JP7259128B2 - コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 - Google Patents

コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 Download PDF

Info

Publication number
JP7259128B2
JP7259128B2 JP2022502707A JP2022502707A JP7259128B2 JP 7259128 B2 JP7259128 B2 JP 7259128B2 JP 2022502707 A JP2022502707 A JP 2022502707A JP 2022502707 A JP2022502707 A JP 2022502707A JP 7259128 B2 JP7259128 B2 JP 7259128B2
Authority
JP
Japan
Prior art keywords
rotor
consequent
pole
core
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022502707A
Other languages
English (en)
Other versions
JPWO2021171474A1 (ja
Inventor
隆徳 渡邉
洋樹 麻生
和慶 土田
貴也 下川
諒伍 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021171474A1 publication Critical patent/JPWO2021171474A1/ja
Priority to JP2023060716A priority Critical patent/JP7450783B2/ja
Application granted granted Critical
Publication of JP7259128B2 publication Critical patent/JP7259128B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本開示は、電動機のロータに関する。
電動機用のロータにおける永久磁石の使用量を減らすため、コンシクエントポール型ロータが用いられている。例えば、特許文献1に記載のコンシクエントポール型ロータでは、シャフトと各磁石挿入孔との間に樹脂が充填されている。この構成により、各永久磁石からシャフトへ流入する漏れ磁束を減らすことができる。
国際公開第2018/037449号
例えば、特許文献1の図19に示されるコンシクエントポール型ロータでは、磁石挿入孔とシャフトとの間に、リブ形状の樹脂が配置されている。この場合、温度変化による樹脂の膨張が発生すると、樹脂と永久磁石との間のロータコアに応力が集中する。その結果、磁石挿入孔が変形し、磁石挿入孔に配置された永久磁石が破損することがある。
本開示の目的は、磁石挿入孔の変形を防ぎ、磁石挿入孔に配置された永久磁石の破損を防ぐことである。
本開示の一態様に係るコンシクエントポール型ロータは、
磁石挿入孔及びシャフト挿入孔を有するロータコアと、前記磁石挿入孔に配置された永久磁石とを有するコンシクエントポール型ロータであって、
前記磁石挿入孔を含むとともに第1の磁極として機能する第1の磁極領域と、
前記第1の磁極領域に隣接しており、疑似磁極である第2の磁極として機能する第2の磁極領域と、
前記シャフト挿入孔に配置されたシャフトと、
前記シャフト挿入孔に配置されており、前記ロータコアの線膨張係数よりも大きい線膨張係数を持ち、前記シャフトを前記ロータコアに連結する非磁性部材と
を備え、
前記非磁性部材は、前記シャフトから前記第2の磁極領域に延びる梁を有し、
前記シャフトから前記第1の磁極領域に延びる梁は存在しない
本開示の他の態様に係る電動機は、
前記コンシクエントポール型ロータと、
前記コンシクエントポール型ロータの外側に配置されたステータと
を備える。
本開示の他の態様に係るファンは、
羽根と、
前記羽根を駆動する前記電動機と
を備える。
本開示の他の態様に係る空気調和機は、
室内機と、
前記室内機に接続された室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の両方は、前記電動機を有する。
本開示によれば、磁石挿入孔の変形を防ぎ、磁石挿入孔に配置された永久磁石の破損を防ぐことができる。
実施の形態1に係る電動機の構造を概略的に示す部分断面図である。 電動機の構造を概略的に示す断面図である。 ロータの構造を概略的に示す断面図である。 ロータの構造を概略的に示す断面図である。 ロータの他の例を示す図である。 ロータのさらに他の例を示す図である。 ロータのさらに他の例を示す図である。 ロータのさらに他の例を示す図である。 比較例としてのロータを示す断面図である。 比較例としてのロータにおいて、梁が膨張したときのロータコアに発生する応力を示す図である。 比較例としてのロータにおいて、梁が膨張したときのロータコアの変位を示す図である。 実施の形態1におけるロータにおいて、梁が膨張したときのロータコアに発生する応力を示す図である。 実施の形態1におけるロータにおいて、梁が膨張したときのロータコアの変位を示す図である。 変形例3におけるロータにおいて、梁が膨張したときのロータコアに発生する応力を示す図である。 変形例3におけるロータにおいて、梁が膨張したときのロータコアの変位を示す図である。 実施の形態2に係るファンの構造を概略的に示す図である。 実施の形態3に係る空気調和機の構成を概略的に示す図である。 空気調和機の送風機としての室外機内の主要な構成要素を概略的に示す図である。
実施の形態1.
実施の形態1に係る電動機1について説明する。
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、ロータ2の回転中心、すなわち、ロータ2の回転軸である。軸線Axと平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2又はステータ3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。ロータ2又はステータ3の周方向を、単に「周方向」とも称する。
〈電動機1〉
図1は、実施の形態1に係る電動機1の構造を概略的に示す部分断面図である。
図2は、電動機1の構造を概略的に示す断面図である。
電動機1は、ロータ2と、ステータ3と、回路基板4と、モールド樹脂5と、ロータ2を回転可能に保持するベアリング7a及び7bとを有する。電動機1は、例えば、永久磁石埋込型電動機(IPMモータ)などの永久磁石同期電動機である。
〈ステータ3〉
ステータ3は、ロータ2の外側に配置されている。ステータ3は、ステータコア31と、コイル32と、インシュレータ33とを有する。ステータコア31は、環状のコアバックと、コアバックから径方向に延在する複数のティースとを持つ環状のコアである。
ステータコア31は、例えば、磁性を持つ複数の鉄の薄板で構成されている。本実施の形態では、ステータコア31は、軸方向に積層された複数の電磁鋼板で構成されている。ステータコア31の各電磁鋼板の厚さは、例えば、0.2mmから0.5mmである。
コイル32(すなわち、巻線)は、ステータコア31に取り付けられたインシュレータ33に巻かれている。コイル32は、インシュレータ33によって絶縁されている。コイル32は、例えば、銅又はアルミニウムを含む材料で作られている。
インシュレータ33は、例えば、ポリブチレンテレフタレート(PolyButyleneTerephthalate:PBT)、ポリフェニレンサルファイド(PolyPhenylene Sulfide:PPS)、液晶ポリマー(Liquid Crystal Polymer:LCP)、ポリエチレンテレフタレート(PolyEthylene Terephthalate:PET)といった絶縁性の樹脂で作られている。樹脂で作られたインシュレータ33は、例えば、0.035mmから0.4mmの厚さの絶縁性フィルムである。
例えば、インシュレータ33は、ステータコア31と一体的に成形される。ただし、ステータコア31とは別にインシュレータ33が成形されてもよい。この場合、インシュレータ33が成形された後に、インシュレータ33がステータコア31に嵌められる。
本実施の形態では、ステータコア31、コイル32、及びインシュレータ33は、モールド樹脂5によって覆われている。ステータコア31、コイル32、及びインシュレータ33は、例えば、鉄を含む材料で作られた円筒状シェルによって固定されてもよい。この場合、例えば、ステータ3は、ロータ2と共に、焼き嵌めによって円筒状シェルで覆われる。
回路基板4は、モールド樹脂5によってステータ3と共に固定されている。回路基板4は、電動機1を制御するための駆動素子を有する。
モールド樹脂5は、回路基板4をステータ3と一体化させる。モールド樹脂5は、例えば、不飽和ポリエステル樹脂(BMC)、エポキシ樹脂などの熱硬化性樹脂である。
〈ロータ2〉
図3及び図4は、ロータ2の構造を概略的に示す断面図である。図3に示される「N」は、ロータ2のN極(具体的には、ステータ3に対して機能するN極)を示し、「S」は、ロータ2のS極(具体的には、ステータ3に対して機能するS極)を示す。
ロータ2は、ロータコア21と、複数の永久磁石22と、シャフト23と、非磁性部材24とを有する。ロータ2は、ステータ3の内側に回転可能に配置されている。具体的には、各永久磁石22がステータ3に面するように、ロータ2がステータ3の内側に配置されている。ロータ2の回転軸は、軸線Axと一致する。エアギャップがロータコア21とステータ3との間に設けられている。
ロータコア21は、軸方向に積層された複数のコア210で構成されている。ロータコア21(すなわち、複数のコア210)は、非磁性部材24に固定されている。シャフト23は、ベアリング7a及び7bによって回転可能に保持されている。電動機1が駆動すると、ロータコア21及び非磁性部材24は、シャフト23と共に回転する。
軸方向において、ロータコア21は、ステータコア31よりも長くてもよい。これにより、ロータ2(具体的には、各永久磁石22)からの磁束が、ステータコア31に効率的に流入する。
ロータコア21(すなわち、複数のコア210)は、少なくとも1つの磁石挿入孔21aと、シャフト挿入孔21bとを有する。
本実施の形態では、ロータコア21は複数の磁石挿入孔21aを有し、少なくとも1つの永久磁石22が各磁石挿入孔21aに配置されている。
ロータコア21は、例えば、複数の電磁鋼板によって構成されている。この場合、複数のコア210の各々は、電磁鋼板である。ただし、複数のコア210は、電磁鋼板以外のコアを含んでもよい。例えば、ロータコア21は、予め定められた形状を持つ複数の鉄のコアによって構成されてもよく、軟磁性材料及び樹脂の混合物で構成されていてもよい。
ロータコア21の各コア210は、例えば、0.2mmから0.5mmの厚みを持つ。ロータコア21のコア210は、軸方向に積層されている。
複数の磁石挿入孔21aは、ロータコア21の周方向に等間隔で形成されている。本実施の形態では、5個の磁石挿入孔21aがロータコア21に設けられている。
シャフト挿入孔21bは、ロータコア21の中央部に設けられている。シャフト挿入孔21bは、軸方向にロータコア21を貫通している。シャフト挿入孔21bに、シャフト23が配置されている。
ロータ2は、コンシクエントポール型ロータである。すなわち、ロータ2は、各永久磁石22によって形成される第1の磁極と、ロータコア21の周方向において各磁石挿入孔21aに隣接するロータコア21の一部によって形成される疑似磁極である第2の磁極とを持つ。すなわち、第2の磁極は、互いに隣接する2つの磁石挿入孔21aの間のロータコア21の一部によって形成される疑似磁極である。
図4に示されるように、ロータ2は、複数の第1の磁極領域N1と、複数の第2の磁極領域S1とを有する。各第1の磁極領域N1は、xy平面において、1つの磁石挿入孔21aの両端とロータ2の回転中心とを通る2直線の間の領域である。同様に、各第2の磁極領域S1は、xy平面において、互いに隣接する2つの磁石挿入孔21aの各々の一端とロータ2の回転中心とを通る2直線の間の領域であり、第1の磁極領域N1に隣接する領域である。すなわち、各第1の磁極領域N1は、磁石挿入孔21a及び永久磁石22を含む領域であり、各第2の磁極領域S1は、磁石挿入孔21a及び永久磁石22を含まない領域である。
各永久磁石22は、ロータ2の第1の磁極としてN極を形成する。ロータコア21の周方向において各磁石挿入孔21aに隣接するロータコア21の一部は、ロータ2の疑似磁極である第2の磁極としてS極を形成する。この場合、各第1の磁極領域N1は、第1の磁極(本実施の形態では、ステータ3に対してN極の役目をする磁極)として機能し、各第2の磁極領域S1は、第2の磁極(本実施の形態では、ステータ3に対してS極の役目をする疑似磁極)として機能する。言い換えると、各第1の磁極領域N1は第1の極性として機能し、各第2の磁極領域S1は第1の極性とは異なる第2の極性として機能する。
永久磁石22の数は、ロータ2の磁極の数n(nは4以上の偶数)の半分である。ロータ2の磁極の数nは、ステータ3に対してN極として機能する磁極と、ステータ3に対してS極として機能する磁極の数との合計数である。ロータ2のN極及びS極は、ロータ2の周方向に交互に位置している。本実施の形態では、n=10である。
シャフト23は、非磁性部材24でロータコア21に固定されている。
各磁石挿入孔21a内には、少なくとも1つの永久磁石22が配置されている。本実施の形態では、各磁石挿入孔21a内には、1つの永久磁石22が配置されている。各永久磁石22は、例えば、平板状の永久磁石である。各永久磁石22は、例えば、ネオジム又はサマリウムを含む希土類磁石である。永久磁石22は、鉄を含むフェライト磁石でもよい。永久磁石22の種類は、本実施の形態の例に限られず、他の材料によって永久磁石22が形成されていてもよい。
各磁石挿入孔21a内の永久磁石22は、径方向に磁化されており、これにより各永久磁石22からの磁束は、ステータ3に流入する。
非磁性部材24は、シャフト挿入孔21bに配置されている。非磁性部材24は、シャフト23をロータコア21に連結する。
非磁性部材24は、例えば、オーステナイト系ステンレス、アルミニウム、不飽和ポリエステル樹脂(Bulk Molding Compound:BMC)、ポリブチレンテレフタレート(PolyButyleneTerephthalate:PBT)、ポリフェニレンサルファイド(PolyPhenylene Sulfide:PPS)、液晶ポリマー(Liquid Crystal Polymer:LCP)、ポリエチレンテレフタレート(PolyEthylene Terephthalate:PET)といった非磁性材料で作られている。
非磁性部材24は、例えば、樹脂である。この場合、非磁性部材24は、例えば、不飽和ポリエステル樹脂(BMC)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエチレンテレフタレート(PET)といった非磁性樹脂で作られている。
非磁性部材24は、ロータコア21の線膨張係数よりも大きい線膨張係数を持つ。線膨張係数の例は次の通りである。
電磁鋼板:1.08x10-5(1/degC)
オーステナイト系ステンレス:1.63x10-5(1/degC)
アルミニウム:2.36x10-5(1/degC)
BMC(不飽和ポリエステル樹脂):1.5x10-5(1/degC)~3.0x10-5(1/degC)
PBT(ポリブチレンテレフタレート):2x10-5(1/degC)~9x10-5(1/degC)
PPS(ポリフェニレンサルファイド):4.9x10-5(1/degC)
PET(ポリエチレンテレフタレート):6.5x10-5(1/degC)
非磁性部材24は、ロータコア21の弾性係数よりも小さい弾性係数を持つ。弾性係数の例は次の通りである。
電磁鋼板:230MPa
オーステナイト系ステンレス:197MPa
アルミニウム:72MPa
BMC(不飽和ポリエステル樹脂):140MPa
PBT(ポリブチレンテレフタレート):80MPa
PPS(ポリフェニレンサルファイド):110MPa
PET(ポリエチレンテレフタレート):100MPa
非磁性部材24は、シャフト23から第2の磁極領域S1に延びる少なくとも1つの梁24aを有する。図3及び図4に示される例では、非磁性部材24は、複数の梁24a(具体的には、5個の梁24a)を有する。5個の梁24aは、シャフト23から放射状に延びている。シャフト23から第1の磁極領域N1に延びる梁は、ロータ2に存在しない。すなわち、第1の磁極領域N1内のロータコア21に接触する梁は、ロータ2に存在しない。
各梁24aは、xy平面において、互いに隣接する2つの磁石挿入孔21aの各々の一端とロータ2の回転中心とを通る2直線の間に位置していればよい。すなわち、各梁24aは、第2の磁極領域S1に位置していればよい。図3及び図4に示される例では、xy平面において、各梁24aは、第2の磁極領域S1の中心とロータ2の回転中心とを通る直線S2上に位置している。各直線S2は、第2の磁極の中心を通る磁極中心線である。
非磁性部材24は、さらに、シャフト23の外周面を覆う少なくとも1つのシャフトカバー部24bと、ロータコア21の内周面を覆う少なくとも1つのコアカバー部24cとを有してもよい。この場合、シャフトカバー部24b及びコアカバー部24cは、梁24aに接続されている。梁24a、シャフトカバー部24b、及びコアカバー部24cで囲まれた領域は、空隙である。
ただし、ロータ2は、コアカバー部24cを有していなくてもよい。この場合でも、非磁性部材24(具体的には、梁24a)は、第2の磁極領域S1内のロータコア21に接触する。
ロータコア21、シャフト23、及び非磁性部材24は、例えば、金型を用いた一体成形で固定される。この場合、非磁性部材24の材料(例えば、樹脂)が、ロータコア21及びシャフト23が配置された金型によって成形される。その結果、シャフト23は、ロータコア21と共に非磁性部材24に固定される。
変形例1.
図5は、ロータ2の他の例を示す図である。
変形例1では、ロータコア21は、シャフト23に向けて突出している少なくとも1つの突出部21cを有する。図5に示される例では、ロータコア21は、5個の突出部21cを有する。各突出部21cは、ロータコア21の内周面に形成されている。この場合において、コアカバー部24cは、突出部21cを覆っている。
変形例1において、ロータコア21は、少なくとも1つの空隙21dを有してもよい。図5に示される例では、ロータコア21は、5個の空隙21dを有する。各空隙21dは、磁石挿入孔21aと突出部21cとの間に設けられており、突出部21cに対向する。xy平面において、突出部21cの最小幅W1は、コア210の厚みの1倍以上2倍以下である。xy平面において、突出部21cの最小幅W1は、コア210の厚みの1倍以上4倍以下でもよい。変形例1では、コア210の厚みは、例えば、0.35mmであり、突出部21cの最小幅W1は、例えば、0.60mmである。
変形例2.
図6は、ロータ2のさらに他の例を示す図である。
変形例2では、ロータコア21は、少なくとも1つの空隙21dを有する。各空隙21dは突出部21cに対向しており、各梁24aは、空隙21dとロータ2の回転中心とを通る直線上に位置している。図6に示される例では、空隙21dとロータ2の回転中心とを通る直線は、直線S2である。したがって、各梁24a及び各空隙21dは、直線S2上に位置している。xy平面において、突出部21cの最小幅W1は、変形例1と同じ構成とすることができる。
変形例3.
図7は、ロータ2のさらに他の例を示す図である。
変形例3では、ロータコア21は、ロータコア21の外周面に向けてへこんだ少なくとも1つの凹部21eを有する。図7に示される例では、ロータコア21は、5個の凹部21eを有する。各凹部21eは、ロータコア21の内周面に形成されている。この場合において、コアカバー部24cは、凹部21eを覆っている。
変形例3において、ロータコア21は、少なくとも1つの空隙21dを有してもよい。図7に示される例では、ロータコア21は、5個の空隙21dを有する。各空隙21dは、磁石挿入孔21aと凹部21eとの間に設けられており、凹部21eに対向する。xy平面において、凹部21eの最小幅W2は、コア210の厚みの1倍以上2倍以下である。xy平面において、凹部21eの最小幅W2は、コア210の厚みの1倍以上4倍以下でもよい。変形例3では、コア210の厚みは、例えば、0.35mmであり、凹部21eの最小幅W2は、例えば、0.60mmである。
変形例3では、各空隙21dは凹部21eに対向しており、各梁24aは、空隙21dとロータ2の回転中心とを通る直線上に位置している。図7に示される例では、空隙21dとロータ2の回転中心とを通る直線は、直線S2である。したがって、各梁24a及び各空隙21dは、直線S2上に位置している。
変形例4.
図8は、ロータ2のさらに他の例を示す図である。
変形例4において、ロータコア21は、少なくとも1つの空隙21dと、空隙21dに対向する少なくとも1つの延在部21fとを有する。図8に示される例では、ロータコア21は、5個の空隙21dと、5個の延在部21fとを有する。
各延在部21fは、xy平面において、まっすぐに延在している。例えば、各延在部21fは、xy平面において、梁24aと対向しており、対向する梁24aと直交している。各延在部21fは、ロータコア21の内周面に形成されている。この場合において、コアカバー部24cは、延在部21fを覆っている。
xy平面において、各空隙21dの形状は、三角形でもよい。この場合、xy平面において、各空隙21dの1辺は、延在部21fに平行である。
xy平面において、延在部21fの最小幅W3は、コア210の厚みの1倍以上2倍以下である。xy平面において、延在部21fの最小幅W3は、コア210の厚みの1倍以上4倍以下でもよい。変形例4では、コア210の厚みは、例えば、0.35mmであり、延在部21fの最小幅W3は、例えば、0.60mmである。
<ロータ2の利点>
ロータ2の利点について以下に説明する。
通常、コンシクエントポール型ロータでは、永久磁石22からシャフト23に磁束が流入しやすい。永久磁石22からシャフト23に流入する磁束(すなわち、漏れ磁束)が増加するほど、ロータ2の効率が低下する。これに対して、本実施の形態では、シャフト挿入孔21bに非磁性部材24が配置されている。したがって、永久磁石22からシャフト23に流入する漏れ磁束を低減することができる。その結果、ロータ2の効率の低下を防ぐことができる。
図9は、比較例としてのロータ2aを示す断面図である。
比較例としてのロータ2aでは、各梁24aがシャフト23から第1の磁極領域N1に延びている。この場合、温度変化による梁24aの膨張が発生すると、梁24aと永久磁石22との間のロータコア21に応力が集中する。特に、非磁性部材24がロータコア21の線膨張係数よりも大きい線膨張係数を持つ場合、梁24aの膨張による応力が磁石挿入孔21aに対向する領域に集中しやすい。その結果、磁石挿入孔21aが変形し、磁石挿入孔21aに配置された永久磁石22が破損することがある。
図10は、比較例としてのロータ2aにおいて、梁24aが膨張したときのロータコア21に発生する応力を示す図である。図10では、ロータ2aの一部の領域が示されている。
図11は、比較例としてのロータ2aにおいて、梁24aが膨張したときのロータコア21の変位を示す図である。図11では、図10に示される領域が示されている。
図10に示されるように、比較例としてのロータ2aでは、梁24aの膨張による応力が磁石挿入孔21aに対向する領域に集中している。その結果、図11に示されるように、磁石挿入孔21aに対向する領域の変位が大きい。すなわち、梁24aと磁石挿入孔21aとの間の領域が、径方向における外側に変形している。この場合、磁石挿入孔21aの内壁が永久磁石22に強く接触し、永久磁石22が破損することがある。
図12は、実施の形態1におけるロータ2において、梁24aが膨張したときのロータコア21に発生する応力を示す図である。図12では、ロータ2の一部の領域が示されている。
図13は、実施の形態1におけるロータ2において、梁24aが膨張したときのロータコア21の変位を示す図である。図13では、図12に示される領域が示されている。
本実施の形態では、各梁24aがシャフト23から第2の磁極領域S1に延びている。シャフト23から第1の磁極領域N1に延びる梁は、ロータ2に存在しない。そのため、温度変化による梁24aの膨張が発生した場合でも、図12に示されるように、梁24aの膨張による応力が磁石挿入孔21aに対向する領域に集中しない。そのため、図13に示されるように、梁24aと磁石挿入孔21aとの間の領域の変形を防ぐことができる。その結果、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を防ぐことができる。
図4に示されるように、xy平面において、梁24aが第2の磁極領域S1の中心とロータ2の回転中心とを通る直線S2上に位置している場合、梁24aは、2つの磁石挿入孔21aから均等に離れた位置に設けられている。この場合、温度変化による梁24aの膨張が発生した場合でも、梁24aと磁石挿入孔21aとの間の領域の変形を効果的に防ぐことができる。その結果、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を効果的に防ぐことができる。
非磁性部材24がロータコア21の弾性係数よりも小さい弾性係数を持つ場合、梁24aの膨張による応力が低減され、梁24aと磁石挿入孔21aとの間の領域の変形を効果的に防ぐことができる。例えば、非磁性部材24が樹脂である場合、金属に比べて梁24aの膨張による応力が低減される。その結果、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を効果的に防ぐことができる。
さらに、非磁性部材24が樹脂である場合、金型を用いた一体成形でロータ2を成形することができる。したがって、圧入、コーキング、焼き嵌めなどの方法に比べて、シャフト23の固定工程などのロータ2の製造工程を簡素化することができる。
上述の各変形例は、本実施の形態で説明した利点を持つ。上述の各変形例は、本実施の形態で説明した利点に加えて、以下の利点を持つ。
変形例1及び2では、コアカバー部24cは、突出部21cを覆っている。したがって、非磁性部材24に連結されたシャフト23が、ロータコア21に対して周方向にずれることを防止することができる。
xy平面において、突出部21cの最小幅W1がコア210の厚みの1倍以上4倍以下である場合、打ち抜き処理での加工が容易であり、突出部21cが径方向に変形しやすい。梁24aの膨張が膨張した場合、梁24aの膨張による応力は突出部21cの変形によって吸収される。したがって、温度変化による梁24aの膨張が発生した場合でも、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を防ぐことができる。特に、突出部21cの最小幅W1がコア210の厚みの1倍以上2倍以下である場合、磁石挿入孔21aの変形を効果的に防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を効果的に防ぐことができる。
変形例3では、コアカバー部24cは、凹部21eを覆っている。したがって、非磁性部材24に連結されたシャフト23が、ロータコア21に対して周方向にずれることを防止することができる。
図14は、変形例3におけるロータ2において、梁24aが膨張したときのロータコア21に発生する応力を示す図である。図14では、ロータ2の一部の領域が示されている。
図15は、変形例3におけるロータ2において、梁24aが膨張したときのロータコア21の変位を示す図である。図15では、図14に示される領域が示されている。
xy平面において、凹部21eの最小幅W2がコア210の厚みの1倍以上4倍以下である場合、凹部21eが径方向に変形しやすい。特に、凹部21eの最小幅W2がコア210の厚みの1倍以上2倍以下である場合、凹部21eが径方向により変形しやすい。梁24aの膨張が膨張した場合、図14及び図15に示されるように、梁24aの膨張による応力は凹部21eの変形によって吸収される。したがって、温度変化による梁24aの膨張が発生した場合でも、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を防ぐことができる。
変形例4では、コアカバー部24cは、延在部21fを覆っている。この場合でも、変形例1から3と同様に、非磁性部材24に連結されたシャフト23が、ロータコア21に対して周方向にずれることを防止することができる。さらに、xy平面において、延在部21fの最小幅W3がコア210の厚みの1倍以上4倍以下である場合、打ち抜き処理での加工が容易であり、延在部21fが径方向に変形しやすい。梁24aの膨張が膨張した場合、梁24aの膨張による応力は延在部21fの変形によって吸収される。したがって、温度変化による梁24aの膨張が発生した場合でも、磁石挿入孔21aの変形を防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を防ぐことができる。特に、延在部21fの最小幅W3がコア210の厚みの1倍以上2倍以下である場合、磁石挿入孔21aの変形を効果的に防ぎ、磁石挿入孔21aに配置された永久磁石22の破損を効果的に防ぐことができる。
実施の形態2.
図16は、実施の形態2に係るファン60の構造を概略的に示す図である。
ファン60は、羽根61と、電動機62とを有する。ファン60は、送風機とも称する。電動機62は、実施の形態1に係る電動機1である。羽根61は、電動機62のシャフトに固定されている。電動機62は、羽根61を駆動する。具体的には、電動機62は、羽根61を回転させる。電動機62が駆動すると、羽根61が回転し、気流が生成される。これにより、ファン60は送風することができる。
実施の形態2に係るファン60では、電動機62に実施の形態1で説明した電動機1が適用されるので、実施の形態1で説明した利点と同じ利点を得ることができる。さらに、ファン60の効率の低下を防ぐことができる。
実施の形態3.
実施の形態3に係る空気調和機50(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
図17は、実施の形態3に係る空気調和機50の構成を概略的に示す図である。
図18は、空気調和機50の送風機としての室外機53内の主要な構成要素を概略的に示す図である。
実施の形態3に係る空気調和機50は、送風機(第1の送風機)としての室内機51と、冷媒配管52と、室内機51に接続された送風機(第2の送風機)としての室外機53とを備える。例えば、室外機53は、冷媒配管52を通して室内機51に接続されている。
室内機51は、電動機51a(例えば、実施の形態1に係る電動機1)と、電動機51aによって駆動されることにより、送風する送風部51bと、電動機51a及び送風部51bを覆うハウジング51cとを有する。送風部51bは、例えば、電動機51aによって駆動される羽根51dを有する。例えば、羽根51dは、電動機51aのシャフトに固定されており、気流を生成する。
室外機53は、電動機53a(例えば、実施の形態1に係る電動機1)と、送風部53bと、圧縮機54と、熱交換器(図示しない)と、送風部53b、圧縮機54、及び熱交換器を覆うハウジング53cとを有する。送風部53bは、電動機53aによって駆動されることにより、送風する。送風部53bは、例えば、電動機53aによって駆動される羽根53dを有する。例えば、羽根53dは、電動機53aのシャフトに固定されており、気流を生成する。圧縮機54は、電動機54a(例えば、実施の形態1に係る電動機1)と、電動機54aによって駆動される圧縮機構54b(例えば、冷媒回路)と、電動機54a及び圧縮機構54bを覆うハウジング54cとを有する。
空気調和機50において、室内機51及び室外機53の少なくとも1つは、実施の形態1で説明した電動機1を有する。すなわち、室内機51、室外機53、又はこれらの両方は、実施の形態1で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機51a及び53aの少なくとも一方に、実施の形態1で説明した電動機1が適用される。すなわち、室内機51、室外機53、又はこれらの両方に、実施の形態1で説明した電動機1が適用される。圧縮機54の電動機54aに、実施の形態1で説明した電動機1を適用してもよい。
空気調和機50は、例えば、室内機51から冷たい空気を送風する冷房運転、温かい空気を送風する暖房運転等の空調を行うことができる。室内機51において、電動機51aは、送風部51bを駆動するための駆動源である。送風部51bは、調整された空気を送風することができる。
図18に示されるように、室外機53において、電動機53aは、例えば、ねじ53eによって室外機53のハウジング53cに固定されている。
実施の形態3に係る空気調和機50では、電動機51a及び53aの少なくとも一方に、実施の形態1で説明した電動機1が適用されるので、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、空気調和機50の効率の低下を防ぐことができる。
さらに、送風機(例えば、室内機51)の駆動源として、実施の形態1に係る電動機1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、送風機の効率の低下を防ぐことができる。実施の形態1に係る電動機1と電動機1によって駆動される羽根(例えば、羽根51d又は53d)とを有する送風機は、送風する装置として単独で用いることができる。この送風機は、空気調和機50以外の機器にも適用可能である。
さらに、圧縮機54の駆動源として、実施の形態1に係る電動機1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、圧縮機54の効率の低下を防ぐことができる。
実施の形態1で説明した電動機1は、空気調和機50以外に、換気扇、家電機器、又は工作機など、駆動源を有する機器に搭載できる。
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
1,51a,53a,62 電動機、 2 ロータ、 3 ステータ、 21 ロータコア、 21a 磁石挿入孔、 21b シャフト挿入孔、 21c 突出部、 21d 空隙、 21e 凹部、 24 非磁性部材、 24a 梁、 24b シャフトカバー部、 24c コアカバー部、 50 空気調和機、 51 室内機、 53 室外機、 60 ファン、 61 羽根、 210 コア、 N1 第1の磁極領域、 S1 第2の磁極領域。

Claims (14)

  1. 磁石挿入孔及びシャフト挿入孔を有するロータコアと、前記磁石挿入孔に配置された永久磁石とを有するコンシクエントポール型ロータであって、
    前記磁石挿入孔を含むとともに第1の磁極として機能する第1の磁極領域と、
    前記第1の磁極領域に隣接しており、疑似磁極である第2の磁極として機能する第2の磁極領域と、
    前記シャフト挿入孔に配置されたシャフトと、
    前記シャフト挿入孔に配置されており、前記ロータコアの線膨張係数よりも大きい線膨張係数を持ち、前記シャフトを前記ロータコアに連結する非磁性部材と
    を備え、
    前記非磁性部材は、前記シャフトから前記第2の磁極領域に延びる梁を有し、
    前記シャフトから前記第1の磁極領域に延びる梁は存在しない
    コンシクエントポール型ロータ。
  2. 前記コンシクエントポール型ロータの軸方向と直交する平面において、前記梁は、前記第2の磁極領域の中心と前記コンシクエントポール型ロータの回転中心とを通る直線上に位置している請求項1に記載のコンシクエントポール型ロータ。
  3. 前記ロータコアは、前記ロータコアの内周面に形成されており、前記シャフトに向けて突出している突出部を有し、
    前記非磁性部材は、前記梁に接続されており前記突出部を覆うコアカバー部を有する
    請求項1又は2に記載のコンシクエントポール型ロータ。
  4. 前記ロータコアは、前記突出部に対向する空隙を有し、
    前記梁は、前記空隙と前記コンシクエントポール型ロータの回転中心とを通る直線上に位置している
    請求項3に記載のコンシクエントポール型ロータ。
  5. 前記ロータコアは、前記コンシクエントポール型ロータの軸方向に積層された複数のコアで構成されており、
    前記コンシクエントポール型ロータの軸方向と直交する平面において、前記突出部の最小幅は、前記コアの厚みの1倍以上2倍以下である
    請求項3又は4に記載のコンシクエントポール型ロータ。
  6. 前記ロータコアは、前記ロータコアの内周面に形成されており、前記ロータコアの外周面に向けてへこんだ凹部を有し、
    前記非磁性部材は、前記梁に接続されており前記凹部を覆うコアカバー部を有する
    請求項1又は2に記載のコンシクエントポール型ロータ。
  7. 前記ロータコアは、前記凹部に対向する空隙を有し、
    前記梁は、前記空隙と前記コンシクエントポール型ロータの回転中心とを通る直線上に位置している
    請求項6に記載のコンシクエントポール型ロータ。
  8. 前記ロータコアは、前記コンシクエントポール型ロータの軸方向に積層された複数のコアで構成されており、
    前記コンシクエントポール型ロータの軸方向と直交する平面において、前記凹部の最小幅は、前記コアの厚みの1倍以上2倍以下である
    請求項6又は7に記載のコンシクエントポール型ロータ。
  9. 前記ロータコアは、空隙と、前記空隙に対向しており前記ロータコアの内周面に形成された延在部とを有し、
    前記コンシクエントポール型ロータの軸方向と直交する平面において、前記延在部は、前記梁と対向しており、前記梁と直交している
    請求項1又は2に記載のコンシクエントポール型ロータ。
  10. 前記非磁性部材は、樹脂である請求項1から9のいずれか1項に記載のコンシクエントポール型ロータ。
  11. 前記非磁性部材は、前記ロータコアの弾性係数よりも小さい弾性係数を持つ請求項1から10のいずれか1項に記載のコンシクエントポール型ロータ。
  12. 請求項1から11のいずれか1項に記載のコンシクエントポール型ロータと、
    前記コンシクエントポール型ロータの外側に配置されたステータと
    を備えた電動機。
  13. 羽根と、
    前記羽根を駆動する請求項12に記載の電動機と
    を備えたファン。
  14. 室内機と、
    前記室内機に接続された室外機と
    を備え、
    前記室内機、前記室外機、又は前記室内機及び前記室外機の両方は、請求項12に記載の電動機を有する
    空気調和機。
JP2022502707A 2020-02-27 2020-02-27 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 Active JP7259128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023060716A JP7450783B2 (ja) 2020-02-27 2023-04-04 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008009 WO2021171474A1 (ja) 2020-02-27 2020-02-27 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023060716A Division JP7450783B2 (ja) 2020-02-27 2023-04-04 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機

Publications (2)

Publication Number Publication Date
JPWO2021171474A1 JPWO2021171474A1 (ja) 2021-09-02
JP7259128B2 true JP7259128B2 (ja) 2023-04-17

Family

ID=77490046

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022502707A Active JP7259128B2 (ja) 2020-02-27 2020-02-27 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機
JP2023060716A Active JP7450783B2 (ja) 2020-02-27 2023-04-04 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023060716A Active JP7450783B2 (ja) 2020-02-27 2023-04-04 コンシクエントポール型ロータ、電動機、ファン、及び空気調和機

Country Status (4)

Country Link
US (1) US20230039239A1 (ja)
JP (2) JP7259128B2 (ja)
CN (1) CN115136460A (ja)
WO (1) WO2021171474A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112999A (ja) 2012-12-05 2014-06-19 Denso Corp 回転子、および、これを用いた回転電機
JP2014131376A (ja) 2012-12-28 2014-07-10 Denso Corp 回転子、および、これを用いた回転電機
WO2018158930A1 (ja) 2017-03-03 2018-09-07 三菱電機株式会社 回転子、電動機、圧縮機および送風機
WO2019026273A1 (ja) 2017-08-04 2019-02-07 三菱電機株式会社 回転子、電動機、送風機、空気調和装置および回転子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881418B2 (ja) * 2009-10-09 2012-02-22 本田技研工業株式会社 回転電機
DE112016007067T5 (de) * 2016-07-15 2019-03-28 Mitsubishi Electric Corporation Folgepoltyp-rotor, elektromotor, klimaanlage und verfahren zur herstellung eines folgepoltyp-rotors
US11101708B2 (en) * 2017-01-23 2021-08-24 Mitsubishi Electric Corporation Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
EP3813231A4 (en) * 2018-06-25 2021-06-16 Mitsubishi Electric Corporation ROTOR, ELECTRIC MOTOR, FAN AND AIR CONDITIONING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112999A (ja) 2012-12-05 2014-06-19 Denso Corp 回転子、および、これを用いた回転電機
JP2014131376A (ja) 2012-12-28 2014-07-10 Denso Corp 回転子、および、これを用いた回転電機
WO2018158930A1 (ja) 2017-03-03 2018-09-07 三菱電機株式会社 回転子、電動機、圧縮機および送風機
WO2019026273A1 (ja) 2017-08-04 2019-02-07 三菱電機株式会社 回転子、電動機、送風機、空気調和装置および回転子の製造方法

Also Published As

Publication number Publication date
US20230039239A1 (en) 2023-02-09
CN115136460A (zh) 2022-09-30
JP2023076591A (ja) 2023-06-01
JPWO2021171474A1 (ja) 2021-09-02
JP7450783B2 (ja) 2024-03-15
WO2021171474A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
KR102359392B1 (ko) 컨시퀀트폴형 로터, 전동기, 압축기, 송풍기 및 공기 조화기
US11456632B2 (en) Consequent-pole type rotor, electric motor, air conditioner, and method for manufacturing consequent-pole type rotor
JP6964672B2 (ja) ロータ、電動機、送風機および空気調和装置
US11394260B2 (en) Rotor, motor, fan, and air conditioning apparatus
WO2020129123A1 (ja) 回転子、電動機、送風機、及び空気調和機、並びに回転子の製造方法
US11852167B2 (en) Motor and air conditioner using the same
JP7072726B2 (ja) 回転子、電動機、送風機、空気調和機、及び回転子の製造方法
WO2021171476A1 (ja) 電動機、ファン、及び空気調和機
JP6964796B2 (ja) 回転子、コンシクエントポール型回転子、電動機、送風機、冷凍空調装置、回転子の製造方法、及びコンシクエントポール型回転子の製造方法
JP7259128B2 (ja) コンシクエントポール型ロータ、電動機、ファン、及び空気調和機
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
JP7098047B2 (ja) モータ、ファン、および空気調和機
JP7239738B2 (ja) ロータ、電動機、ファン、及び空気調和機
JP7321393B2 (ja) 電動機、ファン、及び空気調和機
WO2023073757A1 (ja) ロータ、電動機、送風機および空気調和装置
JP7204018B2 (ja) ロータ、電動機、送風機および空気調和装置
WO2022180708A1 (ja) ステータ、電動機、及び空気調和機
WO2022201481A1 (ja) 電動機、ファン、及び空気調和機
JPWO2020026406A1 (ja) ロータ、モータ、ファン、空気調和装置、及びロータの製造方法
JPWO2020026403A1 (ja) ロータ、モータ、ファン、空気調和装置、及びロータの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7259128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150