WO2024088212A1 - 自动穿刺手术机器人系统及穿刺方法 - Google Patents

自动穿刺手术机器人系统及穿刺方法 Download PDF

Info

Publication number
WO2024088212A1
WO2024088212A1 PCT/CN2023/125928 CN2023125928W WO2024088212A1 WO 2024088212 A1 WO2024088212 A1 WO 2024088212A1 CN 2023125928 W CN2023125928 W CN 2023125928W WO 2024088212 A1 WO2024088212 A1 WO 2024088212A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
needle
mounting plate
camera
robot system
Prior art date
Application number
PCT/CN2023/125928
Other languages
English (en)
French (fr)
Inventor
甘承军
冯科伟
孙成元
李敬
崔禹恒
要翼飞
孙宏瑞
隋晨光
Original Assignee
苏州派尼迩医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211332981.0A external-priority patent/CN115708710A/zh
Priority claimed from CN202211332962.8A external-priority patent/CN115956982A/zh
Priority claimed from CN202211332959.6A external-priority patent/CN115553888A/zh
Priority claimed from CN202322592085.4U external-priority patent/CN221331482U/zh
Application filed by 苏州派尼迩医疗科技有限公司 filed Critical 苏州派尼迩医疗科技有限公司
Publication of WO2024088212A1 publication Critical patent/WO2024088212A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles

Definitions

  • the present invention relates to the field of puncture surgical robots, and in particular to an automatic puncture surgical robot system and a puncture method integrating a structured light 3D camera and a needle insertion device.
  • Chinese Patent No. CN113952008B discloses a "cross-driven puncture needle insertion mechanism and needle puncture device”
  • Chinese Patent No. CN113243978A discloses a "puncture device and surgical robot”
  • Chinese Patent No. CN106859742A discloses a "puncture surgery navigation and positioning system and method”
  • Chinese Patent No. CN114041880A discloses a "terminal puncture actuator of a medical surgical robot”
  • Chinese Patent No. CN113796959A discloses a "body surface dynamic positioning device and optical tracking device”.
  • the method and device for accurately finding the surgical position during a puncture operation using a surgical robot is implemented based on the position information transmitted by the CT device.
  • the existing technology is to use an infrared binocular camera and install multiple reflective balls at the end of the surgical execution device. The surgical execution device is quickly judged by combining the infrared binocular camera and the reflective balls.
  • the infrared binocular camera needs to be equipped with a separate device relative to the surgical execution device.
  • the equipment appears messy and is easily moved due to touch, making it impossible to accurately locate the device.
  • a plurality of reflective balls need to be installed at the end of the surgical execution device.
  • the installation of the reflective balls will affect the design of the surgical execution device and the implementation of the surgical functions by the surgical execution device, especially the puncture surgery that needs to be completed quickly and accurately.
  • the execution devices used to complete the puncture surgery have many problems during use, such as complicated disinfection procedures and not necessarily thorough disinfection.
  • the purpose of the present invention is to provide an automatic puncture surgical robot system and a puncture method, which integrates a structured light 3D camera, a needle insertion device, and a puncture device into a whole and fixedly installs it at the end of the robot's mechanical arm, which can effectively solve the above-mentioned problems.
  • the automatic puncture surgical robot system of the present invention is used to drive the puncture needle to complete the puncture surgery, including a console for receiving images provided by a medical imaging device, and a mechanical arm whose front end is fixedly mounted to the console.
  • the automatic puncture surgical robot system further includes a positioning device, a calibration device, and a puncture actuator fixedly mounted at the end of the mechanical arm;
  • the puncture execution mechanism includes a structured light 3D camera, a puncture device and a needle insertion device;
  • the structured light 3D camera is fixedly installed with the puncture device as a whole and moves synchronously with the mechanical arm;
  • the puncture device is used to drive the needle insertion device to clamp the puncture needle, drive the puncture needle and release the puncture needle;
  • the structured light 3D camera and the calibration device uniformly align the coordinate system of the medical imaging device with the coordinate system of the robotic arm;
  • the positioning device is identified by the structured light 3D camera and the medical imaging device respectively, and the console determines whether to perform a puncture operation according to the position change of the positioning device.
  • the structured light 3D camera includes a structured light source and a camera. After the structured light source and the camera are fixedly installed, the coverage range of the structured light source and the shooting range of the camera are located below the needle insertion device in an overlapping manner.
  • the puncture device comprises a flange fixedly connected to the mechanical arm, a base and a driving device;
  • the base includes a rectangular main mounting plate, a structured light source mounting frame fixed to the short side of one end of the main mounting plate, a camera mounting frame fixed to the other short side of the main mounting plate, and a gear box mounting frame and a needle insertion device mounting frame fixedly mounted on the lower surface of the main mounting plate and located between the structured light source mounting frame and the camera mounting frame; the structured light source, the camera and the needle insertion device fixedly mounted on the structured light source mounting frame, the camera mounting frame and the needle insertion device mounting frame are all located on the same long side of the main mounting plate.
  • the structured light source mounting frame includes a first mounting plate, a second mounting plate and a connecting bracket, the second mounting plate is connected to the first mounting plate by adjusting bolts and fastening bolts, the distance between the first mounting plate and the second mounting plate is adjusted by the adjusting bolts, and then connected and fixed by the fastening bolts, the second mounting plate is fixedly mounted on the short side of the main mounting plate via the connecting bracket, and the first mounting plate is fixedly connected to the structured light source.
  • the camera mounting bracket is an L-shaped connecting bracket, including a mounting plate fixedly connected to the camera, and a connecting bracket integrally formed with the mounting plate and capable of being fixedly attached to the side of the main mounting plate.
  • the camera is installed vertically to the main mounting plate, and the structured light source is installed at an angle of 30-60 degrees to the main mounting plate.
  • the needle insertion device comprises a clamping device that can be opened and closed, a driving wheel and a driven wheel;
  • the clamping device comprises two completely symmetrical positioning blocks which are closed to limit the position of the puncture needle, and a first swing arm and a second swing arm which are used to drive the positioning blocks to open and close respectively;
  • the driving wheel and the driven wheel are located in a space formed after the two positioning blocks are closed, the gap between the driving wheel and the driven wheel and the upper and lower limiting grooves formed after the two positioning blocks are closed are in the same straight line, and the puncture needle is located in the gap between the upper and lower limiting grooves and the driving wheel and the driven wheel.
  • the positioning block is integrally formed of non-toxic medical plastic, and when the two positioning blocks are closed, they are in the shape of a Chinese character " ⁇ ".
  • the positioning block is provided with a V-shaped groove for placing the puncture needle on the outer surface of the two end legs, and two or more fixing columns plug-connected to the first and second swing arms are provided on the first inner side surface, and a clamping block clamped to the first and second swing arms is provided on the inner surface of each leg.
  • the first swing arm and the second swing arm are both rotatably connected to the first rotating shaft fixedly mounted on the needle insertion device mounting frame, and the first swing arm and the second swing arm are integrally formed of metal material and are L-shaped as a whole, including a positioning block fixing portion and a pivot portion; the positioning block fixing portion is consistent with the shape of the positioning block, and is plugged, fitted and fixedly connected to the positioning block; the pivot portion is provided with a second through hole for setting the first rotating shaft, and a lug pivotally connected to the hinge device; the first swing arm is located at the pivot portion and is provided with a driving arm connected to the second driving device; the second swing arm is located at the positioning block fixing portion and is provided with a driven wheel mounting arm for mounting the driven wheel.
  • the puncture device comprises a flange, a base, a drive device and a locking device fixedly connected to the mechanical arm;
  • the base comprises a main mounting plate and a secondary mounting plate which are vertically fixedly connected to each other, and the main mounting plate is integrally formed with a U-shaped groove for placing the puncture needle and the puncture device on one side of the main mounting plate which is mounted with the secondary mounting plate;
  • the auxiliary mounting plate is U-shaped, including an integrally formed structured light source fixing frame and a camera fixing frame located on both sides, and a needle insertion device mounting frame located in the middle;
  • the locking device is fixedly mounted at the bottom of the needle insertion device mounting frame, and is used for quickly disassembling and assembling the needle insertion device, and can drive the needle insertion device to open or close;
  • the driving device includes a first transmission device for driving the needle insertion device to perform a needle insertion action, and a second transmission device for driving the needle insertion device to clamp and release the puncture needle.
  • the locking device comprises a slide rail, a first positioning block, a second positioning block, a double-threaded screw and a locking mechanism for locking the needle insertion device;
  • the slide rail is fixedly mounted on the needle insertion device mounting frame
  • the first positioning block and the second positioning block are symmetrically and slidably connected to the slide rail;
  • the double-threaded screw is parallel to the slide rail and passes through the first positioning block and the second positioning block at the same time; the first positioning block and the second positioning block are respectively engaged with the thread segments in different directions on the surface of the double-threaded screw, and rotating the double-threaded screw can synchronously drive the first positioning block and the second positioning block to move relative to or opposite to each other;
  • the middle positions of the first positioning block and the second positioning block are pivotally connected to the first transmission device respectively, and the driving shaft of the first transmission device passes through the first positioning block and the second positioning block and is drivingly connected to the needle insertion device; one end of the double-threaded screw is connected to the second transmission device.
  • the locking mechanism comprises an unlocking handle, an elastic element and a slidable locking piece symmetrically arranged on the first positioning block and the second positioning block.
  • the puncture device comprises a flange, a base and a driving device;
  • the base includes a main mounting plate, a main support frame and a secondary support frame;
  • the structured light 3D camera is fixed to the main support frame as a whole via the main mounting plate;
  • the auxiliary support frame is installed and connected to the main support frame so as to be relatively movable in parallel;
  • the main support frame and the auxiliary support frame are both provided with a transmission device for synchronously driving the needle insertion device to perform a puncture action;
  • the needle insertion device can be quickly assembled and disassembled with the main support frame and the auxiliary support frame, and is in transmission connection with the transmission device;
  • the driving device is fixedly installed on the side opposite to the installation position of the needle insertion device;
  • the auxiliary support frame can move parallel to and separate from the main support frame, and can also drive the needle insertion device to separate, thereby releasing the puncture needle in the needle insertion device.
  • the main support frame is a special-shaped part formed integrally from metal material, including a first section, a second section, a third section and a fourth section; the first section is connected to the end of the robotic arm via the main mounting plate, and the fourth section is used to install the transmission device.
  • the auxiliary support frame is a special-shaped part integrally formed of metal material, which corresponds to the third section and the fourth section of the main support frame.
  • the auxiliary support frame is integrally formed with a guide rod that can be inserted into the guide hole in the third section and can slide freely in and out of the guide hole.
  • the needle insertion device comprises a first needle clamp and a second needle clamp which can be closed or separated from each other, and the first needle clamp and the second needle clamp are both equipped with a group of belt drive devices for synchronously driving the puncture needle to perform the needle insertion action;
  • the first needle card and the second needle card are both integrally formed of disposable medical materials, and each includes a puncture needle clamping portion, a connecting portion, and a belt drive device mounting portion;
  • a puncture needle installation hole for the puncture needle to be inserted is formed in the puncture needle clamping part, and the puncture needle clamp inserted into the puncture needle installation hole is installed between the two groups of the belt driving devices;
  • the connecting portion is used to quickly install the needle insertion device on the puncture device, and can also be quickly removed from the puncture device.
  • each group of the belt drive devices includes two or more pulleys and belts meshingly connected to the pulleys. At least one of the pulleys in each group of the belt drive devices can be driven and connected to the output shaft of the puncture actuator, so that the belts in the two groups of the belt drive devices can move synchronously relative to each other, and are used to drive the puncture needle located between the puncture needle mounting hole and the two groups of the belt drive devices to perform a puncture insertion action.
  • the puncture needle clamping part is located beside the two ends of the first needle clamp or the second needle clamp, and is located at the two ends of the belt drive device mounting part; the locking structure with pivoting function is arranged beside the puncture needle clamping part.
  • the locking structure includes a locking pin insertion portion integrally formed with the first needle card and the second needle card respectively, into which a locking pin can be inserted and pulled out;
  • the locking pin insertion portion includes an elliptical through hole located at the upper and lower ends of the first needle card or the second needle card, and a special-shaped through hole located at the upper and lower ends of the second needle card or the first needle card, and the elliptical through hole and the special-shaped through hole are superimposed to form a locking pin insertion hole for the locking pin to be inserted and pulled out.
  • the locking structure includes a pivot hole integrally formed on the first needle card or the second needle card, and a pivot short shaft integrally formed on the second needle card or the first needle card, and the height of the pivot short shaft is 1-3 mm.
  • the puncture method of the automatic puncture surgical robot system of the present invention comprises the following steps:
  • step 3 after determining that the puncture needle in the needle insertion device has been aligned with the accurate position for the puncture operation, a step of prompting to manually open the safety baffle is further added.
  • the transmitted information includes the accurate position information, the insertion angle information of the puncture needle, and the insertion distance information.
  • the calibration device for an automatic puncture surgical robot system in the present invention includes a substrate, a plurality of spherical calibration parts, columnar connecting parts corresponding to the spherical calibration parts, and a marking structure directly printed on a surface of one side of the substrate.
  • the columnar connecting parts have the same length, and all the columnar connecting parts are fixedly arranged on the same side surface of the substrate and are located on the side surface of the substrate where the marking structure is not printed.
  • Each of the spherical calibration parts is correspondingly locked at a different height position in the columnar connecting part.
  • the positioning device for the automatic puncture surgical robot system in the present invention is made of a ceramic material with a density between 3-5/cm3, and a first through hole with a diameter between 2-15 mm is provided in the middle of the positioning device body.
  • the two side surfaces from the first through hole to the edge of the body are an inclined surface and a plane, respectively, and the inclined surface is in the shape of an inverted frustum of a cone.
  • the present invention combines a structured light 3D camera, a puncture device, and a needle insertion device together, which not only solves the problem of independently equipping an infrared binocular camera device, but also effectively achieves the purpose of accurately determining the position. It can also quickly combine the patient position information in the CT bed with the robot position information to quickly execute the surgical process.
  • FIG. 1 is a schematic diagram of the working principle of the robot system of the present invention.
  • FIG. 2 is a schematic diagram of the working state of the robot system in the present invention.
  • FIG3 is a flowchart of the puncture process of the robot system in the present invention.
  • FIG. 4 is a schematic diagram of the three-dimensional structure of the calibration device in the present invention.
  • Fig. 4a is a cross-sectional view along line A-A in Fig. 4 .
  • FIG. 4b is a partial view along line B-B in FIG. 4 .
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the positioning device in the present invention.
  • FIG. 5 a is a schematic cross-sectional view of a positioning device in the present invention.
  • FIG. 6 is a schematic diagram of the three-dimensional structure of the puncture actuator installed at the end of the mechanical arm in the first embodiment.
  • FIG. 7 is an enlarged three-dimensional structural schematic diagram of the puncture actuator in FIG. 6 .
  • FIG8 is a schematic diagram of the three-dimensional structure of the puncture device and the needle insertion device in Example 1.
  • FIG. 9 is a schematic diagram of the three-dimensional structure of the puncture device in FIG. 8 from another direction.
  • FIG. 10 is a second schematic diagram of the three-dimensional structure of the puncture device in FIG. 8 in another direction.
  • FIG. 11 is an enlarged three-dimensional structural schematic diagram of the puncture device in FIG. 8 after the main mounting plate is removed.
  • FIG. 12 is a schematic diagram of the three-dimensional structure of the clamping device in the first embodiment when in the open state.
  • FIG. 13 is a schematic diagram of the three-dimensional structure of the clamping device in the first embodiment when in a closed state.
  • FIG. 14 is a schematic diagram of the three-dimensional structure of a positioning block in an implementation.
  • FIG. 15 is a schematic diagram of the three-dimensional structure of the first swing arm in the first embodiment.
  • FIG. 16 is a schematic diagram of the three-dimensional structure of the second swing arm in the first embodiment.
  • FIG. 17 is a schematic diagram of the three-dimensional structure of the puncture device and the needle insertion device in the second embodiment.
  • FIG. 18 is a second schematic diagram of the three-dimensional structure of the puncture device and the needle insertion device in the second embodiment.
  • FIG. 19 is a schematic diagram of the three-dimensional structure of the locking device in the second embodiment.
  • FIG. 20 is a cross-sectional schematic diagram of the locking device in the second embodiment.
  • FIG. 21 is a schematic diagram of the three-dimensional structure of the double-threaded screw in the second embodiment.
  • FIG. 22 is a schematic diagram of the three-dimensional structure of the puncture actuator in the third embodiment.
  • FIG. 23 is a schematic diagram of the three-dimensional structure of the puncture device and the needle insertion device when assembled in the third embodiment.
  • FIG. 24 is a schematic diagram of the three-dimensional structure of the puncture device in the third embodiment.
  • FIG. 25 is a schematic diagram of the three-dimensional structure of the puncture device in Example 3 after removing the auxiliary support frame.
  • Figure 26 is a schematic diagram of the three-dimensional structure of the main support frame in Example 3.
  • Figure 27 is a schematic diagram of the three-dimensional structure of the auxiliary support frame in Example 3.
  • FIG. 28 is a schematic diagram of the three-dimensional structure of the auxiliary support frame and the transmission device after assembly in the third embodiment.
  • FIG. 29 is a schematic diagram of the three-dimensional structure of the needle insertion device according to the first embodiment of the present invention.
  • FIG. 30 is a schematic diagram of the three-dimensional structure of the first needle clamp in the first embodiment of the needle insertion device of the present invention.
  • 31 is a schematic diagram of the three-dimensional structure of the second needle clamp in the first embodiment of the needle insertion device of the present invention.
  • FIG. 32 is a cross-sectional schematic diagram of the first embodiment of the needle insertion device of the present invention.
  • Figure 33 is a schematic diagram of the three-dimensional structure of the belt driving device of the needle insertion device in the present invention.
  • Figures 34a and 34b are schematic diagrams of the three-dimensional structures of the first needle clamp and the second needle clamp in the second embodiment of the needle insertion device in the present invention.
  • Figures 35a and 35b are schematic diagrams of the three-dimensional structures of the first needle clamp and the second needle clamp in the third embodiment of the needle insertion device in the present invention.
  • 36 is a schematic diagram of the three-dimensional structure of the movable belt driving device in the third embodiment of the needle insertion device of the present invention.
  • FIG. 37 is a schematic diagram of the three-dimensional structure of the needle insertion device embodiment 3 of the present invention.
  • the automatic puncture surgical robot system of the present invention includes a console 1, a robotic arm 2, a calibration device 3, a positioning device 4 and a puncture actuator 5.
  • the system cooperates with the CT equipment 6 in the hospital CT to perform puncture surgery on the patient, and inserts the puncture needle 7 into the location of the lesion in the patient's body according to a preset path. After the puncture is completed, the doctor treats the patient through the puncture needle 7.
  • the console 1 mainly includes a box 11 and a control device located inside the box 11.
  • a moving device 10 is installed at the bottom of the console 1, which can be moved to any position convenient for surgery according to surgical requirements.
  • the present invention preferably uses a universal wheel device, and the specific structure is not described in detail.
  • the front end of the mechanical arm 2 is fixedly mounted on the top surface of the console 1, and the puncture actuator 5 is fixedly mounted on the end of the mechanical arm 2, and is controlled by the console 1 together with the mechanical arm 2.
  • the console 1 controls the mechanical arm 2 to move the puncture actuator 5 to the position where the puncture operation is performed on the patient, and then the console 1 controls the puncture actuator 5 in conjunction with the CT device 6 to complete the puncture operation process.
  • the control device in the console 1 is easy to implement for technicians in the computer field after the description of the present invention, and the mechanical arm 2 adopts a mature product available on the market, so the structure and working principle of the console 1 and the mechanical arm 2 are not described in detail.
  • the calibration device 3 includes a base plate 30, four spherical calibration members 31, four columnar connecting members 32, four locking members 33 and four fastening members 34.
  • This embodiment takes four spherical calibration members 31 as an example, but is not limited thereto, and can be three or more.
  • the substrate 30 preferably uses a square aluminum alloy substrate with a length of 190 mm, a width of 160 mm, and a thickness of 8 mm, which can provide a better light perception for the shooting of the structured light 3D camera 50.
  • a through hole is provided at each of the four right angles of the substrate 30, for respectively fixing and installing four columnar connectors 32.
  • a marking structure 35 is provided on the top side surface of the substrate 30, in the middle of the four through holes.
  • the marking structure 35 can be a geometric figure drawn or printed on the surface of the substrate 30, preferably a pattern with a certain regular arrangement of two colors with a large difference (for example: black and white). The shape and arrangement of the pattern are related to the operation rules of the camera, and will not be described in detail here.
  • the four columnar connecting members 32 are fixed to the bottom surface (the same side surface) of the substrate 30 through four locking members 33, that is, the side surface without the marking structure 35.
  • the marking structure 35 can also be set on both side surfaces of the substrate 30.
  • the four columnar connecting members 32 have the same length and form a square table after being assembled with the substrate 30.
  • the marking structure 35 on the top side surface of the substrate 30 is completely presented within the visible range of the structured light 3D camera 50, so that the structured light 3D camera 50 can freely select the shooting angle, and select multiple shooting angles, thereby increasing the calibration accuracy of the structured light 3D camera 50.
  • Each columnar connector 32 is integrally formed of a polyformaldehyde thermoplastic crystalline polymer (POM) material, one end of which is fixedly connected to the base plate 1 via a locking member 33, and the other end is provided with a cylindrical countersunk hole, the inner wall of which is provided with a smooth section hole 36 at the bottom and an internal thread section hole 37 at the outer end.
  • the present invention uses a spherical calibration piece 31 with a diameter of 20 mm, which is sunk into the smooth section hole 36 with a height of 18 mm and a diameter of 19.9-20 mm, and an internal thread section hole 37 with a diameter of 22 mm is provided in the extension section of the smooth section hole 36.
  • the spherical calibration piece 31 can quickly enter the smooth section hole 36. With the help of the characteristics of the POM material, the spherical calibration piece 31 is slightly clamped when entering the smooth section hole 36, and it takes a little force to enter the smooth section hole 36. After entering the smooth section hole 36, the spherical calibration piece 31 will not move at all, so that the center of the spherical calibration piece 31 is always in the center of the smooth section hole 36.
  • the height of the smooth section hole 36 is smaller than the diameter of the spherical calibration piece 31, when the spherical calibration piece 31 enters the bottom of the smooth section hole 36, it is still higher than the smooth section hole 36, so that a rubber gasket 39 is inserted into the internal threaded section hole 37, and then the fastener 34 is threaded into the hole. With the help of the elastic deformation of the rubber gasket 39, the spherical calibration piece 31 can be very firmly supported in the smooth section hole 36 to ensure that the coordinates of the center of the spherical calibration piece 31 will not change.
  • the fastener 34 is cylindrical, with external threads on the cylindrical outer surface, and symmetrical locking grooves on the upper and lower end surfaces for easy assembly and disassembly.
  • the locking member 33 is a commercially available standard part.
  • the positioning device 4 is a thin plate (sheet)-like body, and a first through hole 40 with a diameter between 2-15 mm is provided in the middle of the body.
  • the diameter of the first through hole 40 is preferably 8 mm, for the puncture needle 7 to pass through, and it can adapt to most lesions of different sizes while ensuring that the puncture needle 7 is inserted accurately.
  • the outer contour of the positioning device 4 can be circular, triangular, square or oval, etc., without limitation.
  • the present invention preferably has a circular shape for easy processing and production.
  • the positioning device 4 forms two side surfaces from the first through hole 40 to the edge 41, the first side surface is an inclined surface 42, and the second side surface is a plane 43.
  • the inclined surface 42 is in the shape of an inverted truncated cone from the first through hole 40 to the edge 41.
  • the angle between the inclined surface 42 and the plane 43 is between 15 and 60 degrees, and the optimal angle is 30 or 45 degrees.
  • the coordinate value of the middle point of the positioning device 4 (the center point of the first through hole 40 in the middle) can be calculated very accurately, which is convenient for the precise calculation and control of the puncture surgical robot system, and is also used to limit the insertion angle of the puncture needle to ensure the accuracy of the puncture action of the puncture surgical robot system.
  • the positioning device 4 in the present invention adopts a ceramic material with a density between 3-5/cm3, preferably alumina ceramic or aluminum oxide ceramic material, and a thickness between 2-6 mm. Only ceramic materials with a density between 3-5/cm3 can be imaged very clearly after scanning in the CT device 6, and can also be clearly imaged in the structured light 3D camera 50, so that the doctor can quickly check the position of the positioning device 4 in the CT image, and the console 1 can quickly identify the position coordinates of the middle point of the positioning device 4.
  • the puncture actuator 5 includes a structured light 3D camera 50, a puncture device 51 and a needle insertion device 52.
  • the structured light 3D camera 50 and the puncture device 51 are fixedly connected to form a whole, installed at the end of the mechanical arm 2 and move synchronously with the movement of the mechanical arm 2.
  • the structured light 3D camera 50 includes a structured light source 500 and a camera 501.
  • the structured light source 500 and the camera 501 are separated into two parts, which are fixedly installed on the puncture device 51 respectively; the structured light source 500 and the camera 501 can also be combined into a whole, which is fixedly installed on the puncture device 51, as shown in Fig. 22.
  • the needle insertion device 52 can be connected to the puncture device 51 as a whole, and only the parts in the needle insertion device 52 that are in contact with the puncture needle 7 are replaced; it can also be movably connected to the puncture device 51 for quick disassembly and assembly, which is described in detail below with different embodiments.
  • the structured light 3D camera 50 includes a structured light source 500 and a camera 501.
  • a structured light source 500 and a camera 501 are preferably used in combination, and the structured light source 500 and the camera 501 are separately arranged and fixedly installed with the puncture device 51 respectively, so as to accurately measure the specific positions of the positioning device 4 and the calibration device 3, as shown in FIG1 .
  • two structured light sources 500 can also be used, which can eliminate the invalid data caused by the shadow of the one-way projection to a greater extent, and can more truly and accurately measure the actual positions of the positioning device 4 and the calibration device 3.
  • the puncture device 51 includes a flange 510 fixedly connected to the robot arm 2, a base and a driving device for driving the needle insertion device 52.
  • the base also fixes the flange 510, the structured light 3D camera 50, the needle insertion device 52 and the driving device.
  • the specific structure is as follows:
  • the base includes a main mounting plate 512 , a structured light source mounting frame 513 , a camera mounting frame 514 , a needle insertion device mounting frame 515 , and a gear box mounting frame 516 .
  • the main mounting plate 512 is a rectangular metal plate with a thickness of 0.8-1.5 cm, which can bear the weight of the structured light 3D camera 50, the needle insertion device 52 and the driving device.
  • a structured light source mounting frame 513 and a camera mounting frame 514 are installed; after the structured light source mounting frame 513, the camera mounting frame 514 and the needle insertion device mounting frame 515 are installed, the structured light source 500, the camera 501 and the needle insertion device 52 are located in the direction of the same long side of the main mounting plate 512, and there is enough space on the lower surface of the main mounting plate 512 for installing the driving device.
  • the needle insertion device 52 is located between the structured light source 500 and the camera 501, and the camera 501 is installed perpendicular to the main mounting plate 512, so that the original image information can be obtained in the scanning measurement, and the best arrangement effect can be obtained, so that the measured size information is more accurate.
  • the structured light source 500 is installed at a certain angle to the main mounting plate 512, and the installation angle is 30-60 degrees, and the best angle is 45 degrees.
  • the coverage range 503 of the structured light source 500 and the shooting range 504 of the camera 501 are located below the needle insertion device 52 in an overlapping manner, completely covering the puncture range of the needle insertion device 52.
  • the camera 501 can complete the scanning while being stationary.
  • the scanning range is located directly below the needle insertion device 52. The exact coordinates of each point in the scanning range can be accurately calculated, so that the needle insertion device 52 can perform the puncture action accurately.
  • the top surface of the main mounting plate 512 is fixed with a mounting flange 510 at one end close to the structured light source mounting frame 513, and the other end is fixed with a servo motor 545.
  • a gear box mounting frame 516 is fixedly mounted on the main mounting plate 512 below the servo motor 545, and the needle insertion device mounting frame 515 is fixedly connected to the gear box mounting frame 516, which can effectively reduce the overall volume of the puncture device 51.
  • the structured light source mounting frame 513 includes a first mounting plate 340, a second mounting plate 341 and a connecting bracket 342.
  • the second mounting plate 340 is connected to the first mounting plate 341 by an adjusting bolt 343 and a fastening bolt 344.
  • the distance between the first mounting plate 340 and the second mounting plate 341 is adjusted by the adjusting bolt 343 and then connected and fixed by the fastening bolt 344.
  • the relative positions of the structured light source 500, the camera 501 and the needle insertion device 52 can be adjusted by the structural design of the structured light source mounting frame 513.
  • the second mounting plate 341 is fixedly mounted on the short side of one end of the main mounting plate 512 via the connecting bracket 342.
  • the first mounting plate 340 directly fixes the structured light source 500.
  • the mounting angle of the structured light source 500 is adjusted and fixed with the first mounting plate 340 via the structured light source base (not shown in the figure), and can be fixed by an arc slideway. After the angle is adjusted, it is locked and fixed. This is easy to implement for those skilled in the art and will not be described in detail here.
  • the camera mounting bracket 514 is an L-shaped connecting bracket, which includes a mounting plate 350 fixedly connected to the camera 501, and a connecting bracket 351 integrally formed with the mounting plate 350 and capable of being fixedly attached to the side edge of one end of the main mounting plate 512.
  • the L-shaped connecting bracket can be used to vertically and stably fix the camera 501 to the side edge of the main mounting plate 512, ensuring the stability of the camera during scanning.
  • the needle insertion device mounting frame 515 is L-shaped, and the specific structure can be reasonably arranged according to the overall layout, but is not limited thereto.
  • the needle insertion device mounting frame 515 is used to fix and install the clamping device 520, so that the puncture needle 7 in the clamping device 520 can perform the needle insertion action under the drive of the driving wheel 521 and the driven wheel 522.
  • the electric push rod 519 instantly drives the first swing arm 524 and the second swing arm 525 to perform an opening action, thereby releasing the puncture needle 7 and breaking away from the restriction on the puncture needle 7.
  • the gear box mounting frame 516 is provided with a slideway 370 on the inner surface at the bottom, and safety baffles 371 are slidably provided in two opposite slideways 370. Under manual control, the safety baffle 371 can move in the slideway 370. Before the needle insertion device 51 punctures, the safety baffle 371 can be manually moved to push the puncture needle 7 downward to ensure that the puncture needle 7 of the automatic puncture surgical robot system will not perform a puncture action due to misoperation before the last puncture. Only under the premise of ensuring all safety, will the safety baffle 371 be manually moved to perform the final puncture action.
  • the driving device includes a first driving device for driving the puncture needle 7 to move in, and a second driving device for clamping and releasing the puncture needle 7.
  • the first driving device includes a servo motor 545 mounted on the top of the main mounting plate 512, and a gear box 517 mounted inside the gear box mounting frame 516;
  • the second driving device includes a sensor 518 and an electric push rod 519 directly mounted on the lower surface of the main mounting plate 512.
  • the components such as the servo motor 545, the gear box 517, the sensor 518 and the electric push rod 519 are all commercially available mature products and will not be described in detail.
  • the needle insertion device 52 includes a clamping device 520 that can be opened and closed, a driving wheel 521 and a driven wheel 522 .
  • the clamping device 520 includes two completely symmetrical positioning blocks 523 that can be closed with each other, and a first swing arm 524 and a second swing arm 525 mounted on the needle insertion device mounting frame 515 for respectively driving the positioning blocks 523 to open and close.
  • the electric push rod 519 in the second driving device is connected to the clamping device 520.
  • the clamping device 520 performs opening and closing actions. Before performing the puncture action, the clamping device 520 is in a closed state, as shown in Figures 7 and 13.
  • the puncture needle 7 is located between the driving wheel 521 and the driven wheel 522.
  • the servo motor 545 in the first driving device drives the output shaft 511 of the gear box 517, and further drives the driving wheel 521.
  • the driven wheel 522 is fixedly installed on the second swing arm 525 of the clamping device 520. Under the action of the driving wheel 521 and the driven wheel 522, the puncture needle 7 performs the puncture action. When the puncture action is completed, the clamping device 520 drives the driven wheel 522 to open, releasing the restriction on the puncture needle 7.
  • the two positioning blocks 523 are integrally formed of non-toxic medical plastics, and are in the shape of a " ⁇ " after being closed.
  • Each positioning block 523 is provided with a V-shaped groove 526 for placing the puncture needle 7 on the outer surface of the two end legs, and three fixing columns 528 are provided on the first inner side 527.
  • the number of the fixing columns 528 can be two or more, which is specifically set according to the size of the positioning block 523.
  • a clamping block 529 is provided on the back of the V-shaped groove 526.
  • the fixing columns 528 and the clamping block 529 can make the positioning block 523 plug-in connected with the first swing arm 524 or the second swing arm 525 at any time.
  • the positioning block 523 is made of non-toxic medical plastics, so it is used as a disposable tool, that is, after each operation is completed, the positioning block 523 is replaced to ensure the safe use of the puncture needle 7.
  • the first swing arm 524 and the second swing arm 525 are both integrally formed of metal material and are L-shaped as a whole. They are both rotatably connected to the needle insertion device mounting frame 515 via the first rotating shaft 530.
  • the mounting structures of the two first rotating shafts 530 are the same, one end of which is fixedly connected to the needle insertion device mounting frame 515, and the other end is rotatably connected to the first swing arm 524 or the second swing arm 525, preferably a bearing connection.
  • the first swing arm 524 and the second swing arm 525 include a positioning block fixing portion 531 and a pivoting portion 532.
  • the positioning block fixing portion 531 is consistent in shape with the positioning block 523 and is plugged, fitted and fixedly connected to the positioning block 523.
  • the pivoting portion 532 is provided with a second through hole 533 for the first rotating shaft 530 and a lug 535 pivotally connected to the hinge device 534.
  • the first swing arm 524 is provided with a driving arm 536 rotatably connected to the electric push rod 519 at the pivoting portion 532.
  • the second swing arm 525 is provided with a driven wheel mounting arm 537 for mounting the driven wheel 522 at the positioning block fixing portion 531.
  • the driven wheel mounting arm 537 is integrally formed with the positioning block fixing portion 531 of the second swing arm 525, located on the back side where the countersunk hole 538 is provided, and can also be fixedly connected by a connecting piece.
  • the hinge device 534 adopts a double-axis structure and is a mature product on the market, which will not be described in detail here.
  • the driving arm 536 is provided with a third through hole 539 having a long cross section, which is rotatably connected to the lever 540 through the second rotating shaft 541.
  • the lever 540 is vertically fixedly connected to the output shaft of the electric push rod 519.
  • the electric push rod 519 drives the lever 540 to swing.
  • the movable end of the lever 540 drives the first swing arm 524 to swing through the second rotating shaft 541, and then the first swing arm 524 and the second swing arm 525 are opened and closed by means of the hinge device 534.
  • the positioning block 523 is further driven to open and close, thereby completing the limiting and release of the puncture needle 7.
  • the linear moving distance of the electric push rod 519 is controlled by two position sensors 518.
  • the first swing arm 524 and the second swing arm 525 are provided with a countersunk hole 538 corresponding to the fixing column 528 and a clamping groove 542 matching with the clamping block 529 on the positioning block fixing portion 531.
  • the surface of the fixing column 528 is conical.
  • the positioning block 523 , the driving wheel 521 , and the driven wheel 522 in the first embodiment need to be replaced together with the puncture needle 7 after each puncture operation.
  • the puncture actuator in this embodiment includes a structured light 3D camera 50, a puncture device 51 and a disposable needle insertion device 52.
  • the needle insertion device 52 can be quickly assembled and disassembled with the puncture device 51 as a whole.
  • the structured light 3D camera 50 in this embodiment is the same as that in the first embodiment, and the structured light source 500 and the camera 501 are divided into two parts, which are respectively fixed on the puncture device 51.
  • the puncture device 51 is basically the same as that in the first embodiment, except that the needle insertion device mounting frame 515, the structured light source mounting frame 513 and the camera mounting frame 514 are designed as a whole, forming a sub-mounting plate 543, and a set of The locking device 548 drives the needle insertion device 52 to open and close, so that the needle insertion device 52 can be used as a disposable device as a whole, making the replacement and disinfection of the puncture needle 7 more convenient and the use safer and more hygienic. Specifically:
  • the puncture device 51 includes a flange 510 fixedly connected to the mechanical arm 2 , a base, a driving device and a locking device 548 .
  • the base includes a main mounting plate 512 and an auxiliary mounting plate 543.
  • the driving device includes a first driving device for driving the puncture needle 7 to move forward, and a second driving device for clamping and releasing the puncture needle 7.
  • the flange 510 is used to be fixedly connected to the end of the mechanical arm after being fixedly connected to the main mounting plate 512.
  • the auxiliary mounting plate 543 is vertically installed on the side of the main mounting plate 512 away from the flange 510 for fixed installation.
  • the main mounting plate 512 is integrally formed of a metal plate with a thickness of 0.8-1.5 mm, and a U-shaped groove 544 is integrally formed on one side of the mounting auxiliary mounting plate 543 to provide sufficient space for the needle insertion device 52 and the puncture needle 7.
  • the auxiliary mounting plate 543 is integrally formed of a metal plate with a thickness of 0.8-1.5 mm and is U-shaped, including an integrally formed structured light source fixing frame 513 and a camera fixing frame 514 located on both sides, and a needle insertion device mounting frame 515 located in the middle.
  • the first driving device includes a servo motor 545 fixedly mounted below the main mounting plate 512 and a first transmission device 546 drivingly connected to the belt driving device 600 in the needle insertion device 52 .
  • the second driving device includes a second servo motor 547 fixedly mounted below the main mounting plate 512 and behind the structured light source fixing frame 513, and a second transmission device 549 for driving the locking device 548 to open and close.
  • the first transmission device 546 and the second transmission device 549 can adopt various mechanical transmissions such as belt transmission and gear transmission, as long as the accuracy requirements are met. It is easy to implement for those skilled in the art and will not be described in detail here.
  • the locking device 548 includes a slide rail 550, a double-threaded screw 551, a first positioning block 552 and a second positioning block 553 symmetrically arranged on the double-threaded screw 551, and a locking mechanism for releasing and locking the disposable needle insertion device 52.
  • the slide rail 550 is fixed in parallel to the bottom end of the needle insertion device mounting frame 515 via bolts and other connecting parts, and the locking device 548 is hung on the auxiliary mounting plate 543 as a whole.
  • the first positioning block 552 and the second positioning block 553 are both integrally formed of metal materials and are symmetrically shaped parts. They can be assembled with the needle insertion device 52. After being symmetrically arranged, they are both slidably connected to the slide rail 550 and can freely slide relative to or opposite to each other on the slide rail 550.
  • a through hole 555 is integrally formed in the middle position for the driving shaft 581 of the first transmission device 546 to pivot.
  • An accommodating space 556 for the needle insertion device 52 to be placed is integrally formed at the through hole 555.
  • An insertion groove 557 for plugging and connecting with the needle insertion device 52 is arranged on the side of the accommodating space 556.
  • a locking mechanism that can lock and unlock the needle insertion device 52 is further arranged on the outside of the insertion groove 557.
  • the locking mechanism includes an unlocking handle 558, an elastic element 559 and a slidable locking piece 560.
  • the double-threaded screw 551 is parallel to the slide rail 550 and passes through the first positioning block 552 and the second positioning block 553.
  • the double-threaded screw 551 is a cylindrical straight rod, and its cylindrical surface is divided into three sections, as shown in FIG. 21, which are the driving section 5510 connected to the second transmission device 549, the first threaded section 5511 threadedly connected to the first positioning block 552, and the second threaded section 5512 threadedly connected to the second positioning block 553.
  • the first positioning block 552 on the first threaded section 5511 and the second positioning block 553 on the second threaded section 5512 can move in a straight line relative to or opposite to each other along the slide rail 550, so that the first positioning block 552 and the second positioning block 553 can move in two modes: opening and closing.
  • the puncture actuator in this embodiment includes a structured light 3D camera 50, a puncture device 51 and a disposable needle insertion device 52.
  • the puncture device 51 is used to drive the needle insertion device 52 to clamp the puncture needle 7, perform puncture, and quickly release the puncture needle 7, and the needle insertion device 52 can quickly realize the assembly and disassembly of the puncture device 51.
  • the puncture execution device in this embodiment is further improved on the basis of the second embodiment.
  • the structured light source 500 and the camera 501 of the structured light 3D camera 50 are combined into a whole, fixed into a whole by the main mounting plate 512 and the main support frame 560, and then directly fixed to the end of the robot arm 2 through the flange 510.
  • the structures of the auxiliary mounting plate 543 and the locking device 548 are further simplified, thereby reducing the overall volume of the puncture execution device 5. Specifically:
  • the puncture device 51 includes a flange 510, a base and a driving device for driving the needle insertion device 52.
  • the base includes a main mounting plate 512, a main support frame 560 and a secondary support frame 561.
  • the driving device includes a first driving device for driving the puncture needle 7 to move forward, and a second driving device for clamping and releasing the puncture needle 7.
  • the first driving device includes a servo motor 545 and a transmission device 551, and the second driving device includes an electric push cylinder 550.
  • the servo motor 545 and the electric push cylinder 550 are fixedly mounted on the back side of the main support frame 560 and/or the auxiliary support frame 561, and are installed close to the structured light 3D camera 50, as shown in Figures 22 and 25.
  • the auxiliary support frame 561 and the main support frame 560 are arranged in parallel to form a whole, and can be opened and closed in parallel relative to the main support frame 560.
  • the main support frame 560 is a special-shaped part formed of metal material, including a first section 562, a second section 563, a third section 564 and a fourth section 565.
  • the first section 562 is used to connect with the main mounting plate 512 and the end of the robot arm 2
  • the third section 564 is used to fix the electric push cylinder 550
  • the second section 563 is used to connect the first section 562 and the third section 564
  • the fourth section 565 is used to install the transmission device 551.
  • the electric push cylinder 550 The fixing frame 552 is fixedly mounted on the rear side of the third section 564 .
  • the fixing frame 552 is integrally formed of a metal material, cooperates with the electric push cylinder 550 , and is locked via bolts and other connecting parts.
  • the electric push cylinder 550 may also be fixedly installed on the auxiliary support frame 561 .
  • This embodiment takes the example of fixing the electric push cylinder 550 on the main support frame 560 for explanation.
  • the main support frame 560 is located in the fourth section 565 and is integrally formed with a guide hole 566 that can be assembled with the auxiliary support frame 561.
  • a mounting hole 567 for mounting a laser device is integrally formed at the bottom of the fourth section 565.
  • the fourth section 565 is integrally formed with a conventional through hole 555 for the transmission device 551 to be inserted and assembled, and a wire groove 570 for routing the power line and control line of the laser device, the puncture needle safety device 569 is integrally formed on the back of the fourth section 565, and is detachably encapsulated by a wire groove sealing plate 5701, as shown in Figures 22, 24 and 25, which can effectively improve the overall appearance of the puncture device and avoid the exposure of the wires.
  • a positioning column 574 is integrally formed on the same side of the fourth section 565 and the guide hole 566 .
  • the auxiliary support frame 561 is a special-shaped part integrally formed of metal material, and is assembled together with the third section 564 and the fourth section 565 of the main support frame 560 to form a whole, and can move parallel to the main support frame 560.
  • the auxiliary support frame 561 is integrally formed with a guide rod 571 that can be inserted into the guide hole 566 of the main support frame 560, and can slide freely in and out relative to the guide hole 566, so as to limit the moving position and direction of the auxiliary support frame 561 relative to the main support frame 560.
  • a mounting groove 572 for accommodating the electric push cylinder 550 is integrally formed parallel to the guide rod 571, and a fixing piece 573 fixedly connected to the end of the electric push rod 553 of the electric push cylinder 550 is integrally formed at one end of the mounting groove 572.
  • a positioning hole 575 is integrally formed on the auxiliary support frame 561 to cooperate with and position the positioning column 574 on the main support frame 560.
  • the auxiliary support frame 561 is provided with a square frame hole 576 at a position symmetrical to the conventional through hole 555 in the main support frame 560, and a square slider 577 is provided in matching with the square frame hole 576.
  • the square slider 577 and the auxiliary support frame 561 are connected by countersunk holes 578 and elastic elements 579, so that fine adjustments can be made between the square slider 577 and the auxiliary support frame 561, so as to achieve better transmission coordination connection with the disposable needle insertion device 51.
  • the transmission device 551 includes a first bevel gear 580 fixedly connected to the output shaft of the servo motor 545, two driving shafts 581 respectively rotatably connected to the main support frame 560 and the auxiliary support frame 561, a second bevel gear 582 meshing with the first bevel gear 580, and a spur gear 583 respectively fixed at the middle position of the two driving shafts 581 and meshing with each other and transmitting.
  • a driving shaft 581 directly passes through the through hole 555 of the main support frame 560 and is rotatably connected via a bearing 584, and can rotate freely.
  • One end of the driving shaft 581 extends out of the rear side of the main support frame 560 and is fixedly connected to the second bevel gear 582;
  • the other end extends out of the front side of the main support frame 560 and is fixedly mounted with a straight-tooth gear 583, and a gear 585 that can be plugged in and out and mesh with the disposable needle insertion device 51 is directly formed at the end of the end, as shown in FIG. 28 .
  • Another driving shaft 581 passes through the square slider 577 and can be fine-tuned with the square slider 577 while rotating freely, so as to better assemble and cooperate with the disposable needle insertion device 51.
  • a locking mechanism for fixing the needle insertion device 51 is integrally formed on the front side surfaces of the main support frame 560 and the auxiliary support frame 561, specifically including a square column hole 586 and a convex hook 587 directly and symmetrically formed on the front side surfaces of the main support frame 560 and the auxiliary support frame 561, as shown in Figure 23.
  • the specific structure of the disposable needle insertion device 51 that can be quickly assembled and disassembled with the puncture device 51 is as follows:
  • the disposable needle insertion device 51 includes a first needle card 590 and a second needle card 591 which can be combined and placed together in the accommodating space 556 of the first positioning block 552 and the second positioning block 553 of the locking device 548.
  • the first needle card 590 and the second needle card 591 can also be placed in the accommodating space 556 in front of the main mounting plate 560 and the auxiliary mounting plate 561.
  • the first needle card 590 and the second needle card 591 are both integrally formed of medical materials and are combined together by a locking pin 593.
  • the first needle card 590 and the second needle card 591 each include a belt drive device mounting portion 594, a puncture needle clamping portion 595, a locking pin insertion portion 596 and a connecting portion 597 that can be quickly disassembled or fixedly connected to the puncture execution device. Specifically:
  • the belt drive device mounting portion 594 is directly formed integrally with the first needle card 590 or the second needle card 591, and includes two through holes 602 arranged in parallel with each other, and the two through holes 602 are distributed along the needle insertion installation direction of the puncture needle 7.
  • the two through holes 602 are arranged in parallel up and down, and a step 603 is formed in the middle of the inner wall surface of the through hole 602, and the two ends of the through hole 602 are rotatably connected to the rotating shaft 606 of the pulley 605 through bearings 604.
  • the puncture needle clamping portion 595 is provided with an opening groove 607 with a V-shaped cross section, and a guide block 608 extends along the bottom of the opening groove 607.
  • the guide block 608 is used to guide the insertion of the puncture needle 7 to prevent the puncture needle 7 from tilting during the insertion process.
  • the puncture needle clamping portions 595 on the first needle clamp 590 and the second needle clamp 591 can be inserted and overlapped with each other.
  • the aperture size of the puncture needle installation hole 598 formed between the two V-shaped opening grooves 607 will change, so that the aperture size of the puncture needle installation hole 598 formed by the insertion of the two grooves 607 can be adjusted, so that a variety of puncture needles 7 of different thicknesses can be accommodated.
  • the locking pin insertion portion 596 includes an elliptical through hole 609 provided on the first needle card 590 and a special-shaped through hole 610 provided on the second needle card 591.
  • the special-shaped through hole 610 includes an elliptical portion 611 that can overlap with the elliptical through hole 609.
  • the protrusion 612 extends from one side of the shaped portion 611.
  • the first needle card 590 and the second needle card 591 are integrally formed with a connecting portion 597 on the surface of one side for quick disassembly connection with the puncture device 51.
  • the connecting portion 597 in this embodiment is a hook, that is, two hooks arranged opposite to each other are formed on the first needle card 590 and the second needle card 591.
  • the two hooks arranged opposite to each other and in an inverted cone shape can be used in conjunction with the locking device 598 in Example 2.
  • the locking piece 560 in the locking device 598 can quickly connect, fix and disassemble the needle insertion device 52 of the present invention to the puncture device 51 in Example 2.
  • the belt drive device 600 includes two pulleys 605 and a belt 601 meshed with the pulleys 605.
  • the number of the pulleys 605 can also be more than two, and correspondingly, more than two through holes 602 are provided.
  • two pulleys 605 are preferably provided.
  • the pulley 605 includes a rotating shaft 606 inserted into the through hole 602 and capable of rotating freely, a synchronous pulley 613 integrally formed at one end of the rotating shaft 606, and a locking portion 614 integrally formed at the other end.
  • a plurality of internal teeth 615 are provided on the inner wall surface of the synchronous pulley 613, and external teeth for meshing with the belt 601 are provided on the outer surface of the synchronous pulley 613.
  • the internal teeth 615 are used for plugging and unplugging with the output shaft of the puncture device 51. After the connection and positioning, the output shaft of the puncture device can drive the pulley 605 to rotate.
  • Two pulleys 605 are inserted into the belt 601 in parallel, located at both ends of the belt 601, and connected with the meshing teeth on the inner surface of the belt 601.
  • the rotating shafts 606 of the two pulleys 605 are respectively inserted into the through holes 602 and locked and fixed by two locking pieces (open retaining rings 617).
  • the open retaining rings 617 are stuck in the grooves of the locking parts 614, so that the two pulleys 605 are separated (not in contact with each other), and the belt 601 is in a tensioned state.
  • the rotating shaft 606 can rotate freely in the through hole 602 through the bearing 27.
  • the pulleys 605 are meshed and connected with the belt 601, and any one of the pulleys 605 can drive the other pulley 605 and the belt 601 to rotate synchronously while rotating.
  • a limiting portion 618 is provided at the end of the synchronous pulley 613 away from the rotating shaft 606 , and the limiting portion 618 may be provided only on the synchronous pulley 613 of one pulley 605 .
  • the two belt drive device mounting parts 594 are parallel to each other.
  • the puncture needle clamping parts 595 and the locking pin insertion parts 596 are respectively arranged at both ends of the belt drive device mounting parts 594.
  • the puncture needle clamping parts 595 and the locking pin insertion parts 596 on the first needle clamp 590 and the second needle clamp 591 are plugged (interlocked) into each other.
  • a puncture needle mounting hole 598 for the puncture needle 7 to pass through is formed between the two puncture needle clamping parts 595, and a locking pin insertion hole 599 for the locking pin 593 to pass through is formed between the two locking pin insertion parts 596, as shown in Figure 32.
  • the puncture needle mounting hole 598 and the locking pin insertion hole 599 are arranged in parallel.
  • the puncture needle mounting hole 598 corresponds to the middle position of the belts 601 of the two sets of belt driving devices 600, so that the puncture needle 7 is inserted into the puncture needle mounting hole 598 and passes through the gap between the middle positions of the two belts 601, as shown in Figures 6 and 29.
  • the first needle clamp 590 and the second needle clamp 591 are combined into a whole, and the first needle clamp 590 and the second needle clamp 591 can be opened and closed with the locking pin 593 as the axis.
  • the first needle clamp 590 and the second needle clamp 591 are opened with the locking pin 593 as the axis, and the puncture needle 7 is inserted into the puncture needle installation hole 598 and the first needle clamp 590 and the second needle clamp 591 are closed with the locking pin 593 as the axis, and the puncture needle 7 is limited.
  • the puncture needle 7 can move freely up and down in the puncture needle installation hole 598.
  • the medical staff can hold the belt drive device mounting part 594 of the first needle card 590 and the second needle card 591 with one hand, and press the unlocking handle 558 in the locking device 548 with the other hand, insert the connecting part 597 into the insertion groove 557 of the locking device 548, release the unlocking handle 548, and lock it with the connecting part 597 with the help of the elastic element 559 and the locking piece 560.
  • the driving shaft 581 in the first transmission device is meshed and connected with the belt drive device 600, and then the second transmission device 549 drives the double-threaded screw 551 to rotate, so that the first positioning block 552 and the second positioning block 553 move relative to each other, further driving the first needle card 590 and the second needle card 591 to move relative to each other, and the puncture needle 7 inserted into the puncture needle mounting hole 598 is clamped.
  • the safety baffle 371 in the puncture execution device can be used to make the puncture needle 7 be located at the initial position before the operation. Finally, pull out the lock pin 593 to enter the waiting stage for the puncture operation.
  • the safety baffle 371 is opened first, and then the first transmission device drives the two sets of belt drive devices 600 to drive the puncture needle 7 into the patient's body.
  • the second transmission device 549 drives the double-threaded screw 551 to rotate in the opposite direction, and the first positioning block 552 and the second positioning block 553 move away from each other, further driving the first needle clamp 590 and the second needle clamp 591 to move away from each other.
  • the first needle clamp 590 and the second needle clamp 591 are separated, and the puncture needle 7 remains in the patient's body, completing the operation.
  • this embodiment is improved on the basis of the first embodiment, and only the lock pin insertion part 596 of the first needle card 590 and the second needle card 591 is improved, that is, the lock pin insertion part 596 of the first needle card 590 is integrally formed with a pivoting short shaft 619 with a height of 1-3 mm, and two tapered inclined surfaces 620 are formed on the side of the pivoting short shaft 619 close to the second needle card 591.
  • the second needle card 591 is formed with an oblong through hole 621 for the pivoting short shaft 619 to be inserted and pivotally connected in the lock pin insertion part 596.
  • the first needle card 590 and the second needle card 591 can be quickly combined together, and can also be quickly separated, and after being combined together, they can rotate around the pivoting short shaft 619 as the axis.
  • this embodiment is further improved on the basis of the second embodiment.
  • the outer contour shape of the main body of the first needle card 590 and the second needle card 591 is changed accordingly, and then one of the first needle card 590 or the second needle card 591 combines the belt drive device mounting part 594 with the main body to form a separate structure.
  • a slide 622 is integrally formed at the inner side of the puncture needle clamping portion 595 and the locking pin insertion portion 596 of the second needle clamp 591, and the belt drive device mounting portion 594 provided with two through holes 602 is an independent component.
  • Slide blocks 623 that can slide freely in the slide 622 are integrally formed at both ends of the belt drive device mounting portion 594.
  • a compression spring 624 is provided between the belt drive device mounting portion 594 and the second needle clamp 591. The compression spring 624 is used to push the belt drive device mounting portion 594, so as to adjust the gap between the two belts 601 to adapt to puncture needles 7 of various thicknesses, as shown in Figures 36 and 37.
  • the V-shaped opening groove 607 on the first needle card 590 and the second needle card 591 can be changed into a semicircular groove 607 to facilitate mold opening and processing, as shown in Figures 35a and 35b.
  • a baffle 625 is integrally formed on one side of the semicircular opening groove 607 .
  • the connecting part 597 is two positioning blocks which are respectively located on the same side surfaces of the first needle card 590 and the second needle card 591 and are symmetrically arranged, corresponding to the square column holes 586 on the main support frame 560 and the auxiliary support frame 561.
  • a buckle hook 626 that can cooperate with the puncture device 51 is provided at the top of the first needle card 590 and the second needle card 591, and cooperates with the integrally formed convex hook 587 on the main support frame 560 and the auxiliary support frame 561 to realize the function of the locking device 548.
  • a safety device 372 for limiting the starting position of the puncture needle 7 is assembled at the bottom of the first needle clamp 590, which is used to replace the safety baffle 371 in the first embodiment.
  • a through hole 627 for inserting the safety device is provided at the bottom of the first needle clamp 590.
  • the safety device 372 includes a cylindrical insertion rod 373 and a flat safety rod 374 that are vertically staggered and fixed, as shown in FIG37.
  • the insertion rod 373 is inserted into the through hole 627, so that the safety rod 374 is located at the lower end of the needle tip of the puncture needle 7.
  • the insertion rod 373 can be manually or electrically pulled out or pushed, so that the safety rod 374 leaves the needle tip of the puncture needle 7, and the restriction on the puncture needle 7 is released.
  • the puncture method of the automatic puncture surgical robot system of the present invention is performed according to the following steps:
  • the structured light 3D camera 50 and the CT device 6 installed at the end of the robot arm 3 respectively shoot and scan the calibration device 3.
  • the conversion relationship between the robot arm position and the patient position in the CT device 6 can be determined through the coordinate position relationship of the spherical calibration piece 31 (also called the positioning ball) in the calibration device 3, and the conversion matrix A is obtained; that is, with the help of the structured light 3D camera 50 and the calibration device 3 can uniformly align the coordinate system of the medical imaging device with the coordinate system of the robot arm.
  • the calibration device 3 needs to be placed stably on the CT bed of the CT device 6 in advance.
  • the conversion and alignment of the coordinate system adopt the existing technology and will not be described in detail here.
  • the positioning device 4 on the patient is scanned by the CT device 6, and the accurate position of the puncture operation is transmitted to the console 1 of the robot system.
  • the transmitted information at least includes the accurate position information, the insertion angle information of the puncture needle, and the insertion distance information.
  • the console 1 controls the robot arm 2 to move the puncture needle 7 in the needle insertion device 51 to the accurate position of the puncture operation, and adjust the needle insertion position and angle.
  • the CT device 6 can also directly transmit the CT image and data to the console 1, and the console 1 reads the information in the CT image and then determines the accurate position information, the insertion angle information of the puncture needle and the insertion distance information according to the conversion relationship determined in step 1), and then controls the robot arm 2 to perform the puncture action.
  • the positioning device 4 on the patient's body is photographed by the structured light 3D camera 50 to determine whether the puncture needle 7 in the needle insertion device 51 at the end of the robot arm 2 is aligned with the accurate position of the puncture surgery. Specifically, the position of the positioning device 4 is obtained by the structured light 3D camera 50, and it is determined whether the position information of the positioning device 4 obtained by the structured light 3D camera 50 is consistent with the accurate position information of the puncture surgery transmitted by the CT device 6 in step 2). If yes, the puncture surgery is performed, and if not, the surgery is stopped or steps 2) and 3) are repeated.
  • the automatic puncture surgical robot system and puncture method of the present invention when used in conjunction with CT equipment in a hospital, can replace manual puncture by doctors, does not require the doctor's puncture skills, and the puncture is more accurate and safer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种自动穿刺手术机器人系统及穿刺方法。其中系统包括有用于接收医学影像设备提供影像的控制台(1)、机械臂(2)、定位装置(3)、标定装置(4)及固定安装在机械臂(2)末端的穿刺执行机构(5);穿刺执行机构(5)包括有结构光3D相机(50)、穿刺装置(51)及进针装置(52);结构光3D相机(50)与穿刺装置(51)固定安装成一个整体,随机械臂(2)同步移动;穿刺装置(51)用于驱动进针装置(52)执行夹持穿刺针(7)、驱动穿刺针(7)和释放穿刺针(7);由结构光3D相机(50)和标定装置(4)将医学影像设备的坐标系与机械臂(2)坐标系进行统一配准;由结构光3D相机(50)和医学影像设备分别识别定位装置(3),控制台(1)依据定位装置(3)的位置变化来判断是否执行穿刺手术。

Description

自动穿刺手术机器人系统及穿刺方法 技术领域
本发明涉及穿刺手术机器人领域,具体地说,涉及一种集结构光3D相机、进针装置于一体的自动穿刺手术机器人系统及穿刺方法。
背景技术
中国专利CN113952008B号中公开了一种“交叉驱动型穿刺针进针机构及针穿刺装置”、中国专利CN113243978A号中公开了一种“穿刺装置及手术机器人”、中国专利CN106859742A号中公开一种“穿刺手术导航定位系统和方法”、中国专利CN114041880A号中公开了一种“医疗手术机器人的末端穿刺执行机构”、中国专利CN113796959A号中公开了一种“体表动态定位装置和光学跟踪装置”。
由上述专利可知,使用手术机器人执行穿刺手术过程中用于找准手术位置的方法及装置是根据CT设备传送的位置信息来实现,但是如何判断手术机器人末端的手术执行装置是否移动至正确的手术位置,现有技术是采用红外双目相机,同时在手术执行装置的末端安装多个反光球,通过红外双目相机与反光球的结合来快速判断手术执行装置。
技术问题
利用这种方法、装置虽可以实现,但是在实际使用过程中存在有以下问题:红外双目相机需要相对于手术执行装置独立配设一台设备,在医院CT室有限的空间内,显得设备杂乱,且容易因为触碰而造成移动,无法进行精确定位。
手术执行装置的末端需要安装多个反光球,由于反光球的安装会影响手术执行装置的设计,也会影响手术执行装置对手术功能的实施,尤其是需要快速、准确完成手术过程的穿刺手术。
同时用于完成穿刺手术的执行装置存在使用过程中消毒程序复杂、消毒不一定彻底等诸多问题。
技术解决方案
本发明的目的在于提供一种自动穿刺手术机器人系统及穿刺方法,将结构光3D相机、进针装置、穿刺装置集合成一个整体,固定安装在机器人机械臂的末端,可以有效解决上述问题。
本发明中自动穿刺手术机器人系统用于驱动穿刺针完成穿刺手术,包括有用于接收医学影像设备提供影像的控制台、前端与所述控制台固定安装的机械臂,所述自动穿刺手术机器人系统进一步包括有定位装置、标定装置及固定安装在所述机械臂末端的穿刺执行机构;
所述穿刺执行机构包括有结构光3D相机、穿刺装置及进针装置;
所述结构光3D相机与所述穿刺装置固定安装成一个整体,随所述机械臂同步移动;
所述穿刺装置用于驱动所述进针装置执行夹持所述穿刺针、驱动所述穿刺针和释放所述穿刺针;
由所述结构光3D相机和所述标定装置将所述医学影像设备的坐标系与所述机械臂坐标系进行统一配准;
由所述结构光3D相机和所述医学影像设备分别识别所述定位装置,所述控制台依据所述定位装置的位置变化来判断是否执行穿刺手术。
优选地,所述结构光3D相机包括有结构光源和相机,所述结构光源、所述相机固定安装完成后,所述结构光源的覆盖范围和所述相机的拍摄范围恰好呈重叠的方式位于所述进针装置的下方。
优选地,所述穿刺装置包括有与所述机械臂固定连接的法兰、基座及驱动装置;
所述基座包括有长方形主安装板,固定在所述主安装板一端短侧边的结构光源安装架,固定在所述主安装板另一短侧边的相机安装架,以及固定安装在所述主安装板下表面、位于所述结构光源安装架和相机安装架之间的齿轮箱安装架和进针装置安装架;固定安装在所述结构光源安装架、相机安装架、进针装置安装架中的所述结构光源、所述相机及所述进针装置均位于所述主安装板的同一长侧边。
优选地,所述结构光源安装架包括有第一安装板、第二安装板和连接支架,所述第二安装板与所述第一安装板之间由调节螺栓、紧固螺栓连接,经由调节螺栓调节所述第一安装板、第二安装板之间的距离后由所述紧固螺栓连接固定,所述第二安装板经由所述连接支架固定安装在所述主安装板的短侧边,所述第一安装板固定连接所述结构光源。
优选地,所述相机安装架为一L形连接支架,包括有与所述相机固定连接的安装平板,与所述安装平板一体成形能与所述主安装板侧边贴合固定的连接架。
优选地,所述相机与所述主安装板垂直安装,所述结构光源与所述主安装板呈30-60度角安装。
优选地,所述进针装置包括有能开启与闭合的夹紧装置,驱动轮和从动轮;
所述夹紧装置包括有两块完全对称且相互闭合后用于对所述穿刺针进行限位的定位块、用于分别驱动所述定位块开合的第一摆臂和第二摆臂;
所述主动轮、从动轮位于两块所述定位块闭合后形成的空间内,所述主动轮、从动轮之间的间隙与两块所述定位块闭合后形成的上、下两个限位槽在同一直线上,所述穿刺针位于上、下两个所述限位槽和所述主动轮、从动轮之间的间隙内。
优选地,所述定位块由无毒的医用塑料一体成形,两块所述定位块闭合时呈“冂”字形,所述定位块在两端支脚的外侧表面各设有供所述穿刺针放置的V形槽,在第一内侧面上设置有两个或两个以上与所述第一、第二摆臂插接连接的固定柱,在所述支脚的内侧表面各设置有与所述第一、第二摆臂卡接连接的卡块。
优选地,所述第一摆臂、第二摆臂均与固定安装在所述进针装置安装架上的第一转轴转动连接,所述第一摆臂、第二摆臂由金属材料一体成形,整体呈L形,包括有定位块固定部、枢转部;所述定位块固定部与所述定位块的形状一致,与所述定位块插接贴合固定连接;所述枢转部设有供所述第一转轴设置的第二通孔、与铰链装置枢转连接的凸耳;所述第一摆臂位于所述枢转部设有与所述第二驱动装置连接的驱动臂;所述第二摆臂位于所述定位块固定部设有供所述从动轮安装的从动轮安装臂。
优选地,所述穿刺装置包括有与所述机械臂固定连接的法兰、基座、驱动装置和锁挂装置;
所述基座包括有相互垂直固定连接的主安装板和副安装板,所述主安装板在与所述副安装板安装的一侧一体成形有供所述穿刺针和所述穿刺装置放置的U形凹槽;
所述副安装板呈U形,包括一体成形位于两边的结构光源固定架和相机固定架,位于中间位置的进针装置安装架;
所述锁挂装置固定安装在所述进针装置安装架的最底部,用于快速拆卸、组装所述进针装置,并能驱动所述进针装置作开启或闭合动作;
所述驱动装置包括有用于驱动所述进针装置作进针动作的第一传动装置,用于驱动所述进针装置夹持、释放所述穿刺针的第二传动装置。
优选地,所述锁挂装置包括有滑轨、第一定位块、第二定位块、双螺纹丝杆及用于锁固所述进针装置的锁固机构;
所述滑轨与所述进针装置安装架固定安装;
所述第一定位块、第二定位块对称、滑动地与所述滑轨联接;
所述双螺纹丝杆与所述滑轨平行,同时穿过所述第一定位块、第二定位块;所述第一定位块、第二定位块分别与所述双螺纹丝杆表面不同方向的螺纹段啮合,旋转所述双螺纹丝杆能同步驱动所述第一定位块、第二定位块作相对或相背移动;
所述第一定位块、第二定位块的中间位置分别与所述第一传动装置枢转连接,所述第一传动装置的驱动转轴穿过所述第一定位块、第二定位块与所述进针装置驱动连接;所述双螺纹丝杆的一端与所述第二传动装置连接。
优选地,所述锁固机构包括有对称设在所述第一定位块、第二定位块上的解锁手柄、弹性元件及能滑动的锁固件。
优选地,所述穿刺装置包括有法兰、基座及驱动装置;
所述基座包括有主安装板、主支撑架和副支撑架;
所述结构光3D相机经所述主安装板与所述主支撑架固定成一整体;
所述副支撑架能相对平行移动地与所述主支撑架安装连接;
所述主支撑架、副支撑架均设有用于同步驱动所述进针装置执行穿刺动作的传动装置;
所述进针装置能快速与所述主支撑架、副支撑架进行组装与拆卸,并与所述传动装置传动连接;
位于所述进针装置安装位置相对的一侧固定安装有所述驱动装置;
所述副支撑架相对于所述主支撑架作平行移动分离的同时能驱动所述进针装置分离,对所述进针装置中的所述穿刺针进行释放。
优选地,所述主支撑架为由金属材料一体成形的异形件,包括第一区段、第二区段、第三区段和第四区段;所述第一区段经所述主安装板与所述机械臂末端连接,所述第四区段用于安装所述传动装置。
优选地,所述副支撑架为由金属材料一体成形的异形件,与所述主支撑架的所述第三区段、第四区段对应配合,所述副支撑架一体成形有能插入所述第三区段中导引孔内的导杆,并能在所述导引孔内自由进出滑动。
优选地,所述进针装置包括有能相互闭合或分离的第一针卡和第二针卡,所述第一针卡、第二针卡均安装有一组用于同步驱动所述穿刺针作进针动作的皮带驱动装置;
所述第一针卡和所述第二针卡均由一次性医用材料一体成形,均包括有穿刺针夹持部、连接部及皮带驱动装置安装部;
所述第一针卡、第二针卡闭合后在所述穿刺针夹持部形成供所述穿刺针穿设的穿刺针安装孔,穿入所述穿刺针安装孔的所述穿刺针夹装在两组所述皮带驱动装置之间;
所述连接部用于将所述进针装置快速地安装在所述穿刺装置上,也能快速地从所述穿刺装置上拆卸下来。
优选地,每一组所述皮带驱动装置包括有两个或两个以上的皮带轮,与所述皮带轮啮合连接的皮带,每一组所述皮带驱动装置的所述皮带轮至少一个能与所述穿刺执行机构的输出轴驱动联接,使两组所述皮带驱动装置中的所述皮带能作同步相对运动,用于驱动位于所述穿刺针安装孔、两组所述皮带驱动装置之间的所述穿刺针作穿刺进针动作。
优选地,所述穿刺针夹持部分别位于第一针卡或第二针卡两端的旁侧,且位于所述皮带驱动装置安装部的两端;所述穿刺针夹持部的旁侧设置具有枢转功能的所述锁合结构。
优选地,所述锁合结构包括有所述第一针卡、第二针卡分别一体成形的锁销插入部,能插入与拔出的锁销;所述锁销插入部包括有位于所述第一针卡或所述第二针卡上、下两端部的椭圆形通孔,位于所述第二针卡或所述第一针卡上、下两端部的异形通孔,所述椭圆形通孔和所述异形通孔叠置后形成供所述锁销插入与拔出的锁销插入孔。
优选地,所述锁合结构包括一体成形于所述第一针卡或第二针卡上的枢转孔,一体成形于所述第二针卡或第一针卡上的枢转短轴,所述枢转短轴的高度为1-3毫米。
本发明中自动穿刺手术机器人系统的穿刺方法,包括以下步骤:
1)通过结构光3D相机、CT设备分别对标定装置进行拍摄和扫描,确定出机械臂位置和CT设备中患者位置的转换关系;
2)通过CT设备对患者身体上的定位装置进行扫描,将穿刺手术的准确位置传送给机器人系统,依据步骤1)中确定的转换关系由机器人系统控制机械臂,将进针装置的穿刺针移动至穿刺手术的准确位置;
3)通过结构光3D相机对患者身体上的定位装置进行拍摄,判断机械臂末端进针装置中的穿刺针是否对准穿刺手术的准确位置,如果是,则执行穿刺手术,如果不是,则停止手术或重复步骤2)、3)。
优选地,在步骤3)中,在判断出进针装置中的穿刺针已对准穿刺手术的准确位置后,进一步增加提示手动开启安全挡板的步骤。
优选地,步骤2)中,CT设备将穿刺手术的准确位置信息传送给机器人系统的过程中,传送的信息包括有准确的位置信息、穿刺针的进针角度信息以及进针距离信息。
有益效果
本发明中用于自动穿刺手术机器人系统的标定装置包括有基板,多个球状标定件,与所述球状标定件对应的柱状连接件,直接印制在所述基板一侧表面的标志结构,所述柱状连接件的长度相同,所有所述柱状连接件均固定设置在所述基板的同一侧表面,且位于所述基板没有印制所述标志结构的侧表面,每个所述球状标定件对应锁固在所述柱状连接件内的不同高度位置。
本发明中用于自动穿刺手术机器人系统的定位装置由密度在3-5/cm3之间的陶瓷材料制成,在所述定位装置本体的中间设有直径在2-15毫米之间的第一通孔,从所述第一通孔至所述本体边缘的两个侧表面分别为倾斜面和平面,所述倾斜面呈倒圆锥台状。
本发明通过将结构光3D相机、穿刺装置、进针装置结合在一起,不仅可以解决独立配设红外双目相机设备的问题,而且可以有效实现精确判断位置的目的,还可以快速将CT床中患者位置信息与机器人位置信息结合一起,快速执行手术过程。
附图说明
图1是本发明中机器人系统的工作原理示意图。
图2是本发明中机器人系统的工作状态示意图。
图3是本发明中机器人系统的穿刺流程框图。
图4是本发明中标定装置的立体结构示意图。
图4a是图4中沿A-A线的剖视图。
图4b是图4中沿B-B线的部视图。
图5是本发明中定位装置的立体结构示意图。
图5a是本发明中定位装置的剖视示意图。
图6是实施例一中穿刺执行机构安装在机械臂末端的立体结构示意图。
图7是图6中穿刺执行机构的放大立体结构示意图。
图8是施例一中穿刺装置与进针装置的立体结构示意图。
图9是图8中穿刺装置另一方向的立体结构示意图。
图10是图8中穿刺装置另一方向的立体结构示意图二。
图11是图8中穿刺装置去除主安装板后的放大立体结构示意图。
图12是实施例一中夹紧装置在开启状态时的立体结构示意图。
图13是实施例一中夹紧装置在闭合状态时的立体结构示意图。
图14是实施一中定位块的立体结构示意图。
图15是实施例一中第一摆臂的立体结构示意图。
图16是实施例一中第二摆臂的立体结构示意图。
图17是实施例二中穿刺装置与进针装置的立体结构示意图。
图18是实施例二中穿刺装置与进针装置的立体结构示意图二。
图19是实施例二中锁挂装置的立体结构示意图。
图20是实施例二中锁挂装置的剖视示意图。
图21是实施例二中双螺纹丝杆的立体结构示意图。
图22是实施例三中穿刺执行机构的立体结构示意图。
图23是实施例三中穿刺装置与进针装置组装时的立体结构示意图。
图24是实施例三中穿刺装置的立体结构示意图。
图25是实施例三中穿刺装置去除副支撑架后的立体结构示意图。
图26是实施例三中主支撑架的立体结构示意图。
图27是实施例三中副支撑架的立体结构示意图。
图28是实施例三中副支撑架与传动装置组装后的立体结构示意图。
图29是本发明中进针装置实施方式一的立体结构示意图。
图30是本发明中进针装置实施方式一中第一针卡的立体结构示意图。
图31是本发明中进针装置实施方式一中第二针卡的立体结构示意图。
图32是本发明中进针装置实施方式一的剖视示意图。
图33是本发明中进针装置皮带驱动装置的立体结构示意图。
图34a、图34b是本发明中进针装置实施方式二中第一针卡、第二针卡的立体结构示意图。
图35a、图35b是本发明中进针装置实施方式三中第一针卡、第二针卡的立体结构示意图。
图36是本发明进针装置实施方式三中活动皮带驱动装置的立体结构示意图。
图37是本发明中进针装置实施方式三的立体结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明 的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1、图2和图3所示,本发明中的自动穿刺手术机器人系统包括有控制台1、机械臂2、标定装置3、定位装置4和穿刺执行机构5,系统与医院CT内的CT设备6配合,对患者实施穿刺手术,将穿刺针7依据预先设定的路径刺入患者体内的病灶所在位置,穿刺完成后由医生通过穿刺针7对患者进行治疗。
控制台1主要包括有箱体11及位于箱体11内部的控制装置,控制台1的底部安装有移动装置10,可以根据手术需求移动至便于手术的任意位置。本发明优先采用万向轮装置,具体结构不再详细描述。
机械臂2的前端固定安装在控制台1的顶面,穿刺执行机构5固定安装在机械臂2末端,与机械臂2一起受控制台1的控制。控制台1控制机械臂2将穿刺执行机构5移动至对患者实施穿刺手术的位置,再配合CT设备6由控制台1控制穿刺执行机构5完成穿刺手术过程。控制台1内的控制装置在本发明的描述后对于计算机领域的技术人员来说是容易实现的,机械臂2则采用市售成熟产品,因此对于控制台1、机械臂2的结构与工作原理不再详细说明。
如图4、图4a、图4b所示,标定装置3包括有基板30,四个球状标定件31,四根柱状连接件32,四个锁固件33以及四个紧固件34。本实施例以四个球状标定件31为例,但并不限于此,可以是三个或三个以上都能实现。
基板30优先选用长为190mm、宽为160mm、厚为8mm的方形铝合金基板,可为结构光3D相机50的拍摄提供更好的光感。在基板30的四个直角位置处各设有一个穿孔,用于分别固定安装四个柱状连接件32,在基板30顶部侧表面、四个穿孔的正中间设置有标志结构35。标志结构35可以是绘制或印刷在基板30表面的几何图形,优选是两种颜色差别大(例如:黑白)的具有一定规则排列的图案,关于图案的形状及排列方式与相机的运算规则有关,在此不再详细说明。
四根柱状连接件32经四个通过锁固件33均固定在基板30的底面(同一侧面),即没有设置标志结构35的侧表面,当然也可以在基板30的两个侧表面均设置有标志结构35。四根柱状连接件32的长度相同,与基板30组装完成后形成一个方形台面桌,将基板30顶部侧表面上的标志结构35完全呈现在结构光3D相机50的可视范围内,使结构光3D相机50可以自由选择拍摄角度,以及选择多个拍摄角度,从而可以增加结构光3D相机50的标定精度。
每根柱状连接件32均由聚甲醛热塑性结晶聚合物(POM,polyformaldehyde)材料一体成形,一端经由锁固件33与基板1固定连接,另一端设置有圆柱状沉孔,圆柱状沉孔的内壁设有位于底部的光滑段孔36和外端的内螺纹段孔37。本发明选用直径为20mm的球状标定件31,沉入在高度为18mm、直径为19.9-20mm的光滑段孔36内,在光滑段孔36的延伸段设置有直径为22mm的内螺纹段孔37。由于内螺纹段孔37的直径大于光滑段孔36的直径,球状标定件31可以快速进入光滑段孔36内,借助于POM材料的特性,使球状标定件31进入光滑段孔36时有一点卡紧状态,需要使用一点力量才可以进入到光滑段孔36内部,并且球状标定件31进入光滑段孔36后不会发生任何移动,使球状标定件31的球心始终处于光滑段孔36的正中心位置。球状标定件31沉入光滑段孔36的过程中,由于球状标定件31与光滑段孔36的内壁紧密配合,在光滑段孔36内的气体容易顶住球状标定件31,为此在光滑段孔36的底部设有穿透孔壁的气压平衡孔38,确保球状标定件31与光滑段孔36的精准组装。
由于光滑段孔36的高度小于球状标定件31的直径,因此当球状标定件31进入到光滑段孔36底部时,仍高出光滑段孔36,从而在内螺纹段孔37内置入橡胶垫片39,再通过紧固件34螺纹进入后,借助于橡胶垫片39的弹性变形可以将球状标定件31非常稳固的托顶在光滑段孔36内,确保球状标定件31球心的坐标不会发生任何变化。
紧固件34呈圆柱状,在圆柱状外表面设置有外螺纹,同时在上、下两个端面设置有对称的锁紧凹槽,方便组装与拆卸。锁固件33则采用市售标准件。
如图5和图5a所示,定位装置4为一薄板(片)状本体,在本体的中间设有直径在2-15毫米之间的第一通孔40,第一通孔40的直径优选8毫米,供穿刺针7穿过,并保证穿刺针7进针准确的前提下可以适应大部分不同大小的病灶。
定位装置4的外轮廓形状可以是圆形、三角形、方形或椭圆形等,并不限制。本发明优选圆形,方便加工与生产。
定位装置4从第一通孔40至边缘41形成两个侧表面,第一侧表面为倾斜面42,第二侧表面为平面43,倾斜面42从第一通孔40至边缘41呈倒圆锥台状。倾斜面42与平面43之间的夹角在15-60度之间,最佳夹角为30度或45度,可以非常精准地计算出定位装置4中间点(中间第一通孔40的中心点)的坐标值,方便穿刺手术机器人系统的精确计算与控制,同时用于限制穿刺针的进针角度,确保穿刺手术机器人系统的穿刺动作的准确无误。
本发明中的定位装置4采用密度在3-5/cm3之间的陶瓷材料,最佳为氧化铝陶瓷或三氧化二铝陶瓷材料,且厚度在2-6毫米之间,只有选择密度在3-5/cm3之间的陶瓷材料才可以在CT设备6中扫描后非常清晰地成像,同时也可在结构光3D相机50中清晰地成像,从而医生可以在CT图像中快速的查看到定位装置4的位置,以及控制台1可以快速的识出定位装置4中间点的位置坐标。
如图6所示,穿刺执行机构5包括有结构光3D相机50、穿刺装置51及进针装置52。其中结构光3D相机50与穿刺装置51固定连接成一个整体,安装在机械臂2的末端随机械臂2的移动而同步移动。
如图6、图7、图17和图18所示,结构光3D相机50包括有结构光源500和相机501,将结构光源500和相机501拆分成两个部件,分别与穿刺装置51固定安装;也可以将结构光源500和相机501组合成一个整体,与穿刺装置51固定安装,如图22所示。只需使结构光源500的覆盖范围503和相机501的拍摄范围504恰好呈重叠的方式位于进针装置52的下方,即只需使结构光3D相机50能对穿刺装置51下方高度在1m之内,直径范围在1m区域内的标定装置3或定位装置4以及其他物件进行拍摄。
如图7、图8、图17、图18和图22所示,进针装置52可以与穿刺装置51连接成一个整体,仅对进针装置52中与穿刺针7接触的部件进行更换;也可以与穿刺装置51呈快速拆卸与组装的活动连接,下面以不同的实施例作详细说明。
实施例一
如图6所示,结构光3D相机50包括有结构光源500、相机501,本实施例优选一个结构光源500和相机501组合使用,并且将结构光源500和相机501分开设置,分别与穿刺装置51固定安装,可以准备无误地测量出定位装置4、标定装置3的具体位置,如图1所示,当然也可以使用两个结构光源500,可以更大程度上消除单向投影的阴影带来的无效数据,能更真实、准确的测量出定位装置4、标定装置3的实际位置。
如图7、图8和图9所示,穿刺装置51包括有与机械臂2固定连接的法兰510,基座及用于驱动进针装置52的驱动装置。基座同时固定安装法兰510、结构光3D相机50、进针装置52及驱动装置。具体结构如下:
基座包括有主安装板512、结构光源安装架513、相机安装架514、进针装置安装架515、齿轮箱安装架516。
主安装板512为一长方形金属板,厚度在0.8-1.5厘米之间,能够承担结构光3D相机50、进针装置52及驱动装置的重量。长方形金属板的两端侧(短边方向)分别固定安 装有结构光源安装架513、相机安装架514;结构光源安装架513、相机安装架514和进针装置安装架515在安装完成后使得结构光源500、相机501、进针装置52位于主安装板512同一长侧边的方向,在主安装板512的下表面可以有足够的空间用于安装驱动装置。具体是进针装置52位于结构光源500、相机501之间,相机501垂直于主安装板512安装,可以在扫描测量中获得原生的图像信息,获得最佳的布置效果,从而测量的尺寸信息更为准确。结构光源500与主安装板512呈一定角度安装,安装角度为30-60度,最佳角度为45度。如图6和图7所示,结构光源500、相机501固定安装完成后,结构光源500的覆盖范围503和相机501的拍摄范围504恰好呈重叠的方式位于进针装置52的下方,完全覆盖进针装置52的穿刺范围。通过结构光源500提供相移条纹光源,相机501可以在静止不动的情况下完成扫描,完成扫描的范围位于进针装置52的正下方,可以准确地计算出扫描范围内的每一点的准确坐标,使进针装置52能够准确无误的执行穿刺动作。
主安装板512的顶面靠近结构光源安装架513的一端固定安装法兰510,另一端固定安装伺服电机545。主安装板512位于伺服电机545的下方位置固定安装有齿轮箱安装架516,进针装置安装架515与齿轮箱安装架516固定安装连接,可以有效缩小穿刺装置51整体的体积。
如图7和图9所示,结构光源安装架513包括有第一安装板340,第二安装板341和连接支架342,第二安装板340与第一安装板341之间由调节螺栓343、紧固螺栓344连接,经调节螺栓343调整第一安装板340、第二安装板341之间的距离后由紧固螺栓344连接固定。通过结构光源安装架513的结构设计可以调整结构光源500、相机501、进针装置52之间的相对位置。第二安装板341经由连接支架342固定安装在主安装板512的一端的短侧边,第一安装板340直接固定结构光源500,结构光源500的安装角度经由结构光源底座(图中未示出)与第一安装板340进行调整固定,可以通过弧形滑道固定,角度调整后锁固固定,这对本领域的技术人来说是容易实现的,在此不再详细说明。
如图8所示,相机安装架514为一L形连接支架,包括有与相机501固定连接的安装平板350,与安装平板350一体成形的能与主安装板512一端侧边贴合固定的连接架351。利用L型连接支架可以将相机501垂直稳固的固定在主安装板512的侧边,确保相机扫描工作时的稳定。
如图10所示,进针装置安装架515呈L形,具体结构可以根据整体布局合理设置,并不限于此。进针装置安装架515用于固定安装夹紧装置520,使夹紧装置520中的穿刺针7可以在驱动轮521和从动轮522的驱动下执行进针动作,在穿刺针7完成进针动作的 瞬间由电动推杆519驱动第一摆臂524和第二摆臂525执行开启动作,释放穿刺针7,脱离对穿刺针7的限制。
齿轮箱安装架516在最底部的内表面设置有滑道370,在两相对的滑道370内滑动设置有安全挡板371,在手动控制下,安全挡板371可以在滑道370内移动,在进针装置51穿刺前可以手动移动安全挡板371,抵住穿刺针7下移,确保自动穿刺手术机器人系统在最后穿刺之前穿刺针7均不会由于误操作而执行穿刺动作,只有在确保全部安全的前提下,才会手动移开动安全挡板371,执行最后的穿刺动作。
如图10和图11所示,驱动装置包括有用于驱动穿刺针7进针动作的第一驱动装置,用于夹持、释放穿刺针7的第二驱动装置。第一驱动装置包括有安装在主安装板512顶部的伺服电机545、安装在齿轮箱安装架516内部的齿轮箱517;第二驱动装置包括有直接安装在主安装板512下表面的传感器518和电动推杆519。伺服电机545、齿轮箱517、传感器518及电动推杆519等元器件均采用市售成熟产品,不再详细描述。
如图11、图12和图13所示,进针装置52包括有能开启与闭合的夹紧装置520,驱动轮521和从动轮522。
夹紧装置520包括有两块完全对称且能相互闭合的定位块523、安装在进针装置安装架515上用于分别驱动定位块523开合的第一摆臂524和第二摆臂525。
第二驱动装置中的电动推杆519连接夹紧装置520,在传感器518的控制下夹紧装置520作开启与闭合动作,执行穿刺动作之前,夹紧装置520呈闭合状态,如图7和图13所示,穿刺针7位于驱动轮521与从动轮522之间,由第一驱动装置中的伺服电机545驱动齿轮箱517的输出轴511,并进一步带动驱动轮521,从动轮522固定安装在夹紧装置520的第二摆臂525上,在驱动轮521和从动轮522的作用下,穿刺针7执行穿刺动作,当穿刺动作完成后,夹紧装置520带动从动轮522开启,释放对穿刺针7的限制。
如图13和图14所示,两块定位块523均由无毒的医用塑料一体成形,闭合后呈“冂”字形,每块定位块523在两端支脚的外侧表面各设有供穿刺针7放置的V形槽526,在第一内侧面527上设置有三个固定柱528,固定柱528的数量可以是两个或两个以上,具体根据定位块523的尺寸设定。在支脚的内侧,V形槽526的背面设有卡块529,利用固定柱528、卡块529可以使定位块523随时与第一摆臂524或第二摆臂525插接连接,并且定位块523由无毒的医用塑料制成,因此作为一次性用具使用,即在每次手术完成后,对定位块523进行换更,确保穿刺针7的使用安全。
如图15和图16所示,第一摆臂524、第二摆臂525均由金属材料一体成形,整体呈L形,均经第一转轴530与进针装置安装架515转动连接,优选地,两根第一转轴530的安装结构相同,其中一端与进针装置安装架515固定连接,另一端与第一摆臂524或第二摆臂525转动连接,优选是轴承连接。
第一摆臂524、第二摆臂525包括有定位块固定部531、枢转部532,定位块固定部531与定位块523的形状一致,与定位块523插接贴合固定连接;枢转部532设有供第一转轴530设置的第二通孔533、与铰链装置534枢转连接的凸耳535;第一摆臂524位于枢转部532设有与电动推杆519转动连接的驱动臂536。第二摆臂525位于定位块固定部531设有供从动轮522安装的从动轮安装臂537。优选地,从动轮安装臂537与第二摆臂525的定位块固定部531一体成形,位于设置沉孔538的背面,也可以由连接件固定连接。铰链装置534采用双轴结构,为市售成熟产品,在此不再详细描述。
优选地,驱动臂536中设有截面呈长条状的第三通孔539,通过第二转轴541与拨杆540转动连接。如图7和图11所示,拨杆540与电动推杆519的输出轴垂直固定连接,电动推杆519在进出移动的过程中,带动拨杆540摆动,拨杆540的活动端通过第二转轴541驱动第一摆臂524摆动,再借助于铰链装置534使第一摆臂524和第二摆臂525作开合动作。并进一步带动定位块523作开合动作,完成对穿刺针7的限位和释放。电动推杆519的直线移动距离由两个位置传感器518控制。
为了配合与定位块523的插接连接,第一摆臂524、第二摆臂525在定位块固定部531上设置与固定柱528相应的沉孔538,以及与卡块529配合的卡槽542。优选地,为了方便插接连接,固定柱528表面呈锥面状。
本实施例一中的定位块523、主动轮521、从动轮522在每次穿刺手术后均需要与穿刺针7一起更换掉。
实施例二
如图17和图18所示,本实施例中的穿刺执行机构包括有结构光3D相机50、穿刺装置51和一次性使用的进针装置52。进针装置52整体能快速地与穿刺装置51进行组装与拆卸。
本实施例中的结构光3D相机50与实施例一相同,将结构光源500、相机501分成两个部件,分别固定在穿刺装置51上。
穿刺装置51与实施例一中的基本相同,其不同之处在于将进针装置安装架515、结构光源安装架513和相机安装架514设计成一整体,成为副安装板543,再设置一组用于 驱动进针装置52作开合的锁挂装置548,使进针装置52可以整体作为一次性使用的用具,使穿刺针7的更换、消毒更加方便、使用更加安全卫生。具体是:
穿刺装置51包括有与机械臂2固定连接的法兰510、基座、驱动装置和锁挂装置548。
基座包括有主安装板512和副安装板543。驱动装置包括有用于驱动穿刺针7进针动作的第一驱动装置,用于夹持、释放穿刺针7的第二驱动装置。
法兰510与主安装板512固定连接后用于与机械臂末端固定连接。在主安装板512远离法兰510固定安装的一侧垂直安装副安装板543。
主安装板512由厚度在0.8-1.5mm的金属板材一体成形,在安装副安装板543的一侧一体成形有U形凹槽544,为进针装置52及穿刺针7提供足够的空间。
副安装板543由厚度在0.8-1.5mm的金属板材一体成形,呈U形,包括有一体成形位于两边的结构光源固定架513和相机固定架514,位于中间位置的进针装置安装架515。
第一驱动装置包括有固定安装在主安装板512下方的伺服电机545,与进针装置52中皮带驱动装置600传动连接的第一传动装置546。
第二驱动装置包括有固定安装在主安装板512下方,结构光源固定架513后侧的第二伺服电机547,用于驱动锁挂装置548作开启与闭合的第二传动装置549。第一传动装置546、第二传动装置549可以采用皮带传动、齿轮传动等多种机械传动,只需满足精度要求即可,对于本领域的技术人员来说是容易实现的,在此不再详细说明。
如图19、图20所示,锁挂装置548包括有滑轨550、双螺纹丝杆551,对称设置在双螺纹丝杆551上的第一定位块552、第二定位块553,以及用于释放和锁固一次性进针装置52的锁固机构。
滑轨550经由螺栓等连接件平行固定在进针装置安装架515最底端,将锁挂装置548整体挂装在副安装板543上。
第一定位块552、第二定位块553均为由金属材料一体成形、相互对称的异形件,能与进针装置52相互配合组装,对称设置后均与滑轨550滑动连接,可以在滑轨550上作相对或相背的自由滑动。中间位置一体成形有供第一传动装置546的驱动转轴581枢转设置的惯穿孔555。在惯穿孔555处一体成形有供进针装置52置入的容置空间556,位于容置空间556的侧边设置有与进针装置52插接连接插入槽557,在插入槽557的外侧进一步设置有能对进针装置52进行锁固与解锁的锁固机构,锁固机构包括有解锁手柄558、弹性元件559及能滑动的锁固件560。
双螺纹丝杆551与滑轨550平行,同时穿过第一定位块552和第二定位块553,双螺纹丝杆551为一圆柱直杆,在其圆柱表面分成三段,如图21所示,分别为与第二传动装置549连接的驱动段5510,与第一定位块552螺纹连接的第一螺纹段5511、与第二定位块553螺纹连接的第二螺纹段5512。第二传动装置549带动双螺纹丝杆551转动的同时,穿在第一螺纹段5511上的第一定位块552、第二螺纹段5512上的第二定位块553可以沿着滑轨550作相对或相背的直线移动。使第一定位块552、第二定位块553作开启与闭合两种方式的运动。
实施例三
如图22、图23、图24和图25所示,本实施例中的穿刺执行机构包括有结构光3D相机50、穿刺装置51和一次性使用的进针装置52。穿刺装置51用于驱动进针装置52对穿刺针7的夹持、执行穿刺以及可以快速地释放穿刺针7,并且进针装置52能快速地实现穿刺装置51进行组装与拆卸。
本实施例中的穿刺执行装置是在实施例二的基础上作进一步改进,为了简化整体结构,将结构光3D相机50的结构光源500和相机501组合成一个整体,由主安装板512与主支撑架560固定成一整体,再经法兰510直接固定安装在机械臂2末端。
为进一步简化驱动装置,将副安装板543与锁挂装置548的结构进一步简化,从而缩小穿刺执行装置5整体的体积。具体是:
穿刺装置51包括有法兰510、基座及用于驱动进针装置52的驱动装置。基座包括有主安装板512、主支撑架560和副支撑架561。
驱动装置包括有用于驱动穿刺针7进针动作的第一驱动装置,用于夹持、释放穿刺针7的第二驱动装置。第一驱动装置包括有伺服电机545和传动装置551,第二驱动装置包括有电动推缸550。
伺服电机545和电动推缸550固定安装在主支撑架560和/或副支撑架561的背侧,并靠近结构光3D相机50安装,如图22和图25所示。
副支撑架561和主支撑架560平行设置成一个整体,且能相对主支撑架560作平行开启与闭合移动。具体地,主支撑架560为由金属材料一体成形的异形件,包括第一区段562、第二区段563、第三区段564和第四区段565。其中第一区段562用于与主安装板512、机械臂2末端连接,第三区段564用于固定安装电动推缸550,第二区段563用于连接第一区段562和第三区段564,第四区段565用于安装传动装置551。电动推缸550 经由固定架552固定安装在第三区段564的后侧,固定架552由金属材料一体成形,与电动推缸550配合,并经由螺栓等连接件锁固。
电动推缸550也可以固定安装在副支撑架561上,本实施例以将电动推缸550固定安装在主支撑架560上为例说明。
主支撑架560位于第四区段565一体成形有能与副支撑架561组装配合的导引孔566,同时在第四区段565的最底部一体成形用于安装激光装置(图中未示出)的安装孔567。第四区段565一体成形有供传动装置551穿设组装的惯穿孔555,以及在第四区段565的后背一体成形有供激光装置、穿刺针保险装置569电源线及控制线走线用的线槽570,并由线槽封板5701可拆卸地封装,如图22、图24和图25所示,可以有效改善穿刺装置的整体外观效果,避免电线的外露。
优选地,为了方便与副支撑架561的准确对位,在第四区段565与导引孔566同侧面上一体成形的定位柱574。
副支撑架561为由金属材料一体成形的异形件,与主支撑架560的第三区段564、第四区段565配合对装成一个整体,并能相对主支撑架560作平行移动。
优选地,副支撑架561一体成形有能插入主支撑架560导引孔566内的导杆571,并能相对于导引孔566自由的滑动进出,用于限制副支撑架561相对于主支撑架560的移动位置及方向。与导杆571平行一体成形有用于容纳电动推缸550的安装槽572,并在安装槽572的一端一体成形有供电动推缸550的电动推杆553端部固定连接的固定件573。与主支撑架560中定位柱574相对应,在副支撑架561上一体形成有定位孔575,与主支撑架560上的定位柱574相配合、定位。
为了方便传动装置551的组装及调整,副支撑架561在与主支撑架560中惯穿孔555对称的位置设置有一方形框孔576,并与方形框孔576配对设有一方形滑块577,方形滑块577与副支撑架561之间通过沉孔578、弹性元件579联接,使得方形滑块577与副支撑架561之间能作微调,可以与一次性进针装置51作更好的传动配合连接。
传动装置551包括有与伺服电机545输出轴固定连接的第一伞齿580,两根分别与主支撑架560、副支撑架561转动连接的驱动转轴581,与第一伞齿580啮合的第二伞齿582,以及分别固定在两根驱动转轴581中部位置且相互啮合并传动的直齿齿轮583。
一根驱动转轴581直接穿过主支撑架560的惯穿孔555,并经由轴承584转动连接,可以自由的转动。驱动转轴581的一端延伸出主支撑架560的后侧固定连接第二伞齿582; 另一端延伸出主支撑架560的前侧固定安装一直齿齿轮583,并在该端的末端直接成形有能与一次性进针装置51插拔并啮合的轮齿585,如图28所示。
另一根驱动转轴581穿过方形滑块577,在自由转动的同时还能随方形滑块577作微调,可以更好地与一次性进针装置51组装配合。
在主支撑架560、副支撑架561的前侧表面一体成形有用于固定进针装置51的锁固机构,具体包括有直接对称成形在主支撑架560、副支撑架561前侧表面的方形柱孔586和凸钩587,如图23所示。
为了配合实施例二、实施例三中穿刺装置51,能与穿刺装置51快速组装与拆卸的一次性进针装置51具体结构如下:
如图17、图23和图29所示,一次性进针装置51包括有组合后能一起置入锁挂装置548第一定位块552、第二定位块553的容置空间556内的第一针卡590和第二针卡591,第一针卡590和第二针卡591也可以置入主安装板560、副安装板561前面的容置空间556内。
实施方式一
如图29、图30和图31所示,第一针卡590和第二针卡591均由医用材料一体成形,借由锁销593组合在一起。第一针卡590和第二针卡591均包括有皮带驱动装置安装部594、穿刺针夹持部595、锁销插入部596及能与穿刺执行装置快速拆卸或固定连接的连接部597。具体地:
皮带驱动装置安装部594直接与第一针卡590或第二针卡591一体成形,包括有两个轴平行设置的通孔602,两个通孔602沿穿刺针7的进针安装方向分布。优选地,两个通孔602呈上、下平行设置,在通孔602的内壁面中间形成有台阶603,在通孔602的两端通过轴承604与皮带轮605的转轴606转动连接。
穿刺针夹持部595设置有截面呈V形的开口凹槽607,沿开口凹槽607底部延伸有引导块608。引导块608用于引导穿刺针7的置入,防止穿刺针7进入过程中发生倾斜。第一针卡590、第二针卡591上的穿刺针夹持部595可以相互对插叠合在一起。通过水平相向或背向移动第一针卡590、第二针卡591,两V形开口凹槽607之间形成穿刺针安装孔598的孔径大小会有所变化,从而可以调整两个凹槽607对插形成的穿刺针安装孔598的孔径大小,从而可以适应多种不同粗细的穿刺针7。
锁销插入部596包括有第一针卡590上设置的椭圆形通孔609,第二针卡591上设置的异形通孔610。异形通孔610包括有能与椭圆形通孔609重叠的椭圆形部611,从椭圆 形部611一侧延伸出的凸出部612。第一针卡590、第二针卡591的锁销插入部596重叠设置后,椭圆形通孔609与异形通孔610形成锁销插入孔599,借助于异形通孔610的设置,可以使具有弹性功能的锁销593限制第一针卡590相对于第二针卡591的打开角度。锁销593可以由弹性金属材料弯折而成,方便插拔。
第一针卡590、第二针卡591在与穿刺装置51快速拆卸连接的一侧表面一体成形有连接部597,本实施方式的连接部597为一个挂钩,即在第一针卡590、第二针卡591上形成两个位置相对设置的挂钩,利用两个相对设置且呈倒锥形的挂钩可以配合实施例二中的锁挂装置598,与锁挂装置598中的锁固件560可以将本发明中进针装置52快速与实施例二中的穿刺装置51连接固定与拆卸。
皮带驱动装置600包括有两个皮带轮605,与皮带轮605啮合的皮带601。皮带轮605的数量也可以两个以上,与之相对应,设置有两个以上的通孔602即可,本实施方式优选两个皮带轮605。皮带轮605包括有插入通孔602内并能自由转动的转轴606,在转轴606一端一体成形的同步带轮613,另一端一体成形的锁卡部614。在同步带轮613内壁面设置有多个内卡齿615,同时在同步带轮613的外表面设置有用于皮带601啮合的外齿。内卡齿615用于与穿刺装置51的输出轴插拔联接,联接定位后穿刺装置的输出轴可以驱动皮带轮605转动。
两个皮带轮605平行套入皮带601内,位于皮带601内的两端,与皮带601内表面的啮合齿连接,两个皮带轮605的转轴606分别插入通孔602后经两个锁固件(开口挡圈617)锁合固定,开口挡圈在617卡在锁卡部614的凹槽内,使得两个皮带轮605呈分离状态(没有相互接触啮合),并使皮带601呈张紧状态,转轴606通过轴承27在通孔602内可以自由的转动。通过皮带轮605与皮带601啮合连接,其中任意一个皮带轮605转动的同时可以带动另一皮带轮605、皮带601作同步转动。
为了防止皮带601从皮带轮605上滑下来,在同步带轮613远离转轴606的端设置有限位部618,并且可以仅在一个皮带轮605的同步带轮613上设置有限位部618。
第一针卡590、第二针卡591组合后使两个皮带驱动装置安装部594呈平行状,均在皮带驱动装置安装部594两端分别设置有并列分布的穿刺针夹持部595和锁销插入部596,第一针卡590、第二针卡591上的穿刺针夹持部595、锁销插入部596相互插接(对插)组合。将第一针卡590与第二针卡591对插(闭合)组合后,在两个穿刺针夹持部595之间形成一个供穿刺针7穿设的穿刺针安装孔598,在两个锁销插入部596之间形成供锁销593穿插的锁销插入孔599,如图32所示。穿刺针安装孔598和锁销插入孔599平行布置, 穿刺针安装孔598对应位于两组皮带驱动装置600的皮带601的中间位置,使穿刺针7插入穿刺针安装孔598的同时穿过两根皮带601中间位置之间的间隙,如图6和图29所示。
如图29所示,锁销593插入锁销插入孔599后将第一针卡590、第二针卡591组合成一个整体,第一针卡590、第二针卡591可以以锁销593为轴作开启与闭合状。执行手术时,首先以锁销593为轴使第一针卡590、第二针卡591呈开启状,将穿刺针7卡入穿刺针安装孔598内以锁销593为轴闭合第一针卡590、第二针卡591,对穿刺针7进行限位,此时穿刺针7可以在穿刺针安装孔598内上下作自由的移动。接着,医务人员可以单手握持第一针卡590、第二针卡591的皮带驱动装置安装部594,另一只手按压锁挂装置548中的解锁手柄558,将连接部597插入锁挂装置548的插入槽557内,释放解锁手柄548,借助于弹性元件559和锁固件560就可以与连接部597锁合,此时第一传动装置中的驱动转轴581与皮带驱动装置600啮合连接,再由第二传动装置549驱动双螺纹丝杆551转动,使第一定位块552和第二定位块553相对移动,进一步带动第一针卡590、第二针卡591相对移动,对卡入穿刺针安装孔598内的穿刺针7进行卡固,此时可借助于穿刺执行装置中安全档板371使穿刺针7位于手术前的初始位置。最后,拔出锁销593即可进入等待穿刺手术阶段。
需要执行穿刺手术前,先由开启安全档板371,再第一传动装置驱动两组皮带驱动装置600,驱动穿刺针7进入患者人体内部,当穿刺手术完成后,第二传动装置549驱动双螺纹丝杆551反向转动,第一定位块552和第二定位块553相背移动,进一步带动第一针卡590、第二针卡591相背移动,第一针卡590、第二针卡591呈分离状,将穿刺针7则停留在患者身体内,完成手术过程。
实施方式二
如图34a、图34b所示,本实施例方式是在实施方式一的基础上加以改进,仅对第一针卡590、第二针卡591的锁销插入部596进行改进,即在第一针卡590的锁销插入部596一体成形有高度为1-3mm的枢转短轴619,并在枢转短轴619靠近第二针卡591的一侧形成有两个形成锥状的倾斜面620。在第二针卡591在锁销插入部596形成有供枢转短轴619插入枢转连接的长椭圆形通孔621,由于加工第一针卡590、第二针卡591的医用材料具有一定的可塑性,并且枢转短轴619仅有1-3mm,在外力的作用下,可以使第一针卡590、第二针卡591能快速地组合在一起,也可以快速的分离,并且组合在一起后能以枢转短轴619为轴进行转动。
实施方式三
如图34a、图34b所示,本实施方式是在实施方式二的基础上进一步改进,为了配合主安装板560、副安装架561前侧的容置空间556,对第一针卡590、第二针卡591的本体外轮廓形状作相应的改变,再将第一针卡590或第二针卡591中的一个将皮带驱动装置安装部594与本体制成分体结构。
优选地,在第二针卡591穿刺针夹持部595和锁销插入部596内侧面的位置一体成形有滑道622,设置有两个通孔602的皮带驱动装置安装部594为一个独立的构件,在皮带驱动装置安装部594两端部一体成形有能在滑道622内自由滑动的滑块623,为了配合滑块623的滑动移动,在皮带驱动装置安装部594与第二针卡591间设置有压缩弹簧624,利用压缩弹簧624推顶皮带驱动装置安装部594,可以调整两个皮带601之间的间隙,适应各种粗细不等的穿刺针7,如图36和图37所示。
由于滑动的皮带驱动装置安装部594适用不同粗细的穿刺针7,因此可以将第一针卡590和第二针卡591上的V形开口凹槽607改成半圆形凹槽607,便于开模与加工,如图35a和图35b所示。
同时,为了增加穿刺针7在进针装置52内的安全系数,在半圆形开口凹槽607的一侧一体成形有挡板625。
如图35a和图35b所示,连接部597为两个分别位于第一针卡590、第二针卡591同侧表面、且对称设置的定位块,与主支撑架560、副支撑架561上方形柱孔586相对应,为了增加进针装置的安装稳定性,在第一针卡590、第二针卡591的顶端设置有能与穿刺装置51配合的扣钩626,与主支撑架560、副支撑架561上一体成形凸钩587相配合,实现锁挂装置548的功能。
在第一针卡590的底部组装有用于限制穿刺针7起始位置的保险装置372,用于替换实施例一中的安全挡板371,具体是,在第一针卡590的底部设置有一供保险装置插入的通孔627。保险装置372包括有垂直交错固定的圆柱状插入杆373和平板状保险杆374,如图37所示。将插入杆373插入通孔627内,使保险杆374位于穿刺针7针尖的下端,在执行手术前,可以手动或电动拔出或推动插入杆373,使保险杆374离开穿刺针7的针尖,解除对穿刺针7的限制。
如图3所示,本发明中自动穿刺手术机器人系统的穿刺方法,按以下步骤执行:
1)由机械臂3末端安装的结构光3D相机50、CT设备6分别对标定装置3进行拍摄和扫描,通过标定装置3中球状标定件31(也称定位球)的坐标位置关系可以确定出机械臂位置和CT设备6中患者位置的转换关系,获得转换矩阵A;即借助于结构光3D相机 50和标定装置3可以将医学影像设备的坐标系与机械臂坐标系进行统一配准,此步骤中,标定装置3需提前平稳地放置在CT设备6的CT床上。关于坐标系的转换与配准采用现有技术,在此不再详细说明。
2)通过CT设备6对患者身上的定位装置4进行扫描,将穿刺手术的准确位置传送给机器人系统的控制台1,传送的信息至少包括有准确的位置信息、穿刺针的进针角度信息以及进针距离信息,再依据步骤1)中确定的转换关系(转换矩阵A)由控制台1控制机械臂2,将进针装置51中的穿刺针7移动至穿刺手术准确位置,并调整好进针位置及角度;此步骤中,CT设备6也可以直接将CT图像及数据传送给控制台1,由控制台1读取CT图像中的信息再依据步骤1)中确定的转换关系,确定出准确的位置信息、穿刺针的进针角度信息以及进针距离信息,再控制机械臂2实施穿刺动作。
3)通过结构光3D相机50对患者身体上的定位装置4进行拍摄,判断机械臂2末端进针装置51中的穿刺针7是否对准穿刺手术的准确位置。具体是通过结构光3D相机50获取定位装置4的位置,判断结构光3D相机50获取的定位装置4的位置信息与步骤2)中CT设备6传送的穿刺手术准确位置信息是否一致,如果是,则执行穿刺手术,如果不是,则停止手术或重复步骤2)、3)。
工业实用性
综上所述,本发明中的自动穿刺手术机器人系统及穿刺方法与医院内CT设备配合使用,可以替代医生手动穿刺,不需要医生的穿刺水平,并且穿刺更加准确与安全。

Claims (25)

  1. 一种自动穿刺手术机器人系统,用于驱动穿刺针完成穿刺手术,包括有用于接收医学影像设备提供影像的控制台、前端与所述控制台固定安装的机械臂,其特征在于,所述自动穿刺手术机器人系统进一步包括有定位装置、标定装置及固定安装在所述机械臂末端的穿刺执行机构;
    所述穿刺执行机构包括有结构光3D相机、穿刺装置及进针装置;
    所述结构光3D相机与所述穿刺装置固定安装成一个整体,随所述机械臂同步移动;
    所述穿刺装置用于驱动所述进针装置执行夹持所述穿刺针、驱动所述穿刺针和释放所述穿刺针;
    由所述结构光3D相机和所述标定装置将所述医学影像设备的坐标系与所述机械臂坐标系进行统一配准;
    由所述结构光3D相机和所述医学影像设备分别识别所述定位装置,所述控制台依据所述定位装置的位置变化来判断是否执行穿刺手术。
  2. 根据权利要求1所述的自动穿刺手术机器人系统,其特征在于,所述结构光3D相机包括有结构光源和相机,所述结构光源、所述相机固定安装完成后,所述结构光源的覆盖范围和所述相机的拍摄范围恰好呈重叠的方式位于所述进针装置的下方。
  3. 根据权利要求2所述的自动穿刺手术机器人系统,其特征在于,所述穿刺装置包括有与所述机械臂固定连接的法兰、基座及驱动装置;
    所述基座包括有长方形主安装板,固定在所述主安装板一端短侧边的结构光源安装架,固定在所述主安装板另一短侧边的相机安装架,以及固定安装在所述主安装板下表面、位于所述结构光源安装架和相机安装架之间的齿轮箱安装架和进针装置安装架;固定安装在所述结构光源安装架、相机安装架、进针装置安装架中的所述结构光源、所述相机及所述进针装置均位于所述主安装板的同一长侧边。
  4. 根据权利要求3所述的自动穿刺手术机器人系统,其特征在于,所述结构光源安装架包括有第一安装板、第二安装板和连接支架,所述第二安装板与所述第一安装板之间由调节螺栓、紧固螺栓连接,经由调节螺栓调节所述第一安装板、第二安装板之间的距离后由所述紧固螺栓连接固定,所述第二安装板经由所述连接支架固定安装在所述主安装板的短侧边,所述第一安装板固定连接所述结构光源。
  5. 根据权利要求3或4所述的自动穿刺手术机器人系统,其特征在于,所述相机安装 架为一L形连接支架,包括有与所述相机固定连接的安装平板,与所述安装平板一体成形能与所述主安装板侧边贴合固定的连接架。
  6. 根据权利要求3或4所述的自动穿刺手术机器人系统,其特征在于,所述相机与所述主安装板垂直安装,所述结构光源与所述主安装板呈30-60度角安装。
  7. 根据权利要求3或4所述的自动穿刺手术机器人系统,其特征在于,所述进针装置包括有能开启与闭合的夹紧装置,驱动轮和从动轮;
    所述夹紧装置包括有两块完全对称且相互闭合后用于对所述穿刺针进行限位的定位块、用于分别驱动所述定位块开合的第一摆臂和第二摆臂;
    所述主动轮、从动轮位于两块所述定位块闭合后形成的空间内,所述主动轮、从动轮之间的间隙与两块所述定位块闭合后形成的上、下两个限位槽在同一直线上,所述穿刺针位于上、下两个所述限位槽和所述主动轮、从动轮之间的间隙内。
  8. 根据权利要求7所述的自动穿刺手术机器人系统,其特征在于,所述定位块由无毒的医用塑料一体成形,两块所述定位块闭合时呈“冂”字形,所述定位块在两端支脚的外侧表面各设有供所述穿刺针放置的V形槽,在第一内侧面上设置有两个或两个以上与所述第一、第二摆臂插接连接的固定柱,在所述支脚的内侧表面各设置有与所述第一、第二摆臂卡接连接的卡块。
  9. 根据权利要求7所述的自动穿刺手术机器人系统,其特征在于,所述第一摆臂、第二摆臂均与固定安装在所述进针装置安装架上的第一转轴转动连接,所述第一摆臂、第二摆臂由金属材料一体成形,整体呈L形,包括有定位块固定部、枢转部;所述定位块固定部与所述定位块的形状一致,与所述定位块插接贴合固定连接;所述枢转部设有供所述第一转轴设置的第二通孔、与铰链装置枢转连接的凸耳;所述第一摆臂位于所述枢转部设有与所述第二驱动装置连接的驱动臂;所述第二摆臂位于所述定位块固定部设有供所述从动轮安装的从动轮安装臂。
  10. 根据权利要求2所述的自动穿刺手术机器人系统,其特征在于,所述穿刺装置包括有与所述机械臂固定连接的法兰、基座、驱动装置和锁挂装置;
    所述基座包括有相互垂直固定连接的主安装板和副安装板,所述主安装板在与所述副安装板安装的一侧一体成形有供所述穿刺针和所述穿刺装置放置的U形凹槽;
    所述副安装板呈U形,包括一体成形位于两边的结构光源固定架和相机固定架,位于中间位置的进针装置安装架;
    所述锁挂装置固定安装在所述进针装置安装架的最底部,用于快速拆卸、组装所述进 针装置,并能驱动所述进针装置作开启或闭合动作;
    所述驱动装置包括有用于驱动所述进针装置作进针动作的第一传动装置,用于驱动所述进针装置夹持、释放所述穿刺针的第二传动装置。
  11. 根据权利要求10所述的自动穿刺手术机器人系统,其特征在于,所述锁挂装置包括有滑轨、第一定位块、第二定位块、双螺纹丝杆及用于锁固所述进针装置的锁固机构;
    所述滑轨与所述进针装置安装架固定安装;
    所述第一定位块、第二定位块对称、滑动地与所述滑轨联接;
    所述双螺纹丝杆与所述滑轨平行,同时穿过所述第一定位块、第二定位块;所述第一定位块、第二定位块分别与所述双螺纹丝杆表面不同方向的螺纹段啮合,旋转所述双螺纹丝杆能同步驱动所述第一定位块、第二定位块作相对或相背移动;
    所述第一定位块、第二定位块的中间位置分别与所述第一传动装置枢转连接,所述第一传动装置的驱动转轴穿过所述第一定位块、第二定位块与所述进针装置驱动连接;所述双螺纹丝杆的一端与所述第二传动装置连接。
  12. 根据权利要求11所述的自动穿刺手术机器人系统,其特征在于,所述锁固机构包括有对称设在所述第一定位块、第二定位块上的解锁手柄、弹性元件及能滑动的锁固件。
  13. 根据权利要求2所述的自动穿刺手术机器人系统,其特征在于,所述穿刺装置包括有法兰、基座及驱动装置;
    所述基座包括有主安装板、主支撑架和副支撑架;
    所述结构光3D相机经所述主安装板与所述主支撑架固定成一整体;
    所述副支撑架能相对平行移动地与所述主支撑架安装连接;
    所述主支撑架、副支撑架均设有用于同步驱动所述进针装置执行穿刺动作的传动装置;
    所述进针装置能快速与所述主支撑架、副支撑架进行组装与拆卸,并与所述传动装置传动连接;
    位于所述进针装置安装位置相对的一侧固定安装有所述驱动装置;
    所述副支撑架相对于所述主支撑架作平行移动分离的同时能驱动所述进针装置分离,对所述进针装置中的所述穿刺针进行释放。
  14. 根据权利要求13所述的自动穿刺手术机器人系统,其特征在于,所述主支撑架为由金属材料一体成形的异形件,包括第一区段、第二区段、第三区段和第四区段;所述第一区段经所述主安装板与所述机械臂末端连接,所述第四区段用于安装所述传动装置。
  15. 根据权利要求14所述的自动穿刺手术机器人系统,其特征在于,所述副支撑架为 由金属材料一体成形的异形件,与所述主支撑架的所述第三区段、第四区段对应配合,所述副支撑架一体成形有能插入所述第三区段中导引孔内的导杆,并能在所述导引孔内自由进出滑动。
  16. 根据权利要求10或13所述的自动穿刺手术机器人系统,其特征在于,所述进针装置包括有能相互闭合或分离的第一针卡和第二针卡,所述第一针卡、第二针卡均安装有一组用于同步驱动所述穿刺针作进针动作的皮带驱动装置;
    所述第一针卡和所述第二针卡均由一次性医用材料一体成形,均包括有穿刺针夹持部、连接部及皮带驱动装置安装部;
    所述第一针卡、第二针卡闭合后在所述穿刺针夹持部形成供所述穿刺针穿设的穿刺针安装孔,穿入所述穿刺针安装孔的所述穿刺针夹装在两组所述皮带驱动装置之间;
    所述连接部用于将所述进针装置快速地安装在所述穿刺装置上,也能快速地从所述穿刺装置上拆卸下来。
  17. 根据权利要求16所述的自动穿刺手术机器人系统,其特征在于,每一组所述皮带驱动装置包括有两个或两个以上的皮带轮,与所述皮带轮啮合连接的皮带,每一组所述皮带驱动装置的所述皮带轮至少一个能与所述穿刺执行机构的输出轴驱动联接,使两组所述皮带驱动装置中的所述皮带能作同步相对运动,用于驱动位于所述穿刺针安装孔、两组所述皮带驱动装置之间的所述穿刺针作穿刺进针动作。
  18. 根据权利要求17所述的自动穿刺手术机器人系统,其特征在于,所述穿刺针夹持部分别位于第一针卡或第二针卡两端的旁侧,且位于所述皮带驱动装置安装部的两端;所述穿刺针夹持部的旁侧设置具有枢转功能的所述锁合结构。
  19. 根据权利要求18所述的自动穿刺手术机器人系统,其特征在于,所述锁合结构包括有所述第一针卡、第二针卡分别一体成形的锁销插入部,能插入与拔出的锁销;所述锁销插入部包括有位于所述第一针卡或所述第二针卡上、下两端部的椭圆形通孔,位于所述第二针卡或所述第一针卡上、下两端部的异形通孔,所述椭圆形通孔和所述异形通孔叠置后形成供所述锁销插入与拔出的锁销插入孔。
  20. 根据权利要求18所述的自动穿刺手术机器人系统,其特征在于,所述锁合结构包括一体成形于所述第一针卡或第二针卡上的枢转孔,一体成形于所述第二针卡或第一针卡上的枢转短轴,所述枢转短轴的高度为1-3毫米。
  21. 一种自动穿刺手术机器人系统的穿刺方法,其特征在于,使用上述权利要求1-17中任意一项所述的自动穿刺手术机器人系统,包括以下步骤:
    1)通过结构光3D相机、CT设备分别对标定装置进行拍摄和扫描,确定出机械臂位置和CT设备中患者位置的转换关系;
    2)通过CT设备对患者身体上的定位装置进行扫描,将穿刺手术的准确位置传送给机器人系统,依据步骤1)中确定的转换关系由机器人系统控制机械臂,将进针装置的穿刺针移动至穿刺手术的准确位置;
    3)通过结构光3D相机对患者身体上的定位装置进行拍摄,判断机械臂末端进针装置中的穿刺针是否对准穿刺手术的准确位置,如果是,则执行穿刺手术,如果不是,则停止手术或重复步骤2)、3)。
  22. 根据权利要求21所述的穿刺方法,其特征在于,在步骤3)中,在判断出进针装置中的穿刺针已对准穿刺手术的准确位置后,进一步增加提示手动开启安全挡板的步骤。
  23. 根据权利要求21所述的穿刺方法,其特征在于,步骤2)中,CT设备将穿刺手术的准确位置信息传送给机器人系统的过程中,传送的信息包括有准确的位置信息、穿刺针的进针角度信息以及进针距离信息。
  24. 一种用于上述自动穿刺手术机器人系统的标定装置,其特征在于,包括有基板,多个球状标定件,与所述球状标定件对应的柱状连接件,直接印制在所述基板一侧表面的标志结构,所述柱状连接件的长度相同,所有所述柱状连接件均固定设置在所述基板的同一侧表面,且位于所述基板没有印制所述标志结构的侧表面,每个所述球状标定件对应锁固在所述柱状连接件内的不同高度位置。
  25. 一种用于上述自动穿刺手术机器人系统的定位装置,其特征在于,所述定位装置由密度在3-5/cm3之间的陶瓷材料制成,在所述定位装置本体的中间设有直径在2-15毫米之间的第一通孔,从所述第一通孔至所述本体边缘的两个侧表面分别为倾斜面和平面,所述倾斜面呈倒圆锥台状。
PCT/CN2023/125928 2022-10-28 2023-10-23 自动穿刺手术机器人系统及穿刺方法 WO2024088212A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211332962.8 2022-10-28
CN202211332981.0A CN115708710A (zh) 2022-10-28 2022-10-28 用于穿刺机器人穿刺定位的定位件、定位装置及定位方法
CN202211332962.8A CN115956982A (zh) 2022-10-28 2022-10-28 用于穿刺手术机器人的进针装置及穿刺手术机器人
CN202211332981.0 2022-10-28
CN202211332959.6A CN115553888A (zh) 2022-10-28 2022-10-28 集3d相机、进针装置于一体的穿刺机器人及穿刺方法
CN202211332959.6 2022-10-28
CN202322592085.4 2023-09-23
CN202322592085.4U CN221331482U (zh) 2023-09-23 用于统一ct设备与手术机器人坐标的标定装置

Publications (1)

Publication Number Publication Date
WO2024088212A1 true WO2024088212A1 (zh) 2024-05-02

Family

ID=90830058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125928 WO2024088212A1 (zh) 2022-10-28 2023-10-23 自动穿刺手术机器人系统及穿刺方法

Country Status (1)

Country Link
WO (1) WO2024088212A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106859742A (zh) * 2017-03-21 2017-06-20 北京阳光易帮医疗科技有限公司 一种穿刺手术导航定位系统和方法
CN206630673U (zh) * 2016-12-12 2017-11-14 张昊 手术机器人手术器械夹持导引装置
US20190365484A1 (en) * 2018-06-05 2019-12-05 Ss Innovations China Co., Ltd. Cannula securing assembly for a minimally invasive surgical system
US20200054378A1 (en) * 2018-08-15 2020-02-20 Canon U.S.A., Inc. Medical Tool Guidance Apparatus
US20200261168A1 (en) * 2019-02-15 2020-08-20 Covidien Lp Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
CN113243978A (zh) * 2021-05-14 2021-08-13 磅客策(上海)智能医疗科技有限公司 穿刺装置及手术机器人
CN113413216A (zh) * 2021-07-30 2021-09-21 武汉大学 一种基于超声影像导航的双臂穿刺机器人及穿刺方法
CN113796959A (zh) * 2021-08-24 2021-12-17 真健康(北京)医疗科技有限公司 体表动态定位装置和光学跟踪装置
CN113870329A (zh) * 2021-09-30 2021-12-31 上海寻是科技有限公司 一种用于手术导航的医学影像配准系统及方法
CN113952008A (zh) * 2021-12-23 2022-01-21 真健康(北京)医疗科技有限公司 交叉驱动型穿刺针进针机构及针穿刺装置
CN114041880A (zh) * 2021-11-24 2022-02-15 电子科技大学 一种医疗手术机器人的末端穿刺执行装置
CN114983542A (zh) * 2022-08-02 2022-09-02 深圳市箴石医疗设备有限公司 一种稳针装置
CN115227349A (zh) * 2022-07-06 2022-10-25 上海市肺科医院 一种基于光学跟踪技术的肺部穿刺机器人
CN115553888A (zh) * 2022-10-28 2023-01-03 苏州派尼迩医疗科技有限公司 集3d相机、进针装置于一体的穿刺机器人及穿刺方法
CN115708710A (zh) * 2022-10-28 2023-02-24 苏州派尼迩医疗科技有限公司 用于穿刺机器人穿刺定位的定位件、定位装置及定位方法
CN115956982A (zh) * 2022-10-28 2023-04-14 苏州派尼迩医疗科技有限公司 用于穿刺手术机器人的进针装置及穿刺手术机器人

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206630673U (zh) * 2016-12-12 2017-11-14 张昊 手术机器人手术器械夹持导引装置
CN106859742A (zh) * 2017-03-21 2017-06-20 北京阳光易帮医疗科技有限公司 一种穿刺手术导航定位系统和方法
US20190365484A1 (en) * 2018-06-05 2019-12-05 Ss Innovations China Co., Ltd. Cannula securing assembly for a minimally invasive surgical system
US20200054378A1 (en) * 2018-08-15 2020-02-20 Canon U.S.A., Inc. Medical Tool Guidance Apparatus
US20200261168A1 (en) * 2019-02-15 2020-08-20 Covidien Lp Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
CN113243978A (zh) * 2021-05-14 2021-08-13 磅客策(上海)智能医疗科技有限公司 穿刺装置及手术机器人
CN113413216A (zh) * 2021-07-30 2021-09-21 武汉大学 一种基于超声影像导航的双臂穿刺机器人及穿刺方法
CN113796959A (zh) * 2021-08-24 2021-12-17 真健康(北京)医疗科技有限公司 体表动态定位装置和光学跟踪装置
CN113870329A (zh) * 2021-09-30 2021-12-31 上海寻是科技有限公司 一种用于手术导航的医学影像配准系统及方法
CN114041880A (zh) * 2021-11-24 2022-02-15 电子科技大学 一种医疗手术机器人的末端穿刺执行装置
CN113952008A (zh) * 2021-12-23 2022-01-21 真健康(北京)医疗科技有限公司 交叉驱动型穿刺针进针机构及针穿刺装置
CN115227349A (zh) * 2022-07-06 2022-10-25 上海市肺科医院 一种基于光学跟踪技术的肺部穿刺机器人
CN114983542A (zh) * 2022-08-02 2022-09-02 深圳市箴石医疗设备有限公司 一种稳针装置
CN115553888A (zh) * 2022-10-28 2023-01-03 苏州派尼迩医疗科技有限公司 集3d相机、进针装置于一体的穿刺机器人及穿刺方法
CN115708710A (zh) * 2022-10-28 2023-02-24 苏州派尼迩医疗科技有限公司 用于穿刺机器人穿刺定位的定位件、定位装置及定位方法
CN115956982A (zh) * 2022-10-28 2023-04-14 苏州派尼迩医疗科技有限公司 用于穿刺手术机器人的进针装置及穿刺手术机器人

Similar Documents

Publication Publication Date Title
US11583352B2 (en) Endoscope adaptor, surgical system including the same, and method of attaching endoscope to robot arm through the same
CN110960318B (zh) Ct引导的消融系统及消融定位方法
EP2618721B1 (en) Electronically controlled fixation light for ophthalmic imaging systems
CN109602499B (zh) 一种眼科显微手术辅助双臂机器人操作系统
CN105455854B (zh) 内窥镜装置
CN105455852B (zh) 内窥镜装置
EP3856034A1 (en) Light assemblies and methods for mammography and tomosynthesis imaging systems
DE112006003209T5 (de) Vorrichtung für die laparoskopische oder thorakoskopische Chirurgie
JP2020031768A (ja) 手術器具
CN111920524A (zh) 一种远程遥控步进穿刺机器人系统及操作方法
CN212521854U (zh) 一种医疗器械
CN112336432A (zh) 一种主从式ct透视引导实时穿刺系统及主从操作方法
WO2024088212A1 (zh) 自动穿刺手术机器人系统及穿刺方法
CN111529067B (zh) 一种手术机器人机械臂的定位装置及定位方法
EP3714799A1 (en) Adapter, robotic surgical system, and adapter attaching method
CN115553888A (zh) 集3d相机、进针装置于一体的穿刺机器人及穿刺方法
CN112674788A (zh) 一种肿瘤放射科用头部固定装置
JP2010200905A (ja) 眼科装置
JP7035229B2 (ja) アダプタ
CN212939934U (zh) 一种精准自动穿刺系统
EP3709860A1 (en) Direction adjustable holder for an instrument
CN211658342U (zh) 一种腹腔微创手术腹腔镜固定装置
JP2020031769A (ja) アダプタおよび接続方法
JP7009431B2 (ja) 手術器具のロボットアームへの装着方法
CN109480967A (zh) 手术穿刺执行机构及采用其的手术机械臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881790

Country of ref document: EP

Kind code of ref document: A1