WO2024088009A1 - 一种波束覆盖方法、装置及设备 - Google Patents

一种波束覆盖方法、装置及设备 Download PDF

Info

Publication number
WO2024088009A1
WO2024088009A1 PCT/CN2023/122118 CN2023122118W WO2024088009A1 WO 2024088009 A1 WO2024088009 A1 WO 2024088009A1 CN 2023122118 W CN2023122118 W CN 2023122118W WO 2024088009 A1 WO2024088009 A1 WO 2024088009A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
satellite
wave position
motion direction
scanning granularity
Prior art date
Application number
PCT/CN2023/122118
Other languages
English (en)
French (fr)
Inventor
孔垂丽
王俊
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088009A1 publication Critical patent/WO2024088009A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communication technology, and in particular to a beam coverage method, device and equipment.
  • the broadcast beam in the satellite follows the characteristics of the new radio (NR) time-sharing scanning, and the coverage of the entire satellite system needs to be completed by beam scanning in a time-sharing manner.
  • NR new radio
  • the codebook set can be calculated in advance according to the coverage of the satellite and stored in the satellite base station.
  • the number of codebooks stored in the currently designed codebook set is very large, and the satellite's storage overhead is very large; and the satellite is also required to have an efficient search algorithm so that it can quickly find the codebook that matches the actual beam pointing in a larger codebook set, and the satellite's calculation overhead is also very large.
  • the present application provides a beam coverage method, apparatus and device, in which a codebook is designed according to the movement direction of a satellite, which is beneficial to reducing the calculation overhead and storage overhead of the satellite.
  • the present application provides a beam coverage method, which can be applied to a satellite, and the satellite has the function of an access network device, for example, a terminal device can be connected to a wireless access network.
  • the method is executed by a satellite, or by a component of a satellite (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the satellite function.
  • the satellite determines a first codebook based on a first coverage area; determines a second codebook based on a satellite motion direction and the first codebook; and transmits data based on the second codebook.
  • the satellite can first determine the first codebook, and then design a small number of codebooks based on the first codebook along the direction of satellite movement, and the small number of codebooks includes the second codebook (i.e., the codebook used to transmit data at the current moment). Then, during the satellite movement, seamless coverage can be achieved based on a small number of codebooks, which is conducive to reducing the satellite's computing overhead and storage overhead.
  • the satellite obtains a second beam set or a second wave position set that is first adjacent to the first beam set or the first wave position set along the direction of satellite motion based on the first beam set or the first wave position set corresponding to the first codebook and the direction of satellite motion; determines the scanning granularity based on the codebook storage requirement and the signal-to-noise ratio fluctuation requirement; and determines the second codebook based on the scanning granularity, the codebook corresponding to the second beam set or the second wave position set, and the first codebook.
  • the satellite determines the second codebook according to the satellite motion direction and the first codebook. For example, the satellite obtains the second beam set that is adjacent to the first beam set for the first time along the satellite motion direction according to the first beam set corresponding to the first codebook; thus, interpolation processing can be performed between the first beam set and the second beam set according to the scanning granularity to obtain another small amount of codebooks (including the second codebook), which is conducive to reducing the satellite's computational overhead and storage overhead.
  • the satellite determines the first codebook according to the first coverage area and the orientation of the satellite antenna panel; or determines the first codebook according to the first coverage area, the earth's rotation speed, and the ground wave position.
  • the satellite can determine the first codebook in two different ways, including based on the orientation of the satellite antenna panel (which can be called satellite-fixed) or based on the ground wave position (which can be called ground-fixed).
  • the first codebook can also be called the initial codebook, which is conducive to the satellite to achieve coverage.
  • the satellite when the satellite adopts a method based on the orientation of the satellite antenna panel, the satellite determines the angle parameters of each beam in the first beam set according to the orientation of the satellite antenna panel; and according to the angle parameters of each beam in the first beam set, obtains each beam that is first adjacent to each beam in the first beam set along the satellite motion direction, that is, obtains the second beam set.
  • the second beam set includes each beam that is first adjacent to each beam in the first beam set along the satellite motion direction.
  • the satellite can adopt the satellite-fixed method to determine the beam angle parameters in advance according to the beam layout, without Considering any geographic location information on the ground, the implementation complexity is low.
  • the angle parameters of each wave position in the first wave position set are determined according to the satellite motion direction and the earth's rotation speed; according to the angle parameters of each wave position in the first wave position set, each wave position that is first adjacent to each wave position in the first wave position set along the satellite motion direction is obtained, that is, a second wave position set is obtained.
  • the second wave position set includes each wave position that is first adjacent to each wave position in the first wave position set along the satellite motion direction.
  • the satellite can adopt an earth-fixed approach.
  • the satellite searches for the line connecting two wave positions on the earth's surface as the direction of satellite movement, the influence of the earth's rotation needs to be considered, and the layout of the wave positions needs to be better planned.
  • the implementation complexity is higher than the satellite-fixed approach, but it is more in line with actual scenarios and has more comprehensive coverage.
  • the relationship between the scanning granularity, the signal-to-noise ratio fluctuation requirement, and the codebook storage requirement satisfies:
  • the first scanning granularity is smaller than the second scanning granularity
  • the first signal-to-noise ratio fluctuation requirement is smaller than the second signal-to-noise ratio fluctuation requirement
  • the first codebook storage requirement is greater than the second codebook storage requirement
  • a satellite receives a signal-to-noise ratio fluctuation demand update request message, where the signal-to-noise ratio fluctuation demand update request message includes an absolute value of a scanning granularity or an updated value of the scanning granularity; updates the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity; and determines an updated second codebook according to the updated scanning granularity.
  • the related signaling of updating the signal-to-noise ratio fluctuation requirement is transmitted through the air interface, which is conducive to adapting the signal-to-noise ratio requirement.
  • the present application provides another beam coverage method, which can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the functions of the terminal device.
  • the terminal device obtains a second codebook and transmits data according to the second codebook.
  • the terminal device can directly obtain the second codebook used for transmitting data, thereby realizing data transmission between the terminal device and the satellite.
  • the terminal device obtains a first codebook and a scanning granularity; and determines a second codebook according to the first codebook and the scanning granularity.
  • the terminal device can perform interpolation processing according to the first codebook (ie, the initial codebook) and the scanning granularity to obtain a second codebook for transmitting data, thereby realizing data transmission between the terminal device and the satellite.
  • the first codebook ie, the initial codebook
  • the scanning granularity ie, the scanning granularity
  • the terminal device sends a signal-to-noise ratio fluctuation demand update request message to the satellite, where the signal-to-noise ratio fluctuation demand update request message includes an absolute value of a scanning granularity or an updated value of the scanning granularity.
  • the related signaling of updating the signal-to-noise ratio fluctuation requirement is transmitted through the air interface, which is conducive to adapting the signal-to-noise ratio requirement.
  • the present application provides a communication device, which may be a satellite, or a device in a satellite, or a device that can be used in conjunction with a satellite.
  • the communication device may include a module that executes a method/operation/step/action described in the first aspect and any possible implementation of the first aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device may include a processing unit and a communication unit.
  • the specific description of the method executed on the satellite can refer to the corresponding description in the above-mentioned first aspect and any possible implementation of the first aspect, which will not be repeated here. It can be understood that the communication device can also achieve the effect that can be achieved in the first aspect.
  • the present application provides another communication device, which may be a terminal device, or a device in a terminal device, or a device that can be used in combination with a terminal device.
  • the communication device may include a module that executes the method/operation/step/action described in the second aspect and any possible implementation of the second aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device may include a processing unit and a communication unit.
  • the specific description of the method executed by the terminal device can refer to the corresponding description in the above second aspect and any possible implementation of the second aspect, which will not be repeated here. It can be understood that the communication device can also achieve the effect that can be achieved in the second aspect.
  • the present application provides a communication device comprising a memory, a processor and a communication interface; wherein the communication interface is used to receive or send signals, the memory is used to store instructions or computer programs, and the processor is used to execute the computer programs or instructions stored in the memory, so that the communication device executes the method in the above-mentioned first aspect and any possible implementation manner of the first aspect.
  • the present application provides a communication device, comprising: a memory, a processor and a communication interface; wherein the communication interface is used to receive or send signals, the memory is used to store instructions or computer programs, and the processor is used to execute the computer programs or instructions stored in the memory, so that the communication device executes the method in the above-mentioned second aspect and any possible implementation manner of the second aspect.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores instructions, and when the instructions are executed on a computer, the computer executes the first aspect or the second aspect, and any possible implementation of the first aspect or the second aspect.
  • the method in the formula is a computer-readable storage medium, wherein the computer-readable storage medium stores instructions, and when the instructions are executed on a computer, the computer executes the first aspect or the second aspect, and any possible implementation of the first aspect or the second aspect. The method in the formula.
  • the present application provides a chip system, which includes a processor and an interface, and may also include a memory, for implementing the functions of the method in the first aspect or the second aspect, and any possible implementation of the first aspect or the second aspect.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the present application provides a computer program product, comprising instructions, which, when executed on a computer, enable the computer to execute the first aspect or the second aspect, and the method in any possible implementation of the first aspect or the second aspect.
  • FIG1 is a schematic diagram of a communication system provided by the present application.
  • FIG2 is a schematic diagram of a coverage area formed by a satellite on the surface of the earth
  • FIG3a is a schematic diagram showing a deviation of a coverage area formed on the surface of the earth during a satellite movement
  • FIG3 b is a schematic diagram showing another example of a satellite covering an area shifted on the surface of the earth during its motion
  • FIG4a is a schematic diagram of a codebook provided by the present application.
  • FIG4b is a schematic diagram of multiple codebooks provided in the present application.
  • FIG5 is a schematic diagram of a flow chart of a first beam coverage method provided by the present application.
  • FIG6 is a schematic diagram of another multiple codebook provided by the present application.
  • FIG7 is a schematic diagram showing the relationship between scanning granularity and SNR
  • FIG8 is a schematic diagram of interpolation processing between beams provided by the present application.
  • FIG9 is a schematic diagram of a cyclic codebook provided by the present application.
  • FIG10 is a comparison diagram of a codebook interpolation processing solution provided by the present application.
  • FIG11 is a schematic diagram of a flow chart of a second beam coverage method provided by the present application.
  • FIG12 is a schematic diagram of a flow chart of a third beam coverage method provided by the present application.
  • FIG13 is a schematic diagram of a flow chart of a fourth beam coverage method provided in the present application.
  • FIG14 is a schematic diagram of a flow chart of a fifth beam coverage method provided in the present application.
  • FIG15 is a schematic diagram of a device provided by the present application.
  • FIG16 is a schematic diagram of a device provided in the present application.
  • A/B can indicate A or B
  • a and/or B can indicate: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” can be used to distinguish technical features with the same or similar functions. The words such as “first” and “second” do not limit the quantity and execution order, and the words such as “first” and “second” do not necessarily limit the difference.
  • the present application provides a beam coverage method, which is beneficial to reducing the satellite's computing overhead and storage overhead.
  • the beam coverage method provided by the present application can be applied to a communication system, specifically, it can be applied to a satellite communication system.
  • Figure 1 is a schematic diagram of a communication system provided by the present application, and the communication system includes a terminal device (such as terminal device 1 and terminal device 2 in Figure 1) and a satellite (such as satellite 1 and satellite 2 in Figure 1), and the terminal device and the satellite are connected through an air interface, and the air interface is a wireless link between the terminal device and the satellite. Satellites are connected to each other through an Xn interface, and the Xn interface is mainly used for signaling interaction such as switching.
  • the communication system also includes ground equipment (for example, ground control equipment and ground receiving equipment, etc.), and the ground equipment and the satellite are connected through an NG interface, and the NG interface is used for signaling such as non-independent networking (none stand-alone, NSA) of the interactive core network and user service data.
  • ground equipment for example, ground control equipment and ground receiving equipment, etc.
  • the NG interface is used for signaling such as non-independent networking (none stand-alone, NSA) of the interactive core network and user service data.
  • the communication systems mentioned in this application include but are not limited to: narrow band-Internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate GSM evolution system (enhanced data rate for GSM evolution, EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 (CDMA2000), time division-synchronization code division multiple access (TD-SCDMA), long term evolution (LTE), and three major application scenarios of 5G mobile communication systems: enhanced mobility broad band (eMBB), ultra-reliable and low latency communications (URLLC) and enhanced machine-type communication (eMTC), as well as future communication systems (such as 6G/7G, etc.).
  • NB-IoT narrow band-Internet of things
  • GSM global system for mobile communications
  • EDGE enhanced data rate GSM evolution system
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000
  • TD-SCDMA time division-synchronization code division multiple access
  • LTE long term evolution
  • 5G mobile communication systems enhanced mobility
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, drones, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, terminal devices in 5G networks, terminal devices in future evolved PLMN networks or terminal devices in future communication systems, etc.
  • the satellite in this application has the function of access network equipment.
  • the access network equipment refers to the radio access network (RAN) node (or device) that connects the terminal device to the wireless network, which can also be called a base station. That is, the satellite in this application can connect the terminal device to the RAN, and can also be called a satellite base station.
  • RAN radio access network
  • the satellite in this application can connect the terminal device to the RAN, and can also be called a satellite base station.
  • RAN nodes are: evolved Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite in a satellite communication system, wireless controller in a cloud radio access network (CRAN) scenario, wearable devices, drones, or devices in an Internet of Vehicles (e.g., vehicle to everything (V2X)), or communication devices in device to device (D2D) communication, etc.
  • V2X vehicle to everything
  • D2D device to device
  • the access network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN device including the CU node and the DU node splits the protocol layer of the eNB in the long term evolution (LTE) system, places the functions of some protocol layers in the CU for centralized control, and distributes the functions of the remaining part or all of the protocol layers in the DU, and the DU is centrally controlled by the CU.
  • LTE long term evolution
  • the ground equipment includes ground control equipment and ground receiving equipment.
  • the ground receiving equipment can also be called a ground station, which is used to forward signaling and service data between the satellite base station and the core network.
  • the ground control equipment can be equipment in the core network, such as access and mobility management function (AMF) network elements and user plane function (UPF) network elements.
  • AMF access and mobility management function
  • UPF user plane function
  • AMF is used for user access management, security authentication, and mobility management
  • UPF is used to manage the transmission of user plane data, traffic statistics, etc.
  • Satellite beam and coverage area 1. Satellite beam and coverage area:
  • the satellite's broadcast beam follows the characteristics of NR time-sharing scanning, and it is necessary to complete the coverage of the entire satellite by scanning in a time-sharing manner.
  • the satellite's broadcast beam needs to complete the transmission of a large number of signals, so the duration of a single beam is relatively long; in addition, the satellite has a large coverage area and the link budget is usually poor, so narrow beams are usually used for coverage, which can result in a single satellite with thousands of beams.
  • the beam width of the large antenna array is usually narrow. For example, assuming that the beam width of the antenna array is 1.2° (degrees), if the antenna array needs to cover an area of 45° in latitude and 33° in longitude, and the beams are laid out according to the existing protocol, the antenna array needs to emit 4761 beams. If each beam stays for 5 milliseconds (ms), the satellite can use static weights (which are pre-configured) to scan the broadcast beams in a certain order. When the satellite is stationary, the coverage area formed by the satellite on the surface of the earth is shown in Figure 2.
  • the coverage area originally designed based on the stationary state of the satellite will shift, as shown in FIG. 3a or FIG. 3b.
  • the coverage area shown in FIG3a is stretched along the satellite movement direction compared with the coverage area shown in FIG2, and the shape changes from a rectangle to a parallelogram.
  • the coverage area shown in FIG3b is compressed along the satellite movement direction compared with the coverage area shown in FIG2, and the shape changes from a rectangle to a parallelogram. Therefore, as the satellite moves, the coverage area formed by the satellite is no longer the originally designed rectangular area, but has changed, resulting in the satellite being unable to achieve seamless coverage.
  • a codebook corresponds to a beam set or a wave position set.
  • FIG4a is a schematic diagram of a codebook provided in the present application.
  • the codebook corresponds to a beam set or a wave position set, and the beam set includes multiple beams (or the wave position set includes multiple wave positions).
  • the codebook serves the ground coverage area through 70 beams.
  • the codebook includes the angle parameters of the corresponding beam set (wherein the angle parameters are also called beam pointing), or includes the angle parameters of the corresponding beam position set.
  • the codebook includes the angle parameters of the 70 beams.
  • the angle parameters of each beam include an elevation angle and an azimuth angle, for example, the angle parameter ⁇ i of the i-th beam is expressed as Where ⁇ i represents the elevation angle of the i-th beam, represents the azimuth angle of the i-th beam, then the codebook can be expressed as an angle parameter set consisting of the angle parameters of the 70 beams, for example,
  • the satellite can store multiple codebooks. As the satellite moves, the satellite can use different codebooks to achieve seamless coverage.
  • Figure 4b is a schematic diagram of multiple codebooks provided in the present application. Among them, the multiple codebooks in Figure 4b are assumed to include codebooks 1 to 4, and each codebook corresponds to a beam set or a wave position set. For example, the beam set or wave position set corresponding to codebook 1 is shown in Figure 4a. Similarly, the beam set or wave position set corresponding to codebooks 2 to 4 is also shown in Figure 4a, except that the beam set or wave position set has shifted.
  • FIG5 is a flow chart of the first beam coverage method provided by the present application.
  • the beam coverage method is applied to the communication system shown in FIG1.
  • the beam coverage method can be executed by a satellite, and the method includes the following steps:
  • S101 A satellite determines a first codebook according to a first coverage area.
  • the first coverage area is the coverage area formed by the satellite beam on the ground.
  • the first coverage area can be the coverage area formed by the satellite beam on the ground when the satellite moves to a specified position (it is assumed that the satellite can be regarded as being stationary at the specified position within a very short time).
  • the first coverage area can be a larger area.
  • the first coverage area can include but is not limited to desert areas, ocean areas, urban areas, rural areas, etc.
  • the first coverage area can also be a smaller area.
  • the first coverage area can include but is not limited to stadiums, tunnels and other areas.
  • the first codebook is a codebook corresponding to the beam set or wave position set used by the satellite to serve the first coverage area.
  • the satellite determines the first codebook according to the first coverage area, which may include the following two situations:
  • Case 1 The satellite determines the first codebook according to the first coverage area and the orientation of the satellite antenna panel. That is, the satellite determines the first codebook in a manner based on the orientation of the satellite antenna panel (which may be referred to as satellite-fixed).
  • the satellite determines the minimum gain of the beam according to the coverage requirements of the first coverage area, thereby determining the maximum width of the vertical and horizontal planes of the beam; according to the maximum width of the vertical and horizontal planes of the beam and the coverage requirements of the first coverage area, the required number of beams and the angle parameters of each beam are determined, thereby determining the angle parameters of each beam included in the first codebook.
  • the satellite adopts a satellite-fixed method, and determines the angle parameters of the beam in advance according to the layout of the beam, without considering any geographical location information on the ground, and the implementation complexity is low.
  • Case 2 The satellite determines the first codebook according to the first coverage area, the earth's rotation speed, and the ground wave position. That is, the satellite determines the first codebook in a manner based on the ground wave position (which may be called earth-fixed).
  • the satellite determines the minimum gain of the beam according to the coverage requirements of the first coverage area, thereby determining the maximum width of the vertical and horizontal planes of the beam; according to the maximum width of the vertical and horizontal planes of the beam, the coverage requirements of the first coverage area, the earth's rotation speed and the ground wave position, the required number of wave positions and the angle parameters of each wave position are determined, thereby determining the angle parameters of each wave position included in the first codebook.
  • the satellite adopts the earth-fixed method, which needs to consider the influence of the earth's rotation.
  • the layout of the wave position needs to be better planned, and the implementation complexity is higher than the satellite-fixed method, but it is more in line with the actual scene and has more comprehensive coverage.
  • S102 The satellite determines a second codebook according to the satellite motion direction and the first codebook.
  • S103 The satellite transmits data according to the second codebook.
  • the second codebook is a codebook corresponding to a beam set or a wave position set used by the satellite to serve a designated coverage area during the satellite movement.
  • the designated coverage area may be the first coverage area; or the designated coverage area may be a beam set or a wave position set used by the satellite to serve a designated coverage area along the direction of satellite movement.
  • the beam forms a second coverage area on the ground, and the second coverage area is different from the first coverage area.
  • the direction along the satellite motion direction may be the same as and parallel to the satellite motion direction, or the same as and at a certain angle to the satellite motion direction.
  • the satellite may determine codebook 2 based on the direction that is the same as and parallel to the satellite motion direction and codebook 1, that is, codebook 2 may be regarded as a codebook obtained by translating codebook 1 along the direction that is the same as and parallel to the satellite motion direction.
  • codebooks 3 and 4 may also be obtained.
  • the satellite determines the second codebook according to the satellite motion direction and the first codebook, including the following steps:
  • the satellite obtains a second beam set or a second beam position set that is first adjacent to the first beam set or the first beam position set along the satellite motion direction according to the first beam set or the first beam position set corresponding to the first codebook and the satellite motion direction.
  • the satellite determines the scanning granularity according to the codebook storage requirement and the signal-to-noise ratio fluctuation requirement.
  • the satellite determines a second codebook according to the scanning granularity, the codebook corresponding to the second beam set or the second bit set, and the first codebook.
  • Case 1 The satellite determines the angle parameters of each beam in the first beam set according to the orientation of the satellite antenna panel; based on the angle parameters of each beam in the first beam set, obtains each beam that is first adjacent to each beam in the first beam set along the direction of satellite movement, and the second beam set includes each beam that is first adjacent to each beam in the first beam set along the direction of satellite movement.
  • the orientation of the satellite antenna panel can also be represented by angle parameters, including the pitch angle and azimuth of the antenna panel.
  • the satellite can determine the pitch angle and azimuth of the beam (that is, the pitch angle and azimuth of each beam in the first beam set).
  • the pitch angle and azimuth of each beam in the first beam set each beam that is adjacent to each beam in the first beam set for the first time along the direction of satellite movement is obtained, as well as the pitch angle and azimuth of each beam.
  • FIG6 is a schematic diagram of another multiple codebook provided by the present application.
  • multiple codebooks may correspond to multiple beam sets.
  • the first beam set corresponding to the first codebook includes 9 beams in the solid line frame (i.e., beams 1 to 9)
  • each beam that is first adjacent to each beam in the first beam set along the direction of satellite motion also includes 9 beams, that is, the second beam set includes 9 beams in the short dashed line frame (i.e., beams 4 to 12), as shown in FIG6.
  • Case 2 The satellite determines the angle parameters of each wave position in the first wave position set according to the satellite motion direction and the earth's rotation speed; based on the angle parameters of each wave position in the first wave position set, obtains each wave position that is adjacent to each wave position in the first wave position set for the first time along the satellite motion direction, and the second wave position set includes each wave position that is adjacent to each wave position in the first wave position set for the first time along the satellite motion direction.
  • the second case is to use the earth-fixed method.
  • the beam pointing is determined by the satellite position and the wave position information on the earth's surface. Therefore, the influence of the earth's rotation speed needs to be considered. Generally speaking, the earth's rotation speed is about 466 meters per second (m/s).
  • the angle parameters of the wave position are also determined, that is, the satellite determines the angle parameters of each wave position in the first wave position set according to the satellite's motion direction and the earth's rotation speed, including the pitch angle and azimuth angle of each wave position in the first wave position set.
  • multiple codebooks can correspond to multiple wave position sets.
  • the first wave position set corresponding to the first codebook includes 9 wave positions in the solid line frame (i.e., wave position 1 to wave position 9)
  • each wave position that is first adjacent to each beam in the first wave position set along the direction of satellite motion also includes 9 beams, that is, the second wave position set includes 9 wave positions in the short dashed line frame (i.e., wave position 4 to wave position 12), as shown in FIG6.
  • the second wave position set includes 9 wave positions in the short dashed line frame (i.e., wave position 4 to wave position 12), as shown in FIG6.
  • each wave position in FIG6 has taken into account the influence of the earth's rotation.
  • ⁇ i represents the pitch angle of the ith wave position
  • Represents the azimuth of the i-th wave position, i 1,2,3,...,12.
  • the scanning granularity refers to the parameter determined by the satellite based on the trade-off between the codebook storage requirement and the signal-to-noise ratio fluctuation requirement.
  • the codebook storage requirement refers to the storage overhead generated by the satellite storing the codebook.
  • the signal-to-noise ratio fluctuation requirement refers to the beam gain of the satellite beam in order to achieve coverage of the ground area and to achieve stable communication between the satellite and the terminal device.
  • the relationship between the scanning granularity, the signal-to-noise ratio fluctuation requirement, and the codebook storage requirement satisfies: when the first scanning granularity is smaller than the second scanning granularity, the first signal-to-noise ratio fluctuation requirement is smaller than the second signal-to-noise ratio fluctuation requirement, and the first codebook storage requirement is larger than the second codebook storage requirement.
  • FIG7 is a schematic diagram of the relationship between scanning granularity and SNR.
  • a larger scanning granularity can be used, but a larger scanning granularity will lead to a larger SNR fluctuation range, as shown in FIG7. Therefore, when determining the scanning granularity, the satellite needs to balance the scanning granularity, the signal-to-noise ratio fluctuation requirement, and the codebook storage requirement.
  • the satellite when the scanning granularity is determined, can perform interpolation processing between the first codebook and the codebook corresponding to the second beam set or the second wave position set to determine one or more codebooks, and the one or more codebooks include the second codebook.
  • the interpolation processing process is described in detail below.
  • the beam is used as an example for description, and the method for the wave position can be obtained similarly.
  • FIG8 is a schematic diagram of interpolation processing between beams provided in the present application.
  • the satellite can determine the scanning granularity K based on the trade-off between the codebook storage requirement and the signal-to-noise ratio fluctuation requirement; and along the direction of satellite motion, the beam b that is adjacent to beam a for the first time can be found.
  • the satellite can determine the number of interpolations M based on the scanning granularity K, and then perform interpolation processing between the beam pointing directions of beam a and beam b to obtain the angle parameters of the other M beams, as shown in FIG8.
  • the interpolation processing in the present application can specifically be linear interpolation processing, that is, linear interpolation is performed on the line between the two coordinate points.
  • the linear interpolation processing can be uniform interpolation (that is, the coordinate points are divided equally on the line between the two coordinate points) or non-uniform interpolation (that is, the coordinate points are divided according to different proportions on the line between the two coordinate points), which is not limited in the present application.
  • beam n is any one of the M beams obtained by interpolation processing of the satellite.
  • the coordinate point corresponding to the angle parameter of beam n is The coordinate point corresponding to the angle parameter of beam a
  • the coordinate point corresponding to beam b As shown in Figure 8, the coordinate point corresponding to the angle parameter of beam n is satisfy: Where ⁇ n represents the elevation angle of beam n, represents the azimuth angle of beam n, ⁇ a represents the elevation angle of beam a, represents the azimuth angle of beam a, ⁇ b represents the elevation angle of beam b, represents the azimuth of beam b.
  • the interpolation process for each beam in one beam set is similar to the interpolation process for a single beam.
  • the multiple angle parameters in W1 correspond to multiple coordinate points respectively
  • the multiple angle parameters in W2 also correspond to multiple coordinate points respectively.
  • the satellite can perform interpolation processing between the first codebook and the codebook corresponding to the second beam set or the second wave position set to obtain the second codebook.
  • Figure 9 is a schematic diagram of a cyclic codebook provided in the present application.
  • the satellite can obtain three codebooks according to the description in S102 and S103, namely, staring codebook one, staring codebook two, and staring codebook three; staring codebook one is the first codebook, and staring codebook two and staring codebook three are the other two codebooks obtained by interpolation processing, as shown in Figure 9.
  • the satellite uses staring codebook one to serve the ground (for example, the first coverage area). As the satellite moves, the satellite switches to staring codebook two for service. Then, as the satellite moves further, the satellite switches to staring codebook three for service. After the satellite uses staring codebook three to serve for a period of time, if the moving distance of the satellite is close to the diameter of a wave position, the satellite needs to initiate an inter-satellite handover, that is, the current satellite no longer serves the leftmost column of wave positions in the first coverage area, but is served by the next satellite.
  • staring codebook four is the same as staring codebook one, that is, the area served by the satellite has shifted, and the satellite can continue to use staring codebook one for service, and so on.
  • the codebook corresponding to the service beamset (beam) set 1 shown in FIG9 is updated from staring codebook 1 to staring codebook 3; when the satellite moves to the coverage area of the service beamset (beam) set 2, the codebook corresponding to the service beamset (beam) set 2 is updated from staring codebook 1 to staring codebook 3 in sequence, that is, the satellite cycles through staring codebook 1, staring codebook 2, and staring codebook 3 in order to provide service to the ground.
  • the satellite can also perform the following steps:
  • the satellite receives a signal-to-noise ratio fluctuation demand update request message, where the signal-to-noise ratio fluctuation demand update request message includes an absolute value of a scanning granularity or an updated value of the scanning granularity;
  • the satellite updates the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity
  • the satellite determines an updated second codebook according to the updated scanning granularity.
  • the terminal device can request the satellite to update the codebook, including the following two cases:
  • Case 2 When the link budget of the terminal device is high (that is, the signal-to-noise ratio fluctuation is small), the terminal device may request to reduce the scanning granularity of the codebook.
  • the terminal device finds any of the above two situations, it can request the satellite to update the codebook.
  • the satellite can receive the signal-to-noise ratio beam requirement update request message from the terminal device.
  • the signal-to-noise ratio fluctuation requirement update request message includes the following two situations:
  • the signal-to-noise ratio fluctuation requirement update request message includes the absolute value of the scanning granularity.
  • the cell transmitting the absolute value of the scanning granularity is defined as codebook_granularity, and the value of the cell is a positive value, which is quantized using one or more bits.
  • the signal-to-noise ratio fluctuation requirement update request message includes an updated value of the scanning granularity.
  • the cell for transmitting the updated value of the scanning granularity is defined as codebook_granularity_update, and the value of the cell may be a negative value, which is quantized using one or more bits.
  • the satellite and the terminal device may make an agreement in advance. For example, if the satellite and the terminal device agree to adopt the solution in case 1, the satellite receives the absolute value of the scanning granularity from the terminal device and updates the scanning granularity according to the absolute value of the scanning granularity.
  • the updated second codebook can be determined according to the updated scanning granularity. For example, for the first codebook W1 and the codebook W2 corresponding to the second beam set or the second wave position set shown in FIG6, the multiple angle parameters in W1 correspond to multiple coordinate points respectively, and the multiple angle parameters in W2 also correspond to multiple coordinate points respectively.
  • the satellite transmits data according to the second codebook, for example, the satellite uses the second codebook to send data to a terminal device in a coverage area corresponding to the second codebook, or the satellite receives data from a terminal device in a coverage area corresponding to the second codebook. That is, the satellite uses the second codebook to provide services.
  • the current codebook interpolation processing scheme has a storage overhead of 100% for any adjacent angle parameter. and Between, along any direction, interpolation processing is performed with a certain granularity to obtain multiple codebooks, thereby achieving seamless coverage of the satellite, as shown in Figure 10.
  • the current codebook interpolation processing scheme is essentially that the satellite performs discrete and uniform beam sampling along any direction for the two-dimensional beam space.
  • the storage overhead calculation method of the current codebook interpolation processing scheme is: assuming that the number of basic codebooks is 1, the number of beams corresponding to the codebook is N, the scanning granularity is K, and the number of antennas is X, then the storage overhead of the satellite is: XN(K+1) 2. It can be seen that for the current codebook interpolation processing scheme, as the scanning granularity increases, the storage overhead of the satellite will increase rapidly, and the number of phase shifters that the satellite needs to store will also increase rapidly. Among them, the phase shifters stored in the satellite described in the present application are used to adjust the azimuth of the satellite's beaming, so that the satellite can cyclically use multiple codebooks to cover the ground area.
  • the beam coverage method provided by the present application for beam (or wave position) a, can always find the beam (or wave position) b that is adjacent to beam (or wave position) a for the first time along the direction of satellite motion, that is, the code book corresponding to beam (or wave position) a can overlap with the code book corresponding to beam (or wave position) b within a period of time. Then in the present application, the satellite can directly interpolate between the code book corresponding to beam (or wave position) a and the code book corresponding to beam (or wave position) b with a certain number of linear interpolations corresponding to the scanning granularity to obtain multiple code books to ensure the effect of the staring terminal device, as shown in Figure 10.
  • the beam coverage method provided by the present application is essentially that the satellite uniformly samples only along the direction of satellite motion for the two-dimensional beam space.
  • the storage overhead calculation method of the beam coverage method provided by the present application is: assuming that the number of basic code books is 1, the number of beams corresponding to the code book is N, the scanning granularity is K, and the number of antennas is X, then the storage overhead of the satellite is: XN(K+1).
  • the number of beams that need to be stored is 64,000; while using the beam coverage method provided in the present application, the number of beams that need to be stored is 16,000, which only accounts for 25% of the original storage, that is, the overhead is reduced by 75%, which significantly reduces the storage overhead of the satellite.
  • FIG11 is a flow chart of a second beam coverage method provided by the present application.
  • the beam coverage method is applied in the communication system shown in FIG1.
  • the beam coverage method can be executed by a terminal device, and the method includes the following steps:
  • the terminal device obtains a second codebook.
  • S202 The terminal device transmits data according to the second codebook.
  • the terminal device may directly obtain the second codebook, for example, the terminal device receives the second codebook from a satellite.
  • the terminal device may calculate and obtain the second codebook by itself.
  • S201 specifically includes the following steps:
  • the terminal device obtains a first codebook and scanning granularity.
  • the terminal device determines a second codebook according to the first codebook and the scanning granularity.
  • the terminal device can receive the first codebook and scanning granularity from the satellite, that is, after the satellite determines the first codebook and scanning granularity, it can directly send the first codebook and scanning granularity to the terminal device.
  • the terminal device can also determine the second codebook based on the first codebook and scanning granularity.
  • the specific implementation method is similar to the implementation method of the satellite determining the second codebook based on the first codebook and scanning granularity in Example 1.
  • the terminal device obtains the second beam set or the second wave position set that is adjacent to the first beam set or the first wave position set for the first time along the satellite movement direction according to the first beam set or the first wave position set corresponding to the first codebook, and the satellite movement direction; and then determines the second codebook according to the scanning granularity, the codebook corresponding to the second beam set or the second wave position set, and the first codebook.
  • the specific process refers to the specific description of S102 in the previous text, which will not be repeated here.
  • the terminal device may further perform the following steps:
  • the terminal device sends a signal-to-noise ratio fluctuation demand update request message to the satellite, where the signal-to-noise ratio fluctuation demand update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the terminal device can request the satellite to update the codebook
  • the terminal device can send a signal-to-noise ratio fluctuation demand update request message to the satellite.
  • the description and specific implementation method of the signal-to-noise ratio fluctuation demand update request message can refer to the corresponding description in Example 1, which will not be repeated here.
  • Example 1 and Example 2 in the present application may also be combined, that is, the interaction between the satellite and the terminal device may be applied to different network scenarios.
  • Example 3 Assume that the satellite determines the first codebook, determines and updates the cyclic codebook, and the terminal device requests to update the codebook.
  • FIG12 is a flow chart of the third beam coverage method provided by the present application, which is implemented by the interaction between the satellite and the terminal device, and includes the following steps:
  • S301 A satellite determines a first codebook according to a first coverage area.
  • the satellite determines a plurality of cyclic codebooks according to the satellite motion direction and the first codebook.
  • the multiple cyclic codebooks include a second codebook.
  • the satellite transmits data using a cyclic codebook.
  • the terminal device sends a signal-to-noise ratio fluctuation requirement update request message to the satellite.
  • the signal-to-noise ratio fluctuation requirement update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • S305 The satellite updates the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity.
  • S306 The satellite determines an updated cyclic codebook according to the updated scanning granularity.
  • Example 4 Assume that the ground device determines the first codebook, determines and updates the cyclic codebook, the terminal device requests to update the codebook, and the satellite forwards the request message and the codebook information.
  • FIG13 is a flow chart of the fourth beam coverage method provided by the present application, which is implemented by the interaction between the satellite, the terminal device and the ground device, and includes the following steps:
  • the ground device determines a first codebook according to a first coverage area.
  • the ground device determines a plurality of cyclic codebooks according to the satellite motion direction and the first codebook.
  • the multiple cyclic codebooks include a second codebook.
  • S403 The ground device sends multiple cyclic codebooks to the satellite.
  • the satellite transmits data using a cyclic codebook.
  • the terminal device sends a signal-to-noise ratio fluctuation requirement update request message to the satellite.
  • the signal-to-noise ratio fluctuation requirement update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the satellite sends the signal-to-noise ratio fluctuation requirement update request message to the ground device.
  • the ground device updates the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity.
  • the ground device determines an updated cyclic codebook according to the updated scanning granularity.
  • the ground equipment sends the updated cyclic codebook to the satellite.
  • S401-S409 can refer to the corresponding descriptions in Example 1 and Example 2.
  • S401, S402, S407, and S408 executed by the ground equipment are similar to the way the satellite executes the above steps, and will not be repeated here.
  • Example 5 Assume that the ground device determines the first codebook, the terminal device requests to update the codebook, the satellite forwards the request message and the codebook information, and determines and updates the cyclic codebook.
  • FIG14 is a flowchart of the fifth beam coverage method provided by the present application, which is implemented by the interaction between the satellite, the terminal device and the ground device, and includes the following steps:
  • the ground device determines a first codebook and a first scanning granularity according to a first coverage area.
  • the ground device sends a first codebook and a first scanning granularity to the satellite.
  • the satellite determines a plurality of cyclic codebooks according to the satellite motion direction, the first codebook and the first scanning granularity.
  • the multiple cyclic codebooks include a second codebook.
  • the satellite transmits data using a cyclic codebook.
  • the terminal device sends a signal-to-noise ratio fluctuation requirement update request message to the satellite.
  • the signal-to-noise ratio fluctuation requirement update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • S506 The satellite sends the signal-to-noise ratio fluctuation requirement update request message to the ground device.
  • the ground device updates the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity.
  • the ground device determines an updated first codebook according to the updated scanning granularity.
  • the ground device sends the updated scanning granularity and the updated first codebook to the satellite.
  • S510 The satellite determines updated multiple cyclic codebooks according to the satellite motion direction, the updated scanning granularity and the updated first codebook.
  • S501-S510 can refer to the corresponding descriptions in Example 1 and Example 2.
  • S501, S507, and S508 executed by the ground equipment are similar to the way the satellite executes the above steps, and will not be repeated here.
  • the device or equipment provided by the present application may include a hardware structure and/or a software module, and the above functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function in the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the division of modules in the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
  • each functional module in each embodiment of the present application can be integrated in a processor, or it can be physically present separately, or two or more modules can be integrated in one module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • FIG15 is a schematic diagram of a device provided by the present application.
  • the device may include a module that performs the method/operation/step/action described in the method embodiments corresponding to FIG5 to FIG14, and the module may be a hardware circuit, or software, or a hardware circuit combined with software.
  • the device may be called a beam coverage device, or a communication device.
  • the apparatus 1500 includes a processing unit 1501 and a communication unit 1502, and is used to implement the method executed by the terminal device or the satellite device in the above-mentioned embodiment.
  • the processing unit 1501 is configured to determine a first codebook according to the first coverage area.
  • the processing unit 1501 is further configured to determine a second codebook according to the satellite motion direction and the first codebook.
  • the communication unit 1502 is configured to transmit data according to the second codebook.
  • the processing unit 1501 is configured to determine a second codebook according to the satellite motion direction and the first codebook, including:
  • the first beam set or the first wave position set corresponding to the first codebook and the satellite motion direction obtain a second beam set or a second wave position set that is adjacent to the first beam set or the first wave position set for the first time along the satellite motion direction;
  • the second codebook is determined according to the scanning granularity, the codebook corresponding to the second beam set or the second bit set, and the first codebook.
  • the processing unit 1501 is configured to determine a first codebook according to the first coverage area, including:
  • a first codebook is determined according to a first coverage area, an earth rotation speed, and a ground wave position.
  • the processing unit 1501 is configured to acquire, according to the first beam set corresponding to the first codebook and the satellite motion direction, a second beam set that is first adjacent to the first beam set along the satellite motion direction, including:
  • each beam that is adjacent to each beam in the first beam set for the first time along the satellite motion direction is acquired,
  • the second beam set includes beams that are respectively adjacent to the beams in the first beam set for the first time along the satellite motion direction.
  • the processing unit 1501 is configured to acquire, according to the first wave bit set corresponding to the first codebook and the satellite motion direction, a second wave bit set that is adjacent to the first wave bit set for the first time along the satellite motion direction, including:
  • the angle parameters of each wave position in the first wave position set are determined
  • each wave position that is adjacent to each wave position in the first wave position set for the first time along the satellite motion direction is obtained.
  • the second wave position set includes wave positions that are adjacent to the wave positions in the first wave position set for the first time along the satellite motion direction.
  • the relationship between the scanning granularity, the signal-to-noise ratio fluctuation requirement, and the codebook storage requirement satisfies:
  • the first scanning granularity is smaller than the second scanning granularity
  • the first signal-to-noise ratio fluctuation requirement is smaller than the second signal-to-noise ratio fluctuation requirement
  • the first codebook storage requirement is greater than the second codebook storage requirement
  • the communication unit 1502 is further configured to receive a signal-to-noise ratio fluctuation requirement update request message, the signal-to-noise ratio fluctuation requirement update request message including an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the processing unit 1501 is further configured to update the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity; and determine an updated second codebook according to the updated scanning granularity.
  • the specific execution process of the processing unit 1501 and the communication unit 1502 in this implementation manner can also refer to the description in the previous method embodiment, which will not be repeated here.
  • the beam coverage method implemented by the device can first determine the first codebook, and then design a small number of codebooks based on the first codebook along the direction of satellite movement, and the small number of codebooks includes the second codebook (i.e., the codebook used to transmit data at the current moment). Then, during the satellite movement, seamless coverage can be achieved based on a small number of codebooks, which is conducive to reducing the calculation overhead and storage overhead of the satellite.
  • the processing unit 1501 is configured to obtain a second codebook
  • the communication unit 1502 is configured to transmit data according to the second codebook.
  • the processing unit 1501 is configured to obtain a second codebook, including:
  • a second codebook is determined according to the first codebook and the scanning granularity.
  • the communication unit 1502 is further configured to send a signal-to-noise ratio fluctuation requirement update request message to the satellite, where the signal-to-noise ratio fluctuation requirement update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the specific execution process of the processing unit 1501 and the communication unit 1502 in this implementation manner can also refer to the description in the previous method embodiment, which will not be repeated here.
  • the beam coverage method implemented by the device enables the terminal device to directly obtain the second codebook for transmitting data, thereby realizing data transmission between the terminal device and the satellite.
  • FIG. 16 is a schematic diagram of a device provided by the present application, which is used to implement the beam coverage method in the above method embodiment.
  • the device 1600 may also be a chip system. It is understandable that the device 1600 may be, for example, a terminal device or a satellite device.
  • the device 1600 includes a communication interface 1601 and a processor 1602.
  • the communication interface 1601 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the communication interface 1601 is used to communicate with other devices through a transmission medium, so that the device 1600 can communicate with other devices.
  • the communication interface 1601 may implement the functions of the aforementioned communication unit 1502.
  • the processor 1602 is used to perform processing-related operations.
  • the processor 1602 is configured to determine a first codebook according to the first coverage area, and to determine a second codebook according to the satellite motion direction and the first codebook.
  • the communication interface 1601 is configured to transmit data according to the second codebook.
  • the processor 1602 is configured to determine a second codebook according to the satellite motion direction and the first codebook, including:
  • the first beam set or the first wave position set corresponding to the first codebook and the satellite motion direction obtain a second beam set or a second wave position set that is adjacent to the first beam set or the first wave position set for the first time along the satellite motion direction;
  • the second codebook is determined according to the scanning granularity, the codebook corresponding to the second beam set or the second bit set, and the first codebook.
  • the processor 1602 is configured to determine a first codebook according to the first coverage area, including:
  • a first codebook is determined according to a first coverage area, an earth rotation speed, and a ground wave position.
  • the processor 1602 is configured to acquire, according to the first beam set corresponding to the first codebook and the satellite motion direction, a second beam set that is first adjacent to the first beam set along the satellite motion direction, including:
  • each beam that is adjacent to each beam in the first beam set for the first time along the satellite motion direction is obtained,
  • the second beam set includes beams that are respectively adjacent to the beams in the first beam set for the first time along the satellite motion direction.
  • the processor 1602 is configured to acquire, according to the first wave bit set corresponding to the first codebook and the satellite motion direction, a second wave bit set that is adjacent to the first wave bit set for the first time along the satellite motion direction, including:
  • the angle parameters of each wave position in the first wave position set are determined
  • each wave position that is adjacent to each wave position in the first wave position set for the first time along the satellite motion direction is obtained.
  • the second wave position set includes wave positions that are adjacent to the wave positions in the first wave position set for the first time along the satellite motion direction.
  • the relationship between the scanning granularity, the signal-to-noise ratio fluctuation requirement, and the codebook storage requirement satisfies:
  • the first scanning granularity is smaller than the second scanning granularity
  • the first signal-to-noise ratio fluctuation requirement is smaller than the second signal-to-noise ratio fluctuation requirement
  • the first codebook storage requirement is greater than the second codebook storage requirement
  • the communication interface 1601 is further configured to receive a signal-to-noise ratio fluctuation requirement update request message, the signal-to-noise ratio fluctuation requirement update request message including an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the processor 1602 is further configured to update the scanning granularity according to the absolute value of the scanning granularity or the updated value of the scanning granularity; and determine an updated second codebook according to the updated scanning granularity.
  • the specific execution process of the processor 1602 and the communication interface 1601 in this implementation manner can also refer to the description in the previous method embodiment, which will not be repeated here.
  • the beam coverage method implemented by the device can first determine the first codebook, and then design a small number of codebooks based on the first codebook along the direction of satellite movement, and the small number of codebooks includes the second codebook (i.e., the codebook used to transmit data at the current moment). Then, during the satellite movement, seamless coverage can be achieved based on a small number of codebooks, which is conducive to reducing the calculation overhead and storage overhead of the satellite.
  • the processor 1602 is used to obtain a second codebook, and the communication interface 1601 is used to transmit data according to the second codebook.
  • the processor 1602 is configured to obtain a second codebook, including:
  • a second codebook is determined according to the first codebook and the scanning granularity.
  • the communication interface 1601 is further used to send a signal-to-noise ratio fluctuation requirement update request message to the satellite, where the signal-to-noise ratio fluctuation requirement update request message includes an absolute value of the scanning granularity or an updated value of the scanning granularity.
  • the specific execution process of the communication interface 1601 and the processor 1602 in this implementation manner can also refer to the description in the previous method embodiment, which will not be repeated here.
  • the beam coverage method implemented by the device enables the terminal device to directly obtain the second codebook for transmitting data, thereby realizing data transmission between the terminal device and the satellite.
  • the device 1600 may also include at least one memory 1603 for storing program instructions and/or data.
  • the memory and the processor are coupled.
  • the coupling in this application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, for information exchange between devices, units or modules.
  • the processor may operate in conjunction with the memory.
  • the processor may execute program instructions stored in the memory.
  • the at least one memory and the processor are integrated together.
  • connection medium between the above-mentioned communication interface, processor and memory is not limited in this application.
  • the memory, processor and communication interface are connected via a bus, and bus 1604 is represented by a bold line in FIG16.
  • the connection mode between other components is only for schematic illustration and is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG16, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the methods, steps, and logic block diagrams disclosed in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the present application may also be a circuit or any other device that can realize a storage function, used to store program instructions and/or data.
  • the present application provides a communication system, which includes one or more devices among the terminal equipment, satellite equipment, and ground equipment in the embodiments corresponding to Figures 5 to 14.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program or instruction.
  • the program or instruction is executed on a computer, the computer executes the beam coverage method in the embodiments corresponding to FIGS. 5 to 14 .
  • the present application provides a computer program product, which includes instructions.
  • the instructions When the instructions are executed on a computer, the computer executes the beam coverage method in the embodiments corresponding to FIGS. 5 to 14 .
  • the present application provides a chip or a chip system, which includes at least one processor and an interface, the interface and at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute the beam coverage method in the embodiments corresponding to Figures 5 to 14.
  • the interface in the chip may be an input/output interface, a pin or a circuit, etc.
  • the chip system may be a system on chip (SOC) or a baseband chip, etc., wherein the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • SOC system on chip
  • baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • the chip or chip system described above in the present application further includes at least one memory, in which instructions are stored.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (e.g., a read-only memory, a random access memory, etc.).
  • the technical solution provided in this application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium, etc.
  • the various embodiments may reference each other, for example, the methods and/or terms between method embodiments may reference each other, for example, the functions and/or terms between device embodiments may reference each other, for example, the functions and/or terms between device embodiments and method embodiments may reference each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供一种波束覆盖方法、装置及设备。该方法中,卫星可以根据第一覆盖区域,确定第一码本(也可以视为初始码本);然后根据卫星运动方向和第一码本,确定用于传输数据的第二码本。则采用该方法,卫星可以先确定初始码本,然后基于初始码本沿卫星运动方向设计少量的码本,该少量的码本包括用于传输数据的第二码本。那么在卫星运动过程中,基于少量码本就可以实现无缝覆盖,有利于降低卫星的计算开销和存储开销。

Description

一种波束覆盖方法、装置及设备
本申请要求在2022年10月24日提交中国国家知识产权局、申请号为202211303533.8的中国专利申请的优先权,发明名称为“一种波束覆盖方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束覆盖方法、装置及设备。
背景技术
在卫星系统中,由于卫星系统需要覆盖的区域很大,局限于卫星载荷能力,不能同时对整个覆盖区域,打出波束进行覆盖。因此,卫星里的广播波束沿用了新空口(new radio,NR)分时扫描的特点,需要以时分的方式,通过波束扫描完成整个卫星系统的覆盖。但是,随着卫星移动,会导致原来基于卫星静止状态设计的波束覆盖区发生偏移,导致卫星系统无法覆盖原区域。为了解决覆盖漏洞问题,目前可以按照卫星的覆盖情况,提前计算码本集合,存储到卫星基站上。但是目前设计的码本集合存储的码本数量非常多,卫星的存储开销非常大;并且还需要卫星具备高效的搜索算法,从而能够在较大的码本集合中快速找到与实际波束指向相匹配的码本,卫星的计算开销也非常大。
发明内容
本申请提供一种波束覆盖方法、装置及设备,该方法中根据卫星的运动方向设计码本,有利于降低卫星的计算开销和存储开销。
第一方面,本申请提供一种波束覆盖方法,该方法可以应用于卫星,该卫星具有接入网设备的功能,例如,可以将终端设备接入无线接入网络。具体来说,该方法由卫星所执行,也可以由卫星的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分卫星功能的逻辑模块或软件实现。其中,卫星根据第一覆盖区域,确定第一码本;根据卫星运动方向和第一码本,确定第二码本;根据第二码本传输数据。
该方法中,卫星可以先确定第一码本,然后基于该第一码本沿卫星运动方向设计少量的码本,该少量的码本包括第二码本(即当前时刻用于传输数据的码本)。那么在卫星运动过程中,基于少量码本就可以实现无缝覆盖,有利于降低卫星的计算开销和存储开销。
一种可能的实施方式中,卫星根据第一码本对应的第一波束集合或第一波位集合,以及卫星运动方向,获取沿卫星运动方向与第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;根据码本存储需求和信噪比波动需求,确定扫描颗粒度;根据扫描颗粒度、第二波束集合或第二波位集合对应的码本、和第一码本,确定第二码本。
该方法中,具体描述了卫星如何根据卫星运动方向和第一码本确定第二码本。例如,卫星根据第一码本对应的第一波束集合,沿着卫星运动方向获取与第一波束集合第一次相邻的第二波束集合;从而可以根据扫描颗粒度,在第一波束集合与第二波束集合之间进行插值处理,得到另外的少量的码本(包括第二码本),有利于降低卫星的计算开销和存储开销。
一种可能的实施方式中,卫星根据第一覆盖区域和卫星天线面板的朝向,确定第一码本;或者,根据第一覆盖区域、地球自转速度、和地面波位,确定第一码本。
该方法中,卫星可以采用两种不同的方式,包括基于卫星天线面板的朝向(可以称为卫星固定,satellite-fixed)的方式或者基于地面波位(可以称为地面固定,earth-fixed)的方式,确定第一码本。第一码本也可以称为初始码本,有利于卫星实现覆盖。
一种可能的实施方式中,当卫星采用基于卫星天线面板的朝向的方式时,卫星根据卫星天线面板的朝向,确定第一波束集合中的各个波束的角度参数;根据第一波束集合中的各个波束的角度参数,获取沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束,也即是,获取第二波束集合。其中,第二波束集合包括沿所述卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束。
该方法中,卫星可以采用satellite-fixed的方式,按照波束的布局,提前确定波束的角度参数,而无需 考虑地面的任何地理位置信息,实现的复杂度较低。
一种可能的实施方式中,当卫星采用基于卫星天线面板的朝向的方式时,根据卫星运动方向和地球自转速度,确定第一波位集合中的各个波位的角度参数;根据第一波位集合中的各个波位的角度参数,获取沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位,也即是,获取第二波位集合。其中,第二波位集合包括沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位。
该方法中,卫星可以采用earth-fixed的方式,当卫星在地球表面寻找两个波位的连线为卫星运动方向时,需要考虑地球自转的影响,波位的布局需要进行较好的规划,实现复杂度高于satellite-fixed的方式,但是更符合实际场景,覆盖更全面。
一种可能的实施方式中,扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:
当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本存储需求大于第二码本存储需求。
该方法中,为了降低存储开销,可以采用较大的扫描颗粒度,但是较大的扫描颗粒度导致信噪比波动范围较大,因此需要对信噪比波动需求和码本存储需求进行权衡。
一种可能的实施方式中,卫星接收信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值;根据该扫描颗粒度的绝对值或该扫描颗粒度的更新值,更新扫描颗粒度;根据更新后的扫描颗粒度,确定更新后的第二码本。
该方法中,通过空口传输更新信噪比波动需求的相关信令,有利于适配信噪比需求。
第二方面,本申请提供另一种波束覆盖方法,该方法可以由终端设备所执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。其中,终端设备获取第二码本,根据该第二码本传输数据。
该方法中,终端设备可以直接获取用于传输数据的第二码本,从而实现终端设备和卫星之间的数据传输。
一种可能的实施方式中,终端设备获取第一码本和扫描颗粒度;根据该第一码本和扫描颗粒度,确定第二码本。
该方法中,终端设备可以根据第一码本(即初始码本)和扫描颗粒度进行插值处理,得到用于传输数据的第二码本,从而实现终端设备和卫星之间的数据传输。
一种可能的实施方式中,终端设备向卫星发送信噪比波动需求更新请求消息,所述信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
该方法中,通过空口传输更新信噪比波动需求的相关信令,有利于适配信噪比需求。
第三方面,本申请提供一种通信装置,该通信装置可以是卫星,也可以是卫星中的装置,或者是能够和卫星匹配使用的装置。一种设计中,该通信装置可以包括执行如第一方面和第一方面中任一种可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和通信单元。
其中,对卫星执行的方法的具体描述可以参考上述第一方面和第一方面中任一种可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第一方面中可以实现的效果。
第四方面,本申请提供另一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第二方面和第二方面中任一种可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和通信单元。
其中,对终端设备执行的方法的具体描述可以参考上述第二方面和第二方面中任一种可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第二方面中可以实现的效果。
第五方面,本申请提供一种通信装置,包括存储器、处理器和通信接口;其中,通信接口用于接收信号或者发送信号,存储器用于存储指令或计算机程序,处理器用于执行存储器所存储的计算机程序或指令,以使该通信装置执行上述第一方面和第一方面中任一种可能的实施方式中的方法。
第六方面,本申请提供一种通信装置,包括:存储器、处理器和通信接口;其中,通信接口用于接收信号或者发送信号,存储器用于存储指令或计算机程序,处理器用于执行存储器所存储的计算机程序或指令,以使该通信装置执行上述第二方面和第二方面中任一种可能的实施方式中的方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行第一方面或第二方面,以及第一方面或第二方面任一种可能的实施方 式中的方法。
第八方面,本申请提供一种芯片系统,该芯片系统包括处理器和接口,还可以包括存储器,用于实现上述第一方面或第二方面,以及第一方面或第二方面任一种可能的实施方式中的方法中的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行第一方面或第二方面,以及第一方面或第二方面任一种可能的实施方式中的方法。
附图说明
图1为本申请提供的一种通信系统的示意图;
图2为一种卫星在地球表面形成的覆盖区域的示意图;
图3a为一种卫星运动过程中在地球表面形成的覆盖区域发生偏移的示意图;
图3b为另一种卫星运动过程中在地球表面形成的覆盖区域发生偏移的示意图;
图4a为本申请提供的一个码本的示意图;
图4b为本申请提供的多个码本的示意图;
图5为本申请提供的第一种波束覆盖方法的流程示意图;
图6为本申请提供的另一种多个码本的示意图;
图7为一种扫描颗粒度与SNR的关系示意图;
图8为本申请提供的一种波束之间进行插值处理的示意图;
图9为本申请提供的一种循环码本的示意图;
图10为本申请提供的一种码本插值处理方案的对比图;
图11为本申请提供的第二种波束覆盖方法的流程示意图;
图12为本申请提供的第三种波束覆盖方法的流程示意图;
图13为本申请提供的第四种波束覆盖方法的流程示意图;
图14为本申请提供的第五种波束覆盖方法的流程示意图;
图15为本申请提供的一种装置的示意图;
图16为本申请提供的一种设备的示意图。
具体实施方式
在本申请中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请的技术方案,在本申请中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
举例来说,为了解决卫星移动过程中满足为覆盖需求而存储大量码本,以及需要在大量码本中进行搜索的问题,本申请提供了波束覆盖方法,该方法有利于降低卫星的计算开销和存储开销。
其中,本申请提供的波束覆盖方法可以应用于通信系统中,具体来说,可以应用于卫星通信系统中。例如,图1为本申请提供的一种通信系统的示意图,该通信系统包括终端设备(例如图1的终端设备1和终端设备2)和卫星(例如图1的卫星1和卫星2),终端设备和卫星之间通过空口连接,该空口为终端设备和卫星之间的无线链路。卫星和卫星之间通过Xn接口连接,该Xn接口主要用于切换等信令交互。可选的,该通信系统还包括地面设备(例如包括地面控制设备和地面接收设备等),地面设备和卫星之间通过NG接口连接,该NG接口用于交互核心网的非独立组网(none stand-alone,NSA)等信令以及用户的业务数据。
本申请提及的通信系统包括但不限于:窄带物联网系统(narrow band-Internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced  data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)以及5G移动通信系统的三大应用场景增强移动宽带(enhanced mobility broad band,eMBB),超高可靠与低时延通信(ultra-reliable and low latency communications,URLLC)和增强型机器类通信(enhanced machine-type communication,eMTC)以及未来的通信系统(例如6G/7G等)。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,无人机、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备、未来演进的PLMN网络中的终端设备或未来的通信系统中的终端设备等。
其中,本申请中的卫星具备接入网设备的功能。具体来说,接入网设备是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。也即是,本申请中的卫星可以将终端设备接入到RAN,也可以称为卫星基站。例如,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)、卫星通信系统中的卫星、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、可穿戴设备、无人机、或者车联网中的设备(例如车联万物设备(vehicle to everything,V2X)),或者设备间(device to device,D2D)通信中的通信设备等。另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
其中,地面设备包括地面控制设备和地面接收设备等。地面接收设备也可以称为地面站,用于转发卫星基站和核心网之间的信令和业务数据。地面控制设备可以是核心网中的设备,例如包括接入与移动管理功能(access and management function,AMF)网元、用户面功能(user plant function,UPF)网元等。其中,AMF用于用户接入管理,安全认证,还有移动性管理等,UPF用于管理用户面数据的传输,流量统计等。
一、本申请涉及的相关概念:
1、卫星的波束和覆盖区域:
在5G NR中,由于波束较窄,一个波束无法覆盖整个基站服务区域,因此其广播波束是采用扫描的方式发送的。同样,对于卫星系统,由于卫星系统的覆盖区域很大,局限于卫星载荷能力,不能同时对整个覆盖区域打出波束进行覆盖。因此,卫星的广播波束沿用了NR分时扫描的特点,需要以时分的方式,通过扫描完成整个卫星的覆盖。其中,卫星的广播波束需要完成大量信号的传输,因此单次波束的持续时间较长;另外,卫星的覆盖区域大,且链路预算通常较差,通常采用窄波束进行覆盖,这样会导致单个卫星的波束个数可达数千个。
对于卫星的大天线阵列,大天线阵列的波束宽度通常较窄。例如,假设天线阵列的波束宽度为1.2°(度),若该天线阵列需要覆盖纬度方向45°,经度方向33°的区域,按照现有协议布局波束,则该天线阵列需要打出4761个波束。若每个波束停留5毫秒(ms),则卫星可以采用静态权值(该静态权值预先配置),将广播波束按照一定的顺序进行扫描。在卫星静止状态下,卫星在地球表面形成的覆盖区域如图2所示。
但是随着卫星的移动,会导致原来基于卫星静止状态设计的覆盖区发生偏移,如图3a或图3b所示。 例如,当波束扫描方向与卫星运动方向相反时,图3a所示的覆盖区域与图2所示的覆盖区域相比较,沿着卫星运动方向出现了拉伸,并且形状发生变化,从矩形变成了平行四边形。又例如,当波束扫描方向与卫星运动方向相同时,图3b所示的覆盖区域与图2所示的覆盖区域相比较,沿着卫星运动方向出现了压缩,并且形状发生变化,从矩形变成了平行四边形。因此,随着卫星的移动,该卫星形成的覆盖区域不再是原来设计的矩形区域,而是发生了变化,导致卫星无法实现无缝覆盖。
2、码本:
本申请中,一个码本对应一个波束集合或者一个波位集合。例如,图4a为本申请提供的一个码本的示意图。该码本对应一个波束集合或波位集合,波束集合包括多个波束(或者波位集合包括多个波位),例如,假设图4a所示的码本对应的波束集合包括70个波束,则该码本通过70个波束服务地面的覆盖区域。
具体来说,码本包括其对应的波束集合的角度参数(其中角度参数也称为波束指向),或者包括其对应的波位集合的角度参数。例如,假设图4a所示的码本对应的波束集合包括70个波束,则该码本包括该70个波束分别的角度参数。假设每一个波束的角度参数包括俯仰角和方位角,例如第i个波束的角度参数ωi表示为其中,θi表示第i个波束的俯仰角,表示第i个波束的方位角,则该码本可以表示为该70个波束分别的角度参数构成的角度参数集合,例如表示为
可选的,卫星可以存储多个码本。随着卫星的移动,卫星可以使用不同的码本实现无缝覆盖。例如,图4b为本申请提供的多个码本的示意图。其中,图4b中的多个码本假设包括码本1至码本4,每一个码本都对应一个波束集合或波位集合。例如,码本1对应的波束集合或波位集合如图4a所示,类似的,码本2至码本4对应的波束集合或波位集合也如图4a所示,只是波束集合或波位集合发生了平移。
二、本申请提供的波束覆盖方法:
示例一:图5为本申请提供的第一种波束覆盖方法的流程示意图。该波束覆盖方法应用于如图1所示的通信系统中。例如,该波束覆盖方法可以由卫星所执行,该方法包括以下步骤:
S101,卫星根据第一覆盖区域,确定第一码本。
其中,第一覆盖区域为卫星打波束在地面形成的覆盖区域。例如,第一覆盖区域可以是卫星运动到某一指定位置时(此时假设在非常短的时间内,卫星在该指定位置处可以视为处于静止状态),卫星打波束在地面形成的覆盖区域。可选的,第一覆盖区域可以是较大范围的区域,例如,第一覆盖区域可以包括但不限于沙漠区域、海洋区域、城市区域、乡村区域等。或者,第一覆盖区域也可以是较小范围的区域,例如,当在终端设备触发的卫星切换的情况下,第一覆盖区域可以包括但不限于体育场、隧道等区域。其中,第一码本为卫星服务第一覆盖区域时所采用的波束集合或者波位集合对应的码本。
其中,卫星根据第一覆盖区域,确定第一码本,可以包括以下两种情况:
情况一:卫星根据第一覆盖区域和卫星天线面板的朝向,确定第一码本。也即是,卫星采用基于卫星天线面板的朝向(可以称为卫星固定,satellite-fixed)的方式,确定第一码本。
例如,卫星根据第一覆盖区域的覆盖要求,确定波束的最小增益,从而确定波束垂直面和水平面的最大宽度;根据波束垂直面和水平面的最大宽度和第一覆盖区域的覆盖要求,确定所需要的波束个数以及各个波束的角度参数,从而确定第一码本包括各个波束的角度参数。情况一中,卫星采用satellite-fixed的方式,按照波束的布局,提前确定波束的角度参数,而无需考虑地面的任何地理位置信息,实现的复杂度较低。
情况二:卫星根据第一覆盖区域、地球自转速度、和地面波位,确定第一码本。也即是,卫星采用基于地面波位(可以称为地面固定,earth-fixed)的方式,确定第一码本。
例如,卫星根据第一覆盖区域的覆盖要求,确定波束的最小增益,从而确定波束垂直面和水平面的最大宽度;根据波束垂直面和水平面的最大宽度、第一覆盖区域的覆盖要求、地球自转速度和地面波位,确定所需要的波位个数以及各个波位的角度参数,从而确定第一码本包括各个波位的角度参数。情况二中,卫星采用earth-fixed的方式,需要考虑地球自转的影响,波位的布局需要进行较好的规划,实现复杂度高于satellite-fixed的方式,但是更符合实际场景,覆盖更全面。
S102,卫星根据卫星运动方向和第一码本,确定第二码本。
S103,卫星根据第二码本传输数据。
其中,第二码本为卫星运动过程中,卫星服务指定覆盖区域时所采用的波束集合或者波位集合对应的码本。其中,指定覆盖区域可以是第一覆盖区域;或者,指定覆盖区域可以是沿卫星运动方向,卫星打波 束在地面形成的第二覆盖区域,第二覆盖区域和第一覆盖区域不同。
其中,沿卫星运动方向可以是与卫星运动方向相同且平行,也可以是与卫星运动方向相同且存在一定的夹角。例如,对于图4b所示的多个码本,卫星根据与卫星运动方向相同且平行的方向和码本1,可以确定码本2,也即是,码本2可以视为码本1沿与卫星运动方向相同且平行的方向平移得到的码本。类似的,码本3和码本4也可以得到。
具体来说,卫星根据卫星运动方向和第一码本,确定第二码本,包括以下步骤:
S102-1,卫星根据第一码本对应的第一波束集合或第一波位集合、以及卫星运动方向,获取沿卫星运动方向与第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合。
S102-2,卫星根据码本存储需求和信噪比波动需求,确定扫描颗粒度。
S102-3,卫星根据扫描颗粒度、第二波束集合或第二波位集合对应的码本、和第一码本,确定第二码本。
其中,对于S102-1,可以包括以下两种情况:
情况一:卫星根据卫星天线面板的朝向,确定第一波束集合中的各个波束的角度参数;根据第一波束集合中的各个波束的角度参数,获取沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束,第二波束集合包括沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束。
其中,卫星天线面板的朝向也可以通过角度参数来表示,包括天线面板的俯仰角和方位角。根据卫星天线面板的俯仰角和方位角,卫星可以确定打波束的俯仰角和方位角(也即是第一波束集合中的各个波束的俯仰角和方位角)。根据第一波束集合中的各个波束的俯仰角和方位角,获取沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束,以及各个波束的俯仰角和方位角。
例如,图6为本申请提供的另一种多个码本的示意图。假设图6中圆形表示波束,则多个码本可以对应多个波束集合。假设第一码本对应的第一波束集合包括实线框中的9个波束(即1号波束至9号波束),则沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束也包括9个波束,也即是,第二波束集合包括短虚线框中的9个波束(即4号波束至12号波束),如图6所示。其中,由于情况一是基于satellite-fixed的方式,则无需考虑地球自转的影响,第二波束集合可以直接根据卫星运动方向和卫星天线面板的朝向确定。例如,第一码本表示为W1={ω123456789},第二波束集合对应的码本表示为W2={ω456789101112}。其中,θi表示第i个波束的俯仰角,表示第i个波束的方位角,i=1,2,3,...,12。
情况二:卫星根据卫星运动方向和地球自转速度,确定第一波位集合中的各个波位的角度参数;根据第一波位集合中的各个波位的角度参数,获取沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位,第二波位集合包括沿所述卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位。
其中,情况二是采用earth-fixed的方式,波束指向是由卫星位置和地球表面波位信息确定,因此需要考虑地球自转速度的影响,通常来说地球自转速度约为466米每秒(m/s)。当确定波束指向时,波位的角度参数也就确定了,也即是,卫星根据卫星运动方向和地球自转速度确定第一波位集合中的各个波位的角度参数,包括第一波位集合中的各个波位的俯仰角和方位角。
例如,假设图6中圆形表示波位,则多个码本可以对应多个波位集合。假设第一码本对应的第一波位集合包括实线框中的9个波位(即1号波位至9号波位),则沿卫星运动方向与第一波位集合中的各个波束分别第一次相邻的各个波位也包括9个波束,也即是,第二波位集合包括短虚线框中的9个波位(即4号波位至12号波位),如图6所示。其中,对于情况二来说,图6中的各个波位已考虑了地球自转的影响。例如,第一码本表示为W1={ω123456789},第二波位集合对应的码本表示为W2={ω456789101112}。其中,θi表示第i个波位的俯仰角,表示第i个波位的方位角,i=1,2,3,...,12。
其中,对于S102-2,扫描颗粒度是指卫星基于码本存储需求和信噪比波动需求的权衡,所确定的参数。当卫星进行波束扫描时,在相邻波束之间按照扫描颗粒度,确定线性插值的个数,从而确定码本数量。码本存储需求是指卫星存储码本所产生的存储开销。信噪比波动需求是指为了实现覆盖地面区域以及实现卫星和终端设备之间保持稳定的通信,卫星打波束的波束增益。
具体来说,扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本存储需求大于第二码本存储需 求。例如,图7为一种扫描颗粒度与SNR的关系示意图。其中,为了降低码本的存储开销,可以采用较大的扫描颗粒度,但是较大的扫描颗粒度将导致SNR波动范围较大,如图7所示。因此卫星在确定扫描颗粒度时,需要在扫描颗粒度、信噪比波动需求和码本存储需求之间进行权衡。
其中,对于S102-3,当确定了扫描颗粒度,卫星可以在第一码本和第二波束集合或第二波位集合对应的码本之间进行插值处理,确定一个或多个码本,该一个或多个码本包括第二码本。下面对插值处理过程进行详细的描述。其中,以下均以波束为例进行描述,对于波位来说方法可以类似的得到。
首先对两个波束之间进行插值处理的方法进行描述。例如,图8为本申请提供的一种波束之间进行插值处理的示意图。对于单个波束a来说,卫星可以基于码本存储需求和信噪比波动需求的权衡,确定扫描颗粒度K;并且沿着卫星运动方向,可以找到与波束a第一次相邻的波束b。卫星根据扫描颗粒度K,可以确定插值个数M,然后在波束a和波束b的波束指向之间进行插值处理,得到另外的M个波束的角度参数,如图8所示。其中,本申请中进行插值处理具体可以是进行线性插值处理,即在两个坐标点之间的连线上进行线性插值。该线性插值处理可以是均匀插值(即在两个坐标点之间的连线上等比例划分坐标点),也可以是非均匀插值(即在两个坐标点之间的连线上按照不同的比例划分坐标点),本申请不作限定。
例如,波束n为卫星进行插值处理得到的M个波束中的任意一个波束,在图8所示的角度平面中,波束n的角度参数对应的坐标点位于波束a的角度参数对应的坐标点与波束b对应的坐标点之间的连线上,如图8所示。并且,波束n的角度参数对应的坐标点满足:其中,θn表示波束n的俯仰角,表示波束n的方位角,θa表示波束a的俯仰角,表示波束a的方位角,θb表示波束b的俯仰角,表示波束b的方位角。
由于一个码本对应一个波束集合,一个波束集合中的各个波束进行插值处理与单个波束进行插值处理的方法是类似的。例如,对于图6所示的第一码本W1和第二波束集合或第二波位集合对应的码本W2,W1中的多个角度参数分别对应多个坐标点,W2中的多个角度参数也分别对应多个坐标点,假设图6中的矩形框可以视为角度平面,则当确定了扫描颗粒度对应插值个数M时(假设M=1),卫星可以在第一码本和第二波束集合或第二波位集合对应的码本之间进行插值处理,得到第二码本。假设图6中的第二码本对应的波束集合包括长虚线框中的9个波束(即13号波束至21号波束),第二码本可以表示为W3={ω131415161718192021}。
可选的,当扫描颗粒度对应插值个数M大于1时,也即是,进行插值处理时得到多个码本时,卫星可以循环使用该多个码本传输数据。例如,图9为本申请提供的一种循环码本的示意图。其中,假设扫描颗粒度对应插值个数M=2,则卫星按照S102和S103中的描述可以得到三个码本,即凝视码本一,凝视码本二,凝视码本三;凝视码本一即为第一码本,凝视码本二和凝视码本三为进行插值处理得到的另外两个码本,如图9所示。
首先,卫星采用凝视码本一对地面(例如第一覆盖区域)进行服务,随着卫星移动,卫星切换到凝视码本二进行服务,接着,随着卫星的进一步移动,卫星切换到凝视码本三进行服务。当卫星采用凝视码本三服务一段时间后,若卫星的移动距离接近一个波位的直径,则卫星需要发起星间切换,即当前卫星不再服务第一覆盖区域最左边的一列波位,而是由下一刻卫星提供服务。下一刻卫星采用凝视码本四继续对第一覆盖区域进行服务,并且凝视码本四和凝视码本一相同,也即是,卫星服务的区域发生了平移,卫星可以继续采用凝视码本一进行服务,以此循环。需要说明的是,随着卫星移动,为了进行凝视,图9所示的服务波位(波束)集合1对应的码本从凝视码本1更新到凝视码本3;当卫星移动到服务波位(波束)集合2的覆盖区域时,服务波位(波束)集合2对应的码本从凝视码本一再依次更新到凝视码本三,也即是,卫星按照凝视码本一,凝视码本二,凝视码本三的顺序循环,对地面进行服务。
可选的,卫星还可以执行以下步骤:
卫星接收信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值;
卫星根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度;
卫星根据更新后的扫描颗粒度,确定更新后的第二码本。
其中,假设终端设备可以请求卫星更新码本,包括以下两种情况:
情况一:当终端设备测量得到信噪比的波动范围较大(例如信噪比的波动区间扩大为3dB),则说明码本的扫描颗粒度需要提高,以降低信噪比波动。
情况二:当终端设备的链路预算较高时(也即是信噪比波动较小),终端设备可以请求降低码本的扫描颗粒度。
当终端设备发现存在以上两种情况中的任意一种时,可以请求卫星更新码本。对应的,卫星可以接收来自终端设备的信噪比波束需求更新请求消息。该信噪比波动需求更新请求消息包括以下两种情况:
情况一:该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值。例如,传输扫描颗粒度的绝对值的信元定义为codebook_granularity,该信元的取值为正值,采用一个或多个比特(bit)进行量化。
情况二:该信噪比波动需求更新请求消息包括扫描颗粒度的更新值。例如,传输扫描颗粒度的更新值的信元定义为codebook_granularity_update,该信元的取值可以为负值,采用一个或多个bit进行量化。
其中,无论卫星采用情况一或情况二中的方案,卫星和终端设备可以事先进行约定。例如,卫星和终端设备约定采用情况一中的方案,则卫星接收来自终端设备的扫描颗粒度的绝对值,并根据该扫描颗粒度的绝对值更新扫描颗粒度。
当卫星更新扫描颗粒度后,可以根据更新后的扫描颗粒度,确定更新后的第二码本。例如,对于图6所示的第一码本W1和第二波束集合或第二波位集合对应的码本W2,W1中的多个角度参数分别对应多个坐标点,W2中的多个角度参数也分别对应多个坐标点。当更新扫描颗粒度后,卫星可以更新扫描颗粒度对应插值个数M(假设更新后的扫描颗粒度对应的差值个数M=2),则卫星可以在第一码本和第二波束集合或第二波位集合对应的码本之间进行插值处理,得到另外两个码本,第二码本为另外两个码本中的一个,用于服务对应的地面覆盖区域。
其中,对于S103,卫星根据第二码本传输数据,例如包括卫星利用第二码本向第二码本对应的覆盖区域中的终端设备发送数据,或者,卫星接收来自第二码本对应的覆盖区域中的终端设备的数据。也即是,卫星利用第二码本进行服务。
下面对本申请提供的波束覆盖方法降低的存储开销进行分析说明。为了进行对比,首先介绍目前的码本插值处理方案以及目前的码本插值处理方案的存储开销。例如,目前的码本插值处理方案对于任意相邻的角度参数之间,沿着任意方向,以一定的颗粒度进行插值处理,得到多个码本,从而实现卫星的无缝覆盖,如图10所示。目前的码本插值处理方案本质上是卫星针对二维波束空间,沿着任意方向,进行离散、均匀化的波束采样。例如,目前的码本插值处理方案的存储开销计算方式为:假设基础码本数量为1,码本对应的波束个数为N,扫描颗粒度为K,天线数目为X,则卫星的存储开销为:XN(K+1)2。可见,对于目前的码本插值处理方案,随着扫描颗粒度的增大,卫星的存储开销将迅速增大,卫星需要存储的移相器的数量也迅速增大。其中,本申请中描述的卫星存储的移相器用于对卫星打波束的方位进行调整,从而使得卫星可以循环使用多个码本以覆盖地面区域。
作为对比,本申请提供的波束覆盖方法,针对波束(或波位)a,总能找到沿卫星运动方向与波束(或波位)a第一次相邻的波束(或波位)b,也即是,波束(或波位)a对应的码本,可以在一段时间内与波束(或波位)b对应的码本重合。则本申请中卫星可以直接在波束(或波位)a对应的码本和波束(或波位)b对应的码本之间,以一定的扫描颗粒度对应的线性插值个数进行插值处理,得到多个码本,保证凝视终端设备的效果,如图10所示。本申请提供的波束覆盖方法本质上是卫星针对二维波束空间,仅沿着卫星运动方向,均匀化采样。例如,本申请提供的波束覆盖方法的存储开销计算方式为:假设基础码本数量为1,码本对应的波束个数为N,扫描颗粒度为K,天线数目为X,则卫星的存储开销为:XN(K+1)。相比目前的码本插值处理方案,本申请提供的波束覆盖方法的存储开销降低(K+1)倍,开销降低百分比为例如,若卫星采用的扫描颗粒度为K=3,共有N=4000个波束,采用目前的码本插值处理方案,需要存储的波束数目为64000个;而采用本申请提供的波束覆盖方法,需要存储的波束数目为16000个,只占原来存储的25%,即开销降低了75%,较为明显的降低了卫星的存储开销。
示例二:图11为本申请提供的第二种波束覆盖方法的流程示意图。该波束覆盖方法应用于如图1所示的通信系统中。例如,该波束覆盖方法可以由终端设备所执行,该方法包括以下步骤:
S201,终端设备获取第二码本。
S202,终端设备根据该第二码本传输数据。
其中,对第二码本的描述可以参考图5实施例中对应的描述,此处不再赘述。
对于S201,终端设备可以直接获取第二码本,例如,终端设备接收来自卫星的第二码本。或者,终端设备可以自行计算获取第二码本。例如,S201具体包括以下步骤:
S201-1,终端设备获取第一码本和扫描颗粒度。
S201-2,终端设备根据第一码本和扫描颗粒度,确定第二码本。
其中,对于S201-1,终端设备可以接收来自卫星的第一码本和扫描颗粒度,也即是,卫星确定第一码本和扫描颗粒度后,可以直接向终端设备发送第一码本和扫描颗粒度。对于S201-2,终端设备也可以根据第一码本和扫描颗粒度,确定第二码本,具体实施方式与示例一中卫星根据第一码本和扫描颗粒度确定第二码本的实施方式是类似的。例如,终端设备根据第一码本对应的第一波束集合或第一波位集合、以及卫星运动方向,获取沿卫星运动方向与第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;再根据扫描颗粒度、第二波束集合或第二波位集合对应的码本、和第一码本,确定第二码本,具体过程参考前文对S102的具体描述,此处不再赘述。
其中,对于S202,具体实施方式可以参考S103中的描述,此处不再赘述。
可选的,终端设备还可以执行以下步骤:
终端设备向卫星发送信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
其中,假设终端设备可以请求卫星更新码本,则终端设备可以向卫星发送信噪比波动需求更新请求消息,对该信噪比波动需求更新请求消息的描述以及具体实施方式可以参考示例一中对应的描述,此处不再赘述。
可选的,本申请中的示例一和示例二也可以结合,也即是,卫星和终端设备之间的交互,可以应用于不同的网络场景中。下面通过示例三至示例五进行描述。
示例三:假设由卫星确定第一码本,以及确定和更新循环码本,由终端设备请求更新码本。例如,图12为本申请提供的第三种波束覆盖方法的流程示意图,该方法由卫星和终端设备之间的交互实现,包括以下步骤:
S301,卫星根据第一覆盖区域,确定第一码本。
S302,卫星根据卫星运动方向和第一码本,确定多个循环码本。
其中,该多个循环码本包括第二码本。
S303,卫星采用循环码本传输数据。
S304,终端设备向卫星发送信噪比波动需求更新请求消息。
其中,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
S305,卫星根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度。
S306,卫星根据更新后的扫描颗粒度,确定更新后的循环码本。
其中,上述S301-S306的具体实施方式可以参考示例一和示例二中对应的描述,此处不再赘述。
示例四:假设由地面设备确定第一码本,以及确定和更新循环码本,由终端设备请求更新码本,由卫星转发请求消息和码本信息。例如,图13为本申请提供的第四种波束覆盖方法的流程示意图,该方法由卫星、终端设备和地面设备之间的交互实现,包括以下步骤:
S401,地面设备根据第一覆盖区域,确定第一码本。
S402,地面设备根据卫星运动方向和第一码本,确定多个循环码本。
其中,该多个循环码本包括第二码本。
S403,地面设备向卫星发送多个循环码本。
S404,卫星采用循环码本传输数据。
S405,终端设备向卫星发送信噪比波动需求更新请求消息。
其中,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
S406,卫星向地面设备发送该信噪比波动需求更新请求消息。
S407,地面设备根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度。
S408,地面设备根据更新后的扫描颗粒度,确定更新后的循环码本。
S409,地面设备向卫星发送更新后的循环码本。
其中,上述S401-S409的具体实施方式可以参考示例一和示例二中对应的描述,例如,地面设备所执行的S401、S402、S407、S408,与卫星执行上述步骤的方式是类似的,此处不再赘述。
示例五:假设由地面设备确定第一码本,由终端设备请求更新码本,由卫星转发请求消息和码本信息,以及确定和更新循环码本。例如,图14为本申请提供的第五种波束覆盖方法的流程示意图,该方法由卫星、终端设备和地面设备之间的交互实现,包括以下步骤:
S501,地面设备根据第一覆盖区域,确定第一码本和第一扫描颗粒度。
S502,地面设备向卫星发送第一码本和第一扫描颗粒度。
S503,卫星根据卫星运动方向、第一码本和第一扫描颗粒度,确定多个循环码本。
其中,该多个循环码本包括第二码本。
S504,卫星采用循环码本传输数据。
S505,终端设备向卫星发送信噪比波动需求更新请求消息。
其中,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
S506,卫星向地面设备发送该信噪比波动需求更新请求消息。
S507,地面设备根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度。
S508,地面设备根据更新后的扫描颗粒度,确定更新后的第一码本。
S509,地面设备向卫星发送更新后的扫描颗粒度和更新后的第一码本。
S510,卫星根据卫星运动方向、更新后的扫描颗粒度和更新后的第一码本,确定更新后的多个循环码本。
其中,上述S501-S510的具体实施方式可以参考示例一和示例二中对应的描述,例如,地面设备所执行的S501、S507、S508,与卫星执行上述步骤的方式是类似的,此处不再赘述。
为了实现本申请提供的方法中的各功能,本申请提供的装置或设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图15为本申请提供的一种装置的示意图。该装置可以包括执行如图5至图14对应的方法实施例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。例如,该装置可以称为波束覆盖装置,也可以称为通信装置。
该装置1500包括处理单元1501和通信单元1502,用于实现前述实施例中终端设备或者卫星设备所执行的方法。
一种可能的实施方式中,处理单元1501用于根据第一覆盖区域,确定第一码本。处理单元1501还用于根据卫星运动方向和第一码本,确定第二码本。通信单元1502用于根据第二码本传输数据。
可选的,处理单元1501用于根据卫星运动方向和第一码本,确定第二码本,包括:
根据第一码本对应的第一波束集合或第一波位集合,以及卫星运动方向,获取沿卫星运动方向与第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;
根据码本存储需求和信噪比波动需求,确定扫描颗粒度;
根据扫描颗粒度、第二波束集合或第二波位集合对应的码本、和第一码本,确定第二码本。
可选的,处理单元1501用于根据第一覆盖区域,确定第一码本,包括:
根据第一覆盖区域和卫星天线面板的朝向,确定第一码本;或者,
根据第一覆盖区域、地球自转速度、和地面波位,确定第一码本。
可选的,处理单元1501用于根据第一码本对应的第一波束集合,以及卫星运动方向,获取沿卫星运动方向与第一波束集合第一次相邻的第二波束集合,包括:
根据卫星天线面板的朝向,确定第一波束集合中的各个波束的角度参数;
根据第一波束集合中的各个波束的角度参数,获取沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束,
第二波束集合包括沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束。
可选的,处理单元1501用于根据所述第一码本对应的第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波位集合第一次相邻的第二波位集合,包括:
根据卫星运动方向和地球自转速度,确定第一波位集合中的各个波位的角度参数;
根据第一波位集合中的各个波位的角度参数,获取沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位,
第二波位集合包括沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位。
可选的,扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:
当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本存储需求大于第二码本存储需求。
可选的,通信单元1502还用于接收信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。处理单元1501还用于根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度;根据更新后的扫描颗粒度,确定更新后的第二码本。
该实施方式中处理单元1501和通信单元1502的具体执行流程还可以参考前文方法实施例中的描述,此处不再赘述。该装置所实现的波束覆盖方法可以先确定第一码本,然后基于该第一码本沿卫星运动方向设计少量的码本,该少量的码本包括第二码本(即当前时刻用于传输数据的码本)。那么在卫星运动过程中,基于少量码本就可以实现无缝覆盖,有利于降低卫星的计算开销和存储开销。
一种可能的实施方式中,处理单元1501用于获取第二码本,通信单元1502用于根据第二码本传输数据。
可选的,处理单元1501用于获取第二码本,包括:
获取第一码本和扫描颗粒度;
根据第一码本和扫描颗粒度,确定第二码本。
可选的,通信单元1502还用于向卫星发送信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
该实施方式中处理单元1501和通信单元1502的具体执行流程还可以参考前文方法实施例中的描述,此处不再赘述。该装置所实现的波束覆盖方法使得终端设备可以直接获取用于传输数据的第二码本,从而实现终端设备和卫星之间的数据传输。
下面对包括图15所示的多个功能单元的设备进行描述。本申请所述的设备包括图15所示的多个功能单元。图16为本申请提供的一种设备的示意图,用于实现上述方法实施例中的波束覆盖方法。该设备1600也可以是芯片系统。可以理解的是,该设备1600例如可以是终端设备,也可以是卫星设备。
其中,设备1600包括通信接口1601和处理器1602。通信接口1601例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口1601用于通过传输介质和其它设备进行通信,从而用于设备1600可以和其它设备进行通信。可选的,通信接口1601可以实现前述通信单元1502的功能。处理器1602用于执行处理相关的操作。
一种可能的实施方式中,处理器1602用于根据第一覆盖区域,确定第一码本;根据卫星运动方向和第一码本,确定第二码本。通信接口1601用于根据第二码本传输数据。
可选的,处理器1602用于根据卫星运动方向和第一码本,确定第二码本,包括:
根据第一码本对应的第一波束集合或第一波位集合,以及卫星运动方向,获取沿卫星运动方向与第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;
根据码本存储需求和信噪比波动需求,确定扫描颗粒度;
根据扫描颗粒度、第二波束集合或第二波位集合对应的码本、和第一码本,确定第二码本。
可选的,处理器1602用于根据第一覆盖区域,确定第一码本,包括:
根据第一覆盖区域和卫星天线面板的朝向,确定第一码本;或者,
根据第一覆盖区域、地球自转速度、和地面波位,确定第一码本。
可选的,处理器1602用于根据第一码本对应的第一波束集合,以及卫星运动方向,获取沿卫星运动方向与第一波束集合第一次相邻的第二波束集合,包括:
根据卫星天线面板的朝向,确定第一波束集合中的各个波束的角度参数;
根据第一波束集合中的各个波束的角度参数,获取沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束,
第二波束集合包括沿卫星运动方向与第一波束集合中的各个波束分别第一次相邻的各个波束。
可选的,处理器1602用于根据所述第一码本对应的第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波位集合第一次相邻的第二波位集合,包括:
根据卫星运动方向和地球自转速度,确定第一波位集合中的各个波位的角度参数;
根据第一波位集合中的各个波位的角度参数,获取沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位,
第二波位集合包括沿卫星运动方向与第一波位集合中的各个波位分别第一次相邻的各个波位。
可选的,扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:
当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本存储需求大于第二码本存储需求。
可选的,通信接口1601还用于接收信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。处理器1602还用于根据扫描颗粒度的绝对值或扫描颗粒度的更新值,更新扫描颗粒度;根据更新后的扫描颗粒度,确定更新后的第二码本。
该实施方式中处理器1602和通信接口1601的具体执行流程还可以参考前文方法实施例中的描述,此处不再赘述。该装置所实现的波束覆盖方法可以先确定第一码本,然后基于该第一码本沿卫星运动方向设计少量的码本,该少量的码本包括第二码本(即当前时刻用于传输数据的码本)。那么在卫星运动过程中,基于少量码本就可以实现无缝覆盖,有利于降低卫星的计算开销和存储开销。
一种可能的实施方式中,处理器1602用于获取第二码本,通信接口1601用于根据第二码本传输数据。
可选的,处理器1602用于获取第二码本,包括:
获取第一码本和扫描颗粒度;
根据第一码本和扫描颗粒度,确定第二码本。
可选的,通信接口1601还用于向卫星发送信噪比波动需求更新请求消息,该信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
该实施方式中通信接口1601和处理器1602的具体执行流程还可以参考前文方法实施例中的描述,此处不再赘述。该装置所实现的波束覆盖方法使得终端设备可以直接获取用于传输数据的第二码本,从而实现终端设备和卫星之间的数据传输。
可选的,该设备1600还可以包括至少一个存储器1603,用于存储程序指令和/或数据。一种实施方式中,存储器和处理器耦合。本申请中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器可能和存储器协同操作。处理器可能执行存储器中存储的程序指令。可选的,所述至少一个存储器和处理器集成在一起。
本申请中不限定上述通信接口、处理器以及存储器之间的具体连接介质。例如,存储器、处理器以及通信接口之间通过总线连接,总线1604在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请提供一种通信系统,该通信系统包括如图5至图14对应的实施例中的终端设备、卫星设备、地面设备中的一种或多种设备。
本申请提供一种计算机可读存储介质。该计算机可读存储介质存储有程序或指令。当所述程序或指令在计算机上运行时,使得计算机执行如图5至图14对应的实施例中的波束覆盖方法。
本申请中提供一种计算机程序产品。该计算机程序产品包括指令。当所述指令在计算机上运行时,使得计算机执行如图5至图14对应的实施例中的波束覆盖方法。
本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图5至图14对应的实施例中的波束覆盖方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种波束覆盖方法,其特征在于,包括:
    根据第一覆盖区域,确定第一码本;
    根据卫星运动方向和所述第一码本,确定第二码本;
    根据所述第二码本传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据卫星运动方向和所述第一码本,确定第二码本,包括:
    根据所述第一码本对应的第一波束集合或第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;
    根据码本存储需求和信噪比波动需求,确定扫描颗粒度;
    根据所述扫描颗粒度、第二波束集合或第二波位集合对应的码本、和所述第一码本,确定所述第二码本。
  3. 根据权利要求2所述的方法,其特征在于,所述根据第一覆盖区域,确定第一码本,包括:
    根据所述第一覆盖区域和卫星天线面板的朝向,确定所述第一码本;或者,
    根据所述第一覆盖区域、地球自转速度、和地面波位,确定所述第一码本。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述第一码本对应的第一波束集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波束集合第一次相邻的第二波束集合,包括:
    根据卫星天线面板的朝向,确定所述第一波束集合中的各个波束的角度参数;
    根据所述第一波束集合中的各个波束的角度参数,获取沿所述卫星运动方向与所述第一波束集合中的各个波束分别第一次相邻的各个波束,
    所述第二波束集合包括所述沿所述卫星运动方向与所述第一波束集合中的各个波束分别第一次相邻的各个波束。
  5. 根据权利要求2或3所述的方法,其特征在于,所述根据所述第一码本对应的第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波位集合第一次相邻的第二波位集合,包括:
    根据所述卫星运动方向和地球自转速度,确定所述第一波位集合中的各个波位的角度参数;
    根据所述第一波位集合中的各个波位的角度参数,获取沿所述卫星运动方向与所述第一波位集合中的各个波位分别第一次相邻的各个波位,
    所述第二波位集合包括所述沿所述卫星运动方向与所述第一波位集合中的各个波位分别第一次相邻的各个波位。
  6. 根据权利要求2所述的方法,其特征在于,所述扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:
    当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本存储需求大于第二码本存储需求。
  7. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收信噪比波动需求更新请求消息,所述信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值;
    根据所述扫描颗粒度的绝对值或所述扫描颗粒度的更新值,更新扫描颗粒度;
    根据所述更新后的扫描颗粒度,确定更新后的第二码本。
  8. 一种波束覆盖方法,其特征在于,包括:
    获取第二码本;
    根据所述第二码本传输数据。
  9. 根据权利要求8所述的方法,其特征在于,所述获取第二码本,包括:
    获取第一码本和扫描颗粒度;
    根据所述第一码本和所述扫描颗粒度,确定所述第二码本。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向卫星发送信噪比波动需求更新请求消息,所述信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
  11. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一覆盖区域,确定第一码本;
    所述处理单元还用于根据卫星运动方向和所述第一码本,确定第二码本;
    通信单元,用于根据所述第二码本传输数据。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元用于根据卫星运动方向和所述第一码本,确定第二码本,包括:
    根据所述第一码本对应的第一波束集合或第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波束集合或第一波位集合第一次相邻的第二波束集合或第二波位集合;
    根据码本存储需求和信噪比波动需求,确定扫描颗粒度;
    根据所述扫描颗粒度、第二波束集合或第二波位集合对应的码本、和所述第一码本,确定所述第二码本。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元用于根据第一覆盖区域,确定第一码本,包括:
    根据所述第一覆盖区域和卫星天线面板的朝向,确定所述第一码本;或者,
    根据所述第一覆盖区域、地球自转速度、和地面波位,确定所述第一码本。
  14. 根据权利要求12或13所述的装置,其特征在于,所述处理单元用于根据所述第一码本对应的第一波束集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波束集合第一次相邻的第二波束集合,包括:
    根据卫星天线面板的朝向,确定所述第一波束集合中的各个波束的角度参数;
    根据所述第一波束集合中的各个波束的角度参数,获取沿所述卫星运动方向与所述第一波束集合中的各个波束分别第一次相邻的各个波束,
    所述第二波束集合包括所述沿所述卫星运动方向与所述第一波束集合中的各个波束分别第一次相邻的各个波束。
  15. 根据权利要求12或13所述的装置,其特征在于,所述处理单元用于所述第一码本对应的第一波位集合,以及所述卫星运动方向,获取沿卫星运动方向与所述第一波位集合第一次相邻的第二波位集合,包括:
    根据所述卫星运动方向和地球自转速度,确定所述第一波位集合中的各个波位的角度参数;
    根据所述第一波位集合中的各个波位的角度参数,获取沿所述卫星运动方向与所述第一波位集合中的各个波位分别第一次相邻的各个波位,
    所述第二波位集合包括所述沿所述卫星运动方向与所述第一波位集合中的各个波位分别第一次相邻的各个波位。
  16. 根据权利要求12所述的装置,其特征在于,所述扫描颗粒度、信噪比波动需求和码本存储需求之间的关系满足:
    当第一扫描颗粒度小于第二扫描颗粒度时,第一信噪比波动需求小于第二信噪比波动需求,第一码本 存储需求大于第二码本存储需求。
  17. 根据权利要求11或12所述的装置,其特征在于,所述通信单元还用于接收信噪比波动需求更新请求消息,所述信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值;
    所述处理单元还用于:
    根据所述扫描颗粒度的绝对值或所述扫描颗粒度的更新值,更新扫描颗粒度;
    根据所述更新后的扫描颗粒度,确定更新后的第二码本。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第二码本;
    通信单元,用于根据所述第二码本传输数据。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元用于获取第二码本,包括:
    获取第一码本和扫描颗粒度;
    根据所述第一码本和所述扫描颗粒度,确定所述第二码本。
  20. 根据权利要求18或19所述的装置,其特征在于,所述通信单元还用于:
    向卫星发送信噪比波动需求更新请求消息,所述信噪比波动需求更新请求消息包括扫描颗粒度的绝对值或扫描颗粒度的更新值。
  21. 一种通信装置,其特征在于,包括:存储器、处理器和通信接口;其中,所述通信接口用于接收信号或者发送信号,所述存储器用于存储指令或计算机程序,所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如权利要求1至7中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括:存储器、处理器和通信接口;其中,所述通信接口用于接收信号或者发送信号,所述存储器用于存储指令或计算机程序,所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如权利要求8至10中任一项所述的方法。
  23. 一种通信系统,其特征在于,包括卫星设备和终端设备;
    所述卫星设备,用于执行如权利要求1至7任一项所述的方法;
    所述终端设备,用于执行如权利要求8至10任一项所述的方法。
  24. 一种芯片系统,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至10中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至10任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至10任一项所述的方法。
PCT/CN2023/122118 2022-10-24 2023-09-27 一种波束覆盖方法、装置及设备 WO2024088009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211303533.8A CN117938225A (zh) 2022-10-24 2022-10-24 一种波束覆盖方法、装置及设备
CN202211303533.8 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024088009A1 true WO2024088009A1 (zh) 2024-05-02

Family

ID=90761674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122118 WO2024088009A1 (zh) 2022-10-24 2023-09-27 一种波束覆盖方法、装置及设备

Country Status (2)

Country Link
CN (1) CN117938225A (zh)
WO (1) WO2024088009A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025404A (zh) * 2009-09-15 2011-04-20 中兴通讯股份有限公司 一种码本生成方法及装置
WO2017193991A1 (zh) * 2016-05-12 2017-11-16 株式会社Ntt都科摩 码本配置的选择方法及执行该方法的电子设备
CN107682054A (zh) * 2016-08-02 2018-02-09 电信科学技术研究院 一种信道状态信息反馈方法及相关设备
CN112335189A (zh) * 2018-06-27 2021-02-05 高通股份有限公司 码本适配
CN113497646A (zh) * 2020-04-06 2021-10-12 三星电子株式会社 用于更新波束成形码本的系统和方法
CN113783601A (zh) * 2021-08-31 2021-12-10 西南电子技术研究所(中国电子科技集团公司第十研究所) 动态波束形成及空分复用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025404A (zh) * 2009-09-15 2011-04-20 中兴通讯股份有限公司 一种码本生成方法及装置
WO2017193991A1 (zh) * 2016-05-12 2017-11-16 株式会社Ntt都科摩 码本配置的选择方法及执行该方法的电子设备
CN107682054A (zh) * 2016-08-02 2018-02-09 电信科学技术研究院 一种信道状态信息反馈方法及相关设备
CN112335189A (zh) * 2018-06-27 2021-02-05 高通股份有限公司 码本适配
CN113497646A (zh) * 2020-04-06 2021-10-12 三星电子株式会社 用于更新波束成形码本的系统和方法
CN113783601A (zh) * 2021-08-31 2021-12-10 西南电子技术研究所(中国电子科技集团公司第十研究所) 动态波束形成及空分复用方法

Also Published As

Publication number Publication date
CN117938225A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
AU2020248195C1 (en) Positioning method and apparatus
WO2021097598A1 (zh) 侧行定位方法和装置
US20220247469A1 (en) Method and device for transmitting channel state information
CN105050161B (zh) 无线网络扫描策略
WO2022016990A1 (zh) 一种卫星系统配置信息的指示方法及设备
WO2019105302A1 (zh) 信号测量方法、相关装置及系统
CN112511198A (zh) 用于波束图案优化的高效数据生成
US10547359B2 (en) Calibration data
EP4167639A1 (en) Wireless communication method and device
WO2024088009A1 (zh) 一种波束覆盖方法、装置及设备
WO2019020080A1 (zh) 一种通信方法及其装置
US20230180093A1 (en) Communication method, apparatus, and system
WO2023051130A1 (zh) 卫星核心网的部署方法及装置、系统、介质、程序产品
WO2021063175A1 (zh) 一种波束切换的方法、装置及通信设备
WO2020238922A1 (zh) 通信方法及装置
JP2022040793A (ja) 分散局、集約局、端末、および通信方法
WO2023226738A1 (zh) 波束权值调整方法、装置、接入网设备和存储介质
US20240087238A1 (en) System and method for extended reality processing in a local wireless environment with reduced latency
WO2023006043A1 (zh) 一种接入方法和装置
WO2024093840A1 (zh) 通信方法和通信装置
WO2024050667A1 (zh) 通信方法及相关装置
WO2023143139A1 (zh) 小区移动性管理的方法和装置
WO2022105334A1 (zh) 一种波束对准的方法,信息传输的方法以及相关设备
US20240031924A1 (en) System and method for provisioning multiple network slices for concurrent use by an application
WO2023202206A1 (zh) 通信方法及装置