WO2024087920A1 - 一种绳驱操作手柄 - Google Patents

一种绳驱操作手柄 Download PDF

Info

Publication number
WO2024087920A1
WO2024087920A1 PCT/CN2023/118320 CN2023118320W WO2024087920A1 WO 2024087920 A1 WO2024087920 A1 WO 2024087920A1 CN 2023118320 W CN2023118320 W CN 2023118320W WO 2024087920 A1 WO2024087920 A1 WO 2024087920A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
chassis
operating handle
plane
driven operating
Prior art date
Application number
PCT/CN2023/118320
Other languages
English (en)
French (fr)
Inventor
马淦
冯永玄
黄浩佳
冯瀚
匡绍龙
张文伟
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2024087920A1 publication Critical patent/WO2024087920A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/36Driving mechanisms, i.e. for transmitting driving force to the contacts using belt, chain, or cord

Definitions

  • the invention relates to the technical field of robots, in particular to a novel rope-driven operating handle.
  • rope As a reliable flexible transmission medium, rope has the unique advantages of stable transmission, low vibration and rigid transmission accuracy, which makes rope drive have the characteristics of high precision, low noise, smooth transmission, no lubrication required, easy installation and maintenance.
  • Rope drive has been used in fields such as robots and precision transmission devices.
  • Existing handles are generally electronic handles.
  • the operator usually controls the operation of the motor by operating the electronic handle.
  • the electronic handle sends an electrical signal to the motor, and the motor then transmits force to the transmission mechanism, thereby indirectly controlling the transmission mechanism and controlling the robot arm by indirectly controlling the pulling of the rope.
  • This implementation method in teaching robot equipment often uses a complete product or finished product control module, such as a circuit unit or module including a motor and a sensor, etc., which makes it difficult for learners to fundamentally understand the transmission control principle of the robot arm.
  • a complete product or finished product control module such as a circuit unit or module including a motor and a sensor, etc.
  • this control method makes it difficult to control the pulling speed of the rope, and it is easy for it to get stuck or jammed at the extreme position of the joint.
  • Electronic control generally does not set signal feedback, and cannot accurately sense the force changes of the rope. It may still send a driving signal for continuous operation, which may cause damage to the electronic equipment, such as burning of the motor and other failures.
  • an object of the present invention is to provide a novel rope-driven operating handle, aiming to solve the problem that the existing rope-driven operating handle needs to be driven by electronic equipment and cannot meet the needs of teaching equipment.
  • a novel rope-driven operating handle is used to control the transmission rope body of the rope-driven equipment; wherein, it comprises a shell and a A rocker structure in a shell, the rocker structure comprises a chassis, a base, an axle assembly, a balancing disc and a constraint assembly, the chassis is arranged on the shell, a center hole is formed at the center position of the chassis; the base is connected to the shell, and is located in the center hole; the axle assembly is universally connected to the base; the balancing disc is nested on the axle assembly, and a first connecting part and a second connecting part for connecting different transmission rope bodies are relatively vertically arranged on the balancing disc around the axle assembly, the vertical plane where the first connecting part is located is the first plane; the vertical plane where the second connecting part is located is the second plane; the two ends of the constraint assembly are respectively hingedly connected between the chassis and the balancing disc, and the structural setting of the constraint assembly has the following characteristics: the movement of the axle assembly can be constrained to pull and drive the
  • the novel rope-driven operating handle wherein the constraint assembly includes three support rods, each of which has a three-section oblique bending structure; in the initial position where the chassis and the balancing plate are directly opposite, the projection of the upper end connection point of any one of the support rods on the balancing plate on the chassis is located between the connection points of the other two support rods on the chassis.
  • the novel rope-driven operating handle is characterized in that the upper end of each support rod is hinged to the balancing plate, and the lower end is hinged to the chassis, both of which are arranged with two mutually perpendicular hinge axes, and the two hinge axes are arranged parallel to the balancing plate and the chassis in the initial position.
  • the novel rope-driven operating handle is provided with a first wire passing hole and a second wire passing hole on the chassis.
  • the position of the first wire passing hole overlaps with the position of the projection of the first connecting part on the chassis
  • the position of the second wire passing hole overlaps with the position of the projection of the second connecting part on the chassis, so as to be used for passing different transmission rope bodies respectively.
  • the novel rope-driven operating handle wherein the first connecting portion and the second connecting portion are respectively provided with two rope connection nodes, which are symmetrically arranged on both sides of the balancing disk.
  • the novel rope-driven operating handle wherein the shaft assembly includes a first bearing, a first universal joint, a connecting rod, a second universal joint, a joystick and a second bearing, wherein the first bearing is arranged on the base; the first universal joint is connected between the first bearing and the connecting rod; the second universal joint is connected between the connecting rod and the joystick; the second bearing is sleeved on the lower end of the joystick for assembling the joystick on the balance disk; a third connecting portion is provided on the shaft assembly for connecting to the rope body of the third transmission rope.
  • the novel rope-driven operating handle has a gripping portion at the top of the operating rod, and the gripping portion is spherical in shape.
  • the novel rope-driven operating handle is characterized in that a fixing base is provided at the bottom of the shell, and a fixing hole is provided on the chassis opposite to the fixing base; the rocker structure also includes a fixing bolt, which is arranged in the fixing hole and is threadedly connected to the fixing base for fixing the chassis.
  • the novel rope-driven operating handle wherein the side wall of the shell is provided with a plurality of through holes, the through holes are used to pass through The rope body.
  • the novel rope-driven operating handle comprises at least two rocker structures; and at least two rocker structures are arranged side by side in the housing.
  • the novel rope-driven operating handle disclosed in the present invention is used for controlling rope-driven equipment.
  • the rope body is extended into the shell and connected to the rocker structure, specifically, fixedly connected to the first connecting part and the second connecting part on the balance plate.
  • the chassis and the base are fixed on the shell, and the operator controls the shaft rod assembly to rotate or push.
  • the shaft rod assembly is constrained by the constraint assembly, so that the displacement energy of the shaft rod assembly is decoupled in the first plane and the second plane, driving the balance plate to move only in the first plane or the second plane or according to the components in the first plane and the second plane respectively.
  • the first connection part and the second connection part on the balancing disk are respectively arranged in the first plane and the second plane, so when the balancing disk rotates only in the first plane, only the rope body connected to the first connection part is pulled; when the balancing disk rotates only in the second plane, only the rope body connected to the second connection part is pulled; that is to say, the transmission of multiple degrees of freedom can be controlled through the rocker structure, which improves the convenience and flexibility of operation, and each degree of freedom can be controlled relatively independently during operation, realizing the independence of pure mechanical control of the rope body, and facilitating the understanding and intuitive experience of the control principle of the operating handle.
  • the new rope-driven operating handle disclosed in the present invention realizes transmission completely by connecting the rope body with the mechanical component.
  • the rope body remains taut, and the force changes on the mechanical component connected thereto are directly fed back to the rocker structure.
  • No sensor is required, and the operator can intuitively feel the load changes on the mechanical component through the tactile sense of the hand, so as to make timely adjustments, thereby improving the sensitivity of the new rope-driven operating handle.
  • it does not involve electronic equipment or drive structure to assist in control, the product cost is low, and it is convenient for teaching and use.
  • FIG1 is a schematic structural diagram of a novel rope-driven operating handle in the present invention.
  • FIG2 is a schematic structural diagram of a rocker structure in the present invention.
  • FIG3 is an exploded view of the rocker structure of the present invention.
  • FIG4 is a schematic diagram of the structure of the balancing disk in the present invention.
  • FIG5 is a schematic diagram of the structure of the constraint assembly in the present invention.
  • FIG6 is a diagram showing the rope length test results of the novel rope-driven operating handle of the present invention.
  • FIG7 is another rope length test result diagram of the novel rope drive operating handle of the present invention.
  • FIG8 is another rope length test result diagram of the novel rope-driven operating handle of the present invention.
  • FIG9 is another rope length test result diagram of the novel rope-driven operating handle of the present invention.
  • FIG. 10 is another rope length test result diagram of the novel rope-driven operating handle of the present invention.
  • 100 shell; 110, fixed base; 120, perforation; 200, rocker structure; 210, chassis; 211, center hole; 212, first hinge; 213, second hinge; 214, third hinge; 215, first wire hole; 216, second wire hole; 217, fixing hole; 220, base; 230, shaft assembly; 231, first bearing; 232, first universal joint; 233, connecting rod; 234, second universal joint; 235, joystick; 2351, grip; 236, second bearing; 240, balance plate; 241, first connecting part; 242, second connecting part; 243, fourth hinge; 244, fifth hinge; 245, sixth hinge; 250, constraint assembly; 251, first support Support rod; 2511, first hinge block; 2511a, first rotating shaft; 2511b, second rotating shaft; 2512, first rod body; 2513, second hinge block; 2513a, third rotating shaft; 2513b, fourth rotating shaft; 252, second support rod; 2521, third hinge block; 2521a, fifth rotating shaft; 2521b, sixth rotating shaft; 2522,
  • a new type of rope-driven operating handle is disclosed, which is used to control multiple ropes of a rope-driven device. Specifically, it can be but not limited to the teaching equipment of a medical surgical robot. The operation of the robotic arm and the robotic hand are all controlled by rope, and it is necessary to pull and drive and operate multiple transmission ropes.
  • the preferred embodiment of the present invention provides a handle structure for its operation.
  • the invention comprises a housing 100 and a rocker structure 200 disposed in the housing 100.
  • the rocker structure 200 can be configured to use multiple rockers, such as the embodiment of two rocker assemblies shown in FIG1 , and each rocker assembly can be configured to control a transmission rope with three degrees of freedom.
  • the rocker structure 200 comprises a chassis 210, a base 220, an axle assembly 230, a balancing disc 240 and a constraint assembly 250, as shown in FIG2 .
  • the chassis 210 is fixed and assembled on the housing 100, and a center hole 211 is formed at the center of the chassis 210, as shown in FIG3 ;
  • the base 220 is connected to the housing 100 and is located in the center hole 211;
  • the component 230 is connected to the base 220 by a universal joint;
  • the shaft assembly 230 is nested and assembled in the center position of the balancing disk 240, and the balancing disk 240 is staggered with a first connecting part 241 and a second connecting part 242 for connecting different rope bodies around the shaft assembly 230, and each connecting part is provided with two relative nodes for connecting the ends of the transmission rope.
  • connection direction between the two nodes of the first connecting part 241 and the shaft assembly 230 is the first direction
  • connection direction between the two nodes of the second connecting part 242 and the shaft assembly 230 is the second direction.
  • the first direction is perpendicular to the second direction
  • the vertical plane where the first direction is located is the first plane
  • the vertical plane where the second direction is located is the second plane
  • the constraint assembly 250 adopts a three-section oblique bending structure, and its two ends are connected to the chassis 210 and the balancing disk 240, and each connecting end of the constraint assembly 250 is connected to the chassis 210 or the balancing disk 240 by mutually perpendicular hinge axes, and the hinge axes are all arranged parallel to the chassis 210 or the balancing disk 240, and the constraint assembly 250 is arranged to have three support rods, each of which is offset clockwise or counterclockwise from the connection point between the upper end and the balancing disk 240.
  • each support rod is in the initial position of the end connection point (that is, when the balance plate 240 and the chassis 210 are facing each other up and down), the connection end of the support rod is perpendicular to the balance plate 240 or the chassis 210, and the projection of the upper end connection point on the chassis is located between the lower end connection points of the other two support rods.
  • the novel rope-driven operating handle disclosed in this embodiment is used to control the rope-driven device.
  • the corresponding transmission rope body that needs to be controlled and pulled can be extended into the housing 100 and connected to the rocker structure 200.
  • the two ends of the transmission rope are fixedly connected to the two nodes of the first connection part 241 or the second connection part 242 on the balance plate 240.
  • the chassis 210 and the base 220 are fixed on the housing 100, and the operator controls the shaft assembly 230 to pull the displacement and angle.
  • the constraint component Since the lower end of the constraint component is hinged on the chassis 210 (using two small hinge shafts that are perpendicular to each other and parallel to the chassis 210), and the chassis 210 is fixed on the base 220, the constraint component is driven by the shaft assembly 230 and constrains the pulling of the transmission rope, so that the pulling displacement of the transmission rope connected with the node in the first plane or the second plane is decoupled, and the transmission rope driven by the balance plate 240 can be pulled relatively independently in the first plane or the second plane.
  • the first connection part 241 and the second connection part 242 on the balancing disc 240 are respectively arranged in the first plane and the second plane, so when the balancing disc 240 is only pulled in the first plane or the second plane, only the rope body connected to the first connection part 241 or the second connection part 242 can be pulled.
  • the rocker structure 200 can control the relatively independent transmission of the multi-degree-of-freedom transmission rope, which improves the convenience and flexibility of the control, and can achieve non-interference between the degrees of freedom during the operation, increase the independence of the control of the rope body, and improve the control accuracy of the new rope-driven operating handle.
  • the new rope-driven operating handle disclosed in this embodiment realizes transmission completely by connecting the rope body with the mechanical component.
  • the rope body remains taut, and the force changes on the mechanical component connected thereto are directly fed back to the rocker structure 200.
  • No sensor is required, and the operator can intuitively feel the load changes on the mechanical component through the tactile sense of the hand, so as to make timely adjustments, thereby improving the teaching convenience of the new rope-driven operating handle; moreover, no electronic equipment or drive structure is required to assist in control, thereby reducing the product's own weight, facilitating control and use, and saving costs.
  • rocker structures 200 are provided; at least two rocker structures 200 are arranged in parallel in the housing 100.
  • two or more rocker structures 200 can be provided on the new rope-driven operating handle, and each rocker structure 200 can control at least three degrees of freedom of the rope body transmission; during use, the operator holds the new rope-driven operating handle with both hands and pushes the multiple shaft rod assemblies 230 with fingers to control the rope drive transmission of multiple degrees of freedom; it can be seen that providing multiple rocker structures 200 according to the use requirements can increase the control ability of the new rope-driven operating handle, so as to accurately control the complex robot and improve the use efficiency of the new rope-driven operating handle.
  • a fixing base 110 is provided at the bottom of the housing 100, and a fixing hole 217 is provided on the chassis 210 at a position facing the fixing base 110, as shown in FIG3 ;
  • the rocker structure 200 further includes a fixing bolt 300, which is arranged in the fixing hole 217 and is used for screwing the chassis 210 with the fixing base 110.
  • the chassis 210 is fixed by the fixing bolt 300, so that the chassis 210 can be flexibly disassembled and assembled, and a plurality of fixing bolts 300 can be arranged around the edge of the chassis 210 to increase the firmness of the connection, so as to improve the stability of the rocker structure 200 on the housing 100.
  • a plurality of through holes 120 are provided on the side wall of the housing 100, and the through holes 120 are used to pass the rope body of the transmission rope.
  • the rope body is passed through the side wall of the housing 100 and connected to the corresponding mechanical arm, which can be used to drive the bending, rotation or movement of the mechanical arm, as well as to control the movement of the mechanical arm.
  • the setting of the side wall through holes 120 can facilitate the restriction of the moving direction of the rope body, reduce the friction generated by the rope body during the transmission process, and help to extend the service life of the rope body.
  • the chassis 210 is provided with a first wire hole 215 and a second wire hole 216, wherein the position of the first wire hole 215 overlaps with the initial position of the projection of the node of the first connecting portion 241 on the chassis 210; the position of the second wire hole 216 overlaps with the initial position of the projection of the node of the second connecting portion 242 on the chassis 210; The initial positions of the projections on the chassis 210 overlap, and are used to pass through the corresponding transmission rope ends.
  • the rope body is pulled onto the chassis 210, passed through the first wire hole 215, and then pulled out horizontally from the side of the shell 100, and connected to the mechanical arm of the rope drive device for transmission; similarly, after the second connecting portion 242 fixes the rope body, the rope body is pulled onto the chassis 210, passed through the second wire hole 216, and then pulled out horizontally.
  • the rope bodies are all pulled to the bottom of the chassis 210, and then pulled out, so that the rope bodies above the chassis 210 remain independent of each other.
  • the shaft assembly 230 disclosed includes a first bearing 231, a first universal joint 232, a connecting rod 233, a second universal joint 234, an operating rod 235, and a second bearing 236;
  • the first bearing 231 is disposed on the base 220;
  • the first universal joint 232 is fixedly connected to the inner ring of the first bearing 231 and one end of the connecting rod 233;
  • the second universal joint 234 is fixedly connected between the other end of the connecting rod 233 and the operating rod 235;
  • the second bearing 236 is sleeved on the operating rod 235, and is used to connect and assemble the balancing plate 240 and the operating rod 235.
  • a third connection part can be provided below the shaft assembly 230, such as on the first universal joint 232, and the third connection part is used to connect with the transmission rope body of the third degree of freedom.
  • the first bearing 231 and the second bearing 236 are provided, so that the first universal joint 232, the connecting rod 233, the second universal joint 234 and the joystick 235 and other components can rotate independently without being affected by the housing 100 and the balance plate 240.
  • the rope body connected to the third connection part is provided on the first universal joint 232, which can increase the number of transmission rope bodies that can be controlled by the rocker structure 200, thereby controlling rope bodies with more degrees of freedom, increasing the controllability of the new rope-driven operating handle, and improving the convenience of use.
  • the joystick 235 can be operated to realize the pulling and pulling control of the rope body with multiple degrees of freedom, such as three transmission ropes.
  • the control of the third connection part by the joystick 235 is not affected by the tilting state of the joystick 235, which increases the flexibility of the rope driving at the position of the third connection part, so as to improve the flexibility of the control of the new rope-driven operating handle.
  • the third connection part can be set as an annular or spiral rope groove, and the corresponding transmission rope is tightened on the third connection part, and the corresponding transmission rope can be driven to pull by rotating the joystick 235.
  • a gripping portion 2351 is provided at the end of the joystick 235 for easy grasping, and the gripping portion 2351 may be spherical.
  • the operator controls the rope body with multiple degrees of freedom by operating the joystick 235, so the spherical gripping portion 2351 is provided to facilitate stable operation of the joystick 235.
  • the chassis 210 is provided with a first
  • the hinge part 212, the second hinge part 213 and the third hinge part 214 are three hinge parts in total, which are used to hinge the lower end of the corresponding constraint assembly 250, and the first hinge part 212, the second hinge part 213 and the third hinge part 214 are evenly arranged around the base 220.
  • the balance plate 240 is provided with another three hinge parts, namely the fourth hinge part 243, the fifth hinge part 244 and the sixth hinge part 245, which are evenly arranged around the shaft assembly 230 and are used to correspondingly hinge the upper end of the constraint assembly 250.
  • the projection of the hinged portion for connecting the upper end of the constraint assembly 250 on the chassis 210 is located at the middle position of the two hinged portions on the chassis.
  • the constraint assembly 250 includes three support rods: a first support rod 251, a second support rod 252 and a third support rod 253, which are respectively connected to the corresponding upper and lower hinged portions.
  • the first support rod 251, the second support rod 252 and the third support rod 253 disclosed in this embodiment are sequentially surrounded by the shaft assembly 230, and a support structure is formed by staggered connection with the chassis 210 and the balance plate 240.
  • the structural setting facilitates the decoupling of the displacement of the two transmission ropes in the first plane and the second plane controlled by the balance plate 240, thereby achieving the effect that the rocker structure 200 can independently control the rope bodies in different degrees of freedom.
  • the constraint assembly 250 when the balancing plate 240 is in a horizontal state, the constraint assembly 250 is in an initial position, and the distance between the balancing plate 240 and the chassis 210 is 124.08 mm; as shown in FIGS. 7 and 8 , when the balancing plate 240 is moved to a certain angle in the first plane, the rope bodies connected to the two first hinged portions 212 are measured to be 154.74 mm and 93.42 mm, respectively, that is, they are shortened and elongated by 30.66 mm, respectively; as shown in FIGS. 9 and 10 , at this time, the length of the rope bodies connected to the two second hinged portions 213 remains unchanged at 124.08 mm.
  • the support rod structure setting method of the constraint assembly 250 of the present invention ensures the decoupling effect in the vertical direction. Therefore, no matter in which direction the shaft assembly 230 drives the balance plate 240 to rotate, the edge points in the vertical direction will not be affected by the displacement in the direction of motion.
  • the transmission rope bodies respectively connected to the first connecting part 241 and the second connecting part 242 can be manipulated independently of each other, which is conducive to improving the control accuracy of the rocker structure 200 and improving the manipulation performance of the new rope-driven operating handle.
  • first support rod 251 includes a first hinge block 2511, a first rod body 2512 and a second hinge block 2513, and the two ends of the first hinge block 2511 are respectively provided with a first rotating shaft 2511a hinged to the first hinge part 212 and a second rotating shaft 2511b hinged to the first rod body 2512, and the first rotating shaft 2511a and the second rotating shaft 2511b are vertically arranged.
  • a third rotating shaft 2513a hinged to the first rod body 2512 and a fourth rotating shaft 2513b hinged to the fifth hinge portion 244 are respectively disposed at two ends of the second hinge block 2513, and the third rotating shaft 2513a and the fourth rotating shaft 2513b are vertically disposed.
  • the first hinge block 2511 is provided with a first rotating shaft 2511a and a second rotating shaft 2511b which are perpendicular to each other.
  • the first hinge part 212 is movably connected to the first rod body 2512, and the first rod body 2512 is movably connected to the fifth hinge part 244 by setting the third rotating shaft 2513a and the fourth rotating shaft 2513b, so that the first support rod 251 can deviate with the tilt of the balance plate 240 during the support process.
  • the second support rod 252 and the third support rod 253 adopt similar structures, wherein the second support rod 252 includes a third hinge block 2521, a second rod body 2522 and a fourth hinge block 2523, a fifth rotating shaft 2521a and a sixth rotating shaft 2521b, a seventh rotating shaft 2523a and an eighth rotating shaft 2523b.
  • the third support rod 253 includes a fifth hinge block 2531, a third rod body 2532 and a sixth hinge block 2533, a ninth rotating shaft 2531a and a tenth rotating shaft 2531b, an eleventh rotating shaft 2533a and a twelfth rotating shaft 2533b.
  • the three support rod structures all adopt a three-section bending structure, which is obliquely supported and hinged between the balancing plate 240 and the chassis 210 from the upper end to the lower end. Its unique structural setting method ensures the decoupling of the displacement in the first plane and the second plane perpendicular to the first plane; in addition, the first support rod 251, the second support rod 252 and the third support rod 253 are evenly distributed around the shaft rod assembly 230, and together constitute the constraint assembly 250, so that each position on the balancing plate 240 can obtain balanced and stable support.
  • the present application discloses a novel rope-driven operating handle for controlling multiple ropes of rope-driven equipment, especially the teaching setting operation of a medical surgical robot; wherein, it includes a shell 100 and a rocker structure 200 arranged in the shell 100, the rocker structure 200 includes a chassis 210, a base 220, an axle assembly 230, a balancing disk 240 and a constraint assembly 250, the chassis 210 is arranged on the shell 100, and a center hole 211 is formed at the center position of the chassis 210; the base 220 is connected to the shell 100 and is located in the center hole 211; the axle assembly 230 is universally connected to the base 220; the center of the balancing disk 240 is nested on the axle assembly 230, and the constraint assembly 250 is provided.
  • the balancing disk 240 is symmetrically provided with a first connecting portion 241 and a second connecting portion 242 for connecting the rope body around the shaft assembly 230, the connection direction between the first connecting portion 241 and the shaft assembly 230 is a first direction, the connection direction between the second connecting portion 242 and the shaft assembly 230 is a second direction, the first direction is perpendicular to the second direction; the vertical plane where the first direction is located is the first plane; the vertical plane where the second direction is located is the second plane; the constraint assembly 250 is connected and arranged between the chassis 210 and the balancing disk 240, and its structural arrangement has the function of constraining the shaft assembly 230 to drive the transmission rope only within the first plane or only within the second plane.
  • the new rope-driven operating handle disclosed in this embodiment is used to control the rope-driven equipment.
  • the rope body extends into the shell 100 and is connected to the rocker structure 200, specifically, it is fixedly connected to the first connecting portion 241 and the second connecting portion 242 on the balancing disk 240.
  • the chassis 210 and the base 220 are fixed to the shell 100, and the operator controls the shaft assembly 230 to pull or rotate.
  • the shaft assembly 230 can only tilt and move in the first plane or the second plane, driving the balancing disk 240 to move in the first plane or the second plane, so that only the transmission rope body connected to a certain connecting portion can be pulled; a third connecting portion surrounding the shaft assembly can also be provided on the shaft assembly 230, and the shaft assembly 230 can be rotated by rotating the shaft assembly.
  • the moving shaft rod assembly 230 realizes the pulling and pulling drive of the third transmission rope body; that is to say, the new rope-driven operating handle disclosed in this embodiment is a purely mechanical transmission, which does not require the assembly of electronic equipment.
  • the transmission of multiple degrees of freedom can be controlled through the rocker structure 200, which improves the convenience and flexibility of operation. There is no interference between the degrees of freedom during operation, which increases the independence of the control of the rope body and improves the control accuracy of the new rope-driven operating handle.
  • the rope-driven operating handle device of the present invention can also realize bidirectional remote control operation, which can realize the master control of the handle and the manipulator, and can also realize the slave control of the movement of the manipulator.
  • the number of transmission ropes can be greatly increased, thereby improving the controllable freedom of rope drive.
  • the handle device can demonstrate the controlled working principle of the robot arm, thereby realizing a more practical engineering teaching method and providing an excellent teaching tool for this purpose.
  • the present invention takes a new rope-driven operating handle as an example to introduce the specific structure and working principle of the present invention, but the application of the present invention is not limited to the new rope-driven operating handle, and can also be applied to the production and use of other similar workpieces.

Landscapes

  • Mechanical Control Devices (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

一种绳驱操作手柄,用于操控绳体;其中,包括壳体(100)和摇杆结构(200),摇杆结构(200)包括底盘(210)、基座(220)、轴杆组件(230)、平衡盘(240)和约束组件(250),底盘(210)设于壳体(100)上;基座(220)与壳体(100)连接;轴杆组件(230)与基座(220)万向传动连接;平衡盘(240)嵌套在轴杆组件(230)上,平衡盘(240)上设有用于连接绳体的第一连接部(241)和第二连接部(242),第一连接部(241)与轴杆组件(230)之间的连线方向为第一方向,第二连接部(242)与轴杆组件(230)之间的连线方向为第二方向,第一方向与第二方向垂直;第一方向所在的竖直平面为第一平面;第二方向所在的竖直平面为第二平面;约束组件(250)一端与底盘(210)连接,另一端与平衡盘(240)连接,用于约束轴杆组件(250)仅在第一平面内转动或仅在第二平面内转动。

Description

一种绳驱操作手柄 技术领域
本发明涉及机器人技术领域,特别是涉及一种新型绳驱操作手柄。
背景技术
绳索作为一种可靠的柔性传动介质,有着传动稳定、振动小以及能达到刚性传动精度的独特优势,使得绳驱动具有精度高、噪声低、传动平稳、无需润滑、易于安装和维护等特点;绳驱驱动方式已被用到机器人和精密传动装置等领域。
但随着机器人领域的发展,机器人的质量大、体积大、关节转动惯量高,对绳驱机械臂的柔顺性、环境适应性、人机交互安全性等性能提出了更高的要求,因此,现有的绳驱式机器人的安装和控制驱动均比较复杂,为了控制多个维度内绳体的运动,机器人的操纵控制器往往采用齿轮、电机等进行绳驱间接控制,目前很少有采用全部绳控的操控手柄设计方案。
现有的手柄一般均为电子手柄,工业上如果需要用电子手柄对传动机构进行控制,一般是操作人员通过操作电子手柄来控制电机的运转,电子手柄发送电信号给电机,电机再将力传递给传动机构,从而间接对传动机构进行控制,通过间接控制绳子的抽拉实现对机器臂的操控。
这种实现方式在教学类的机器人设备中,往往采用的是一个完整的产品或成品的控制模块,例如包括电机和传感器等等在内的一个电路单元或模块,很难让学习者从根本上理解机械臂的传动控制原理。
此外,此种控制方式对于绳子的抽拉速度很难把控,容易在关节极限位置出现卡塞或卡住,而电子控制一般不会设置信号反馈,无法准确感知绳子的受力变化,而有可能依然发出持续运转的驱动信号,进而导致电子设备的损坏,例如烧电机等故障。
因此,现有技术的通过电子手柄经过电机间接控制绳子抽拉的方式存在缺陷,而有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种新型绳驱操作手柄,旨在解决现有的绳驱操作手柄需要依靠电子设备进行驱动,无法适应教学设备需求的问题。
本发明的技术方案如下:
一种新型绳驱操作手柄,用于操控绳驱设备的传动绳绳体;其中,包括壳体和设于所述 壳体内的摇杆结构,所述摇杆结构包括底盘、基座、轴杆组件、平衡盘和约束组件,所述底盘设于所述壳体上,所述底盘的中心位置形成有中心孔;所述基座与所述壳体连接,位于所述中心孔内;所述轴杆组件与所述基座万向传动连接;所述平衡盘嵌套在所述轴杆组件上,所述平衡盘上环绕所述轴杆组件相对垂直设置有用于连接不同传动绳绳体的第一连接部和第二连接部,所述第一连接部所在的竖直平面为第一平面;所述第二连接部所在的竖直平面为第二平面;所述约束组件两端分别铰接连接在所述底盘与所述平衡盘之间,所述约束组件的结构设置具有以下特点:约束所述轴杆组件的扳动可仅在所述第一平面内或仅在所述第二平面内抽拉驱动该平面内的传动绳绳体。
所述的新型绳驱操作手柄,其中,所述约束组件设置包括三个支撑杆,每一所述支撑杆具有三段斜向弯折结构;在所述底盘与所述平衡盘正对的初始位置,其中任一所述支撑杆在所述平衡盘上的上端连接点在所述底盘上的投影位于另外两个所述支撑杆在所述底盘上的连接点之间。
所述的新型绳驱操作手柄,其中,每一所述支撑杆的上端与所述平衡盘,以及下端与所述底盘的铰接,均采用相互垂直的两个铰接轴设置,且所述两个铰接轴在初始位置平行于所述平衡盘及所述底盘设置。
所述的新型绳驱操作手柄,其中,所述底盘上设有第一过线孔和第二过线孔,在初始位置所述第一过线孔的位置与所述第一连接部在所述底盘上投影的位置重叠,所述第二过线孔的位置与所述第二连接部在所述底盘上投影的位置重叠,用于分别穿过不同的传动绳绳体。
所述的新型绳驱操作手柄,其中,所述第一连接部和所述第二连接部分别设有两个接绳结点,对称设置在所述平衡盘的两侧。
所述的新型绳驱操作手柄,其中,所述轴杆组件包括第一轴承、第一万向节、连接杆、第二万向节、操纵杆和第二轴承,所述第一轴承设置在所述基座上;所述第一万向节连接设置在所述第一轴承与所述连接杆之间;所述第二万向节连接设置在所述连接杆与所述操纵杆之间;所述第二轴承套设在所述操纵杆下端,用于将所述操纵杆装配在所述平衡盘上;在所述轴杆组件上设有第三连接部,用于与第三传动绳的绳体连接。
所述的新型绳驱操作手柄,其中,所述操纵杆的顶端设有握持部,所述握持部的形状为球形。
所述的新型绳驱操作手柄,其中,所述壳体的底部设有固定基台,所述底盘上正对所述固定基台的位置设有固定孔;所述摇杆结构还包括固定螺栓,所述固定螺栓设置在所述固定孔内,并与所述固定基台螺接,用于固定所述底盘。
所述的新型绳驱操作手柄,其中,所述壳体的侧壁上设有多个穿孔,所述穿孔用于穿过 所述绳体。
所述的新型绳驱操作手柄,其中,所述摇杆结构设有至少两个;至少两个所述摇杆结构并列设置在所述壳体内。
与现有技术相比,本发明实施例具有以下优点:
本发明公开的新型绳驱操作手柄用于操控绳驱设备,由于采用了绳体伸入壳体内,与摇杆结构连接,具体的是与平衡盘上的第一连接部和第二连接部固定连接;使用过程中,底盘和基座固定在壳体上,操作人员控制轴杆组件转动或推动,推动过程中受到约束组件的约束,使得轴杆组件的位移能在第一平面和第二平面内解耦,带动平衡盘只在第一平面或者第二平面内运动或分别依照在第一平面和第二平面内的分量运动。
平衡盘上的第一连接部和第二连接部分别设置在第一平面和第二平面内,所以当平衡盘只在第一平面内转动时,只牵拉第一连接部上连接的绳体;当平衡盘只在第二平面内转动时,只牵拉第二连接部上连接的绳体;也就是说,通过摇杆结构可以控制多自由度的传动,提高了操控的便利性和灵活度,并且操作过程中可对各自由度相对独立地进行控制,实现了对绳体纯机械控制的独立性,方便了对操作手柄控制原理理解和直观体验。
另外,本发明公开的新型绳驱操作手柄完全通过绳体与机械构件连接实现传动,在使用过程中,绳体保持绷紧状态,将与之连接的机械构件上的力度变化直接反馈到摇杆结构上,无需传感器,操作人员可以通过手部触觉直观感受到机械构件上的负载变化,从而及时作出调整,提高了新型绳驱操作手柄的灵敏度;而且,不掺杂电子设备或者驱动结构协助控制,产品成本低廉,方便教学使用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中新型绳驱操作手柄的结构示意图;
图2为本发明中摇杆结构的结构示意图;
图3为本发明中摇杆结构的结构爆炸图;
图4为本发明中平衡盘的结构示意图;
图5为本发明中约束组件的结构示意图;
图6为本发明中新型绳驱操作手柄的绳长测试结果图;
图7为本发明中新型绳驱操作手柄的另一绳长测试结果图;
图8为本发明中新型绳驱操作手柄的另一绳长测试结果图;
图9为本发明中新型绳驱操作手柄的另一绳长测试结果图;
图10为本发明中新型绳驱操作手柄的另一绳长测试结果图。
其中,100、壳体;110、固定基台;120、穿孔;200、摇杆结构;210、底盘;211、中心孔;212、第一铰接部;213、第二铰接部;214、第三铰接部;215、第一过线孔;216、第二过线孔;217、固定孔;220、基座;230、轴杆组件;231、第一轴承;232、第一万向节;233、连接杆;234、第二万向节;235、操纵杆;2351、握持部;236、第二轴承;240、平衡盘;241、第一连接部;242、第二连接部;243、第四铰接部;244、第五铰接部;245、第六铰接部;250、约束组件;251、第一支撑杆;2511、第一铰接块;2511a、第一转轴;2511b、第二转轴;2512、第一杆体;2513、第二铰接块;2513a、第三转轴;2513b、第四转轴;252、第二支撑杆;2521、第三铰接块;2521a、第五转轴;2521b、第六转轴;2522、第二杆体;2523、第四铰接块;2523a、第七转轴;2523b、第八转轴;253、第三支撑杆;2531、第五铰接块;2531a、第九转轴;2531b、第十转轴;2532、第三杆体;2533、第六铰接块;2533a、第十一转轴;2533b、第十二转轴;300、固定螺栓。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1、图2和图3,本发明申请的一实施例中,公开了一种新型绳驱操作手柄,用于操控绳驱设备的多条绳体,具体可以但不限于是医疗手术机器人的教学设备中,对机械臂以及机械手的操作全部采用绳控方式,需要采用对多根传动绳进行抽拉驱动和操作,而本发明较佳实施例方案即为其提供了操控的手柄结构。
其中,包括壳体100和设于所述壳体100内的摇杆结构200,所述摇杆结构200可以设置采用多组摇杆,如图1所示的两个摇杆组件的实施例,每一摇杆组件可以设置对三个自由度的传动绳进行控制。所述摇杆结构200包括底盘210、基座220、轴杆组件230、平衡盘240和约束组件250,如图2所示。
所述底盘210固定和装配设于所述壳体100上,所述底盘210的中心位置形成有中心孔211,如图3所示;所述基座220与所述壳体100连接,位于所述中心孔211内;所述轴杆组 件230与所述基座220采用万向传动连接;所述轴杆组件230嵌套装配在所述平衡盘240的中心位置上,所述平衡盘240上环绕所述轴杆组件230交错设置有用于连接不同绳体的第一连接部241和第二连接部242,每一连接部都设置有两个相对的连接传动绳绳头的结点。
所述第一连接部241两结点之间以及与所述轴杆组件230之间的连线方向为第一方向,所述第二连接部242两结点之间以及与所述轴杆组件230之间的连线方向为第二方向,所述第一方向与所述第二方向垂直设置;所述第一方向所在的竖直平面为第一平面;所述第二方向所在的竖直平面为第二平面;所述约束组件250采用三段斜向弯折的结构,其两端设置与所述底盘210和所述平衡盘240连接,并且在所述约束组件250的每一连接端都设置采用相互垂直的铰接轴连接所述底盘210或所述平衡盘240,所述铰接轴皆平行于所述底盘210或所述平衡盘240设置,并且所述约束组件250设置为三个支撑杆,每一支撑杆从上端与所述平衡盘240的连接点斜向下顺时针或逆时针偏移再连接到下端的所述底盘210连接点上,每一支撑杆在端部连接点的初始位置(即此时平衡盘240与所述底盘210上下正对时)支撑杆的连接端部都是垂直于所述平衡盘240或底盘210的,并且上端连接点在所述底盘上的投影所在位置处于另外两个支撑杆的下端连接点中间,此种结构保证了在推动所述轴杆组件230超某个方向偏移时,可以对第一平面内的位移以及第二平面内的位移进行解耦,换句话说,在推动所述轴杆组件230完全依照第一平面内或第二平面内位移时,将导致与第一连接部241或第二连接部242连接的传动绳单独抽拉驱动,而另一侧即垂直方向平面内的传动绳完全不同,也即约束所述轴杆组件230仅在所述第一平面内驱动传动绳或仅在所述第二平面内驱动传动绳。
当然,在任意推动所述轴杆组件230的情况下,带动所述平衡盘240的倾斜位置,会在第一平面内和第二平面内产生相应的分量位移,但由于本发明上述结构具有预先设置的自由度解耦特性,在实际的教学操作中,可以让操作者例如老师或同学得到明晰的分量偏移体验,尤其是仅在第一平面或仅在第二平面内的操作时,就可以单独就某个传动绳进行操控实验。
本实施例公开的新型绳驱操作手柄用于操控绳驱设备,可以将相应需要操控抽拉的传动绳绳体伸入壳体100内,与摇杆结构200进行连接,具体的是将传动绳的两端与平衡盘240上的第一连接部241或第二连接部242的两个结点固定连接。使用过程中,底盘210和基座220固定在壳体100上,操作人员控制轴杆组件230扳动位移和角度,由于约束部件下端铰接在底盘210上(采用相互垂直且都平行于底盘210的两个小铰轴),底盘210固定在基座220上,所以约束部件受到轴杆组件230的带动并对传动绳的抽拉产生约束,使得对在第一平面或者第二平面内进行结点连接的传动绳之抽拉位移进行解耦,由平衡盘240带动传动绳在第一平面或者第二平面内可相对独立地抽拉运动。
平衡盘240上的第一连接部241和第二连接部242分别设置在第一平面和第二平面内,所以当平衡盘240只在第一平面内或第二平面内扳动时,就可以只牵拉第一连接部241或第二连接部242上连接的绳体。也就是说,通过摇杆结构200可以控制多自由度传动绳的相对独立传动,提高了操控的便利性和灵活度,并且操作过程中可实现各自由度之间的互不干扰,增加了对绳体的控制的独立性,提高了新型绳驱操作手柄的控制精度。
具体的,本实施例公开的新型绳驱操作手柄完全通过绳体与机械构件连接实现传动,在使用过程中,绳体保持绷紧状态,将与之连接的机械构件上的力度变化直接反馈到摇杆结构200上,无需传感器,操作人员可以通过手部触觉直观感受到机械构件上的负载变化,从而及时作出调整,提高了新型绳驱操作手柄的教学方便度;而且,不需要电子设备或者驱动结构协助控制,减小产品自重,方便控制和使用,节省成本。
如图1所示,作为本实施例的一种实施方式,公开了所述摇杆结构200设有至少两个;至少两个所述摇杆结构200并列设置在所述壳体100内。实际制造中,新型绳驱操作手柄上可以设置两个或两个以上的摇杆结构200,每个摇杆结构200至少可以操控三个自由度的绳体传动;使用过程中,操作人员双手握住新型绳驱操作手柄,通过手指推动多个轴杆组件230,对多个自由度的绳驱传动进行控制;可见,依据使用需求设置多个摇杆结构200可以增加新型绳驱操作手柄的操控能力,以便于对复杂的机器人进行准确控制,提高了新型绳驱操作手柄的使用效率。
如图1所示,作为本实施例的另一种实施方式,公开了所述壳体100的底部设有固定基台110,所述底盘210上正对所述固定基台110的位置设有固定孔217,如图3所示;所述摇杆结构200还包括固定螺栓300,所述固定螺栓300设置在所述固定孔217内,用于所述底盘210与所述固定基台110的螺接。通过固定螺栓300固定底盘210,以灵活拆装底盘210,并可以通过围绕底盘210的边缘设置多个固定螺栓300的方式增加连接的牢固程度,以提高摇杆结构200在壳体100上的稳定性。
再如图1所示,作为本实施例的另一种实施方式,公开了所述壳体100的侧壁上设有多个穿孔120,所述穿孔120用于穿过所述传动绳的绳体。将绳体从壳体100的侧壁穿出,连接到对应的机械臂中,可以用来驱动机械臂的弯折、转动或移动,以及对机械手的动作控制等。新型绳驱操作手柄在使用过程中,侧壁穿孔120的设置可以方便对绳体移动方向的约束,并减少绳体在传动过程中产生的摩擦,有利于延长绳体的使用寿命。
如图3所示,作为本实施例的另一种实施方式,公开了所述底盘210上设有第一过线孔215和第二过线孔216,所述第一过线孔215的位置与所述第一连接部241结点在所述底盘210上投影的初始位置重叠;所述第二过线孔216的位置与所述第二连接部242结点在所述 底盘210上投影的初始位置重叠,用来穿过对应的传动绳绳头。本实施例中公开的第一连接部241固定绳体后,将绳体牵引至底盘210上,从第一过线孔215穿过,然后再横向从壳体100的侧面拉出,连接到绳驱设备的机械臂上进行传动;同样的,第二连接部242固定绳体后,将绳体牵引至底盘210上,穿过第二过线孔216,然后横向拉出。将绳体均牵引至底盘210的下方,然后再拉出,使得底盘210上方的绳体均保持相互独立的状态,在牵拉过程中,即使平衡盘240旋转,不同位置的绳体之间也不会相互靠近或者相互交叉,减少了不同自由度的绳体之间发生相互干扰的情况,进一步提高了绳体控制的独立性,提高新型绳驱操作手柄的操控精度。
再如图3所示,作为本实施例的另一种实施方式,公开的所述轴杆组件230包括第一轴承231、第一万向节232、连接杆233、第二万向节234、操纵杆235和第二轴承236;所述第一轴承231设置在所述基座220上;所述第一万向节232固定连接在所述第一轴承231的内圈和所述连接杆233一端;所述第二万向节234固定连接在所述连接杆233的另一端与所述操纵杆235的之间;所述第二轴承236套设在所述操纵杆235上,用来连接装配所述平衡盘240和所述操纵杆235.
在所述轴杆组件230上,具体地,可以设置在轴杆组件230的下方,如所述第一万向节232上,设有第三连接部,所述第三连接部用于与第三自由度的传动绳绳体连接。本实施例中设置第一轴承231和第二轴承236,使得第一万向节232、连接杆233、第二万向节234和操纵杆235等构件可以独立转动,不受壳体100和平衡盘240的影响,因此,在第一万向节232上设置第三连接部所连接的绳体,可以增加摇杆结构200可控制的传动绳绳体数量,从而控制更多自由度的绳体,增加新型绳驱操作手柄的操控能力,提高使用的便利性。
具体的,操作人员在推动操纵杆235带动平衡盘240倾斜的同时,还可以转动操纵杆235,带动第三连接部处发生转动,因此,操作操纵杆235便可以实现对多个自由度的绳体抽拉控制,例如三个传动绳。操纵杆235对第三连接部的操控不受操纵杆235倾斜状态的影响,增加了第三连接部位置处的绳体驱动灵活度,以便于提高新型绳驱操作手柄控制的灵活度。具体地,所述第三连接部可以设置成一环形或螺旋的绳槽,并将对应的传动绳绷紧在该第三连接部上,通过转动所述操纵杆235就可以带动对应的传动绳抽拉工作。
再如图3所示,作为本实施例的另一种实施方式,公开了所述操纵杆235端部上设有方便把握的握持部2351,所述握持部2351的形状可以为球形。本实施例中操作人员控制多个自由度绳体的过程均通过操作操纵杆235来实现,因此设置球形的握持部2351,方便了稳定操作操纵杆235。
如图3和图4所示,作为本实施例的另一种实施方式,公开了所述底盘210上设有第一 铰接部212、第二铰接部213和第三铰接部214共三个铰接部,用来铰接对应的约束组件250的下端,所述第一铰接部212、所述第二铰接部213和所述第三铰接部214环绕所述基座220均匀排布。所述平衡盘240上设有第四铰接部243、第五铰接部244和第六铰接部245另外三个铰接部,环绕所述轴杆组件230均匀排布,用来对应铰接所述约束组件250的上端。
在初始位置,用于连接所述约束组件250上端的铰接部在所述底盘210上的投影位于该底盘上两铰接部的中间位置。如图5所示,所述约束组件250包括三个支撑杆件的支撑杆:第一支撑杆251、第二支撑杆252和第三支撑杆253,分别与对应的上端和下端的铰接部连接。
本实施例中公开的第一支撑杆251、第二支撑杆252和第三支撑杆253依次环绕在轴杆组件230周围,并且通过与底盘210和平衡盘240的错位连接形成支撑结构,其结构设置方便实现了控制平衡盘240在控制在第一平面内和在第二平面内两个传动绳的位移解耦,达到了摇杆结构200对不同自由度内的绳体可进行独立控制的效果。
具体的,如图6所示,在具体实施例的模拟测试试验中,平衡盘240水平状态时,约束组件250处于初始位置,此时平衡盘240与底盘210之间的距离为124.08毫米;如图7和图8所示,当平衡盘240在第一平面内被扳动到一定角度后,测量两个第一铰接部212上连接的绳体分别为154.74毫米和93.42毫米,即分别缩短和伸长了30.66毫米;如图9和图10所示,而此时两个第二铰接部213上连接的绳体的长度仍保持124.08个毫米不变。
所以,在轴杆组件230依照第一平面内或在第二平面内扳动操控的过程中,仅有运动方向上分量的绳子发生了抽拉驱动,而与其运动方向垂直的方向上绳长不会变化。本发明所述约束组件250的支撑杆结构设置方式,保证了在垂直方向上的解耦作用,因此无论轴杆组件230带动着平衡盘240朝哪个方向转动,处于其垂直方向上的边缘点都不会受运动方向上的位移影响,由此所述摇杆结构200在准确的控制下,第一连接部241与第二连接部242上分别连接的传动绳绳体就可以相互独立受操控,有利于提高摇杆结构200控制的准确度,提高新型绳驱操作手柄的操控性能。
再如图5所示,作为本实施例的另一种实施方式,公开的三个支撑杆结构,其中所述第一支撑杆251包括第一铰接块2511、第一杆体2512和第二铰接块2513,所述第一铰接块2511的两端分别设有与所述第一铰接部212铰接的第一转轴2511a和与所述第一杆体2512铰接的第二转轴2511b,所述第一转轴2511a与所述第二转轴2511b垂直设置。
所述第二铰接块2513的两端分别设有与所述第一杆体2512铰接的第三转轴2513a和与所述第五铰接部244铰接的第四转轴2513b,所述第三转轴2513a与所述第四转轴2513b垂直设置。
本实施例中通过第一铰接块2511上设置相互垂直的第一转轴2511a和第二转轴2511b实 现第一铰接部212与第一杆体2512的活动连接,通过设置第三转轴2513a和第四转轴2513b实现第一杆体2512与第五铰接部244的活动连接,从而在第一支撑杆251支撑的过程中可以随平衡盘240的倾斜而偏移。
再如图5所示,所述第二支撑杆252和第三支撑杆253采用了类似的结构,其中,所述第二支撑杆252包括第三铰接块2521、第二杆体2522和第四铰接块2523,第五转轴2521a和第六转轴2521b,第七转轴2523a和第八转轴2523b。所述第三支撑杆253包括第五铰接块2531、第三杆体2532和第六铰接块2533,第九转轴2531a和第十转轴2531b,第十一转轴2533a和第十二转轴2533b。
本实施例中设置三个支撑杆结构都采用了三段弯折的结构,从上端到下端斜向支撑和铰接在所述平衡盘240与底盘210之间,其独特的结构设置方式保证了在第一平面内与相对第一平面垂直的第二平面内的位移解耦;另外,第一支撑杆251、第二支撑杆252和第三支撑杆253围绕轴杆组件230均匀分布,共同组成约束组件250,使得平衡盘240上各个位置都能得到均衡的、稳定的支撑。
综上所述,本申请公开了一种新型绳驱操作手柄,用于操控绳驱设备的多条绳体,尤其是医疗手术机器人的教学设置操作;其中,包括壳体100和设于所述壳体100内的摇杆结构200,所述摇杆结构200包括底盘210、基座220、轴杆组件230、平衡盘240和约束组件250,所述底盘210设于所述壳体100上,所述底盘210的中心位置形成有中心孔211;所述基座220与所述壳体100连接,位于所述中心孔211内;所述轴杆组件230与所述基座220万向传动连接;所述平衡盘240的中心嵌套在所述轴杆组件230上,所述平衡盘240上环绕所述轴杆组件230对称设置有用于连接所述绳体的第一连接部241和第二连接部242,所述第一连接部241与所述轴杆组件230之间的连线方向为第一方向,所述第二连接部242与所述轴杆组件230之间的连线方向为第二方向,所述第一方向与所述第二方向垂直设置;所述第一方向所在的竖直平面为第一平面;所述第二方向所在的竖直平面为第二平面;所述约束组件250连接设置在所述底盘210与所述平衡盘240之间,其结构设置具有可约束所述轴杆组件230仅在所述第一平面内或仅在所述第二平面内驱动传动绳。
本实施例公开的新型绳驱操作手柄用于操控绳驱设备,绳体伸入壳体100内,与摇杆结构200连接,具体的是与平衡盘240上的第一连接部241和第二连接部242固定连接;使用过程中,底盘210和基座220固定在壳体100上,操作人员控制轴杆组件230扳动或转动,扳动过程中受到约束组件250的约束,使得轴杆组件230只能在第一平面或者第二平面内倾斜移动,带动平衡盘240在第一平面或者第二平面内运动,从而实现可以仅牵拉某一连接部上连接的传动绳绳体;在所述轴杆组件230上还可以设置绕轴杆组件的第三连接部,通过转 动轴杆组件230实现对第三个传动绳绳体的抽拉驱动;也就是说,本实施例公开的新型绳驱操作手柄为纯机械传动,不需要组装电子设备,通过摇杆结构200可以控制多自由度的传动,提高了操控的便利性和灵活度,并且操作过程中各自由度之间不会产生干扰,增加了对绳体的控制的独立性,提高了新型绳驱操作手柄的控制精度。
与此同时,本发明所述绳驱操作手柄装置中,还可以实现双向遥控操作,既可以实现对手柄以及机械手操控的主控制,还可以实现对机械臂运动的从控制。在采用更多组的摇杆结构200的情况下,所述传动绳的数量可以大量增加,从而提高绳驱的可控自由度。在实际教学中,该手柄装置可以展示机器人手臂的受控工作原理,从而实现更切近实际的工程教学方式,并为此提供极佳的教学工具。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
需要说明的是,本发明以新型绳驱操作手柄为例对本发明的具体结构及工作原理进行介绍,但本发明的应用并不以新型绳驱操作手柄为限,也可以应用到其它类似工件的生产和使用中。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种绳驱操作手柄,用于操控绳驱设备的传动绳绳体;其特征在于,包括壳体和设于所述壳体内的摇杆结构,所述摇杆结构包括:
    底盘,设于所述壳体上,所述底盘的中心位置形成有中心孔;
    基座,与所述壳体连接,位于所述中心孔内;
    轴杆组件,与所述基座万向传动连接;
    平衡盘,嵌套在所述轴杆组件上,所述平衡盘上环绕所述轴杆组件相对垂直设置有用于连接不同传动绳绳体的第一连接部和第二连接部,所述第一连接部所在的竖直平面为第一平面;所述第二连接部所在的竖直平面为第二平面;
    约束组件,两端分别铰接连接在所述底盘与所述平衡盘之间,所述约束组件的结构设置具有以下特点:约束所述轴杆组件的扳动可仅在所述第一平面内或仅在所述第二平面内抽拉驱动该平面内的传动绳绳体。
  2. 根据权利要求1所述的绳驱操作手柄,其特征在于,所述约束组件设置包括三个支撑杆,每一所述支撑杆具有三段斜向弯折结构;在所述底盘与所述平衡盘正对的初始位置,其中任一所述支撑杆在所述平衡盘上的上端连接点在所述底盘上的投影位于另外两个所述支撑杆在所述底盘上的连接点之间。
  3. 根据权利要求2所述的绳驱操作手柄,其特征在于,每一所述支撑杆的上端与所述平衡盘,以及下端与所述底盘的铰接,均采用相互垂直的两个铰接轴设置,且所述两个铰接轴在初始位置平行于所述平衡盘及所述底盘设置。
  4. 根据权利要求3所述的绳驱操作手柄,其特征在于,所述底盘上设有第一过线孔和第二过线孔,在初始位置所述第一过线孔的位置与所述第一连接部在所述底盘上投影的位置重叠,所述第二过线孔的位置与所述第二连接部在所述底盘上投影的位置重叠,用于分别穿过不同的传动绳绳体。
  5. 根据权利要求4所述的绳驱操作手柄,其特征在于,所述第一连接部和所述第二连接部分别设有两个接绳结点,对称设置在所述平衡盘的两侧。
  6. 根据权利要求5所述的绳驱操作手柄,其特征在于,所述轴杆组件包括:
    第一轴承,设置在所述基座上;
    第一万向节,连接设置在所述第一轴承与一连接杆之间;
    第二万向节,连接设置在所述连接杆与一操纵杆之间;
    第二轴承,套设在所述操纵杆下端,用于将所述操纵杆装配在所述平衡盘上;
    其中,在所述轴杆组件上设有第三连接部,用于与第三传动绳的绳体连接。
  7. 根据权利要求6所述的绳驱操作手柄,其特征在于,所述操纵杆的顶端设有握持部, 所述握持部的形状为球形。
  8. 根据权利要求7所述的绳驱操作手柄,其特征在于,所述壳体的底部设有固定基台,所述底盘上正对所述固定基台的位置设有固定孔;
    所述摇杆结构还包括固定螺栓,所述固定螺栓设置在所述固定孔内,并与所述固定基台螺接,用于固定所述底盘。
  9. 根据权利要求8所述的绳驱操作手柄,其特征在于,所述壳体的侧壁上设有多个穿孔,所述穿孔用于穿过所述绳体。
  10. 根据权利要求1至9任意一项所述的绳驱操作手柄,其特征在于,所述摇杆结构设有至少两个;至少两个所述摇杆结构并列设置在所述壳体内。
PCT/CN2023/118320 2022-10-25 2023-09-12 一种绳驱操作手柄 WO2024087920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211308740.2A CN115565803B (zh) 2022-10-25 2022-10-25 一种绳驱操作手柄
CN202211308740.2 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087920A1 true WO2024087920A1 (zh) 2024-05-02

Family

ID=84746233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118320 WO2024087920A1 (zh) 2022-10-25 2023-09-12 一种绳驱操作手柄

Country Status (2)

Country Link
CN (1) CN115565803B (zh)
WO (1) WO2024087920A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115565803B (zh) * 2022-10-25 2023-08-29 深圳技术大学 一种绳驱操作手柄
CN117400296B (zh) * 2023-12-13 2024-03-12 沈阳恒为机器人科技有限公司 一种微型柔性机械臂关节及机械臂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633169A (zh) * 2008-07-24 2010-01-27 东南大学 三自由度力觉感知手控器
EP2204719A1 (fr) * 2009-01-05 2010-07-07 Guillemot Corporation Joystick à effet Hall, procédé de fabrication et manette correspondants
KR101269187B1 (ko) * 2012-04-10 2013-05-30 주식회사 엔티리서치 와이어로프를 이용하여 추가 자유도를 부여한 병렬 링크 로봇
CN109955281A (zh) * 2019-04-26 2019-07-02 哈尔滨工业大学(深圳) 基于绳索驱动的二自由度大转角柔性机器人关节、机器人
CN110666774A (zh) * 2019-09-23 2020-01-10 广东工业大学 一种基于并联机构的三自由度绳驱动关节模块
CN112894780A (zh) * 2021-04-02 2021-06-04 广东工业大学 一种基于三自由度串并混联机构的绳驱动腕部模块及其使用方法
CN113386168A (zh) * 2021-05-13 2021-09-14 上海工程技术大学 一种用于检疫采样的仿生柔性机械手腕装置
CN115565803A (zh) * 2022-10-25 2023-01-03 深圳技术大学 一种新型绳驱操作手柄

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253717B (zh) * 2010-12-24 2016-08-17 北京理工大学 平面三自由度笔式力觉交互装置
CN104647367B (zh) * 2014-12-29 2016-05-25 合肥工业大学 一种索杆复合驱动的并联码垛机器人
CN109848975B (zh) * 2019-02-20 2020-12-08 哈尔滨工业大学(深圳) 一种绳索驱动的串并联混合机构大负载机械臂
CN110480676B (zh) * 2019-09-02 2021-03-05 哈尔滨工业大学(深圳) 一种基于绳索驱动的大转角柔性关节以及机器人
CN110666775A (zh) * 2019-09-23 2020-01-10 广东工业大学 一种二自由度绳索驱动摆转并联机构
CN114569247A (zh) * 2022-03-04 2022-06-03 合肥工业大学 一种连接手术机器人机械臂与末端执行器间的关节

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633169A (zh) * 2008-07-24 2010-01-27 东南大学 三自由度力觉感知手控器
EP2204719A1 (fr) * 2009-01-05 2010-07-07 Guillemot Corporation Joystick à effet Hall, procédé de fabrication et manette correspondants
KR101269187B1 (ko) * 2012-04-10 2013-05-30 주식회사 엔티리서치 와이어로프를 이용하여 추가 자유도를 부여한 병렬 링크 로봇
CN109955281A (zh) * 2019-04-26 2019-07-02 哈尔滨工业大学(深圳) 基于绳索驱动的二自由度大转角柔性机器人关节、机器人
CN110666774A (zh) * 2019-09-23 2020-01-10 广东工业大学 一种基于并联机构的三自由度绳驱动关节模块
CN112894780A (zh) * 2021-04-02 2021-06-04 广东工业大学 一种基于三自由度串并混联机构的绳驱动腕部模块及其使用方法
CN113386168A (zh) * 2021-05-13 2021-09-14 上海工程技术大学 一种用于检疫采样的仿生柔性机械手腕装置
CN115565803A (zh) * 2022-10-25 2023-01-03 深圳技术大学 一种新型绳驱操作手柄

Also Published As

Publication number Publication date
CN115565803B (zh) 2023-08-29
CN115565803A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2024087920A1 (zh) 一种绳驱操作手柄
Quigley et al. A low-cost compliant 7-DOF robotic manipulator
US5271290A (en) Actuator assembly
CN101623864B (zh) 一种具有自重平衡特性的力反馈型主操作手
JP5212797B2 (ja) 力覚提示マニピュレータ
US20060177295A1 (en) Buckling arm robot
EP1863734A2 (en) Parallel robot
KR102246778B1 (ko) 손가락 기구 및 이를 포함하는 로봇 핸드
JP2020142347A (ja) ロボット装置、制御方法、物品の製造方法、プログラム、及び記録媒体
Garrec et al. Virtuose 6D: A new force-control master arm using innovative ball-screw actuators
WO2024088030A1 (zh) 一种便携式外科手术机器人教学设备
JP5211287B2 (ja) 一点の回転中心を有する力覚提示マニピュレータ
JPH05237779A (ja) 遠隔操作マニュピュレータ用関節モジュールおよび遠隔操作マニュピュレータ
CN113386117B (zh) 一种实现正弦解耦的具有偏航自由度的绳驱柔性机械臂
JP2013107155A (ja) 小型多自由度の力覚提示マニピュレータ
WO2023060782A1 (zh) 遥操作机械手及其主轴、遥操作设备
WO2022134512A1 (zh) 五轴机器人动平台及其五轴机器人
JPH0750412B2 (ja) ロボツトの制御装置
JPH0378237B2 (zh)
CN113580125A (zh) 一种具有多自由度的机械臂
JPS6048276A (ja) リンク式ロボット
JPH06262556A (ja) 水平多関節型ロボットのアーム
JPH08323661A (ja) 自動組付機
CN109079757A (zh) 一种应用于遥操作主手的三自由度并联机构
KR102546397B1 (ko) 다자유도 로봇 그리퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881501

Country of ref document: EP

Kind code of ref document: A1