WO2024089836A1 - 電動機、ファン、及び空気調和機 - Google Patents

電動機、ファン、及び空気調和機 Download PDF

Info

Publication number
WO2024089836A1
WO2024089836A1 PCT/JP2022/040111 JP2022040111W WO2024089836A1 WO 2024089836 A1 WO2024089836 A1 WO 2024089836A1 JP 2022040111 W JP2022040111 W JP 2022040111W WO 2024089836 A1 WO2024089836 A1 WO 2024089836A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
electric motor
rotor core
shortest distance
rolling bearing
Prior art date
Application number
PCT/JP2022/040111
Other languages
English (en)
French (fr)
Inventor
篤 松岡
諒伍 ▲高▼橋
隆徳 渡邉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/040111 priority Critical patent/WO2024089836A1/ja
Publication of WO2024089836A1 publication Critical patent/WO2024089836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • This disclosure relates to electric motors, fans, and air conditioners.
  • each component of the motor has an electric potential, and a potential difference occurs between the components. If the potential difference between the outer ring and shaft of each bearing is large, electrolytic corrosion is likely to occur due to the potential difference between the inner ring and outer ring, posing the problem of vibration and noise in the motor.
  • the objective of this disclosure is to reduce the potential difference between the inner and outer rings and reduce electrical corrosion in rolling bearings.
  • An electric motor includes: a first rolling bearing having a first inner ring and a first outer ring; a second rolling bearing having a second inner ring and a second outer ring; a shaft rotatably supported by the first rolling bearing and the second rolling bearing; A rotor core fixed to the shaft; A stator core disposed outside the rotor core; a drive circuit board arranged on the opposite side of the rotor core with respect to the first rolling bearing, the first outer ring and the second outer ring are electrically insulated from each other, the first outer ring and the stator core are electrically insulated from each other, The shortest distance from the first outer ring to the rotor core is shorter than the shortest distance from the first outer ring to the drive circuit board.
  • An electric motor includes: a first rolling bearing having a first inner ring and a first outer ring; a second rolling bearing having a second inner ring and a second outer ring; a shaft rotatably supported by the first rolling bearing and the second rolling bearing; A rotor core fixed to the shaft; A stator core disposed outside the rotor core; a drive circuit board arranged on the opposite side of the rotor core with respect to the first rolling bearing, the first outer ring and the second outer ring are electrically insulated from each other, the first outer ring and the stator core are electrically insulated from each other, The shortest distance from the first outer ring to the rotor core is shorter than the shortest distance from the second outer ring to the rotor core.
  • a fan according to another aspect of the present disclosure includes: Feathers and and the electric motor that rotates the blades.
  • An air conditioner according to another aspect of the present disclosure includes: An indoor unit; an outdoor unit connected to the indoor unit; Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit includes the electric motor.
  • FIG. 1 is a cross-sectional view that shows a schematic diagram of an electric motor according to a first embodiment
  • FIG. 2 is a perspective view illustrating a cross-sectional structure of a first rolling bearing.
  • FIG. 4 is a perspective view illustrating a cross-sectional structure of a second rolling bearing.
  • FIG. 2 is a diagram illustrating a schematic configuration of a control system in an electric motor. 2 is an enlarged view showing the periphery of a first rolling bearing shown in FIG. 1; 13 is a graph showing the potential from the stator coil to the drive circuit board. 2 is a graph showing the potentials of several components in an electric motor. 4 is a graph showing bearing voltages in each rolling bearing.
  • FIG. 13 is an enlarged view showing the periphery of a first rolling bearing of an electric motor according to a first modification of the first embodiment.
  • FIG. 13 is an enlarged view showing the periphery of a first rolling bearing of an electric motor according to a second modification of the first embodiment.
  • FIG. 11 is a cross-sectional view showing a schematic structure of an electric motor according to a second embodiment of the present invention;
  • 13 is a cross-sectional view illustrating a schematic structure of an electric motor according to a first modified example of the second embodiment.
  • FIG. 13 is a cross-sectional view illustrating a schematic structure of an electric motor according to a second modification of the second embodiment.
  • FIG. FIG. 11 is a cross-sectional view illustrating a schematic structure of an electric motor according to a third embodiment.
  • FIG. 13 is a cross-sectional view illustrating a schematic structure of an electric motor according to a modified example of the third embodiment.
  • FIG. 13 is a diagram illustrating a schematic configuration of a fan according to a fourth embodiment.
  • FIG. 13 is a diagram illustrating the configuration of an air conditioner according to a fifth embodiment.
  • Embodiment 1 The electric motor 1 according to the first embodiment will be described below.
  • the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the electric motor 1
  • the x-axis direction (x-axis) indicates a direction perpendicular to the z-axis direction
  • the y-axis direction (y-axis) indicates a direction perpendicular to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of rotation of the rotor 2, that is, the rotation axis of the rotor 2.
  • the direction parallel to the axis Ax is also referred to as the "axial direction of the rotor 2" or simply as the “axial direction”.
  • the radial direction is the direction of the radius of the rotor 2, the stator 3, or the stator core 31, and is a direction perpendicular to the axis Ax.
  • the xy plane is a plane perpendicular to the axial direction.
  • the circumferential direction of the rotor 2, the stator 3, or the stator core 31 is also simply referred to as the "circumferential direction”.
  • FIG. 1 is a cross-sectional view that illustrates a schematic configuration of an electric motor 1 according to a first embodiment.
  • the electric motor 1 includes a rotor 2, a stator 3, a first rolling bearing 41, a second rolling bearing 42, and a drive circuit board 5.
  • the electric motor 1 is, for example, a synchronous motor.
  • the electric motor 1 may further include a resin frame 6 and a resin bracket 7.
  • the rotor 2 has a rotor core 21, a shaft 22, an insulating member 23, and at least one permanent magnet (not shown). Each permanent magnet forms a magnetic pole of the rotor 2, and is provided inside the rotor core 21 or on the outer circumferential surface of the rotor core 21.
  • the rotor core 21 is made of, for example, a plurality of electromagnetic steel plates.
  • the rotor core 21 is fixed to the shaft 22.
  • the rotor core 21 is located between the first rolling bearing 41 and the second rolling bearing 42.
  • the shaft 22 is rotatably supported by the first rolling bearing 41 and the second rolling bearing 42.
  • the insulating member 23 is disposed between the shaft 22 and the rotor core 21. Therefore, the shaft 22 and the rotor core 21 are electrically insulated from each other by the insulating member 23.
  • the insulating member 23 is, for example, an insulating resin.
  • the rotor 2 has the insulating member 23, but it is not necessarily required to have the insulating member 23.
  • the stator 3 has a stator core 31 and a coil 32.
  • the stator 3 (specifically, the stator core 31) is disposed outside the rotor core 21.
  • the coil 32 is attached to an insulator provided on the stator core 31, for example.
  • FIG. 2A is a perspective view that shows a schematic cross-sectional structure of the first rolling bearing 41.
  • FIG. 2B is a perspective view that diagrammatically illustrates the cross-sectional structure of the second rolling bearing 42.
  • the inner ring 41A of the first rolling bearing 41 is also referred to as the "first inner ring 41A,” and the outer ring 41B of the first rolling bearing 41 is also referred to as the “first outer ring 41B.”
  • the inner ring 42A of the second rolling bearing 42 is also referred to as the “second inner ring 42A,” and the outer ring 42B of the second rolling bearing 42 is also referred to as the "second outer ring 42B.”
  • the first rolling bearing 41 has a first inner ring 41A, a first outer ring 41B, and a number of balls 41C.
  • the first inner ring 41A is fixed to the shaft 22.
  • the first outer ring 41B is supported by a resin bracket 7.
  • the number of balls 41C are disposed between the first inner ring 41A and the first outer ring 41B.
  • Each ball 41C can rotate between the outer peripheral surface of the first inner ring 41A and the inner peripheral surface of the first outer ring 41B.
  • the first inner ring 41A can rotate together with the shaft 22.
  • a retainer may be disposed between adjacent balls 41C.
  • a lubricant is applied to the surface of each ball 41C.
  • the lubricant is, for example, grease.
  • the second rolling bearing 42 has a second inner ring 42A, a second outer ring 42B, and a number of balls 42C.
  • the second inner ring 42A is fixed to the shaft 22.
  • the second outer ring 42B is supported by the resin frame 6.
  • the number of balls 42C are disposed between the first inner ring 41A and the first outer ring 41B.
  • Each ball 42C can rotate between the outer peripheral surface of the second inner ring 42A and the inner peripheral surface of the second outer ring 42B.
  • the second inner ring 42A can rotate together with the shaft 22.
  • a retainer may be disposed between adjacent balls 42C.
  • a lubricant is applied to the surface of each ball 42C.
  • the lubricant is, for example, grease.
  • each ball 41C and the first inner ring 41A are electrically insulated from each other, and each ball 41C and the first outer ring 41B are electrically insulated from each other. This creates a potential difference between the first inner ring 41A and the first outer ring 41B.
  • FIG. 3 is a diagram showing a schematic configuration of a control system in the electric motor 1.
  • the inverter main circuit 51 is provided on the drive circuit board 5.
  • the inverter main circuit 51 is electrically connected to the coil 32.
  • the drive circuit board 5 is disposed on the opposite side of the rotor core 21 with respect to the first rolling bearing 41. That is, in the example shown in FIG. 1, the first rolling bearing 41 is disposed between the rotor core 21 and the drive circuit board 5.
  • the resin frame 6 supports the stator 3 and the second rolling bearing 42.
  • the resin frame 6 is made of, for example, a bulk molding compound (BMC).
  • the resin bracket 7 covers the drive circuit board 5 and supports the first rolling bearing 41.
  • the resin bracket 7 is made of, for example, bulk molding compound (BMC).
  • the first outer ring 41B and the second outer ring 42B are electrically insulated from each other.
  • the resin frame 6 is made of an insulating material
  • the resin bracket 7 is also made of an insulating material. Either the resin frame 6 or the resin bracket 7 may be made of an insulating material. This causes the first outer ring 41B and the second outer ring 42B to be electrically insulated from each other.
  • the first outer ring 41B and the stator core 31 are electrically insulated from each other.
  • the second outer ring 42B and the stator core 31 are electrically insulated from each other.
  • FIG. 4 is an enlarged view showing the periphery of the first rolling bearing 41 shown in FIG.
  • the shortest distance a1 from the first outer ring 41B to the rotor core 21 is shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5.
  • the resin bracket 7 is made of an insulating material.
  • the first outer ring 41B is not electrically connected to the stator core 31. Therefore, a potential difference occurs between the shaft 22 and the first outer ring 41B due to a potential difference generated inside the electric motor 1. As a result, a potential difference occurs between the first inner ring 41A, which is electrically connected to the shaft 22, and the first outer ring 41B.
  • FIG. 5 is a graph showing the potential from the coil 32 of the stator 3 to the drive circuit board 5. As shown in FIG. 1, the electric potential is highest in the coil 32, and lowest in the low-voltage line provided on the drive circuit board 5. Therefore, in Fig. 5, the electric potential of the coil 32 (also referred to as the coil potential) is shown as 1.0, and the electric potential of the drive circuit board 5 (also referred to as the board potential) is shown as 0.
  • the potential of the rotor core 21 is close to the coil potential, so the rotor core 21 has a high potential, and the first outer ring 41B, which is closer to the drive circuit board 5, has the lowest potential.
  • the second outer ring 42B is closer to the coil 32 relative to the drive circuit board 5, so it has a higher potential than the shaft 22 and the first outer ring 41B.
  • the potentials of the first inner ring 41A, the shaft 22, and the second outer ring 42B are at a potential between the potentials of the first outer ring 41B and the second outer ring 42B. Therefore, as shown in FIG. 5, the potential of each component in the electric motor 1 depends on the shortest distance a1 and the shortest distance b1.
  • the potential difference between the first inner ring 41A and the first outer ring 41B is referred to as the "bearing voltage” or the “first bearing voltage.”
  • the potential difference between the second inner ring 42A and the second outer ring 42B is referred to as the "bearing voltage” or the "second bearing voltage.”
  • FIG. 6 is a graph showing the potentials of some components in the motor 1.
  • FIG. 7 is a graph showing the bearing voltage in each rolling bearing.
  • the potential of each component of the electric motor 1 depends on the shortest distance a1 and the shortest distance b1.
  • the smaller the shortest distance a1 is with respect to the shortest distance b1 the closer the potential of the first outer ring 41B, the potential of the second outer ring 42B, and the potential of the shaft 22 are to the coil potential.
  • the bearing voltage of the first rolling bearing 41 in particular is reduced.
  • the shortest distance a1 from the first outer ring 41B to the rotor core 21 is smaller than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5. Therefore, the potential difference between the first inner ring 41A and the first outer ring 41B can be reduced, and electrolytic corrosion due to discharge inside the first rolling bearing 41 can be reduced. Furthermore, the potential difference between the second inner ring 42A and the second outer ring 42B can be reduced, and electrolytic corrosion due to discharge inside the second rolling bearing 42 can be reduced. As a result, the life of the electric motor 1 can be improved.
  • FIG. 8 is an enlarged view showing the periphery of a first rolling bearing 41 of an electric motor 1 according to a first modification of the first embodiment.
  • the shortest distance a2 from the outer peripheral surface of the first outer ring 41B to the inner peripheral surface of the rotor core 21 is shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5.
  • the inner diameter of the rotor core 21 is larger than the outer diameter of the first rolling bearing 41.
  • the shortest distance a2 is the shortest distance from the end of the first outer ring 41B in the axial direction to the end of the inner peripheral surface of the rotor core 21 in the axial direction.
  • the shortest distance a2 from the outer peripheral surface of the first outer ring 41B to the inner peripheral surface of the rotor core 21 is shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5. Therefore, the bearing voltage in the first rolling bearing 41 can be reduced, and electrolytic corrosion inside the first rolling bearing 41 can be reduced. Furthermore, the potential difference between the second inner ring 42A and the second outer ring 42B can be reduced, and electrolytic corrosion due to discharge inside the second rolling bearing 42 can be reduced.
  • FIG. 9 is an enlarged view showing the periphery of a first rolling bearing 41 of an electric motor 1 according to a second modification of the first embodiment.
  • the electric motor 1 according to the second modification of the first embodiment has a first conductor 71 that holds the first outer ring 41B.
  • the first conductor 71 has a cylindrical shape.
  • the first conductor 71 has a portion facing the first outer ring 41B and a portion facing the rotor core 21.
  • the shortest distance a3 from the first conductor 71 to the rotor core 21 is shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5. Because there is electrical continuity between the first conductor 71 and the first outer ring 41B, it is possible to make the electrical distance from the first outer ring 41B to the rotor core 21 shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5. This makes it possible to reduce electrical corrosion in the first rolling bearing 41.
  • Embodiment 2 The electric motor 1 according to the second embodiment can have the components described in the first embodiment. Details of the second embodiment that differ from the electric motor 1 according to the first embodiment will be described below.
  • FIG. 10 is a cross-sectional view that illustrates a schematic structure of an electric motor 1 according to the second embodiment.
  • the shortest distance a1 from the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c1 from the second outer ring 42B to the rotor core 21 .
  • FIG. 11 is a graph showing the potential from the coil 32 of the stator 3 to the drive circuit board 5.
  • the potential is highest in the coil 32 and lowest in the low-voltage line provided on the drive circuit board 5. Therefore, in Fig. 11, the potential of the coil 32 (also referred to as the coil potential) is shown as 1.0, and the potential of the drive circuit board 5 (also referred to as the board potential) is shown as 0.
  • the potential of the rotor core 21 is close to the coil potential, so the rotor core 21 has a high potential, and the first outer ring 41B, which is closer to the drive circuit board 5, has the lowest potential.
  • the second outer ring 42B is closer to the coil 32 than the drive circuit board 5, so it has a higher potential than the shaft 22 and the first outer ring 41B.
  • the potentials of the first inner ring 41A, the shaft 22, and the second outer ring 42B are at a potential between the potentials of the first outer ring 41B and the second outer ring 42B. Therefore, as shown in FIG. 11, the potential of each component in the electric motor 1 depends on the shortest distance a1 and the shortest distance b1.
  • FIG. 12 is a graph showing the potentials of several components in the motor 1.
  • FIG. 13 is a graph showing the bearing voltage in each rolling bearing. 12 and 13, the potential of each component of the electric motor 1 depends on the shortest distance a1 and the shortest distance c1. As shown in Fig. 12, the smaller the shortest distance a1 is with respect to the shortest distance c1, the closer the potential of the first outer ring 41B, the potential of the second outer ring 42B, and the potential of the shaft 22 are to the coil potential. This reduces the potential difference between the inner ring and the outer ring in each rolling bearing, and therefore reduces the bearing voltage in each rolling bearing.
  • the shortest distance a1 from the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c1 from the second outer ring 42B to the rotor core 21. Therefore, the potential difference between the first inner ring 41A and the first outer ring 41B can be reduced, and electrolytic corrosion due to discharge inside the first rolling bearing 41 can be reduced. Furthermore, the potential difference between the second inner ring 42A and the second outer ring 42B can be reduced, and electrolytic corrosion due to discharge inside the second rolling bearing 42 can be reduced. As a result, the life of the electric motor 1 can be improved.
  • FIG. 14 is a cross-sectional view that illustrates a schematic structure of an electric motor 1 according to a first modification of the second embodiment. 14, the shortest distance a2 from the outer peripheral surface of the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c2 from the outer peripheral surface of the second outer ring 42B to the inner peripheral surface of the rotor core 21.
  • the shortest distance a2 is the shortest distance from the outer peripheral surface of the first outer ring 41B to the inner peripheral surface of the rotor core 21.
  • the inner diameter of the rotor core 21 is larger than the outer diameter of the first rolling bearing 41.
  • a bonded magnet may be used instead of the rotor core 21.
  • the bonded magnet is, for example, a magnet in which magnetic powder and resin are mixed.
  • the shortest distance from the outer peripheral surface of the first outer ring 41B to the stator core 31 is shorter than the shortest distance from the outer peripheral surface of the second outer ring 42B to the stator core 31.
  • the electric motor 1 according to the first modification of the second embodiment can reduce the bearing voltage in the first rolling bearing 41, thereby reducing electrolytic corrosion inside the first rolling bearing 41. Furthermore, the potential difference between the second inner ring 42A and the second outer ring 42B can be reduced, thereby reducing electrolytic corrosion due to discharge inside the second rolling bearing 42.
  • FIG. 15 is a cross-sectional view that illustrates a schematic structure of an electric motor 1 according to a second modification of the second embodiment.
  • the electric motor 1 according to the second modification has a second conductor 72 that holds the second outer ring 42B.
  • the second conductor 72 has a portion facing the second outer ring 42B and a portion facing the rotor core 21.
  • the shortest distance a2 from the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c3 from the second conductor 72 to the rotor core 21.
  • the shortest distance a2 is the shortest distance from the outer peripheral surface of the first outer ring 41B to the inner peripheral surface of the rotor core 21.
  • the electrical distance from the first outer ring 41B to the rotor core 21 can be made shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5. This makes it possible to reduce electrical corrosion in the first rolling bearing 41. Furthermore, it makes it possible to reduce electrical corrosion in the second rolling bearing 42.
  • FIG. 16 is a cross-sectional view that illustrates a schematic structure of an electric motor 1 according to the third embodiment.
  • the electric motor 1 according to the third embodiment can have the components described in the first embodiment.
  • the electric motor 1 according to the third embodiment has the structure described in the first embodiment and the structure described in the second embodiment.
  • the shortest distance a1 from the first outer ring 41B to the rotor core 21 is smaller than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5, and the shortest distance a1 from the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c1 from the second outer ring 42B to the rotor core 21.
  • the potential of the first outer ring 41B becomes a high potential close to the potential of the rotor core 21.
  • the potential of the second outer ring 42B becomes a low potential relative to the potential of the rotor core 21.
  • the potential difference between the first outer ring 41B having a relatively low potential and the second outer ring 42B having a relatively high potential becomes smaller, and the bearing voltage of each rolling bearing (i.e., the first rolling bearing 41 and the second rolling bearing 42) becomes smaller, and the electrolytic corrosion in each rolling bearing can be further reduced. As a result, the lifespan of the motor 1 can be improved.
  • FIG. 17 is a cross-sectional view that illustrates a schematic structure of an electric motor 1 according to a modified example of the third embodiment.
  • the electric motor 1 according to the modified example of the third embodiment may have the components described in the first embodiment.
  • the electric motor 1 according to the third embodiment has the structure described in the first modified example of the first embodiment and the structure described in the first modified example of the second embodiment.
  • the shortest distance a2 from the outer peripheral surface of the first outer ring 41B to the inner peripheral surface of the rotor core 21 is shorter than the shortest distance b1 from the first outer ring 41B to the drive circuit board 5, and the shortest distance a2 from the outer peripheral surface of the first outer ring 41B to the rotor core 21 is shorter than the shortest distance c2 from the outer peripheral surface of the second outer ring 42B to the inner peripheral surface of the rotor core 21.
  • the potential difference between the first inner ring 41A and the first outer ring 41B can be reduced, and electrolytic corrosion caused by discharge inside the first rolling bearing 41 can be reduced. Furthermore, the potential difference between the second inner ring 42A and the second outer ring 42B can be reduced, and electrolytic corrosion caused by discharge inside the second rolling bearing 42 can be reduced. As a result, the life of the electric motor 1 can be improved.
  • FIG. 18 is a diagram illustrating a fan 9 according to the fourth embodiment.
  • the fan 9 includes a blade 91 and an electric motor 1.
  • the fan 9 is also referred to as a blower.
  • the blade 91 is formed of, for example, polypropylene (PP) containing glass fiber.
  • the blade 91 is, for example, a sirocco fan, a propeller fan, a crossflow fan, or a turbo fan.
  • the electric motor 1 is the electric motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples).
  • the blades 91 are fixed to the shaft of the electric motor 1.
  • the electric motor 1 drives the blades 91. Specifically, the electric motor 1 rotates the blades 91. When the electric motor 1 is driven, the blades 91 rotate and an airflow is generated. This enables the fan 9 to blow air.
  • the fan 9 according to the fourth embodiment has the electric motor 1 according to the first, second, or third embodiment (including each of the variations), and therefore can obtain the same advantages as those described in the corresponding embodiment or variation. Furthermore, the performance of the fan 9 can be maintained for a long period of time.
  • the fan 9 according to the fourth embodiment has the electric motor 1 according to the first, second, or third embodiment (including each of the modified examples), it is possible to reduce vibration and noise in the fan 9.
  • FIG. 19 is a diagram that shows a schematic configuration of an air conditioner 10 according to the fifth embodiment.
  • the air conditioner 10 has an indoor unit 11 as a blower (also referred to as a first blower) and an outdoor unit 13 as a blower (also referred to as a second blower) connected to the indoor unit 11.
  • a blower also referred to as a first blower
  • an outdoor unit 13 as a blower (also referred to as a second blower) connected to the indoor unit 11.
  • the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13.
  • the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12.
  • the indoor unit 11 has an electric motor 11a, an air blowing section 11b that blows air by being driven by the electric motor 11a, and a housing 11c that covers the electric motor 11a and the air blowing section 11b.
  • the electric motor 11a is, for example, the electric motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples).
  • the air blowing section 11b has, for example, a blade 11d that is driven by the electric motor 11a.
  • the blade 11d is fixed to the shaft of the electric motor 11a, and generates an airflow.
  • the outdoor unit 13 has an electric motor 13a, a blower 13b, a compressor 14, a heat exchanger (not shown), and a housing 13c that covers the blower 13b, the compressor 14, and the heat exchanger.
  • the electric motor 13a is, for example, the electric motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples).
  • the blower 13b blows air by being driven by the electric motor 13a.
  • the blower 13b has, for example, blades 13d that are driven by the electric motor 13a.
  • the blades 13d are fixed to the shaft of the electric motor 13a, and generate an airflow.
  • the compressor 14 has an electric motor 14a, a compression mechanism 14b (e.g., a refrigerant circuit) driven by the electric motor 14a, and a housing 14c that covers the electric motor 14a and the compression mechanism 14b.
  • the electric motor 14a is, for example, the electric motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples).
  • At least one of the indoor unit 11 and the outdoor unit 13 has the motor 1 described in embodiment 1, 2, or 3 (including each modification). That is, the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 each have the motor 1 described in embodiment 1, 2, or 3 (including each modification).
  • the motor 1 described in embodiment 1, 2, or 3 is applied to at least one of the motors 11a and 13a. That is, the motor 1 described in embodiment 1, 2, or 3 (including each modification) is applied to the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13.
  • the motor 1 described in embodiment 1, 2, or 3 (including each modification) may be applied to the motor 14a of the compressor 14.
  • the air conditioner 10 can perform air conditioning, for example, in cooling operation, which blows cool air from the indoor unit 11, and in heating operation, which blows warm air.
  • the electric motor 11a is a drive source for driving the blower unit 11b.
  • the blower unit 11b can blow conditioned air.
  • the motor 11a is fixed to the housing 11c of the indoor unit 11 by, for example, screws.
  • the motor 13a is fixed to the housing 13c of the outdoor unit 13 by, for example, screws.
  • the electric motor 1 described in the first, second, or third embodiment is applied to at least one of the electric motors 11a and 13a, and therefore the same advantages as those described in the first, second, or third embodiment (including each of the modified examples) can be obtained. As a result, the performance of the air conditioner 10 can be maintained for a long period of time.
  • the electric motor 1 described in the first embodiment is applied to at least one of the electric motors 11a and 13a, making it possible to provide an air conditioner 10 that is easy to assemble and has low costs.
  • the motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples) is used as the driving source of a blower (e.g., indoor unit 11), the same advantages as those described in the corresponding embodiment or modified example can be obtained. As a result, the performance of the blower can be maintained over a long period of time.
  • a blower having the motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples) and a blade (e.g., blade 11d or 13d) driven by the motor 1 can be used alone as a device for blowing air. This blower can also be applied to equipment other than the air conditioner 10.
  • the electric motor 1 according to embodiment 1, 2, or 3 (including each of the modified examples) is used as the driving source of the compressor 14, the same advantages as those described in the corresponding embodiment or modified example can be obtained. As a result, the performance of the compressor 14 can be maintained for a long period of time.
  • the electric motor 1 described in the first, second, or third embodiment can be mounted on any electrical device having a drive source, such as a machine tool, an electric vehicle, a drone, or a robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

電動機(1)は、第1の内輪(41A)及び第1の外輪(41B)を有する第1の転がり軸受(41)と、第2の内輪及び第2の外輪を有する第2の転がり軸受と、第1の転がり軸受(41)及び第2の転がり軸受(42)によって回転可能に支持されたシャフト(22)と、シャフト(22)に固定された回転子コア(21)と、固定子コア(31)と、駆動回路基板(5)とを有する。駆動回路基板(5)は、第1の転がり軸受(41)に対して回転子コア(21)とは反対側に配置されている。第1の外輪(41B)及び第2の外輪(42B)は、互いに電気的に絶縁されている。第1の外輪(41B)及び固定子コア(31)は、互いに電気的に絶縁されている。第1の外輪(41B)から回転子コア(21)までの最短距離(a1)は、第1の外輪(41B)から駆動回路基板(5)までの最短距離(b1)よりも短い。

Description

電動機、ファン、及び空気調和機
 本開示は、電動機、ファン、及び空気調和機に関する。
 軸方向における軸受の外側に駆動回路が配置された電動機が提案されている(例えば、特許文献1参照)。
特開2008-245344号公報
 一般に、電動機の駆動中における電動機の内部の電界の分布により、電動機の各構成要素は、電位を持ち、構成要素間に電位差が生じる。各軸受における外輪とシャフトとの間の電位差が大きい場合、内輪と外輪との間の電位差を起因とする電食が発生しやすく、電動機における振動及び騒音が発生するという課題がある。
 本開示の目的は、内輪と外輪との間の電位差を小さくし、転がり軸受における電食を低減することである。
 本開示の一態様に係る電動機は、
 第1の内輪及び第1の外輪を有する第1の転がり軸受と、
 第2の内輪及び第2の外輪を有する第2の転がり軸受と、
 前記第1の転がり軸受及び前記第2の転がり軸受によって回転可能に支持されたシャフトと、
 前記シャフトに固定された回転子コアと、
 前記回転子コアの外側に配置された固定子コアと、
 前記第1の転がり軸受に対して前記回転子コアとは反対側に配置された駆動回路基板と
 を備え、
 前記第1の外輪及び前記第2の外輪は、互いに電気的に絶縁されており、
 前記第1の外輪及び前記固定子コアは、互いに電気的に絶縁されており、
 前記第1の外輪から前記回転子コアまでの最短距離は、前記第1の外輪から前記駆動回路基板までの最短距離よりも短い。
 本開示の他の態様に係る電動機は、
 第1の内輪及び第1の外輪を有する第1の転がり軸受と、
 第2の内輪及び第2の外輪を有する第2の転がり軸受と、
 前記第1の転がり軸受及び前記第2の転がり軸受によって回転可能に支持されたシャフトと、
 前記シャフトに固定された回転子コアと、
 前記回転子コアの外側に配置された固定子コアと、
 前記第1の転がり軸受に対して前記回転子コアとは反対側に配置された駆動回路基板と
 を備え、
 前記第1の外輪及び前記第2の外輪は、互いに電気的に絶縁されており、
 前記第1の外輪及び前記固定子コアは、互いに電気的に絶縁されており、
 前記第1の外輪から前記回転子コアまでの最短距離は、前記第2の外輪から前記回転子コアまでの最短距離よりも短い。
 本開示の他の態様に係るファンは、
 羽根と、
 前記羽根を回転させる前記電動機と
 を備える。
 本開示の他の態様に係る空気調和機は、
 室内機と、
 前記室内機に接続される室外機と
 を備え、
 前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記電動機を有する。
 本開示によれば、内輪と外輪との間の電位差を小さくすることができ、転がり軸受における電食を低減することができる。
実施の形態1に係る電動機を概略的に示す断面図である。 第1の転がり軸受の断面の構造を概略的に示す斜視図である。 第2の転がり軸受の断面の構造を概略的に示す斜視図である。 電動機における制御系の構成を概略的に示す図である。 図1に示される第1の転がり軸受の周辺を示す拡大図である。 固定子のコイルから駆動回路基板までの電位を示すグラフである。 電動機におけるいくつかの構成要素の電位を示すグラフである。 各転がり軸受における軸受電圧を示すグラフである。 実施の形態1の変形例1に係る電動機の第1の転がり軸受の周辺を示す拡大図である。 実施の形態1の変形例2に係る電動機の第1の転がり軸受の周辺を示す拡大図である。 実施の形態2に係る電動機の構造を概略的に示す断面図である。 固定子のコイルから駆動回路基板までの電位を示すグラフである。 電動機におけるいくつかの構成要素の電位を示すグラフである。 各転がり軸受における軸受電圧を示すグラフである。 実施の形態2の変形例1に係る電動機の構造を概略的に示す断面図である。 実施の形態2の変形例2に係る電動機の構造を概略的に示す断面図である。 実施の形態3に係る電動機の構造を概略的に示す断面図である。 実施の形態3の変形例に係る電動機の構造を概略的に示す断面図である。 実施の形態4に係るファンを概略的に示す図である。 実施の形態5に係る空気調和機の構成を概略的に示す図である。
実施の形態1.
 実施の形態1に係る電動機1について以下に説明する。
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、回転子2の回転中心、すなわち、回転子2の回転軸である。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」とも称する。径方向は、回転子2、固定子3、又は固定子コア31の半径の方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。回転子2、固定子3、又は固定子コア31の周方向を、単に「周方向」とも称する。
 図1は、実施の形態1に係る電動機1を概略的に示す断面図である。
 電動機1は、回転子2と、固定子3と、第1の転がり軸受41と、第2の転がり軸受42と、駆動回路基板5とを有する。電動機1は、例えば、同期電動機である。
 図1に示されるように、電動機1は、樹脂フレーム6と、樹脂ブラケット7とをさらに有してもよい。
〈回転子2〉
 回転子2は、回転子コア21と、シャフト22と、絶縁部材23と、少なくとも1つの永久磁石(図示しない)とを有する。各永久磁石は、回転子2の磁極を形成し、回転子コア21の内部又は回転子コア21の外周面に設けられる。回転子コア21は、例えば、複数の電磁鋼板で構成されている。
 回転子コア21は、シャフト22に固定されている。回転子コア21は、第1の転がり軸受41と第2の転がり軸受42との間に位置している。シャフト22は、第1の転がり軸受41及び第2の転がり軸受42によって回転可能に支持されている。
 絶縁部材23は、シャフト22と回転子コア21との間に配置されている。したがって、シャフト22及び回転子コア21は、絶縁部材23によって互いに電気的に絶縁されている。絶縁部材23は、例えば、絶縁性樹脂である。図1に示される例では、回転子2は、絶縁部材23を有するが、必ずしも絶縁部材23を有している必要はない。
〈固定子3〉
 固定子3は、固定子コア31と、コイル32とを有する。固定子3(具体的には、固定子コア31)は、回転子コア21の外側に配置されている。コイル32は、例えば、固定子コア31に設けられたインシュレータに取り付けられる。
〈転がり軸受41,42〉
 図2Aは、第1の転がり軸受41の断面の構造を概略的に示す斜視図である。
 図2Bは、第2の転がり軸受42の断面の構造を概略的に示す斜視図である。
 第1の転がり軸受41の内輪41Aを「第1の内輪41A」とも称し、第1の転がり軸受41の外輪41Bを「第1の外輪41B」とも称する。第2の転がり軸受42の内輪42Aを「第2の内輪42A」とも称し、第2の転がり軸受42の外輪42Bを「第2の外輪42B」とも称する。
 第1の転がり軸受41は、第1の内輪41Aと、第1の外輪41Bと、複数の玉41Cとを有する。第1の内輪41Aは、シャフト22に固定されている。第1の外輪41Bは、樹脂ブラケット7によって支持されている。複数の玉41Cは、第1の内輪41Aと第1の外輪41Bとの間に配置されている。
 各玉41Cは、第1の内輪41Aの外周面と第1の外輪41B内周面との間で回転可能である。第1の内輪41Aは、シャフト22と共に回転可能である。複数の玉41Cを等間隔に配列するために、隣接する玉41Cの間に保持器が配置されていてもよい。各玉41Cの表面には、潤滑剤が塗布されている。潤滑剤は、例えば、グリスである。
 第2の転がり軸受42は、第2の内輪42Aと、第2の外輪42Bと、複数の玉42Cとを有する。第2の内輪42Aは、シャフト22に固定されている。第2の外輪42Bは、樹脂フレーム6によって支持されている。複数の玉42Cは、第1の内輪41Aと第1の外輪41Bとの間に配置されている。
 各玉42Cは、第2の内輪42Aの外周面と第2の外輪42B内周面との間で回転可能である。第2の内輪42Aは、シャフト22と共に回転可能である。複数の玉42Cを等間隔に配列するために、隣接する玉42Cの間に保持器が配置されていてもよい。各玉42Cの表面には、潤滑剤が塗布されている。潤滑剤は、例えば、グリスである。
 シャフト22と共に第1の内輪41A及び第2の内輪42Aが回転すると、各玉41C及び各玉42Cが回転する。各玉41Cが回転すると、各玉41Cと第1の内輪41Aとの間に潤滑剤の薄い膜が形成され、各玉41Cと第1の外輪41Bとの間に潤滑剤の薄い膜が形成される。その結果、各玉41C及び第1の内輪41Aが、互いに電気的に絶縁され、各玉41C及び第1の外輪41Bが、互いに電気的に絶縁される。これにより、第1の内輪41Aと第1の外輪41Bとの間に電位差が生じる。
 シャフト22と共に第1の内輪41A及び第2の内輪42Aが回転すると、各玉41C及び各玉42Cが回転する。各玉42Cが回転すると、各玉42Cと第2の内輪42Aとの間に潤滑剤の薄い膜が形成され、各玉42Cと第2の外輪42Bとの間に潤滑剤の薄い膜が形成される。その結果、各玉42C及び第2の内輪42Aが、互いに電気的に絶縁され、各玉42C及び第2の外輪42Bが、互いに電気的に絶縁される。これにより、第2の内輪42Aと第2の外輪42Bとの間に電位差が生じる。
〈駆動回路基板5〉
 図3は、電動機1における制御系の構成を概略的に示す図である。
 インバータ主回路51は、駆動回路基板5に設けられている。インバータ主回路51は、コイル32に電気的に接続されている。
 図1に示されるように、駆動回路基板5は、第1の転がり軸受41に対して回転子コア21とは反対側に配置されている。すなわち、図1に示される例では、第1の転がり軸受41は、回転子コア21と駆動回路基板5との間に配置されている。
〈樹脂フレーム6〉
 樹脂フレーム6は、固定子3及び第2の転がり軸受42を支持している。樹脂フレーム6は、例えば、バルクモールディングコンパウンド(BMC)で作られている。
〈樹脂ブラケット7〉
 樹脂ブラケット7は、駆動回路基板5を覆っており、第1の転がり軸受41を支持している。樹脂ブラケット7は、例えば、バルクモールディングコンパウンド(BMC)で作られている。
 第1の外輪41B及び第2の外輪42Bは、互いに電気的に絶縁されている。例えば、樹脂フレーム6が絶縁性材料で作られており、樹脂ブラケット7も絶縁性材料で作られている。樹脂フレーム6又は樹脂ブラケット7のどちらかが、絶縁性材料で作られていてもよい。これにより、第1の外輪41B及び第2の外輪42Bは、互いに電気的に絶縁される。
 第1の外輪41B及び固定子コア31は、互いに電気的に絶縁されている。第2の外輪42B及び固定子コア31は、互いに電気的に絶縁されている。
 図4は、図1に示される第1の転がり軸受41の周辺を示す拡大図である。
 図4に示される例では、第1の外輪41Bから回転子コア21までの最短距離a1は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも小さい。
〈電動機1における電位〉
 電動機1では、樹脂ブラケット7は、絶縁性材料で作られている。この場合、第1の外輪41Bは、固定子コア31とは電気的に接続されていない。そのため、電動機1の内部に生じる電位差によって、シャフト22と第1の外輪41Bとの間に電位差が生じる。その結果、シャフト22と電気的に接続されている第1の内輪41Aと第1の外輪41Bとの間に電位差が生じる。
 図5は、固定子3のコイル32から駆動回路基板5までの電位を示すグラフである。
 図1に示される電動機1では、コイル32において電位が最も高く、駆動回路基板5に設けられた低電圧側のラインにおいて電位が最も低い。したがって、図5では、コイル32の電位(コイル電位とも称する)が1.0として示されており、駆動回路基板5の電位(基板電位とも称する)が0として示されている。
 図5に示される例では、回転子コア21の電位はコイル電位に近いため、回転子コア21は高い電位を有し、駆動回路基板5に近い第1の外輪41Bが最も低い電位を有する。第2の外輪42Bは、駆動回路基板5に対してコイル32に近いため、シャフト22及び第1の外輪41Bよりも高い電位を有する。第1の内輪41Aの電位、シャフト22の電位、及び第2の外輪42Bは、第1の外輪41Bの電位と第2の外輪42Bの電位との間の電位である。したがって、図5に示されるように、電動機1における各構成要素における電位は、最短距離a1及び最短距離b1に依存する。
 第1の転がり軸受41において、第1の内輪41Aと第1の外輪41Bとの間の電位差を、「軸受電圧」又は「第1の軸受電圧」と称する。第2の転がり軸受42において、第2の内輪42Aと第2の外輪42Bとの間の電位差を、「軸受電圧」又は「第2の軸受電圧」と称する。
 図6は、電動機1におけるいくつかの構成要素の電位を示すグラフである。
 図7は、各転がり軸受における軸受電圧を示すグラフである。
 図6及び図7に示されるように、電動機1における各構成要素における電位は、最短距離a1及び最短距離b1に依存する。図6に示されるように、最短距離b1に対して最短距離a1が小さくなるほど、第1の外輪41Bの電位、第2の外輪42Bの電位、及びシャフト22の電位は、コイル電位に近づく。これにより、各転がり軸受における内輪と外輪との間の電位差が小さくなるため、各転がり軸受における軸受電圧が小さくなる。図7に示されるように、本実施の形態では、特に、第1の転がり軸受41における軸受電圧が小さくなる。
 本実施の形態では、第1の外輪41Bから回転子コア21までの最短距離a1は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも小さい。したがって、第1の内輪41Aと第1の外輪41Bとの間の電位差を小さくすることができ、第1の転がり軸受41の内部における放電による電食を低減することができる。さらに、第2の内輪42Aと第2の外輪42Bとの間の電位差を小さくすることができ、第2の転がり軸受42の内部における放電による電食を低減することができる。その結果、電動機1の寿命を改善することができる。
〈実施の形態1の変形例1〉
 図8は、実施の形態1の変形例1に係る電動機1の第1の転がり軸受41の周辺を示す拡大図である。
 図8に示される例では、第1の外輪41Bの外周面から回転子コア21の内周面までの最短距離a2は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも短い。例えば、図8に示される電動機1では、回転子コア21の内径は、第1の転がり軸受41の外径はよりも大きい。図8に示される例では、最短距離a2は、軸方向における第1の外輪41Bの端部から軸方向における回転子コア21の内周面の端部までの最短距離である。
 実施の形態1の変形例1によれば、第1の外輪41Bの外周面から回転子コア21の内周面までの最短距離a2は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも短い。したがって、第1の転がり軸受41おける軸受電圧を小さくすることができ、第1の転がり軸受41の内部における電食を低減することができる。さらに、第2の内輪42Aと第2の外輪42Bとの間の電位差を小さくすることができ、第2の転がり軸受42の内部における放電による電食を低減することができる。
 実施の形態1の変形例1において、回転子コア21の代わりに、ボンド磁石を用いてもよい。ボンド磁石は、例えば、磁粉及び樹脂が混合された磁石である。この場合、第1の外輪41Bの外周面から固定子コア31までの最短距離が、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも短い。これにより、図8に示される電動機1と同様に、第1の転がり軸受41における軸受電圧を小さくすることができ、第1の転がり軸受41における電食を低減することができる。
〈実施の形態1の変形例2〉
 図9は、実施の形態1の変形例2に係る電動機1の第1の転がり軸受41の周辺を示す拡大図である。
 実施の形態1の変形例2に係る電動機1は、第1の外輪41Bを保持する第1の導電体71を有する。第1の導電体71は、円筒形状を有している。
 図9に示される例では、第1の導電体71は、第1の外輪41Bに対向する部分と、回転子コア21に対向する部分とを有する。第1の導電体71から回転子コア21までの最短距離a3は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも短い。第1の導電体71と第1の外輪41Bとの間には導通があるため、第1の外輪41Bから駆動回路基板5までの最短距離b1に対して、第1の外輪41Bから回転子コア21までの電気的な距離を小さくすることができる。これにより、第1の転がり軸受41における電食を低減することができる。
実施の形態2.
 実施の形態2に係る電動機1は、実施の形態1で説明した構成要素を有することができる。実施の形態2において、実施の形態1に係る電動機1と異なる詳細について以下に説明する。
 図10は、実施の形態2に係る電動機1の構造を概略的に示す断面図である。
 実施の形態2に係る電動機1では、第1の外輪41Bから回転子コア21までの最短距離a1は、第2の外輪42Bから回転子コア21までの最短距離c1よりも短い。
 図11は、固定子3のコイル32から駆動回路基板5までの電位を示すグラフである。
 実施の形態2に係る電動機1では、実施の形態1と同様に、コイル32において電位が最も高く、駆動回路基板5に設けられた低電圧側のラインにおいて電位が最も低い。したがって、図11では、コイル32の電位(コイル電位とも称する)が1.0として示されており、駆動回路基板5の電位(基板電位とも称する)が0として示されている。
 図11に示される例では、実施の形態1と同様に、回転子コア21の電位はコイル電位に近いため、回転子コア21は高い電位を有し、駆動回路基板5に近い第1の外輪41Bが最も低い電位を有する。第2の外輪42Bは、駆動回路基板5に対してコイル32に近いため、シャフト22及び第1の外輪41Bよりも高い電位を有する。第1の内輪41Aの電位、シャフト22の電位、及び第2の外輪42Bは、第1の外輪41Bの電位と第2の外輪42Bの電位との間の電位である。したがって、図11に示されるように、電動機1における各構成要素における電位は、最短距離a1及び最短距離b1に依存する。
 図12は、電動機1におけるいくつかの構成要素の電位を示すグラフである。
 図13は、各転がり軸受における軸受電圧を示すグラフである。
 図12及び図13に示されるように、電動機1における各構成要素における電位は、最短距離a1及び最短距離c1に依存する。図12に示されるように、最短距離c1に対して最短距離a1が小さくなるほど、第1の外輪41Bの電位、第2の外輪42Bの電位、及びシャフト22の電位は、コイル電位に近づく。これにより、各転がり軸受における内輪と外輪との間の電位差が小さくなるため、各転がり軸受における軸受電圧が小さくなる。
 本実施の形態では、上述のように、第1の外輪41Bから回転子コア21までの最短距離a1は、第2の外輪42Bから回転子コア21までの最短距離c1よりも短い。したがって、第1の内輪41Aと第1の外輪41Bとの間の電位差を小さくすることができ、第1の転がり軸受41の内部における放電による電食を低減することができる。さらに、第2の内輪42Aと第2の外輪42Bとの間の電位差を小さくすることができ、第2の転がり軸受42の内部における放電による電食を低減することができる。その結果、電動機1の寿命を改善することができる。
〈実施の形態2の変形例1〉
 図14は、実施の形態2の変形例1に係る電動機1の構造を概略的に示す断面図である。
 図14に示される例では、第1の外輪41Bの外周面から回転子コア21までの最短距離a2は、第2の外輪42Bの外周面から回転子コア21の内周面までの最短距離c2よりも短い。図14に示される例では、最短距離a2は、第1の外輪41Bの外周面から回転子コア21の内周面までの最短距離である。
 図14に示される例では、回転子コア21の内径が、第1の転がり軸受41の外径よりも大きい。
 実施の形態2の変形例1において、回転子コア21の代わりに、ボンド磁石を用いてもよい。ボンド磁石は、例えば、磁粉及び樹脂が混合された磁石である。この場合、第1の外輪41Bの外周面から固定子コア31までの最短距離が、第2の外輪42Bの外周面から固定子コア31までの最短距離よりも短い。これにより、図14に示される電動機1と同様に、第1の転がり軸受41における軸受電圧を小さくすることができ、第1の転がり軸受41における電食を低減することができる。
 実施の形態2の変形例1に係る電動機1によれば、第1の転がり軸受41おける軸受電圧を小さくすることができ、第1の転がり軸受41の内部における電食を低減することができる。さらに、第2の内輪42Aと第2の外輪42Bとの間の電位差を小さくすることができ、第2の転がり軸受42の内部における放電による電食を低減することができる。
〈実施の形態2の変形例2〉
 図15は、実施の形態2の変形例2に係る電動機1の構造を概略的に示す断面図である。
 変形例2に係る電動機1は、第2の外輪42Bを保持する第2の導電体72を有する。
 図15に示される例では、第2の導電体72は、第2の外輪42Bに対向する部分と、回転子コア21に対向する部分とを有する。第1の外輪41Bから回転子コア21までの最短距離a2は、第2の導電体72から回転子コア21までの最短距離c3よりも短い。図15に示される例では、最短距離a2は、第1の外輪41Bの外周面から回転子コア21の内周面までの最短距離である。
 第1の導電体71と第1の外輪41Bとの間には導通があるため、第1の外輪41Bから駆動回路基板5までの最短距離b1に対して、第1の外輪41Bから回転子コア21までの電気的な距離を小さくすることができる。これにより、第1の転がり軸受41における電食を低減することができる。さらに、第2の転がり軸受42における電食を低減することができる。
実施の形態3.
 図16は、実施の形態3に係る電動機1の構造を概略的に示す断面図である。
 実施の形態3に係る電動機1は、実施の形態1で説明した構成要素を有することができる。実施の形態3に係る電動機1は、実施の形態1で説明した構造と、実施の形態2で説明した構造とを有する。
 図16に示されるように、実施の形態3に係る電動機1では、第1の外輪41Bから回転子コア21までの最短距離a1は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも小さく、第1の外輪41Bから回転子コア21までの最短距離a1は、第2の外輪42Bから回転子コア21までの最短距離c1よりも短い。これにより、第1の外輪41Bの電位は、回転子コア21の電位に近い高い電位となる。さらに、最短距離a1に対して最短距離c1を長くすることで、第2の外輪42Bの電位は、回転子コア21の電位に対して低い電位となる。したがって、電動機1において、相対的に低い電位を持つ第1の外輪41Bと相対的に高い電位を持つ第2の外輪42Bとの間の電位差が小さくなり、各転がり軸受(すなわち、第1の転がり軸受41及び第2の転がり軸受42)の軸受電圧が小さくなり、各転がり軸受における電食をさらに低減することができる。その結果、電動機1の寿命を改善することができる。
〈実施の形態3の変形例〉
 図17は、実施の形態3の変形例に係る電動機1の構造を概略的に示す断面図である。
 実施の形態3の変形例に係る電動機1は、実施の形態1で説明した構成要素を有することができる。実施の形態3に係る電動機1は、実施の形態1の変形例1で説明した構造と、実施の形態2の変形例1で説明した構造とを有する。
 図17に示されるように、実施の形態3の変形例に係る電動機1では、第1の外輪41Bの外周面から回転子コア21の内周面までの最短距離a2は、第1の外輪41Bから駆動回路基板5までの最短距離b1よりも短く、第1の外輪41Bの外周面から回転子コア21までの最短距離a2は、第2の外輪42Bの外周面から回転子コア21の内周面までの最短距離c2よりも短い。
 実施の形態3の変形例に係る電動機1によれば、第1の内輪41Aと第1の外輪41Bとの間の電位差を小さくすることができ、第1の転がり軸受41の内部における放電による電食を低減することができる。さらに、第2の内輪42Aと第2の外輪42Bとの間の電位差を小さくすることができ、第2の転がり軸受42の内部における放電による電食を低減することができる。その結果、電動機1の寿命を改善することができる。
実施の形態4.
 図18は、実施の形態4に係るファン9を概略的に示す図である。
 ファン9は、羽根91と、電動機1とを有する。ファン9は、送風機とも称する。羽根91は、例えば、ガラス繊維を含むポリプロピレン(polypropylene:PP)で形成されている。羽根91は、例えば、シロッコファン、プロペラファン、クロスフローファン、又はターボファンである。
 電動機1は、実施の形態1、2、又は3(各変形例を含む)に係る電動機1である。羽根91は、電動機1のシャフトに固定されている。電動機1は、羽根91を駆動させる。具体的には、電動機1は、羽根91を回転させる。電動機1が駆動すると、羽根91が回転し、気流が生成される。これにより、ファン9は送風することができる。
 実施の形態4に係るファン9は、実施の形態1、2、又は3(各変形例を含む)に係る電動機1を有するので、対応する実施の形態又は変形例で説明した利点と同じ利点を得ることができる。さらに、ファン9の性能を長期にわたって維持することができる。
 さらに、実施の形態4に係るファン9は実施の形態1、2、又は3(各変形例を含む)に係る電動機1を有するので、ファン9における振動及び騒音を低減することができる。
実施の形態5.
 実施の形態5に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
 図19は、実施の形態5に係る空気調和機10の構成を概略的に示す図である。
 実施の形態5に係る空気調和機10は、送風機(第1の送風機とも称する)としての室内機11と、室内機11に接続される送風機(第2の送風機とも称する)としての室外機13とを有する。
 本実施の形態では、空気調和機10は、室内機11と、冷媒配管12と、室外機13とを有する。例えば、室外機13は、冷媒配管12を通して室内機11に接続される。
 室内機11は、電動機11aと、電動機11aによって駆動されることにより、送風する送風部11bと、電動機11a及び送風部11bを覆うハウジング11cとを有する。電動機11aは、例えば、実施の形態1、2、又は3(各変形例を含む)に係る電動機1である。送風部11bは、例えば、電動機11aによって駆動される羽根11dを有する。例えば、羽根11dは、電動機11aのシャフトに固定されており、気流を生成する。
 室外機13は、電動機13aと、送風部13bと、圧縮機14と、熱交換器(図示しない)と、送風部13b、圧縮機14、及び熱交換器を覆うハウジング13cとを有する。電動機13aは、例えば、実施の形態1、2、又は3(各変形例を含む)に係る電動機1である。送風部13bは、電動機13aによって駆動されることにより、送風する。送風部13bは、例えば、電動機13aによって駆動される羽根13dを有する。例えば、羽根13dは、電動機13aのシャフトに固定されており、気流を生成する。
 圧縮機14は、電動機14aと、電動機14aによって駆動される圧縮機構14b(例えば、冷媒回路)と、電動機14a及び圧縮機構14bを覆うハウジング14cとを有する。電動機14aは、例えば、実施の形態1、2、又は3(各変形例を含む)に係る電動機1である。
 空気調和機10において、室内機11及び室外機13の少なくとも1つは、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1を有する。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々は、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機11a及び13aの少なくとも一方に、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1が適用される。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々に、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1が適用される。圧縮機14の電動機14aに、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1を適用してもよい。
 空気調和機10は、例えば、室内機11から冷たい空気を送風する冷房運転、温かい空気を送風する暖房運転などの空調を行うことができる。室内機11において、電動機11aは、送風部11bを駆動するための駆動源である。送風部11bは、調整された空気を送風することができる。
 室内機11において、電動機11aは、例えば、ねじによって室内機11のハウジング11cに固定されている。室外機13において、電動機13aは、例えば、ねじによって室外機13のハウジング13cに固定されている。
 実施の形態5に係る空気調和機10では、電動機11a及び13aの少なくとも一方に、実施の形態1、2、又は3(各変形例を含む)で説明した電動機1が適用されるので、実施の形態1、2、又は3(各変形例を含む)で説明した利点と同じ利点を得ることができる。その結果、空気調和機10の性能を長期にわたって維持することができる。
 さらに、実施の形態5に係る空気調和機10では、電動機11a及び13aの少なくとも一方に、実施の形態1で説明した電動機1が適用されるので、組み立てを容易にするとともにコストの低い空気調和機10を提供することができる。
 さらに、送風機(例えば、室内機11)の駆動源として、実施の形態1、2、又は3(各変形例を含む)に係る電動機1が用いられる場合、対応する実施の形態又は変形例で説明した利点と同じ利点を得ることができる。その結果、送風機の性能を長期にわたって維持することができる。実施の形態1、2、又は3(各変形例を含む)に係る電動機1とその電動機1によって駆動される羽根(例えば、羽根11d又は13d)とを有する送風機は、送風する装置として単独で用いることができる。この送風機は、空気調和機10以外の機器にも適用可能である。
 さらに、圧縮機14の駆動源として、実施の形態1、2、又は3(各変形例を含む)に係る電動機1が用いられる場合、対応する実施の形態又は変形例で説明した利点と同じ利点を得ることができる。その結果、圧縮機14の性能を長期にわたって維持することができる。
 実施の形態1、2、又は3(各変形例を含む)で説明した電動機1は、工作機、電気自動車、ドローン、ロボットなどの、駆動源を有するあらゆる電気機器に搭載できる。
 以上に説明した各実施の形態及び各変形例における特徴は、互いに組み合わせることができる。
 1,11a,13a,14a 電動機、 2 回転子、 3 固定子、 5 駆動回路基板、 6 樹脂フレーム、 7 樹脂ブラケット、 9 ファン、 10 空気調和機、 11 室内機、 12 冷媒配管、 13 室外機、 21 回転子コア、 22 シャフト、 31 固定子コア、 32 コイル、 41 第1の転がり軸受、 41A 第1の内輪、 41B 第1の外輪、 42A 第2の内輪、 42B 第2の外輪、 42 第2の転がり軸受、 71 第1の導電体、 72 第2の導電体、 81,91 羽根。

Claims (11)

  1.  第1の内輪及び第1の外輪を有する第1の転がり軸受と、
     第2の内輪及び第2の外輪を有する第2の転がり軸受と、
     前記第1の転がり軸受及び前記第2の転がり軸受によって回転可能に支持されたシャフトと、
     前記シャフトに固定された回転子コアと、
     前記回転子コアの外側に配置された固定子コアと、
     前記第1の転がり軸受に対して前記回転子コアとは反対側に配置された駆動回路基板と
     を備え、
     前記第1の外輪及び前記第2の外輪は、互いに電気的に絶縁されており、
     前記第1の外輪及び前記固定子コアは、互いに電気的に絶縁されており、
     前記第1の外輪から前記回転子コアまでの最短距離は、前記第1の外輪から前記駆動回路基板までの最短距離よりも短い、
     電動機。
  2.  前記第1の外輪の外周面から前記回転子コアの内周面までの最短距離は、前記第1の外輪から前記駆動回路基板までの前記最短距離よりも短い請求項1に記載の電動機。
  3.  前記第1の外輪を保持する第1の導電体をさらに備え、
     前記第1の導電体から前記回転子コアまでの最短距離は、前記第1の外輪から前記駆動回路基板までの前記最短距離よりも短い、
     請求項1又は2に記載の電動機。
  4.  前記第1の外輪から前記回転子コアまでの前記最短距離は、前記第2の外輪から前記回転子コアまでの最短距離よりも短い請求項1から3のいずれか1項に記載の電動機。
  5.  前記第1の外輪の外周面から前記回転子コアの内周面までの最短距離は、前記第2の外輪の外周面から前記回転子コアの内周面までの最短距離よりも短い請求項1から4のいずれか1項に記載の電動機。
  6.  前記第2の外輪を保持する第2の導電体をさらに備え、
     前記第1の外輪から前記回転子コアまでの最短距離は、前記第2の導電体から前記回転子コアまでの前記最短距離よりも短い、
     請求項1から5のいずれか1項に記載の電動機。
  7.  第1の内輪及び第1の外輪を有する第1の転がり軸受と、
     第2の内輪及び第2の外輪を有する第2の転がり軸受と、
     前記第1の転がり軸受及び前記第2の転がり軸受によって回転可能に支持されたシャフトと、
     前記シャフトに固定された回転子コアと、
     前記回転子コアの外側に配置された固定子コアと、
     前記第1の転がり軸受に対して前記回転子コアとは反対側に配置された駆動回路基板と
     を備え、
     前記第1の外輪及び前記第2の外輪は、互いに電気的に絶縁されており、
     前記第1の外輪及び前記固定子コアは、互いに電気的に絶縁されており、
     前記第1の外輪から前記回転子コアまでの最短距離は、前記第2の外輪から前記回転子コアまでの最短距離よりも短い、
     電動機。
  8.  前記第1の外輪の外周面から前記回転子コアの内周面までの最短距離は、前記第2の外輪の外周面から前記回転子コアの内周面までの最短距離よりも短い請求項7に記載の電動機。
  9.  前記第2の外輪を保持する第2の導電体をさらに備え、
     前記第1の外輪から前記回転子コアまでの最短距離は、前記第2の導電体から前記回転子コアまでの前記最短距離よりも短い、
     請求項7又は8に記載の電動機。
  10.  羽根と、
     前記羽根を回転させる請求項1から9のいずれか1項に記載の電動機と
     を備えるファン。
  11.  室内機と、
     前記室内機に接続される室外機と
     を備え、
     前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、請求項1から9のいずれか1項に記載の電動機を有する
     空気調和機。
PCT/JP2022/040111 2022-10-27 2022-10-27 電動機、ファン、及び空気調和機 WO2024089836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040111 WO2024089836A1 (ja) 2022-10-27 2022-10-27 電動機、ファン、及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040111 WO2024089836A1 (ja) 2022-10-27 2022-10-27 電動機、ファン、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2024089836A1 true WO2024089836A1 (ja) 2024-05-02

Family

ID=90830293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040111 WO2024089836A1 (ja) 2022-10-27 2022-10-27 電動機、ファン、及び空気調和機

Country Status (1)

Country Link
WO (1) WO2024089836A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245344A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp モールド電動機及び送風機及び空気調和機及び給湯機
JP2013055757A (ja) * 2011-09-02 2013-03-21 Panasonic Corp ブラシレスモータ及びそれを備えた電気機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245344A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp モールド電動機及び送風機及び空気調和機及び給湯機
JP2013055757A (ja) * 2011-09-02 2013-03-21 Panasonic Corp ブラシレスモータ及びそれを備えた電気機器

Similar Documents

Publication Publication Date Title
JPWO2012120828A1 (ja) 電動機およびそれを備えた電気機器
US20200227981A1 (en) Electric motor, air conditioner, vacuum cleaner, and method for producing electric motor
WO2024089836A1 (ja) 電動機、ファン、及び空気調和機
JP6895996B2 (ja) 電動機及び空気調和機、並びに電動機の製造方法
US20070290560A1 (en) Motor and Electric Apparatus Using the Same Motor
JP7486629B2 (ja) 回転子、電動機、送風機、空気調和装置、及び回転子の製造方法
WO2021171476A1 (ja) 電動機、ファン、及び空気調和機
WO2023148949A1 (ja) 電動機及び空気調和機
CN112204853A (zh) 定子、电动机、压缩机及空气调节装置
WO2022259394A1 (ja) モータ、ファン、換気扇、及び空気調和機
WO2023095316A1 (ja) 電動機及び空気調和機
JP7058740B2 (ja) モータ、ファン、空気調和装置、及びモータの製造方法
WO2024100869A1 (ja) 回転子、電動機、ファン、及び空気調和機
WO2023233609A1 (ja) 電動機及び空気調和機
WO2023127084A1 (ja) ロータ、モータ、ファン、換気扇、及び空気調和機
JP7490101B2 (ja) 電動機、送風機及び空気調和装置
WO2022249307A1 (ja) 電動機及び空気調和機
CN113273065A (zh) 旋转机械、空气调和装置的室外机以及空气调和装置
JPH07336930A (ja) ファンモータ
WO2023162060A1 (ja) モータ、ファン、換気扇、及び空気調和機
JP7259128B2 (ja) コンシクエントポール型ロータ、電動機、ファン、及び空気調和機
WO2023139739A1 (ja) 電動機、送風機および空気調和装置
US20240030756A1 (en) Electric motor, fan, and air conditioner
WO2023053199A1 (ja) 電動機、送風機および換気扇
WO2024019016A1 (ja) モータ、送風装置、及び冷凍サイクル装置