the projection image signal is a signal that causes each of the laser elements 53A, 53B, and 53C to output one line of laser light intermittently over time
  • at least one of the light sources among the laser elements 53A, 53B, and 53C outputs a plurality of pulsed laser lights intermittently over time for one line, as shown in FIG. 19(A).
  • the laser light La of the emission wavelength ⁇ 1 is irradiated to the color-developing layer 23 with enough energy to bring the color-developing layer 23 to its color-developing temperature.
  • This causes the photothermal conversion agent contained in the color-developing layer 23 to generate heat, and a color-developing reaction (color-developing reaction) occurs between the color-developing compound and the color-developing/color-reducing agent, causing the irradiated portion to be colored, for example, yellow.
  • the laser light Lb of the emission wavelength ⁇ 2 is irradiated to the color-developing layer 25 with enough energy to bring the color-developing layer 25 to its color-developing temperature, causing the irradiated portion to be colored, for example, magenta.
  • the laser light Lc of the emission wavelength ⁇ 3 is irradiated to the color-developing layer 27 with enough energy to bring the color-developing layer 27 to its color-developing temperature, causing the irradiated portion to be colored, for example, cyan. In this way, by irradiating any portion with a laser light of the corresponding wavelength, it is possible to record a pattern (for example, a full-color pattern).
  • the mechanism consisting of the X-scanner drive circuit 54, the X-scanner section 55, the Y-stage drive circuit 56, and the Y-stage 57 functions as a scanning section that irradiates the laser light Lm generated by the light source section 53 onto the surface of the recording medium 20.
  • a scanning section that irradiates the laser light Lm generated by the light source section 53 onto the surface of the recording medium 20.
  • at least one of the laser lights La, Lb, and Lc generated by the light source section 53 is irradiated onto the surface of the recording medium 20, and at least one of the laser lights La, Lb, and Lc is scanned over the surface of the recording medium 20, thereby drawing on the recording medium 20.
  • the size and shape of the irradiation spot of the laser light Lm are preferably such that the high temperature area generated in the coloring layer 23 and its surroundings by the laser light La contained in the laser light Lm does not overlap with the high temperature area generated in the coloring layer 25 and its surroundings by the laser light Lb contained in the laser light Lm. Also, the size and shape of the irradiation spot of the laser light Lm are preferably such that the high temperature area generated in the coloring layer 25 and its surroundings by the laser light Lb contained in the laser light Lm does not overlap with the high temperature area generated in the coloring layer 27 and its surroundings by the laser light Lc contained in the laser light Lm.
  • the beam shape BP is measured using the profiler "Model: NS2s-Pyro/9/5-PRO” and the application software "Nanoscan2 v2".
  • the measurement conditions for the beam shape BP using each laser profiler are as follows.
  • the one-axis scanner 55a of the X-scanner unit 55 is tilted by 45 degrees, and the center of the f ⁇ lens 55b is aligned with the position through which the beam passes.
  • the X-axis of the profiler is aligned with the scanning axis of the 1-axis scanner 55a of the X-scanner unit 55.
  • the detector surface of the profiler is aligned with the height of the recording medium 20. 4.
  • adjust the XY position of the beam shape BP on the detector surface to X 3000 ⁇ m and Y 3000 ⁇ m while emitting the beam, and then measure the beam shape BP.
  • Parameters in the Source tab Detector_ScanRate_10Hz_SamplingResolution_0.09 ⁇ m ⁇ Set up_AutoROI ⁇ Parameters in the Profiles tab ⁇ Display_AutoROI ⁇ Scaling_Linear_1x ⁇ HorizontalScailing_AutoZoom ⁇ Parameters in the 2D/3D tab: Scale_Linear ⁇ Resolution_Medium ⁇ Palette_CSIRainbow ⁇ Parameters in the Pointing tab: Display_Accumulate ⁇ Tracking_Centroid ⁇ Indicator_CrossHalf *Parameters in the Capture tab: CaptureMode_CW FrameAveraging_Average_6_Rolling_3 Parameters in the Computations tab: BeamWidthMethod_13.5%_50%(FWHM)_25%_50% ⁇ Position_Centroid_Peak - Divergence/Numerical
  • FIG. 20 shows an example of the beam shape BP.
  • the light source unit 53 generates the individual laser beams La, Lb, and Lc such that the beam shapes of the individual laser beams La, Lb, and Lc at the position of the recording medium 20 satisfy the following relational expressions, and the major axis direction of the beam shape BP is parallel to the scanning direction of the laser beams La, Lb, and Lc.
  • Lx length of the beam shape BP in a direction parallel to the scanning direction of the laser beams La, Lb, and Lc Ly: length of the beam shape BP in a direction perpendicular to the scanning direction of the laser beams La, Lb, and Lc d: pixel size
  • Lx refers to the width in the X-axis direction of the irradiation spot of the laser light La, laser light Lb or laser light Lc at the position of the recording medium 20 in a region that is less than half the peak power value.
  • Lx corresponds to the half-width in the X-axis direction of the irradiation spot.
  • Ly refers to the width in the Y-axis direction of the irradiation spot of the laser light La, laser light Lb or laser light Lc at the position of the recording medium 20 in a region that is less than half the peak power value.
  • the size of the irradiation spot (beam size) can be measured by the above-mentioned profiler and the above-mentioned application software. Note that the beam size values described below are measured values obtained by the above-mentioned profiler and the above-mentioned application software.
  • Ly corresponds to the half-width in the Y-axis direction of the irradiation spot.
  • the pixel size d corresponds to the target line width and is expressed as 25400/R ( ⁇ m).
  • R is the target resolution (dpi) on the recording medium 20.
  • the pixel size d is 60 ⁇ m.
  • the pixel size d is 50 ⁇ m.
  • the beam size (Ly) of the laser beam in the direction (Y-axis) perpendicular to the main scanning direction (X-axis) must be between -20% and +30% of the pixel size d. If the beam size (Ly) is too small, the width of the mark will be too thin to achieve the desired optical density, or the laser power density will be too high, burning the color layer or causing unintended coloring of adjacent layers (crosstalk). Also, if the beam size (Ly) is too large, the laser power density will decrease, resulting in a longer drawing tact time or a thicker line width relative to the pixel size, causing a decrease in image quality.
  • the beam size (Lx) in the main scanning direction (X-axis direction) of the laser beam must be longer than the beam size (Ly), and must be greater than +110% and less than +500% of the beam size (Lx). If the beam size (Lx) is too small, the laser power density becomes too high, which can burn the color-producing layer or cause unintended coloring of adjacent layers (crosstalk). If the beam size (Lx) is too large, the laser power density decreases, and sufficient coloring cannot be obtained unless the drawing speed is slowed down.
  • the relationship between the beam size (Lx, Ly) and the drawing characteristics is summarized in Figure 21. When the beam size (Lx, Ly) satisfies the above relationship, good drawing is achieved. If the beam size (Lx, Ly) does not satisfy the above relationship, problems such as burning the light-emitting layer, crosstalk, and not being able to obtain the desired optical density may occur.
  • the light source unit 53 when the light source unit 53 generates the individual laser beams La, Lb, and Lc such that the major axis direction of the beam shape BP is parallel to the scanning direction of the laser beams La, Lb, and Lc, the following concerns arise regarding the drawing characteristics of the individual laser beams La, Lb, and Lc.
  • the beam size (Ly) in the direction (Y-axis direction) perpendicular to the main scanning direction (X-axis direction) of the laser beam varies significantly. From the viewpoint of reducing image quality variation, this means that the drawing process margin for the position of the recording medium 20 is small.
  • the light source unit 53 generates the individual laser beams La, Lb, and Lc so that the beam shapes of the individual laser beams La, Lb, and Lc at the position of the recording medium 20 satisfy the above relationship, and generate the individual laser beams La, Lb, and Lc so that the major axis of the beam shape BP is greater than 0 degrees and less than 20 degrees with respect to the line segment (X-axis) parallel to the scanning direction of the laser beams La, Lb, and Lc.
  • An example of the beam shape BP in this case is shown in FIG. 23. In FIG.
  • corresponds to the angle (hereinafter referred to as the "beam rotation angle") between the major axis of the beam shape BP and the line segment (X-axis) parallel to the scanning direction of the laser beams La, Lb, and Lc.
  • FIG. 24 shows an example of the relationship between the height of the irradiation surface (surface of the recording medium 20) and the beam size (Ly) when the beam rotation angle ⁇ is 3 degrees. From FIG. 24, it can be seen that by setting the beam rotation angle ⁇ to 3 degrees, large fluctuations in the beam size (Ly) are suppressed even if the height of the irradiation surface (surface of the recording medium 20) of each laser beam La, Lb, Lc deviates from a predetermined height.
  • the beam rotation angle ⁇ is 0 degrees
  • the end of the drawing mark DL has a semicircular shape, for example, as shown in FIG. 25(A).
  • the beam rotation angle ⁇ is greater than 0 degrees and equal to or less than 20 degrees
  • the end of the drawing mark DL has a partial elliptical shape, for example, as shown in FIG. 25(B).
  • Figure 26 shows an example of the evaluation results of image quality when tested under conditions 1 to 24. Under the conditions marked "good” in Figure 26, the maximum OD value was 1.0 or more, there was no crosstalk, and the DOF (depth of focus) was greater than 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, or 500 ⁇ m. From Figure 26, it can be seen that under the "good” conditions, the DOF of the laser beams La, Lb, and Lc is large, which is thought to result in a larger drawing process margin for the position of the recording medium 20.
  • the conditions of tests 11 to 15, in which the DOF is greater than 200 i.e., ⁇ is 0.5 degrees or more and 20 degrees or less
  • the conditions of tests 12 to 15, in which the DOF is greater than 300 i.e., ⁇ is 1 degree or more and 20 degrees or less
  • the conditions of tests 12, 13, and 14, in which the DOF is greater than 500 i.e., ⁇ is 1 degree or more and 10 degrees or less
  • FIG. 27 shows an example of the optical configuration of the light source unit 53.
  • the light source unit 53 includes a laser element 151, a collimator 152, and cylinders 153, 154, 155, and 156.
  • the laser element 151 is any one of the laser elements 53A, 53B, and 53C described above.
  • the laser element 151 and the surface of the recording medium 20, which is the irradiation surface, are in an imaging relationship.
  • the oscillation wavelength of the laser element 151 is 860 nm
  • the emitter size is 150 ⁇ m
  • the beam divergence angle (FWHM) is 36 degrees in the vertical direction (X direction) and 7 degrees in the horizontal direction (Y direction).
  • the spacing between the cylinders 155 and 156 was adjusted for the focusing position in the X direction, and the spacing between the cylinders 153 and 154 was adjusted for the focusing position in the Y direction so that the laser light emitted from the laser element 151 is focused on the surface of the recording medium 20, which is the irradiation surface.
  • FIG. 28 shows an example of the rotation angle when the Z axis is used as the axis of rotation when the light source unit 53 includes the laser element 151, the collimator 152, and the cylinders 153, 154, 155, and 156.
  • the case where the laser element 151 is rotated -2.3 degrees about the Z axis is taken as Example 1
  • the case where the cylinder 154 is rotated +0.7 degrees about the Z axis and the cylinder 156 is rotated +0.7 degrees about the Z axis is taken as Example 2.
  • Example 1 the case where the cylinder 154 is rotated +0.7 degrees about the Z axis and the cylinder 156 is rotated +0.7 degrees about the Z axis is taken as Example 2.
  • Example 4 the case where the cylinder 153 is rotated -3.0 degrees about the Z axis and the cylinder 155 is rotated -1.0 degrees about the Z axis is taken as Example 3, and the case where the laser element 151 is rotated -2.0 degrees about the Z axis and the cylinder 153 is rotated +1.0 degrees about the Z axis is taken as Example 4.
  • the beam rotation angle ⁇ could be adjusted to the desired angle.
  • the laser element 151 and the surface of the recording medium 20, which is the irradiated surface may not be in an imaging relationship. Even in this case, the beam rotation angle ⁇ can be adjusted to the desired angle.
  • FIG. 29 shows an example of a mechanism 157 for rotating the laser element 151 about the Z axis, and an example of a mechanism 158 for rotating the cylinder 156 about the Z axis. Both mechanisms 157 and 158 are fixed onto a base 159.
  • the mechanism 157 has a support part 157a fixed to the base 159 and supporting the laser element 151 via a position adjustment part 157b described later, and a position adjustment part 157b supported by the support part 157a for adjusting the position of the laser element 151.
  • the mechanism 157 further has a stem fixing part 157c fixed to the position adjustment part 157b for fixing the metal stem part of the laser element 151, and a cap support part 157d fixed to the stem fixing part 157c for supporting the metal cap part of the laser element 151.
  • the mechanism 157 further has a rotation angle adjustment part 157e for adjusting the rotation angle of the stem fixing part 157c in the Z-axis direction, and a heat sink 157f fixed to the position adjustment part 157b for dissipating heat generated from the laser element 151.
  • the position adjustment part 157b has an opening 157g at a location corresponding to the lead of the laser element 151.
  • the mechanism 158 is fixed to the base 159 and has a support part 158a that supports the cylinder 156 via a position adjustment part 158b described below, and a position adjustment part 158b that is rotatably supported by the support part 158a and is used to adjust the position of the cylinder 156.
  • the cylinder 156 is fixed to the position adjustment part 158b.
  • the mechanism 158 further has a support part 158c that is fixed to the support part 158a and is spaced apart from the position adjustment part 158b and supports a rotation angle adjustment part 158d described below.
  • the mechanism 158 further has a rotation angle adjustment part 158d that is rotatably supported by the support part 158c and is used to adjust the rotation angle of the cylinder 156 in the Z-axis direction.
  • the support part 158a and the position adjustment part 158b have an opening 158e at a location where the laser light from the laser element 151 passes through.
  • Patent Documents 1 to 3 disclose technologies for drawing images on a recording medium using laser light.
  • color recording media has the problem that it is inferior in image quality and drawing tact time compared to existing inkjet and thermal transfer methods.
  • At least one of the laser beams La, Lb, and Lc is generated so that the beam shape of at least one of the laser beams La, Lb, and Lc at the position of the recording medium 20 satisfies the above-mentioned relational expression, and the major axis direction of the beam shape is parallel to the scanning direction of the laser beam.
  • At least one of the laser beams La, Lb, and Lc is generated so that the beam shape of at least one of the laser beams La, Lb, and Lc at the position of the recording medium 20 satisfies the above-mentioned relational expression, and the long axis direction of the beam shape is greater than 0 degrees and less than 20 degrees with respect to the scanning direction of the laser beam.
  • interference crosstalk
  • the color gamut can be secured, and highly efficient drawing can be performed, compared to when the beam shape is circular or square under the same conditions of beam power density or beam area.
  • both high image quality and short takt time can be achieved.
  • the drawing process margin can be increased for the position of the recording medium.
  • the light source unit 53 may generate at least two of the laser beams La, Lb, and Lc such that the beam shapes of at least two of the laser beams La, Lb, and Lc at the position of the recording medium 20 satisfy the above-mentioned relational expressions and the major axis direction of the beam shape BP is parallel to the scanning direction of the laser beams La, Lb, and Lc. Even in this case, the same effect as in the above embodiment can be obtained.
  • the light source unit 53 may generate each of the laser beams La, Lb, and Lc such that the beam shape of each of the laser beams La, Lb, and Lc at the position of the recording medium 20 satisfies the above-mentioned relational expressions, and the major axis direction of the beam shape BP is parallel to the scanning direction of the laser beams La, Lb, and Lc. Even in this case, the same effect as in the above embodiment can be obtained.
  • the light source unit 53 may generate a plurality of laser beams La, Lb, Lc so that the plurality of laser beams La, Lb, Lc scan the surface of the recording medium 20 in a state in which the irradiation spots of the plurality of laser beams La, Lb, Lc are arranged at a predetermined interval in a direction intersecting the scanning direction of the plurality of laser beams La, Lb, Lc at an angle greater than 0 degrees and smaller than 90 degrees, as shown in FIG. 30.
  • the laser beams La, Lb, Lc may be scanned in the X-axis direction with a predetermined interval in a direction (Y-axis direction) perpendicular to the X-axis direction, as shown in FIG. 31. Also, for example, the laser beams La, Lb, Lc may be scanned in the X-axis direction with a predetermined interval in a direction diagonally intersecting the X-axis direction and the Y-axis direction, as shown in FIG. 32.
  • the spot where the laser light La is reflected and the spot where the laser light Lb is transmitted may overlap each other.
  • the optical system is configured so that the optical axis of the laser light La reflected by the dichroic mirror 53b and the optical axis of the laser light Lb transmitted through the dichroic mirror 53b intersect at a predetermined angle.
  • the spot where the laser light La is reflected and the spot where the laser light Lb is transmitted may not completely overlap each other, but may be shifted. Further, in the dichroic mirror 53b, the spot where the laser light La is reflected and the spot where the laser light Lb is transmitted may be separated from each other.
  • the optical system may be configured so that the optical axis of the laser light La reflected by the dichroic mirror 53b and the optical axis of the laser light Lb transmitted through the dichroic mirror 53b intersect at a predetermined angle, or the optical system may be configured so that they are parallel to each other.
  • the optical system is configured so that the spots through which the laser light La or the laser light Lb passes and the spots through which the laser light Lc is reflected do not completely overlap but are shifted from each other.
  • the spots through which the laser light La passes, the spots through which the laser light Lb passes, and the spots through which the laser light Lc is reflected may be aligned with a slight shift in a predetermined direction.
  • the spots through which the laser light La passes, the spots through which the laser light Lb passes, and the spots through which the laser light Lc is reflected may be aligned with a predetermined gap between them.
  • the optical system may be configured so that the optical axis of the laser light La transmitted through the dichroic mirror 53c, the optical axis of the laser light Lb transmitted through the dichroic mirror 53c, and the optical axis of the laser light Lc reflected by the dichroic mirror 53c intersect with each other at a predetermined angle.
  • the light source unit 53 outputs the multiple laser lights La, Lb, and Lc to the X-scanner unit 55 with the optical axes of the multiple laser lights La, Lb, and Lc shifted from each other, and outputs the multiple laser lights La, Lb, and Lc to the X-scanner unit 55 so that the optical axes of the multiple laser lights La, Lb, and Lc intersect with each other at a predetermined angle.
  • the optical system may be configured so that the optical axis of the laser light La transmitted through the dichroic mirror 53c, the optical axis of the laser light Lb transmitted through the dichroic mirror 53c, and the optical axis of the laser light Lc reflected by the dichroic mirror 53c are parallel to one another.
  • the light source unit 53 outputs the multiple laser lights La, Lb, and Lc to the X-scanner unit 55 with the optical axes of the multiple laser lights La, Lb, and Lc shifted from one another, and outputs the multiple laser lights La, Lb, and Lc to the X-scanner unit 55 so that the optical axes of the multiple laser lights La, Lb, and Lc are parallel to one another with a predetermined gap therebetween.
  • the multiple laser beams La, Lb, and Lc scan the surface of the recording medium 20 with the irradiation spots of the multiple laser beams La, Lb, and Lc aligned at a predetermined interval in a direction intersecting the scanning direction of the multiple laser beams La, Lb, and Lc. This makes it possible to achieve raster scanning while reducing the occurrence of thermal crosstalk.
  • [Variation ⁇ ] 33 shows a modified example of the schematic configuration of the drawing device 100 according to the above embodiment.
  • the X scanner unit 55 scans the laser beams La, Lb, and Lc in the X-axis direction, and the Y stage 57 is moved in the Y-axis direction, thereby realizing raster scanning.
  • raster scanning may be realized by using an XY scanner driving circuit 54A, an XY scanner unit 55A, and a fixed stage 57A instead of the X scanner driving circuit 54, the X scanner unit 55, the Y stage driving circuit 56, and the Y stage 57.
  • the XY scanner drive circuit 54A drives the XY scanner unit 55A based on, for example, a control signal input from the signal processing circuit 51. In addition, when a signal regarding the irradiation angle of the two-axis scanner 55c described below is input from the XY scanner unit 55A, the XY scanner drive circuit 54A drives the XY scanner unit 55A based on that signal so that the desired irradiation angle is achieved.
  • the XY scanner unit 55A for example, scans the laser beams La, Lb, and Lc incident from the light source unit 53 in the X-axis direction on the surface of the recording medium 20, and moves the scan line in the Y-axis direction at a predetermined step width.
  • the XY scanner unit 55A has, for example, a two-axis scanner 55c and an f ⁇ lens 55b.
  • the two-axis scanner 55c is, for example, a galvanometer mirror that scans the laser beams La, Lb, and Lc incident from the light source unit 53 in the X-axis direction on the surface of the recording medium 20 based on a drive signal input from the XY scanner drive circuit 54A, and moves the scan line in the Y-axis direction at a predetermined step width.
  • the f ⁇ lens 55b converts the uniform rotational motion of the two-axis scanner 55c into uniform linear motion of a spot moving on the focal plane (surface of the recording medium 20).
  • the fixed stage 57A is simply a stand that supports the recording medium 20.
  • an XY scanner unit 55A that scans multiple laser beams La, Lb, and Lc in the X-axis direction and moves the scan lines of the multiple laser beams La, Lb, and Lc in the Y-axis direction at a predetermined step width. This makes it possible to achieve raster scanning while reducing the occurrence of thermal crosstalk.
  • raster scanning is performed by scanning the recording medium 20 with multiple laser beams La, Lb, and Lc in the X-axis direction while moving the scan lines of the multiple laser beams La, Lb, and Lc in the Y-axis direction by a predetermined step width while keeping the recording medium 20 stationary.
  • an imaging device for imaging on a recording medium in which a plurality of color-developing layers, each of which contains a different color-developing compound and a different photothermal conversion agent, are laminated via an intermediate layer, the device comprising: a light source unit that generates a plurality of laser beams having different wavelengths, the wavelengths including a wavelength corresponding to an absorption wavelength of the photothermal conversion agent; a scanning unit that irradiates a surface of the recording medium with a plurality of laser beams generated by the light source unit and scans the surface of the recording medium with the plurality of laser beams, the light source unit generates at least one of the plurality of laser beams such that a beam shape of at least one of the plurality of laser beams at the position of the recording medium satisfies the following relational expression, and a length of the beam shape in a direction parallel to a scanning direction of the laser beam is between 0 degrees and 20 degrees with respect to the scanning direction
  • the light source unit generates each of the laser beams such that a beam shape of each of the laser beams at the position of the recording medium satisfies the relational expression, and a length of the beam shape in a direction parallel to a scanning direction of the laser beam is between 0 degrees and 20 degrees with respect to the scanning direction of the laser beam.
  • the imaging device wherein the light source unit generates the plurality of laser beams such that a major axis direction of the beam shape is 0.5 degrees or more and 20 degrees or less with respect to a scanning direction of the laser beam.
  • the light source unit generates the plurality of laser beams such that a major axis direction of the beam shape is at least 1 degree and at most 10 degrees with respect to a scanning direction of the laser beam.
  • the light source unit includes a plurality of laser elements that generate the plurality of laser beams.
  • the drawing device according to any one of (1) to (5), further comprising a rotation mechanism capable of rotating a major axis direction of a beam shape of laser light generated from the rotated laser element by rotating at least one of the plurality of laser elements.
  • the scanning unit includes an optical system that scans the plurality of laser beams in a first direction, and a stage that moves the recording medium in a second direction perpendicular to the first direction.
  • the scanning unit has an optical system that scans the plurality of laser beams in a first direction and moves a scan line of the plurality of laser beams in a second direction perpendicular to the first direction by a predetermined step width.
  • Lx length of the beam shape in a direction parallel to the scanning direction of the laser light
  • Ly length of the beam shape in a direction perpendicular to the scanning direction of the laser light
  • d pixel size
  • At least one of the multiple laser beams is generated so that the beam shape of at least one of the multiple laser beams at the position of the recording medium satisfies the above-mentioned relationship, and the length of the beam shape in a direction parallel to the scanning direction of the laser beam is between 0 degrees and 20 degrees with respect to the scanning direction of the laser beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

本開示の一側面に係る描画装置は、光源部と、走査部とを備えている。走査部は、光源部で生成された複数のレーザ光を記録媒体の表面上に照射するとともに、複数のレーザ光を記録媒体の表面上で走査する。光源部は、複数のレーザ光の、記録媒体の位置でのそれぞれのビーム形状が以下の関係式を満たすとともに、ビーム形状の、レーザ光の走査方向と平行な方向の長さがレーザ光の走査方向に対して0度以上20度以下となるように複数のレーザ光のうち少なくとも1つのレーザ光を生成する。 Ly×1.1≦Lx<Ly×5.0 d×0.8≦Ly≦d×1.3 Lx:ビーム形状の、レーザ光の走査方向と平行な方向の長さ Ly:ビーム形状の、レーザ光の走査方向と直交する方向の長さ d:画素サイズ

Description

描画装置、および描画物の形成方法
 本開示は、描画装置、および描画物の形成方法に関する。
 近年、パスポートや運転免許証等の各種IDカードに対して、セキュリティ性向上のために、非接触で任意の画像を描画することの可能な記録媒体を内部に設けることが検討されている。現在、そのような用途で実用化されている記録媒体としては、単色での描画が可能なものが主流となっている。なお、レーザ光で記録媒体に画像を描画する技術としては、例えば、特許文献1~3が開示されている。
特開2010-192015号公報 特開2005-144952号公報 特開平5-292274号公報
 ところで、セキュリティ性の更なる向上のために、記録媒体のカラー化が求められている。しかし、記録媒体のカラー化においては、既存のインクジェット方式や熱転写方式と比較して、画質や描画タクトの点で劣っているという問題がある。従って、高画質、短タクトを両立することの可能な描画装置、および描画物の形成方法を提供することが望ましい。
 本開示の第1の側面に係る描画装置は、各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行う描画装置である。この描画装置は、光源部と、走査部とを備えている。光源部は、互いに異なる波長であって、かつ光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成する。走査部は、光源部で生成された複数のレーザ光を記録媒体の表面上に照射するとともに、複数のレーザ光を記録媒体の表面上で走査する。光源部は、複数のレーザ光のうち少なくとも1つの、記録媒体の位置でのビーム形状が以下の関係式を満たすとともに、ビーム形状の、レーザ光の走査方向と平行な方向の長さがレーザ光の走査方向に対して0度以上20度以下となるように複数のレーザ光を生成する。
 Ly×1.1≦Lx<Ly×5.0
 d×0.8≦Ly≦d×1.3
 Lx:ビーム形状の、レーザ光の走査方向と平行な方向の長さ
 Ly:ビーム形状の、レーザ光の走査方向と直交する方向の長さ
 d:画素サイズ
 本開示の第2の側面に係る描画物の形成方法は、各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行うことにより描画物を形成する方法である。この方法は、以下の3つを含む。
(A1)互いに異なる波長であって、かつ光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成すること
(A2)光源部で生成された複数のレーザ光を記録媒体の表面上に照射するとともに、複数のレーザ光を記録媒体の表面上で走査することにより記録媒体に描画を行うこと
(A3)複数のレーザ光の生成において、複数のレーザ光のうち少なくとも1つの、記録媒体の位置でのビーム形状が以下の関係式を満たすとともに、ビーム形状の、レーザ光の走査方向と平行な方向の長さがレーザ光の走査方向に対して0度以上20度以下となるように複数のレーザ光を生成すること
 Ly×1.1≦Lx<Ly×5.0
 d×0.8≦Ly≦d×1.3
 Lx:ビーム形状の、レーザ光の走査方向と平行な方向の長さ
 Ly:ビーム形状の、レーザ光の走査方向と直交する方向の長さ
 d:画素サイズ
 本開示の第1の側面に係る描画装置、および本開示の第2の側面に係る描画物の形成方法では、複数のレーザ光のうち少なくとも1つのレーザ光の、記録媒体の位置でのそれぞれのビーム形状が上述の関係式を満たすとともに、ビーム形状の、レーザ光の走査方向と平行な方向の長さがレーザ光の走査方向に対して0度以上20度以下となるように複数のレーザ光のうち少なくとも1つのレーザ光が生成される。これにより、ビームのパワー密度もしくはビーム面積が同じ条件下において、ビーム形状が円形状もしくは正方形状となっている場合と比べて、複数の発色層における干渉(クロストーク)を抑制し、色域をより確保することができ、さらに、高効率な描画を行うことができる。
図1は、本開示の一実施の形態に係る積層体の斜視構成例を表す図である。 図2は、図1の積層体の断面構成例を表す図である。 図3は、図1の記録媒体の断面構成例を表す図である。 図4は、図1の記録媒体の断面構成の一変形例を表す図である。 図5は、図1の記録媒体の断面構成の一変形例を表す図である。 図6は、図1の記録媒体の断面構成の一変形例を表す図である。 図7は、図1の積層体の斜視構成の一変形例を表す図である。 図8は、図7の積層体の断面構成例を表す図である。 図9は、図7の積層体の断面構成の一変形例を表す図である。 図10は、図1の積層体の断面構成の一変形例を表す図である。 図11は、図7の積層体の断面構成の一変形例を表す図である。 図12は、図12Aは、スマートフォンの前面の平面図である。図12Bは、スマートフォンの背面の平面図である。 図13は、ノート型パーソナルコンピュータの斜視図である。 図14は、化粧容器の斜視図である。 図15は、冊子の斜視図である。 図16は、図1等の積層体に設けられた記録媒体に対して描画を行う描画システムの概略構成例を表す図である。 図17は、図16の描画部の概略構成例を表す図である。 図18は、図17の光源部から出力されるレーザ光が連続波であるときの光出力および描画痕の一例を表す図である。 図19は、図17の光源部から出力されるレーザ光がパルス波であるときの光出力および描画痕の一例を表す図である。 図20は、レーザ光のビーム形状の一例を表す図である。 図21は、レーザ光のビーム形状の適切な範囲を表す図である。 図22は、ビーム回転角が0度のときの、照射面の高さとビーム形状の短軸長との関係の一例を表す図である。 図23は、レーザ光のビーム形状の一例を表す図である。 図24は、ビーム回転角が3度のときの、照射面の高さとビーム形状の短軸長との関係の一例を表す図である。 図25(A)は、ビーム回転角が0度のときの描画痕の一例を表す図である。図25(B)は、ビーム回転角が3度のときの描画痕の一例を表す図である。 図26は、1~24の条件でテストしたときの画質の評価結果の一例を表す図である。 図27は、図17の光源部の光学的な構成の一例を表す図である。 図28は、図27に記載の光学的な構成の一例を表す図である。 図29は、図27に記載の光学的な構成の一部をZ軸回転させるための回転機構の一例を表す図である。 図30は、図17の描画部の概略構成の一変形例を表す図である。 図31は、図30の描画部を備えた描画システムにおける描画方法の一例を表す図である。 図32は、図30の描画部を備えた描画システムにおける描画方法の一変形例を表す図である。 図33は、図17の描画部の概略構成の一変形例を表す図である。 図34は、図30の描画部の概略構成の一変形例を表す図である。
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。
<1.実施の形態>
[構成]
 本開示の一実施の形態に係る記録媒体を備えた積層体について説明する。図1は、本開示の一実施の形態に係る記録媒体を備えた積層体10の斜視構成例を表したものである。図2は、図1の積層体10のA-A線における断面構成例を表したものである。
 積層体10は、基材11と、接着層12と、スペーサ層13と、接着層14と、オーバーレイ層15と、記録媒体20とを備える。積層体10は、例えば、セキュリティカード、金融決済カード、IDカードもしくは個人取引カード等のカード(以下「セキュリティカード等」という。)であってもよい。金融決済カードとしては、例えば、クレジットカート、キャッシュカード等が挙げられる。IDカードとしては、例えば、運転免許証、社員証、会員証、学生証等が挙げられる。個人取引カードとしては、例えば、プリペイドカード、ポイントカード等が挙げられる。
 基材11は、記録媒体20およびスペーサ層13を支持する支持体である。基材11は、白色等の色を有していてもよい。基材11には、スペーサ層13および記録媒体20等が設けられる側の一方の主面に、図柄、絵、写真、文字、またはそれらの2以上の組み合わせ等(以下「図柄等」という。)が印刷されていてもよい。
 基材11は、例えば、プラスチックを含む。基材11は、必要に応じて、着色剤、帯電防止剤、難燃剤および表面改質剤等からなる群より選ばれた少なくとも1種を含んでいてもよい。基材11の少なくとも一方の主面には、反射層(図示せず)が設けられていてもよいし、基材11自体が反射層としての機能を兼ね備えていてもよい。
 基材11に用いられるプラスチックは、例えば、エステル系樹脂、アミド系樹脂、オレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、イミド系樹脂、スチレン系樹脂およびエンジニアリングプラスチック等からなる群より選ばれた少なくとも1種を含む。基材11が2種以上の樹脂を含む場合、それらの2種以上の樹脂は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。
 上記のエステル系樹脂は、例えば、ポリエチレンテレフタレ-ト(PET)、ポリブチレンテレフタレ-ト(PBT)、ポリエチレンナフタレ-ト(PEN)、ポリエチレンテレフタレート-イソフタレート共重合体およびテレフタル酸-シクロヘキサンジメタノール-エチレングリコール共重合体等からなる群より選ばれた少なくとも1種を含む。上記のアミド系樹脂は、例えば、ナイロン6、ナイロン66およびナイロン610等からなる群より選ばれた少なくとも1種を含む。上記のオレフィン系樹脂は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)およびポリメチルペンテン(PMP)等からなる群より選ばれた少なくとも1種を含む。上記のビニル系樹脂は、例えば、ポリ塩化ビニル(PVC)を含む。
 上記のアクリル系樹脂は、例えば、ポリアクリレート、ポリメタアクリレートおよびポリメチルメタアクリレート(PMMA)等からなる群より選ばれた少なくとも1種を含む。上記のイミド系樹脂は、例えば、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)等からなる群より選ばれた少なくとも1種を含む。上記のスチレン系樹脂は、例えば、ポリスチレン(PS)、高衝撃ポリスチレン、アクリロニトリル-スチレン樹脂(AS樹脂)およびアクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等からなる群より選ばれた少なくとも1種を含む。上記のエンジニアリングプラスチックは、例えば、ポリカーボネート(PC)、ポリアリレ-ト(PAR)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンエ-テル(PPE)、ポリフェニレンスルフィド(PPS)、ポリエーテルケトン(PEK)、ポリエーテル-エーテルケトン(PEEK)、ポリフェニレンオキサイド(PPO)およびポリエーテルサルファイト等からなる群より選ばれた少なくとも1種を含む。
 基材11は、レーザマーキング層を含んでいてもよい。基材11に用いられるレーザマーキング層は、公知のレーザマーキングシートであってもよい。上記のレーザマーキング層は、例えば、以下の方法(1)から(5)のうちの少なくとも一つの方法によりレーザマーキングできるように構成されている。
(1)樹脂材料を発泡させて発色させる方法
(2)樹脂材料にレーザ光を吸収する添加剤を加えて添加剤自体を発色させる方法
(3)樹脂材料にレーザ光を吸収する添加剤を加えて添加剤を発熱させ周囲の樹脂材料を炭化させて発色させる方法
(4)レーザ照射により樹脂層の表面を蝕刻し表面状態の変化を利用する方法
(5)黒または濃色系に着色した樹脂材料にレーザ光を照射することにより、着色剤(カーボンブラック)を昇華(分解)させて脱色(樹脂材料の地の色を露出)することでマーキングする方法
 上記のレーザマーキング層は、例えば、光熱変換剤と樹脂材料とを含む。上記のレーザマーキング層に用いられる樹脂材料は、例えば、ポリカーボネート系樹脂を含む。上記のレーザマーキング層に用いられる光熱変換剤は、例えば、カーボンを含む。
 スペーサ層13は、基材11の一主面上に設けられ、基材11とスペーサ層13との間には接着層12が挟まれている。スペーサ層13は、記録媒体20を収容するための収容部13Aを有している。収容部13Aは、スペーサ層13の面内の一部に設けられている。収容部13Aは、スペーサ層13の厚さ方向に貫通する貫通孔であってもよい。スペーサ層13は、記録媒体20が基材11とオーバーレイ層15との間に挟まれた際に、記録媒体20により形成される段差を抑制するためのものである。スペーサ層13は、記録媒体20と略同一の厚さを有し、基材11の一主面のうち、記録媒体20が設けられた領域以外を覆う。
 スペーサ層13は、フィルム状となっている。スペーサ層13は、透明性を有していてもよい。スペーサ層13は、プラスチックを含む。スペーサ層13に用いられるプラスチックとしては、基材11と同様の材料を挙げることができる。スペーサ層13は、レーザマーキング層を含んでいてもよい。スペーサ層13に用いられるレーザマーキング層は、例えば、基材11に用いられ得るレーザマーキング層と同じ層であってもよい。
 オーバーレイ層15は、スペーサ層13および記録媒体20上に設けられ、スペーサ層13および記録媒体20を覆う。スペーサ層13および記録媒体20とオーバーレイ層15との間には接着層14が挟まれている。オーバーレイ層15は、積層体10の内部の部材(すなわち記録媒体20およびスペーサ層13)を保護し、積層体10の機械的信頼性を保持する。
 オーバーレイ層15は、フィルム状となっている。オーバーレイ層15は、透明性を有している。オーバーレイ層15は、プラスチックを含む。オーバーレイ層15に用いられるプラスチックとしては、基材11と同様の材料を挙げることができる。オーバーレイ層15の少なくとも一方の主面に、図柄等が印刷されていてもよい。オーバーレイ層15は、レーザマーキング層を含んでいてもよい。オーバーレイ層15に用いられるレーザマーキング層は、例えば、基材11に用いられ得るレーザマーキング層と同じ層であってもよい。
 接着層12は、基材11とスペーサ層13との間に設けられ、基材11とスペーサ層13とを互いに貼り合わせる。接着層14は、スペーサ層13とオーバーレイ層15との間に設けられ、スペーサ層13とオーバーレイ層15とを互いに貼り合わせる。接着層12,14は、透明性を有している。接着層12,14は、熱接着剤を含む。接着層12,14に用いられる熱接着剤は、熱硬化性樹脂を含む。接着層12,14に用いられる熱硬化性樹脂は、例えば、エポキシ系樹脂およびウレタン系樹脂等からなる群より選ばれた少なくとも1種を含む。上記の熱接着剤の硬化温度は、記録媒体20に対するダメージを低減する観点から、100℃以上120℃以下の温度範囲であることが好ましい。
 図3は、記録媒体20の断面構成例を表したものである。記録媒体20は、外部刺激により着色状態を変化可能に構成されている。この着色状態の変化により、例えば、図柄等を記録媒体20に記録可能である。外部刺激は、具体的にはレーザ光の照射である。着色状態の変化は、偽造防止性の向上の観点から、不可逆変化であることが好ましい。すなわち、記録媒体20の方式は、図柄等を一度だけ書き込むことが可能なライトワンスであることが好ましい。記録媒体20は、スペーサ層13の収容部13Aに嵌め合わされ、記録媒体20とスペーサ層13とが一体となっていることが好ましい。これにより、積層体10の面内方向における記録媒体20とスペーサ層13の境界の視認を困難にすることができる。したがって、偽造防止性を向上させることができる。
 記録媒体20は、例えば、基材21、中間層22、発色層23、中間層24、発色層25、中間層26および発色層27をこの順序で備える。基材21と中間層22との間、中間層22と発色層23との間、発色層23と中間層24との間、中間層24と発色層25との間、発色層25と中間層26との間、中間層26と発色層27との間には、粘着剤層が設けられていてもよい。記録媒体20の最表面には、例えば、図3に示したように、保護層28が設けられていてもよいし、記録媒体20の最表面が、例えば、図4に示したように、発色層27であってもよい。
 基材21は、発色層23,25,27等を支持するための支持体である。基材21は、耐熱性に優れ、且つ、平面方向の寸法安定性に優れた材料により構成されていることが好ましい。基材21は、光透過性および非光透過性のどちらの特性を有していてもよい。基材21は、例えば、ウェハ等の剛性を有する基板でもよいし、可撓性を有する薄層ガラス、フィルムあるいは紙等でもよい。基材21として可撓性基板を用いることにより、フレキシブル(折り曲げ可能)な記録媒体を実現することができる。
 基材21の構成材料としては、例えば、無機材料、金属材料またはプラスチック等が挙げられる。基材21に用いられる無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiO)、窒化ケイ素(SiN)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。上記の酸化ケイ素には、ガラスおよびスピンオングラス(SOG)等が含まれる。基材21に用いられる金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)およびステンレス等からなる群より選ばれた少なくとも1種を含む。基材21に用いられるプラスチックとしては、基材11と同様の材料を例示することができる。
 なお、基材21の少なくとも一方の主面には、反射層(図示せず)が設けられていてもよいし、基材21自体が反射層としての機能を兼ね備えていてもよい。基材21がこのような構成を有していることで、より鮮明な色表示が可能となる。
 発色層23,25,27は、レーザ光または熱等の外部刺激により着色状態を変化させることが可能に構成されている。発色層23,25,27は、安定した記録が可能な、発色状態を制御し得る材料を用いて構成されている。発色層23,25,27は、電子供与性を有する呈色性化合物と、電子受容性を有し、呈色性化合物に対応する顕色剤と、マトリックスポリマー(バインダ)と、光熱変換剤とを含む。発色層23,25,27は、必要に応じて、上記材料の他に、例えば、増感剤および紫外線吸収材等からなる群より選ばれた少なくとも1種の添加剤を含んでいてもよい。
 発色層23,25,27は、互いに発色色相の異なる呈色性化合物を含む。すなわち、発色層23,25,27に含まれる呈色性化合物は、発色状態において互いに異なる色を呈する。発色層23に含まれる呈色性化合物は、例えば、発色状態においてシアン色を呈する。発色層25に含まれる呈色性化合物は、例えば、発色状態においてマゼンタ色を呈する。発色層27に含まれる呈色性化合物は、例えば、発色状態においてイエロー色を呈する。発色層23,25,27に含まれる光熱変換剤は、互いに異なる波長域のレーザ光(例えば互いに異なる近赤外のレーザ光)を吸収して発熱する。
 発色層23,25,27の厚みはそれぞれ、好ましくは1μm以上20μm以下、より好ましくは2μm以上15μm以下である。各発色層23,25,27の厚みが1μm以上であると、十分な発色濃度を得ることができる。一方、各発色層23,25,27の厚みが20μm以下であると、各発色層23,25,27の熱利用量が大きくなり過ぎることを抑制することができる。したがって、発色性が劣化することを抑制することができる。
 上記の呈色性化合物は、例えば、ロイコ色素である。ロイコ色素は、例えば、既存の感熱紙用染料であってもよい。具体例として、下記の式(1)で表される、分子内に電子供与性を有する基を含む化合物が挙げられる。
 
 上記の呈色性化合物は、特に制限はなく、目的に応じて適宜選択することができる。具体的な呈色性化合物としては、上記式(1)に示した化合物の他に、例えば、フルオラン系化合物、トリフェニルメタンフタリド系化合物、アザフタリド系化合物、フェノチアジン系化合物、ロイコオーラミン系化合物およびインドリノフタリド系化合物等が挙げられる。この他、例えば、2-アニリノ-3-メチル-6-ジエチルアミノフルオラン、2-アニリノ-3-メチル-6-ジ(n-ブチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-n-プロピル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-イソプロピル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-イソブチル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-n-アミル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-sec-ブチル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-n-アミル-N-エチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-iso-アミル-N-エチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-n-プロピル-N-イソプロピルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-シクロヘキシル-N-メチルアミノ)フルオラン、2-アニリノ-3-メチル-6-(N-エチル-p-トルイジノ)フルオラン、2-アニリノ-3-メチル-6-(N-メチル-p-トルイジノ)フルオラン、2-(m-トリクロロメチルアニリノ)-3-メチル-6-ジエチルアミノフルオラン、2-(m-トリフルロロメチルアニリノ)-3-メチル-6-ジエチルアミノフルオラン、2-(m-トリクロロメチルアニリノ)-3-メチル-6-(N-シクロヘキシル-N-メチルアミノ)フルオラン、2-(2,4-ジメチルアニリノ)-3-メチル-6-ジエチルアミノフルオラン、2-(N-エチル-p-トルイジノ)-3-メチル-6-(N-エチルアニリノ)フルオラン、2-(N-エチル-p-トルイジノ)-3-メチル-6-(N-プロピル-p-トルイジノ)フルオラン、2-アニリノ-6-(N-n-ヘキシル-N-エチルアミノ)フルオラン、2-(o-クロロアニリノ)-6-ジエチルアミノフルオラン、2-(o-クロロアニリノ)-6-ジブチルアミノフルオラン、2-(m-トリフロロメチルアニリノ)-6-ジエチルアミノフルオラン、2,3-ジメチル-6-ジメチルアミノフルオラン、3-メチル-6-(N-エチル-p-トルイジノ)フルオラン、2-クロロ-6-ジエチルアミノフルオラン、2-ブロモ-6-ジエチルアミノフルオラン、2-クロロ-6-ジプロピルアミノフルオラン、3-クロロ-6-シクロヘキシルアミノフルオラン、3-ブロモ-6-シクロヘキシルアミノフルオラン、2-クロロ-6-(N-エチル-N-イソアミルアミノ)フルオラン、2-クロロ-3-メチル-6-ジエチルアミノフルオラン、2-アニリノ-3-クロロ-6-ジエチルアミノフルオラン、2-(o-クロロアニリノ)-3-クロロ-6-シクロヘキシルアミノフルオラン、2-(m-トリフロロメチルアニリノ)-3-クロロ-6-ジエチルアミノフルオラン、2-(2,3-ジクロロアニリノ)-3-クロロ-6-ジエチルアミノフルオラン、1,2-ベンゾ-6-ジエチルアミノフルオラン、3-ジエチルアミノ-6-(m-トリフロロメチルアニリノ)フルオラン、3-(1-エチル-2-メチルインドール-3-イル)-3-(2-エトキシ-4-ジエチルアミノフェニル)-4-アザフタリド、3-(1-エチル-2-メチルインドール-3-イル)-3-(2-エトキシ-4-ジエチルアミノフェニル)-7-アザフタリド、3-(1-オクチル-2-メチルインドール-3-イル)-3-(2-エトキシ-4-ジエチルアミノフェニル)-4-アザフタリド、3-(1-エチル-2-メチルインドール-3-イル)-3-(2-メチル-4-ジエチルアミノフェニル)-4-アザフタリド、3-(1-エチル-2-メチルインドール-3-イル)-3-(2-メチル-4-ジエチルアミノフェニル)-7-アザフタリド、3-(1-エチル-2-メチルインドール-3-イル)-3-(4-ジエチルアミノフェニル)-4-アザフタリド、3-(1-エチル-2-メチルインドール-3-イル)-3-(4-N-n-アミル-N-メチルアミノフェニル)-4-アザフタリド、3-(1-メチル-2-メチルインドール-3-イル)-3-(2-ヘキシルオキシ-4-ジエチルアミノフェニル)-4-アザフタリド、3,3-ビス(2-エトキシ-4-ジエチルアミノフェニル)-4-アザフタリド、3,3-ビス(2-エトキシ-4-ジエチルアミノフェニル)-7-アザフタリド、2-(p-アセチルアニリノ)-6-(N-n-アミル-N-n-ブチルアミノ)フルオラン、2-ベンジルアミノ-6-(N-エチル-p-トルイジノ)フルオラン、2-ベンジルアミノ-6-(N-メチル-2,4-ジメチルアニリノ)フルオラン、2-ベンジルアミノ-6-(N-エチル-2,4-ジメチルアニリノ)フルオラン、2-ベンジルアミノ-6-(N-メチル-p-トルイジノ)フルオラン、2-ベンジルアミノ-6-(N-エチル-p-トルイジノ)フルオラン、2-(ジ-p-メチルベンジルアミノ)-6-(N-エチル-p-トルイジノ)フルオラン、2-(α-フェニルエチルアミノ)-6-(N-エチル-p-トルイジノ)フルオラン、2-メチルアミノ-6-(N-メチルアニリノ)フルオラン、2-メチルアミノ-6-(N-エチルアニリノ)フルオラン、2-メチルアミノ-6-(N-プロピルアニリノ)フルオラン、2-エチルアミノ-6-(N-メチル-p-トルイジノ)フルオラン、2-メチルアミノ-6-(N-メチル-2,4-ジメチルアニリノ)フルオラン、2-エチルアミノ-6-(N-エチル-2,4-ジメチルアニリノ)フルオラン、2-ジメチルアミノ-6-(N-メチルアニリノ)フルオラン、2-ジメチルアミノ-6-(N-エチルアニリノ)フルオラン、2-ジエチルアミノ-6-(N-メチル-p-トルイジノ)フルオラン、2-ジエチルアミノ-6-(N-エチル-p-トルイジノ)フルオラン、2-ジプロピルアミノ-6-(N-メチルアニリノ)フルオラン、2-ジプロピルアミノ-6-(N-エチルアニリノ)フルオラン、2-アミノ-6-(N-メチルアニリノ)フルオラン、2-アミノ-6-(N-エチルアニリノ)フルオラン、2-アミノ-6-(N-プロピルアニリノ)フルオラン、2-アミノ-6-(N-メチル-p-トルイジノ)フルオラン、2-アミノ-6-(N-エチル-p-トルイジノ)フルオラン、2-アミノ-6-(N-プロピル-p-トルイジノ)フルオラン、2-アミノ-6-(N-メチル-p-エチルアニリノ)フルオラン、2-アミノ-6-(N-エチル-p-エチルアニリノ)フルオラン、2-アミノ-6-(N-プロピル-p-エチルアニリノ)フルオラン、2-アミノ-6-(N-メチル-2,4-ジメチルアニリノ)フルオラン、2-アミノ-6-(N-エチル-2,4-ジメチルアニリノ)フルオラン、2-アミノ-6-(N-プロピル-2,4-ジメチルアニリノ)フルオラン、2-アミノ-6-(N-メチル-p-クロロアニリノ)フルオラン、2-アミノ-6-(N-エチル-p-クロロアニリノ)フルオラン、2-アミノ-6-(N-プロピル-p-クロロアニリノ)フルオラン、1,2-ベンゾ-6-(N-エチル-N-イソアミルアミノ)フルオラン、1,2-ベンゾ-6-ジブチルアミノフルオラン、1,2-ベンゾ-6-(N-メチル-N-シクロヘキシルアミノ)フルオランおよび1,2-ベンゾ-6-(N-エチル-N-トルイジノ)フルオラン等が挙げられる。発色層23,25,27はそれぞれ、上記呈色性化合物のうちの1種を単独で含んでいてもよいし、2種以上を含んでいてもよい。
 上記の顕色剤は、下記の式(2)で表される化合物を含んでもよい。
 
 式(2)中、X0は、少なくとも1つのベンゼン環を含む二価の基である。Y01、Y02はそれぞれ独立して、一価の基である。n01、n02はそれぞれ独立して、0から5のいずれかの整数である。n01が2から5のいずれかの整数である場合、Y01は互いに同一であってもよいし、異なっていてもよい。n02が2から5のいずれかの整数である場合、Y02は互いに同一であってもよいし、異なっていてもよい。Z01、Z02はそれぞれ独立して、水素結合性基である。
 X0が少なくとも1つのベンゼン環を含むことで、X0が脂肪族炭化水素基(例えばノルマルアルキル鎖)である場合に比べて融点を高くすることができるので、高温高湿保管時の発色保持特性(以下「高温高湿保管特性」という。)を向上させることができる。高温高湿保管特性および耐熱性の向上の観点から、X0が、少なくとも2つのベンゼン環を含むことが好ましい。高温高湿保管特性は、例えば、80℃、60%RHの環境下における保管特性である。耐熱性が向上されると、過酷なプロセス(例えば、加熱プレスまたは溶融樹脂等を用いた一体成型等)に対する記録媒体20の耐性が向上される。X0が少なくとも2つのベンゼン環を含む場合、少なくとも2つのベンゼン環が縮合していてもよい。例えば、ナフタレンまたはアントラセン等であってもよい。
 Z01、Z02がそれぞれ独立して水素結合性基であることで、顕色剤同士が水素結合を介してある程度固まって存在しやすいため、発色層23,25,27内における顕色剤の安定性が向上する。本明細書において、水素結合性基は、他の官能基または他の化合物等に存在する原子と水素結合することができる原子を含む官能基を意味する。
 上記の顕色剤は、下記の式(3)で表される化合物を含むことが好ましい。
 
 式(3)中、X1は、少なくとも1つのベンゼン環を含む二価の基である。Y11、Y12、Y13、Y14はそれぞれ独立して、一価の基である。Z11、Z12はそれぞれ独立して、水素結合性基である。
 X1が少なくとも1つのベンゼン環を含むことで、X1が脂肪族炭化水素基(例えばノルマルアルキル鎖)である場合に比べて融点を高くすることができるので、高温高湿保管特性を向上させることができる。高温高湿保管特性および耐熱性の向上の観点から、X1が、少なくとも2つのベンゼン環を含むことが好ましい。X1が少なくとも2つのベンゼン環を含む場合、少なくとも2つのベンゼン環が縮合していてもよい。例えば、ナフタレンまたはアントラセン等であってもよい。
 Z11、Z12がそれぞれ独立して水素結合性基であることで、顕色剤同士が水素結合を介してある程度固まって存在しやすいため、発色層23,25,27内における顕色剤の安定性が向上する。
 式(2)および式(3)が炭化水素基を含む場合、当該炭化水素基は、炭素(C)および水素(H)により構成される基の総称であり、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。飽和炭化水素基は、炭素間多重結合を有しない脂肪族炭化水素基であり、不飽和炭化水素基は、炭素間多重結合(炭素間二重結合または炭素間三重結合)を有する脂肪族炭化水素基である。
 式(2)および式(3)が炭化水素基を含む場合、当該炭化水素基は、鎖状であってもよいし、1個または2個以上の環を含んでもよい。鎖状は、直鎖状であってもよいし、1または2以上の側鎖等を有する分岐状でもよい。
(1つのベンゼン環を含むX0、X
 式(2)中のX0および式(3)中のX1は、例えば、1つのベンゼン環を含む二価の基である。当該二価の基は、例えば、下記の式(4)で表される。
 
 式(4)中、X21はあってもなくてもよく、X21がある場合、X21は二価の基である。X22はあってもなくてもよく、X22がある場合、X22は二価の基である。R21は、一価の基である。n21は、0から4のいずれかの整数である。n21が2から4のいずれかの整数である場合、R21は互いに同一であってもよいし、異なっていてもよい。*印は結合部を表す。
 式(4)において、ベンゼン環に対するX21およびX22の結合位置は限定されない。すなわち、ベンゼン環に対するX21およびX22の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
 1つのベンゼン環を含む上記二価の基は、高温高湿保管特性の向上の観点から、下記の式(5)で表されることが好ましい。
 
 式(5)中、R22は、一価の基である。n22は、0から4のいずれかの整数である。n22が2から4のいずれかの整数である場合、R22は互いに同一であってもよいし、異なっていてもよい。*印は結合部を表す。
 式(2)中のX0が1つのベンゼン環を含む二価の基である場合、式(5)において、ベンゼン環に対するZ01およびZ02の結合位置は限定されない。すなわち、ベンゼン環に対するZ01およびZ02の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
 式(3)中のX1が1つのベンゼン環を含む二価の基である場合、式(5)において、ベンゼン環に対するZ11およびZ12の結合位置は限定されない。すなわち、ベンゼン環に対するZ11およびZ12の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
(X21、X22
 式(4)中のX21、X22はそれぞれ独立して、二価の基であればよく、特に限定されるものではないが、例示するならば、置換基を有していてもよい炭化水素基である。炭化水素基は、鎖状であることが好ましい。炭化水素基が鎖状であると、顕色剤の融点を低減することができるので、レーザ光の照射により顕色剤が溶けて、呈色性化合物を発色させ易くなる。顕色剤の融点の低減の観点からすると、鎖状の炭化水素基のうちのでも、ノルマルアルキル鎖が特に好ましい。
 置換基を有していてもよい炭化水素基の炭素数は、例えば、1以上15以下、1以上13以下、1以上12以下、1以上10以下、1以上6以下または1以上3以下である。
 式(4)中のX21、X22がノルマルアルキル基である場合、当該ノルマルアルキル基の炭素数は、高温保管安定性の観点から、好ましくは8以下、より好ましくは6以下、さらにより好ましくは5以下、特に好ましくは3以下である。ノルマルアルキル基の炭素数が8以下であると、ノルマルアルキル基の長さ短いため、高温保管時に熱的な乱れが顕色剤に生じ難く、発色時にロイコ色素等の呈色性化合物と相互作用していた部位が外れ難くなると考えられる。したがって、高温保管時にロイコ色素等の呈色性化合物が消色し難くなるため、高温保管安定性が向上する。
 炭化水素基が有しいてもよい置換基としては、例えば、ハロゲン基(例えばフッ素基)またはハロゲン基(例えばフッ素基)を有するアルキル基等が挙げられる。置換基を有していてもよい炭化水素基は、炭化水素基の炭素の一部(例えば炭化水素基の主鎖に含まれる炭素の一部)が酸素等の元素で置換されたものでもよい。
(R21
 式(4)中のR21は、一価の基であればよく、特に限定されるものではないが、例示するならば、ハロゲン基または置換基を有していてもよい炭化水素基である。ハロゲン基は、例えば、フッ素基(-F)、塩素基(-Cl)、臭素基(-Br)またはヨウ素基(-I)である。
 置換基を有していてもよい炭化水素基の炭素数は、例えば、1以上15以下、1以上13以下、1以上12以下、1以上10以下、1以上6以下または1以上3以下である。炭化水素基が有しいてもよい置換基としては、例えば、ハロゲン基(例えばフッ素基)またはハロゲン基(例えばフッ素基)を有するアルキル基等が挙げられる。置換基を有していてもよい炭化水素基は、炭化水素基の炭素の一部(例えば炭化水素基の主鎖に含まれる炭素の一部)が酸素等の元素で置換されたものでもよい。
(R22
 式(5)中のR22は、一価の基であればよく、特に限定されるものではないが、例示するならば、ハロゲン基または置換基を有していてもよい炭化水素基である。ハロゲン基、置換基を有していてもよい炭化水素基はそれぞれ、上記(2)式中のR21と同様である。
(2つのベンゼン環を含むX0、X1
 式(2)中のX0および式(3)中のX1は、例えば、2つのベンゼン環を含む二価の基である。当該二価の基は、例えば、下記の式(6)で表される。
 
 式(6)中、X31はあってもなくてもよく、X31がある場合、X31は二価の基である。X32はあってもなくてもよく、X32がある場合、X32は二価の基である。X33はあってもなくてもよく、X33がある場合、X33は二価の基である。R31、R32はそれぞれ独立して、一価の基である。n31、n32はそれぞれ独立して、0から4のいずれかの整数である。n31が2から4のいずれかの整数である場合、R31は互いに同一であってもよいし、異なっていてもよい。n32が2から4のいずれかの整数である場合、R32は互いに同一であってもよいし、異なっていてもよい。*印は結合部を表す。
 式(6)において、ベンゼン環に対するX31およびX32の結合位置は限定されない。すなわち、ベンゼン環に対するX31およびX32の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。同様に、式(6)において、ベンゼン環に対するX32およびX33の結合位置は限定されない。すなわち、ベンゼン環に対するX32およびX33の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
 2つのベンゼン環を含む上記二価の基は、高温高湿保管特性の向上の観点から、下記の式(7)で表されることが好ましい。
 
 式(7)中、X34は、二価の基である。R33、R34はそれぞれ独立して、一価の基である。n33、n34はそれぞれ独立して、0から4のいずれかの整数である。n33が2から4のいずれかの整数である場合、R33は互いに同一であってもよいし、異なっていてもよい。n34が2から4のいずれかの整数である場合、R34は互いに同一であってもよいし、異なっていてもよい。*印は結合部を表す。
 式(2)中のX0が2つのベンゼン環を含む二価の基である場合、式(7)において、ベンゼン環に対するZ01およびX34の結合位置は限定されない。すなわち、ベンゼン環に対するZ01およびX34の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。同様に、式(7)において、ベンゼン環に対するZ02およびX34の結合位置は限定されない。すなわち、ベンゼン環に対するZ02およびX34の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
 式(3)中のX1が2つのベンゼン環を含む二価の基である場合、式(7)において、ベンゼン環に対するZ11およびX34の結合位置は限定されない。すなわち、ベンゼン環に対するZ11およびX34の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。同様に、式(7)において、ベンゼン環に対するZ12およびX34の結合位置は限定されない。すなわち、ベンゼン環に対するZ12およびX34の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。
(X31、X32、X33
 式(6)中のX31、X32、X33はそれぞれ独立して、二価の基であればよく、特に限定されるものではないが、例示するならば、置換基を有していてもよい炭化水素基である。当該炭化水素基は、上記の式(4)中のX21、X22と同様である。
(X34
 式(7)中のX34は、二価の基であればよく、特に限定されるものではないが、例示するならば、置換基を有していてもよい炭化水素基である。当該炭化水素基は、上記の式(4)中のX21、X22と同様である。
(R31、R32
 式(6)中のR31、R32は、一価の基であればよく、特に限定されるものではないが、例示するならば、ハロゲン基または置換基を有していてもよい炭化水素基である。ハロゲン基、置換基を有していてもよい炭化水素基はそれぞれ、上記の式(4)中のR21と同様である。
(R33、R34
 式(7)中のR33、R34は、一価の基であればよく、特に限定されるものではないが、例示するならば、ハロゲン基または置換基を有していてもよい炭化水素基である。ハロゲン基、置換基を有していてもよい炭化水素基はそれぞれ、上記の式(4)中のR21と同様である。
(Y01、Y02
 式(2)中のY01、Y02はそれぞれ独立して、例えば、水素基(-H)、ヒドロキシ基(-OH)、ハロゲン基(-X)、カルボキシ基(-COOH)、エステル基(-COOR)または置換基を有していてもよい炭化水素基である。ハロゲン基は、例えば、フッ素基(-F)、塩素基(-Cl)、臭素基(-Br)またはヨウ素基(-I)である。
 置換基を有していてもよい炭化水素基の炭素数は、例えば、1以上15以下、1以上13以下、1以上12以下、1以上10以下、1以上6以下または1以上3以下である。炭化水素基が有しいてもよい置換基としては、例えば、ハロゲン基(例えばフッ素基)またはハロゲン基(例えばフッ素基)を有するアルキル基等が挙げられる。置換基を有していてもよい炭化水素基は、炭化水素基の炭素の一部(例えば炭化水素基の主鎖に含まれる炭素の一部)が酸素等の元素で置換されたものでもよい。
 式(2)において、(Y01n01のうちの1つ、および/または(Y02n02のうちの1つがヒドロキシ基(-OH)であることが好ましい。(Y01n01のうちの1つ、および/または(Y02n02のうちの1つがヒドロキシ基(-OH)であることで、表示品位と耐光性を向上させることができる。
(Y11、Y12、Y13、Y14
 式(3)において、ベンゼン環に対するY11およびY12の結合位置は限定されない。すなわち、ベンゼン環に対するY11およびY12の結合位置は、オルト位、メタ位およびパラ位のいずれであってもよい。同様に、式(3)において、ベンゼン環に対するY13およびY14の結合位置も限定されない。すなわち、ベンゼン環に対するY13およびY14の結合位置も、オルト位、メタ位およびパラ位のいずれであってもよい。式(3)において、一方のベンゼンに対するY11およびY12の結合位置と、他方のベンゼンに対するY13およびY14の結合位置とは同一であってもよいし、異なってもよい。
 式(3)中のY11、Y12、Y13、Y14はそれぞれ独立して、例えば、水素基(-H)、ヒドロキシ基(-OH)、ハロゲン基、カルボキシ基(-COOH)、エステル基(-COOR)または置換基を有していてもよい炭化水素基である。ハロゲン基、置換基を有していてもよい炭化水素基はそれぞれ、上記の式(2)中のY01、Y02と同様である。
 式(3)において、Y11および/またはY13がヒドロキシ基(-OH)であることが好ましい。Y11および/またはY13がヒドロキシ基(-OH)であることで、表示品位と耐光性を向上させることができる。
(Z01、Z02
 式(2)中のZ01、Z02はそれぞれ独立して、例えば、ウレア結合(-NHCONH-)、アミド結合(-NHCO-、-OCHN-)またはヒドラジド結合(-NHCOCONH-)である。高温高湿保管特性の向上の観点からすると、Z01、Z02はウレア結合であることが好ましい。Z01がアミド結合である場合、当該アミド結合に含まれる窒素がベンゼンと結合していてもよいし、当該アミド結合に含まれる炭素がベンゼンと結合していてもよい。Z02がアミド結合である場合、当該アミド結合に含まれる窒素がベンゼンと結合していてもよいし、当該アミド結合に含まれる炭素がベンゼンと結合していてもよい。
(Z11、Z12
 式(3)中のZ11、Z12はそれぞれ独立して、例えば、ウレア結合(-NHCONH-)、アミド結合(-NHCO-、-OCHN-)またはヒドラジド結合(-NHCOCONH-)である。高温高湿保管特性の向上の観点からすると、Z11、Z12はウレア結合であることが好ましい。Z11がアミド結合である場合、当該アミド結合に含まれる窒素がベンゼンと結合していてもよいし、当該アミド結合に含まれる炭素がベンゼンと結合していてもよい。Z12がアミド結合である場合、当該アミド結合に含まれる窒素がベンゼンと結合していてもよいし、当該アミド結合に含まれる炭素がベンゼンと結合していてもよい。
(顕色剤の具体例)
 式(2)中のX0および式(3)中のX1が1つのベンゼン環を含む顕色剤は、具体的には例えば、下記の式(8-1)から(8-6)で表される化合物からなる群より選ばれる少なくとも1種を含む。
 
 式(2)中のX0および式(3)中のX1が2つのベンゼン環を含む顕色剤は、具体的には例えば、下記の式(9-1)から(9-8)で表される化合物からなる群より選ばれる少なくとも1種を含む。
 
 マトリックスポリマー(マトリックス樹脂)は、バインダとしての機能を有していることが好ましい。マトリックスポリマーは、呈色性化合物、顕色剤および光熱変換剤が均質に分散しやすいものが好ましい。マトリックスポリマーとしては、例えば、熱硬化性樹脂および熱可塑性樹脂からなる群より選ばれた少なくとも1種が挙げられる。具体的には、例えば、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル共重合体系樹脂、エチルセルロース系樹脂、ポリスチレン系樹脂、スチレン系共重合体系樹脂、フェノキシ樹脂系樹脂、ポリエステル系樹脂、芳香族ポリエステル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂、ポリメタクリル酸エステル系樹脂、アクリル酸系共重合体系樹脂、マレイン酸系重合体系樹脂、ポリビニルアルコール系樹脂、変性ポリビニルアルコール系樹脂、ヒドロキシエチルセルロース系樹脂、カルボキシメチルセルロース系樹脂およびデンプン等からなる群より選ばれた少なくとも1種が挙げられる。
 マトリックスポリマーは、ポリカーボネート系樹脂を含むことが好ましい。マトリックスポリマーがポリカーボネート系樹脂を含むことで、記録媒体20の地肌の耐光性を向上させることができる。ここで、ポリカーボネート系樹脂とは、少なくとも主鎖にカーボネート基(-O-(C=O)-O-)を構造単位として有する樹脂である。したがって、主鎖にカーボネート基以外に他の構造単位を有していてもよい。
 発色層23,25,27に用いられる光熱変換剤は、例えば、近赤外線領域の所定の波長域の光を吸収して発熱するものである。光熱変換剤としては、例えば波長700nm以上2000nm以下の範囲に吸収ピークを有し、可視領域にほとんど吸収を持たない近赤外線吸収色素を用いることが好ましい。具体的には、例えば、フタロシアニン骨格を有する化合物(フタロシアニン系染料)、スクアリリウム骨格を有する化合物(スクアリリウム系染料)および無機化合物等からなる群より選ばれた少なくとも1種が挙げられる。無機化合物としては、例えば、ジチオ錯体等の金属錯体、ジイモニウム塩、アミニウム塩および無機化合物等からなる群より選ばれた少なくとも1種が挙げられる。無機化合物としては、例えば、グラファイト、カーボンブラック、金属粉末粒子、四三酸化コバルト、酸化鉄、酸化クロム、酸化銅、チタンブラック、ITO(Indium Tin Oxide)等の金属酸化物、窒化ニオブ等の金属窒化物、炭化タンタル等の金属炭化物、金属硫化物および各種磁性粉末等からなる群より選ばれた少なくとも1種が挙げられる。この他、優れた耐光性および耐熱性を有するシアニン骨格を有する化合物(シアニン系染料)を用いてもよい。なお、ここで、優れた耐光性とは、使用環境下で、例えば蛍光灯の光等の照射によって、分解しないことである。優れた耐熱性とは、例えば、高分子材料と共に成膜し、例えば150℃で30分間保管した際に、吸収スペクトルの最大吸収ピーク値に20%以上の変化が生じないことである。このようなシアニン骨格を有する化合物としては、例えば、分子内に、SbF、PF、BF、ClO、CFSOおよび(CFSONのうちのいずれかのカウンターイオンと、5員環または6員環を含むメチン鎖との少なくとも一方を有するものが挙げられる。なお、本実施形態において記録媒体20に用いられるシアニン骨格を有する化合物は、上記カウンターイオンのいずれかおよびメチン鎖内に5員環および6員環等の環状構造の両方を備えていることが好ましいが、少なくとも一方を備えていれば、十分な耐光性および耐熱性が担保される。
 なお、光熱変換剤としては、例えば波長700nm以上2000nm以下の範囲に、光吸収帯が狭く、且つ、発色層23,25,27で光吸収帯が互いに重なり合わないものを選択することが好ましい。これにより、発色層23,25,27のうち所望の層を選択的に発色させることが可能となる。
 中間層22は、基材21と発色層23との間に設けられている。中間層24は、発色層23と発色層25との間に設けられている。中間層26は、発色層25と発色層27との間に設けられている。中間層22,24,26は、各層間を断熱することができ、かつ、構成材料の拡散を抑制することができてもよい。
 中間層22,24,26は、例えば、一般的な透光性を有する高分子材料を含む。具体的な材料としては、例えば、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル共重合体系樹脂、エチルセルロース系樹脂、ポリスチレン系樹脂、スチレン系共重合体系樹脂、フェノキシ樹脂系樹脂、ポリエステル系樹脂、芳香族ポリエステル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂、ポリメタクリル酸エステル系樹脂、アクリル酸系共重合体系樹脂、マレイン酸系重合体系樹脂、ポリビニルアルコール系樹脂、変性ポリビニルアルコール系樹脂、ヒドロキシエチルセルロース系樹脂、カルボキシメチルセルロース系樹脂およびデンプン等からなる群より選ばれた少なくとも1種が挙げられる。なお、中間層22,24,26は、例えば、紫外線吸収剤等の各種添加剤を含んでいてもよい。
 中間層22,24,26は、紫外線硬化樹脂層であってもよい。紫外線硬化樹脂層は、重合反応し、固体化した紫外線硬化樹脂組成物を含む。より具体的には例えば、紫外線硬化樹脂層は、重合性化合物の重合体と、重合開始剤が外部エネルギー(紫外線)の照射により活性種を発生して構造変化したものとを含む。紫外線硬化樹脂組成物は、例えば、ラジカル重合型の紫外線硬化樹脂組成物およびカチオン重合型の紫外線硬化樹脂組成物等からなる群より選ばれる少なくとも1種を含む。紫外線硬化樹脂組成物は、必要に応じて、増感剤、フィラー、安定剤、レベリング剤、消泡剤および粘度調整剤等からなる群より選ばれた少なくとも1種を含んでもよい。紫外線硬化樹脂組成物は、ハードコート用の紫外線硬化樹脂組成物であってもよい。紫外線硬化樹脂組成物は、アクリル系の紫外線硬化樹脂組成物であってもよい。
 中間層22,24,26は、透光性を有する無機材料を含んでいてもよい。例えば、多孔質のシリカ、アルミナ、チタニア、カーボン、またはこれらの複合体等を用いると、熱伝導率が低くなり断熱効果が高く好ましい。中間層22,24,26は、例えばゾル-ゲル法によって形成することができる。
 中間層22,24,26の厚さを調整することにより、記録媒体20の厚さをスペーサ層13の厚さと揃え、物理的段差の発生を抑制するようにしてもよい。中間層22,24,26の厚みは、好ましくは3μm以上100μm以下、より好ましくは5μm以上50μm以下である。中間層22,24,26の厚みが3μm以上であると、十分な断熱効果を得ることができる。一方、中間層22,24,26の厚みが100μm以下であると、透光性の低下を抑制することができる。また、記録媒体20の曲げ耐性の低下を抑制し、ひび割れ等の欠陥を生じ難くすることができる。
 中間層22,24,26は、粘着剤を含んでいてもよい。粘着剤は、例えば、アクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂、エポキシ系樹脂およびエラストマ系材料からなる群より選ばれた少なくとも1種を含む。
 保護層28は、記録媒体20の表面を保護するためのものであり、例えば、紫外線硬化性樹脂および熱硬化性樹脂のうちの少なくとも1種を用いて形成されている。保護層28は、ハードコート層であってもよい。物理的な耐性を付与するため、保護層28にマトリクスポリマーや基材21と同様のプラスチックフィルムを用いてもよい。保護機能を複合させるため、例えば粘着剤などを用いて複数の保護層を貼り合わせてもよい。保護層28の厚みは、例えば0.1μm以上100μm以下である。
 なお、記録媒体20は、例えば、図5に示したように、記録媒体20の最表面にレーザマーキング層31を備えていてもよい。レーザマーキング層31は、基材11に用いられるレーザマーキング層として説明したレーザマーキング層と共通の構成となっていてもよい。また、記録媒体20は、例えば、図6に示したように、基材21と中間層22との間にレーザマーキング層32を備えていてもよい。レーザマーキング層32は、基材11に用いられるレーザマーキング層として説明したレーザマーキング層と共通の構成となっていてもよい。
[積層体10の製造方法]
 以下、本開示の一実施形態に係る積層体10の製造方法の一例について説明する。
 まず、基材11の一方の主面に、熱接着剤として熱硬化性樹脂を塗布し、接着層12を形成する。次に、接着層12上にスペーサ層13を載置したのち、スペーサ層13の収容部13Aに記録媒体20を嵌め合わせる。なお、収容部13Aに記録媒体20が予め嵌め合わされたスペーサ層13を接着層12上に載置するようにしてもよい。また、接着層12は、収容部13Aに記録媒体20が予め嵌め合わされたスペーサ層13上に熱硬化性樹脂を塗布したのち、塗膜を間に挟むようにしてスペーサ層13を基材11の主面上に載置することより形成してもよい。あるいは、接着層12は、予めセパレータに対する熱硬化性樹脂の塗布等により形成したシートを、熱ラミネート等の手段により基材11の主面あるいは、収容部13Aに記録媒体20が予め嵌め合わされたスペーサ層13と貼り合わせることにより形成してもよい。
 次に、スペーサ層13上に、熱接着剤として熱硬化性樹脂を塗布し、接着層14を形成したのち、接着層14上にオーバーレイ層15を載置する。次に、得られた積層体10を金属プレートで挟み、加熱しながら加圧することにより、接着層14を熱硬化させる。熱硬化の際に積層体10に加えられる温度は、記録媒体20に対するダメージを低減する観点から、100℃以上120℃以下であることが好ましい。これにより、目的とする積層体10が得られる。接着層14は、オーバーレイ層15に熱硬化性樹脂を塗布したのち、塗膜を間に挟むようにしてオーバーレイ層15をスペーサ層13上に載置することより形成してもよい。また、接着層14は、予めセパレータに対する熱硬化性樹脂の塗布等により形成したシートを、熱ラミネート等の手段によりオーバーレイ層15あるいは、スペーサ層13と貼り合わせることにより形成してもよい。
[積層体10への記録方法]
 本実施形態に係る積層体10では、例えば、以下のようにして記録媒体20に図柄等を記録することができる。ここでは、発色層23,25,27がそれぞれ、シアン色、マゼンタ色、イエロー色を呈する場合を例として説明する。
 例えば半導体レーザ等により、規定の波長および規定の出力を有する赤外線を、オーバーレイ層15を介して記録媒体20に照射する。ここで、発色層23を発色させる場合には、波長λの赤外線を発色層23が発色温度に達する程度のエネルギーで発色層23に照射する。これにより、発色層23に含まれる光熱変換材料が発熱し、呈色性化合物と顕色剤との間で呈色反応(発色反応)が起こり、照射部分にシアン色が発色する。
 同様に、発色層25を発色させる場合には、波長λの赤外線を発色層25が発色温度に達する程度のエネルギーで発色層25に照射する。発色層27を発色させる場合には、波長λの赤外線を発色層27が発色温度に達する程度のエネルギーで発色層27に照射する。これにより、発色層25および発色層27に含まれる光熱変換材料がそれぞれ発熱し、呈色性化合物と顕色剤とで呈色反応が起こり、照射部分にマゼンタ色およびイエロー色がそれぞれ発色する。このように、対応する波長の赤外線を任意の部分に照射することにより、図柄等(例えば、フルカラーの図柄等)の記録が可能となる。
[変形例A]
 なお、上記実施の形態に係る積層体10において、例えば、図7に示したように、平面視において積層体10の全面に渡って記録媒体20が設けられていてもよい。このとき、積層体10において、例えば、図8に示したように、スペーサ層13が省略される。なお、図7は、積層体10の斜視構成の一変形例を表したものである。図8は、図7の積層体10のA-A線における断面構成例を表したものである。
[変形例B]
 上記実施の形態に係る積層体10において、例えば、図9に示したように、接着層12,14が省略され、基材11とスペーサ層13とが融着により互いに貼り合わされるとともに、スペーサ層13とオーバーレイ層15とが融着により互いに貼り合わされていてもよい。
 このとき、基材11、スペーサ層13およびオーバーレイ層15は、プラスチックとして熱可塑性樹脂を含むことが好ましい。基材11、スペーサ層13およびオーバーレイ層15が熱可塑性樹脂を含むことで、融着による層間密着強度を強くすることができる。熱可塑性樹脂は、記録媒体20に対するダメージを低減する観点から、130℃以上200℃以下の温度範囲で積層体10の層間を熱融着可能であるものが好ましい。
 基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含んでいてもよいし、基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含んでいなくてもよい。基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含んでいない場合、基材11、スペーサ層13およびオーバーレイ層15のうちの1層が、他の2層とは異なる種類の熱可塑性樹脂を含んでいてもよい。基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含んでいない場合、基材11、スペーサ層13およびオーバーレイ層15がそれぞれ、異なる種類の熱可塑性樹脂を含んでいてもよい。
 基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含む場合、基材11、スペーサ層13およびオーバーレイ層15は、融着による層間密着強度の向上の観点から、半結晶性の熱可塑性樹脂および非結晶性の熱可塑性樹脂からなる群より選ばれた少なくとも1種を含むことが好ましい。
 半結晶性の熱可塑性樹脂は、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)およびポリエーテルエーテルケトン(PEEK)等からなる群より選ばれた少なくとも1種を含む。
 非結晶性の熱可塑性樹脂は、例えば、ABS樹脂、ポリカーボネート(PC)、ABS樹脂とPCのポリマーアロイ(以下「ABS/PCポリマーアロイ」という。)、AS樹脂、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリフェニレンオキサイド(PPO)、ポリサルフォン(PSU)、ポリ塩化ビニル(PVC)、ポリエーテルイミド(PEI)およびポリエーテルサルフォン(PES)等からなる群より選ばれた少なくとも1種を含む。
 基材11、スペーサ層13およびオーバーレイ層15が同一の種類の熱可塑性樹脂を含んでいない場合、基材11、スペーサ層13およびオーバーレイ層15は、融着による層間密着強度の向上の観点から、非結晶性の熱可塑性樹脂を含むことが好ましい。
 積層体10の隣接する2層にそれぞれ含まれる非結晶性の熱可塑性樹脂の組み合わせとしては、以下の組み合わせが好ましい。積層体10の隣接する2層のうちの一方の層がABS樹脂を含む場合、他方の層がABS/PCポリマーアロイ、ポリカーボネート(PC)、AS樹脂、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)およびポリ塩化ビニル(PVC)からなる群より選ばれた少なくとも1種を含むことが好ましい。
 積層体10の隣接する2層のうちの一方の層がABS/PCポリマーアロイを含む場合、他方の層がABS樹脂、ポリカーボネート(PC)およびポリメチルメタクリレート(PMMA)からなる群より選ばれた少なくとも1種を含むことが好ましい。積層体10の隣接する2層のうちの一方の層がポリカーボネート(PC)を含む場合、他方の層がABS樹脂、ABS/PCポリマーアロイおよびポリメチルメタクリレート(PMMA)からなる群より選ばれた少なくとも1種を含むことが好ましい。
 積層体10の隣接する2層のうちの一方の層がAS樹脂を含む場合、他方の層がABS樹脂、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)およびポリフェニレンオキサイド(PPO)からなる群より選ばれた少なくとも1種を含むことが好ましい。積層体10の隣接する2層のうちの一方の層がポリスチレン(PS)を含む場合、他方の層がAS樹脂およびポリフェニレンオキサイド(PPO)からなる群より選ばれた少なくとも1種を含むことが好ましい。
 積層体10の隣接する2層のうちの一方の層がポリメチルメタクリレート(PMMA)を含む場合、他方の層がABS樹脂、ABS/PCポリマーアロイ、AS樹脂およびポリフェニレンオキサイド(PPO)からなる群より選ばれた少なくとも1種を含むことが好ましい。積層体10の隣接する2層のうちの一方の層がポリフェニレンオキサイド(PPO)を含む場合、他方の層がポリカーボネート(PC)、AS樹脂、ポリスチレン(PS)およびポリメチルメタクリレート(PMMA)からなる群より選ばれた少なくとも1種を含むことが好ましい。
 積層体10の隣接する2層のうちの一方の層がポリスルホン(PSU)を含む場合、他方の層がポリカーボネート(PC)を含むことが好ましい。積層体10の隣接する2層のうちの一方の層がポリ塩化ビニル(PVC)を含む場合、他方の層がABS樹脂を含むことが好ましい。
 次に、本変形例に係る積層体10の製造方法の一例について説明する。まず、基材11の一方の主面に記録媒体20を載置する。次に、記録媒体20上にオーバーレイ層15を載置する。次に、基材11、記録媒体20およびオーバーレイ層15からなる積層体を金属プレートで挟み、加熱しながら加圧することにより、基材11と記録媒体20とを熱融着するとともに、記録媒体20とオーバーレイ層15とを熱融着する。熱融着の際に積層体に加えられる温度は、記録媒体20に対するダメージを低減する観点、および十分な融着強度を発現する観点から、130℃以上200℃以下であることが好ましい。これにより、本変形例に係る積層体10が得られる。
[変形例C]
 積層体10において、例えば、図10に示したように、収容部13Aの代わりに、スペーサ層13の厚さ方向に窪んだ、有底の凹部(収容部13B)が設けられていてもよい。この場合、収容部13Bは、スペーサ層13の両主面のうちオーバーレイ層15に対向する側の主面に設けられていてもよいし、基材11に対向する側の主面に設けられていてもよい。
[変形例D]
 上記実施の形態およびその変形例において、記録媒体20が、単層構造で多色表示が可能な発色層を備えていてもよい。図11は、単層構造でも多色表示が可能な記録媒体20の断面構成例を表したものである。本変形例に係る記録媒体20は、基材21、発色層29および保護層28をこの順序で備える。
 発色層29は、互いに発色色相が異なる3種類のマイクロカプセル29C、29M、29Yを含む。すなわち、発色層29は、発色状態でそれぞれ異なる色を呈する3種類のマイクロカプセル29C、29M、29Yを含む。発色層29は、必要に応じて第1のマトリックスポリマーを含んでいてもよい。3種類のマイクロカプセル29C、29M、29Yはそれぞれ、例えば、互いに異なる色(例えば、シアン色(C)、マゼンタ色(M)およびイエロー色(Y))を呈する呈色性化合物と、各呈色性化合物に対応する顕色剤と、互いに異なる波長域の光を吸収して発熱する光熱変換剤と、第2のマトリックスポリマーとを含む。上記材料を内包するマイクロカプセル壁の材料としては、例えば、上記実施の形態における中間層22,24,26を構成する材料と同様の材料を用いることが好ましい。
[変形例E]
 上記実施の形態およびその変形例において、記録媒体20が、n色(nは4以上の整数)以上の表示が可能な複数の発色層を備えていてもよい。この場合、第1の発色層から第nの発色層は、互いに発色色相の異なる呈色性化合物を含んでいてもよい。
[変形例F]
 上記実施の形態およびその変形例では、積層体10をカードに適用した例について説明した。しかし、上記実施の形態およびその変形例において、積層体10は医療用品、自動車部品、自動車、玩具、食品、化粧品、服飾品、書類(例えばパスポート等)、外装部材または電子機器等の筐体に適用してもよい。外装部材の具体例として、例えば、建造物の壁等の内装あるいは外装、または机等の家具の外装等が挙げられる。電子機器の具体例としては、パーソナルコンピュータ(以下「PC」という。)、モバイル機器、携帯電話(例えばスマートフォン)、タブレット型コンピュータ、表示装置、撮影装置、オーディオ機器、ゲーム機器、工業用器具、医療用機器、ロボットまたはウェアラブル端末等が挙げられる。ウェアラブル端末の具体例としては、時計(腕時計)、鞄、衣服、帽子、眼鏡または靴等の服飾品が挙げられる。
 以下に、積層体10をスマートフォン、ノート型パーソナルコンピュータおよび化粧容器に適用した具体例について説明する。
[適用例1]
 図12Aは、スマートフォン30の前面の外観構成を、図12Bは、図12Aに示したスマートフォン30の背面の外観構成を表したものである。このスマートフォン30は、例えば、表示部33と、筐体34とを備える。筐体34の背面側には、記録媒体20が設けられている。筐体34は、積層体10を含んで構成されている。この積層体10は、基材11がスマートフォン30の筐体形状を有していること以外は上記実施形態およびその変形例に係る積層体10のいずれかと同様の構成となっている。これにより、スマートフォン30の偽造防止性等を向上させることができる。
[適用例2]
 図13は、ノート型PC40の外観構成を表したものである。ノート型PC40は、コンピュータ本体41と、ディスプレイ42とを備える。コンピュータ本体41は、筐体41aと、キーボード41bと、ホイール/パッド操作部41cと、クリックボタン41d、41eとを備える。筐体41aには、記録媒体20が設けられている。筐体41aは、積層体10を含んで構成されている。この積層体10は、基材11がノート型PC40の筐体形状を有していること以外は上記実施形態およびそれらの変形例に係る積層体10のいずれかと同様の構成となっている。これにより、ノート型PC40の偽造防止性等を向上させることができる。
[適用例3]
 図14は、化粧容器50の外観を表したものである。この化粧容器50は、収容部511と、収容部58を覆う蓋部59を備える。蓋部59には、記録媒体20が設けられている。蓋部59は、積層体10を含んで構成されている。この積層体10は、基材11が蓋部59に応じた形状を有していること以外は上記実施形態およびその変形例に係る積層体10のいずれかと同様の構成となっている。これにより、化粧容器50の偽造防止性等を向上させることができる。
[適用例4]
 図15は、冊子60の外観を表したものである。冊子60は、パスポートである。パスポートは、冊子型の身分証明書の一例である。冊子60は、複数のシート61を備えている。複数のシート61は、中綴じされている。シート61の少なくとも一方の面または両面には、記録媒体20等が設けられる。記録媒体20等には、顔写真等が描画されている。シート61は、上記実施形態およびその変形例に係る積層体10のいずれかと同様の構成を含んで構成されている。この場合、基材11は紙等であってもよい。これにより、冊子60の偽造防止性等を向上させることができる。
[描画装置]
 次に、積層体10へ記録する記録装置としての描画装置について説明する。図16は、積層体10へ記録する記録装置としての描画装置100の概略構成例を表したものである。描画装置100は、積層体10に設けられた記録媒体20に対して、情報の書き込み(描画)を行う。描画装置100は、例えば、外部から入力された、デバイス依存色空間で記述された画像データ(以下、「入力画像データ」と称する。)を、記録媒体20の色空間で記述された画像データ(以下、「描画用画像データ」と称する。)に変換する。ここで、デバイス依存色空間は、例えば、sRGBやadobe(登録商標)RGBなどのRGB色空間である。記録媒体20の色空間は、記録媒体20が特性として持つ色空間である。描画装置100は、さらに、例えば、変換により得られた描画用画像データを、後述の描画部150の出力設定値に変換し、変換により得られた出力設定値を描画部150に入力することにより、記録媒体20への描画を行う。
 描画装置100は、例えば、通信部110、入力部120、表示部130、記憶部140、描画部150および情報処理部160を備えている。描画装置100は、例えば、通信部110を介してネットワークに接続されている。ネットワークは、例えば、LANまたはWANなどの通信回線である。ネットワークには、例えば、端末装置が接続されている。描画装置100は、例えば、ネットワークを介して端末装置と通信することができるように構成されている。端末装置は、例えば携帯端末であり、ネットワークを介して描画装置100と通信することができるように構成されている。
 通信部110は、端末装置などの外部機器と通信を行う。通信部110は、例えば、携帯端末などの外部機器から受信した入力画像データを情報処理部160に送信する。入力画像データは、各描画座標の階調値がデバイス依存色空間で記述されたデータである。入力画像データにおいて、各描画座標の階調値は、例えば、8ビットの赤階調値、8ビットの緑階調値および8ビットの青階調値によって構成されている。
 入力部120は、ユーザからの入力(例えば、実行指示、データ入力など)を受け付ける。入力部120は、ユーザによって入力された情報を情報処理部160へ送信する。表示部130は、情報処理部160によって作成された各種画面データに基づいて、画面表示を行う。表示部130は、例えば、液晶パネル、または、有機EL(Electro Luminescence)パネルなどによって構成されている。
 記憶部140には、例えば、種々のプログラムが記憶されている。記憶部140には、例えば、デバイス依存色空間で記述された入力画像データを、記録媒体20の色空間で記述された描画用画像データに変換するプログラムが記憶されている。描画用画像データは、例えば、各描画座標の階調値が記録媒体20の色空間で記述されたデータである。記録媒体20の色空間がロイコ色空間となっている場合、描画用画像データにおいて、各描画座標の階調値は、例えば、8ビットのマゼンタ階調値、8ビットのシアン階調値および8ビットのイエロー階調値によって構成されている。記憶部140には、例えば、変換により得られた描画用画像データの階調値に基づいて描画部150の出力設定値を描画座標ごとに導出するプログラムが記憶されている。図16には、これらのプログラムがまとめてプログラム141と表現されている。
 情報処理部160は、例えば、CPU(Central Processing Unit)およびGPU(Graphics Processing Unit)を含んで構成されており、記憶部140に記憶された各種プログラム(例えば、プログラム141)を実行する。情報処理部160は、例えば、プログラム141がロードされることにより、プログラム141に記述された一連の手順を実行する。
 次に、描画部150について説明する。図17は、描画部150の概略構成例を表したものである。描画部150は、例えば、信号処理回路51、レーザ駆動回路52、光源部53、Xスキャナ駆動回路54、Xスキャナ部55、Yステージ駆動回路56およびYステージ57を有している。描画部150は、情報処理部160から入力される電圧値ファイル(指令電圧値のリスト)に基づいて、光源部53の出力を制御することにより、記録媒体20への描画を実行する。
 信号処理回路51は、情報処理部160から入力される電圧値ファイル(指令電圧値のリスト)を画像信号Dinとして取得する。信号処理回路51は、例えば、画像信号Dinから、Xスキャナ部55のスキャナ動作に応じた画素信号Doutを生成する。画素信号Doutは、光源部53(例えば、後述の各レーザ素子53A,53B,53C)に、指令電圧値に応じたパワーのレーザ光を出力させる。信号処理回路51は、レーザ駆動回路52とともに、画素信号Doutに応じて、光源部53(例えば、各レーザ素子53A,53B,53C)に印加する電流の波高値などを制御する。
 レーザ駆動回路52は、例えば、画素信号Doutにしたがって光源部53の各レーザ素子53A,53B,53Cを駆動する。レーザ駆動回路52は、例えば、画素信号Doutに応じた画像を描画するためにレーザ光の輝度(明暗)を制御する。レーザ駆動回路52は、例えば、レーザ素子53Aを駆動する駆動回路52Aと、レーザ素子53Bを駆動する駆動回路52Bと、レーザ素子53Cを駆動する駆動回路52Cとを有している。レーザ素子53A,53B,53Cは、指令電圧値に応じたパワーのレーザ光を記録媒体20に出力することにより、記録媒体20への描画を実行する。レーザ素子53A,53B,53Cは、近赤外域のレーザ光を出射する。レーザ素子53Aは、例えば、発光波長λ1のレーザ光Laを出射する半導体レーザである。レーザ素子53Bは、例えば、発光波長λ2のレーザ光Lbを出射する半導体レーザである。レーザ素子53Cは、例えば、発光波長λ3のレーザ光Lcを出射する半導体レーザである。
 光源部53は、近赤外域において発光波長の互いに異なる複数のレーザ素子(例えば、3つのレーザ素子53A,53B,53C)を有している。各レーザ素子(例えば、各レーザ素子53A,53B,53C)は、記録媒体20に含まれる光熱変換剤の光吸収波長帯に対応する波長を含むレーザ光を生成する。光源部53は、さらに、例えば、複数のレーザ素子(例えば、3つのレーザ素子53A,53B,53C)から出射された複数のレーザ光(例えば、3本のレーザ光La,Lb,Lc)を合波する光学系を有している。この光学系は、例えば、複数のレーザ光La,Lb,Lcによって記録媒体20上に生成される複数の照射スポットPa,Pb,PcがYステージ57上で互いに重なり合うように、複数のレーザ光La,Lb,Lcの合波光(レーザ光Lm)をXスキャナ部55に出力する。X軸方向は、Yステージ57の移動方向(Y軸方向)と直交する方向であり、後述の1軸スキャナ55aの走査方向と平行な方向である。光源部53は、そのような光学系として、例えば、2つの反射ミラー53a,53dと、2つのダイクロイックミラー53b,53cとを有している。
 2つのレーザ素子53A,53Bから出射されたレーザ光La,Lbは、例えば、コリメートレンズによってほぼ平行光(コリメート光)にされる。その後、例えば、レーザ光Laは、反射ミラー53aで反射されるとともにダイクロイックミラー53bで反射され、レーザ光Lbは、ダイクロイックミラー53bを透過する。これにより、レーザ光Laとレーザ光Lbとが合波される。レーザ光Laとレーザ光Laとの合波光は、ダイクロイックミラー53cを透過する。
 レーザ素子53Cから出射されたレーザ光Lcは、例えば、コリメートレンズによってほぼ平行光(コリメート光)にされる。その後、レーザ光Lcは、例えば、反射ミラー53dで反射されるとともにダイクロイックミラー53cで反射される。これにより、ダイクロイックミラー53cを透過した上記合波光と、ダイクロイックミラー53cで反射されたレーザ光Lcとが合波される。光源部53は、例えば、上記の光学系による合波によって得られた光(レーザ光Lm)をXスキャナ部55に出力する。
 Xスキャナ駆動回路54は、例えば、信号処理回路51から入力される制御信号に基づいてXスキャナ部55を駆動する。また、Xスキャナ駆動回路54は、例えば、Xスキャナ部55から、後述の1軸スキャナ55aなどの照射角度についての信号が入力される場合には、その信号に基づいて、所望の照射角度になるようにXスキャナ部55を駆動する。
 Xスキャナ部55は、例えば、光源部53から入射されたレーザ光Lmを、記録媒体20の表面上でX軸方向に走査する。Xスキャナ部55は、例えば、1軸スキャナ55aと、fθレンズ55bとを有している。1軸スキャナ55aは、例えば、光源部53から入射されたレーザ光Lmを、Xスキャナ駆動回路54から入力される駆動信号に基づいて記録媒体20の表面上でX軸方向にスキャンさせるガルバノミラーもしくはポリゴンミラーである。fθレンズ55bは、1軸スキャナ55aによる等速回転運動を、焦点平面(記録媒体20の表面)上を動くスポットの等速直線運動に変換する。
 Yステージ駆動回路56は、例えば、信号処理回路51から入力される制御信号に基づいてYステージ57を駆動する。Yステージ57は、Yステージ57を所定の速度でY軸方向に変位させることにより、Yステージ57上に載置された積層体10(記録媒体20)を、Xスキャナ部55に対して所定の速度でY軸方向に移動させる。Xスキャナ部55およびYステージ57の協調動作によって、レーザ光Lmが積層体10(記録媒体20)の表面上をラスタースキャンする。
[描画物の形成方法]
 次に、描画装置100における描画物の形成方法の一例について説明する。
 まず、ユーザは、未発色の記録媒体20を備えた積層体10を用意し、Yステージ57上に載置する。次に、ユーザは、端末装置からネットワークを介して、RGB色空間で記述された入力画像データを描画装置100に送信する。描画装置100は、入力画像データを、ネットワークを介して受信すると、以下の描画プロセスを実行する。
 まず、情報処理部160は、通信部110を介して入力画像データを受信すると、RGB色空間で記述された入力画像データを、ロイコ色空間で記述されたロイコ画像データに変換する。次に、情報処理部160は、変換により得られたロイコ画像データの各描画座標の各色の階調値に基づいて、電圧値ファイル(指令電圧値のリスト)を導出する。情報処理部160は、導出した電圧値ファイル(指令電圧値のリスト)を描画部150に送信する。
 描画部150の信号処理回路51は、情報処理部160から入力された電圧値ファイル(指令電圧値のリスト)を、画像信号Dinとして取得する。信号処理回路51は、画像信号Dinから、Xスキャナ部55のスキャナ動作に同期し、レーザ光の波長などの特性に応じた画像信号を生成する。信号処理回路51は、生成した画像信号において、一回のスキャナ動作に対応する一ライン分の画像信号を、レーザ光を経時的に連続して出力させる連続信号に変換する。信号処理回路51は、そのようにして生成した投影画像信号を、描画部150のレーザ駆動回路52に出力する。
 投影画像信号は、例えば、各レーザ素子53A,53B,53Cに対して、一ライン分のレーザ光を経時的に連続して出力させる信号である。投影画像信号は、例えば、各レーザ素子53A,53B,53Cに対して、一ライン分のレーザ光を経時的に断続的に出力させる信号であってもよい。ただし、このときの投影画像信号は、この投影画像信号によってレーザ素子が駆動されたときに、一ライン分の複数のパルスレーザ光によって記録媒体20の一ライン分の領域が連続して照射されるような信号となっている。
 レーザ駆動回路52は、各波長に応じた投影映像信号にしたがって光源部53の各レーザ素子53A,53B,53Cを駆動する。このとき、レーザ駆動回路52は、例えば、レーザ素子53A、レーザ素子53Bおよびレーザ素子53Cのうち、少なくとも1つの光源から、レーザ光La,Lb,Lcのうち少なくとも1つのレーザ光を出射させる。これにより、例えば、レーザ素子53A、レーザ素子53Bおよびレーザ素子53Cのうち、少なくとも1つの光源から、レーザ光La,Lb,Lcのうち少なくとも1つのレーザ光を生成することができる。
 このとき、投影画像信号が、各レーザ素子53A,53B,53Cに対して、一ライン分のレーザ光を経時的に連続して出力させる信号である場合、レーザ素子53A、レーザ素子53Bおよびレーザ素子53Cのうち、少なくとも1つの光源からは、例えば、図18(A)に示したような経時的に連続する一ライン分のレーザ光が出力される。その結果、記録媒体20には、例えば、図18(B)に示したような線状の描画痕を形成することができる。
 また、投影画像信号が、各レーザ素子53A,53B,53Cに対して、一ライン分のレーザ光を経時的に断続的に出力させる信号である場合、レーザ素子53A、レーザ素子53Bおよびレーザ素子53Cのうち、少なくとも1つの光源からは、例えば、図19(A)に示したような経時的に断続する一ライン分の複数のパルスレーザ光が出力される。このとき、その結果、記録媒体20には、例えば、図19(B)に示したような線状の描画痕を形成することができる。
 例えば発色層23を発色させる場合には、発光波長λ1のレーザ光Laを発色層23が発色温度に達する程度のエネルギーで発色層23に照射する。これにより、発色層23に含まれる光熱変換剤が発熱し、呈色性化合物と顕・減色剤との間で呈色反応(発色反応)が起こり、照射部分に例えば黄色が発色する。同様に、発色層25を発色させる場合には、発光波長λ2のレーザ光Lbを発色層25が発色温度に達する程度のエネルギーで発色層25に照射することで、照射部分に例えばマゼンタ色が発色する。発色層27を発色させる場合には、発光波長λ3のレーザ光Lcを発色層27が発色温度に達する程度のエネルギーで発色層27に照射することで、照射部分に例えばシアン色が発色する。このように、対応する波長のレーザ光を任意の部分に照射することにより、図柄等(例えば、フルカラーの図柄等)の記録が可能となる。
 Xスキャナ駆動回路54、Xスキャナ部55、Yステージ駆動回路56およびYステージ57からなる機構は、光源部53で生成されたレーザ光Lmを記録媒体20の表面上に照射する走査部として機能する。この機構により、光源部53で生成されたレーザ光La,Lb,Lcのうち少なくとも1つのレーザ光を記録媒体20の表面上に照射するとともに、レーザ光La,Lb,Lcのうち少なくとも1つのレーザ光を記録媒体20の表面上で走査することにより記録媒体20に描画を行うことができる。
 レーザ光Lmの照射スポットの大きさおよび形状は、レーザ光Lmに含まれるレーザ光Laによって発色層23およびその周辺に生じる高温領域と、レーザ光Lmに含まれるレーザ光Lbによって発色層25およびその周辺に生じる高温領域とが互いに重ならないようになっていることが好ましい。また、レーザ光Lmの照射スポットの大きさおよび形状は、レーザ光Lmに含まれるレーザ光Lbによって発色層25およびその周辺に生じる高温領域と、レーザ光Lmに含まれるレーザ光Lcによって発色層27およびその周辺に生じる高温領域とが互いに重ならないようになっていることが好ましい。
 次に、描画部150から出力される個々のレーザ光La,Lb,Lc)の、記録媒体20の位置でのビーム形状BPについて説明する。
ビーム 形状BPの測定は、プロファイラ「Model:NS2s-Pyro/9/5-PRO」、アプリケーションソフトウェア「Nanoscan2 v2」を使用する。各々のレーザのプロファイラによるビーム形状BPの測定条件は以下である。
1.Xスキャナ部55の1軸スキャナ55aを45度に傾け、fθレンズ55bの中心をビームが通過する位置に合わせる。
2.プロファイラのX軸を、Xスキャナ部55の1軸スキャナ55aの走査軸に合わせる。
3.プロファイラのディテクタ面を記録媒体20の高さ位置に合わせる。
4.ビーム形状BPの測定の安定のため、ビーム発光させながらディテクタ面上のビーム形状BPのXY位置をX3000μmかつY3000μmに合わせた後、ビーム形状BPの測定をする。
 以下はアプリケーションソフトウェアの設定パラメータである。
〇Sourceタブ内のパラメータ
・Detector_ScanRate_10Hz_SamplingResolution_0.09μm
・Set up_AutoROI
〇Profilesタブ内のパラメータ
・Display_AutoROI
・Scaling_Linear_1x
・HorizontalScailing_AutoZoom
〇2D/3Dタブ内のパラメータ
・Scale_Linear
・Resolution_Medium
・Palette_CSIRainbow
〇Pointingタブ内のパラメータ
・Display_Accumulate
・Tracking_Centroid
・Indicator_CrossHarf
〇Captureタブ内のパラメータ
・CaptureMode_CW
・FrameAveraging_Average_6_Rolling_3
〇Computationsタブ内のパラメータ
・BeamWidthMethod_13.5%_50%(FWHM)_25%_50%
・Position_Centroid_Peak
・Divergence/NumericalAperture_Divergence/NA_lens
〇Powerタブ内のパラメータ
・Results_TotalPower
〇Chartsタブ内のパラメータ
・TimeCharts_f(x)Width13.5%
〇Loggingタブ内のパラメータ
・LoggingRate_1.3/sec
〇M2タブ内のパラメータ
・none
 図20は、ビーム形状BPの一例を表したものである。光源部53は、個々のレーザ光La,Lb,Lcの、記録媒体20の位置でのそれぞれのビーム形状が以下の関係式を満たすとともに、ビーム形状BPの長軸方向がレーザ光La,Lb,Lcの走査方向と平行となるように個々のレーザ光La,Lb,Lcを生成する。
 Ly×1.1≦Lx<Ly×5.0
 d×0.8≦Ly≦d×1.3
 Lx:ビーム形状BPの、レーザ光La,Lb,Lcの走査方向と平行な方向の長さ
 Ly:ビーム形状BPの、レーザ光La,Lb,Lcの走査方向と直交する方向の長さ
 d:画素サイズ
 ここで、Lxは、レーザ光La、レーザ光Lbまたはレーザ光Lcの、記録媒体20の位置での照射スポットのうち、ピークパワーの値の半分の値以下の領域における、照射スポットのX軸方向の幅を指している。つまり、Lxは、照射スポットのX軸方向の半値幅に相当する。Lyは、レーザ光La、レーザ光Lbまたはレーザ光Lcの、記録媒体20の位置での照射スポットのうち、ピークパワーの値の半分の値以下の領域における、照射スポットのY軸方向の幅を指している。照射スポットのサイズ(ビームサイズ)は、上記のプロファイラおよび上記のアプリケーションソフトウェアによって測定可能である。なお、後述のビームサイズの値は、上記のプロファイラおよび上記のアプリケーションソフトウェアによる測定値である。つまり、Lyは、照射スポットのY軸方向の半値幅に相当する。
 また、画素サイズdは、目標線幅に対応しており、25400/R(μm)で表される。ここで、Rは、記録媒体20において目標とする解像度(dpi)である。例えば、目標とする解像度が423dpiである場合、画素サイズdは60μmである。また、例えば、目標とする解像度が508dpiである場合、画素サイズdは50μmである。
 描画痕の幅が目標線幅となるためには、レーザビームの主走査方向(X軸方向)と直交する方向(Y軸方向)のビームサイズ(Ly)を、画素サイズdに対して-20%以上、+30%以下とすることが必要である。ビームサイズ(Ly)が小さすぎる場合には、描画痕の幅が細くなりすぎて所望の光学濃度を達成することができなかったり、あるいはレーザパワー密度が高くなりすぎて発色層を焦がしたり、隣接層の意図せぬ発色(クロストーク)を引き起こしたりしてしまう。また、ビームサイズ(Ly)が大きすぎる場合には、レーザパワー密度が低下し、描画タクトが長くなったり、画素サイズに対して太い線幅となり、画質低下を引き起こしたりしてしまう。
 また、レーザビームの主走査方向(X軸方向)のビームサイズ(Lx)については、ビームサイズ(Ly)と比べて長くする必要があり、ビームサイズ(Lx)に対して+110%以上、+500%未満とすることが必要である。ビームサイズ(Lx)が小さすぎる場合には、レーザパワー密度が高くなりすぎて発色層を焦がしたり、隣接層の意図せぬ発色(クロストーク)を引き起こしたりしてしまう。また、ビームサイズ(Lx)が大きすぎる場合には、レーザパワー密度が低下し、描画速度を遅くしないと十分な発色が得られない。ビームサイズ(Lx,Ly)と描画特性との関係を図21にまとめた。ビームサイズ(Lx,Ly)が上記の関係を満たすことにより、良好な描画が実現され、ビームサイズ(Lx,Ly)が上記の関係を満たさない場合には、発光層を焦がしたり、クロストークが発生したり、所望の光学濃度が得られないといった問題が生じてしまう。
 ところで、光源部53が、ビーム形状BPの長軸方向がレーザ光La,Lb,Lcの走査方向と平行となるように個々のレーザ光La,Lb,Lcを生成した場合、個々のレーザ光La,Lb,Lcの描画特性について以下の懸念点が生じる。具体的には、例えば、図22に示したように、個々のレーザ光La,Lb,Lcの照射面(記録媒体20の表面)の高さ(高さ方向の位置)が所定の高さからずれてしまった場合に、レーザビームの主走査方向(X軸方向)と直交する方向(Y軸方向)のビームサイズ(Ly)が大きく変動してしまう。これは、画質ばらつきを低減する観点からすると、記録媒体20の位置について描画プロセスマージンが小さいことを意味する。
 そこで、光源部53は、描画プロセスマージンを十分に確保することができるように個々のレーザ光La,Lb,Lcを生成することが好ましい。具体的には、光源部53は、個々のレーザ光La,Lb,Lcの、記録媒体20の位置でのそれぞれのビーム形状が上記の関係を満たすとともに、ビーム形状BPの長軸がレーザ光La,Lb,Lcの走査方向と平行な線分(X軸)に対して0度より大きく20度以下となるように個々のレーザ光La,Lb,Lcを生成することが好ましい。このときのビーム形状BPの一例を図23に表した。図23において、θが、ビーム形状BPの長軸とレーザ光La,Lb,Lcの走査方向と平行な線分(X軸)とのなす角度(以下、「ビーム回転角度」と称する。)に相当する。
 図24は、ビーム回転角度θが3度のときの、照射面(記録媒体20の表面)の高さとビームサイズ(Ly)との関係の一例を表したものである。図24からは、ビーム回転角度θを3度にすることにより、個々のレーザ光La,Lb,Lcの照射面(記録媒体20の表面)の高さが所定の高さからずれてしまった場合であっても、ビームサイズ(Ly)の大きな変動が抑制されていることがわかる。なお、ビーム回転角度θが0度のときは、描画痕DLの端部が例えば図25(A)に示したように半円形状となっている。一方、ビーム回転角度θが0度より大きく20度以下となっているときは、描画痕DLの端部が例えば図25(B)に示したように楕円の一部の形状となっている。
 図26は、1~24の条件でテストしたときの画質の評価結果の一例を表したものである。図26中に「良好」と記載された条件では、最大OD値が1.0以上となり、クロストークが無く、DOF(焦点深度)が100μm,200μm,300μmもしくは500μmよりも大きな値になっていることがわかった。図26からは、「良好」な条件では、レーザ光La,Lb,LcのDOFが大きくなっており、これにより、記録媒体20の位置について描画プロセスマージンが大きくなっていると考えられる。
 図26のDOFの大きさを鑑みると、DOFが200よりも大きくなっているテスト11~15の条件(つまり、θが0.5度以上20度以下)となっていることが好ましい。また、DOFが300よりも大きくなっているテスト12~15の条件(つまり、θが1度以上20度以下)となっていることがより好ましく、DOFが500よりも大きくなっているテスト12,13,14の条件(つまり、θが1度以上10度以下)となっていることがより好ましい。
 次に、ビーム回転角度θを調整する方法について説明する。
 図27は、光源部53の光学的な構成の一例を表したものである。光源部53は、レーザ素子151と、コリメータ152と、シリンダ153,154,155,156とを備えている。
 レーザ素子151は、上述のレーザ素子53A,53B,53Cのうちのいずれかのレーザ素子である。レーザ素子151と照射面である記録媒体20の表面とは結像関係となっている。レーザ素子151の発振波長は860nmとなっており、エミッタサイズは150μmとなっており、ビーム発散角(FWHM)は、垂直方向(X方向)において36度となっており、水平方向(Y方向)において7度となっている。レーザ素子151から発せられたレーザ光が照射面である記録媒体20の表面に集光するように、X方向の集光位置についてはシリンダ155,156の間隔を調整し、Y方向の集光位置についてはシリンダ153,154の間隔を調整した。
 図28は、光源部53が、レーザ素子151と、コリメータ152と、シリンダ153,154,155,156とを備えている場合に、Z軸を回転軸としたときの回転角の一例を表したものである。図28において、レーザ素子151をZ軸について-2.3度回転させた場合を実施例1とし、シリンダ154をZ軸について+0.7度回転させるとともに、シリンダ156をZ軸について+0.7度回転させた場合を実施例2とした。また、図28において、シリンダ153をZ軸について-3.0度回転させるとともに、シリンダ155をZ軸について-1.0度回転させた場合を実施例3とし、レーザ素子151をZ軸について-2.0度回転させるとともに、シリンダ153をZ軸について+1.0度回転させた場合を実施例4とした。いずれの実施例においても、ビーム回転角度θを所望の角度に調整することができた。
 なお、レーザ素子151と照射面である記録媒体20の表面とは結像関係から外れた関係となっていてもよい。このようにした場合であっても、ビーム回転角度θを所望の角度に調整することができた。
 図29は、レーザ素子151をZ軸について回転させるための機構157の一例と、シリンダ156をZ軸について回転させるための機構158の一例とを表したものである。機構157,158は、ともに、基台159上に固定されている。
 機構157は、基台159に固定され、後述の位置調整部157bを介してレーザ素子151を支持する支持部157aと、支持部157aに支持され、レーザ素子151の位置を調整するための位置調整部157bとを有している。機構157は、さらに、位置調整部157bに固定され、レーザ素子151の金属ステム部分を固定するためのステム固定部157cと、ステム固定部157cに固定され、レーザ素子151の金属キャップ部分を支持するキャップ支持部157dとを有している。機構157は、さらに、ステム固定部157cの、Z軸方向の回転角を調整するための回転角調整部157eと、位置調整部157bに固定され、レーザ素子151から発せられた熱を放散させるためのヒートシンク157fとを有している。位置調整部157bには、レーザ素子151のリードに対応する箇所に開口部157gが設けられている。
 機構158は、基台159に固定され、後述の位置調整部158bを介してシリンダ156を支持する支持部158aと、支持部158aに回動可能に支持され、シリンダ156の位置を調整するための位置調整部158bとを有している。シリンダ156は、位置調整部158bに固定されている。機構158は、さらに、支持部158aに固定されるとともに、位置調整部158bに対して離間して配置され、後述の回転角調整部158dを支持する支持部158cを有している。機構158は、さらに、支持部158cに対して回動可能に支持され、シリンダ156の、Z軸方向の回転角を調整するための回転角調整部158dを有している。支持部158aおよび位置調整部158bには、レーザ素子151からのレーザ光が通過する箇所に開口部158eが設けられている。
[効果]
 次に、描画装置100の効果について説明する。
 近年、パスポートや運転免許証等の各種IDカードに対して、セキュリティ性向上のために、非接触で任意の画像を描画することの可能な記録媒体を内部に設けることが検討されている。現在、そのような用途で実用化されている記録媒体としては、単色での描画が可能なものが主流となっている。なお、レーザ光で記録媒体に画像を描画する技術としては、例えば、特許文献1~3が開示されている。
 ところで、セキュリティ性の更なる向上のために、記録媒体のカラー化が求められている。しかし、記録媒体のカラー化においては、既存のインクジェット方式や熱転写方式と比較して、画質や描画タクトの点で劣っているという問題がある。
 一方、本実施の形態では、レーザ光La,Lb,Lcのうち少なくとも1つのレーザ光の、記録媒体20の位置でのビーム形状が上述の関係式を満たすとともに、ビーム形状の長軸方向がレーザ光の走査方向と平行となるようにレーザ光La,Lb,Lcのうち少なくとも1つのレーザ光が生成される。これにより、ビームのパワー密度もしくはビーム面積が同じ条件下において、ビーム形状が円形状もしくは正方形状となっている場合と比べて、複数の発色層における干渉(クロストーク)を抑制し、色域をより確保することができ、さらに、高効率な描画を行うことができる。その結果、高画質、短タクトを両立することができる。
 また、本実施の形態では、レーザ光La,Lb,Lcのうち少なくとも1つのレーザ光の、記録媒体20の位置でのビーム形状が上述の関係式を満たすとともに、ビーム形状の長軸方向がレーザ光の走査方向に対して0度より大きく20度以下となるようにレーザ光La,Lb,Lcのうち少なくとも1つのレーザ光が生成される。これにより、ビームのパワー密度もしくはビーム面積が同じ条件下において、ビーム形状が円形状もしくは正方形状となっている場合と比べて、複数の発色層における干渉(クロストーク)を抑制し、色域をより確保することができ、さらに、高効率な描画を行うことができる。その結果、高画質、短タクトを両立することができる。また、ビーム形状の長軸方向がレーザ光の走査方向に対して0度より大きく20度以下となるようにレーザ光La,Lb,Lcのうち少なくとも1つのレーザ光が生成されることにより、記録媒体の位置について描画プロセスマージンを大きくすることができる。
<2.変形例>
 以下に、本開示の一実施の形態に係る描画装置100の変形例について説明する。
[変形例α]
 上記実施の形態に係る描画装置100において、光源部53は、レーザ光La,Lb,Lcのうち、少なくとも2つのレーザ光の、記録媒体20の位置でのそれぞれのビーム形状が上述の関係式を満たすとともに、ビーム形状BPの長軸方向がレーザ光La,Lb,Lcの走査方向と平行となるようにレーザ光La,Lb,Lcのうち、少なくとも2つのレーザ光を生成してもよい。このようにした場合であっても、上記実施の形態と同様の効果を得ることができる。
 また、上記実施の形態に係る描画装置100において、光源部53は、各レーザ光La,Lb,Lcの、記録媒体20の位置でのそれぞれのビーム形状が上述の関係式を満たすとともに、ビーム形状BPの長軸方向がレーザ光La,Lb,Lcの走査方向と平行となるように各レーザ光La,Lb,Lcを生成してもよい。このようにした場合であっても、上記実施の形態と同様の効果を得ることができる。
[変形例β]
 上記実施の形態に係る描画装置100において、光源部53は、例えば、図30に示したように、複数のレーザ光La,Lb,Lcによる照射スポットが複数のレーザ光La,Lb,Lcの走査方向と0度より大きく90度よりも小さな角度で交差する方向に所定の間隙で並んだ状態で、複数のレーザ光La,Lb,Lcが記録媒体20の表面上で走査されるように、複数のレーザ光La,Lb,Lcを生成するようになっていてもよい。レーザ光La,Lb,Lcは、例えば、図31に示したように、X軸方向と直交する方向(Y軸方向)に所定の間隙を介して、X軸方向にスキャンされてもよい。また、例えば、図32に示したように、レーザ光La,Lb,Lcは、X軸方向およびY軸方向と斜めに交差する方向に所定の間隙を介して、X軸方向にスキャンされてもよい。
 ここで、ダイクロイックミラー53bにおいて、レーザ光Laが反射するスポットと、レーザ光Lbが透過するスポットとが互いに重なっていてもよい。この場合、ダイクロイックミラー53bで反射したレーザ光Laの光軸と、ダイクロイックミラー53bを透過したレーザ光Lbの光軸とが所定の角度で交差するように光学系が構成される。
 また、ダイクロイックミラー53bにおいて、レーザ光Laが反射するスポットと、レーザ光Lbが透過するスポットとが互いに完全に重ならず、ずれていてもよい。また、ダイクロイックミラー53bにおいて、レーザ光Laが反射するスポットと、レーザ光Lbが透過するスポットとが互いに分離されていてもよい。これらの場合、ダイクロイックミラー53bで反射したレーザ光Laの光軸と、ダイクロイックミラー53bを透過したレーザ光Lbの光軸とが所定の角度で交差するように光学系が構成されてもよいし、互いに平行となるように光学系が構成されてもよい。
 ダイクロイックミラー53cにおいて、レーザ光Laまたはレーザ光Lbが透過するスポットと、レーザ光Lcが反射するスポットとが互いに完全に重ならず、ずれるように光学系が構成される。このとき、ダイクロイックミラー53cにおいて、レーザ光Laが透過するスポットと、レーザ光Lbが透過するスポットと、レーザ光Lcが反射するスポットとが所定の方向に少しずつずれて並んでいてもよい。ダイクロイックミラー53cにおいて、レーザ光Laが透過するスポットと、レーザ光Lbが透過するスポットと、レーザ光Lcが反射するスポットとが所定の間隙を介して並んでいてもよい。
 これらの場合、ダイクロイックミラー53cを透過したレーザ光Laの光軸と、ダイクロイックミラー53cを透過したレーザ光Lbの光軸と、ダイクロイックミラー53cで反射したレーザ光Lcの光軸とが互いに所定の角度で交差するように光学系が構成されてもよい。このとき、光源部53は、複数のレーザ光La,Lb,Lcを、当該複数のレーザ光La,Lb,Lcの光軸を互いにずらした状態でXスキャナ部55に出力するとともに、複数のレーザ光La,Lb,Lcを、当該複数のレーザ光La,Lb,Lcの光軸が互いに所定の角度で交差するようにXスキャナ部55に出力する。
 また、ダイクロイックミラー53cを透過したレーザ光Laの光軸と、ダイクロイックミラー53cを透過したレーザ光Lbの光軸と、ダイクロイックミラー53cで反射したレーザ光Lcの光軸とが互いに平行となるように光学系が構成されてもよい。このとき、光源部53は、複数のレーザ光La,Lb,Lcを、当該複数のレーザ光La,Lb,Lcの光軸を互いにずらした状態でXスキャナ部55に出力するとともに、複数のレーザ光La,Lb,Lcを、当該複数のレーザ光La,Lb,Lcの光軸が所定の間隙を介して互いに平行となるようにXスキャナ部55に出力する。
 本変形例では、複数のレーザ光La,Lb,Lcによる照射スポットが複数のレーザ光La,Lb,Lcの走査方向と交差する方向に所定の間隙で並んだ状態で、複数のレーザ光La,Lb,Lcが記録媒体20の表面上で走査される。これにより、熱のクロストークが生じるのを低減しつつ、ラスタースキャンを実現することができる。
[変形例γ]
 図33は、上記実施の形態に係る描画装置100の概略構成の一変形例を表したものである。上記実施の形態では、Xスキャナ部55でレーザ光La,Lb,LcをX軸方向に走査し、Yステージ57をY軸方向に移動させることにより、ラスタースキャンが実現されていた。しかし、上記実施の形態およびその変形例において、例えば、図33、図34に示したように、Xスキャナ駆動回路54、Xスキャナ部55、Yステージ駆動回路56およびYステージ57の代わりに、XYスキャナ駆動回路54A、XYスキャナ部55Aおよび固定ステージ57Aを用いることにより、ラスタースキャンが実現されてもよい。
 XYスキャナ駆動回路54Aは、例えば、信号処理回路51から入力される制御信号に基づいてXYスキャナ部55Aを駆動する。また、XYスキャナ駆動回路54Aは、例えば、XYスキャナ部55Aから、後述の2軸スキャナ55cなどの照射角度についての信号が入力される場合には、その信号に基づいて、所望の照射角度になるようにXYスキャナ部55Aを駆動する。
 XYスキャナ部55Aは、例えば、光源部53から入射されたレーザ光La,Lb,Lcを、記録媒体20の表面上でX軸方向にスキャンさせるとともに、所定のステップ幅でスキャンラインをY軸方向に移動させる。XYスキャナ部55Aは、例えば、2軸スキャナ55cと、fθレンズ55bとを有している。2軸スキャナ55cは、例えば、光源部53から入射されたレーザ光La,Lb,Lcを、XYスキャナ駆動回路54Aから入力される駆動信号に基づいて記録媒体20の表面上でX軸方向にスキャンさせるとともに、所定のステップ幅でスキャンラインをY軸方向に移動させるガルバノミラーである。fθレンズ55bは、2軸スキャナ55cによる等速回転運動を、焦点平面(記録媒体20の表面)上を動くスポットの等速直線運動に変換する。固定ステージ57Aは、単に記録媒体20を支持するだけの台である。
 本変形例では、複数のレーザ光La,Lb,LcをX軸方向に走査するとともに、所定のステップ幅で複数のレーザ光La,Lb,LcのスキャンラインをY軸方向に移動させるXYスキャナ部55Aが設けられている。これにより、熱のクロストークが生じるのを低減しつつ、ラスタースキャンを実現することができる。
 また、本変形例では、記録媒体20を静止した状態で、複数のレーザ光La,Lb,LcをX軸方向に走査するとともに、所定のステップ幅で複数のレーザ光La,Lb,LcのスキャンラインをY軸方向に移動させることにより、ラスタースキャンが実行される。これにより、熱のクロストークが生じるのを低減しつつ、ラスタースキャンを実現することができる。
 以上、本開示の実施形態、変形例および適用例について具体的に説明したが、本開示は、上述の実施形態、変形例および適用例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態、変形例および適用例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。上述の実施形態、変形例および適用例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 上述の実施形態、変形例および適用例で段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。上述の実施形態、変形例および適用例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行う描画装置であって、
 互いに異なる波長であって、かつ前記光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成する光源部と、
 前記光源部で生成された複数のレーザ光を前記記録媒体の表面上に照射するとともに、前記複数のレーザ光を前記記録媒体の表面上で走査する走査部と
 を備え、
 前記光源部は、前記複数のレーザ光のうち少なくとも1つのレーザ光の、前記記録媒体の位置でのビーム形状が以下の関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも1つのレーザ光を生成する
 描画装置。
 Ly×1.1≦Lx<Ly×5.0
 d×0.8≦Ly≦d×1.3
 Lx:前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さ
 Ly:前記ビーム形状の、前記レーザ光の走査方向と直交する方向の長さ
 d:画素サイズ
(2)
 前記光源部は、前記複数のレーザ光のうち少なくとも2つのレーザ光の、前記記録媒体の位置でのビーム形状が前記関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも2つのレーザ光を生成する
 (1)に記載の描画装置。
(3)
 前記光源部は、各前記レーザ光の、前記記録媒体の位置でのビーム形状が前記関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように各前記レーザ光を生成する
 (1)に記載の描画装置。
(4)
 前記光源部は、前記ビーム形状の長軸方向が前記レーザ光の走査方向に対して0.5度以上20度以下となるように前記複数のレーザ光を生成する
 (1)に記載の描画装置。
(5)
 前記光源部は、前記ビーム形状の長軸方向が前記レーザ光の走査方向に対して1度以上10度以下となるように前記複数のレーザ光を生成する
 (1)に記載の描画装置。
(6)
 前記光源部は、前記複数のレーザ光を生成する複数のレーザ素子を含み、
 当該描画装置は、前記複数のレーザ素子のうち少なくとも1つを回転させることにより、回転させた前記レーザ素子から生成されたレーザ光のビーム形状の長軸方向を回転させることの可能な回転機構を更に備えた
 (1)ないし(5)のいずれか1つに記載の描画装置。
(7)
 前記走査部は、前記複数のレーザ光を第1の方向に走査する光学系と、前記記録媒体を前記第1の方向と直交する第2の方向に移動させるステージとを有する
 (1)ないし(6)のいずれか1つに記載の描画装置。
(8)
 前記走査部は、前記複数のレーザ光を第1の方向に走査するとともに、所定のステップ幅で前記複数のレーザ光のスキャンラインを前記第1の方向と直交する第2の方向に移動させる光学系を有する
 (1)ないし(6)のいずれか1つに記載の描画装置。
(9)
 前記光源部は、前記複数のレーザ光による照射スポットが前記複数のレーザ光の走査方向と交差する方向に所定の間隙で並んだ状態で、前記複数のレーザ光が前記記録媒体の表面上で走査されるように、複数のレーザ光を生成する
 (1)ないし(6)のいずれか1つに記載の描画装置。
(10)
 各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行うことにより描画物を形成する方法であって、
 互いに異なる波長であって、かつ前記光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成することと、
 前記光源部で生成された複数のレーザ光を前記記録媒体の表面上に照射するとともに、前記複数のレーザ光を前記記録媒体の表面上で走査することにより前記記録媒体に描画を行うことと
 を含み、
 前記複数のレーザ光の生成において、前記複数のレーザ光のうち少なくとも1つのレーザ光の、前記記録媒体の位置でのビーム形状が以下の関係を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも1つのレーザ光を生成すること
 を含む
 描画物の形成方法。
 Ly×1.1≦Lx<Ly×5.0
 d×0.8≦Ly≦d×1.3
 Lx:前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さ
 Ly:前記ビーム形状の、前記レーザ光の走査方向と直交する方向の長さ
 d:画素サイズ
 本開示の第1の側面に係る描画装置、および本開示の第2の側面に係る描画物の形成方法では、前記複数のレーザ光のうち少なくとも1つのレーザ光の、記録媒体の位置でのそれぞれのビーム形状が上述の関係を満たすとともに、ビーム形状の、レーザ光の走査方向と平行な方向の長さがレーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも1つのレーザ光が生成される。これにより、ビームのパワー密度もしくはビーム面積が同じ条件下において、ビーム形状が円形状もしくは正方形状となっている場合と比べて、複数の発色層における干渉(クロストーク)を抑制し、色域をより確保することができ、さらに、高効率な描画を行うことができる。その結果、高画質、短タクトを両立することができる。
 本出願は、日本国特許庁において2022年10月26日に出願された日本特許出願番号第2022-171761号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (10)

  1.  各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行う描画装置であって、
     互いに異なる波長であって、かつ前記光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成する光源部と、
     前記光源部で生成された複数のレーザ光を前記記録媒体の表面上に照射するとともに、前記複数のレーザ光を前記記録媒体の表面上で走査する走査部と
     を備え、
     前記光源部は、前記複数のレーザ光のうち少なくとも1つのレーザ光の、前記記録媒体の位置でのビーム形状が以下の関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも1つのレーザ光を生成する
     描画装置。
     Ly×1.1≦Lx<Ly×5.0
     d×0.8≦Ly≦d×1.3
     Lx:前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さ
     Ly:前記ビーム形状の、前記レーザ光の走査方向と直交する方向の長さ
     d:画素サイズ
  2.  前記光源部は、前記複数のレーザ光のうち少なくとも2つのレーザ光の、前記記録媒体の位置でのビーム形状が前記関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも2つのレーザ光を生成する
     請求項1に記載の描画装置。
  3.  前記光源部は、各前記レーザ光の、前記記録媒体の位置でのビーム形状が前記関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように各前記レーザ光を生成する
     請求項1に記載の描画装置。
  4.  前記光源部は、前記ビーム形状の長軸方向が前記レーザ光の走査方向に対して0.5度以上20度以下となるように前記複数のレーザ光を生成する
     請求項1に記載の描画装置。
  5.  前記光源部は、前記ビーム形状の長軸方向が前記レーザ光の走査方向に対して1度以上10度以下となるように前記複数のレーザ光を生成する
     請求項1に記載の描画装置。
  6.  前記光源部は、前記複数のレーザ光を生成する複数のレーザ素子を含み、
     当該描画装置は、前記複数のレーザ素子のうち少なくとも1つを回転させることにより、回転させた前記レーザ素子から生成されたレーザ光のビーム形状の長軸方向を回転させることの可能な回転機構を更に備えた
     請求項1に記載の描画装置。
  7.  前記走査部は、前記複数のレーザ光を第1の方向に走査する光学系と、前記記録媒体を前記第1の方向と直交する第2の方向に移動させるステージとを有する
     請求項1に記載の描画装置。
  8.  前記走査部は、前記複数のレーザ光を第1の方向に走査するとともに、所定のステップ幅で前記複数のレーザ光のスキャンラインを前記第1の方向と直交する第2の方向に移動させる光学系を有する
     請求項1に記載の描画装置。
  9.  前記光源部は、前記複数のレーザ光による照射スポットが前記複数のレーザ光の走査方向と交差する方向に所定の間隙で並んだ状態で、前記複数のレーザ光が前記記録媒体の表面上で走査されるように、複数のレーザ光を生成する
     請求項1に記載の描画装置。
  10.  各々が互いに異なる呈色性化合物および互いに異なる光熱変換剤を含んで構成された複数の発色層が中間層を介して積層された記録媒体に描画を行うことにより描画物を形成する方法であって、
     互いに異なる波長であって、かつ前記光熱変換剤の吸収波長に対応する波長を含む複数のレーザ光を生成することと、
     前記光源部で生成された複数のレーザ光を前記記録媒体の表面上に照射するとともに、前記複数のレーザ光を前記記録媒体の表面上で走査することにより前記記録媒体に描画を行うことと
     を含み、
     前記複数のレーザ光の生成において、前記複数のレーザ光のうち少なくとも1つのレーザ光の、前記記録媒体の位置でのビーム形状が以下の関係式を満たすとともに、前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さが前記レーザ光の走査方向に対して0度以上20度以下となるように前記複数のレーザ光のうち少なくとも1つのレーザ光を生成すること
     を含む
     描画物の形成方法。
     Ly×1.1≦Lx<Ly×5.0
     d×0.8≦Ly≦d×1.3
     Lx:前記ビーム形状の、前記レーザ光の走査方向と平行な方向の長さ
     Ly:前記ビーム形状の、前記レーザ光の走査方向と直交する方向の長さ
     d:画素サイズ
PCT/JP2023/033411 2022-10-26 2023-09-13 描画装置、および描画物の形成方法 WO2024090063A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171761 2022-10-26
JP2022-171761 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090063A1 true WO2024090063A1 (ja) 2024-05-02

Family

ID=90830483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033411 WO2024090063A1 (ja) 2022-10-26 2023-09-13 描画装置、および描画物の形成方法

Country Status (1)

Country Link
WO (1) WO2024090063A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043397A (ja) * 2001-08-01 2003-02-13 Noritsu Koki Co Ltd 露光装置およびこれを備えた画像出力装置
JP2008230221A (ja) * 2006-11-27 2008-10-02 Toshiba Tec Corp 非接触光書き込み装置
JP2010192015A (ja) * 2009-02-16 2010-09-02 Ricoh Co Ltd 画像処理方法及び画像処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043397A (ja) * 2001-08-01 2003-02-13 Noritsu Koki Co Ltd 露光装置およびこれを備えた画像出力装置
JP2008230221A (ja) * 2006-11-27 2008-10-02 Toshiba Tec Corp 非接触光書き込み装置
JP2010192015A (ja) * 2009-02-16 2010-09-02 Ricoh Co Ltd 画像処理方法及び画像処理装置

Similar Documents

Publication Publication Date Title
WO2018092455A1 (ja) 可逆性記録媒体および外装部材
US20240042784A1 (en) Laminate, card, and housing
WO2021187385A1 (ja) 記録媒体および外装部材
JP7306391B2 (ja) 描画方法および消去方法ならびに描画装置
WO2024090063A1 (ja) 描画装置、および描画物の形成方法
WO2023281842A1 (ja) 感熱記録媒体、冊子およびカード
JP7484714B2 (ja) 描画方法および消去方法
CN112351891B (zh) 可逆记录介质和外装构件
WO2023176942A1 (ja) 描画物、および描画物の形成方法
CN111278657B (zh) 热敏记录介质和外装构件
WO2022209205A1 (ja) 描画システムおよび描画方法
WO2021177301A1 (ja) 記録媒体および外装部材
JP7306387B2 (ja) 描画および消去装置ならびに消去方法
WO2021132060A1 (ja) 記録媒体および外装部材
JP7322887B2 (ja) 描画方法および描画装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882276

Country of ref document: EP

Kind code of ref document: A1