WO2024088030A1 - 一种便携式外科手术机器人教学设备 - Google Patents

一种便携式外科手术机器人教学设备 Download PDF

Info

Publication number
WO2024088030A1
WO2024088030A1 PCT/CN2023/123268 CN2023123268W WO2024088030A1 WO 2024088030 A1 WO2024088030 A1 WO 2024088030A1 CN 2023123268 W CN2023123268 W CN 2023123268W WO 2024088030 A1 WO2024088030 A1 WO 2024088030A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
rope
groove
transmission
base
Prior art date
Application number
PCT/CN2023/123268
Other languages
English (en)
French (fr)
Inventor
马淦
冯永玄
黄浩佳
张文伟
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2024088030A1 publication Critical patent/WO2024088030A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the technical field of teaching tools, and in particular to a portable surgical robot teaching device.
  • Robots have advantages over manual work in some applicable operations, such as high repeatability and high control accuracy.
  • the Da Vinci robot in the medical field can be applied to some routine and simple operations such as urology, cardiothoracic surgery, gynecology, and abdominal surgery.
  • Medical robots generally include a master hand control end, an intermediate transmission part, and a slave hand instrument end. The operator, such as a doctor, controls the movement and surgical operation of the slave hand instrument end by operating the master hand control end.
  • the purpose of the present invention is to provide a portable surgical robot teaching device, aiming to solve the problems that the existing teaching equipment has a complex structure, high cost, is inconvenient to move, and cannot meet the training and learning needs of a large number of engineering talents.
  • a portable surgical robot teaching device comprising a base, a frame, a mechanical arm, a control handle and a transmission rope group, wherein the frame is plugged into the base, and a hollow channel with two ends open is formed in the frame; the mechanical arm can The disassembly is arranged on the base frame; the transmission rope group is arranged in the hollow channel, and the transmission rope group includes a first end and a second end respectively extending from two openings of the hollow channel, the first end is transmission connected to the mechanical arm, and the second end is transmission connected to the control handle.
  • a connecting groove is provided on the base frame, and the cross-sectional shape of the connecting groove is circular;
  • the robotic arm includes at least two bearings, a connecting rod assembly and a manipulator, and at least two of the bearings are arranged in the connecting groove at intervals;
  • the connecting rod assembly is connected to the inner ring of the bearing;
  • the manipulator is connected to one end of the connecting rod assembly away from the connecting groove;
  • the transmission rope group includes a first transmission rope, one end of the first transmission rope is connected to the control handle, and the other end is connected to the connecting rod assembly, for driving the connecting rod assembly to rotate in the connecting groove.
  • the connecting rod assembly includes a first connecting rod, a second connecting rod, a third connecting rod and a fourth connecting rod which are hingedly connected in sequence, and the end of the first connecting rod connected to the connecting groove is provided with the bearing; the fourth connecting rod is connected to the manipulator; a first spiral rope groove is provided on the outer surface of the first connecting rod, and the first transmission rope is adapted in the first spiral rope groove to drive the rotation of the first connecting rod.
  • a second spiral rope groove is fixedly provided on one end of the first connecting rod that is hinged to the second connecting rod;
  • a third spiral rope groove is fixedly provided on one end of the second connecting rod that is hinged to the first connecting rod, and a fourth spiral rope groove is fixedly provided on one end that is hinged to the third connecting rod;
  • a fifth spiral rope groove is fixedly provided on one end of the third connecting rod that is hinged to the second connecting rod;
  • a sixth spiral rope groove is fixedly provided on one end of the fourth connecting rod that is hinged to the third connecting rod;
  • the transmission rope group includes a second transmission rope, and the second transmission rope is arranged and adapted in the third spiral rope groove for driving the second connecting rod to rotate;
  • the connecting rod assembly also includes a first synchronization rope ring and a second synchronization rope ring, and the first synchronization rope ring is arranged and adapted in the second spiral rope groove and the fifth spiral rope groove for driving the third connecting rod to rotate synchronously with the second connecting rod;
  • a first shaft is provided at one end where the first link and the second link are hinged, and the first shaft is located at the center position of the second spiral rope groove and the third spiral rope groove;
  • a second shaft is provided at one end where the second link and the third link are hinged, and the second shaft is located at the center position of the fourth spiral rope groove and the fifth spiral rope groove;
  • a third shaft is provided at one end where the third link and the fourth link are hinged, and the third shaft is located at the center position of the sixth spiral rope groove;
  • rope grooves are respectively provided on the first shaft, the second shaft and the third shaft, and the transmission rope group includes at least one third transmission rope, and the third transmission rope is used for transmission connection with the manipulator, and is arranged to bypass the rope grooves in sequence.
  • control handle includes a shell, a chassis, a base, a shaft assembly, a balance plate and a constraint assembly
  • the chassis is arranged on the shell, and a center hole is formed at the center of the chassis
  • the base is connected to the shell and is located in the center hole
  • the shaft assembly is universally connected to the base Connection
  • the balancing disk is nested on the shaft assembly, and the balancing disk is staggered with a first connecting portion and a second connecting portion for connecting the transmission rope group around the shaft assembly, the connection direction between the first connecting portion and the shaft assembly is a first direction, the connection direction between the second connecting portion and the shaft assembly is a second direction, and the first direction is perpendicular to the second direction
  • the vertical plane where the first direction is located is the first plane
  • the vertical plane where the second direction is located is the second plane
  • the constraint assembly is connected between the chassis and the balancing disk, and is used to constrain the shaft assembly to control it to rotate only within the first plane or only within the second
  • the portable surgical robot teaching equipment wherein the portable surgical robot teaching equipment also includes a storage box, the storage box includes an outer box body, a first inner box and a second inner box, a cavity is formed in the outer box body, and a supporting step is provided at the bottom of the cavity; the first inner box is arranged on the supporting step, and a first storage groove is formed below the first inner box for storing the base; and a second storage groove for storing the base and a third storage groove for storing the control handle are formed on the first inner box; the second inner box is stacked on the first inner box, and a fourth storage groove for storing the robotic arm and a fifth storage groove for storing the transmission rope group are formed on the second inner box.
  • the portable surgical robot teaching device is provided with a mounting groove on the base for plugging into the base frame, and the cross-sectional shape of the mounting groove is a polygon.
  • the portable surgical robot teaching device wherein the base, the frame and the robotic arm are all formed by 3D printing.
  • the portable surgical robot teaching equipment wherein the base is a transparent base; the frame is a transparent frame; and the robotic arm is a transparent robotic arm.
  • the portable surgical robot teaching equipment disclosed in the present invention adopts a modular setting of several parts such as a base, a base frame, and a mechanical arm.
  • the base frame When not in use, the base frame can be inserted into the base, and the mechanical arm and the base frame can be assembled. Then, one end of the transmission rope group is connected to the control handle, and the other end passes through the base frame to connect to the mechanical arm, so as to realize rope-driven operation of the mechanical arm to complete various actions, which is convenient for demonstrating the control steps, control methods, control principles, etc.
  • teaching personnel can carry the portable surgical robot teaching equipment disclosed in the present invention, demonstrate at any time during the teaching process, and store and move it in time after the demonstration, which improves the flexibility of use of the portable surgical robot teaching equipment and reduces the requirements for the place of use.
  • the robot arm disclosed in the present invention is completely driven by a rope, does not contain any electronic components, is more convenient to carry and assemble, and is suitable for various teaching occasions, so that in addition to medical students, engineering students can also more intuitively learn the working principles, mechanism transmission principles and design principles of high-end equipment such as medical robots during the teaching process, making up for the technical deficiencies in my country's medical robot industry; moreover, the reliability of the transmission is not affected during repeated disassembly and assembly, compared with The traditional gear transmission and motor drive method has no vibration, no impact and good stability during the driving process.
  • the portable surgical robot teaching device disclosed in this embodiment is purely mechanically driven, does not require an external power source, is more lightweight in structural design, and is inexpensive, thereby reducing the production cost of the equipment.
  • FIG1 is a schematic diagram of the structure of a portable surgical robot teaching device according to the present invention.
  • FIG2 is an exploded view of the structure of the base, the base frame and the mechanical arm in the present invention
  • FIG3 is a cross-sectional view of a base frame in the present invention.
  • FIG4 is a schematic structural diagram of a connecting rod assembly in the present invention.
  • FIG5 is an exploded view of the structure of the control handle in the present invention.
  • FIG. 6 is an exploded view of the structure of the storage box of the present invention.
  • 100 base; 110, mounting groove; 200, base frame; 210, hollow channel; 220, connecting groove; 300, mechanical arm; 310, bearing; 320, connecting rod assembly; 321, first connecting rod; 3211, first spiral rope groove; 3212, second spiral rope groove; 322, second connecting rod; 3221, third spiral rope groove; 3222, fourth spiral rope groove; 323, third connecting rod; 3231, fifth spiral rope groove; 324, fourth connecting rod; 3241, sixth spiral rope groove; 325, first synchronous rope ring; 326, second synchronous rope ring; 327, first shaft rod; 328, second shaft Rod; 329, third shaft; 330, manipulator; 400, control handle; 410, shell; 420, chassis; 421, center hole; 430, base; 440, shaft assembly; 450, balance plate; 451, first connecting part; 452, second connecting part; 460, constraint assembly; 500, transmission rope group; 600, storage box; 610, outer box body; 611, cavity; 612, support step; 613, first
  • Medical robots mainly include the main hand control end, the middle The transmission part, the end of the slave hand instrument, etc., the operator controls the movement of the slave hand by operating on the master hand.
  • the demand for related teaching equipment is showing a straight upward trend.
  • the teaching equipment related to medical robots on the market is very rare, and most of these equipment are only for the teaching needs of medical schools.
  • the equipment of this type on the market basically relies on motor drive to ensure the realization of automation, but does not focus on the reliability of the equipment.
  • many of these devices are directly modified from surgical robots used in clinical practice. They are extremely expensive and inconvenient to move, so they can only be studied and researched by a small number of talents in medical schools.
  • a portable surgical robot teaching device which includes a base 100, a base frame 200, a robotic arm 300, a control handle 400 and a transmission rope group 500.
  • the base frame 200 is plugged into the base 100, and a hollow channel 210 with two ends open is formed in the base frame 200, with a certain preset bending angle, for example, it can be formed after two 90-degree inward bends, and a downward extension section is formed, and a connecting groove 220 is set at a predetermined oblique angle at the top of the extension section, and the predetermined oblique angle can be but is not limited to 45 degrees.
  • the robotic arm 300 is detachably assembled on the base frame 200; the transmission rope group 500 is arranged in the hollow channel 210.
  • the hollow channel 210 can be set to have a certain width, and grooves corresponding to different pull ropes can be set therein to reduce mutual interference between the pull ropes; and the transmission rope group 500 includes a first end and a second end of the rope group respectively extending from the two end openings of the hollow channel 210, the first end is transmission-connected to the robotic arm 300, and the second end is transmission-connected to the control handle 400.
  • the portable surgical robot teaching device disclosed in this embodiment modularizes several parts such as the base 100, the base frame 200, and the mechanical arm 300, so that they can be stored separately when not in use; when in use, the base frame 200 is inserted into the base 100, and the mechanical arm 300 is assembled with the base frame 200, and then one end of the transmission rope group 500 is connected to the control handle 400, and the other end passes through the base frame 200 to connect the mechanical arm 300, so as to realize the rope-driven operation of the mechanical arm 300 to complete various actions.
  • the first end and the second end of the transmission rope group 500 usually need to be kept outside the two end openings of the hollow channel 210, and a certain limiting method, such as setting a blocking part on the end of the rope group, is used to achieve the state of keeping the rope group in the hollow channel 210.
  • the control steps, control methods, control principles, etc. of the robot are demonstrated; that is, the teaching staff can carry the portable surgical robot teaching equipment disclosed in this embodiment, assemble and disassemble it at the teaching site, and demonstrate at any time during the teaching process. After the demonstration is completed, it can be stored and taken away in time, which improves the flexibility of using the portable surgical robot teaching equipment and reduces the requirements for the place of use, so that engineering students can also more intuitively learn the working principles, mechanism transmission principles and design principles of high-end equipment such as medical robots during the teaching process, which makes up for the technical deficiencies in my country's medical robot industry from an educational level and meets the learning needs of a large number of engineering talents.
  • the robot arm 300 disclosed in this embodiment is completely driven by a rope drive, does not contain any electronic components, is more convenient to carry and assemble, and is suitable for various teaching occasions; moreover, the reliability of the transmission is not affected during repeated disassembly and assembly.
  • the portable surgical robot teaching equipment disclosed in this embodiment is purely mechanical transmission, does not require an external power supply, is lighter in structural design, and is cheap, which reduces the production cost of the equipment.
  • the base 100 is provided with a mounting groove 110 for plugging with the base frame 200, and the mounting groove 110 is arranged on a base column extending upward from the base 100, and the cross-sectional shape of the mounting groove 110 is a polygon, specifically a quadrilateral or a triangle, which can also better position the direction; in another embodiment, a mounting groove 110 with a circular cross-section can also be used, which is convenient for plugging in, but the robot arm is prone to rotation and movement, and it is necessary to consider the use of corresponding limiting structures and devices to ensure whether its rotation adjustment is allowed.
  • the base 100 disclosed in this embodiment is used to support the base frame 200 and the robot arm 300, and remains stable during the operation of the robot arm 300 for teaching demonstration; the base frame 200 is plugged into the base 100, and the docking method is simple, which is conducive to quick disassembly and assembly; and the cross-sectional shape of the mounting groove 110 is a polygon, such as but not limited to a triangle, a quadrilateral, a pentagon, a hexagon, etc., so that the side wall of the mounting groove 110 can constrain the base frame 200, and prevent the base frame 200 from rotating in the mounting groove 110 after installation, thereby further improving the stability of the base 100 and the base frame 200 after assembly.
  • a connecting groove 220 is provided on the base frame 200, and the cross-sectional shape of the connecting groove 220 is circular, and a mounting hole with a corresponding circular cross-sectional shape is disclosed;
  • the mechanical arm 300 includes at least two bearings 310, a connecting rod assembly 320, and a mechanical hand 330.
  • At least two of the bearings 310 are arranged in parallel in the connecting groove 220 at intervals, and their outer rings are fixed in the connecting groove 220; the first connecting rod 321 in the connecting rod assembly 320 is connected to the inner rings of the two bearings 310; in this way, the first connecting rod 321 of the connecting rod assembly 320 can be more securely positioned when rotating around its own long axis, so as to reduce the pressure and wear on the bearing caused by the possible deviation from the center when a single bearing is used, thereby improving the service life of the entire connection structure after assembly.
  • a plurality of independent annular grooves adapted to the inner ring of the bearing 310 are pre-set on the outer side wall of the first connecting rod 321 of the connecting rod assembly 320, which may be more than the number of the bearings 310 and have a convenient and fast assembly tightness, so that the bearings 310 can be quickly disassembled and assembled.
  • the first connecting rod 321 assembled with the bearing 310 can also be quickly plugged and adapted to the connecting groove 220.
  • the manipulator 330 and the connecting rod assembly 320 are assembled at one end away from the connecting groove 220;
  • the transmission rope group 500 includes multiple connecting ropes, at least one connecting rope corresponds to the control of each degree of freedom, specifically including: the rotation of the connecting rod assembly 320, and the rotation of the first connecting rod 321 and the second connecting rod 322, the rotation of the second connecting rod 322 and the third connecting rod 323, the rotation between the third connecting rod 323 and the manipulator 330, and the opening and closing action of the manipulator 330;
  • the rotation of the connecting rod assembly 320 adopts the rotation within the same plane, which reduces the dimension of the calculation, and cooperates with the rotation between the first connecting rod 321 and the connecting groove 220.
  • the manipulator 330 can reach any position within a spherical control range.
  • a plurality of composite small bearings are also used on the three sequential rotating shafts between the first, second, and third connecting rods and the manipulator 330.
  • the connecting ends of the first connecting rod 321 and the second connecting rod 322, the second connecting rod 322 and the third connecting rod 323, and the third connecting rod 323 and the manipulator 330 are all hinged on both side panels, and two small bearings are arranged on each side panel.
  • four small bearings are arranged on each rotating shaft, and the connection method of the side panels on both sides can ensure the stable operation and durable use of the entire manipulator.
  • the connecting rope includes but is not limited to a first transmission rope, one end of which is connected to the control handle 400 and is driven, pulled and operated by the control handle 400, and the other end is connected to the connecting rod assembly 320 to drive the connecting rod assembly 320 to rotate in the connecting groove 220; a reciprocating bidirectional rope head is usually provided, all of which are connected to the control handle 400, and multiple connecting ropes can be selected on the control handle 400 to realize the operation of controlling a certain connecting rope in turn.
  • a connecting rod assembly 320 is provided to be assembled and connected with the connecting groove 220, and at least two bearings 310 are mounted on the connecting rod assembly 320 to facilitate its rotation relative to the base frame 200.
  • the two bearings 310 are simultaneously mounted on the connecting rod assembly 320 to form a multi-point support, so that the connecting rod assembly 320 is stable in the connecting groove 220, thereby reducing the wear on the bearings 310, reducing friction resistance, facilitating smooth rotation, and increasing service life.
  • the overall rotation of the connecting rod assembly 320 is driven by the first transmission rope, and the synchronous rotation and operation of the manipulator 330 can be driven by other connecting ropes, thereby increasing the controllability of the manipulator 330 and improving the controllability of the robot arm 300, so as to facilitate more complex robot action demonstrations and teaching.
  • the disclosed base frame 200 includes a main body and a connection slot accessory fixed to the main body, the connection slot accessory is assembled by a semicircular matching block and a corresponding structure on the main body, a space for the connection slot 220 is formed between the matching block and the corresponding structure on the main body, the matching block and the corresponding structure on the main body form wings on both sides, and are correspondingly provided with a plurality of threaded holes and corresponding bolts to fix and assemble the matching block, and assemble with the main body to form the connection slot 220.
  • this assembly method has a simple structure, is easy to disassemble and assemble, has a stable connection, ensures the stability of the connecting rod assembly 320 during use, and prevents the rotation and displacement in the connecting groove 220 from causing wear.
  • the connecting rod assembly 320 is disclosed to include a first connecting rod 321, a second connecting rod 322, a third connecting rod 323 and a fourth connecting rod 324 which are hingedly connected in sequence, the other end of the first connecting rod 321 is connected to the bearing 310; the fourth connecting rod 324 is assembled and connected to the manipulator 330; a first spiral rope groove 3211 is provided on the outer surface of the first connecting rod 321, and the first transmission rope is arranged in the first spiral rope groove 3211.
  • the contact area of the surface of the first connecting rod 321 is increased by providing the first spiral rope groove 321.
  • the first transmission rope When the first transmission rope is arranged in the first spiral rope groove 3211, it can fully contact the outer surface of the first connecting rod 321.
  • the first transmission rope When the first transmission rope is pulled, it will be tightened in the first spiral rope groove 3211 due to friction, driving the first connecting rod 321 and thus driving the rotation of the connecting rod assembly 320.
  • This rope-driven transmission method has high reliability and is not prone to accidents such as slipping and loosening. It can maintain a long-lasting and efficient transmission effect between the first transmission rope and the first connecting rod 321.
  • a second spiral rope groove 3212 is formed on one end of the first connecting rod 321 that is hinged to the second connecting rod 322.
  • a wheel structure with a rope groove is adopted, and the wheel structure is fixedly connected to the first connecting rod 321, for example, by welding.
  • a third spiral rope groove 3221 is coaxially arranged at the first shaft 327 of the hinge axis of the first link 321 and the second link 322, and is fixedly connected to the second link 322, so that the third spiral rope groove 3221 is arranged back to back with the second spiral rope groove 3212, but is respectively fixed on different links.
  • the hinge between the first to fourth links of the link assembly 320 adopts a fork-shaped connection method of two side plates, so the same rope groove structure is also arranged back to back on both sides of the other coaxial side plate, which will not be repeated here.
  • a fourth spiral rope groove 3222 is provided on the inner side of one side plate, which adopts a wheel structure and is fixedly connected to the second link 322;
  • a fifth spiral rope groove 3231 is provided on the outer side of the side plate, which adopts the same wheel structure and is fixedly connected to the third link 323.
  • the side plate on the other side of the same hinge axis adopts the same structure.
  • a sixth spiral rope groove 3241 is provided on the inner side of one of the side plates, and adopts the same wheel disc structure, which is fixedly connected to the fourth connecting rod 324; the same wheel disc structure provided on the outer side of the side plate can be cancelled, or it can also be provided on the fourth connecting rod 324 as a spare wheel disc structure for the sixth spiral rope groove 3241.
  • the connecting rod assembly 320 also includes a first synchronous rope ring 325 and a second synchronous rope ring 326. As shown in Figure 4, the first synchronous rope ring 325 is arranged in a surrounding manner to cooperate with the second spiral rope groove 3212 and the fifth spiral rope groove 3231, and is used to drive the third connecting rod 323 and the second connecting rod 322 to rotate synchronously when the second connecting rod 322 is driven to rotate as mentioned above.
  • the synchronous rotation here is a unique controlled rotation method, which is based on the fixation of the second spiral rope groove 3212 and the first connecting rod 321, and the fixation of the fifth spiral rope groove 3231 and the third connecting rod 323. Both are fixed at the hinge axis position of the connecting rod and have the same size. In this way, the rotation trajectory of the third connecting rod 323 is similar to the motion trajectory of the planetary gear, and will always remain in a position parallel to the first connecting rod 321.
  • the second synchronous rope ring 326 is arranged to bypass the fourth spiral rope groove 3222 and the sixth spiral rope groove 3241, so that according to the rotation of the aforementioned second connecting rod 322, the fourth connecting rod 324 can also drive the third connecting rod 323 to rotate simultaneously, and the rotation trajectory is also similar to the motion trajectory of the planetary gear, ensuring that the fourth connecting rod 324 remains in a position parallel to the second connecting rod 322.
  • the third link 323 and the first link 321, and the fourth link 324 and the second link 322 can be set to a non-parallel state in the initial position, then the structure of the spiral rope groove can ensure that the trajectory between the link assemblies during the rotation process moves according to a pre-set trajectory.
  • the first connecting rod 321, the second connecting rod 322, the third connecting rod 323 and the fourth connecting rod 324 are connected head to tail to form a parallelogram mechanism.
  • the first synchronous rope ring 325 is affected by the rotation of the second connecting rod 322, and the friction force with the fifth spiral rope groove 3231 drives the third connecting rod 323 to rotate synchronously.
  • the second synchronous rope ring 326 is affected by the rotation of the second connecting rod 322, and the friction force with the sixth spiral rope groove 3231 drives the third connecting rod 323 to rotate synchronously.
  • the friction force of the rope groove 3241 drives the fourth connecting rod 324 to rotate synchronously; in this way, the first synchronous rope ring 325 and the second synchronous rope ring 326 are always kept in a taut state during the rotation process, so the third connecting rod 323 and the fourth connecting rod 324 will rotate synchronously at the same angle as the second connecting rod 322 rotates.
  • the manipulator 330 is fixedly set at the free end of the fourth connecting rod 324. As shown in FIG2, under the condition of the preset length, the working end of the manipulator 330 is just in the RCM position (remote center of motion).
  • the second transmission rope drives the second link 322 to rotate counterclockwise
  • the first synchronous rope ring 325 drives the third link 323 to rotate clockwise
  • the clockwise rotation angle of the third link 323 is consistent with the counterclockwise rotation angle of the second link 322
  • the second synchronous rope ring 326 drives the fourth link 324 to rotate counterclockwise, and the rotation angle is consistent with the rotation angle of the second link 322; therefore, as long as the first link 321 is initially 321 and the third link 323 are in a parallel state, and the second link 322 and the fourth link 324 are in a parallel state.
  • the first link 321, the second link 322, the third link 323 and the fourth link 324 can be in the same plane or in different planes, and the robot arm 300 can be adjusted by adjusting the angles and positions of the first link 321, the second link 322, the third link 323 and the fourth link 324. Adjust to the appropriate position for teaching demonstration.
  • a first shaft rod 327 is provided at the hinge axis position between the first connecting rod 321 and the second connecting rod 322.
  • the first shaft rod 327 is connected to the side plates for hinge connection on the first connecting rod 321 and the second connecting rod 322 through a plurality of small bearings, and can be provided with a quick release structure, such as a latch at the end.
  • a second shaft rod 328 is provided on the hinge axis between the second connecting rod 322 and the third connecting rod 323, and is located at the center of the fourth spiral rope groove 3222 and the fifth spiral rope groove 3231.
  • a third shaft rod 329 is provided on the hinge axis between the third connecting rod 323 and the fourth connecting rod 324, and is located at the center of the sixth spiral rope groove 3241.
  • Rope grooves may be provided on the first shaft 327, the second shaft 328, and the third shaft 329, respectively.
  • the transmission rope group 500 may also include at least one third transmission rope, which passes through the rope grooves on the shafts in sequence and is connected to the manipulator 330.
  • the manipulator 330 may also be controlled by pulling a rope.
  • the third transmission rope may be a combination rope of a plurality of relatively independent and pullable sub-ropes.
  • the articulation between the connecting rods is achieved by setting up multiple shafts, and the shafts are respectively set at the center position of the corresponding spiral rope groove.
  • the expansion and contraction amount of the second transmission rope is equal to the expansion and contraction amount of the first synchronous rope ring 325 and the expansion and contraction amount of the second synchronous rope ring 326, thereby avoiding the deflection problem of the second connecting rod 322, the third connecting rod 323 or the fourth connecting rod 324, and controlling the synchronous rotation angles of the connecting rods to be consistent, which is conducive to maintaining the parallelogram state, and further ensuring the stability of the end of the manipulator 330 when in use.
  • the third transmission rope can be set to pass through the base frame 200 and the connecting rod assembly 320 and be connected to the manipulator 330 to control the manipulator 330, that is, the connecting rod assembly 320 and the manipulator 330 are controlled simultaneously through the control handle 400, thereby improving the centralization of control and facilitating efficient control of the entire device; in addition, the connecting rod assembly 320 and the manipulator 330 are both driven by rope drive, and the entire driving process has high reliability and simple structure.
  • the mechanical structure is used to simulate the working process of the medical surgical robot, which is conducive to cost saving.
  • the light weight of the rope body is also conducive to reducing the weight of the entire equipment, further facilitating portability and engineering teaching.
  • the third transmission rope passes around the rope grooves of each shaft rod in turn, it must be kept taut to avoid being detached from the connecting rod assembly 320 and loosening during use, thereby preventing the third transmission rope from being entangled in the connecting rod assembly 320 and maintaining efficient and stable transmission between the third transmission rope and the manipulator 330, so as to drive the manipulator 330 to accurately complete the simulated medical surgery.
  • the manipulator 330 in actual manufacturing, in order to increase the versatility of the demonstration, the manipulator 330 generally needs to be configured to realize rotation, extension, opening and closing and other actions, so a plurality of third transmission rope sub-ropes may be correspondingly arranged, and each third transmission rope sub-ropes controls the movement of one degree of freedom, thereby achieving high-precision control of the manipulator 330.
  • the control handle 400 includes a housing 410, The chassis 420, the base 430, the shaft assembly 440, the balancing plate 450 and the constraint assembly 460, the chassis 420 is arranged on the bottom of the shell 410, and a center hole 421 is formed at the center position of the chassis 420; the base 430 is assembled in the center hole 421 to achieve connection with the shell 410; the shaft assembly 440 is universally connected to the base 430.
  • the balancing disk 450 is nested on the shaft assembly 440.
  • a first connecting portion 451 and a second connecting portion 452 are spaced apart around the shaft assembly 440.
  • the multiple first connecting portions 451 and the second connecting portions 452 are respectively used to connect different transmission ropes in the transmission rope group 500.
  • the connection direction between the first connecting portion 451 and the shaft assembly 440 is a first direction
  • the connection direction between the second connecting portion 452 and the shaft assembly 440 is a second direction.
  • the first direction is perpendicular to the second direction: the vertical plane where the first direction is located is the first plane; the vertical plane where the second direction is located is the second plane; the constraint assembly 460 has a three-segment curved spiral setting, one end of which is connected to the chassis 420, and the other end is connected to the balancing disk 450.
  • the constraint assembly 460 is provided with three, obliquely staggered assembly, each constraint assembly 460 is provided with two-axis hinges in the vertical direction and the horizontal direction at its top and bottom, and is installed on the chassis 420 staggered 120 degrees from the balance plate to the same torsion direction (clockwise or counterclockwise) by bending and spiraling.
  • the entire shaft assembly 440 is suspended, and the bottom end of the shaft is also connected to the chassis 420 by a universal joint setting, so that when the shaft assembly 440 is pulled in a certain direction, it can be rotated only in the first plane or only in the second plane.
  • the first plane or the second plane connects the two ends of a transmission rope with two opposite rope connection points on the balance plate 450, and the pulling and pulling drive of the transmission rope can be realized by pulling the direction and position of the balance plate 450.
  • the shaft assembly 440 itself can also have grooves adapted to the transmission rope, and the pulling and pulling drive of a transmission rope can be realized by rotating the shaft assembly 440.
  • the control handle 400 disclosed in this embodiment is formed by opening a hole, a strip hole or several independent holes, on the shell 410, and then extending the transmission rope group 500 into the shell 410, and fixedly connected to the first connection part 451 and the second connection part 452 on the balance plate 450 respectively (the two ends of the same transmission rope are connected to the opposite two side connection parts); during use, the chassis 420 and the base 430 are fixed on the shell 410, and the operator controls the shaft assembly 440 to pull or rotate. During the pulling process, it is constrained by the constraint assembly 460 (the rotation process is not constrained), so that the shaft assembly 440 can only be moved.
  • the first plane or the second plane is offset, or there is an offset component in the first plane or the second plane, respectively, which drives the balance plate 450 to move in the first plane or the second plane, and drives the pulling action of the transmission rope in the corresponding plane. That is to say, multiple transmission ropes can be connected through the control handle 400, and the transmission ropes in the entire transmission rope group 500 can be centrally controlled, which improves the convenience and flexibility of operation. In addition, there will be no interference between the transmission ropes in each degree of freedom during operation, which increases the independence of control over different transmission ropes in the transmission rope group 500 and improves the control accuracy of the control handle 400.
  • the transmission rope group 500 may include a first transmission rope, a second transmission rope, a third transmission rope, and the like.
  • multiple groups of shaft rod assemblies 440 may be arranged in the shell 410. As shown in FIG. 5 , there are two groups as an example to increase the number of connectable transmission ropes to meet the use requirements of the control handle 400.
  • control handle 400 disclosed in this embodiment is completely connected to the mechanical component through the rope body to achieve transmission, and does not require electronic equipment or drive structure to assist in control, thereby reducing the weight of the product, facilitating control and use, and saving costs; that is, the drive of the entire portable surgical robot teaching device is connected through the transmission rope group 500, which is conducive to reducing the overall weight of the portable surgical robot teaching device and improving the reliability of the drive.
  • the remote manipulator can be twisted to observe the changing state of the control handle 400, thereby forming a good experience in operation and feedback.
  • the shaft assembly 440 is disclosed to include a first bearing, a first universal joint, a connecting rod, a second universal joint, a joystick and a second bearing, wherein the first bearing is arranged on the base 430; one end of the first universal joint is connected to the inner ring of the first bearing; the connecting rod is connected to the other end of the first bearing; the second universal joint is connected to the other end of the connecting rod; the joystick is connected to the other end of the second universal joint; the inner ring of the second bearing is fixedly mounted on the joystick, and the balancing plate 450 is fixedly connected to the outer ring of the second bearing, so that the joystick can be rotated independently.
  • the first universal joint is provided with a third connection part, for example, a spiral groove, and the third connection part is used to connect with the corresponding rope body.
  • a bearing structure is provided so that the first universal joint, the connecting rod, the second universal joint, the joystick and other components can rotate independently without being affected by the housing 410 and the balance plate 450. Therefore, the third connection part is provided on the first universal joint to connect and drive the corresponding transmission rope, which can increase the number of rope bodies that can be controlled by the control handle 400, thereby increasing the number of controllable transmission ropes, increasing the controllability of the control handle 400, and improving the convenience of use.
  • the operator pushes the joystick to tilt the balance plate 450, and the third connection portion rotates when the joystick is turned. Therefore, the rope body with multiple degrees of freedom can be controlled by only operating the joystick.
  • the first universal joint and the second universal joint are provided so that when the operator pushes the joystick to tilt and drives the connecting rod to tilt, the connection can still be maintained, and the driving force of the joystick rotation can be transmitted to the connecting rod and the first universal joint.
  • the control of the joystick over the position of the third connection portion is not affected by the tilting state of the joystick, thereby increasing the transmission flexibility of the transmission rope at the position of the third connection portion, so as to improve the control flexibility of the control handle 400.
  • a first hinge, a second hinge, and a third hinge are provided on the side of the chassis 420 facing the balancing plate 450, and the first hinge, the second hinge, and the third hinge are evenly arranged around the base 430, and are respectively used to hinge the lower ends of the corresponding constraint assemblies 460.
  • a fourth hinge, a fifth hinge, and a sixth hinge are provided on the side of the balancing plate 450 facing the chassis 420, and are evenly arranged around the shaft assembly 440, and are respectively used to hinge the upper ends of the constraint assemblies 460.
  • the projection of the fourth hinged part on the chassis 420 is located in the middle position between the first hinged part and the second hinged part
  • the projection of the fifth hinged part on the chassis 420 is located in the middle position between the second hinged part and the third hinged part
  • the projection of the sixth hinged part on the chassis 420 is located in the middle position between the third hinged part and the first hinged part.
  • the portable surgical robot teaching device which also includes a storage box 600, and the storage box 600 includes an outer box body 610, a first inner box 620 and a second inner box 630; a cavity 611 is formed in the outer box body 610, and a supporting step 612 is provided at the bottom of the cavity 611; the first inner box 620 is arranged on the supporting step 612, and a first storage groove 613 is formed below the first inner box 620 for storing the base 200; and a second storage groove 621 for storing the base 100 and a third storage groove 622 for storing the control handle 400 are formed on the first inner box 620; the second inner box 630 is stacked on the first inner box 620, and a fourth storage groove 631 for storing the robotic arm 300 and a fifth storage groove 632 for storing the transmission rope group 500 are formed on the second inner box 630.
  • the base 100, the frame 200, the robotic arm 300 and other structures disclosed in this embodiment are all detachable for
  • the storage box 600 is assembled by an outer box body 610, a first inner box 620 and a second inner box 630, and each modular component has a dedicated storage slot for storage.
  • the shape of the first storage slot 613 is matched with the shape of the base frame 200 through mold opening;
  • the shape of the second storage slot 621 is matched with the shape of the base 100;
  • the shape of the third storage slot 622 is matched with the shape of the control handle 400;
  • the fourth storage slot 631 is matched with the shape of the robotic arm 300, and so on. It also plays the role of storage and fixation, so that each component is stored separately in the storage box 600 to avoid collision; and when storing, it can quickly determine whether a component is missing based on whether there is a corresponding modular component in the storage slot to prevent loss.
  • the storage box 600 includes a box cover, which covers the second inner box 630.
  • the box cover and the outer box body 610 are combined into a closed space to isolate the external environment, protect the multiple components in the storage box 600, and prevent these components from falling out of the storage box 600.
  • the base 100, the base frame 200 and the robotic arm 300 are all formed by 3D printing.
  • forming by 3D printing is conducive to obtaining a base 100, a base frame 200 and a robotic arm 300 with high structural strength, light weight, and easy to carry, and is conducive to cost saving.
  • the base 100 is a transparent base 100; the base frame 200 is a transparent base frame 200; and the mechanical arm 300 is a transparent mechanical arm 300.
  • the base 100, the base frame 200, the mechanical arm 300 and other components are arranged to be light-transmissive, for example, transparent plastic is used, and they are manufactured and formed by extrusion, mold forming and other methods; so that during the teaching demonstration, the teaching staff can intuitively explain the routing position and routing direction of the transmission rope group 500 in each component, so as to make a clear explanation and understanding of the working process and driving principle of the surgical robot; preferably, the base 100, the base frame 200, the mechanical arm 300 and other components disclosed in this embodiment are transparent components, which are processed by transparent plastic, which is conducive to the students to intuitively see the internal structure and transmission principle of the equipment during the teaching process, so as to achieve better teaching effect.
  • the present application discloses a portable surgical robot teaching device, which includes a base 100, a base frame 200, a robotic arm 300, a control handle 400 and a transmission rope group 500.
  • the base frame 200 is plugged into the base 100.
  • a hollow channel 210 with openings at both ends is formed in the base frame 200;
  • the robotic arm 300 is detachably arranged on the base frame 200;
  • the transmission rope group 500 is arranged in the hollow channel 210, and the transmission rope group 500 includes a first end and a second end respectively extending from the two openings of the hollow channel 210, the first end is transmission-connected to the robotic arm 300, and the second end is transmission-connected to the control handle 400.
  • the portable surgical robot teaching device disclosed in the present embodiment modularizes several parts such as the base 100, the base frame 200, and the robotic arm 300, so that they can be stored separately when not in use.
  • the base frame 200 is inserted into the base 100, and the robotic arm 300 is assembled with the base frame 200.
  • one end of the transmission rope group 500 is connected to the control handle 400, and the other end passes through the base frame 200 to connect to the robotic arm 300, so as to realize rope-driven operation of the robotic arm 300 to complete various actions.
  • teaching staff can carry the portable surgical robot teaching device disclosed in the present embodiment, demonstrate at any time during the teaching process, and store and move it in time after the demonstration, thereby improving the flexibility of use of the portable surgical robot teaching device and reducing the requirements for the place of use.
  • the robotic arm 300 disclosed in this embodiment is completely rope-driven, does not contain any electronic components, is more convenient to carry and assemble, and is suitable for various teaching occasions.
  • engineering students can also more intuitively learn the working principles, mechanism transmission principles and design principles of high-end equipment such as medical robots during the teaching process, thereby making up for the technical deficiencies in my country's medical surgical robot industry from an educational perspective.
  • the present invention takes a portable surgical robot teaching device as an example to introduce the specific structure and working principle of the present invention, but the application of the present invention is not limited to portable surgical robot teaching devices in the medical field, and can also be applied to the manufacture and use of other similar workpieces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Business, Economics & Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种便携式外科手术机器人教学设备,其中,包括底座(100)、基架(200)、机械臂(300)、操控手柄(400)和传动绳组(500),基架(200)与底座(100)插接,基架(200)内形成有两端开口的中空通道(210);机械臂(300)可拆卸设置在基架(200)上;传动绳组(500)设于中空通道(210)内,并且传动绳组(500)包括分别从中空通道(210)的两个开口伸出的第一端和第二端,第一端与机械臂(300)传动连接,第二端与操控手柄(400)传动连接。通过设置可拆卸的底座(100)、基架(200)、机械臂(300)等结构,使教学设备的结构实现模块化,便于拆分收纳,方便携带,增加教学设备的使用场景,以满足各学科人才的学习需求。

Description

一种便携式外科手术机器人教学设备 技术领域
本发明涉及教学用具技术领域,特别是涉及一种便携式外科手术机器人教学设备。
背景技术
目前,随着机器人技术的发展,社会各行各业中采用机器人代替或者辅助人工工作的情况越来越多;机器人相比人工在某些可适用的操作中具有可重复性高,控制精度高等优点。例如在医疗领域的达芬奇机器人,已经可以应用到如泌尿外科、心胸外科、妇科、腹部外科等一些常规简单的手术中。医疗机器人一般主要包括主手控制端、中间传动部分、从手器械末端,操作者如医生通过在主手控制端操作来控制从手器械端的运动和手术操作。
随着医疗机器人产业的飞速发展,对智能控制的机器人操作的人才需求越来越多,也越来越高,学校或者培训机构的教学需求相应增加,主要是针对医疗机器人的动作控制技术的教育和学习。
而现有的与医疗机器人相关的教学设备十分罕见,例如在医疗机器人方面,很多教学设备都由用于临床的手术机器人直接改造而成,基本靠电机驱动以实现自动化或半自动化控制,且这部分设备大都只面向医学院类院校的学生教学使用,面向培养未来的医生操作者,而不是技术发展者如工程师,而且这些设备都没有考虑设备的可靠性问题。因教学设备所面临的操作者往往是初学者,误操作和暴力操作在所难免。
另外,这些设备由于是利用临床的手术机器人直接改造而成,其价格成本昂贵,根本无法普及应用到普通的工程教学中。现有技术没有专门针对医疗机器人的工作原理和机构传动原理的教学设备。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种便携式外科手术机器人教学设备,旨在解决现有的教学设备结构复杂,成本过高,不方便移动,无法满足广大工程类人才的培养学习需求的问题。
本发明的技术方案如下:
一种便携式外科手术机器人教学设备,其中,包括底座、基架、机械臂、操控手柄和传动绳组,所述基架与所述底座插接,所述基架内形成有两端开口的中空通道;所述机械臂可 拆卸设置在所述基架上;所述传动绳组设于所述中空通道内,并且所述传动绳组包括分别从所述中空通道的两个开口伸出的第一端和第二端,所述第一端与所述机械臂传动连接,所述第二端与所述操控手柄传动连接。
所述的便携式外科手术机器人教学设备,其中,所述基架上设有连接槽,所述连接槽的横截面形状为圆形;所述机械臂包括至少两个轴承、连杆组件和机械手,至少两个所述轴承间隔设置在所述连接槽内;所述连杆组件与所述轴承的内圈连接;所述机械手与所述连杆组件背离所述连接槽的一端连接;所述传动绳组包括第一传动绳,所述第一传动绳一端与所述操控手柄连接,另一端与所述连杆组件连接,用于带动所述连杆组件在所述连接槽内转动。
所述的便携式外科手术机器人教学设备,其中,所述连杆组件包括依次铰接连接的第一连杆、第二连杆、第三连杆和第四连杆,所述第一连杆上与所述连接槽连接的一端设置装配有所述轴承;所述第四连杆与所述机械手连接;所述第一连杆的外表面上设有第一螺旋绳槽,所述第一传动绳适配在所述第一螺旋绳槽内,用于驱动所述第一连杆的转动。
所述的便携式外科手术机器人教学设备,其中,所述第一连杆上与所述第二连杆铰接的一端固定设置有第二螺旋绳槽;所述第二连杆上与所述第一连杆铰接的一端固定设置有第三螺旋绳槽,与所述第三连杆铰接的一端固定设置有第四螺旋绳槽;所述第三连杆上与所述第二连杆铰接的一端固定设置有第五螺旋绳槽;所述第四连杆上与所述第三连杆铰接的一端固定设置有第六螺旋绳槽;所述传动绳组包括第二传动绳,所述第二传动绳排布适配在所述第三螺旋绳槽内,用于带动所述第二连杆转动;所述连杆组件还包括第一同步绳环和第二同步绳环,所述第一同步绳环排布适配在所述第二螺旋绳槽和所述第五螺旋绳槽内,用于带动所述第三连杆与所述第二连杆同步转动;所述第二同步绳环排布适配在所述第四螺旋绳槽和所述第六螺旋绳槽内,用于带动所述第四连杆与所述第二连杆同步转动。
所述的便携式外科手术机器人教学设备,其中,所述第一连杆与所述第二连杆铰接的一端设有第一轴杆,所述第一轴杆位于所述第二螺旋绳槽和所述第三螺旋绳槽的中心位置;所述第二连杆与所述第三连杆铰接的一端设有第二轴杆,所述第二轴杆位于所述第四螺旋绳槽和所述第五螺旋绳槽的中心位置;所述第三连杆与所述第四连杆铰接的一端设有第三轴杆,所述第三轴杆位于所述第六螺旋绳槽的中心位置;在所述第一轴杆、第二轴杆、第三轴杆上分别设有过绳槽,所述传动绳组包括至少一第三传动绳,所述第三传动绳用于与所述机械手传动连接,并设置依次绕过所述过绳槽。
所述的便携式外科手术机器人教学设备,其中,所述操控手柄包括壳体、底盘、基座、轴杆组件、一平衡盘和一约束组件,所述底盘设于所述壳体上,所述底盘的中心位置形成有中心孔;所述基座与所述壳体连接,位于所述中心孔内;所述轴杆组件与所述基座万向传动 连接;所述平衡盘嵌套在所述轴杆组件上,所述平衡盘上环绕所述轴杆组件交错设置有用于连接所述传动绳组的第一连接部和第二连接部,所述第一连接部与所述轴杆组件之间的连线方向为第一方向,所述第二连接部与所述轴杆组件之间的连线方向为第二方向,所述第一方向与所述第二方向垂直;所述第一方向所在的竖直平面为第一平面;所述第二方向所在的竖直平面为第二平面;所述约束组件连接在所述底盘与所述平衡盘之间,用于约束所述轴杆组件控制可仅在所述第一平面内转动或仅在所述第二平面内转动。
所述的便携式外科手术机器人教学设备,其中,所述便携式外科手术机器人教学设备还包括收纳盒,所述收纳盒包括外盒体、第一内盒和第二内盒,所述外盒体内形成有空腔,所述空腔的底部设有支撑台阶;所述第一内盒设置在所述支撑台阶上,所述第一内盒的下方形成有第一收纳槽,用于收纳所述基架;并且,所述第一内盒上形成有用于收纳所述底座的第二收纳槽和用于收纳所述操控手柄的第三收纳槽;所述第二内盒堆叠在所述第一内盒上,所述第二内盒上形成有用于收纳所述机械臂的第四收纳槽和用于收纳所述传动绳组的第五收纳槽。
所述的便携式外科手术机器人教学设备,其中,所述底座上设有用于与所述基架插接的安装槽,所述安装槽的横截面形状为多边形。
所述的便携式外科手术机器人教学设备,其中,所述底座、所述基架和所述机械臂均通过3D打印方式成型。
所述的便携式外科手术机器人教学设备,其中,所述底座为透明底座;所述基架为透明基架;所述机械臂为透明机械臂。
与现有技术相比,本发明实施例具有以下优点:
本发明公开的便携式外科手术机器人教学设备,通过采用将底座、基架、机械臂等几个部分模块化的设置,不使用时可以分开独立收纳,使用时可将基架插到底座上,并将机械臂与基架组装,然后通过传动绳组一端连接操控手柄,另一端穿过基架连接机械臂,实现绳驱操作机械臂,以完成各种动作,方便在教学过程中对机器人的控制步骤、控制方法、控制原理等作出示范演示;也就是说,教学人员可以携带本发明公开的便携式外科手术机器人教学设备,教学过程中随时进行演示,演示完可以及时收纳和移动,提高了便携式外科手术机器人教学设备的使用灵活度,降低了对使用场所的要求。
另外,本发明公开的机械臂完全通过绳驱驱动,不含任何电子零部件,更方便携带和组装,有利于适用各种教学场合,使得除医学院的学生外,工程类学生也可以在教学过程中更直观地学习到医疗机器人等高端设备的工作原理、机构传动原理和设计原理,弥补了我国医疗机器人行业技术方面的不足;而且,反复拆装使用的过程中不影响传动的可靠性,相较于 传统的齿轮传动、电机驱动的方式,驱动过程中无振动、无冲击,稳定性好。
进一步的,本实施例公开的便携式外科手术机器人教学设备为纯机械传动,不需要外接电源驱动,结构设计上更加轻便,而且造价便宜,降低了设备生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中便携式外科手术机器人教学设备的结构示意图;
图2为本发明中底座、基架和机械臂的结构爆炸图;
图3为本发明中基架的剖面图;
图4为本发明中连杆组件的结构示意图;
图5为本发明中操控手柄的结构爆炸图;
图6为本发明中收纳盒的结构爆炸图。
其中,100、底座;110、安装槽;200、基架;210、中空通道;220、连接槽;300、机械臂;310、轴承;320、连杆组件;321、第一连杆;3211、第一螺旋绳槽;3212、第二螺旋绳槽;322、第二连杆;3221、第三螺旋绳槽;3222、第四螺旋绳槽;323、第三连杆;3231、第五螺旋绳槽;324、第四连杆;3241、第六螺旋绳槽;325、第一同步绳环;326、第二同步绳环;327、第一轴杆;328、第二轴杆;329、第三轴杆;330、机械手;400、操控手柄;410、壳体;420、底盘;421、中心孔;430、基座;440、轴杆组件;450、平衡盘;451、第一连接部;452、第二连接部;460、约束组件;500、传动绳组;600、收纳盒;610、外盒体;611、空腔;612、支撑台阶;613、第一收纳槽;620、第一内盒;621、第二收纳槽;622、第三收纳槽;630、第二内盒;631、第四收纳槽;632、第五收纳槽。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,医疗领域的机器人产品越来越多,医疗机器人主要包含主手控制端、中间 传动部分、从手器械末端等,操作者通过在主手端进行操作来控制从手端运动。随着我国医疗机器人产业的飞速发展,相关教学设备的需求正呈直线上升的趋势。而目前市面上与医疗机器人相关的教学设备十分罕见,且这部分设备大都只面向医学类院校的教学需求。再者,市面上所存在的这类型设备基本靠电机驱动以保证自动化的实现,但却没有将重点放于设备的可靠性。此外,这些设备很多都由用于临床的手术机器人直接改造而成,价格及其昂贵,不方便移动,所以只能供医学院的少部分人才进行学习和研究,鲜有专门针对医疗机器人工作原理和机构传动原理的教学设备。
参阅图1和图3,本发明申请的一实施例中,公开了一种便携式外科手术机器人教学设备,其中,包括底座100、基架200、机械臂300、操控手柄400和传动绳组500,所述基架200与所述底座100插接,所述基架200内形成有两端开口的中空通道210,具有一定预设弯折角度,例如可以是两次90度向内弯折后,形成向下的延伸段,并在延伸段顶端斜向预定角度设置的连接槽220,该斜向预定角度可以但不限于为45度。
所述机械臂300可拆卸地装配设置在所述基架200上;所述传动绳组500设于所述中空通道210内,为方便所述传动绳组500的穿过,所述中空通道210可以设置具有一定的宽度,以及在其内可以设置对应不同拉绳的槽道,以减少各拉绳之间的相互干扰;并且所述传动绳组500包括分别从所述中空通道210的两端开口伸出,形成绳组的第一端和第二端,所述第一端与所述机械臂300传动连接,所述第二端与所述操控手柄400传动连接。
本实施例公开的便携式外科手术机器人教学设备将底座100、基架200、机械臂300等几个部分模块化,不使用时可以分开独立收纳;使用时,将基架200插到底座100上,并将机械臂300与基架200组装,然后通过传动绳组500一端连接操控手柄400,另一端穿过基架200连接机械臂300,实现绳驱操作机械臂300,以完成各种动作。所述传动绳组500的第一端和第二端通常需要保持在所述中空通道210的两端开口之外,通过一定的限位方式,例如在绳组端部上设置阻挡部,实现保持绳组在所述中空通道210中的状态。
在教学过程中,对机器人的控制步骤、控制方法、控制原理等作出示范演示;也就是说,教学人员可以携带本实施例公开的便携式外科手术机器人教学设备,在教学现场进行装配和拆卸,在教学过程中随时进行演示,演示完成后可以及时收纳和带走,提高了便携式外科手术机器人教学设备的使用灵活度,降低了对使用场所的要求,使得工程类学生也可以在教学过程中更直观地学习到医疗机器人等高端设备的工作原理、机构传动原理和设计原理,从教育层面弥补了我国医疗机器人行业技术方面的不足,满足广大工程类人才的学习需求。
具体的,本实施例公开的机械臂300完全通过绳驱驱动,不含任何电子零部件,更方便携带和组装,有利于适用各种教学场合;而且,反复拆装使用的过程中不影响传动的可靠性, 相较于传统的齿轮传动、电机驱动的方式,驱动过程中无振动、无冲击,稳定性好,有利于进行微小动作的演示和教学;另外,本实施例公开的便携式外科手术机器人教学设备为纯机械传动,不需要外接电源驱动,结构设计上更加轻便,而且造价便宜,降低了设备生产成本。
如图2所示,作为本实施例的一种实施方式,公开了所述底座100上设有用于与所述基架200插接的安装槽110,该安装槽110设置在从所述底座100向上延伸的底座柱上,所述安装槽110的横截面形状为多边形,具体地为四边形或三边形,这样也可以更好地定位方向;在另外的实施例中,也可以采用圆形截面的安装槽110,此时方便插接,但容易出现机械臂的转动走位,需要考虑采用相应的限位结构和装置,以便实现是否允许其转动调整。
本实施例中公开的底座100用于支撑基架200和机械臂300,在操控机械臂300进行教学演示的过程中保持稳定;将基架200与底座100进行插接,对接方式简单,有利于快速拆装;而且安装槽110的横截面形状为多边形,例如可以但不限于是三角形、四边形、五边形、六边形等等,使得安装槽110的侧壁可以约束基架200,避免基架200安装好之后在安装槽110内发生转动的情况,进一步提高底座100与基架200组装后的稳定性。
如图2和图3所示,作为本实施例的另一种实施方式,公开了所述基架200上设有连接槽220,所述连接槽220的横截面形状为圆形,并具有相应圆形截面形状的安装孔;所述机械臂300包括至少两个轴承310、连杆组件320和机械手330。至少两个所述轴承310间隔平行设置在所述连接槽220内,其外圈固定在所述连接槽220中;所述连杆组件320中的第一连杆321与两个所述轴承310的内圈连接;这样可以保证所述连杆组件320的第一连杆321在绕自身长轴转动时,定位更牢靠,以减少单轴承时的可能偏离中心造成对轴承的压力和磨损,从而提升装配后的整个连接结构的使用寿命。
更佳的是,在所述连杆组件320的第一连杆321的外侧壁上预先设置适配所述轴承310内圈的多个独立环槽,可以多于所述轴承310的数量,并具有方便可快速装配的装配松紧度,以便可以快速拆装所述轴承310。装配好轴承310的第一连杆321也可以快速插接适配到所述连接槽220中。
所述机械手330与所述连杆组件320装配在远离所述连接槽220的一端;所述传动绳组500包括多个连接绳,至少有一个连接绳分别对应每一个自由度的控制,具体地包括:所述连杆组件320的转动,以及第一连杆321与第二连杆322的转动,第二连杆322与第三连杆323的转动,第三连杆323与机械手330之间的转动,机械手330的开合动作;所述连杆组件320的转动采用在同一平面内的转动,这样就降低了运算的维度,配合所述第一连杆321与连接槽220之间的转动,理论上可以在一个球形控制范围内使所述机械手330到达其中的任何一个位置。
在第一、二、三连杆以及机械手330之间的三个顺序的转动轴上,还采用了复合的多个小轴承,如图2所示的,第一连杆321与第二连杆322、第二连杆322与第三连杆323、第三连杆323与机械手330的连接端都采用两侧侧板铰接的方式,并在每侧侧板上设置有两个小轴承,这样在每个转动轴上设置采用了四个小轴承,并且通过两侧侧板的连接方式,可以保证整个机械臂的稳定工作、耐久使用。
所述连接绳中包括但不限于第一传动绳,所述第一传动绳一端与所述操控手柄400连接,通过所述操控手柄400的驱动抽拉操控,另一端与所述连杆组件320连接,用于带动所述连杆组件320在所述连接槽220内转动;通常设置采用往复的双向绳头,都连接到操控手柄400上,多个连接绳可以通过在所述操控手柄400上的操控选择来实现分别依次控制某个连接绳的操作。
本实施例中设置连杆组件320与连接槽220装配连接,并且在连杆组件320上套上至少两个轴承310,方便其相对基架200转动,并且,设置所述两个轴承310同时套在连杆组件320上,形成多点支撑,使得连杆组件320在连接槽220内稳定,而减少对轴承310的磨损,减小摩擦阻力,便于顺利转动,并提高使用寿命。
具体的,使用过程中,操控手柄400在控制第一传动绳的抽拉传动时,通过第一传动绳带动连杆组件320的整体转动,并可通过其他的连接绳带动机械手330的同步转动和工作,增加对机械手330工作控制能力,提高机械臂300的可控程度,以便于进行更复杂的机器人动作演示和教学。
具体的,在本实施例的另一实施方式中,公开的所述基架200包括主体和固定到所述主体上的连接槽配件,所述连接槽配件采用半圆形的配合块与主体上的对应结构装配而成,在所述配合块与主体上的对应结构中间形成连接槽220的空间,所述配合块与主体上的对应结构在两侧形成翼部,并对应设置具有多个螺纹孔以及对应的螺栓,以固定和装配所述配合块,与主体组装形成所述连接槽220。组装基架200与连杆组件320的时候,先将所述基架200主体与配合块拆开,将连杆组件320放置到主体端部与配合块之间,在翼板上将多个螺栓进行旋拧固定,从而完成连杆组件320的连接和固定;这种组装方式结构简单,而且拆装方便,连接稳固,保证连杆组件320使用过程中的稳定性,防止其在连接槽220内转动偏移导致磨损的情况发生。
如图4所示,作为本实施例的另一种实施方式,公开了所述连杆组件320包括依次铰接连接的第一连杆321、第二连杆322、第三连杆323和第四连杆324,所述第一连杆321的另一端与所述轴承310连接;所述第四连杆324与所述机械手330装配连接;所述第一连杆321的外表面上设有第一螺旋绳槽3211,所述第一传动绳排布在所述第一螺旋绳槽3211内。
本实施例中通过设置第一螺旋绳槽3211增加第一连杆321表面的接触面积,第一传动绳排布在第一螺旋绳槽3211内时,可充分与第一连杆321的外表面接触,当第一传动绳被抽拉时,就会由于摩擦力箍紧在第一螺旋绳槽3211内,带动第一连杆321从而带动所述连杆组件320的转动,这种绳驱的传动方式可靠性高,不容易产生打滑、松动等意外情况,可以保持第一传动绳与第一连杆321的持久的高效传动效果。
再如图4所示,作为本实施例的另一种实施方式,在所述第一连杆321上与所述第二连杆322铰接的一端,形成有第二螺旋绳槽3212,具体采用具有过绳绳槽的轮盘结构,该轮盘结构与所述第一连杆321固连在一起,例如通过焊接连接。
在第一连杆321与第二连杆322的铰接轴第一轴杆327位置上,同轴设置了一第三螺旋绳槽3221,与所述第二连杆322固连在一起,这样所述第三螺旋绳槽3221就与所述第二螺旋绳槽3212背靠背设置,但分别固定在不同的连杆上。在连杆组件320的第一至第四连杆之间的铰接都采用了叉型两个侧板的连接方式,因此,在同轴的另一侧板两侧同样背靠背设置了相同的绳槽结构,在此不再赘述。
在第二连杆322与第三连杆323的铰接轴第二轴杆328位置,在一侧侧板的内侧设置有一第四螺旋绳槽3222,采用轮盘结构,该第四螺旋绳槽3222与第二连杆322固连在一起;在该侧板的外侧设置具有一第五螺旋绳槽3231,采用同样的轮盘结构,与所述第三连杆323固连在一起。同一铰轴的另侧侧板设置采用同样的结构。
在所述第三连杆323与第四连杆324的铰接轴第三轴杆329位置,在其中一侧板的内侧设置有一第六螺旋绳槽3241,采用同样的轮盘结构,与所述第四连杆324固连;该侧板外侧设置的同样轮盘结构可以取消,或者同样设置在所述第四连杆324上,作为第六螺旋绳槽3241的备用轮盘结构。
在上述各螺旋绳槽结构中,须采用同样的轮盘转动半径,并且在所述传动绳组500中设置包括一第二传动绳,所述第二传动绳排布与所述第三螺旋绳槽3221配合,通过外部的抽拉驱动所述第三螺旋绳槽3221的转动,用来带动所述第二连杆322转动。而在所述连杆组件320中,还包括第一同步绳环325和第二同步绳环326,如图4所示,所述第一同步绳环325环绕排布与所述第二螺旋绳槽3212和所述第五螺旋绳槽3231配合,用来在所述第二连杆322在前述被带动转动时,带动所述第三连杆323与所述第二连杆322的同步转动,注意此处的同步转动是独特的受控转动方式,是基于第二螺旋绳槽3212与第一连杆321的固定,以及第五螺旋绳槽3231与第三连杆323的固定,两者都固定在连杆的铰接轴位置上,而且尺寸一致,这样所述第三连杆323的转动轨迹类似于行星轮的运动轨迹,并会一直保持在与所述第一连杆321平行的位置上。
与此同理,所述第二同步绳环326通过排布绕过所述第四螺旋绳槽3222和所述第六螺旋绳槽3241,就可以根据前述第二连杆322的转动,同样带动所述第四连杆324相对第三连杆323同时转动,而且转动轨迹也类似于行星轮的运动轨迹,保证所述第四连杆324保持在于所述第二连杆322平行的位置上。
当然,在可以考虑到的变形实施方案中,第三连杆323与第一连杆321,和第四连杆324与第二连杆322,在初始位置可以设置成不平行的状态,则上述螺旋绳槽的结构可以保证连杆组件之间在转动过程中的轨迹依照预先设定的轨迹移动。
本实施例中采用平行设置的连杆组件320结构示例方案中,第一连杆321、第二连杆322、第三连杆323和第四连杆324头尾相连,组成一个平行四边形机构,通过同步绳驱的方式使得从外部驱动抽拉的第二传动绳带动第二连杆322转动时,第一同步绳环325受到第二连杆322转动的影响,通过与第五螺旋绳槽3231的摩擦力,带动第三连杆323同步转动,与此同时第二同步绳环326受到第二连杆322转动的影响,通过与第六螺旋绳槽3241的摩擦力,带动第四连杆324同步转动;这样,转动过程中始终保持第一同步绳环325和第二同步绳环326处于绷紧状态,所以第二连杆322转动多少角度,第三连杆323和第四连杆324就会同步转动多少角度,在所述第四连杆324的自由端固定设置好机械手330,如图2所示,在预先设置好的长度情况下,机械手330的工作端恰好处于RCM位置(remote center of motion,远距离运动中心)。这样,机械臂300的所有动作都只是用来调整机械手330的位置,而其工作所指向的点,即RCM点会保持不变,这样就符合了医疗手术机器人的操作工作原理,也就是说,对应需要做手术的手术区域是预先经过诊断后确定不变的位置,防止机械臂的操作范围超越控制范围。
具体地例如,如图4所示,将第一连杆321视为固定状态时,第二传动绳带动第二连杆322逆时针旋转,此时由第一同步绳环325带动第三连杆323顺时针转动,并且第三连杆323顺时针转动的角度与第二连杆322逆时针转动的角度保持一致,同时第二同步绳环326带动第四连杆324逆时针转动,转动的角度与第二连杆322转动的角度保持一致;因此,只要初始时刻第一连杆321与第三连杆323处于平行状态,第二连杆322与第四连杆324处于平行状态,则后续无论第二传动绳如何驱动,都会保持第一连杆321与第三连杆323平行,第二连杆322与第四连杆324平行的平行四边形状态,使得组装在第四连杆324上的机械手330的远端,保持与第一连杆321相对不变,从而实现手术操作时的动态稳定,以保证使用状态时机械手330的稳定性。当然,上述操作描述实际上是模拟医疗机器人的工作原理,而非实际应用到临床手术中。
具体的,在本实施例的另一种实施方式中公开了所述第一连杆321、所述第二连杆322、所述第三连杆323和所述第四连杆324可以处于同一平面内,也可以处于不同平面,通过调整第一连杆321、第二连杆322、第三连杆323和第四连杆324的角度和位置,可以将机械臂300 调整到合适的位置以进行教学演示。
再如图4所示,作为本实施例的另一种实施方式,公开了所述第一连杆321与所述第二连杆322之间的铰接轴位置设有第一轴杆327,所述第一轴杆327通过多个小轴承与所述第一连杆321和第二连杆322上用来铰接的侧板连接,并可以设置采用快拆结构,例如端部设置插销方式。同样的,在所述第二连杆322与所述第三连杆323的铰接轴上设有第二轴杆328,并位于所述第四螺旋绳槽3222和所述第五螺旋绳槽3231的中心位置。所述第三连杆323与所述第四连杆324的铰接轴上设有第三轴杆329,并位于所述第六螺旋绳槽3241的中心位置。
在所述第一轴杆327、第二轴杆328、第三轴杆329上可以分别设有过绳槽,所述传动绳组500还可以包括至少一条第三传动绳,所述第三传动绳依次绕过所述轴杆上的过绳槽,与所述机械手330传动连接。所述机械手330也可以设置通过拉绳进行控制,为实现其不同的操作功能,例如加紧松弛、旋转等等,所述第三传动绳可以设置采用多条相对独立可抽拉的子绳之组合绳。
本实施例中通过设置多个轴杆实现各个连杆之间的铰接,同时各个轴杆分别设置在对应的螺旋绳槽的中心位置,则各个连杆之间产生相对转动时,第二传动绳的伸缩量与第一同步绳环325的伸缩量、第二同步绳环326的伸缩量均相等,避免第二连杆322、第三连杆323或者第四连杆324出现偏转的问题,并且控制各个连杆同步转动的角度一致,有利于维持平行四边形状态,进一步保证使用状态时机械手330的端部的稳定性。
具体的,实际使用过程中,可以通过设置第三传动绳穿过基架200和连杆组件320连接到机械手330上,对机械手330进行操控,即通过操控手柄400同时控制连杆组件320和机械手330,提高控制的集中度,便于高效地控制整个设备;另外,连杆组件320和机械手330都是通过绳驱驱动,整个驱动过程可靠性高,结构简单,采用机械结构模拟医疗手术机器人的工作过程,有利于节省成本,绳体的重量轻,还有利于减小整个设备的自重,进一步便于携带,并方便工程教学。
具体的,第三传动绳依次绕过各轴杆的过绳槽时,须保持紧绷状态,使用过程中避免脱离连杆组件320而松弛,从而防止出现第三传动绳缠绕在连杆组件320上的情况发生,并保持第三传动绳与机械手330之间的高效、稳定的传动,以带动机械手330精确完成模拟医疗手术动作。
具体的,在实际制造时,为了增加演示的多功能性,机械手330一般需要设置实现转动、伸缩、开合等等动作,所以可对应地设置多条第三传动绳的子绳,每条第三传动绳子绳控制一个自由度的动作,从而实现对机械手330的高精度控制。
如图5所示,作为本实施例的另一种实施方式,公开了所述操控手柄400包括壳体410、 底盘420、基座430、轴杆组件440、平衡盘450和约束组件460,所述底盘420设于所述壳体410的底部上,所述底盘420的中心位置形成有中心孔421;所述基座430通过装配位于所述中心孔421内,实现与所述壳体410的连接;所述轴杆组件440与所述基座430万向传动连接。
所述平衡盘450嵌套在所述轴杆组件440上,在所述平衡盘450上,环绕所述轴杆组件440间隔设置有第一连接部451和第二连接部452,多个第一连接部451和第二连接部452分别用于连接所述传动绳组500中的不同传动绳,其中所述第一连接部451与所述轴杆组件440之间的连线方向为第一方向,所述第二连接部452与所述轴杆组件440之间的连线方向为第二方向,所述第一方向与所述第二方向垂直设置:所述第一方向所在的竖直平面为第一平面;所述第二方向所在的竖直平面为第二平面;所述约束组件460具有三段弯曲盘旋设置,一端与所述底盘420连接,另一端与所述平衡盘450连接。
所述约束组件460设置具有三个,斜向交错装配,每一个约束组件460在其顶端和底端都设置采用垂直方向和水平方向的两轴铰接,并通过弯曲盘旋方式,从平衡盘向同一的扭转方向(顺时针或逆时针方向)交错120度安装到底盘420上,整个轴杆组件440悬空设置,轴杆底端也采用万向节设置方式与底盘420连接,用于通过向某个方向扳动所述轴杆组件440时,可以仅在所述第一平面内转动或仅在所述第二平面内转动。第一平面或第二平面以所述平衡盘450上的两个相对的接绳点,连接某一传动绳的两端,通过扳动所述平衡盘450的方向和位置,可以实现对该传动绳的抽拉驱动。所述轴杆组件440本身也可以具有适配传动绳的槽纹,通过转动所述轴杆组件440可以实现对某一传动绳的抽拉驱动。
本实施例中公开的操控手柄400通过在壳体410上开孔,一个条形孔或数个独立孔,然后将传动绳组500延伸入壳体410内,分别与平衡盘450上的第一连接部451和第二连接部452固定连接(同一个传动绳的两端连接相对的两侧连接部);使用过程中,底盘420和基座430固定在壳体410上,操作人员控制轴杆组件440扳动或转动,扳动过程中受到约束组件460的约束(转动过程不受约束),使得轴杆组件440只能在第一平面或者第二平面内偏移,或者,分别在第一平面或第二平面内有偏移分量,带动平衡盘450在第一平面或者第二平面内的运动,带动相应平面内的传动绳抽拉动作,也就是说,通过操控手柄400可以连接多条传动绳,集中控制整个传动绳组500中的各传动绳,提高了操控的便利性和灵活度,并且操作过程中各自由度内的传动绳之间不会产生干扰,增加了对传动绳组500中不同传动绳的控制的独立性,提高了操控手柄400的控制精度。
具体的,在本实施例中传动绳组500可以包括第一传动绳、第二传动绳、第三传动绳等等,依据传动绳的数量,可以在壳体410内设置多组轴杆组件440,如图5所示的,为两组的示例,以增加可连接传动绳的数量,满足操控手柄400的使用需求。
另外,本实施例公开的操控手柄400完全通过绳体与机械构件连接实现传动,不需要电子设备或者驱动结构协助控制,减小产品自重,方便控制和使用,节省成本;也就是说,整个便携式外科手术机器人教学设备的驱动都是通过传动绳组500实现连接的,有利于减小便携式外科手术机器人教学设备整体的自重,提高驱动的可靠性。在教学过程中,可以扭动远端的机械手操作,来观察操控手柄400的变化状态,从而对操作与反馈形成良好的经验培养。
具体的,作为本实施例的另一种实施方式,公开了所述轴杆组件440包括第一轴承、第一万向节、连接杆、第二万向节、操纵杆和第二轴承,所述第一轴承设置在所述基座430上;所述第一万向节一端与所述第一轴承的内圈连接;所述连接杆与所述第一轴承的另一端连接;所述第二万向节与所述连接杆的另一端连接;所述操纵杆与所述第二万向节的另一端连接;所述第二轴承内圈固定套设在所述操纵杆上,所述平衡盘450与所述第二轴承的外圈固定连接,这样所述操纵杆就可以独立转动操作。
所述第一万向节上设有第三连接部,例如形成螺旋的槽道,所述第三连接部用于与对应的绳体连接。本实施例中设置通过轴承结构,使得第一万向节、连接杆、第二万向节和操纵杆等构件可以独立转动,不受壳体410和平衡盘450的影响,因此,在第一万向节上设置第三连接部连接驱动对应的传动绳,可以增加操控手柄400可控制的绳体数量,从而增加可控制的传动绳的数量,增加操控手柄400的操控能力,提高使用的便利性。
具体的,操作人员推动操纵杆可使平衡盘450侧倾,而转动操纵杆时第三连接部处发生转动,因此,只需要操作操纵杆便可以实现对多个自由度的绳体控制;而设置第一万向节和第二万向节,使得操作人员推动操纵杆倾斜,带动连接杆倾斜的时候,仍然可以保持连接,并且可以将操纵杆转动的驱动力传递到连接杆和第一万向节上,也就是说,使得操纵杆对第三连接部位置的控制不受操纵杆倾斜状态的影响,增加了第三连接部位置处的传动绳传动灵活度,以便于提高操控手柄400的控制的灵活度。
具体的,作为本实施例的另一种实施方式,公开了所述底盘420上朝向所述平衡盘450的一侧设有第一铰接部、第二铰接部和第三铰接部,所述第一铰接部、所述第二铰接部和所述第三铰接部环绕所述基座430均匀排布,分别用来铰接对应约束组件460的下端。所述平衡盘450上朝向所述底盘420的一侧设有第四铰接部、第五铰接部和第六铰接部,环绕所述轴杆组件440均匀排布,用来分别铰接所述约束组件460的上端。
具体地,所述第四铰接部在所述底盘420上的投影位于所述第一铰接部和所述第二铰接部的中间位置,所述第五铰接部在所述底盘420上的投影位于所述第二铰接部和所述第三铰接部的中间位置,所述第六铰接部在所述底盘420上的投影位于所述第三铰接部和所述第一铰接部的中间位置。
如图6所示,作为本实施例的另一种实施方式,公开了所述便携式外科手术机器人教学设备,还包括收纳盒600,所述收纳盒600包括外盒体610、第一内盒620和第二内盒630;所述外盒体610内形成有空腔611,所述空腔611的底部设有支撑台阶612;所述第一内盒620设置在所述支撑台阶612上,所述第一内盒620的下方形成有第一收纳槽613,用于收纳所述基架200;并且,所述第一内盒620上形成有用于收纳所述底座100的第二收纳槽621和用于收纳所述操控手柄400的第三收纳槽622;所述第二内盒630堆叠在所述第一内盒620上,所述第二内盒630上形成有用于收纳所述机械臂300的第四收纳槽631和用于收纳所述传动绳组500的第五收纳槽632。本实施例中公开的底座100、基架200、机械臂300等结构都可拆卸,以方便携带,通过设置收纳盒600收纳这些模块化的构件,使得运输、携带过程中,可以对各模块化的构件进行稳定储存。
具体的,收纳盒600通过外盒体610、第一内盒620和第二内盒630的组装而成,每个模块化的构件都有专门的收纳槽收纳,例如,通过模具开模使得第一收纳槽613的形状与基架200的形状匹配;第二收纳槽621的形状与底座100的形状匹配;第三收纳槽622的形状与操控手柄400的形状匹配;第四收纳槽631与机械臂300的形状匹配等等,同时起到储存和固定的作用,使得各个构件在收纳盒600内分离储存,避免碰撞;并且,在收纳的时候可以根据收纳槽内是否有对应的模块化的构件快速判断是否遗漏零部件,防止遗失。
具体的,在本实施例的另一实施方式中还公开了收纳盒600包括盒盖,盒盖盖合在第二内盒630上。通过盒盖与外盒体610组合成密闭空间,将外界环境隔绝,保护收纳盒600内的多个构件,并防止这些构件从收纳盒600中掉落的情况发生。
具体的,作为本实施例的另一种实施方式,公开了所述底座100、所述基架200和所述机械臂300均通过3D打印方式成型。本实施例中通过3D打印的方式成型,有利于获得结构强度高、质轻、便于携带的底座100、基架200和机械臂300,并且有利于节省成本。
具体的,作为本实施例的另一种实施方式,公开了所述底座100为透明底座100;所述基架200为透明基架200;所述机械臂300为透明机械臂300。设置底座100、基架200、机械臂300等构件可以透光,例如采用透明塑料,通过挤塑、模具成型等方式制造成型;使得教学演示过程中,教学人员可以直观地说明各零部件内的传动绳组500的走线位置,走线方向,以对外科手术机器人的工作过程、驱动原理作出清楚的解释和了解;优选的,本实施例中公开的底座100、基架200、机械臂300等构件为透明构件,通过透明塑料加工而成,有利于教学过程中学员可以直观看到设备内部的结构和传动原理,达到更好的教学效果。
综上所述,本申请公开了一种便携式外科手术机器人教学设备,其中,包括底座100、基架200、机械臂300、操控手柄400和传动绳组500,所述基架200与所述底座100插接, 所述基架200内形成有两端开口的中空通道210;所述机械臂300可拆卸设置在所述基架200上;所述传动绳组500设于所述中空通道210内,并且所述传动绳组500包括分别从所述中空通道210的两个开口伸出的第一端和第二端,所述第一端与所述机械臂300传动连接,所述第二端与所述操控手柄400传动连接。
本实施例公开的便携式外科手术机器人教学设备将底座100、基架200、机械臂300等几个部分模块化,不使用时可以分开独立收纳,使用时,将基架200插到底座100上,并将机械臂300与基架200组装,然后通过传动绳组500一端连接操控手柄400,另一端穿过基架200连接机械臂300,实现绳驱操作机械臂300,以完成各种动作,在教学过程中,对机器人的控制步骤、控制方法、控制原理等作出示范演示;也就是说,教学人员可以携带本实施例公开的便携式外科手术机器人教学设备,教学过程中随时进行演示,演示完可以及时收纳和移动,提高了便携式外科手术机器人教学设备的使用灵活度,降低了对使用场所的要求。
另外,本实施例公开的机械臂300完全通过绳驱驱动,不含任何电子零部件,更方便携带和组装,有利于适用各种教学场合,使得除医学院的学生外,工程类学生也可以在教学过程中更直观地学习到医疗机器人等高端设备的工作原理、机构传动原理和设计原理,从教育层面弥补了我国医疗手术机器人行业技术方面的不足。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
需要说明的是,本发明以便携式外科手术机器人教学设备为例对本发明的具体结构及工作原理进行介绍,但本发明的应用并不以医疗领域的便携式外科手术机器人教学设备为限,也可以应用到其它类似工件的制造和使用中。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种便携式外科手术机器人教学设备,其特征在于,包括:
    底座;
    基架,与所述底座插接,所述基架内形成有两端开口的中空通道;
    机械臂,可拆卸设置在所述基架上;
    操控手柄;以及
    传动绳组,设于所述中空通道内,并且所述传动绳组包括分别从所述中空通道的两个开口伸出的第一端和第二端,所述第一端与所述机械臂传动连接,所述第二端与所述操控手柄传动连接。
  2. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述基架上设有连接槽,所述连接槽的横截面形状为圆形;所述机械臂包括:
    至少两个轴承,间隔设置在所述连接槽内;
    连杆组件,与所述轴承的内圈连接;
    机械手,与所述连杆组件背离所述连接槽的一端连接;
    其中,所述传动绳组包括第一传动绳,所述第一传动绳一端与所述操控手柄连接,另一端与所述连杆组件连接,用于带动所述连杆组件在所述连接槽内转动。
  3. 根据权利要求2所述的便携式外科手术机器人教学设备,其特征在于,所述连杆组件包括依次铰接连接的第一连杆、第二连杆、第三连杆和第四连杆,所述第一连杆上与所述连接槽连接的一端设置装配有所述轴承;所述第四连杆与所述机械手连接;
    其中,所述第一连杆的外表面上设有第一螺旋绳槽,所述第一传动绳适配在所述第一螺旋绳槽内,用于驱动所述第一连杆的转动。
  4. 根据权利要求3所述的便携式外科手术机器人教学设备,其特征在于,所述第一连杆上与所述第二连杆铰接的一端固定设置有第二螺旋绳槽;
    所述第二连杆上与所述第一连杆铰接的一端固定设置有第三螺旋绳槽,与所述第三连杆铰接的一端固定设置有第四螺旋绳槽;
    所述第三连杆上与所述第二连杆铰接的一端固定设置有第五螺旋绳槽;
    所述第四连杆上与所述第三连杆铰接的一端固定设置有第六螺旋绳槽;
    其中,所述传动绳组包括第二传动绳,所述第二传动绳排布适配在所述第三螺旋绳槽内,用于带动所述第二连杆转动;所述连杆组件还包括第一同步绳环和第二同步绳环,所述第一同步绳环排布适配在所述第二螺旋绳槽和所述第五螺旋绳槽内,用于带动所述第三连杆与所述第二连杆同步转动;所述第二同步绳环排布适配在所述第四螺旋绳槽和所述第六螺旋绳槽内,用于带动所述第四连杆与所述第二连杆同步转动。
  5. 根据权利要求4所述的便携式外科手术机器人教学设备,其特征在于,所述第一连杆与所述第二连杆铰接的一端设有第一轴杆,所述第一轴杆位于所述第二螺旋绳槽和所述第三螺旋绳槽的中心位置;
    所述第二连杆与所述第三连杆铰接的一端设有第二轴杆,所述第二轴杆位于所述第四螺旋绳槽和所述第五螺旋绳槽的中心位置;
    所述第三连杆与所述第四连杆铰接的一端设有第三轴杆,所述第三轴杆位于所述第六螺旋绳槽的中心位置;
    其中,在所述第一轴杆、第二轴杆、第三轴杆上分别设有过绳槽,所述传动绳组包括至少一第三传动绳,所述第三传动绳用于与所述机械手传动连接,并设置依次绕过所述过绳槽。
  6. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述操控手柄包括:
    壳体;
    底盘,设于所述壳体上,所述底盘的中心位置形成有中心孔;
    基座,与所述壳体连接,位于所述中心孔内;
    轴杆组件,与所述基座万向传动连接;
    一平衡盘,嵌套在所述轴杆组件上,所述平衡盘上环绕所述轴杆组件交错设置有用于连接所述传动绳组的第一连接部和第二连接部,所述第一连接部与所述轴杆组件之间的连线方向为第一方向,所述第二连接部与所述轴杆组件之间的连线方向为第二方向,所述第一方向与所述第二方向垂直;所述第一方向所在的竖直平面为第一平面;所述第二方向所在的竖直平面为第二平面;
    一约束组件,连接在所述底盘与所述平衡盘之间,用于约束所述轴杆组件控制可仅在所述第一平面内转动或仅在所述第二平面内转动。
  7. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述便携式外科手术机器人教学设备还包括收纳盒,所述收纳盒包括:
    外盒体,所述外盒体内形成有空腔,所述空腔的底部设有支撑台阶;
    第一内盒,设置在所述支撑台阶上,所述第一内盒的下方形成有第一收纳槽,用于收纳所述基架;并且,所述第一内盒上形成有用于收纳所述底座的第二收纳槽和用于收纳所述操控手柄的第三收纳槽;
    第二内盒,堆叠在所述第一内盒上,所述第二内盒上形成有用于收纳所述机械臂的第四收纳槽和用于收纳所述传动绳组的第五收纳槽。
  8. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述底座上设 有用于与所述基架插接的安装槽,所述安装槽的横截面形状为多边形。
  9. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述底座、所述基架和所述机械臂均通过3D打印方式成型。
  10. 根据权利要求1所述的便携式外科手术机器人教学设备,其特征在于,所述底座为透明底座;所述基架为透明基架;所述机械臂为透明机械臂。
PCT/CN2023/123268 2022-10-25 2023-10-07 一种便携式外科手术机器人教学设备 WO2024088030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211308593.9A CN115953940B (zh) 2022-10-25 2022-10-25 一种便携式外科手术机器人教学设备
CN202211308593.9 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024088030A1 true WO2024088030A1 (zh) 2024-05-02

Family

ID=87281245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123268 WO2024088030A1 (zh) 2022-10-25 2023-10-07 一种便携式外科手术机器人教学设备

Country Status (2)

Country Link
CN (1) CN115953940B (zh)
WO (1) WO2024088030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115953940B (zh) * 2022-10-25 2023-10-13 深圳技术大学 一种便携式外科手术机器人教学设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662782A (zh) * 2016-03-21 2016-06-15 上海卓道医疗科技有限公司 一种外骨骼式上肢康复训练机器人
US20210052258A1 (en) * 2019-08-23 2021-02-25 Behnoush Mortazavi Moghadam Multidirectional Device for Percutaneous Procedures
CN212947819U (zh) * 2020-08-04 2021-04-13 徐州大石信息科技有限公司 一种移动教育教学机械臂
CN114393572A (zh) * 2022-03-03 2022-04-26 沈阳工业大学 一种跨关节绳驱机械臂
CN114406988A (zh) * 2022-01-25 2022-04-29 常州大学 一种狭小空间作业的穿戴式连续型柔性外肢体机器人
CN115107003A (zh) * 2022-07-05 2022-09-27 常州大学 面向水果采摘的刚柔耦合绳驱动外肢体机器人
CN115953940A (zh) * 2022-10-25 2023-04-11 深圳技术大学 一种便携式外科手术机器人教学设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066275B2 (ja) * 1987-07-24 1994-01-26 株式会社東芝 ロ−プ駆動式マニピュレ−タ
US6435437B1 (en) * 2001-08-06 2002-08-20 Rockford Manufacturing Group, Inc. Wire mandrel having a spring biased restraining arm in a wire uncoiler
RU2305639C1 (ru) * 2006-04-13 2007-09-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Волгоградская государственная сельскохозяйственная академия" Манипулятор
CN104440904B (zh) * 2014-12-29 2016-11-09 连云港贝斯特机械设备有限公司 一种钢丝绳传动的机械手
CN105773598B (zh) * 2016-05-05 2018-10-16 四川大学 一种基于绳体拉力传动的机械手
CN109176497B (zh) * 2018-10-25 2021-03-09 北京机械设备研究所 一种绳传动三自由度遥操作主手
CN110977435B (zh) * 2019-12-31 2024-06-28 广西玉柴机器股份有限公司 一种发动机离合器组件装配辅助装置及方法
CN112295799A (zh) * 2020-11-06 2021-02-02 北京克莱明科技有限公司 用于线绳驱动的主从遥控操作的操控臂
CN215546275U (zh) * 2021-08-18 2022-01-18 唐山爱茵科技有限公司 一种钢筋棍焊接钢筋固定机械臂
CN114973903A (zh) * 2022-06-10 2022-08-30 范莹莹 一种用于智慧课堂教学的多自由度模拟平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662782A (zh) * 2016-03-21 2016-06-15 上海卓道医疗科技有限公司 一种外骨骼式上肢康复训练机器人
US20210052258A1 (en) * 2019-08-23 2021-02-25 Behnoush Mortazavi Moghadam Multidirectional Device for Percutaneous Procedures
CN212947819U (zh) * 2020-08-04 2021-04-13 徐州大石信息科技有限公司 一种移动教育教学机械臂
CN114406988A (zh) * 2022-01-25 2022-04-29 常州大学 一种狭小空间作业的穿戴式连续型柔性外肢体机器人
CN114393572A (zh) * 2022-03-03 2022-04-26 沈阳工业大学 一种跨关节绳驱机械臂
CN115107003A (zh) * 2022-07-05 2022-09-27 常州大学 面向水果采摘的刚柔耦合绳驱动外肢体机器人
CN115953940A (zh) * 2022-10-25 2023-04-11 深圳技术大学 一种便携式外科手术机器人教学设备

Also Published As

Publication number Publication date
CN115953940B (zh) 2023-10-13
CN115953940A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024088030A1 (zh) 一种便携式外科手术机器人教学设备
US20210369360A1 (en) Mechanical manipulator for surgical instruments
CN108748258B (zh) 一种六自由度机械臂
US5811951A (en) High precision redundant robotic manipulator
CN105459090A (zh) 一种示教型六自由度搬运机械手
WO2024087920A1 (zh) 一种绳驱操作手柄
US10695903B2 (en) Articulated robot and module thereof
CN104440921B (zh) 一种多平移自由度平行四边形复杂运动副
US20090139364A1 (en) Wrist Unit to a Robot Arm
CN205766154U (zh) 一种具备示教作用的六轴机械手
WO2011054195A1 (zh) 一种具有三维平动一维转动的并联机构
WO1993020982A1 (en) Six degree of freedom motion device
CN109615943A (zh) 一种远程控制教学机器人
SE512931C2 (sv) Anordning för relativ förflyttning av två element
JPH028877B2 (zh)
CN117944021B (zh) 一种可柔性操作的机器人
CN111085985A (zh) 一种桌面级六轴协作机器人
CN108355723A (zh) 智能实验室
WO2023071906A1 (zh) 机械臂、主操作台、手术机器人
CN109848977B (zh) 一种小型桌面六自由度机械臂
CN113386117B (zh) 一种实现正弦解耦的具有偏航自由度的绳驱柔性机械臂
CN209273439U (zh) 模块夹具
JPS60255377A (ja) 産業ロボツト
JPS6254302A (ja) ロボツトの制御装置
CN212146498U (zh) 一种机器人关节结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881609

Country of ref document: EP

Kind code of ref document: A1