WO2024088366A1 - 用于冲击波医用装置的球囊装置和冲击波医用装置 - Google Patents

用于冲击波医用装置的球囊装置和冲击波医用装置 Download PDF

Info

Publication number
WO2024088366A1
WO2024088366A1 PCT/CN2023/126992 CN2023126992W WO2024088366A1 WO 2024088366 A1 WO2024088366 A1 WO 2024088366A1 CN 2023126992 W CN2023126992 W CN 2023126992W WO 2024088366 A1 WO2024088366 A1 WO 2024088366A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock wave
sub
balloon
balloons
medical device
Prior art date
Application number
PCT/CN2023/126992
Other languages
English (en)
French (fr)
Inventor
刘来俊
张金刚
胡雷光
尹安远
Original Assignee
上海蓝帆博奥医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211325166.1A external-priority patent/CN117942128A/zh
Priority claimed from CN202222840248.1U external-priority patent/CN219331805U/zh
Application filed by 上海蓝帆博奥医疗科技有限公司 filed Critical 上海蓝帆博奥医疗科技有限公司
Publication of WO2024088366A1 publication Critical patent/WO2024088366A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for

Definitions

  • the present disclosure relates to a balloon device for a shock wave medical device and a shock wave medical device.
  • Heart valve calcification is a typical feature of degenerative heart valve disease in the elderly, which can lead to problems such as aortic stenosis and regurgitation. With the aging of the population, the number of patients with heart valve calcification will continue to increase.
  • Traditional conservative drug treatment and surgical valve replacement treatment have their own inherent defects, which limit their clinical application. For example, conservative drug treatment has little effect, and surgical valve replacement treatment is traumatic, slow to recover, and has many complications.
  • transcatheter interventional treatments for valvular heart disease have been widely used, mainly including transcatheter aortic valvuloplasty (BAV) and transcatheter aortic valve replacement (TAVR).
  • BAV transcatheter aortic valvuloplasty
  • TAVR transcatheter aortic valve replacement
  • TAVR has achieved milestone development in the diagnosis and treatment of heart valve disease.
  • TAVR is a procedure that uses a peripheral vascular access (mainly the femoral artery) to deliver a folded stent system with an artificial valve to the aortic root and gradually release it to replace the original diseased aortic valve. It has the advantages of no need for thoracotomy, no need for extracorporeal circulation and cardiac arrest, less trauma, and quick postoperative recovery.
  • TAVR is not suitable for patients with moderate calcified aortic stenosis and special anatomical structures, and a new treatment method is urgently needed to make up for the shortcomings of TAVR surgery.
  • At least one embodiment of the present disclosure provides a balloon device for a shock wave medical device, comprising: A balloon body and a shock wave emitting unit.
  • the balloon body includes a plurality of sub-balloons arranged in a circumferential manner, the plurality of sub-balloons are arranged to form an inter-balloon cavity, wherein the axial directions of the plurality of sub-balloons are respectively parallel to the axial directions of the inter-balloon cavity.
  • the shock wave emitting unit includes at least one shock wave emitter configured to generate shock waves, wherein at least one shock wave emitter is arranged circumferentially at intervals within the plurality of sub-balloons, and each sub-balloon has a first channel for the flow of liquid for conducting shock waves.
  • At least one shock wave transmitter is a plurality of shock wave transmitters, and the plurality of shock wave transmitters are arranged in alternating intervals.
  • the plurality of sub-balloons are 4 to 10 sub-balloons.
  • a balloon device provided by at least one embodiment of the present disclosure further includes an external restraining member, which is configured in a ring shape and is sleeved on the outer surfaces of the plurality of sub-balloons.
  • a balloon device provided by at least one embodiment of the present disclosure further includes an inner restraint member, which is configured in a ring shape, and the outer surface of the inner restraint member is attached to the surfaces of the plurality of sub-balloons facing the inter-balloon cavities.
  • the outer tie member and/or the inner tie member are connected to the plurality of sub-balloons by an adhesive.
  • the outer tie member and/or the inner tie member are a closed-loop membrane structure, and the thickness of the closed-loop membrane structure is 10 ⁇ m to 30 ⁇ m.
  • the balloon device includes an outer restraining member and an inner restraining member, and the outer restraining member is at least partially staggered with the inner restraining member in the axial direction along the inter-balloon lumen.
  • the external restraining member is staggered with at least one shock wave transmitter in the axial direction along the inter-balloon lumen.
  • the external restraint device includes two external restraint bands, which are annular and respectively sleeved on the outer surfaces of the proximal and distal ends of a plurality of sub-balloons, and the shock wave emitter is located between the two external restraint bands in the axial direction along the inter-balloon cavity.
  • the external restraint member includes at least one of a film structure, a fiber structure, and a fiber-membrane combination structure
  • the internal restraint member includes at least one of a film structure, a fiber structure, and a fiber-membrane combination structure, wherein the fiber-membrane combination structure includes a fiber structure and a film structure that are stacked.
  • At least one embodiment of the present disclosure provides a balloon device further comprising at least one first developing member, at least one second developing member, and a guide wire tube passing through the inter-balloon cavity, wherein the guide wire tube
  • the plurality of sub-balloons are located between the first developing member and the second developing member in the axial direction along the inter-balloon cavity, and the first developing member and the second developing member are arranged on the guide wire tube.
  • a balloon device provided in at least one embodiment of the present disclosure further includes at least one third developing component, and the at least one third developing component is disposed on the shock wave emitter.
  • a balloon device provided by at least one embodiment of the present disclosure also includes multiple insulating tubes, which are respectively arranged in multiple sub-balloons and extend through and outside the sub-balloons.
  • the axial direction of the sub-balloons is parallel or coaxial with the axial direction of the insulating tubes in the sub-balloons, and the shock wave emitter is fixedly arranged on the insulating tubes in the sub-balloons.
  • At least one embodiment of the present disclosure further provides a shock wave medical device, including any of the balloon devices described above.
  • the shock wave medical device also includes a shock wave generator, which is electrically connected to a power supply to generate a pulse signal.
  • the shock wave generator is electrically connected to a shock wave transmitter so that the shock wave transmitter receives the pulse signal to generate a shock wave.
  • a shock wave transmitter in a shock wave medical device provided in at least one embodiment of the present disclosure, includes an electrode cable and at least two electrode probes, the electrode cable is configured to receive and conduct pulse signals, and the at least two electrode probes are respectively electrically connected to the electrode cable and configured to generate shock waves according to the pulse signal.
  • the shock wave transmitter includes an electrode cable and at least two electrode probes, the electrode cable is configured to receive and conduct pulse signals, and the at least two electrode probes are respectively electrically connected to the electrode cable and configured to generate shock waves according to the pulse signals.
  • the shock wave medical device also includes a conduction mechanism, and the shock wave generator is electrically connected to the shock wave transmitter through the conduction mechanism.
  • the conduction mechanism includes a conduction shell and a conduction electrode, the conduction shell is tubular and has a conduction inner cavity, and the conduction electrode is arranged in the conduction inner cavity and extends axially along the inter-capsule through cavity.
  • the conduction inner cavity is connected to the first channels of the plurality of sub-balloons so that the liquid circulates in the conduction inner cavity and the first channel.
  • the proximal end of the conduction electrode is connected to the distal end of the electrode cable of at least one shock wave transmitter, and the distal end of the conduction electrode is connected to the shock wave generator.
  • the balloon device also includes a guide wire tube inserted into the inter-balloon cavity, and the guide wire tube is used to insert a guide wire.
  • the balloon device also includes a plurality of insulating tubes, which are respectively arranged in a plurality of sub-balloons and extend through and outside the sub-balloons.
  • the axial direction of the sub-balloons is parallel or coaxial with the axial direction of the insulating tubes located in the sub-balloons, and the shock wave transmitter is fixedly arranged on the insulating tubes in the sub-balloons.
  • the shock wave medical device also includes a plurality of transmission tube groups, each of which includes: a first transmission tube extending from the distal end of the sub-balloon toward a side away from the sub-balloon; And a second transmission tube extending from the proximal end of the sub-balloon toward the side away from the sub-balloon; the distal part of the first transmission tube of the plurality of transmission tube groups is located in the conduction inner cavity, and the plurality of transmission tube groups are arranged circumferentially on the outside of the guide wire tube.
  • the first transmission tube and the second transmission tube of each transmission tube group are sleeved on the outside of the insulating tube and are arranged with a gap with the insulating tube to form a second channel and a third channel respectively.
  • the distal end of the first channel of each sub-balloon is connected with the proximal end of the second channel, and the proximal end of the first channel is connected with the distal end of the third channel, and the distal end of the second channel is connected with the conduction inner cavity.
  • the proximal ends of the second transmission tubes of the plurality of transmission tube groups are closed and converged to form a tapered head end, and the tapered head end is provided with a through hole for the guide wire tube to pass through.
  • a shock wave medical device provided by at least one embodiment of the present disclosure also includes an interface, which is respectively connected to the external filler and the conduction lumen of the conduction mechanism to allow liquid to flow from the external filler into the conduction lumen and into the multiple sub-balloons.
  • the beneficial effects of at least one embodiment of the present disclosure include at least the following: the embodiment of the present disclosure arranges shock wave emitters circumferentially at intervals on multiple sub-balloons, which not only reduces the outer diameter of the balloon device in a folded state, facilitating the delivery of the shock wave medical device through blood vessels to the heart valve, but also helps to maintain blood circulation without blocking blood vessels, thereby relaxing the time limit for surgery using the shock wave medical device, and achieving a better calcification treatment effect.
  • FIG1 is a schematic diagram of the three-dimensional structure of a balloon device for a shock wave medical device provided in some embodiments of the present disclosure
  • FIG2 is a front view of a shock wave medical device provided by some embodiments of the present disclosure.
  • FIG3 is a schematic diagram of a three-dimensional structure of a balloon device provided in some embodiments of the present disclosure, and FIG3 and FIG1 are drawings having the same features;
  • FIG4 is an enlarged schematic diagram of the dotted box in FIG2 provided in some embodiments of the present disclosure.
  • FIG5 is a schematic side view of a distal end of a balloon device provided in some embodiments of the present disclosure.
  • FIG. 6 is a cross-section of a device for treating heart valve calcification provided by some embodiments of the present disclosure when used in vivo picture;
  • FIG. 7A is a schematic diagram of an outer restraining member 120 of a film structure provided in some embodiments of the present disclosure.
  • FIG7B is a schematic diagram of an outer restraining member 120 of a fiber-membrane combination structure provided in some embodiments of the present disclosure
  • FIG. 7C is a schematic diagram of an inner restraining member 130 of a film structure provided in some embodiments of the present disclosure.
  • FIG. 7D is a schematic diagram of an inner restraining member 130 of a fiber-membrane combination structure provided in some embodiments of the present disclosure.
  • words “first”, “second” and similar words used in the embodiments of the present disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components. Words such as “one”, “an” or “the” and similar words do not indicate a quantity limitation, but indicate the existence of at least one. Similarly, words such as “include” or “comprise” mean that the elements or objects appearing before the word include the elements or objects listed after the word and their equivalents, without excluding other elements or objects. Words such as “connect” or “connected” and similar words are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • TAVR is not suitable for patients with moderate calcified aortic stenosis and special anatomical structures, and a new treatment method is urgently needed to make up for the shortcomings of TAVR surgery.
  • the balloon device of the shock wave medical device of some technical solutions adopts a larger balloon, which may cause the shock wave transmitter in the larger balloon to be different from the surface of the balloon.
  • the distance between the two surfaces is too large, which makes the transmission path of the shock wave energy to the lesion too long, resulting in excessive energy attenuation, greatly weakening the treatment effect.
  • the expanded balloon will also block the blood flow at the valve, which is prone to ischemia and lead to a series of complications.
  • a balloon device for a shock wave medical device including a balloon body and a shock wave emitting unit.
  • the balloon body includes a plurality of sub-balloons arranged in a circumferential manner.
  • the plurality of sub-balloons are arranged to form an inter-balloon cavity.
  • the axial directions of the plurality of sub-balloons are respectively parallel to the axial directions of the inter-balloon cavity.
  • the shock wave emitting unit includes at least one shock wave emitter configured to generate shock waves.
  • the at least one shock wave emitter is arranged circumferentially at intervals in the plurality of sub-balloons, and each sub-balloon has a first channel for the flow of liquid for conducting shock waves.
  • At least one embodiment of the present disclosure further provides a shock wave medical device including the above-mentioned balloon device, the shock wave medical device also includes a shock wave generator, the shock wave generator is electrically connected to the power supply to generate a pulse signal. The shock wave generator is electrically connected to the shock wave transmitter so that the shock wave transmitter receives the pulse signal to generate a shock wave.
  • the balloon device or shock wave medical device of the above embodiment of the present disclosure can reduce the outer diameter of the balloon device in the folded state by arranging the shock wave emitters in a plurality of sub-balloons at intervals in the circumferential direction, which is conducive to the shock wave medical device passing through the blood vessels to be delivered to the heart valve, and also helps to maintain blood circulation without blocking the blood vessels, thereby relaxing the time limit for using the shock wave medical device for surgery, and achieving a better calcification treatment effect.
  • the embodiment of the present disclosure can also reduce the size and cost of the device while ensuring effectiveness.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of a balloon device for a shock wave medical device provided in some embodiments of the present disclosure.
  • FIG. 2 is a front view of a shock wave medical device provided in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of the three-dimensional structure of a balloon device provided in some embodiments of the present disclosure.
  • FIG. 3 and FIG. 1 are drawings of the embodiments of the present disclosure having the same features. Different numerical marks are added to FIG. 3 from those in FIG. 1 to facilitate the clear illustration of the description herein and the drawings.
  • the end close to the target tissue (such as the heart) during operation is recorded as the proximal end, that is, the end away from the operator, and the end away from the target tissue (such as the heart) during operation is recorded as the distal end, that is, the end close to the operator. and the right end of the daughter balloon 110 is used as the proximal end of the daughter balloon 110.
  • axial refers to the direction of the centerline of the device or component. It should be noted that these definitions are only for the convenience of expression and cannot be understood as limitations of the present disclosure.
  • the distal end and the proximal end of the embodiments of the present disclosure are relative positions.
  • they can represent the two opposite ends of some components themselves, or they can represent the two opposite ends in a certain direction. These do not affect the orientation in actual applications.
  • the target tissue as a heart valve as an example for explanation, but the present disclosure does not limit the type of applicable target tissue.
  • the present disclosure can also be applied to the treatment of other valves or other human tissue calcifications that need to solve the calcification problem.
  • the present disclosure does not limit or elaborate on this.
  • a balloon device 1000 for a shock wave medical device provided by at least one embodiment of the present disclosure includes a balloon body 100 and a shock wave emitting unit 200 .
  • the balloon body 100 includes a plurality of sub-balloons 110 arranged in a circle, and the plurality of sub-balloons 110 surround and form an inter-balloon cavity 100a.
  • the axial directions of the plurality of sub-balloons 110 are respectively parallel to the axial direction of the inter-balloon cavity 100a.
  • the shock wave emitting unit 200 includes at least one shock wave emitter 210, and the shock wave emitter 210 is configured to generate shock waves.
  • the at least one shock wave emitter 210 of the shock wave emitting unit 200 is arranged circumferentially in a plurality of sub-balloons 110 of the balloon body 100 at intervals, so that the embodiment of the present disclosure is configured such that the sub-balloons 110 with the shock wave emitter 210 and the sub-balloons 110 without the shock wave emitter 210 are arranged along the circumference.
  • Each sub-balloon 110 has a first channel for the flow of liquid for conducting shock waves.
  • the sub-balloon 110 can transmit shock waves to the target area when it expands.
  • the shock waves can release non-focused pulsed acoustic pressure waves to the diseased area.
  • the acoustic pressure waves can penetrate soft tissue with an effective pressure of, for example, about 50 atm, and can selectively act only on the calcified areas to break up hard calcified plaques. For example, it can soften the superficial and deep calcified areas, thereby softening the heart valve tissue, and then improving the opening and closing state of the leaflets, thereby achieving the purpose of treating calcification.
  • the above-mentioned embodiment of the present disclosure adopts the ingenious design of arranging the sub-balloons with shock wave emitters and the sub-balloons without shock wave emitters along the circumference, which can not only reduce the outer diameter of the balloon device in the folded state, that is, the outline size in the folded state, which is conducive to the shock wave medical device passing through the blood vessels to the heart valve, but also can maintain blood circulation during the treatment process without blocking the blood vessels, thereby
  • the time limit for performing surgery using a shock wave medical device is relaxed, and the transmission distance of the shock wave is shortened, resulting in a better calcification treatment effect.
  • the embodiments of the present disclosure can also reduce the size and cost of the device while ensuring effectiveness.
  • the embodiments of the present disclosure through the ingenious design of arranging the sub-balloons 110 with the shock wave transmitter 210 and the sub-balloons 110 without the shock wave transmitter 210 along the circumference, can make the circulation space of the inter-balloon cavity 100a larger when there are a certain number of shock wave transmitters 210, which is beneficial to blood circulation and will not block blood vessels, thereby relaxing the time limit for using the shock wave medical device for surgery, and also helps to reduce the distance between the electrode component of the shock wave transmitter 210 and the surface of the sub-balloon 110, effectively shorten the distance between the electrode component of the shock wave transmitter 210 and the calcified part, reduce the attenuation of the shock wave, and make the calcification treatment effect better.
  • the embodiments of the present disclosure through the ingenious design of arranging the sub-balloons 110 with the shock wave transmitter 210 and the sub-balloons 110 without the shock wave transmitter 210 along the circumference, can also avoid the problem of unnecessary costs caused by too many shock wave transmitters and the excessive profile of the balloon device when the number of sub-balloons 110 is sufficient.
  • the main body of the sub-balloon 110 is cylindrical when inflated and tapers at both ends in the length direction.
  • the main body of the sub-balloon 110 refers to the straight section of the sub-balloon 110 excluding the tapered ends.
  • the main body diameter of the sub-balloon 110 when filled to the nominal pressure is 4mm-8mm, and the main body length of each sub-balloon 110 is 30mm-50mm.
  • the main body length of the sub-balloon 110 refers to the length of the main body of the sub-balloon 110, and the direction of the main body length of the sub-balloon 110 is parallel to the axial direction of the inter-balloon cavity 100a.
  • the specifications of the plurality of sub-balloons 110 of the balloon body 100 may be consistent, which is merely exemplary and not a limitation of the present disclosure.
  • the specifications of the sub-balloons 110 of the balloon body 100 may also be inconsistent, and the present disclosure does not limit or elaborate on this.
  • the specifications of the plurality of sub-balloons 110 refer to the length, body length, and/or diameter of the plurality of sub-balloons 110, respectively.
  • the specifications of the sub-balloon 110 in the embodiments of the present disclosure may depend on actual conditions.
  • the specifications of the sub-balloon 110 may be adjusted accordingly according to the number of sub-balloons 110 in the balloon main body 100.
  • the main body diameter of each sub-balloon 110 may be slightly smaller.
  • the embodiments of the present disclosure do not enumerate or elaborate on this.
  • the daughter balloon 110 has retractable, foldable and insulating properties. It is made of medical polymer materials that are non-toxic to the human body, the intervention part does not react with tissues and skin, and no particles are shed.
  • the sub-balloon 110 can be a disposable or reusable consumable.
  • the sub-balloon 110 is a reusable consumable, it needs to be thoroughly disinfected and sterilized before using the sub-balloon 110. This is only exemplary and is not a limitation of the present disclosure.
  • the thickness of the daughter balloon 110 is about 0.038 mm. This is merely exemplary and not a limitation of the present disclosure, and it can be freely adjusted according to actual applications.
  • the first channel of the sub-balloon 110 can be used not only for the circulation of liquid that can conduct shock waves, but also for the embedding of the shock wave transmitter 210 when the balloon device 1000 is assembled, so that part of the sub-balloon 110 of the balloon body 100 of the balloon device 1000 is equipped with the shock wave transmitter 210.
  • the liquid that can conduct shock waves can be an electrolyte liquid, such as physiological saline.
  • the liquid that can conduct shock waves can also be a non-electrolyte liquid, such as glycerol, which is not limited in the present disclosure.
  • a shock wave medical device 2000 which may include the balloon device 1000 shown in FIG1.
  • the shock wave medical device 2000 also includes a shock wave generator 400, which is electrically connected to a power source to generate a pulse signal, and the power source is, for example, an external power source or a built-in power source.
  • the shock wave generator 400 is electrically connected to the shock wave transmitter 210 so that the shock wave transmitter 210 receives the pulse signal to generate a shock wave.
  • the shock wave transmitter 210 includes an electrode cable 211 and at least two electrode probes 212.
  • the electrode cable 211 is configured to receive and conduct a pulse signal.
  • the pulse signal is a voltage/current pulse.
  • the at least two electrode probes 212 of the shock wave transmitter 210 are respectively electrically connected to the electrode cable 211 and configured to generate shock waves according to the pulse signal.
  • At least two electrode probes 212 of shock wave transmitter 210 are connected in series.
  • the shock wave medical device 2000 further includes a plurality of insulating tubes 600.
  • the plurality of insulating tubes 600 are respectively disposed in a plurality of sub-balloons 110 and extend through and outside the sub-balloons 110.
  • the axial direction of the sub-balloons 110 is parallel to or coaxial with the axial direction of the insulating tubes 600 in the sub-balloons 110.
  • the shock wave transmitter 210 is fixedly disposed on the insulating tubes 600 in the corresponding sub-balloons 110.
  • each shock wave transmitter 210 includes two electrode probes 212 , which are connected in series.
  • Each electrode probe 212 is a ring-shaped structure and is sleeved on an insulating tube 600 .
  • FIG. 4 is an enlarged schematic diagram of the dotted box in FIG. 2 provided in some embodiments of the present disclosure.
  • the shock wave medical device 2000 further includes a transmission mechanism 500.
  • the shock wave generator 400 is electrically connected to the shock wave transmitter 210 via the conduction mechanism 500 .
  • the conduction mechanism 500 includes a conduction shell 510 and a conduction electrode 520 .
  • the conduction shell 510 is tubular and has a conduction inner cavity 500 a .
  • the conduction electrode 520 is disposed in the conduction inner cavity 500 a and extends along the axial direction of the inter-capsular through cavity 100 a .
  • the proximal end of the conducting electrode 520 of the conducting mechanism 500 is connected to the distal end of the electrode cable 211 of each shock wave transmitter 210, and the distal end of the conducting electrode 520 is connected to the shock wave generator 400.
  • the pulse signal generated by the shock wave generator 400 is conducted to the shock wave transmitter 210 via the conducting electrode 520 and a shock wave is generated to complete the treatment of the calcified part.
  • the conduction lumen 500a is connected to the first channels of multiple sub-balloons 110, so that the liquid that can conduct shock waves can flow in the conduction lumen 500a and the first channels of the sub-balloons 110.
  • This can make the sub-balloons 110 inflate and expand, and can also make the liquid in the sub-balloons 110 conduct the generated shock waves to the surface of the sub-balloons, thereby acting on the calcified parts, breaking up the hard calcified plaques, and achieving the therapeutic purpose of improving the opening and closing state of the valve leaflets.
  • the shock wave medical device 2000 further includes an interface 900, which is respectively connected to the external filler and the conduction lumen 500a of the conduction mechanism 500, so that the liquid flows from the external filler into the conduction lumen 500a and into the plurality of sub-balloons 110.
  • the liquid used to conduct the shock wave flows from the external filler through the interface into each sub-balloon, so that the sub-balloon expands to a specific size and propagates the shock wave generated by the shock wave transmitter 210.
  • the shock wave medical device 2000 further includes a guide wire tube 700 extending through the inter-cystic cavity 100a, and the guide wire tube 700 is used to pass a guide wire.
  • the guide wire tube 700 runs through the entire shock wave medical device in the axial direction of the inter-cystic cavity 100a.
  • the shock wave medical device 2000 further includes a plurality of transmission tube groups 800.
  • the distal portion 800a of the plurality of transmission tube groups 800 includes at least the distal portion of the first transmission tube 810.
  • the distal portion 800a of the plurality of transmission tube groups 800 (e.g., the distal portion of the first transmission tube 810 of the plurality of transmission tube groups 800) is located in the conduction lumen 500a, and the plurality of transmission tube groups 800 are circumferentially arranged on the outside of the guidewire tube 700.
  • Each transmission tube group 800 includes: a first transmission tube 810 extending from the distal end of the sub-balloon 110 toward a side away from the sub-balloon 110 and a second transmission tube 820 extending from the proximal end of the sub-balloon 110 toward a side away from the sub-balloon 110.
  • the transmission tube set 800 there is a certain gap between the transmission tube set 800 and the insulating tube 600.
  • the first transmission tube 810 and the second transmission tube 820 of each transmission tube set 800 are sleeved on the insulating tube 600.
  • the outer side of the insulating tube 600 is provided with a gap therebetween, thereby forming a second channel and a third channel between the first conveying tube 810 and the second conveying tube 820 and the outer side of the insulating tube 600, respectively.
  • the distal end of the first channel of each sub-balloon 110 is connected to the proximal end of the second channel of the first transmission tube 810, and the proximal end of the first channel of the sub-balloon 110 is connected to the distal end of the third channel of the second transmission tube 820, and the distal end of the second channel of the first transmission tube 810 is connected to the conduction lumen 500a.
  • the embodiments of the present disclosure can not only allow liquid to flow from the interface 900 and flow through the conduction mechanism 500 to the sub-balloon 110 to propagate shock waves or allow liquid to flow out of the sub-balloon 110, but also provide for the embedding of the shock wave transmitter 210 during assembly.
  • the conductive housing 510 of the conductive mechanism 500 may be made of a flexible material that is retractable, foldable, and has insulating properties.
  • the insulating tube 600 is located at the center of the sub-balloon 110, that is, the insulating tube 600 is coaxial or coincident with the central axis of the sub-balloon 110, and thus, the shock wave transmitter 210 fixed on the insulating tube 600 is also located at the center of the sub-balloon 110.
  • the proximal ends of the second delivery tubes 820 of the plurality of delivery tube sets 800 are closed and converged to form a tapered head end 830 , and the tapered head end 830 is provided with a through hole 831 for the guide wire tube 700 to pass through.
  • the conical head end 830 is a conical end with a smooth surface and no sharp corners.
  • the conical head end 830 is made of a flexible material with a certain degree of deformation ability, and can be bent according to the actual direction of the blood vessel to avoid damaging the blood vessel or valve tissue.
  • the liquid flowing into each sub-balloon 110 from the external inflator through the interface 900 is mixed with an appropriate amount of contrast agent. Therefore, when the contrast agent enters the sub-balloon along with the liquid, the expansion profile of each sub-balloon can be directly observed with the help of an external imaging device (such as an X-ray imaging device), which can not only prevent the sub-balloon from being damaged by excessive opening of the aortic valve due to overfilling, but also prevent the surface of the sub-balloon from not completely fitting the valve, thereby avoiding the problem of weakening the therapeutic effect of the shock wave.
  • an external imaging device such as an X-ray imaging device
  • the contour of the filled sub-balloon 110 can be observed in real time according to external imaging equipment, and the amount of liquid entering the sub-balloon 110 can be flexibly adjusted according to the actual valve opening size to prevent the sub-balloon 110 from being over-filled and squeezing the tissue.
  • the shock wave medical device 2000 further includes at least one first developing member and at least one second developing member.
  • the first developing member and the second developing member are respectively located on opposite sides along the axial direction of the inter-capsular cavity 100a.
  • the plurality of sub-balloons 110 are located on the first developing member along the axial direction of the inter-capsular cavity 100a.
  • the first developing member can be located at any position between the distal end of the first conveying tube 810 and the distal end of the daughter balloon 110 along the axial direction of the inter-capsule cavity 100a
  • the second developing member can be located at any position between the proximal end of the second conveying tube 820 and the proximal end of the daughter balloon 110 along the axial direction of the inter-capsule cavity 100a, as long as the balloon body can be displayed between the first developing member and the second developing member, and the embodiments of the present disclosure are not limited to this.
  • the first developing member is a developing ring 300 at the distal end of the daughter balloon 110
  • the second developing member is a developing ring 300 at the proximal end of the daughter balloon 110.
  • This is merely exemplary and is not a limitation of the present disclosure.
  • the position of the developing component in the patient's body can be observed under the action of an external developing device, and then multiple sub-balloons of the balloon body can be pushed to the target area, which can improve the accuracy of the balloon body reaching the lesion site in the body.
  • the first developing member and the second developing member are disposed on the wire guide tube 700.
  • two developing rings 300 are disposed on the surface of the wire guide tube 700.
  • the shock wave medical device 2000 may further include at least one third developing member (not shown), which is disposed on the shock wave transmitter 210.
  • each shock wave transmitter 210 is provided with a third developing member.
  • some shock wave transmitters 210 are provided with a third developing member.
  • the third developing member is a developing ring.
  • the embodiments of the present disclosure can place an additional developing part on the shock wave emitter, so that when the balloon body reaches the lesion site, the position of the sub-balloon can be fine-tuned according to the actual calcification site, so that the shock wave emitter inside the sub-balloon is facing the calcification site, thereby improving the efficiency of shock wave utilization to achieve a better treatment effect, reducing the difficulty and risk of surgery, and thereby reducing the burden on patients.
  • Fig. 5 is a schematic side view of the distal end of a balloon device provided by some embodiments of the present disclosure.
  • Fig. 6 is a cross-sectional view of the device provided by some embodiments of the present disclosure when used in vivo to treat heart valve calcification.
  • At least one embodiment of the present disclosure provides a method for treating heart valve calcification based on a shock wave medical device, comprising one or more of the following steps:
  • the guide wire is passed through the guide wire tube 700 through the conical head end and reaches the heart valve 002 in advance, so as to provide guidance for the balloon body 100 of the subsequent balloon device 1000 to reach the heart valve 002.
  • the balloon body 100 With the assistance of an external developing device, the balloon body 100 reaches a preset position.
  • the external inflator injects liquid into the plurality of sub-balloons 110 of the balloon body 100 through the interface 900 and the transmission mechanism 500, so that each sub-balloon 110 Filling and swelling.
  • the relative position of the sub-balloon 110 with the shock wave transmitter 210 and the calcified part 001 is adjusted in real time through the external handle to shorten the distance between the two as much as possible, so as to improve the efficiency of the shock wave transmission to the calcified part 001.
  • the pulse signal generated by the shock wave generator 400 is transmitted to the shock wave transmitter 210 through the conduction electrode 520 of the conduction mechanism 500 to generate a shock wave.
  • the generated shock wave is transmitted to the surface of each sub-balloon through the liquid in each sub-balloon 110, acts on the calcified part 001, and then the hard calcified plaque is broken, thereby achieving the therapeutic purpose of improving the opening and closing state of the valve leaflet.
  • the treatment of heart valve calcification based on a shock wave medical device in at least one embodiment of the present disclosure is not limited to the above steps, nor is it limited to the order of the steps described above. It can be freely adjusted according to actual conditions and will not be described in detail here.
  • the inflator can be used to deflate the pressure to extract the liquid in each sub-balloon 110, and the balloon body 100 and the guide wire can be withdrawn from the human body.
  • the plurality of sub-balloons 110 of the balloon body 100 are 4 to 10 sub-balloons 110.
  • the balloon body 100 is filled after reaching the preset position.
  • the shock wave transmitter 210 is closer to the calcified part, which is conducive to improving the effect of the shock wave.
  • the space reserved by the inter-balloon cavity 100a formed by the circumferentially arranged multiple sub-balloons 110 can effectively maintain smooth blood flow.
  • the balloon completely blocks the valve or the space between the balloon cavities is too small during the treatment process in some existing solutions, and the electrode of the shock wave transmitter is far away from the calcified part and difficult to align with the calcified part, thereby reducing the risk and difficulty of the operation, and then effectively reducing the burden on patients.
  • this embodiment of the present disclosure can not only take into account the rationality of the contour size in the folded state, which is beneficial to the delivery of the shock wave medical device, so as to avoid the problem of the contour of the balloon device 1000 being too large due to the excessive arrangement of shock wave emitters 210, but also avoid the problem of the risk of rupture of the sub-balloon 110 due to the shock wave emitters 210 being too close to the sub-balloon wall.
  • At least one shock wave transmitter 210 of the shock wave transmitter 200 is a plurality of shock wave transmitters 210, and the plurality of shock wave transmitters 210 are arranged in a plurality of sub-balloons 110 at alternating intervals, that is, the sub-balloons 110 with the shock wave transmitters 210 and the sub-balloons without the shock wave transmitters 210 are arranged alternately in a circle. In this way, the embodiments of the present disclosure can ensure sufficient shock wave energy.
  • the number of sub-balloons can be reduced as much as possible, which is helpful to avoid the problem of the balloon device and the shock wave medical device being too large in profile and the risk of sub-balloon rupture caused by the shock wave transmitter being too close to the sub-balloon wall.
  • the number of sub-balloons 110 of the balloon body 100 is 6, and the number of shock wave transmitters 210 is 3.
  • the number of sub-balloons 110 of the balloon body 100 is 7, and the number of shock wave transmitters 210 can be 3 or 4. This is merely exemplary and is not a limitation of the present disclosure.
  • the disclosed example is not limited to the design method in which multiple shock wave transmitters 210 are arranged in alternating intervals, that is, it is not limited to the design method in which a shock wave transmitter 210 is arranged every other sub-balloon 110.
  • a shock wave transmitter 210 may be arranged after every two sub-balloons 110, and a shock wave transmitter 210 may be arranged after every sub-balloon 110 and a shock wave transmitter 210 may be arranged after every two sub-balloons 110, and the embodiments of the present disclosure are not limited thereto, and they can be adjusted according to actual conditions, which will not be repeated here.
  • the shock wave transmitting unit 200 of the disclosed embodiment may also include multiple shock wave transmitters 210 arranged at intervals and at non-intervals at the same time.
  • one of the adjacent sub-balloons 110 is provided with the shock wave transmitter 210 , while the other adjacent sub-balloon 110 is not provided with the shock wave transmitter 210 .
  • the balloon body 100 also includes an outer restraint 120 and an inner restraint 130.
  • the outer restraint 120 is arranged in an annular shape and is sleeved on the outer surfaces of multiple sub-balloons.
  • the inner restraint 130 is arranged in an annular shape, and the outer surface of the inner restraint 130 is attached to the surfaces of the multiple sub-balloons 110 facing the inter-balloon cavity 100a.
  • the embodiment of the present disclosure maintains the relative position stability between each sub-balloon 110 through the restraints located on the inner and outer surfaces of the circumferentially arranged sub-balloons 110, and improves the deformation resistance and rupture resistance of the balloon body, which is simple, safe and effective.
  • the outer tie 120 and/or the inner tie 130 are connected to the circumferentially arranged multiple sub-balloons 110 by adhesive.
  • the embodiments of the present disclosure maintain the relative position stability of the circumferentially arranged multiple sub-balloons 110 through the cooperation and constraint of the outer tie 120 and the inner tie 130, and can still maintain the integrity of the internal space of the entire balloon body 100 when the balloon body faces a complex in vivo environment, so that blood can still flow normally when the shock wave medical device is used for treatment without blocking blood vessels, thereby relaxing the time limit for surgery using the shock wave medical device and reducing Reduce surgical risks and difficulty, and reduce the burden on patients.
  • the adhesive includes one or more of the following materials: polyurethane, thermoplastic polyurethane, cyanoacrylate, UV curing adhesive, polyester, polyimide silicone, polypropylene, polyolefin, low density polyethylene, epoxy resin, polyether-polyamide block copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-vinyl acetate copolymer, polyvinylidene fluoride, polyparaxylene.
  • the inner restraint 130 is first installed on the mold, and multiple sub-balloons 110 are arranged circumferentially around the inner restraint 130, and connected to the multiple sub-balloons 110 by adhesive.
  • the outer restraint 120 is sleeved on the outer surface of all sub-balloons 110 and connected to the multiple sub-balloons 110 by adhesive.
  • the embodiment of the present disclosure ensures the circumferential arrangement of multiple sub-balloons 110 without weakening the intensity of the shock wave through the ingenious design of the inner restraint 130 and the outer restraint 120, and maintains the relative position stability between the sub-balloons 110, and improves the deformation and rupture resistance of the balloon body.
  • the outer restraint 120 is staggered with at least one shock wave transmitter 210 of the shock wave transmitter 200 in the axial direction along the intercystic cavity 100a. In this way, the outer restraint 120 can be prevented from shielding the shock wave transmitter 210, so that the shock wave generated by the shock wave transmitter 210 can be efficiently transmitted to the calcified part, thereby improving the treatment effect of the surgery.
  • the outer restraint 120 includes two outer restraint bands 121, each of which is annular and is sleeved on the outer surface of multiple sub-balloons 110, and the shock wave transmitter 210 is located between the two outer restraint bands 121 in the axial direction along the inter-balloon cavity 100a.
  • the two outer restraint bands 121 are respectively sleeved on the outer surfaces of the proximal ends and the distal ends of the multiple sub-balloons 110.
  • each outer restraint band 121 is a closed-loop membrane structure.
  • the embodiment of the present disclosure uses the outer restraint member composed of two closed-loop membrane structures at the proximal end and the distal end of the sub-balloon 110, so that the outer restraint member 120 can play the expected role while not blocking the shock wave transmitter 210, so that the shock wave generated by the shock wave transmitter 210 can be efficiently transmitted to the calcification site, thereby improving the therapeutic effect of the operation.
  • the outer restraint 120 is at least partially staggered with the inner restraint 130 in the axial direction along the inter-balloon lumen 100a.
  • the size of the balloon body 100 after folding can be reduced, which is beneficial to the delivery of the shock wave medical device.
  • the two outer restraint bands 121 of the outer restraint member 120 are respectively located at the proximal end and the distal end of the main body of the sub-balloon 110, and the inner restraint member 130 is located between the two outer restraint bands 121 in the axial direction along the inter-balloon cavity 100a, so that the outer restraint member 120 and the inner restraint member 130 are staggered, thereby reducing
  • the folded size of the small balloon body 100 is conducive to the delivery of the shock wave medical device.
  • the outer restraining member 120 and/or the inner restraining member 130 is a closed-loop membrane structure, which refers to a membrane structure forming a closed loop, and the thickness of the closed-loop membrane structure is 10 ⁇ m to 30 ⁇ m.
  • the two outer binding belts 121 of the outer binding member 120 are both closed-loop membrane structures.
  • the inner binding member 130 can be made of one closed-loop membrane structure or a plurality of closed-loop membrane structures.
  • the inner restraint 130 may completely or partially cover the outer surface of the inter-balloon cavity 100a corresponding to the main body of the daughter balloon 110, and the embodiments of the present disclosure are not limited to this.
  • the width of the outer restraint band 121 of the outer restraint member 120 can be determined according to the length of the sub-balloon 110 and the position of the shock wave emitter 210, and the width of the inner restraint member 130 can be determined according to the length of the sub-balloon 110.
  • the directions of the width of the outer restraint band 121 and the width of the inner restraint member 130 are parallel to the axial direction of the inter-balloon cavity 100a.
  • the present disclosure does not limit the width of the outer restraint band 121 and the inner restraint member 130.
  • Figure 7A is a schematic diagram of an outer restraining member 120 of a thin film structure provided in some embodiments of the present disclosure
  • Figure 7B is a schematic diagram of an outer restraining member 120 of a fiber-membrane combination structure provided in some embodiments of the present disclosure
  • Figure 7C is a schematic diagram of an inner restraining member 130 of a thin film structure provided in some embodiments of the present disclosure
  • Figure 7D is a schematic diagram of an inner restraining member 130 of a fiber-membrane combination structure provided in some embodiments of the present disclosure.
  • the closed-loop membrane structure of the outer restraint belt 121 of the outer restraint member 120 can be a film structure, a fiber structure, or a fiber-membrane combination structure, which includes a fiber structure and a film structure stacked together.
  • the closed-loop membrane structure of the inner restraint 130 may be a film structure, a fiber structure, or a fiber-membrane combination structure, wherein the fiber-membrane combination structure includes a fiber structure and a film structure that are stacked.
  • the outer restraint 120 and the inner restraint 130 have retractable, foldable and insulating properties, and may also be made of medical polymer materials that are non-toxic to the human body, do not react with tissues and skin when implanted, and do not shed particles.
  • the thin film structure can be prepared by spin coating, screen printing, dip coating, inkjet printing, or spray pyrolysis.
  • a fiber structure with a certain porosity for example, composed of a pure fiber material with a relatively large aspect ratio
  • an adhesive is cured to form a thin film and combined with the fiber structure to form a fiber-membrane combination structure.
  • two or more fiber materials with large differences in melting points can be first prepared into a fiber structure and then heat-treated, so that the fiber with a low melting point melts to form a film, while the fiber with a high melting point still maintains the fiber structure, and the two together form a fiber-membrane combination structure.
  • the fiber structure (for example, composed of pure fiber materials with a relatively large aspect ratio, not shown) can be prepared by winding the fibers in a single direction or in multiple directions, or it can be prepared by weaving, braiding, knitting, non-woven or electrospinning. Therefore, the embodiments of the present disclosure can combine the fiber structure and the film structure to form a fiber-membrane combination structure, so that there are certain advantages in mechanical strength and deformation resistance.
  • the fibers in the fiber structure may be monofilaments or multifilaments, and may include one or more of the following materials: polyarylates, polyparaphenylene benzobisoxazole, ultra-high molecular weight polyethylene, aramid, polyester, polyamide, polyetheretherketone, polyphenylene sulfide, boron fiber, aluminum silicate, carbon fiber, glass fiber, tungsten and its alloys, tantalum and its alloys, molybdenum and its alloys, bismuth and its alloys, gold and its alloys, silver and its alloys, platinum and its alloys, iridium and its alloys, stainless steel, nickel and its alloys, cobalt and its alloys, titanium and its alloys, copper and its alloys, barium and its alloys, bismuth and its alloys, iodine and its alloys, etc.
  • polyarylates polyparaphenylene benzobisoxazole
  • ultra-high molecular weight polyethylene aramid
  • polyester polyamide

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种用于冲击波医用装置的球囊装置(1000)和冲击波医用装置(2000),球囊装置(1000)包括球囊主体(100)和冲击波发射部(200)。球囊主体(100)包括呈圆周排列的多个子球囊(110),多个子球囊(110)围设形成囊间通腔(100a),多个子球囊(110)的轴向分别与囊间通腔(100a)的轴向平行。冲击波发射部(200)包括配置为产生冲击波的至少一个冲击波发射器(210),且至少一个冲击波发射器(210)周向间隔地布置在多个子球囊(110)内,每个子球囊(110)具有供用于传导冲击波的液体流通的第一通道。通过冲击波发射器(210)周向间隔地布置在多个子球囊(110)的方式,不仅可以减小球囊装置(1000)在折叠状态下的外径大小,有利于冲击波医用装置(2000)穿过血管输送至心脏瓣膜处,不会阻塞血管,从而放宽了使用冲击波医用装置(2000)进行手术的时间限定,而且钙化治疗效果更佳。

Description

用于冲击波医用装置的球囊装置和冲击波医用装置
出于所有目的,本申请要求于2022年10月27日递交的中国专利申请第202211325166.1号以及202222840248.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种用于冲击波医用装置的球囊装置和冲击波医用装置。
背景技术
心脏瓣膜钙化是老年退行性心脏瓣膜病的典型特征,其会导致如主动脉狭窄、返流等问题。随着人口老龄化的加剧,心脏瓣膜钙化的患病人数会不断增加。传统的药物保守治疗和外科换瓣治疗因各自固有的缺陷限制了其在临床上的应用,例如药物保守治疗效果甚微,外科换瓣治疗创伤大、恢复慢、并发症较多。
目前经导管介入治疗心脏瓣膜病的方法得到了广泛的应用,主要包括经导管主动脉瓣球囊扩张术(Balloon Aortic Valvuvuplasty,BAV)和经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement,TAVR)。
临床研究发现,BAV手术的即刻效果只能持续一个月,六个月后治疗效果开始逐渐减弱,十二个月后基本回到治疗前水平。在此背景下,TAVR在心脏瓣膜病诊治领域中得到了里程碑式的发展。TAVR是通过外周血管入路(主要是股动脉)将经过折叠的带有人工瓣膜的支架系统,传送至主动脉根部并逐步释放替代原有病变的主动脉瓣,具有无需开胸、不需体外循环和心脏停跳、创伤小、术后恢复快等优点。
但是目前使用的人工主动脉瓣多为生物瓣,长期植入后仍会出现瓣膜钙化而导致主动脉狭窄、返流等问题。另外,对于中度钙化性主动脉狭窄及解剖结构特殊的患者,采用TAVR进行治疗并不适合,亟需要一种新型治疗手段来弥补TAVR手术的不足。
发明内容
本公开至少一实施例提供了一种用于冲击波医用装置的球囊装置,包括 球囊主体和冲击波发射部。球囊主体包括呈圆周排列的多个子球囊,多个子球囊围设形成囊间通腔,其中,多个子球囊的轴向分别与囊间通腔的轴向平行。冲击波发射部,包括配置为产生冲击波的至少一个冲击波发射器,其中,至少一个冲击波发射器周向间隔地布置在多个子球囊内,每个子球囊具有供用于传导冲击波的液体流通的第一通道。
例如,在本公开至少一实施例提供的一种球囊装置中,至少一个冲击波发射器为多个冲击波发射器,多个冲击波发射器呈交替间隔布置。
例如,在本公开至少一实施例提供的一种球囊装置中,多个子球囊为4~10个子球囊。
例如,本公开至少一实施例提供的一种球囊装置还包括外束缚件,外束缚件设置为环状且套设在多个子球囊的外表面。
例如,本公开至少一实施例提供的一种球囊装置还包括内束缚件,内束缚件设置为环状,且内束缚件的外表面贴覆于多个子球囊的朝向囊间通腔的表面。
例如,在本公开至少一实施例提供的一种球囊装置中,外束缚件和/或内束缚件通过粘合剂与多个子球囊连接。外束缚件和/或内束缚件为闭环膜结构,闭环膜结构的厚度为10μm~30μm。
例如,在本公开至少一实施例提供的一种球囊装置中,球囊装置包括外束缚件和内束缚件,外束缚件在沿囊间通腔的轴向上与内束缚件至少部分地错开布置。
例如,本公开至少一实施例提供的一种球囊装置中,外束缚件在沿囊间通腔的轴向上与至少一个冲击波发射器错开布置。
例如,本公开至少一实施例提供的一种球囊装置中,外束缚件包括两个外束缚带,两个外束缚带为环状且分别套设在多个子球囊的近心端和远心端的外表面,冲击波发射器在沿囊间通腔的轴向上位于两个外束缚带之间。
例如,在本公开至少一实施例提供的一种球囊装置中,外束缚件包括薄膜结构、纤维结构、纤-膜组合结构中的至少之一,内束缚件包括薄膜结构、纤维结构、纤-膜组合结构中的至少之一,其中,纤-膜组合结构包括层叠设置的纤维结构以及薄膜结构。
例如,本公开至少一实施例提供的一种球囊装置还包括至少一个第一显影件、至少一个第二显影件以及穿设于囊间通腔内的导丝管,其中,导丝管 用于穿设导丝。多个子球囊在沿囊间通腔的轴向上位于第一显影件和第二显影件之间,第一显影件和第二显影件设置于导丝管上。
例如,本公开至少一实施例提供的一种球囊装置还包括至少一个第三显影件,至少一个第三显影件设置于冲击波发射器上。
例如,本公开至少一实施例提供的一种球囊装置还包括多个绝缘管,多个绝缘管分别设置在多个子球囊内并贯穿延伸到子球囊外,子球囊的轴向与子球囊内的绝缘管的轴向平行或同轴,冲击波发射器固定设置在子球囊内的绝缘管上。
例如,本公开至少一实施例还提供了一种冲击波医用装置,包括如上文任一的球囊装置。冲击波医用装置还包括冲击波发生器,冲击波发生器与电源电连接以产生脉冲信号。冲击波发生器与冲击波发射器电连接,以使冲击波发射器接收脉冲信号以产生冲击波。
例如,在本公开至少一实施例提供的一种冲击波医用装置中,冲击波发射器包括电极线缆和至少两个电极探头,电极线缆配置为接收并传导脉冲信号,至少两个电极探头分别与电极线缆电连接且配置为根据脉冲信号产生冲击波。
例如,在本公开至少一实施例提供的一种冲击波医用装置中,冲击波发射器包括电极线缆和至少两个电极探头,电极线缆配置为接收并传导脉冲信号,至少两个电极探头分别与电极线缆电连接且配置为根据脉冲信号产生冲击波。冲击波医用装置还包括传导机构,冲击波发生器通过传导机构与冲击波发射器电连接。传导机构包括传导壳体和传导电极,传导壳体呈管状且具有传导内腔,传导电极设置在传导内腔内且沿囊间通腔的轴向延伸。传导内腔与多个子球囊的第一通道连通,以使液体在传导内腔和第一通道内流通。传导电极的近心端与至少一个冲击波发射器的电极线缆的远心端连接,传导电极的远心端与冲击波发生器连接。
例如,在本公开至少一实施例提供的一种冲击波医用装置中,球囊装置还包括穿设于囊间通腔内的导丝管,导丝管用于穿设导丝。球囊装置还包括多个绝缘管,多个绝缘管分别设置在多个子球囊内并贯穿延伸到子球囊外,子球囊的轴向与位于子球囊内的绝缘管的轴向平行或同轴,冲击波发射器固定设置在子球囊内的绝缘管上。冲击波医用装置还包括多个传送管组,每个传送管组包括:从子球囊的远心端朝远离子球囊一侧进行延伸的第一传送管 以及从子球囊的近心端朝远离子球囊一侧进行延伸的第二传送管;多个传送管组的第一传送管的远心部位于传导内腔内,多个传送管组呈圆周布置在导丝管的外侧。每个传送管组的第一传送管和第二传送管套设在绝缘管的外侧并与绝缘管间隙设置,以分别形成第二通道和第三通道。每个子球囊的第一通道的远心端与第二通道的近心端连通且第一通道的近心端与第三通道的远心端连通,第二通道的远心端与传导内腔连通。
例如,在本公开至少一实施例提供的一种冲击波医用装置中,多个传送管组的第二传送管的近心端封闭且汇聚以形成锥形头端,锥形头端设有供导丝管通过的穿孔。
例如,本公开至少一实施例提供的一种冲击波医用装置还包括接口,接口分别与外部充盈器和传导机构的传导内腔连接,以使液体从外部充盈器流入传导内腔直至多个子球囊内。
与现有技术相比,本公开的至少一实施例的有益效果至少包括:本公开的实施例通过冲击波发射器周向间隔地布置在多个子球囊的方式,不仅可以减小球囊装置在折叠状态下的外径大小,有利于击波医用装置穿过血管输送至心脏瓣膜处,还有助于保持血液的流通,不会阻塞血管,从而放宽了使用冲击波医用装置进行手术的时间限定,而且钙化治疗效果更佳。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的用于冲击波医用装置的球囊装置的立体结构示意图;
图2为本公开一些实施例提供的冲击波医用装置的正视图;
图3为本公开一些实施例提供的球囊装置的立体结构示意图,图3与图1为具有相同特征的附图;
图4为本公开一些实施例提供的图2中虚线框的放大示意图;
图5为本公开一些实施例提供的一种球囊装置的远心端的侧视示意图;
图6为本公开一些实施例提供的治疗心脏瓣膜钙化的体内使用时的剖面 图;
图7A为本公开一些实施例提供的薄膜结构的外束缚件120的示意图;
图7B为本公开一些实施例提供的纤-膜组合结构的外束缚件120的示意图;
图7C为本公开一些实施例提供的薄膜结构的内束缚件130的示意图;
图7D为本公开一些实施例提供的纤-膜组合结构的内束缚件130的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另有定义,本公开实施例使用的所有术语(包括技术和科学术语)具有与本本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非本公开实施例明确地这样定义。
本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本公开的发明人发现,通常使用的人工主动脉瓣多为生物瓣,长期植入后仍会出现瓣膜钙化而导致主动脉狭窄、返流等问题。另外,对于中度钙化性主动脉狭窄及解剖结构特殊的患者,采用TAVR进行治疗并不适合,亟需要一种新型治疗手段来弥补TAVR手术的不足。
本公开的发明人还发现,一些技术方案的冲击波医用装置的球囊装置采用一个较大球囊的形式,这会导致这个较大球囊内的冲击波发射器与球囊表 面之间的距离过大,使得冲击波的能量作用到病变部位的传输路径过长,从而能量衰减程度过大,极大地减弱治疗效果。与此同时,采用一个较大球囊进行治疗的过程中,扩张状态的球囊还会阻塞瓣膜处的血流,容易出现缺血问题,从而导致一系列并发症的发生。
对此,本公开至少一实施例提供了一种用于冲击波医用装置的球囊装置,包括球囊主体和冲击波发射部。球囊主体包括呈圆周排列的多个子球囊。多个子球囊围设形成囊间通腔。多个子球囊的轴向分别与囊间通腔的轴向平行。冲击波发射部包括配置为产生冲击波的至少一个冲击波发射器。该至少一个冲击波发射器周向间隔地布置在多个子球囊内,每个子球囊具有供用于传导冲击波的液体流通的第一通道。
本公开至少一实施例还提供了一种包括上述球囊装置的冲击波医用装置,该冲击波医用装置还包括冲击波发生器,冲击波发生器与电源电连接以产生脉冲信号。冲击波发生器与冲击波发射器电连接,以使冲击波发射器接收脉冲信号以产生冲击波。
本公开上述实施例的球囊装置或冲击波医用装置通过将冲击波发射器周向间隔地布置在多个子球囊内,不仅可以减小球囊装置在折叠状态下的外径大小,有利于冲击波医用装置穿过血管输送至心脏瓣膜处,还有助于保持血液的流通,不会阻塞血管,从而放宽了使用冲击波医用装置进行手术的时间限定,而且钙化治疗效果更佳。本公开的实施例还能够在确保有效性的前提下,减少装置尺寸及成本。
下面结合附图对本公开的实施例及其示例进行详细说明。
图1为本公开一些实施例提供的用于冲击波医用装置的球囊装置的立体结构示意图。图2为本公开一些实施例提供的冲击波医用装置的正视图。图3为本公开一些实施例提供的球囊装置的立体结构示意图,图3与图1为本公开的实施例具有相同特征的附图,在图3中添加与图1不同数字标记,以利于本文描述和附图的清楚示意。
为了表述方便,在本公开的实施例的球囊装置或冲击波医用装置中,将操作过程中靠近目标组织(例如心脏)的一端记为近心端,也即远离操作者的一端,以及将操作过程中远离目标组织(例如心脏)的一端记为远心端,也即靠近操作者的一端。例如图2示例中的子球囊110左端作为子球囊110 的远心端以及将子球囊110的右端作为子球囊110的近心端。在本公开的实施例中,“轴向”是指装置或部件中轴线所在方向。需要说明的是,该些定义只是为了表述方便,并不能理解为本公开的限制。例如本公开的实施例的远心端和近心端均为相对位置,比如其可以表示一些部件本身相对的两端,或者其可以表示某一方向上的相对的两端,这些并不影响实际应用中的方位。
为了本文的清楚、简洁,下文主要是以目标组织为心脏瓣膜为例进行说明,但是本公开对适用的目标组织的类型并不作限制,本公开还可以适用于其他需要解决钙化问题的瓣膜或其它人体组织钙化的治疗,本公开对此不做限制和赘述。
例如,如图1所示,本公开至少一实施例提供的用于冲击波医用装置的球囊装置1000包括球囊主体100和冲击波发射部200。
例如,如图1所示,球囊主体100包括呈圆周排列的多个子球囊110,多个子球囊110围设形成囊间通腔100a。多个子球囊110的轴向分别与囊间通腔100a的轴向平行。
例如,如图1所示,冲击波发射部200包括至少一个冲击波发射器210,冲击波发射器210配置为产生冲击波。冲击波发射部200的至少一个冲击波发射器210周向间隔地布置在球囊主体100的多个子球囊110内,如此,本公开的实施例设置为带有冲击波发射器210的子球囊110和不带有冲击波发射器210的子球囊110沿着圆周排布。每个子球囊110具有供用于传导冲击波的液体流通的第一通道。
在一些示例中,在球囊主体100到达预设位置之后,在子球囊110扩张时可以向目标区域传导冲击波,冲击波能够向病变部位释放非聚焦的脉冲式声压力波,声压力波能够以例如50atm左右的有效压力透过软组织,可以仅选择性地作用于钙化部位,使得坚硬的钙化斑块碎裂,例如可以软化浅表与深层的钙化部位,从而软化心脏瓣膜组织,进而改善瓣叶的开合状态,达到治疗钙化的目的。
本公开上述实施例通过带有冲击波发射器的子球囊和不带有冲击波发射器的子球囊沿着圆周排布的巧妙设计,不仅可以减小球囊装置在折叠状态下的外径大小,即折叠状态下的轮廓大小,有利于冲击波医用装置穿过血管输送至心脏瓣膜处,还能够在治疗过程中保持血液流通,不会阻塞血管,从而 放宽了使用冲击波医用装置进行手术的时间限定,而且缩短了冲击波的传导距离,钙化治疗效果更佳。本公开的实施例还能够在确保有效性的前提下,减少装置尺寸及成本。
例如,本公开的实施例通过带有冲击波发射器210的子球囊110和不带有冲击波发射器210的子球囊110沿着圆周排布的巧妙设计,使得具有一定数目的冲击波发射器210的情况下,不仅可使囊间通腔100a的流通空间的变大,有利于血液流通,不会阻塞血管,从而放宽了使用冲击波医用装置进行手术的时间限定,而且也有助于减小冲击波发射器210的电极部件与子球囊110的表面之间的距离,有效缩短冲击波发射器210的电极部件与钙化部位间的距离,减少冲击波的衰减量,使得钙化治疗效果更佳。又例如,本公开的实施例通过带有冲击波发射器210的子球囊110和不带有冲击波发射器210的子球囊110沿着圆周排布的巧妙设计,也能在子球囊110的数目较充分的情况下,避免因冲击波发射器的数量过多带来不必要的成本和导致球囊装置的轮廓过大的问题。
在一些示例中,子球囊110在充盈时的主体部分为圆柱状且在长度方向上的两端渐缩,子球囊110的主体部分是指子球囊110中除去渐缩的两端部分后的平直段部分。
在一些示例中,子球囊110的充盈到公称压力下的主体直径为4mm-8mm,各子球囊110的主体长度为30mm-50mm。例如,子球囊110的主体长度是指子球囊110的主体部分的长度,子球囊110的主体长度的方向与囊间通腔100a的轴向平行。
在一些示例中,球囊主体100的多个子球囊110的规格可以一致,此仅仅为示例性的,并不为本公开的限制,例如球囊主体100的各个子球囊110的规格也可以不一致,本公开对此不做限制和赘述。例如,多个子球囊110的规格是指多个子球囊110分别的长度、主体长度和/或直径。
需要说明的是,本公开的实施例的子球囊110的规格可以视实际情况而定,例如子球囊110的规格可以根据球囊主体100的子球囊110的数目进行相应调整,例如,球囊主体100的子球囊110的数目较多时,选用的各个子球囊110的主体直径可以稍小些,本公开的实施例对此不做穷举和赘述。
在一些示例中,子球囊110具有可伸缩、可折叠和绝缘性能,子球囊110 采用对人体无毒害、介入部分与组织及皮肤不发生反应以及无颗粒物脱落的医用高分子材料制成。例如,子球囊110可为一次性使用或重复使用的耗材。例如,当子球囊110为重复使用的耗材时,在使用子球囊110之前需进行彻底地消毒灭菌。此仅仅为示例性的,并不为本公开的限制。
在一些示例中,子球囊110的厚度为0.038mm左右。此仅仅为示例性的,并不为本公开的限制,其可以根据实际应用进行自由调整。
在一些示例中,子球囊110的第一通道不仅能够用于可传导冲击波的液体的流通,还能用于在球囊装置1000装配时的冲击波发射器210的嵌入,以使球囊装置1000的球囊主体100的部分子球囊110带有冲击波发射器210。
在一些示例中,可传导冲击波的液体可以是电解质液体,例如生理盐水。在其他一些示例中,可传导冲击波的液体也可以是非电解质液体,例如甘油,本公开对此不作限制。
例如,如图2所示,本公开至少一实施例提供了一种冲击波医用装置2000,冲击波医用装置2000可以包括图1所示的球囊装置1000。冲击波医用装置2000还包括冲击波发生器400,冲击波发生器400与电源电连接以产生脉冲信号,电源例如为外部电源或内置电源。冲击波发生器400与冲击波发射器210电连接,以使冲击波发射器210接收脉冲信号以产生冲击波。
例如,如图2和图3所示,冲击波发射器210包括电极线缆211和至少两个电极探头212。电极线缆211配置为接收并传导脉冲信号。例如,脉冲信号为电压/电流脉冲。冲击波发射器210的至少两个电极探头212分别与电极线缆211电连接且配置为根据脉冲信号产生冲击波。
在一些示例中,冲击波发射器210的至少两个电极探头212串联。
例如,如图2和图3所示,冲击波医用装置2000还包括多个绝缘管600。多个绝缘管600分别设置在多个子球囊110内并贯穿延伸到子球囊110外。子球囊110的轴向与子球囊110内的绝缘管600的轴向平行或同轴。冲击波发射器210固定设置在对应的子球囊110内的绝缘管600上。
例如,如图3所示,每个冲击波发射器210包括两个电极探头212,两个电极探头212串联,每个电极探头212为环状结构并套设在绝缘管600上。
图4为本公开一些实施例提供的图2中虚线框的放大示意图。
例如,如图2-图4所示,冲击波医用装置2000还包括传导机构500。冲 击波发生器400通过传导机构500与冲击波发射器210电连接。
例如,传导机构500包括传导壳体510和传导电极520,传导壳体510呈管状且具有传导内腔500a,传导电极520设置在传导内腔500a中且沿囊间通腔100a的轴向延伸。
例如,传导机构500的传导电极520的近心端与每个冲击波发射器210的电极线缆211的远心端连接,传导电极520的远心端与冲击波发生器400连接。由此,本公开的实施例通过冲击波发生器400产生的脉冲信号经传导电极520传导到冲击波发射器210并产生冲击波,用以完成钙化部位的治疗。
例如,传导内腔500a与多个子球囊110的第一通道连通,使得可传导冲击波的液体在传导内腔500a和子球囊110的第一通道内流通,这样可使子球囊110充盈膨胀,也能使子球囊110内的液体将产生的冲击波进行传导以传播至子球囊表面,从而作用于钙化部位,使得坚硬的钙化斑块碎裂,达到改善瓣叶开合状态的治疗目的。
在一些示例中,冲击波医用装置2000还包括接口900,接口900分别与外部充盈器和传导机构500的传导内腔500a连接,以使液体从外部充盈器流入传导内腔500a直至多个子球囊110内。由此,本公开的实施例中用于传导冲击波的液体由外部充盈器通过接口流入各子球囊中,以使子球囊膨胀至特定尺寸,并传播由冲击波发射器210产生的冲击波。
在一些示例中,冲击波医用装置2000还包括延伸穿设于囊间通腔100a内的导丝管700,导丝管700用于穿设导丝。例如,导丝管700在囊间通腔100a的轴向方向上贯穿整个冲击波医用装置。
在一些示例中,冲击波医用装置2000还包括多个传送管组800。多个传送管组800的远心部800a至少包括第一传送管810的远心部分。多个传送管组800的远心部800a(例如多个传送管组800的第一传送管810的远心部分)位于传导内腔500a内,多个传送管组800呈圆周布置在导丝管700的外侧。每个传送管组800包括:从子球囊110的远心端朝远离子球囊110一侧进行延伸的第一传送管810以及从子球囊110的近心端朝远离子球囊110一侧进行延伸的第二传送管820。
在一些示例中,传送管组800与绝缘管600之间具有一定的空隙,例如每个传送管组800的第一传送管810和第二传送管820套设在绝缘管600的 外侧并与绝缘管600间隙设置,从而分别在第一传送管810和第二传送管820与绝缘管600的外侧之间形成第二通道和第三通道。
例如,每个子球囊110的第一通道的远心端与第一传送管810的第二通道的近心端连通且子球囊110的第一通道的近心端与第二传送管820的第三通道的远心端连通,第一传送管810的第二通道的远心端与传导内腔500a连通。如此,本公开的实施例不仅能使液体从接口900流入并流经传导机构500直至子球囊110内以传播冲击波或者使液体从子球囊110内流出,还可以供冲击波发射器210在装配时的嵌入。
在一些示例中,传导机构500的传导壳体510可由可伸缩、折叠并且具有绝缘性能的柔性材料制成。
在一些示例中,绝缘管600位于子球囊110内的中心,即绝缘管600与子球囊110的中轴线同轴或重合,由此,绝缘管600上固定的冲击波发射器210也位于子球囊110内的中心。
在一些示例中,多个传送管组800的第二传送管820的近心端封闭且汇聚以形成锥形头端830,锥形头端830设有供导丝管700通过的穿孔831。
例如,锥形头端830为表面圆滑、无尖角的锥形末端。锥形头端830采用具有一定变形能力的柔性材料,可根据实际的血管走向而弯曲,避免损坏血管或瓣膜组织。
在一些示例中,由外部充盈器通过接口900流入各子球囊110中的液体混合有适量的显影剂。因此,当显影剂随着液体进入子球囊时,可借助外部成像设备(例如X光成像设备)直接观察各子球囊的膨胀轮廓,这样不仅可以防止子球囊因过度充盈导致主动脉瓣过量开口而造成损伤,还可以防止子球囊表面未完全贴合瓣膜,从而可避免减弱冲击波的治疗效果的问题。
在一些示例中,当显影剂随着液体进入子球囊110时,可根据外部的成像设备实时地观察被充盈的子球囊110的轮廓,进而可根据实际的瓣膜开口尺寸灵活调控进入子球囊110中液体的量,防止子球囊110过度充盈挤压组织。
在一些示例中,冲击波医用装置2000还包括至少一个第一显影件和至少一个第二显影件。第一显影件和第二显影件在沿囊间通腔100a的轴向上分别位于相对的两侧。多个子球囊110在沿囊间通腔100a的轴向上位于第一显影 件和第二显影件之间。例如,第一显影件在沿囊间通腔100a的轴向上可以位于第一传送管810的远心端和子球囊110的远心端之间的任一位置,第二显影件在沿囊间通腔100a的轴向上可以位于第二传送管820的近心端和子球囊110的近心端之间的任一位置,只要能够在第一显影件和第二显影件之间显示出球囊主体即可,本公开的实施例对此不作限制。
例如,如图2所示,第一显影件为一个,第二显影件为一个,第一显影件为子球囊110的远心端处的显影环300,第二显影件为子球囊110的近心端处的显影环300。此仅仅为示例性的,并不为本公开的限制。
本公开的实施例通过显影件可在外部显影设备作用下观察到其在患者体内的位置,进而可将球囊主体的多个子球囊推送至目标区域,可以提高球囊主体在体内到达病变部位的准确性。
在一些示例中,第一显影件和第二显影件设置在导丝管700上。例如,在图2的示例中,两个显影环300设置在导丝管700的表面上。
在一些示例中,冲击波医用装置2000还可以包括至少一个第三显影件(未图示),第三显影件设置在冲击波发射器210上。例如,每个冲击波发射器210上分别设有第三显影件。又例如,部分的冲击波发射器210设有第三显影件。示例性地,第三显影件为显影环。
由此,本公开的实施例可以将显影件额外放置于冲击波发射器上,使得在球囊主体到达病变部位时,可根据实际钙化部位,微调子球囊的位置,以使子球囊内部的冲击波发射器正对钙化部位,提高冲击波利用效率以达到更优的治疗效果,降低手术难度及手术风险,进而减轻患者负担。
图5为本公开一些实施例提供的一种球囊装置的远心端的侧视示意图。图6为本公开一些实施例提供的治疗心脏瓣膜钙化的体内使用时的剖面图。
例如,如图2~图6所示,本公开至少一实施例提供了一种基于冲击波医用装置治疗心脏瓣膜钙化的方法,包括以下步骤的一种或多种:
(1)将导丝经导丝管700穿过锥形头端,预先到达心脏瓣膜002处,为后续球囊装置1000的球囊主体100到达心脏瓣膜002处提供导引作用。
(2)基于外部显影设备的辅助,使得球囊主体100到达预设位置。
(3)待球囊主体100到达预设位置后,由外部充盈器通过接口900经传导机构500向球囊主体100的多个子球囊110内注入液体,使各个子球囊110 充盈膨胀。
(4)在子球囊110充盈膨胀的过程中,通过外部手柄实时调整带有冲击波发射器210的子球囊110与钙化部位001的相对位置,尽量缩短两者间的距离,以提高冲击波传导到钙化部位001的效率。
(5)待球囊主体100的多个子球囊110充盈至预设压力时,将通过冲击波发生器400产生的脉冲信号经传导机构500的传导电极520传导到冲击波发射器210并产生冲击波。如此,产生的冲击波经各子球囊110中的液体传播至各个子球囊表面,作用于钙化部位001,进而可使得坚硬的钙化斑块碎裂,达到改善瓣叶开合状态的治疗目的。
本公开至少一实施例的基于冲击波医用装置治疗心脏瓣膜钙化,不限于上述这些步骤,也不限于按照以上描述的各步骤的顺序,其可以根据实际情况进行自由调整,此处不再赘述。
在一些示例中,在治疗心脏瓣膜钙化的手术完成后,可以利用充盈器泄压以将各个子球囊110中的液体抽出,并将球囊主体100及导丝撤出人体。
在一些示例中,球囊主体100的多个子球囊110为4~10个子球囊110。如此,球囊主体100到达预设位置之后充盈,例如在球囊主体100在钙化的心脏瓣膜处充盈时,冲击波发射器210更靠近钙化部位,有利于提高冲击波的作用效果,同时圆周排布的多个子球囊110形成的囊间通腔100a所预留的空隙可以有效地维持血流通畅,因此可以解决现有一些方案中治疗过程中球囊完全封堵瓣膜处或囊间通腔的空隙太小以及冲击波发射器的电极距离钙化部位较远且难以对准钙化部位的问题,从而降低手术风险及难度,进而有效地减轻患者负担。此外,结合冲击波发射器210周向间隔地布置在多个子球囊110内的巧妙设计,本公开的该实施例不仅能兼顾折叠状态下的轮廓大小的合理性,有利于冲击波医用装置的输送,以避免因冲击波发射器210的过多的设置而导致球囊装置1000的轮廓过大的问题,而且还能避免冲击波发射器210过于靠近子球囊壁而导致子球囊110破裂风险的问题。
在一些示例中,冲击波发射部200的至少一个冲击波发射器210为多个冲击波发射器210,多个冲击波发射器210呈交替间隔布置在多个子球囊110内,即带有冲击波发射器210的子球囊110和不带有冲击波发射器210的子球囊呈圆周交替布置。如此,本公开的实施例在保证足够的冲击波能量的情 况下,能够尽可能地减少子球囊的个数,有利于避免球囊装置和冲击波医用装置的轮廓过大的问题以及冲击波发射器过于靠近子球囊壁而导致子球囊破裂风险的问题。
例如,如图1所示,球囊主体100的多个子球囊110为6个子球囊110,冲击波发射器210的个数为3个。又例如,球囊主体100的多个子球囊110为7个子球囊110冲击波发射器210的个数为可以是3个,也可以是4个。此仅仅为示例性的,并不为本公开的限制。
需要说明的是,本公开例不仅限于多个冲击波发射器210呈交替间隔布置的设计方式,即不仅限于每隔一个子球囊110设置一个冲击波发射器210的设计方式。例如,在本公开的一些实施例中,在球囊主体100的多个子球囊110为10个子球囊110的情况下,也可以每间隔两个子球囊110之后设置一个冲击波发射器210,还可以间隔一个子球囊110之后设置一个冲击波发射器210与间隔两个子球囊110之后设置一个冲击波发射器210进行交叉布置,本公开的实施例不作限制,其可根据实际情况进行调整,这里不再赘述。此外,本公开实施例的冲击波发射部200还可以同时包括间隔布置的和非间隔布置的多个冲击波发射器210。例如,在设置有冲击波发射器210的子球囊110相邻两侧的子球囊110中,其中一个相邻子球囊110内设置有冲击波发射器210,而另一个相邻子球囊110内不设置冲击波发射器210。
例如,如图1-图3所示,球囊主体100还包括外束缚件120和内束缚件130。外束缚件120设置为环状且套设在多个子球囊的外表面。内束缚件130设置为环状,且内束缚件130的外表面贴覆于多个子球囊110的朝向囊间通腔100a的表面。如此,本公开的实施例通过位于圆周排列的子球囊110的内表面和外表面的束缚件来维持各子球囊110间的相对位置稳定,并提高球囊主体的抗形变和抗破裂的能力,简单、安全、有效。
在一些示例中,外束缚件120和/或内束缚件130通过粘合剂与圆周排列的多个子球囊110连接。由此,本公开的实施例通过外束缚件120和内束缚件130的配合和约束来维持圆周排列的多个子球囊110的相对位置稳定,并在球囊主体面对复杂的体内环境时仍能够维持整个球囊主体100内部空隙的完整存在,以在使用冲击波医用装置进行治疗时仍能够供血液正常流动,而不会阻塞血管,从而放宽了使用冲击波医用装置进行手术的时间限定,降低 手术风险及手术难度,减轻患者负担。
在一些示例中,粘合剂包括以下材料的一种或多种:聚氨酯、热塑性聚氨酯、氰基丙烯酸酯、UV固化粘合剂、聚酯、聚亚酰胺硅树脂、聚丙烯、聚烯烃、低密度聚乙烯、环氧树脂、聚醚-聚酰胺嵌段共聚物、乙烯-四氟乙烯共聚物、乙烯-醋酸乙烯共聚物、聚偏氟乙烯、聚对二甲苯。
在一些示例中,内束缚件130和外束缚件120分别成型之后,先将内束缚件130安装在模具上,将多个子球囊110围绕该内束缚件130进行周向排列,并通过粘合剂连接在多个子球囊110上。之后,将外束缚件120套设于所有子球囊110外表面,并通过粘合剂连接在多个子球囊110上。由此,本公开的实施例通过内束缚件130和外束缚件120的巧妙设计,在不削弱冲击波强度的情况下,保证多个子球囊110圆周排列,且维持各子球囊110间相对位置稳定,并提高球囊主体的抗形变和抗破裂的能力。
在一些示例中,外束缚件120在沿囊间通腔100a的轴向上与冲击波发射部200的至少一个冲击波发射器210错开布置。如此,可以避免外束缚件120遮挡冲击波发射器210,从而可使冲击波发射器210产生的冲击波能够高效地传递到钙化部位,提高手术的治疗效果。
在一些示例中,外束缚件120包括两个外束缚带121,每个外束缚带121为环状且套设在多个子球囊110的外表面,冲击波发射器210在沿囊间通腔100a的轴向上位于两个外束缚带121之间。例如,这两个外束缚带121分别套设在多个子球囊110的近心端和远心端的外表面。例如,每个外束缚带121为闭环膜结构。由此,本公开的实施例通过子球囊110的近心端和远心端的两个闭环膜结构构成的外束缚件,以使外束缚件120在起到预期作用的同时,还不遮挡冲击波发射器210,使得冲击波发射器210产生的冲击波能够高效地传递到钙化部位,提高手术的治疗效果。
在一些示例中,外束缚件120在沿囊间通腔100a的轴向上与内束缚件130至少部分地错开布置。由此,可以减小球囊主体100折叠后的尺寸,有利于冲击波医用装置的输送。
例如,外束缚件120的两个外束缚带121分别位于子球囊110的主体部分的近心端和远心端,内束缚件130在沿囊间通腔100a的轴向上位于两个外束缚带121之间,这样使得外束缚件120与内束缚件130错开,从而可以减 小球囊主体100折叠后的尺寸,有利于冲击波医用装置的输送。
在一些示例中,外束缚件120和/或内束缚件130为闭环膜结构,闭环膜结构是指形成闭环的膜状结构,闭环膜结构的厚度为10μm~30μm。
例如,外束缚件120的两个外束缚带121均为闭环膜结构。例如,内束缚件130可以是由一个闭环膜结构制成,也可以是由多个闭环膜结构制成。
在一些示例中,内束缚件130可以完全或部分覆盖子球囊110的主体部分对应的囊间通腔100a的外表面,本公开的实施例对此不作限制。
在本公开一些实施例中,外束缚件120的外束缚带121的宽度可以根据子球囊110的长度和冲击波发射器210的位置而定,内束缚件130的宽度可以根据子球囊110的长度而定,外束缚带121的宽度和内束缚件130的宽度的方向与囊间通腔100a的轴向平行,本公开对外束缚带121和内束缚件130的宽度不作限制。
图7A为本公开一些实施例提供的薄膜结构的外束缚件120的示意图,图7B为本公开一些实施例提供的纤-膜组合结构的外束缚件120的示意图,图7C为本公开一些实施例提供的薄膜结构的内束缚件130的示意图,图7D为本公开一些实施例提供的纤-膜组合结构的内束缚件130的示意图。
例如,如图7A-图7D所示,外束缚件120的外束缚带121的闭环膜结构可以是薄膜结构,也可以是纤维结构,还可以是纤-膜组合结构,该纤-膜组合结构包括层叠设置的纤维结构以及薄膜结构。
在一些示例中,内束缚件130的闭环膜结构可以是薄膜结构,也可以是纤维结构,还可以是纤-膜组合结构,该纤-膜组合结构包括层叠设置的纤维结构以及薄膜结构。
在一些示例中,外束缚件120和内束缚件130具有可伸缩、可折叠和绝缘性能,也可以采用对人体无毒害的、植入部分与组织及皮肤不发生反应以及无颗粒物脱落的医用高分子材料制成。
在一些示例中,薄膜结构可由旋涂法、丝网印刷法、浸涂法、喷墨打印法或喷雾热解法制备而成。
在一些示例中,对于纤-膜组合结构,可以先制备具有一定孔隙率的纤维结构(例如由长径比比较大的纯纤维材料构成)再进行粘合剂涂覆,待粘合剂固化形成薄膜,并与纤维结构组合形成纤-膜组合结构。
在另一些示例中,对于纤-膜组合结构,也可以先将两种或多种熔点差异较大的纤维材料制备成纤维结构再进行热处理,使得熔点低的纤维熔化形成薄膜,同时熔点高的仍保持纤维结构,两者共同形成纤-膜组合结构。例如,纤维结构(例如由长径比比较大的纯纤维材料构成,未图示)制备可以是纤维沿着单方向或是多方向缠绕而成,也可是采用机织法、编织法、针织法、非织造法或静电纺丝法制备而成。由此,本公开的实施例可以结合纤维结构和薄膜结构形成纤-膜组合结构,使得在力学强度和抗形变能力上均有一定的优势。
在一些示例中,纤维结构中的纤维可以是单丝,也可以是复丝,其可包括以下材料中的一种或多种:多芳基化合物、聚对苯撑苯并二噁唑、超高分子量聚乙烯、芳纶、聚酯、聚酰胺、聚醚醚酮、聚苯硫醚、硼纤维、硅酸铝、碳纤维、玻璃纤维、钨及其合金、钽及其合金、钼及其合金、铋及其合金、金及其合金、银及其合金、铂及其合金、铱及其合金、不锈钢、镍及其合金、钴及其合金、钛及其合金、铜及其合金、钡及其合金、铋及其合金、碘及其合金等。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种用于冲击波医用装置的球囊装置,其特征在于,包括:
    球囊主体,包括呈圆周排列的多个子球囊,所述多个子球囊围设形成囊间通腔,其中,所述多个子球囊的轴向分别与所述囊间通腔的轴向平行;
    冲击波发射部,包括配置为产生冲击波的至少一个冲击波发射器,其中,所述至少一个冲击波发射器周向间隔地布置在所述多个子球囊内,每个所述子球囊具有供用于传导所述冲击波的液体流通的第一通道。
  2. 如权利要求1所述的球囊装置,其特征在于,
    所述至少一个冲击波发射器为多个冲击波发射器,所述多个冲击波发射器呈交替间隔布置。
  3. 如权利要求1~2任一所述的球囊装置,其特征在于,
    所述多个子球囊为4~10个子球囊。
  4. 如权利要求1~3任一所述的球囊装置,其特征在于,还包括外束缚件和/或内束缚件,其中,
    所述外束缚件设置为环状且套设在所述多个子球囊的外表面,
    所述内束缚件设置为环状,且所述内束缚件的外表面贴覆于所述多个子球囊的朝向所述囊间通腔的表面。
  5. 如权利要求4所述的球囊装置,其特征在于,
    所述外束缚件和/或所述内束缚件通过粘合剂与所述多个子球囊连接;
    所述外束缚件和/或所述内束缚件为闭环膜结构,所述闭环膜结构的厚度为10μm~30μm。
  6. 如权利要求4~5任一所述的球囊装置,其特征在于,
    所述球囊装置包括外束缚件和内束缚件,所述外束缚件在沿所述囊间通腔的轴向上与所述内束缚件至少部分地错开布置。
  7. 如权利要求4~6任一所述的球囊装置,其特征在于,
    所述外束缚件在沿所述囊间通腔的轴向上与所述至少一个冲击波发射器错开布置。
  8. 如权利要求7所述的球囊装置,其特征在于,
    所述外束缚件包括两个外束缚带,所述两个外束缚带为环状且分别套设在所述多个子球囊的近心端和远心端的外表面,所述冲击波发射器在沿所述 囊间通腔的轴向上位于所述两个外束缚带之间。
  9. 如权利要求4~8任一所述的球囊装置,其特征在于,
    所述外束缚件包括薄膜结构、纤维结构、纤-膜组合结构中的至少之一,所述内束缚件包括薄膜结构、纤维结构、纤-膜组合结构中的至少之一,其中,所述纤-膜组合结构包括层叠设置的纤维结构以及薄膜结构。
  10. 如权利要求1~9任一所述的球囊装置,其特征在于,还包括至少一个第一显影件、至少一个第二显影件以及穿设于所述囊间通腔内的导丝管,其中,所述导丝管用于穿设导丝,
    所述多个子球囊在沿所述囊间通腔的轴向上位于所述第一显影件和所述第二显影件之间,所述第一显影件和所述第二显影件设置于所述导丝管上。
  11. 如权利要求10所述的球囊装置,其特征在于,还包括至少一个第三显影件,其中,
    所述至少一个第三显影件设置于所述冲击波发射器上。
  12. 如权利要求1~11任一所述的球囊装置,其特征在于,还包括多个绝缘管,其中,
    所述多个绝缘管分别设置在所述多个子球囊内并贯穿延伸到所述子球囊外,所述子球囊的轴向与位于所述子球囊内的所述绝缘管的轴向平行或同轴,所述冲击波发射器固定设置在所述子球囊内的所述绝缘管上。
  13. 一种冲击波医用装置,其特征在于,包括如权利要求1~12中任一所述的球囊装置,所述冲击波医用装置还包括冲击波发生器,
    所述冲击波发生器与电源电连接以产生脉冲信号;
    所述冲击波发生器与所述冲击波发射器电连接,以使所述冲击波发射器接收所述脉冲信号以产生所述冲击波。
  14. 如权利要求13所述的冲击波医用装置,其特征在于,
    所述冲击波发射器包括电极线缆和至少两个电极探头,所述电极线缆配置为接收并传导所述脉冲信号,所述至少两个电极探头分别与所述电极线缆电连接且配置为根据所述脉冲信号产生所述冲击波;
    所述冲击波医用装置还包括传导机构,所述冲击波发生器通过所述传导机构与所述冲击波发射器电连接,
    所述传导机构包括传导壳体和传导电极,所述传导壳体呈管状且具有传导内腔,所述传导电极设置在所述传导内腔内且沿所述囊间通腔的轴向延伸,
    所述传导内腔与所述多个子球囊的所述第一通道连通,以使所述液体在所述传导内腔和所述第一通道内流通,
    所述传导电极的近心端与所述至少一个冲击波发射器的所述电极线缆的远心端连接,所述传导电极的远心端与所述冲击波发生器连接。
  15. 如权利要求14所述的冲击波医用装置,其特征在于,
    所述球囊装置还包括穿设于所述囊间通腔内的导丝管,所述导丝管用于穿设导丝;
    所述球囊装置还包括多个绝缘管,所述多个绝缘管分别设置在所述多个子球囊内并贯穿延伸到所述子球囊外,所述子球囊的轴向与位于所述子球囊内的所述绝缘管的轴向平行或同轴,所述冲击波发射器固定设置在所述子球囊内的所述绝缘管上;
    所述冲击波医用装置还包括多个传送管组,每个所述传送管组包括:从所述子球囊的远心端朝远离所述子球囊一侧进行延伸的第一传送管以及从所述子球囊的近心端朝远离所述子球囊一侧进行延伸的第二传送管;所述多个传送管组的第一传送管的远心部位于所述传导内腔内,所述多个传送管组呈圆周布置在所述导丝管的外侧;
    每个所述传送管组的所述第一传送管和所述第二传送管套设在所述绝缘管的外侧并与所述绝缘管间隙设置,以分别形成第二通道和第三通道;
    每个所述子球囊的所述第一通道的远心端与所述第二通道的近心端连通且所述第一通道的近心端与所述第三通道的远心端连通,所述第二通道的远心端与所述传导内腔连通。
  16. 如权利要求15所述的冲击波医用装置,其特征在于,
    所述多个传送管组的所述第二传送管的近心端封闭且汇聚以形成锥形头端,所述锥形头端设有供所述导丝管通过的穿孔。
  17. 如权利要求14~16任一所述的冲击波医用装置,其特征在于,还包括接口,其中,
    所述接口分别与外部充盈器和所述传导机构的所述传导内腔连接,以使所述液体从所述外部充盈器流入所述传导内腔直至所述多个子球囊内。
PCT/CN2023/126992 2022-10-27 2023-10-27 用于冲击波医用装置的球囊装置和冲击波医用装置 WO2024088366A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211325166.1A CN117942128A (zh) 2022-10-27 2022-10-27 用于冲击波医用装置的球囊装置和冲击波医用装置
CN202222840248.1U CN219331805U (zh) 2022-10-27 2022-10-27 用于冲击波医用装置的球囊装置和冲击波医用装置
CN202211325166.1 2022-10-27
CN202222840248.1 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024088366A1 true WO2024088366A1 (zh) 2024-05-02

Family

ID=90830129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126992 WO2024088366A1 (zh) 2022-10-27 2023-10-27 用于冲击波医用装置的球囊装置和冲击波医用装置

Country Status (1)

Country Link
WO (1) WO2024088366A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135828A1 (en) * 2014-11-14 2016-05-19 Shockwave Medical, Inc. Shock wave valvuloplasty device and methods
CN107307904A (zh) * 2016-04-28 2017-11-03 韦伯斯特生物官能(以色列)有限公司 具有柔性电路电极组件的灌注式球囊导管
CN110604607A (zh) * 2019-08-06 2019-12-24 沛嘉医疗科技(苏州)有限公司 一种治疗心脏瓣膜钙化的冲击波装置
CN113057717A (zh) * 2019-12-30 2021-07-02 先健科技(深圳)有限公司 球囊导管
US20210338329A1 (en) * 2020-05-01 2021-11-04 Narula Health Care Consultants, LLC Aortic Valve Lithotripsy Balloon
CN114533198A (zh) * 2022-02-24 2022-05-27 上海蓝帆博元医疗科技有限公司 一种冲击波球囊导管装置以及医疗设备
WO2022166881A1 (zh) * 2021-02-05 2022-08-11 沛嘉医疗科技(苏州)有限公司 冲击波装置
CN219331805U (zh) * 2022-10-27 2023-07-14 上海蓝帆博奥医疗科技有限公司 用于冲击波医用装置的球囊装置和冲击波医用装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135828A1 (en) * 2014-11-14 2016-05-19 Shockwave Medical, Inc. Shock wave valvuloplasty device and methods
CN107307904A (zh) * 2016-04-28 2017-11-03 韦伯斯特生物官能(以色列)有限公司 具有柔性电路电极组件的灌注式球囊导管
CN110604607A (zh) * 2019-08-06 2019-12-24 沛嘉医疗科技(苏州)有限公司 一种治疗心脏瓣膜钙化的冲击波装置
CN113057717A (zh) * 2019-12-30 2021-07-02 先健科技(深圳)有限公司 球囊导管
US20210338329A1 (en) * 2020-05-01 2021-11-04 Narula Health Care Consultants, LLC Aortic Valve Lithotripsy Balloon
WO2022166881A1 (zh) * 2021-02-05 2022-08-11 沛嘉医疗科技(苏州)有限公司 冲击波装置
CN114533198A (zh) * 2022-02-24 2022-05-27 上海蓝帆博元医疗科技有限公司 一种冲击波球囊导管装置以及医疗设备
CN219331805U (zh) * 2022-10-27 2023-07-14 上海蓝帆博奥医疗科技有限公司 用于冲击波医用装置的球囊装置和冲击波医用装置

Similar Documents

Publication Publication Date Title
US11766271B2 (en) Shock wave valvuloplasty with multiple balloons
CN103635226B (zh) 用于建立和保持房内压力释放孔的装置
US10327901B2 (en) Device for the deployment of a system of guide wires within a cardiac chamber for implanting a prosthetic heart valve
CN109771100B (zh) 用于使引导导管自对中的装置
EP4342395A2 (en) Basket for a catheter device
CN110604607A (zh) 一种治疗心脏瓣膜钙化的冲击波装置
CN109223100A (zh) 一种用于治疗心脏瓣膜和血管钙化的装置及其使用方法
CN112930146A (zh) 用于心血管介入的装置和技术
CN106725696B (zh) 一种用于阻断髂总动脉血流的双球囊导管
BR112015008571B1 (pt) aparelho de estrutura inflável para uso como dispositivo médico inflável reforçado
EP2523720A2 (en) Device system and method for reshaping tissue openings
JP2016502445A (ja) Tavr心室カテーテル
CN114831697B (zh) 一种用于体内腔道塑形的冲击波发生装置
CN110114114A (zh) 用于无引线心脏装置的递送装置和方法
CN219331805U (zh) 用于冲击波医用装置的球囊装置和冲击波医用装置
CN111526823A (zh) 用于治疗钙化的心脏瓣膜小叶的经导管装置
CN110123489A (zh) 扩张球囊以及球囊扩张导管
KR20160026292A (ko) 승모판막 서클라지 관상정맥동 성형술에서 루프를 형성하기 위한 루프용 로프 및 이의 제조장치
EP3870080B1 (en) Implantable medical device with cavitation features
US11135053B2 (en) Implantation method of artificial heart valve
WO2024088366A1 (zh) 用于冲击波医用装置的球囊装置和冲击波医用装置
US20210045879A1 (en) Cardiac annuloplasty procedures, related devices and methods
CN110478085B (zh) 心脏瓣膜假体及其可填充结构
CN209548049U (zh) 一种用于治疗心脏瓣膜和血管钙化的装置
US20220161046A1 (en) Catheter and light irradiation system