WO2024050667A1 - 通信方法及相关装置 - Google Patents

通信方法及相关装置 Download PDF

Info

Publication number
WO2024050667A1
WO2024050667A1 PCT/CN2022/117086 CN2022117086W WO2024050667A1 WO 2024050667 A1 WO2024050667 A1 WO 2024050667A1 CN 2022117086 W CN2022117086 W CN 2022117086W WO 2024050667 A1 WO2024050667 A1 WO 2024050667A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
time unit
antennas
subset
subsets
Prior art date
Application number
PCT/CN2022/117086
Other languages
English (en)
French (fr)
Inventor
倪锐
祝倩
杨刚华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/117086 priority Critical patent/WO2024050667A1/zh
Publication of WO2024050667A1 publication Critical patent/WO2024050667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and related devices.
  • the fifth generation (5th generxation, 5G) wireless communication system adopts a massive multiple-input multiple-output (M-MIMO) solution, that is, deploying large-scale antennas composed of 32, 64 or even more antennas at the base station.
  • Antenna arrays significantly improve system throughput and spectral efficiency compared to fourth generation (4th generxation, 4G) systems.
  • the radio frequency (RF) channel of wireless transceivers is limited by hardware cost, power consumption, and deployment space constraints, and it is impossible to increase the number in proportion to the increase in the number of antennas.
  • This application provides a communication method and related devices, which can select antennas with the same number as the radio frequency channels from the antenna array of the device and connect them to the radio frequency channels to achieve optimal or near-optimal reception effects.
  • this application provides a communication method, which is applied to a first device.
  • the method includes:
  • the T is a positive integer
  • the first channel detection sequence is used to determine the first channel matrix H(t )
  • the first channel matrix H(t) is a matrix with N rx rows and N tx columns
  • the N rx is the number of antennas included in the second device
  • the N tx is the number of antennas included in the first device quantity
  • the first channel matrix H(t) is used to obtain the N rx
  • the first antenna subset corresponding to the t-th time unit is determined among the antennas, and each first antenna subset among the T first antenna subsets corresponding to the T time units and each first antenna subset are determined.
  • the weight coefficient of the antenna subset is used to determine the first antenna subset corresponding to the second device in the T+1 time unit.
  • Each of the first antenna subsets includes L rx antennas, and the L rx antennas are The antennas are L rx among the N rx antennas, the L rx is a positive integer, and N rx > L rx .
  • the first device transmits a first channel detection sequence in each of the T time units for the second device to receive the first channel in each of the T time units.
  • the detection sequence determines the first antenna subset corresponding to each of the T time units as historical prior data, and then uses the historical prior information to predict/derive the second device corresponding to the T+1 time unit. Antenna configuration to achieve optimal or near-optimal reception with strong operability.
  • the method further includes:
  • Communication is performed with the second device from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0.
  • the second device when the second device determines the first antenna subset corresponding to the T+1th time unit, it can subsequently use the determined first antenna subset corresponding to the T+1th time unit. Communicating with the first device improves the applicability of the solution.
  • the method further includes:
  • the first device can determine the sending period of the first channel detection sequence according to the first message, which is beneficial to improving the applicability of the solution.
  • the method further includes:
  • a second message is received from the second device, where the second message includes a degradation failure coefficient ⁇ .
  • the second device can also send ⁇ to the first device through the second message, which can facilitate the subsequent use of ⁇ by the first device to determine the second antenna subset corresponding to the first device.
  • N tx is an integer greater than 1;
  • the method also includes:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first antenna
  • the device communicates with the second device.
  • the second device when the first device is configured with multiple antennas, not only selects the local antenna topology solution, but also recommends the antenna configuration solution of the first device (that is, instructs the first device to use the first antenna). , which can better match the propagation environment and help improve system throughput.
  • the first device further includes L tx radio frequency channels, N tx > L tx is a positive integer, and N tx > L tx ; the x is equal to T; the T+1 Communicating with the second device from time units to T+x time units includes:
  • a second channel detection sequence from the second device is received; the second channel detection sequence is used to determine T second antenna subsets, so Each second antenna subset among the T second antenna subsets and the weight coefficient of each second antenna subset are used to determine the second antenna corresponding to the first device at the 2T+1th time unit
  • the T second antenna subsets are the second antenna subsets corresponding to the T+1 time unit to the 2T time unit.
  • the second device can also send a second channel detection to the first device through the second device.
  • the sequence is used by the first device to determine the best second antenna subset corresponding to the first device in the 2T+1 time unit, which increases the universality of this solution.
  • the method further includes:
  • the second instruction information is used to instruct the first device to use the second antenna subset corresponding to the ((N-1)*T+1)th time unit Perform data communication with the second device, and N is an integer greater than 2.
  • the antenna topology on both sides reaches the same level at the same time.
  • it is the best antenna topology that best adapts to the propagation environment, which is beneficial to improving system throughput.
  • the method further includes:
  • Receive third indication information from the second device is used to instruct the first device to send the first channel detection sequence
  • the first channel detection sequence is used to update the second A first subset of antennas used by the device to communicate data with the first device.
  • the second device detects the communication quality with the first device and intermittently sends a channel detection sequence according to the communication quality, which increases the adaptability of the solution to time-varying channels and increases system throughput. Quantitative robustness.
  • this application provides a communication method, which is applied to a second device including N rx antennas and L rx radio frequency channels, where the N rx and the L rx are positive integers, and N rx > L rx , the method includes:
  • the T first antenna subsets are used to communicate with the first device in the T time units;
  • the set determines the first antenna subset corresponding to the T+1 time unit), which can select antennas with the same number of radio frequency channels from the antenna array of the second device to achieve optimal or near-optimal reception effects.
  • this method of determining the first antenna subset corresponding to the T+1th time unit through derivation of historical prior information can reduce channel detection and signaling overhead, as well as reduce the cost of determining the T+1th time unit corresponding to Computational complexity of the calculation process for the first antenna subset.
  • communicating with the first device through the first subset of antennas corresponding to the T+1th time unit includes:
  • Communication is performed with the first device through the first subset of antennas corresponding to the T+1 time unit from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0. .
  • the determined first antenna subset corresponding to the T+1 time unit and the first antenna subset can be used in the subsequent Device communication improves the applicability of the solution.
  • obtaining T first antenna subsets corresponding to T time units includes:
  • the first antenna subset corresponding to the t-th time unit is determined from the N rx antennas according to the first channel matrix H(t).
  • the second device receives the first channel detection sequence from the first device in each of the T time units to determine the first channel detection sequence corresponding to each of the T time units.
  • the antenna subset is used as historical prior data and is highly operable.
  • the method further includes:
  • the second device can cause the first device to determine the sending period of the first channel detection sequence based on the first message, which is beneficial to improving the applicability of the solution.
  • the T time units correspond to T signal-to-interference ratios; the method further includes:
  • the value of T is reduced; the first preset threshold is smaller than the second preset threshold. threshold.
  • the value of T is adjusted to better adapt to different communication scenarios and environmental channels, increasing the universality of this solution.
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th element w(i) in the first sequence and the t-th time unit.
  • the weight coefficient of the first antenna subset corresponding to the t-th time unit is generated based on the elements in the first sequence and the signal-to-interference ratio corresponding to the t-th time unit, so that the adjustment process of the weight coefficient has a clear
  • the physical meaning simplifies the parameter adjustment and optimization process and improves system performance.
  • the method further includes:
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th in the first sequence
  • the weight coefficient a(T+1) of the first antenna subset corresponding to the T+1th time unit is determined based on the signal-to-interference ratio when the communication is performed between the T-th element of the updated first queue and the T+1-th time unit.
  • the w(i) satisfies:
  • each element included in the first sequence can be a constant, which is highly operable.
  • the first sequence is determined by the degradation failure coefficients ⁇ and T; where the ⁇ ⁇ [0, 1].
  • the first sequence can also be determined by the degradation failure coefficient ⁇ and T, where the degradation failure coefficient ⁇ represents the speed of degradation failure of the a priori information in the past time. The closer the value of ⁇ is to 0, the faster the degradation and failure will occur, and the closer to 1, the slower the degradation and failure will be.
  • the w(i) satisfies:
  • the i ⁇ 1, 2,...,T ⁇ , the c is a positive constant, and the e is a constant.
  • the T time units correspond to T signal-to-interference ratios; the method further includes:
  • the value of ⁇ is reduced; the third preset threshold is less than the fourth preset threshold.
  • the value of ⁇ is adjusted to better adapt to different communication scenarios and environmental channels, which increases the universality of this solution.
  • the method further includes:
  • the second device can also send ⁇ to the first device through the second message, which can help the first device subsequently use ⁇ to determine the second antenna subset corresponding to the first device.
  • the first subset of antennas corresponding to the T+1th time unit includes the L rx antennas with the largest weight coefficients in the target antenna set, and the target antenna set is the T first The union of antenna subsets, the weight coefficient of antenna z in the target antenna set is the sum of the weight coefficients of the first antenna subset where the antenna z is located, and the antenna z is any one in the target antenna set antenna.
  • the first antenna subset in the historical prior information is weighted by the corresponding weight coefficient and then the union is obtained, and then the first L rx elements with the largest cumulative sum of weights are selected from the union set as the first L rx element.
  • the first subset of antennas corresponding to the T+1 time unit can be used to select the first subset of antennas corresponding to the T+1 time unit that achieves optimal or near-optimal reception effects, and is highly operable.
  • the first device includes N tx antennas, where N tx is an integer greater than 1;
  • the method also includes:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first device Communicate with the second device.
  • the second device when the first device is configured with multiple antennas, not only selects the local antenna topology solution, but also recommends the antenna configuration solution of the first device (that is, instructs the first device to use the first antenna) , which can better match the propagation environment and help improve system throughput.
  • the method further includes:
  • the first antenna is determined from N tx antennas according to the first antenna subset corresponding to the T+1 time unit and the first channel matrix H(t) corresponding to the t time unit, so Let t be an integer and t ⁇ [1, T].
  • the first device includes N tx antennas and L tx radio frequency channels, the N tx and L tx are positive integers, and N tx > L tx ;
  • the communication with the first device through the first subset of antennas corresponding to the T+1th time unit includes:
  • the second channel detection sequence is sent to the first device through the first antenna subset corresponding to the T+1th time unit.
  • the two-channel detection sequence is used to determine T second antenna subsets, and each second antenna subset and the weight coefficient of each second antenna subset in the T second antenna subsets are used to determine the first
  • the second antenna subset corresponding to the device in the 2T+1th time unit, and the T second antenna subsets are the second antenna subsets corresponding to the T+1th time unit to the 2Tth time unit.
  • the second channel can also be sent to the first device through the second device.
  • the detection sequence is used by the first device to determine the best second antenna subset corresponding to the first device in the 2T+1 time unit, which increases the universality of this solution.
  • the method further includes:
  • second instruction information is sent to the first device, and the second instruction information is used to instruct the first device to use the ((N-1)*T+th 1)
  • the second antenna subset corresponding to time units performs data communication with the second device;
  • the antenna topology on both sides reaches the same level at the same time.
  • it is the best antenna topology that best adapts to the propagation environment, which is beneficial to improving system throughput.
  • the method further includes:
  • third indication information is sent to the first device, and the third indication information is used to instruct the second device to send the first channel detection sequence.
  • the first channel detection sequence is used to update the first antenna subset for data communication between the second device and the first device.
  • the second device detects the communication quality with the first device and intermittently sends a channel detection sequence according to the communication quality, which increases the adaptability of the solution to time-varying channels and increases system throughput. Quantitative robustness.
  • this application provides a communication device, which is a first device, and the device includes:
  • a processing unit used to determine the first channel detection sequence
  • a transceiver unit configured to send the first channel detection sequence to the second device in the t-th time unit among the T time units; the T is a positive integer, and the first channel detection sequence is used to determine the first Channel matrix H(t), the first channel matrix H(t) is a matrix with N rx rows and N tx columns, where N rx is the number of antennas included in the second device, and N tx is the number of antennas included in the second device.
  • the first antenna subset corresponding to the t-th time unit is determined from the N rx antennas, and each first antenna subset in the T first antenna subsets corresponding to the T time units and the The weight coefficient of each first antenna subset is used to determine the first antenna subset corresponding to the second device at the T+1th time unit, and each first antenna subset includes L rx antennas,
  • the L rx antennas are L rx among the N rx antennas, the L rx is a positive integer, and N rx > L rx .
  • the transceiver unit is also used to:
  • Communication is performed with the second device from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0.
  • the transceiver unit is also used to:
  • the transceiver unit is also used to:
  • a second message is received from the second device, where the second message includes a degradation failure coefficient ⁇ .
  • N tx is an integer greater than 1;
  • the transceiver unit is also used for:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first antenna
  • the device communicates with the second device.
  • the first device further includes L tx radio frequency channels, N tx > L tx is a positive integer, and N tx > L tx ; the x is equal to T; in the T+th When communicating with the second device from 1 time unit to the T+xth time unit, the transceiver unit is also used to:
  • a second channel detection sequence from the second device is received; the second channel detection sequence is used to determine T second antenna subsets, so Each second antenna subset among the T second antenna subsets and the weight coefficient of each second antenna subset are used to determine the second antenna corresponding to the first device at the 2T+1th time unit
  • the T second antenna subsets are the second antenna subsets corresponding to the T+1 time unit to the 2T time unit.
  • the transceiver unit is also used to:
  • the second instruction information is used to instruct the first device to use the second antenna subset corresponding to the ((N-1)*T+1)th time unit Perform data communication with the second device, and N is an integer greater than 2.
  • the transceiver unit is also used to:
  • Receive third indication information from the second device is used to instruct the first device to send the first channel detection sequence
  • the first channel detection sequence is used to update the second A first subset of antennas used by the device to communicate data with the first device.
  • the application provides a communication device, which is a second device including N rx antennas and L rx radio frequency channels, the N rx and the L rx are positive integers, and N rx >L rx , the device includes:
  • a transceiver unit configured to obtain the T first antenna subsets corresponding to the T time units before the T+1 time unit and the T weight coefficients of the T first antenna subsets; the T time units The corresponding T first antenna subsets are determined based on the first channel detection sequence; the T is a positive integer, each of the first antenna subsets includes L rx antennas, and the L rx antennas are the N rx L rx antennas; the T first subset of antennas are used to communicate with the first device in the T time units;
  • a processing unit configured to determine the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and the T weight coefficients;
  • the transceiver unit is configured to communicate with the first device through the first subset of antennas corresponding to the T+1th time unit.
  • the transceiver unit when communicating with the first device through the first subset of antennas corresponding to the T+1th time unit, the transceiver unit is used to:
  • Communication is performed with the first device through the first subset of antennas corresponding to the T+1 time unit from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0. .
  • the transceiver unit when acquiring T first antenna subsets corresponding to T time units, the transceiver unit is used to:
  • the first antenna subset corresponding to the t-th time unit is determined from the N rx antennas according to the first channel matrix H(t).
  • the transceiver unit is also used to:
  • the T time units correspond to T signal-to-interference ratios; the processing unit is also used to:
  • the value of T is reduced; the first preset threshold is smaller than the second preset threshold. threshold.
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th element w(i) in the first sequence and the t-th time unit.
  • processing unit is also used to:
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th in the first sequence
  • the weight coefficient a(T+1) of the first antenna subset corresponding to the T+1th time unit is determined based on the signal-to-interference ratio when the communication is performed between the T-th element of the updated first queue and the T+1-th time unit.
  • the w(i) satisfies:
  • the first sequence is determined by the degradation failure coefficients ⁇ and T; where the ⁇ ⁇ [0, 1].
  • the w(i) satisfies:
  • the i ⁇ 1, 2,...,T ⁇ , the c is a positive constant, and the e is a constant.
  • the T time units correspond to T signal-to-interference ratios; the processing unit is also used to:
  • the value of ⁇ is reduced; the third preset threshold is less than the fourth preset threshold.
  • the transceiver unit is also used to:
  • the first subset of antennas corresponding to the T+1th time unit includes the L rx antennas with the largest weight coefficients in the target antenna set, and the target antenna set is the T first The union of antenna subsets, the weight coefficient of antenna z in the target antenna set is the sum of the weight coefficients of the first antenna subset where the antenna z is located, and the antenna z is any one in the target antenna set antenna.
  • the first device includes N tx antennas, where N tx is an integer greater than 1;
  • the transceiver unit is also used for:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first device Communicate with the second device.
  • the transceiver unit is also used to:
  • the first antenna is determined from N tx antennas according to the first antenna subset corresponding to the T+1 time unit and the first channel matrix H(t) corresponding to the t time unit, so Let t be an integer and t ⁇ [1, T].
  • the first device includes N tx antennas and L tx radio frequency channels, the N tx and L tx are positive integers, and N tx > L tx ;
  • the transceiver unit When communicating with the first device through the first subset of antennas corresponding to the T+1th time unit, the transceiver unit is used to:
  • the second channel detection sequence is sent to the first device through the first antenna subset corresponding to the T+1th time unit.
  • the two-channel detection sequence is used to determine T second antenna subsets, and each second antenna subset and the weight coefficient of each second antenna subset in the T second antenna subsets are used to determine the first
  • the second antenna subset corresponding to the device in the 2T+1th time unit, and the T second antenna subsets are the second antenna subsets corresponding to the T+1th time unit to the 2Tth time unit.
  • the processing unit is also used to determine the first antenna subset corresponding to the (N*T+1)th time unit and the ((N-2)*T+1)th time unit.
  • the change amount of the first antenna subset corresponding to the unit; the N is an integer greater than 2;
  • the transceiver unit is also configured to send second instruction information to the first device when the change amount is less than a first preset threshold, and the second instruction information is used to instruct the first device to use the (th)
  • the second antenna subset corresponding to (N-1)*T+1) time units performs data communication with the second device;
  • the transceiver unit is also configured to use the first antenna subset corresponding to the (N*T+1)th time unit to perform data communication with the first device.
  • the processing unit is also used to:
  • third indication information is sent to the first device through the transceiver unit, and the third indication information is used to instruct the second device to send the A first channel detection sequence, the first channel detection sequence is used to update a first subset of antennas used for data communication between the second device and the first device.
  • the present application provides a communication device.
  • the device may be a first device (for example, the first device may be a terminal device), may be a device in the first device, or may be used in conjunction with the first device. installation.
  • the communication device may also be a chip system.
  • the communication device can perform the method described in the first aspect.
  • the functions of the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the present application provides a communication device.
  • the device may be a second device (for example, the second device may be an access network device), may be a device in the second device, or may be capable of communicating with the second device. Match the device used.
  • the communication device can also be a chip system.
  • the communication device can perform the method described in the second aspect.
  • the functions of the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the present application provides a communication device, which may be a first device.
  • the communication device includes a processor and a transceiver.
  • the processor and the transceiver are configured to execute at least one computer stored in a memory. Programs or instructions, so that the device implements the method in any one of the first aspects.
  • the present application provides a communication device, which may be a first device.
  • the communication device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory are coupled; the processor and the transceiver are used to implement the method in any one of the first aspect and/or the second aspect.
  • the memory and processor can be integrated together.
  • the present application provides a communication device, which may be a second device.
  • the communication device includes a processor and a transceiver.
  • the processor and the transceiver are configured to execute at least one computer stored in a memory. Programs or instructions, so that the device implements the method in any one of the second aspects.
  • the present application provides a communication device, which may be a second device.
  • the communication device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory are coupled; the processor and the transceiver are used to implement the method of the second aspect and/or any one of the second aspects.
  • the memory and processor can be integrated together.
  • the present application provides a computer-readable storage medium.
  • Computer programs or instructions are stored in the storage medium.
  • the computer program or instructions are executed by a computer, any one of the first aspect or the second aspect is implemented. Methods.
  • the present application provides a computer program product including instructions.
  • the computer program product includes computer program code.
  • When the computer program code is run on a computer, to implement either the first aspect or the second aspect. item method.
  • a thirteenth aspect provides a communication system, which includes the first device described in the third or fifth aspect or the seventh or eighth aspect, and the fourth or sixth aspect or the ninth aspect.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the basic functional modules of the sending end and the receiving end provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the arrangement of an antenna array provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the first queue provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the updated first queue provided by the embodiment of the present application.
  • FIG. 7 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • Figure 8 is another schematic flow chart of the communication method provided by the embodiment of the present application.
  • FIG. 9 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (time division duplex) , TDD), new radio (NR) and other fifth generation (5th generation, 5G) systems, sixth generation (6th generation, 6G) systems and other systems evolved after 5G, wireless local area network (WALN) ), etc., are not restricted here.
  • the technical solution of the embodiment of the present application can also be applied to an optical communication system equipped with multiple laser sources and multiple laser detectors, as long as the number of laser detectors is much larger than the number of channels of the back-end analog-to-digital converter. .
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system consists of at least one access network device (only one access network device is shown in Figure 1) and multiple terminal devices (Terminal Device 1 to Terminal Device 3 shown in Figure 1).
  • terminal equipment 1 to terminal equipment 3 can send uplink information to the access network equipment, and the access network equipment can also send downlink information to terminal equipment 1 to terminal equipment 3.
  • the access network equipment consists of antenna towers and multi-layer antennas in multiple cell sectors.
  • the multi-layer antenna of each cell sector is composed of multi-layer antenna arrays in the form of geometric spatial superposition.
  • each access network device contains three sectors.
  • the antenna array of each sector is composed of three stacked layers.
  • the antennas of each layer have multiple antenna elements evenly distributed on a rectangular plane. It is easy to know that the solution of this application can include multiple sectors and multi-layer antenna stacks.
  • Each layer of antennas can adopt any shape and distribute any number of antenna elements evenly or non-uniformly. The shapes, layouts, and elements of antennas on different layers The quantities may be the same or different.
  • the application scenario of this application is preferably aimed at the wireless communication scenario of macrocells of access network equipment. It is scalable and can also be applied to indoor microcell scenarios, as well as direct interconnection between vehicles, direct interconnection between drones and other drones. Scenes. In order to better reflect the performance advantages of the solution of this application, ideally, the richer the propagation paths of the spatial channel, the better, the richer the directions leaving or arriving at the antenna, the better, and the more uniform the distribution of signal energy in different directions, the better. .
  • the basic functional modules of the sending end and receiving end of this application are shown in Figure 2.
  • the transmitter contains four basic functional modules: baseband, RF channel, antenna mapping, and antenna.
  • the receiving end also contains the corresponding four basic functional modules: baseband, RF channel, antenna mapping, and antenna.
  • the parameter configuration of the transmitter and the receiver can be the same or different, the number of radio frequency channels is L tx and L rx respectively, the number of antennas is N tx and N rx respectively, and the baseband encoding and decoding matrices are F BB and W respectively.
  • the antenna mapping is F RF and W RF respectively.
  • the antenna topology of the transmitter and the receiver can be the same or different, and there is no restriction here.
  • the terminal device in the embodiment of the present application may be a device with wireless transceiver function, which may specifically refer to user equipment (UE), access terminal, subscriber unit (subscriber unit), user station, or mobile station. (mobile station), customer-premises equipment (CPE), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit (subscriber unit)
  • subscriber unit subscriber unit
  • user station or mobile station.
  • CPE customer-premises equipment
  • remote station remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communications device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local) loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted equipment, communication equipment carried on high-altitude aircraft, wearable Equipment, drones, robots, smart point of sale (POS) machines, terminals in device-to-device communication (D2D), terminals in vehicle to everything (V2X) , virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self driving), remote medicine (remote) Wireless terminals in medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home Or terminal equipment in future communication networks, etc
  • the device used to implement the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the access network device in the embodiment of the present application may be a device with wireless transceiver functions for communicating with a terminal device, or may be a device that connects a terminal device to a wireless network.
  • the access network equipment can be a node in the wireless access network, and can also be called a base station, or a radio access network (radio access network, RAN) node (or device).
  • the access network equipment can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a next generation node B (next generation node B, gNB) in the 5G network or a future evolved public land mobile network (public land mobile network).
  • Base stations in mobile network PLMN
  • broadband network gateway BNG
  • aggregation switches or non-3rd generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • the access network equipment in the embodiment of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and communication systems evolved after 5G.
  • Equipment that implements base station functions, access point (AP), transmission point (transmitting and receiving point, TRP), transmitting point (TP), mobile switching center and device-to-device (Device- to-Device (D2D), vehicle-to-everything (V2X), machine-to-machine (M2M) communications, etc., which can also include devices that perform base station functions.
  • NTN non-terrestrial network
  • the equipment can be deployed on high-altitude platforms or satellites. The embodiments of the present application do not specifically limit this.
  • Access network equipment can communicate and interact with core network equipment to provide communication services to terminal equipment.
  • the core network equipment is, for example, equipment in the 5G network core network (core network, CN).
  • core network As a bearer network, the core network provides an interface to the data network, provides terminals with communication connections, authentication, management, policy control, and carries data services.
  • the device used to implement the function of the access network device may be the access network device; it may also be a device that can support the access network device to implement the function, such as a chip system.
  • the device can be installed in the access network equipment or used in conjunction with the access network equipment.
  • the first device involved in the embodiment of this application may be a terminal device (such as a UE), and the second device may be an access network device, or the first device may be an access network device, and the second device may be Terminal equipment, etc. are not limited here.
  • the following embodiments of the present application are mainly schematically described by taking the first device being a terminal device and the second device being an access network device as an example.
  • one or more antennas may be installed on both the first device and the second device, and the multiple antennas may form an antenna array.
  • the antenna array involved in the embodiment of the present application can be a separate multiple antenna, for example, a three-dimensional compact antenna, or it can also be a simulated continuous aperture antenna including a Luneberg lens, which is not limited here.
  • FIG. 3 is a schematic arrangement diagram of an antenna array provided by an embodiment of the present application.
  • the antenna array is a point source abstract diagram of a three-dimensional (three dimensions, 3D)- ⁇ /4 array of three-dimensional compact antennas, which includes a total of 8*8*8 antennas, among which, The distance between two adjacent antennas is ⁇ /4.
  • the 5G communication system adopts the M-MIMO solution and deploys large antenna arrays composed of 32, 64 or even more antennas at the base station. Compared with the 4G system, the throughput and spectrum efficiency of the entire system are significantly improved.
  • the radio frequency channels of wireless transceivers are limited by hardware cost, power consumption and deployment space constraints, and it is impossible to increase the number in proportion to the increase in the number of antennas. Since the number of radio frequency channels is less than the number of antennas, and one antenna corresponds to one radio frequency channel during the signal transmission and reception process, it is necessary to select an antenna with the same number of radio frequency channels from the antenna array to connect to the radio frequency channel.
  • any number of antennas can be randomly selected to form an antenna topology, or one antenna topology can be selected from a set of fixed antenna topologies designed in advance, but these methods cannot fully utilize the flexibility and flexibility provided by massive antennas. Degrees of freedom cannot approach or reach the theoretical capacity upper bound.
  • this application proposes a communication method that can select antennas with the same number as the radio frequency channels from the antenna array of the device and connect them to the radio frequency channels to achieve optimal or near-optimal reception effects.
  • the antenna array composed of the antennas included in the second device is a multi-layer compact antenna array, and the second device knows the topological structure information of the multi-layer compact antenna array.
  • the second device uses any point in the local coordinate system as the coordinate origin (0, 0, 0), and records each antenna of the multi-layer compact antenna array as a five-tuple (id, x, y, z, p).
  • id is the unique number of the antenna
  • x, y, and z are the coordinate values of the X-axis, Y-axis, and Z-axis of the antenna in the three-dimensional space respectively.
  • p is the polarization direction of the antenna. Specifically, the polarization direction p can be expressed by the horizontal angle ⁇ and the pitch angle ⁇ .
  • the multi-layer compact antenna of the second device contain N rx antennas.
  • the topological structure information of the antenna array in the local coordinate system can be seen in Table 1 below, or other equivalent information storage forms containing N rx quintuples.
  • the multi-layer compact antenna array may be a cubic regular lattice with 8 rows, 8 columns and 8 layers arranged at a quarter-wavelength spacing, as shown in Figure 3 .
  • the center frequency point of the antenna's operating frequency is f 0 Hz
  • the speed of light in vacuum is c 0 m/s
  • N rx 512
  • p +Z
  • the first row of topological structure information is (1,0,0,0,+Z)
  • the second row is (2, ⁇ /4,0, 0,+Z)
  • line 512 is (512,7 ⁇ /4,7 ⁇ /4,7 ⁇ /4,+Z).
  • the sending end is the first device and the receiving end is the second device.
  • the number of devices in the first section may be 1 or multiple
  • the number of antennas N tx included in the first device may be 1 or multiple
  • the number of radio frequency channels included in the first device L tx It can be 1 or multiple.
  • the first device may include the following four situations: 1
  • the transmitting end is a terminal device equipped with a multi-layer compact antenna of N tx antennas and L tx radio frequency channels, and N tx > L tx , for example, N tx
  • the number of second devices involved in the embodiment of the present application is 1, the number of antennas N rx included in the second device is multiple, the number of radio frequency channels L rx is multiple, and the number of antennas N rx > radio frequency
  • N tx and N rx both refer to the number of antennas that can be applied to various embodiments of this application.
  • the actual number of antennas at the transmitting end and receiving end may be equal to N tx or N rx , or may be greater than N tx or N rx , there is no restriction here.
  • Figure 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method includes the following steps S401 to S403.
  • the method execution subject shown in Figure 4 may be the first device or the second device.
  • the method execution body shown in FIG. 4 may be a chip in the first device or the second device.
  • the following embodiments of the present application will be schematically described using the first device and the second device as examples.
  • the first device may be specifically understood as a UE, and the second device may be specifically understood as an access network device.
  • the scenario is that there is one access network device with rx radio frequency channels, and the number of antennas of the second device N rx > the number of radio frequency channels L rx .
  • the first device since the first device has a single antenna (that is, it has only one antenna), the first device can only use the one antenna to interact with the second device. in:
  • the second device obtains T first antenna subsets and T weight coefficients of T first antenna subsets corresponding to T time units before the T+1th time unit.
  • the second device obtains T first antenna subsets and T weight coefficients of T first antenna subsets corresponding to T time units before the T+1th time unit.
  • T is a positive integer
  • each first antenna subset includes L rx antennas
  • the L rx antennas are L rx of the N rx antennas.
  • the T first antenna subsets are used to communicate with the first device in T time units.
  • the T first antenna subsets corresponding to the above T time units may be determined based on the first channel sounding sequence.
  • the first device may send the first channel detection sequence to the second device at the t-th time unit among T time units.
  • the second device may send the first channel detection sequence at the t-th time unit among T time units.
  • a first channel sounding sequence from the first device is received through the s subset of antennas.
  • the first channel detection sequence is used to determine the first channel matrix H(t). Therefore, the first device can determine the tth time unit corresponding to the tth time unit from the N rx antennas based on the first channel matrix H(t).
  • a subset of antennas is used to determine the tth time unit corresponding to the tth time unit from the N rx antennas based on the first channel matrix H(t).
  • the first device can use 1 antenna to send the first channel detection sequence carrying the identity information of the first device to the second device in each time unit, correspondingly , the second device selects a subset of antennas in batches to listen to the first channel detection sequence in each time unit, and obtains the first channel detection sequence corresponding to each time unit based on the detected first channel detection sequence corresponding to each time unit. a channel matrix, and further selects the first antenna subset corresponding to each time unit according to the first channel matrix corresponding to each time unit.
  • the first channel matrix obtained from the first channel detection sequence listened to in the time unit can be expressed as H(t).
  • the expression form carrying the identity information of the first device includes but is not limited to: the second device allocates a globally unique orthogonal codeword sequence to each first device in advance, or the second device assigns each first device a globally unique orthogonal codeword sequence in advance.
  • the first device allocates time and/or frequency resource blocks that are orthogonal to each other to send the first channel sounding sequence. Therefore, the second device can determine which first device the received first channel probing sequence comes from based on the received first channel probing sequence, or the second device can determine on which resource the first channel probing sequence is received. sequence to determine which first device the received first channel detection sequence comes from.
  • the first device that sends the first channel detection sequence can be marked by the first channel detection sequence itself, where one first channel detection sequence corresponds to a first device, or the first device that sends the first channel detection sequence can also be marked by Resources (such as time domain resources and/or frequency domain resources) are used to mark the first device that sends the first channel sounding sequence, that is, one resource corresponds to one first device, which is not limited here.
  • Resources such as time domain resources and/or frequency domain resources
  • the L rx antennas selected in each batch are connected to L rx radio frequency channels respectively, and the same batch can be It is possible to select antennas whose spacing is no less than a preset distance (eg half wavelength ⁇ /2). Wherein, the antennas selected in different batches should not be repeated as much as possible, so that all antennas included in the first device are selected as much as possible in the t-th time unit.
  • a preset distance eg half wavelength ⁇ /2
  • the element corresponding to the f-th row and f-th column in the first channel matrix H(t) represents the f-th antenna among the N rx antennas included in the second device and the f-th antenna among the N tx antennas included in the first device.
  • the first channel matrix H(t) is a column vector with N rx rows and 1 column, and each vector element is represented by a complex number h n , 1 ⁇ n ⁇ N rx .
  • the second device can also obtain the signal-to-interference ratio of each time unit by listening to the first channel detection sequence.
  • the signal-to-interference ratio corresponding to the t-th time unit can be expressed as ⁇ (t).
  • the signal-to-interference ratio involved in the embodiments of the present application may be the ratio of the signal to the sum of interference and noise, or it may also be the ratio of the signal to the interference, or it may also be the ratio of the signal to the noise. Specifically, It is determined based on the actual application scenario and is not limited here.
  • the second device determines the first antenna subset corresponding to the t-th time unit from the N rx antennas according to the first channel matrix H(t), which is specifically implemented in the following manner:
  • the second device calculates the received power of each antenna one by one 1 ⁇ n ⁇ N r , forming the first set and second set
  • the second step iterate L rx times, each time selecting the antenna with the highest power from the first set P, adding the selected antenna (marked as m) to the second set S, and at the same time, moving the selected antenna out of the first set Set P.
  • the second set S containing L rx elements is determined as the first antenna subset S(t) corresponding to the t-th time unit.
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the signal-to-interference ratio corresponding to the i-th element w(i) in the first sequence and the t-th time unit.
  • monotonic non-decreasing includes unchanged or monotonically increasing, etc.
  • the first sequence is determined by the degradation failure coefficients ⁇ and T, where ⁇ [0, 1].
  • can change depending on the specific situation, and its corresponding physical meaning is the speed at which the prior information in the past time degrades and fails.
  • is a decimal with a value of 0 ⁇ 1, where the closer the value is to 0, the faster the degradation failure occurs, and the closer the value is to 1, the slower the degradation failure is.
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is calculated based on the signal-to-interference ratio ⁇ ( t) is determined, specifically it can be understood as: the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is the ith element w(i) in the first sequence corresponding to the t-th time unit.
  • the T signal-to-interference ratios corresponding to the T time units can be stored in the first queue of a first in first out (FIFO) queue with a length of T in sequence.
  • the signal-to-interference ratio ⁇ (1) corresponding to the first time unit is stored at the head of the first queue
  • the signal-to-interference ratio ⁇ (1) corresponding to the second time unit is stored at the head of the first queue.
  • the two positions,..., the signal-to-interference ratio ⁇ (T) corresponding to the T-th time unit are stored at the end of the first queue. That is to say, the first queue includes T signal-to-interference ratios corresponding to the first time unit to the T-th time unit among the T time units in sequence.
  • the second device determines the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and T weight coefficients.
  • the second device determines the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and T weight coefficients.
  • the first antenna subset corresponding to the T+1th time unit includes L rx antennas with the largest weight coefficients in the target antenna set.
  • the target antenna set is the union of T first antenna subsets.
  • the weight coefficient of antenna z is the sum of the weight coefficients of the first antenna subset where antenna z is located, and antenna z is any antenna in the target antenna set. That is to say, the second device determines the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and T weight coefficients, which can be achieved through the following steps:
  • the second device selects the first L rx elements with the largest cumulative sum of weights from the union set R as the first antenna subset S(T+1) of the T+1 time unit. If the weight value appears If the accumulation is the same and exceeds the number of L rx , then one is randomly selected.
  • the three antennas included in the first antenna subset S(2) corresponding to the second time unit are the antennas corresponding to antenna numbers 1, 3, and 5 respectively, and the first antenna subset S corresponding to the third time unit
  • the three antennas included in (3) are the antennas corresponding to antenna numbers 2, 4, and 5 respectively.
  • the three antennas included in the first antenna subset S(4) corresponding to the fourth time unit are antenna numbers 1, 2 respectively. ,3 corresponding antenna.
  • the second device communicates with the first device through the first antenna subset corresponding to the T+1 time unit.
  • the second device may communicate with the first device through the first subset of antennas corresponding to the T+1 time unit.
  • the second device communicating with the first device through the first antenna subset corresponding to the T+1th time unit can be understood as: from the T+1th time unit to the T+xth time unit through the T+th time unit
  • the first subset of antennas corresponding to one time unit communicates with the first device, and x is an integer greater than 0.
  • the communication here can be understood as data communication.
  • the second device uses the first antenna subset S(T+1) corresponding to the T+1 time unit to receive the uplink from the first device in the T+1 time unit. User data.
  • the second device uses the first antenna subset S(T+1) corresponding to the T+1 time unit to receive uplink user data from the first device in the T+1th time unit, it can also count The signal-to-interference ratio ⁇ (T+1) of the T+1th time unit. Further, the second device calculates the weight coefficient a(T+1) of the first antenna subset S(T+1) corresponding to the T+1 time unit, and updates the weight coefficient a(T+1) corresponding to the second time unit to the T time unit. The weight coefficient of the first antenna subset.
  • the second device calculates the weight coefficient a(T+1) of the first antenna subset S(T+1) corresponding to the T+1 time unit, and updates the weight coefficient a(T+1) corresponding to the second time unit to the T time unit.
  • the weight coefficient of the first antenna subset can be achieved through the following steps:
  • the second device uses the first antenna subset S(T+1) corresponding to the T+1 time unit to receive the uplink user data from the first device in the T+1 time unit, and counts the T +1 time unit signal-to-interference ratio ⁇ (T+1).
  • the second device obtains the first queue, deletes the signal-to-interference ratio ⁇ (1) corresponding to the first time unit from the head of the first queue, and changes the signal-to-interference ratio ⁇ (1) corresponding to the T+1 time unit T+1) is stored in the tail of the first queue to obtain the updated first queue.
  • the updated head of the first queue is the signal-to-interference ratio ⁇ (2) corresponding to the second time unit
  • the updated second position of the first queue is the third time
  • the tail of the updated first queue is the signal-to-interference ratio ⁇ (T+1) corresponding to the T+1th time unit. That is to say, the updated first queue includes T signal-to-interference ratios corresponding to the second time unit to the T+1 time unit in sequence.
  • the second device updates the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit, and determines the weight coefficient a(T) of the first antenna subset corresponding to the T+1-th time unit. +1).
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th element w(i) in the first sequence and the t-th time unit in the updated first queue.
  • the weight coefficient a(T+1) of the subset is determined based on the signal-to-interference ratio when the T-th element of the first queue communicates with the T+1-th time unit after the update.
  • the signal-to-interference ratio corresponding to the first time unit ⁇ (2) 1.5
  • the signal-to-interference ratio corresponding to the third time unit ⁇ (3) 1.2
  • the signal-to-interference ratio corresponding to the fourth time unit ⁇ (4) 1.1
  • that is First queue ⁇ 1, 1.5, 1.2, 1.1 ⁇ .
  • the second device can also send the first message to the first device, and accordingly, the first device receives the first message from the second device.
  • the first message includes T.
  • the second device can also send a second message to the first device, and accordingly, the first device receives the second message from the second device.
  • is included in the second message.
  • the second device can periodically send the first message and/or the second message to the first device, or the second device can also send the first message and/or the second message to the first device aperiodically. information. That is, the first message and/or the second message may be sent periodically or aperiodicly.
  • periodic transmission is a timer value specified by a standard protocol; aperiodic transmission can be triggered based on specific events. For example, the following events are listed based on factors that affect the propagation environment of electromagnetic waves:
  • the values of T and ⁇ are not always constant, and can be adjusted according to the channel state or propagation environment.
  • the more drastic the changes in the electromagnetic wave propagation environment the smaller the value of T and the smaller the value of the degradation failure coefficient ⁇ (that is, the faster the degradation failure rate).
  • the minimum value of T is 0 (ie, no memory channel)
  • the maximum value is the ratio of channel coherence time (coherence time) and symbol period (symbol period).
  • the channel coherence time is the maximum time difference range in which the channel remains constant
  • the symbol period is the time period that one modulation symbol lasts.
  • the minimum value of ⁇ is 0 (i.e., no memory channel), and the maximum value is 1 (i.e., no degradation channel).
  • the value of T when the average of T signal-to-interference ratios corresponding to T time units is less than or equal to the first preset threshold, the value of T can be increased; when the average value of T signal-to-interference ratios corresponding to T time units is When the average value is greater than or equal to the second preset threshold, the value of T can be reduced.
  • the first preset threshold is smaller than the second preset threshold.
  • the magnitude of increase or decrease can be determined according to the actual scenario, and is not limited here. For example, when increasing the value of T, the original value of T can be doubled, that is, it becomes 2T; decreasing T The value of can be reduced by one time of the original value of T, that is, it becomes T/2, etc.
  • the value of ⁇ when the variance of the signal-to-interference ratio corresponding to T time units is less than or equal to the third preset threshold, the value of ⁇ can be increased; when the variance of the signal-to-interference ratio corresponding to T time units is greater than or equal to When the fourth preset threshold is used, the value of ⁇ can be reduced; the third preset threshold is smaller than the fourth preset threshold.
  • the magnitude of increase or decrease can be determined according to the actual scenario, and is not limited here. For example, when increasing the value of ⁇ , a value ⁇ can be added to the original ⁇ , that is, ⁇ + ⁇ ; decrease The value of ⁇ can be obtained by subtracting a value ⁇ from the original ⁇ , that is, ⁇ - ⁇ . where ⁇ is a constant greater than 0.
  • the antenna subset determines the first antenna subset corresponding to the T+1 time unit), which can select antennas with the same number of radio frequency channels from the antenna array of the second device to achieve optimal or near-optimal reception.
  • this method of determining the first antenna subset corresponding to the T+1th time unit through derivation of historical prior information can reduce channel detection and signaling overhead, as well as reduce the cost of determining the T+1th time unit.
  • the computational complexity of the corresponding calculation process of the first antenna subset can reduce channel detection and signaling overhead, as well as reduce the cost of determining the T+1th time unit.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method includes the following steps S701 to S704.
  • the method execution subject shown in Figure 7 may be the first device or the second device.
  • the method execution body shown in FIG. 7 may be a chip in the first device or the second device.
  • the following embodiments of the present application will be schematically described using the first device and the second device as examples.
  • the first device may be specifically understood as a UE, and the second device may be specifically understood as an access network device.
  • the scenario is that there is one access network device with rx radio frequency channels, and the number of antennas of the second device N rx > the number of radio frequency channels L rx . in:
  • the second device obtains the T first antenna subsets and the T weight coefficients of the T first antenna subsets corresponding to the T time units before the T+1th time unit.
  • step S701 please refer to the description of S401 in Figure 4.
  • the difference is: 1
  • the first device in Figure 4 is a single antenna, and the first device in Figure 7 is multiple antennas (for example, taking 2 antennas as an example) ), therefore, when sending the first channel detection sequence, in step S701, the first device needs to use two antennas to send the first channel detection sequence to the second device, where the first channel detection sequence sent by the two antennas is Orthogonal codeword sequences so that the second device can distinguish the first channel sounding sequences from different antennas.
  • the first channel matrix H(t) obtained by the second device by listening to the first channel detection sequence at the t-th time unit is a matrix with N rx rows and N tx columns, where N rx represents the number of antennas of the second device, N tx represents the number of antennas of the first device.
  • Each matrix element is represented as a complex number h n,m ,1 ⁇ n ⁇ N rx ,1 ⁇ m ⁇ N tx respectively.
  • N tx 2
  • the first channel matrix H(t) corresponding to the t-th time unit is a matrix with N rx rows and 2 columns.
  • step S701 when the second device determines the first antenna subset corresponding to the t-th time unit from the Nrx antennas based on the first channel matrix H(t), the channels that participate in the calculation of the received power p n of each antenna
  • the response h n,* is a row vector, that is, a row vector composed of all column elements in the nth row of the channel matrix, that is, the received power of each antenna 1 ⁇ n ⁇ N rx .
  • the second device determines the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and T weight coefficients.
  • step S702 please refer to the description of S402 in Figure 4, and will not be described again here.
  • the second device sends the first instruction information to the first device.
  • the first device receives the first indication information from the second device.
  • the first indication information is used to indicate the first antenna, the N tx antennas include the first antenna, and the first antenna is used for communication between the first device and the second device. That is to say, the second device needs to determine the antenna configuration plan and send the antenna configuration plan to the first device to recommend which antenna among the multiple antennas the first device uses to send uplink users to the second device in the subsequent data transmission process. data.
  • the second device may obtain data from N tx antennas according to the first antenna subset S(T+1) corresponding to the T+1 time unit and the first channel matrix H(t) corresponding to the t time unit.
  • the first antenna is determined, t is an integer and t ⁇ [1, T].
  • the specific calculation method is as follows:
  • the first step is to represent S(T+1) generated in step S702 as a column vector with L rx rows and 1 column;
  • the second step is to obtain the first channel matrix H(t) corresponding to any time unit from the 1st time unit to the T-th time unit (for example, taking the t-th time unit as an example), and extract the first channel matrix H(t) L rx rows and all columns defined by S(T+1) in t) to form a new L rx row N tx column channel matrix That is, you need to get a small matrix from a large matrix. The reason is that the first channel matrix H(t) from the 1st time unit to the Tth time unit has N rx rows and N tx columns.
  • the number of radio frequency channels of the second device L rx ⁇ the number of antennas N rx , therefore, L rx antennas need to be selected from N rx for data transmission in the T+1th time unit;
  • the third step is to use the regularized zero-forcing (RZF) algorithm, as follows
  • the superscript '*' represents the conjugate transpose
  • the superscript '-1' represents the matrix inversion
  • I is the identity matrix of N tx rows and N tx columns
  • is the regularization coefficient.
  • the regularization coefficient ⁇ has different values depending on the channel quality, and the value range is usually between 10 -3 and 10 3 .
  • W is a matrix with N tx rows and L rx columns.
  • the fourth step is to calculate the antenna configuration scheme F of the first device as follows:
  • F is a matrix with L rx rows and N rx columns. It can be understood that F indicates the configuration scheme of all transmitting antennas, that is, how to map from N rx antennas to L rx radio frequency channels. Additionally, it indicates the phase offset values of these transmit antennas. Therefore, the first antenna can be determined according to the antenna configuration plan F.
  • the second device communicates with the first device through the first antenna subset corresponding to the T+1 time unit.
  • step S704 please refer to the description of S403 in Figure 4.
  • the first device since the first device includes multiple antennas, when the first device receives the first indication information from the second device, the first device The device uses the first antenna indicated by the first indication information to communicate with the second device.
  • the second device when the first device is configured with multiple antennas, not only selects the local antenna topology solution, but also recommends the antenna configuration solution of the first device (that is, instructs the first device to use the first antenna). , which can better match the propagation environment and help improve system throughput.
  • the second device is equipped with N rx antennas and L rx
  • N rx the number of radio frequency channels L rx
  • step S401 shown in Figure 4 needs to be performed.
  • Step S403. For example, taking two first devices as first device 1 and first device 2 respectively, therefore, for each first device, the same number of radio frequency channels can be selected from the antenna array of the second device.
  • the antenna is connected to the radio frequency channel to achieve optimal or near-optimal reception with the first device.
  • the second device uses the first antenna subset S1 (T +1) and the first device 2 receive uplink user data from the first device 1 and the first device 2 respectively in the first antenna subset S2(T+1) corresponding to the T+1 time unit, the first The antenna subsets S1(T+1) and S2(T+1) can minimize interference between signals from multiple first devices arriving at the second device.
  • the second device is equipped with N rx antennas and L rx
  • step S701 shown in Figure 7 needs to be performed. ⁇ Step S704.
  • FIG. 8 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method includes the following steps S801 to S804.
  • the method execution subject shown in Figure 8 may be the first device or the second device.
  • the method execution body shown in FIG. 8 may be a chip in the first device or the second device.
  • the following embodiments of the present application will be schematically described using the first device and the second device as examples.
  • the first device may be specifically understood as a UE, and the second device may be specifically understood as an access network device.
  • the process shown in Figure 8 is mainly for a terminal device in which the first device is equipped with a multi-layer compact antenna of N tx antennas and L tx radio frequency channels, and the number of antennas of the first device is N tx > The number of radio frequency channels L tx , the second device is an access network device equipped with N rx antennas and L rx radio frequency channels, and the number of antennas of the second device N rx > the number of radio frequency channels L rx . It should be noted that since the first device has a single antenna (that is, it has only one antenna), the first device can only use the one antenna to interact with the second device. in:
  • the second device obtains T first antenna subsets and T weight coefficients of T first antenna subsets corresponding to T time units before the T+1th time unit.
  • the second device determines the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and T weight coefficients.
  • steps S801 to S802 please refer to the description of steps S401 to S402 in FIG. 4 , and will not be described again here. related
  • the second device sends the second channel detection sequence to the first device through the first antenna subset corresponding to the T+1 time unit respectively in the T+1th time unit to the 2Tth time unit.
  • the first device receives the second channel detection sequence from the second device in the T+1-th time unit to the 2T-th time unit.
  • the second channel detection sequence is used to determine T second antenna subsets, and each second antenna subset and the weight coefficient of each second antenna subset in the T second antenna subsets are used to determine the first device
  • the T second antenna subsets are the second antenna subsets corresponding to the T+1 time unit to the 2T time unit.
  • the implementation plan for determining the second antenna subset corresponding to the 2T time units and the weight coefficient of each second antenna subset to determine the second antenna subset corresponding to the 2T+1 time unit can be found in the first device detecting based on the first channel.
  • the sequence determines the first antenna subset corresponding to the 1st time unit to the T-th time unit, and the first antenna subset corresponding to the 1st time unit to the T-th time unit and each first antenna according to the determined
  • the weight coefficient of the subset determines the description of the first antenna subset corresponding to the T+1th time unit, which will not be described again here.
  • the second device uses the first antenna subset corresponding to the (T+1)th time unit to perform data communication with the first device.
  • the first device uses the second antenna subset corresponding to the (2T+1)th time unit to perform data communication with the first device.
  • the data communication between the first device and the second device can be understood as the first device sending uplink user data to the second device, where the antenna used by the first device to send the uplink user data is the (T+1)th time
  • the first antenna subset corresponding to the unit, the antenna used by the second device to receive uplink user data is the second antenna subset corresponding to the (2T+1)th time unit.
  • the second device when the first device is also configured with multiple antennas, and the number of the multiple antennas is greater than the number of radio frequency channels of the first device, the second device can also send a second channel detection to the first device through the second device.
  • the sequence is used by the first device to determine the best second antenna subset corresponding to the first device in the 2T+1 time unit, which increases the universality of this solution.
  • the first device is a terminal device equipped with a multi-layer compact antenna of N tx antennas and L tx radio frequency channels, and the number of antennas of the first device N tx > the number of radio frequency channels L tx , the first device
  • the second device is an access network device equipped with N rx antennas and L rx radio frequency channels, and the number of antennas of the second device N rx > the number of radio frequency channels L rx
  • another implementation also includes Steps S901 to S907 shown in Figure 9:
  • the second device obtains the T first antenna subsets and the T weight coefficients of the T first antenna subsets corresponding to the T time units before the T+1th time unit.
  • the second device determines the first antenna subset corresponding to the T+1 time unit based on the T first antenna subsets and T weight coefficients.
  • the second device sends the second channel detection sequence to the first device through the first antenna subset corresponding to the T+1 time unit respectively in the T+1th time unit to the 2Tth time unit.
  • the first device receives the second channel detection sequence from the second device in the T+1-th time unit to the 2T-th time unit.
  • steps S901 to S903 please refer to the description of steps S801 to S803 in FIG. 8 , and will not be described again here.
  • the second device determines the amount of change between the first antenna subset corresponding to the (N*T+1)th time unit and the first antenna subset corresponding to the ((N-2)*T+1)th time unit. .
  • the above N is an integer greater than 2. That is to say, the above S901 to S903 can be interactively iterated N times. Further, the second device determines the (N*T+1)th time unit and the S((N-2)*T+1)th time unit. Whether the change amount of the corresponding first antenna subset is less than the first preset threshold.
  • the second device sends second indication information to the first device.
  • the first device receives the second indication information from the second device.
  • the second device can send data to the first device.
  • the second instruction information is used to instruct the first device to use the second antenna subset corresponding to the ((N-1)*T+1)th time unit to perform data communication with the second device, or is understood as the second instruction.
  • the message is used to notify the first device to stop iteration.
  • the second device uses the first antenna subset corresponding to the (N*T+1)th time unit to perform data communication with the first device.
  • the second device communicating with the first device through the first antenna subset corresponding to the (N*T+1)th time unit can be understood as: from the (N*T+1)th time unit to the (Nth *T+1)+x time units communicate with the first device through the first antenna subset corresponding to the (N*T+1)th time unit, and x is an integer greater than 0.
  • x is an integer greater than 0.
  • the following mainly uses x 0 for explanation, that is, in the (N*T+1)th time unit, the first antenna subset corresponding to the (N*T+1)th time unit communicates with the first device.
  • data communication The communication here can be understood as data communication.
  • the second device uses the first antenna subset S(N*T) corresponding to the (N*T+1)th time unit in the (N*T+1)th time unit.
  • +1) Receive uplink user data from the first device.
  • the second device uses the first antenna subset S(N*T+1) corresponding to the (N*T+1)th time unit to send to the first device in the (N*T+1)th time unit. Downstream user data.
  • the antenna topology on both sides reaches convergence at the same time through iterative interaction between the sending and receiving ends. and stable state, it is the best antenna topology that best adapts to the propagation environment, which is beneficial to improving system throughput.
  • step S907 may also be included:
  • the second device sends third indication information to the first device.
  • the first device receives the third indication information from the second device.
  • the third instruction information is used to instruct the second device to send a first channel detection sequence
  • the first channel detection sequence is used to update the first antenna subset for data communication between the second device and the first device. That is to say, the second device and the first device can dynamically restart and shut down the process of multiple iterations of sending the channel detection sequence (i.e., the first channel detection sequence and the second channel detection sequence) by monitoring the communication performance, that is, re-iteration
  • the above steps S901 to S905 are executed so that the dynamic antenna topology of both parties can better adapt to the method flow of the time-varying channel.
  • communication quality can be reflected by bit error rate (BER) or block error rate (BLER), which is not limited here.
  • the second device detects the communication quality with the first device and intermittently sends a channel detection sequence according to the communication quality, which increases the adaptability of the solution to time-varying channels and increases system throughput. Quantitative robustness.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 10 can be used to perform part or all of the functions of the first device in the method embodiments described in Figures 4 to 9.
  • the device may be the first device, a device in the first device, or a device that can be used in conjunction with the first device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 10 may include a transceiver unit 1001 and a processing unit 1002. Among them, the processing unit 1002 is used for data processing.
  • the transceiver unit 1001 integrates a receiving unit and a transmitting unit.
  • the transceiver unit 1001 may also be called a communication unit. Alternatively, the transceiver unit 1001 may also be split into a receiving unit and a transmitting unit.
  • the following processing unit 1002 and transceiver unit 1001 are the same, and will not be described again below. in:
  • Processing unit 1002 used to determine the first channel detection sequence
  • the transceiver unit 1001 is configured to send the first channel detection sequence to the second device in the t-th time unit among the T time units; the T is a positive integer, and the first channel detection sequence is used to determine the t-th time unit.
  • the transceiver unit 1001 is also used to:
  • Communication is performed with the second device from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0.
  • the transceiver unit 1001 is also used to:
  • the transceiver unit 1001 is also used to:
  • a second message is received from the second device, where the second message includes a degradation failure coefficient ⁇ .
  • N tx is an integer greater than 1;
  • the transceiver unit 1001 is also used for:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first antenna
  • the device communicates with the second device.
  • the first device further includes L tx radio frequency channels, N tx > L tx is a positive integer, and N tx > L tx ; the x is equal to T; in the T+th When communicating with the second device from 1 time unit to the T+xth time unit, the transceiver unit 1001 is also used to:
  • a second channel detection sequence from the second device is received; the second channel detection sequence is used to determine T second antenna subsets, so Each second antenna subset among the T second antenna subsets and the weight coefficient of each second antenna subset are used to determine the second antenna corresponding to the first device at the 2T+1th time unit
  • the T second antenna subsets are the second antenna subsets corresponding to the T+1 time unit to the 2T time unit.
  • the transceiver unit 1001 is also used to:
  • the second instruction information is used to instruct the first device to use the second antenna subset corresponding to the ((N-1)*T+1)th time unit Perform data communication with the second device, and N is an integer greater than 2.
  • the transceiver unit 1001 is also used to:
  • Receive third indication information from the second device is used to instruct the first device to send the first channel detection sequence
  • the first channel detection sequence is used to update the second A first subset of antennas used by the device to communicate data with the first device.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 11 can be used to perform part or all of the functions of the second device in the method embodiments described in Figures 4 to 9.
  • the device may be a second device, a device in the second device, or a device that can be used in conjunction with the second device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 11 may include a transceiver unit 1101 and a processing unit 1102. in:
  • Transceiver unit 1101 configured to obtain T first antenna subsets corresponding to T time units before the T+1 time unit and T weight coefficients of the T first antenna subsets; the T times The T first antenna subsets corresponding to the unit are determined based on the first channel detection sequence; the T is a positive integer, each of the first antenna subsets includes L rx antennas, and the L rx antennas are the N L rx of rx antennas; the T first subset of antennas are used to communicate with the first device in the T time units;
  • the processing unit 1102 is configured to determine the first antenna subset corresponding to the T+1th time unit based on the T first antenna subsets and the T weight coefficients;
  • the transceiver unit 1101 is configured to communicate with the first device through the first subset of antennas corresponding to the T+1th time unit.
  • the transceiver unit 1101 when communicating with the first device through the first subset of antennas corresponding to the T+1th time unit, the transceiver unit 1101 is used to:
  • Communication is performed with the first device through the first subset of antennas corresponding to the T+1 time unit from the T+1th time unit to the T+xth time unit, where x is an integer greater than 0. .
  • the transceiver unit 1101 when acquiring T first antenna subsets corresponding to T time units, the transceiver unit 1101 is used to:
  • the first antenna subset corresponding to the t-th time unit is determined from the N rx antennas according to the first channel matrix H(t).
  • the transceiver unit 1101 is also used to:
  • the T time units correspond to T signal-to-interference ratios; the processing unit 1102 is also used to:
  • the value of T is reduced; the first preset threshold is smaller than the second preset threshold. threshold.
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th element w(i) in the first sequence and the t-th time unit.
  • processing unit 1102 is also used to:
  • the weight coefficient a(t) of the first antenna subset corresponding to the t-th time unit is based on the i-th in the first sequence
  • the weight coefficient a(T+1) of the first antenna subset corresponding to the T+1th time unit is determined based on the signal-to-interference ratio when the communication is performed between the T-th element of the updated first queue and the T+1-th time unit.
  • the w(i) satisfies:
  • the first sequence is determined by the degradation failure coefficients ⁇ and T; where the ⁇ ⁇ [0, 1].
  • the w(i) satisfies:
  • the i ⁇ 1, 2,...,T ⁇ , the c is a positive constant, and the e is a constant.
  • the T time units correspond to T signal-to-interference ratios; the processing unit 1102 is also used to:
  • the value of ⁇ is reduced; the third preset threshold is less than the fourth preset threshold.
  • the transceiver unit 1101 is also used to:
  • the first subset of antennas corresponding to the T+1th time unit includes the L rx antennas with the largest weight coefficients in the target antenna set, and the target antenna set is the T first The union of antenna subsets, the weight coefficient of antenna z in the target antenna set is the sum of the weight coefficients of the first antenna subset where the antenna z is located, and the antenna z is any one in the target antenna set antenna.
  • the first device includes N tx antennas, where N tx is an integer greater than 1;
  • the transceiver unit 1101 is also used to:
  • the first indication information is used to indicate a first antenna
  • the N tx antennas include the first antenna
  • the first antenna is used for the first device Communicate with the second device.
  • the transceiver unit 1101 is also used to:
  • the first antenna is determined from N tx antennas according to the first antenna subset corresponding to the T+1 time unit and the first channel matrix H(t) corresponding to the t time unit, so Let t be an integer and t ⁇ [1, T].
  • the first device includes N tx antennas and L tx radio frequency channels, the N tx and L tx are positive integers, and N tx > L tx ;
  • the transceiver unit 1101 When communicating with the first device through the first subset of antennas corresponding to the T+1th time unit, the transceiver unit 1101 is used to:
  • the second channel detection sequence is sent to the first device through the first antenna subset corresponding to the T+1th time unit.
  • the two-channel detection sequence is used to determine T second antenna subsets, and each second antenna subset and the weight coefficient of each second antenna subset in the T second antenna subsets are used to determine the first
  • the second antenna subset corresponding to the device in the 2T+1th time unit, and the T second antenna subsets are the second antenna subsets corresponding to the T+1th time unit to the 2Tth time unit.
  • the processing unit 1102 is also used to determine the first antenna subset corresponding to the (N*T+1)th time unit and the ((N-2)*T+1)th The change amount of the first antenna subset corresponding to the time unit; the N is an integer greater than 2;
  • the transceiver unit 1101 is further configured to send second instruction information to the first device when the change amount is less than a first preset threshold, where the second instruction information is used to instruct the first device to use the first preset threshold.
  • the second antenna subset corresponding to ((N-1)*T+1) time units performs data communication with the second device;
  • the transceiver unit 1101 is also configured to use the first antenna subset corresponding to the (N*T+1)th time unit to perform data communication with the first device.
  • the processing unit 1102 is also configured to :
  • third indication information is sent to the first device through the transceiver unit 1101, and the third indication information is used to instruct the second device to send the
  • the first channel detection sequence is used to update the first antenna subset for data communication between the second device and the first device.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be the first device described in the embodiment of the present application, and is used to implement the functions of the first device in the above-mentioned FIGS. 4 to 9 .
  • the first device may be an access network device or a terminal device.
  • Figure 12 mainly takes the first device as a terminal device as an example.
  • Figure 12 only shows the main components of the terminal device 1200.
  • the terminal device 1200 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1200, execute software programs, and process data of the software programs.
  • Memory is mainly used to store software programs and data.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the memory and processor can be integrated together.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data. .
  • FIG. 12 only shows one memory and processor.
  • terminal device 1200 may include multiple processors and memories.
  • the memory may also be called a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal device 1200. Execute software programs and process data from software programs.
  • the processor in Figure 12 integrates the functions of a baseband processor and a central processor. Those skilled in the art can understand that the baseband processor and the central processor can also be independent processors and are interconnected through technologies such as buses.
  • the terminal device 1200 may include multiple baseband processors to adapt to different network standards, the terminal device 1200 may include multiple central processors to enhance its processing capabilities, and various components of the terminal device 1200 may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data can be built into the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 1210 of the terminal device 1200
  • the processor with the processing function can be regarded as the processing unit 1220 of the terminal device 1200
  • the terminal device 1200 includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the devices used to implement the receiving function in the transceiving unit 1210 can be regarded as receiving units
  • the devices used in the transceiving unit 1210 used to implement the transmitting function can be regarded as sending units.
  • the transceiving unit 1210 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, a transmitting circuit, etc.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be the second device described in the embodiment of the present application, and is used to implement the functions of the second device in the above-mentioned FIGS. 4 to 9 .
  • the second device may be an access network device or a terminal device.
  • FIG. 13 mainly takes the second device as an access network device as an example for explanation.
  • the second device includes: a baseband device 131, a radio frequency device 132, and an antenna 133.
  • the radio frequency device 132 receives the information sent by the terminal device through the antenna 133, and sends the information sent by the terminal device to the baseband device 131 for processing.
  • the baseband device 131 processes the information of the terminal equipment and sends it to the radio frequency device 132.
  • the radio frequency device 132 processes the information of the terminal equipment and then sends it to the terminal equipment through the antenna 133.
  • the baseband device 131 includes one or more processing units 1311, a storage unit 1312 and an interface 1313.
  • the processing unit 1311 is used to support the network device to perform the functions of the network device in the above method embodiment.
  • the storage unit 1312 is used to store software programs and/or data.
  • the interface 1313 is used to exchange information with the radio frequency device 132.
  • the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more application specific integrated circuits (ASIC), or one or more digital signal processors (DSP), or , one or more field programmable gate arrays (FPGAs), or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the storage unit 1312 and the processing unit 1311 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 1312 and the processing unit 1311 may be on different chips from the processing unit 1311, that is, off-chip storage elements.
  • the storage unit 1312 may be one memory, or may be a collective name for multiple memories or storage elements. Optionally, the storage unit and processing unit can be integrated together.
  • the second device may implement some or all of the steps in the above method embodiment in the form of one or more processing unit schedulers.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • Embodiments of the present application also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instruction is run on a processor, the method flow of the above method embodiment is implemented.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is implemented.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical functional division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM), universal serial bus flash disk, portable hard disk, or other optical disk storage, magnetic disk storage media, or other magnetic storage devices, or can be used to carry or store desired data in the form of instructions or data structures. program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种通信方法及相关装置,该方法适用于包括N rx个天线和L rx个射频通道的第二设备,N rx>L rx>0。该方法包括:第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数;该T个时间单元对应的T个第一天线子集基于第一信道探测序列确定;每个第一天线子集中包括L rx个天线;根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集;通过第T+1个时间单元对应的第一天线子集与第一设备进行通信。基于本申请实施例中的方案,可实现从设备的天线阵列中选择出与射频通道数量相同的天线连接到射频通道上,以达成最优或接近最优的接收效果。

Description

通信方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及相关装置。
背景技术
第五代(5th generxation,5G)无线通信系统采用超大规模多输入多输出(massive multiple-input multiple-output,M-MIMO)方案,即在基站部署32根、64根甚至更多天线组成的大型天线阵列,相比于第四代(4th generxation,4G)系统显著地提升了系统吞吐量和频谱效率。但是,无线收发信机的射频(radio frequency,RF)通道受限于硬件成本、功耗和部署空间的约束,不可能伴随着天线数量的增加而同比例地增加数量。由于射频通道数量小于天线数量,且在信号收发过程中一个天线对应一个射频通道,因此,如何从天线阵列中选择出与射频通道数量相同的天线连接到射频通道上,以达成最优或接近最优的接收效果成为当前亟待解决的问题之一。
发明内容
本申请提供了一种通信方法及相关装置,可实现从设备的天线阵列中选择出与射频通道数量相同的天线连接到射频通道上,以达成最优或接近最优的接收效果。
第一方面,本申请提供了一种通信方法,该方法应用于第一设备,该方法包括:
确定第一信道探测序列;
在T个时间单元中的第t个时间单元,向第二设备发送所述第一信道探测序列;所述T为正整数,所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N rx为所述第二设备包括的天线数量,所述N tx为所述第一设备包括的天线数量,所述N rx和所述N tx为大于0的整数,所述t={1,2,...,T},所述第一信道矩阵H(t)用于从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集,所述T个时间单元对应的T个第一天线子集中的每个第一天线子集和所述每个第一天线子集的权重系数用于确定所述第二设备在第T+1个时间单元对应的第一天线子集,所述每个第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线中的L rx个,所述L rx为正整数,且N rx>L rx
在本申请中,第一设备通过在T个时间单元中每个时间单元中发送第一信道探测序列,以用于第二设备通过在T个时间单元中每个时间单元中接收的第一信道探测序列确定T个时间单元中每个时间单元对应的第一天线子集,以作为历史先验数据,进而利用历史先验信息预测/推导出第二设备在第T+1个时间单元对应的天线配置,以达成最优或接近最优的接收效果,可操作性强。
在一种可能的实现中,所述方法还包括:
在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,所述x为大于0的整数。
在该种实现方式下,当第二设备确定出第T+1个时间单元对应的第一天线子集,在后续皆可以通过确定出的第T+1个时间单元对应的第一天线子集与第一设备通信,提高了方案的 适用性。
在一种可能的实现中,所述方法还包括:
接收来自所述第二设备的第一消息,所述第一消息中包括所述T。
在该种实现方式下,第一设备通过接收来自第二设备的第一消息,可使得第一设备根据第一消息确定第一信道探测序列的发送周期,有利于提高方案的适用性。
在一种可能的实现中,所述方法还包括:
接收来自所述第二设备的第二消息,所述第二消息中包括退化失效系数β。
在该种实现方式下,第二设备还可以将β通过第二消息发送给第一设备,可利于后续第一设备将β用于确定第一设备对应的第二天线子集,增加了本方案的普适性。
在一种可能的实现中,N tx为大于1的整数;
所述方法还包括:
接收来自所述第二设备的第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在该种实现方式下,当第一设备配置了多个天线时,第二设备除了选择本地的天线拓扑方案,还建议第一设备的天线配置方案(即指示第一设备使用的第一天线),可更好地匹配传播环境,有利于提高系统吞吐量。
在一种可能的实现中,所述第一设备还包括L tx个射频通道,N tx>L tx为正整数,且N tx>L tx;所述x等于T;所述在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,包括:
在所述第T+1个时间单元至第2T个时间单元,接收来自所述第二设备的第二信道探测序列;所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和所述每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在该种实现方式下,当第一设备配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,还可以通过第二设备向第一设备发送第二信道探测序列,以用于第一设备确定第一设备在第2T+1个时间单元对应的最佳的第二天线子集,增加了本方案的普适性。
在一种可能的实现中,所述方法还包括:
接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信,所述N为大于2的整数。
在该种实现方式下,当第一设备配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,通过收发两端的迭代式交互使得两侧的天线拓扑同时达到收敛和稳定状态时,即为最适配传播环境的最佳天线拓扑,有利于提高系统吞吐量。
在一种可能的实现中,所述方法还包括:
接收来自所述第二设备的第三指示信息,所述第三指示信息用于指示所述第一设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
在该种实现方式下,第二设备通过检测与第一设备间的通信质量,以根据通信质量间歇式发送信道探测序列,增加了本申请方案对时变信道的适应性,且增加了系统吞吐量的鲁棒性。
第二方面,本申请提供了一种通信方法,该方法应用于包括N rx个天线和L rx个射频通道的第二设备,所述N rx和所述L rx为正整数,且N rx>L rx,该方法包括:
获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和所述T个第一天线子集的T个权重系数;所述T个时间单元对应的T个第一天线子集基于第一信道探测序列确定;所述T为正整数,每个所述第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线的L rx个;所述T个第一天线子集用于在所述T个时间单元与第一设备进行通信;
根据所述T个第一天线子集和所述T个权重系数确定所述第T+1个时间单元对应的第一天线子集;
通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信。
在本申请中,通过获取历史先验信息(即第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数),利用历史先验信息预测/推导出第T+1个时间单元对应的天线配置(即根据该T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集确定第T+1个时间单元对应的第一天线子集),可实现从第二设备的天线阵列中选择出与射频通道数量相同的天线,以达成最优或接近最优的接收效果,并且这种通过历史先验信息推导的方式确定第T+1个时间单元对应的第一天线子集的方式可减少信道探测和信令开销,以及降低了确定第T+1个时间单元对应的第一天线子集的计算过程的计算复杂度。
在一种可能的实现中,所述通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,包括:
在第T+1个时间单元至第T+x个时间单元通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,所述x为大于0的整数。
在该种实现方式下,当确定出第T+1个时间单元对应的第一天线子集,在后续皆可以通过确定出的第T+1个时间单元对应的第一天线子集与第一设备通信,提高了方案的适用性。
在一种可能的实现中,所述获取T个时间单元对应的T个第一天线子集,包括:
在所述T个时间单元中的第t个时间单元,通过s个天线子集接收来自所述第一设备的所述第一信道探测序列;所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N tx为所述第一设备包括的天线数量,所述N tx为大于0的整数,所述s个天线子集中每个天线子集中包括L rx个天线,不同天线子集包括的天线中至少有一个不同,所述t={1,2,...,T},
Figure PCTCN2022117086-appb-000001
根据所述第一信道矩阵H(t)从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集。
在该种实现方式下,第二设备通过在T个时间单元中每个时间单元接收来自第一设备的第一信道探测序列,以用于确定T个时间单元中每个时间单元对应的第一天线子集,以作为历史先验数据,可操作性强。
在一种可能的实现中,所述方法还包括:
向所述第一设备发送第一消息,所述第一消息中包括所述T。
在该种实现方式下,第二设备通过向第一设备发送第一消息,可使得第一设备根据第 一消息确定第一信道探测序列的发送周期,有利于提高方案的适用性。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述方法还包括:
当所述T个时间单元对应的T个信干比的平均值小于或者等于第一预设阈值时,增大所述T的取值;
当所述T个时间单元对应的T个信干比的平均值大于或者等于第二预设阈值时,减小所述T的取值;所述第一预设阈值小于所述第二预设阈值。
在该种实现方式下,当信道状态发生变化时,对T的取值进行调整,可更好地适应不同通信场景和环境信道,增加了本方案的普适性。
在一种可能的实现中,所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述第t个时间单元对应的信干比γ(t)确定的,所述第一序列是单调不减的,所述t={1,2,...,T},所述i={1,2,...,T}。
在该种实现方式下,基于第一序列中的元素和第t个时间单元对应的信干比生成第t个时间单元对应的第一天线子集的权重系数,使得权重系数的调整过程具有明确的物理含义,简化了调参优化过程和提高了系统性能。
在一种可能的实现中,所述方法还包括:
获取第一队列,所述第一队列中依次包括所述T个时间单元对应的T个信干比;
获取所述第T+1个时间单元对应的信干比;
从所述第一队列的队首删除第1个时间单元对应的信干比,并且将所述第T+1个时间单元对应的信干比存入所述第一队列的队尾,得到更新后的第一队列;
更新第t个时间单元对应的第一天线子集的权重系数a(t);所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述更新后的第一队列中所述第t个时间单元对应的信干比γ(t)确定的,所述t={2,...,T},所述i={1,2,...,T-1};
确定第T+1个时间单元对应的第一天线子集的权重系数a(T+1);所述第T+1个时间单元对应的第一天线子集的权重系数a(T+1)为根据所述更新后的第一队列的第T个元素与所述第T+1个时间单元进行所述通信时的信干比确定。
在该种实现方式下,通过动态调整第一天线子集的权重系数,可更好地适应不同通信场景和环境信道,增加了本方案的普适性。
在一种可能的实现中,所述w(i)满足:
w(i)=d;
其中,所述d∈[0,1]。
在该种实现方式下,第一序列中包括的各个元素可以为常数,可操作性强。
在一种可能的实现中,所述第一序列由退化失效系数β和T确定;其中,所述β∈[0,1]。
在该种实现方式下,第一序列也可以由退化失效系数β和T确定,其中退化失效系数β表示过去时间先验信息退化失效的速度。该β的取值越接近0表示退化失效的越快,越接近1表示退化失效的越慢。
在一种可能的实现中,所述w(i)满足:
w(i)=c*(β) T-i+e;
其中,所述i={1,2,...,T},所述c为正常数,所述e为常数。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述方法还包括:
当所述T个时间单元对应的信干比的方差小于或者等于第三预设阈值时,增大所述β的 取值;
当所述T个时间单元对应的信干比的方差大于或者等于第四预设阈值时,减小所述β的取值;所述第三预设阈值小于所述第四预设阈值。
在该种实现方式下,当信道状态发生变化时,对β的取值进行调整,可更好地适应不同通信场景和环境信道,增加了本方案的普适性。
在一种可能的实现中,所述方法还包括:
向所述第一设备发送第二消息,所述第二消息中包括所述β,所述β用于确定所述第一设备在第T+1个时间单元至第2T个时间单元中每个时间单元对应的第二天线子集的权重系数。
在该种实现方式下,第二设备还可以将β通过第二消息发送给第一设备,可利于后续第一设备将β用于确定第一设备对应的第二天线子集,增加了本方案的普适性。
在一种可能的实现中,所述第T+1个时间单元对应的第一天线子集包括目标天线集合中权重系数最大的L rx个天线,所述目标天线集合为所述T个第一天线子集的并集,所述目标天线集合中天线z的权重系数为所述天线z所在的第一天线子集的权重系数之和,所述天线z为所述目标天线集合中的任意一个天线。
在该种实现方式下,通过对历史先验信息中的第一天线子集通过对应的权重系数加权后求并集,进而从并集中挑选出权值累加和最大的前L rx个元素作为第T+1个时间单元对应的第一天线子集,可实现挑选出第T+1个时间单元对应的达成最优或接近最优的接收效果的第一天线子集,可操作性强。
在一种可能的实现中,所述第一设备包括N tx个天线,N tx为大于1的整数;
所述方法还包括:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在该种实现方式下,当第一设备配置了多个天线时,第二设备除了选择本地的天线拓扑方案,还建议第一设备的天线配置方案(即指示第一设备使用的第一天线),可更好地匹配传播环境,有利于提高系统吞吐量。
在一种可能的实现中,所述方法还包括:
根据所述第T+1个时间单元对应的第一天线子集和所述第t个时间单元对应的第一信道矩阵H(t)从N tx个天线中确定出所述第一天线,所述t为整数且t∈[1,T]。
在一种可能的实现中,所述第一设备包括N tx个天线和L tx个射频通道,所述N tx和L tx正整数,且N tx>L tx
所述通过所述第T+1个时间单元对应的第一天线子集与第一设备进行通信,包括:
在所述第T+1个时间单元至第2T个时间单元分别通过所述第T+1个时间单元对应的第一天线子集向所述第一设备发送第二信道探测序列,所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在该种实现方式下,当第一设备也配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,还可以通过第二设备向第一设备发送第二信道探测序列,以用于第一设备确定第一设备在第2T+1个时间单元对应的最佳的第二天线子集,增加了本方案的普适性。
在一种可能的实现中,所述方法还包括:
确定第(N*T+1)个时间单元对应的第一天线子集与第((N-2)*T+1)个时间单元对应的第一天线子集的变化量;所述N为大于2的整数;
当所述变化量小于第一预设门限时,向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信;
使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信。
在该种实现方式下,当第一设备配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,通过收发两端的迭代式交互使得两侧的天线拓扑同时达到收敛和稳定状态时,即为最适配传播环境的最佳天线拓扑,有利于提高系统吞吐量。
在一种可能的实现中,所述使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信之后,所述方法还包括:
若所述数据通信的通信质量不满足预设通信质量,则向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第二设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
在该种实现方式下,第二设备通过检测与第一设备间的通信质量,以根据通信质量间歇式发送信道探测序列,增加了本申请方案对时变信道的适应性,且增加了系统吞吐量的鲁棒性。
第三方面,本申请提供了一种通信装置,该装置为第一设备,该装置包括:
处理单元,用于确定第一信道探测序列;
收发单元,用于在T个时间单元中的第t个时间单元,向第二设备发送所述第一信道探测序列;所述T为正整数,所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N rx为所述第二设备包括的天线数量,所述N tx为所述第一设备包括的天线数量,所述N rx和所述N tx为大于0的整数,所述t={1,2,...,T},所述第一信道矩阵H(t)用于从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集,所述T个时间单元对应的T个第一天线子集中的每个第一天线子集和所述每个第一天线子集的权重系数用于确定所述第二设备在第T+1个时间单元对应的第一天线子集,所述每个第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线中的L rx个,所述L rx为正整数,且N rx>L rx
在一种可能的实现中,所述收发单元还用于:
在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,所述x为大于0的整数。
在一种可能的实现中,所述收发单元还用于:
接收来自所述第二设备的第一消息,所述第一消息中包括所述T。
在一种可能的实现中,所述收发单元还用于:
接收来自所述第二设备的第二消息,所述第二消息中包括退化失效系数β。
在一种可能的实现中,N tx为大于1的整数;
所述收发单元还用于:
接收来自所述第二设备的第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在一种可能的实现中,所述第一设备还包括L tx个射频通道,N tx>L tx为正整数,且N tx>L tx;所述x等于T;在所述在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信时,所述收发单元还用于:
在所述第T+1个时间单元至第2T个时间单元,接收来自所述第二设备的第二信道探测序列;所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和所述每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在一种可能的实现中,所述收发单元还用于:
接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信,所述N为大于2的整数。
在一种可能的实现中,所述收发单元还用于:
接收来自所述第二设备的第三指示信息,所述第三指示信息用于指示所述第一设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
第四方面,本申请提供了一种通信装置,该装置为包括N rx个天线和L rx个射频通道的第二设备,所述N rx和所述L rx为正整数,且N rx>L rx,该装置包括:
收发单元,用于获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和所述T个第一天线子集的T个权重系数;所述T个时间单元对应的T个第一天线子集基于第一信道探测序列确定;所述T为正整数,每个所述第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线的L rx个;所述T个第一天线子集用于在所述T个时间单元与第一设备进行通信;
处理单元,用于根据所述T个第一天线子集和所述T个权重系数确定所述第T+1个时间单元对应的第一天线子集;
所述收发单元,用于通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信。
在一种可能的实现中,在所述通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信时,所述收发单元用于:
在第T+1个时间单元至第T+x个时间单元通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,所述x为大于0的整数。
在一种可能的实现中,在所述获取T个时间单元对应的T个第一天线子集时,所述收发单元用于:
在所述T个时间单元中的第t个时间单元,通过s个天线子集接收来自所述第一设备的所述第一信道探测序列;所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N tx为所述第一设备包括的天线数量,所述N tx为大于0的整数,所述s个天线子集中每个天线子集中包括L rx个天线,不同天线子集包括的天线中至少有一个不同,所述t={1,2,...,T},
Figure PCTCN2022117086-appb-000002
根据所述第一信道矩阵H(t)从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集。
在一种可能的实现中,所述收发单元还用于:
向所述第一设备发送第一消息,所述第一消息中包括所述T。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述处理单元还用于:
当所述T个时间单元对应的T个信干比的平均值小于或者等于第一预设阈值时,增大所述T的取值;
当所述T个时间单元对应的T个信干比的平均值大于或者等于第二预设阈值时,减小所述T的取值;所述第一预设阈值小于所述第二预设阈值。
在一种可能的实现中,所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述第t个时间单元对应的信干比γ(t)确定的,所述第一序列是单调不减的,所述t={1,2,...,T},所述i={1,2,...,T}。
在一种可能的实现中,所述处理单元还用于:
获取第一队列,所述第一队列中依次包括所述T个时间单元对应的T个信干比;
获取所述第T+1个时间单元对应的信干比;
从所述第一队列的队首删除第1个时间单元对应的信干比,并且将所述第T+1个时间单元对应的信干比存入所述第一队列的队尾,得到更新后的第一队列;
更新第t个时间单元对应的第一天线子集的权重系数a(t);所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述更新后的第一队列中所述第t个时间单元对应的信干比γ(t)确定的,所述t={2,...,T},所述i={1,2,...,T-1};
确定第T+1个时间单元对应的第一天线子集的权重系数a(T+1);所述第T+1个时间单元对应的第一天线子集的权重系数a(T+1)为根据所述更新后的第一队列的第T个元素与所述第T+1个时间单元进行所述通信时的信干比确定。
在一种可能的实现中,所述w(i)满足:
w(i)=d;
其中,所述d∈[0,1]。
在一种可能的实现中,所述第一序列由退化失效系数β和T确定;其中,所述β∈[0,1]。
在一种可能的实现中,所述w(i)满足:
w(i)=c*(β) T-i+e;
其中,所述i={1,2,...,T},所述c为正常数,所述e为常数。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述处理单元还用于:
当所述T个时间单元对应的信干比的方差小于或者等于第三预设阈值时,增大所述β的取值;
当所述T个时间单元对应的信干比的方差大于或者等于第四预设阈值时,减小所述β的取值;所述第三预设阈值小于所述第四预设阈值。
在一种可能的实现中,所述收发单元还用于:
向所述第一设备发送第二消息,所述第二消息中包括所述β,所述β用于确定所述第一设备在第T+1个时间单元至第2T个时间单元中每个时间单元对应的第二天线子集的权重系数。
在一种可能的实现中,所述第T+1个时间单元对应的第一天线子集包括目标天线集合中 权重系数最大的L rx个天线,所述目标天线集合为所述T个第一天线子集的并集,所述目标天线集合中天线z的权重系数为所述天线z所在的第一天线子集的权重系数之和,所述天线z为所述目标天线集合中的任意一个天线。
在一种可能的实现中,所述第一设备包括N tx个天线,N tx为大于1的整数;
所述收发单元还用于:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在一种可能的实现中,所述收发单元还用于:
根据所述第T+1个时间单元对应的第一天线子集和所述第t个时间单元对应的第一信道矩阵H(t)从N tx个天线中确定出所述第一天线,所述t为整数且t∈[1,T]。
在一种可能的实现中,所述第一设备包括N tx个天线和L tx个射频通道,所述N tx和L tx正整数,且N tx>L tx
在所述通过所述第T+1个时间单元对应的第一天线子集与第一设备进行通信时,所述收发单元用于:
在所述第T+1个时间单元至第2T个时间单元分别通过所述第T+1个时间单元对应的第一天线子集向所述第一设备发送第二信道探测序列,所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在一种可能的实现中,所述处理单元,还用于确定第(N*T+1)个时间单元对应的第一天线子集与第((N-2)*T+1)个时间单元对应的第一天线子集的变化量;所述N为大于2的整数;
所述收发单元,还用于当所述变化量小于第一预设门限时,向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信;
所述收发单元,还用于使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信。
在一种可能的实现中,所述使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信之后,所述处理单元还用于:
若所述数据通信的通信质量不满足预设通信质量,则通过所述收发单元向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第二设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
第五方面,本申请提供了一种通信装置,该装置可以是第一设备(例如第一设备可以是终端设备),也可以是第一设备中的装置,或者是能够和第一设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第六方面,本申请提供了一种通信装置,该装置可以是第二设备(例如第二设备可以是接入网设备),也可以是第二设备中的装置,或者是能够和第二设备匹配使用的装置。其中,该 通信装置还可以为芯片系统。该通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第七方面,本申请提供了一种通信装置,该装置可以是第一设备,所述通信装置包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如第一方面中任意一项的方法。
第八方面,本申请提供了一种通信装置,该装置可以是第一设备,该通信装置包括处理器、收发器和存储器。其中,处理器、收发器和存储器耦合;处理器和收发器用于实现如第一方面和/或第二方面中任意一项的方法。可选的,存储器和处理器可以集成在一起。
第九方面,本申请提供了一种通信装置,该装置可以是第二设备,所述通信装置包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如第二方面中任意一项的方法。
第十方面,本申请提供了一种通信装置,该装置可以是第二设备,该通信装置包括处理器、收发器和存储器。其中,处理器、收发器和存储器耦合;处理器和收发器用于实现如第二方面和/或第二方面中任意一项的方法。可选的,存储器和处理器可以集成在一起。
第十一方面,本申请提供了一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被计算机执行时,实现如第一方面或第二方面中任意一项的方法。
第十二方面,本申请提供一种包括指令的计算机程序产品,所述计算机程序产品中包括计算机程序代码,当计算机程序代码在计算机上运行时,以实现第一方面或第二方面中任意一项的方法。
第十三方面,提供一种通信系统,该通信系统包括上述第三方面或第五方面或第七方面或第八方面所述的第一设备,和,第四方面或第六方面或第九方面或第十方面所述的第二设备。
附图说明
图1是本申请实施例提供的通信系统的结构示意图;
图2是本申请实施例提供的发送端和接收端的基本功能模块示意图;
图3是本申请实施例提供的一种天线阵列的排布示意图;
图4是本申请实施例提供的通信方法的一流程示意图;
图5是本申请实施例提供的第一队列的示意图;
图6是本申请实施例提供的更新后的第一队列的示意图;
图7是本申请实施例提供的通信方法的另一流程示意图;
图8是本申请实施例提供的通信方法的另一流程示意图;
图9是本申请实施例提供的通信方法的另一流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的另一种通信装置的结构示意图;
图13是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、新无线(new radio,NR)等第五代(5th generation,5G)系统、第六代(6th generation,6G)系统等5G之后演进的系统、无线局域网(wireless local area network,WALN)等,在此不做限制。可选的,本申请实施例的技术方案也可以适用于装备了多激光源和多激光检测器的光通信系统,只需要激光检测器的数量远大于后端的模拟数字转换器的通道数量即可。
示例性地,请参见图1,图1是本申请实施例提供的通信系统的结构示意图。其中该通信系统由至少1个接入网设备(图1中只示出了一个接入网设备)和多个终端设备(如图1中所示的终端设备1~终端设备3)。在该通信系统中,终端设备1~终端设备3可以发送上行信息给接入网设备,接入网设备也可以发送下行信息给终端设备1~终端设备3。
其中,接入网设备由天线塔杆和多个小区扇区的多层天线组成。每个小区扇区的多层天线由多层天线阵列以几何空间叠加的形式组成。
如图1所示,每个接入网设备包含了3个扇区,每个扇区的天线阵列由3层叠加而成,每一层的天线在长方形平面上均匀地分布多个天线振子。易知的,本申请方案可以包含多个扇区、多层天线叠加、每一层天线可以采用任意形状、均匀或非均匀地分布任意数量的天线振子,不同层的天线的形状、布局、振子数量既可以相同,也可以不相同。
本申请的应用场景优选针对接入网设备宏蜂窝的无线通信场景,可扩展的,也可以适用于室内微蜂窝的场景,以及车辆与车辆直接互联、无人机与无人机直接互联等其他场景。为了更好地体现本申请方案的性能优势,理想的情况下,空间信道的传播路径越丰富越好,离开或到达天线的方向越丰富越好,信号能量在不同方向上的分布越均匀越好。
本申请的发送端和接收端的基本功能模块如图2所示。发送端包含基带、射频通道、天线映射、天线四个基本功能模块,接收端也对应的包含基带、射频通道、天线映射、天线四个基本功能模块。其中,发送端和接收端的参数配置可以是相同或不同的,射频通道数量分别是L tx和L rx,天线数量分别是N tx和N rx,基带的编码和译码矩阵分别是F BB和W BB,天线映射分别是F RF和W RF,发送端和接收端的天线拓扑可以是相同或不同的,在此不做限制。
其中,本申请实施例中的终端设备,可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、客户终端设备(customer-premises equipment,CPE)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、 智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、智能销售点(point of sale,POS)机、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的接入网设备,可以是具有无线收发功能的设备,用于与终端设备进行通信,也可以是一种将终端设备接入到无线网络的设备。接入网设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。接入网设备可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者5G网络中的下一代节点B(next generation node B,gNB)或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的接入网设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G之后演进的通信系统中实现基站功能的设备、WiFi系统中的接入点(access point,AP)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、非陆地通信网络(non-terrestrial network,NTN)通信系统中的接入网设备,即可以部署于高空平台或者卫星。本申请实施例对此不作具体限定。
接入网设备可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统。该装置可以被安装在接入网设备中或者和接入网设备匹配使用。
需要说明的是,本申请实施例涉及的第一设备可以是终端设备(例如UE),第二设备可以是接入网设备,或者,第一设备可以是接入网设备,第二设备可以是终端设备等,在此不做限制。为方便理解,以下本申请实施例主要以第一设备是终端设备,第二设备是接入网设备为例进行示意性说明。
可理解的,第一设备和第二设备上皆可以安装有一个或者多个天线,其中,多个天线可组成天线阵列。为方便理解,后续皆以第一设备(即接入网设备)的天线为例进行示意性说明。 需要说明的是,本申请实施例中涉及的天线阵列可以是分离式多天线,例如,立体紧致天线,或者,也可以包括龙伯透镜在内的模拟连续孔径天线,在此不做限制。
示例性地,请参见图3,图3是本申请实施例提供的一种天线阵列的排布示意图。如图3所示,该天线阵列中是一种三维(three dimensions,3D)-λ/4布阵的立体紧致天线的点源抽象图,其共包括8*8*8个天线,其中,相邻2个天线之间的距离为λ/4。
需要说明的是,5G通信系统采用M-MIMO方案,在基站部署32根、64根甚至更多天线组成的大型天线阵列,相比于4G系统显著地提升了整个系统的吞吐量和频谱效率。但是,无线收发信机的射频通道受限于硬件成本、功耗和部署空间的约束不可能伴随着天线数量的增加而同比例地增加数量。由于射频通道数量小于天线数量,且在信号收发过程中一个天线对应一个射频通道,因此,需要从天线阵列中选择出与射频通道数量相同的天线连接到射频通道上。相关技术中提出可以随机化地选择任意一些天线组成天线拓扑,或者,从事先设计好的一组固定天线拓扑中选择其中一个天线拓扑,但是这些方法都不能充分地利用海量天线提供的灵活性和自由度,都不能接近或达到理论容量上界。
基于此,本申请提出了一种通信方法,可实现从设备的天线阵列中选择出与射频通道数量相同的天线连接到射频通道上,以达成最优或接近最优的接收效果。
需要说明的是,本申请实施例中第二设备包括的天线所组成的天线阵列为多层紧致天线阵列,且第二设备已知多层紧致天线阵列的拓扑结构信息。
具体的,第二设备以本地坐标系的任意一点作为坐标原点(0,0,0),对多层紧致天线阵列的每个天线记录成一个五元组(id,x,y,z,p)。其中,id是该天线的唯一编号,x,y,z分别是该天线在三维空间的X轴,Y轴,Z轴的坐标值,p是该天线的极化方向,具体的,极化方向p可以用水平角θ和俯仰角φ表示。令第二设备的多层紧致天线包含N rx个天线。天线阵列在本地坐标系的拓扑结构信息可参见如下表1,或者其他等效的包含N rx个五元组的信息存储形式。
表1
ID X坐标 Y坐标 Z坐标 极化方向
1 x 1 y 1 z 1 p 1
2 x 2 y 2 z 2 p 2
…… …… …… …… ……
N rx x Nrx y Nrx z Nrx p Nrx
示例性地,多层紧致天线阵列具体可以是8行8列8层以四分之一波长间距排列的立方体规则点阵,如图3所示。假设天线工作频率的中心频点是f 0Hz,真空光速是c 0m/s,则波长等于λ=c 0/f 0m,假设天线的极化方向统一指向+Z轴方向。对应表1,则有N rx=512,p=+Z,拓扑结构信息的第一行是(1,0,0,0,+Z),第二行是(2,λ/4,0,0,+Z),...,第512行是(512,7λ/4,7λ/4,7λ/4,+Z)。
需要说明的是,本申请实施例中,发送端为第一设备,接收端为第二设备。其中,第一节设备的数量可以是1个,也可以是多个,第一设备包括的天线数量N tx可以是1个,也可以是多个,第一设备包括的射频通道的数量L tx可以是1个,也可以是多个。例如,第一设备可以包括如下4种情况:①发送端为装备了N tx=1个天线和L tx=1个射频通道的1个终端设备(简称发送端是单UE+单天线);②发送端为装备了N tx=2个天线和L tx=2个射频通道的1个终端设备(简称发送 端是单UE+多天线);③发送端为装备了N tx=1个天线和L tx=1个射频通道的2个终端设备(简称发送端是多UE+单天线);④发送端为装备了N tx=2个天线和L tx=2个射频通道的2个终端设备(简称发送端是多UE+多天线)⑤发送端为装备了N tx个天线的多层紧致天线和L tx个射频通道的1个终端设备,且N tx>L tx,例如N tx=512,L tx=16。可理解的,本申请实施例中涉及的第二设备的数量为1个,第二设备包括的天线数量N rx为多个,射频通道的数量L rx为多个,且天线数量N rx>射频通道数量L rx,例如接收端为装备了N rx=512个天线的多层紧致天线和L rx=16个射频通道的1个基站。
还需要说明的是,这里的N tx和N rx均指可应用于本申请各实施例的天线数目,发送端和接收端的实际的天线数目可以等于N tx或N rx,也可以大于N tx或N rx,这里不做限制。
还需要说明的是,本申请实施例中的符号“×”和“*”均表示相乘的意思。
下面对本申请提供的通信方法及通信装置进行详细介绍:
请参见图4,图4是本申请实施例提供的通信方法的一流程示意图。如图4所示,该通信方法包括如下步骤S401~S403。图4所示的方法执行主体可以为第一设备或第二设备。或者,图4所示的方法执行主体可以为第一设备或第二设备中的芯片,以下本申请实施例以第一设备和第二设备为例进行示意性说明。其中,第一设备具体可以理解为UE,第二设备具体可以理解为接入网设备。需要说明的是,图4所示流程主要针对第一设备为装备了N tx=1个天线和L tx=1个射频通道的1个终端设备,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景。需要说明的是,由于第一设备为单天线(即只有1根天线),因此第一设备只能采用该1根天线与第二设备进行交互。其中:
S401、第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数。
在一些可行的实施方式中,第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数。其中,T为正整数,每个第一天线子集中包括L rx个天线,L rx个天线为N rx个天线的L rx个。T个第一天线子集用于在T个时间单元与第一设备进行通信。
需要说明的是,上述T个时间单元对应的T个第一天线子集可基于第一信道探测序列确定。具体地,第一设备可以在T个时间单元中的第t个时间单元,向第二设备发送第一信道探测序列,相应地,第二设备在T个时间单元中的第t个时间单元,通过s个天线子集接收来自第一设备的第一信道探测序列。其中,第一信道探测序列用于确定第一信道矩阵H(t),因此,第一设备可以根据第一信道矩阵H(t)从N rx个天线中确定出第t个时间单元对应的第一天线子集。其中,第一信道矩阵H(t)为N rx行N tx列的矩阵,N tx为第一设备包括的天线数量,N tx为大于0的整数,上述s个天线子集中每个天线子集中包括L rx个天线,不同天线子集包括的天线中至少有一个不同,上述t={1,2,...,T},
Figure PCTCN2022117086-appb-000003
其中,符号
Figure PCTCN2022117086-appb-000004
表示对r向上取整数。也就是说,对于T个时间单元中每个时间单元,第一设备可以在每个时间单元中使用1个天线向第二设备发送携带第一设备的身份信息的第一信道探测序列,相应地,第二设 备在每个时间单元分批次地选择天线子集侦听第一信道探测序列,并根据侦听到的每个时间单元对应的第一信道探测序列得到每个时间单元对应的第一信道矩阵,进而根据每个时间单元对应的第一信道矩阵选择每个时间单元对应的第一天线子集。为方便描述,后续本申请实施例主要以任意一个时间单元,例如第t个时间单元为例进行示意性说明,其中,t={1,2,...,T},根据在第t个时间单元侦听到的第一信道探测序列得到的第一信道矩阵可表示为H(t)。
可理解的,携带第一设备的身份信息的表现形式,包括但不限于:第二设备事先为每个第一设备分配全局唯一的彼此正交码字序列,或,第二设备事先为每个第一设备分配彼此正交的时间和/或频率资源块来发送第一信道探测序列。因此,第二设备可以根据接收到的第一信道探测序列,确定所接收到的第一信道探测序列来自于哪个第一设备,或者,第二设备可以根据在哪个资源上接收到第一信道探测序列,确定所接收到的第一信道探测序列来自于哪个第一设备。也就是说,可以通过第一信道探测序列本身标记发送该第一信道探测序列的第一设备,其中一个第一信道探测序列对应一个第一设备,或者,也可以通过发送第一信道探测序列的资源(例如时域资源和/或频域资源)来标记发送该第一信道探测序列的第一设备,即一个资源对应一个第一设备,在此不做限制。
可理解的,在第t个时间单元分批次地选择天线子集侦听第一信道探测序列时,每个批次被选中的L rx个天线分别连接L rx个射频通道,相同批次尽可能选择天线间距不小于预设距离(例如半波长λ/2)的天线。其中,不同批次被选中的天线尽可能不重复,以使得第一设备包括的所有天线在第t个时间单元中都尽可能被选择到。
其中,第一信道矩阵H(t)中第f行第f列对应的元素表示第二设备包括的N rx个天线中第f个天线与第一设备包括的N tx个天线中第f个天线之间的信道响应。这里由于第一设备包括的1个天线,因此,第一信道矩阵H(t)是N rx行1列的列向量,每个向量元素分别表示为复数h n,1≤n≤N rx。举例来说,假设N rx=50,L rx=10,这里L rx=10是指第二设备包括的10个射频通道,N rx=50是指第二设备包括的50个天线。因此,在第t个时间单元,可以使用5(即s=N rx/L rx=5)个批次分别侦听来自第一设备的第一信道探测序列,每个批次被选中的10个天线分别连接10个射频通道,相同批次尽可能选择天线间距不小于预设距离的天线,不同批次被选中的天线不重复,因此,可得到50行1列的第一信道矩阵H(t)。
可理解的,具体如何通过侦听第一信道探测序列得到第一信道矩阵H(t)可参见3GPP标准文档3GPP-TS-36.211中“物理信道和调制”中的描述,在此不再赘述。可选的,第二设备通过侦听第一信道探测序列还可以得到每个时间单元的信干比,例如第t个时间单元对应的信干比可表示为γ(t)。需要说明的是,本申请实施例中涉及的信干比可以是信号与干扰和噪声之和的比,或者,也可以是信号与干扰的比,或者,也可以是信号与噪声的比,具体根据实际应用场景确定,在此不做限制。
可理解的,第二设备根据第一信道矩阵H(t)从N rx个天线中确定出第t个时间单元对应的第一天线子集具体通过如下方式实现:
第一步,第二设备逐个计算每个天线的接收功率
Figure PCTCN2022117086-appb-000005
1≤n≤N r,形成第一集合
Figure PCTCN2022117086-appb-000006
和第二集合
Figure PCTCN2022117086-appb-000007
第二步,迭代循环L rx次,每次从第一集合P中选择功率最大的天线,将被选中的天线(记为m)加入第二集合S,同时,将被选中的天线移出第一集合P。接着,判断第二集合S包含的 元素数量是否达到L rx。如果是,则跳出第二步的迭代循环,进入第三步;如果否,则刷新当前第一集合P的剩余元素
Figure PCTCN2022117086-appb-000008
然后继续第二步的迭代循环。
第三步,将包含了L rx个元素的第二集合S确定为第t个时间单元对应的第一天线子集S(t)。
需要说明的是,上述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与第t个时间单元对应的信干比γ(t)确定的,这里第一序列是单调不减的,t={1,2,...,T},i={1,2,...,T}。这里单调不减包括不变或者单调递增等。
例如,在一种实现中,w(i)满足:w(i)=d,其中,d∈[0,1],也就是说,第一序列中每个元素都设为相同数值d,其中d的取值为0≤d≤1的小数。
又例如,在另一种实现中,第一序列由退化失效系数β和T确定,其中,β∈[0,1]。例如,在一个示例中,w(i)满足:w(i)=c*(β) T-i+e,其中i={1,2,...,T},c为正常数,e为常数。需要说明的是,β的取值可视具体情况而变化,它对应的物理含义是过去时间先验信息退化失效的速度。具体地,β为取值为0≤β≤1的小数,其中取值越接近0表示退化失效的越快,越接近1表示退化失效的越慢。
举个例子,假设以T=4,β=0.9,c=1,e=0为例,因此第一序列={0.729,0.81,0.9,1}。
具体地,上述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与第t个时间单元对应的信干比γ(t)确定的,具体可以理解为:第t个时间单元对应的第一天线子集的权重系数a(t)是第一序列中第i个元素w(i)与第t个时间单元对应的信干比γ(t)的乘积。
举例来说,假设第一序列={0.729,0.81,0.9,1},T=4,其中该4个时间单元中第1个时间单元对应的信干比γ(1)=1,第2个时间单元对应的信干比γ(2)=1.5,第3个时间单元对应的信干比γ(3)=1.2,第4个时间单元对应的信干比γ(4)=1.1,那么第1个时间单元对应的第一天线子集的权重系数a(1)=1×0.729=0.729,第2个时间单元对应的第一天线子集的权重系数a(2)=1.5×0.81=1.215,第3个时间单元对应的第一天线子集的权重系数a(3)=1.2×0.9=1.08,第4个时间单元对应的第一天线子集的权重系数a(4)=1.1×1=1.1。
需要说明的是,该T个时间单元对应的T个信干比可依次存储于长度为T的先入先出(first in first out,FIFO)的第一队列。如图5所示,第1个时间单元对应的信干比γ(1)存储于第一队列的队首,第2个时间单元对应的信干比γ(1)存储于第一队列的第二个位置,……,第T个时间单元对应的信干比γ(T)存储于第一队列的队尾。也就是说,第一队列中依次包括该T个时间单元中第1个时间单元至第T个时间单元对应的T个信干比。
S402、第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集。
在一些可行的实施方式中,第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集。具体地,第T+1个时间单元对应的第一天线子集包括目标天线集合中权重系数最大的L rx个天线,目标天线集合为T个第一天线子集的并集,目标天线集合中天线z的权重系数为天线z所在的第一天线子集的权重系数之和,天线z为目标天线集合中的任意一个天线。也就是说,第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集可通过如下步骤实现:
第一步,第二设备将T个第一天线子集和T个权重系数先加权后求并集,得到加权求和并集R=a(1)S(1)∪a(20S(2)…∪a(T)S(T),符号∪表示取元素并集以及元素权重求和;
第二步,第二设备从并集R里面挑选出权值累加和最大的前L rx个元素作为第T+1个时间单元的第一天线子集S(T+1),如果出现权值累加相同且超出L rx个数的情况,则随机选择一个。
举例来说,假设T=4,β=0.9,c=1,e=0,N rx=5,L rx=3,其中a(1)=0.729,a(2)=1.215,a(3)=1.08,a(4)=1.1,并且S(1)={1,2,3},S(2)={1,3,5},S(3)={2,4,5},S(4)={1,2,3},也就是说,第1个时间单元对应的第一天线子集S(1)中包括的3个天线分别为天线编号1,2,3对应的天线,第2个时间单元对应的第一天线子集S(2)中包括的3个天线分别为天线编号1,3,5对应的天线,第3个时间单元对应的第一天线子集S(3)中包括的3个天线分别为天线编号2,4,5对应的天线,第4个时间单元对应的第一天线子集S(4)包括的3个天线分别为天线编号1,2,3对应的天线。其中,通过对该4个第一天线子集和4个权重系数先加权后求并集可得到:
R=a(1)S(1)∪a(2)S(2)…∪a(T)S(T)
=0.729×{1,2,3}∪1.215×{1,3,5}∪1.08×{2,4,5}∪1.1×{1,2,3}
={1(3.044),2(2.909),3(3.044),4(1.08),5(2.295)}
那么,从R中选择权值最大的前3个天线编号作为本次选中的天线阵子,即S(T+1)={1,2,3}。
S403、第二设备通过第T+1个时间单元对应的第一天线子集与第一设备进行通信。
在一些可行的实施方式中,第二设备可通过第T+1个时间单元对应的第一天线子集与第一设备进行通信。这里,第二设备通过第T+1个时间单元对应的第一天线子集与第一设备进行通信可理解为:在第T+1个时间单元至第T+x个时间单元通过第T+1个时间单元对应的第一天线子集与第一设备进行通信,x为大于0的整数。为方便描述,以下主要以x=0进行说明,即在第T+1个时间单元通过第T+1个时间单元对应的第一天线子集与第一设备进行数据通信。这里的通信可以理解为数据通信,例如,第二设备在第T+1个时间单元使用第T+1个时间单元对应的第一天线子集S(T+1)接收来自第一设备的上行用户数据。
可选的,第二设备在第T+1个时间单元使用第T+1个时间单元对应的第一天线子集S(T+1)接收来自第一设备的上行用户数据时,还可以统计该第T+1时间单元的信干比γ(T+1)。进一步地,第二设备计算第T+1时间单元对应的第一天线子集S(T+1)的权重系数a(T+1),以及更新第2个时间单元至第T个时间单元对应的第一天线子集的权重系数。具体地,第二设备计算第T+1时间单元对应的第一天线子集S(T+1)的权重系数a(T+1),以及更新第2个时间单元至第T个时间单元对应的第一天线子集的权重系数可通过如下步骤实现:
第一步,第二设备在第T+1个时间单元使用第T+1个时间单元对应的第一天线子集S(T+1)接收来自第一设备的上行用户数据,并且统计该T+1时间单元的信干比γ(T+1)。
第二步,第二设备获取第一队列,从第一队列的队首删除第1个时间单元对应的信干比γ(1),并且将第T+1时间单元对应的信干比γ(T+1)存入第一队列的队尾,以得到更新后的第一队列。示例性地,如图6所示,更新后的第一队列的队首为第2个时间单元对应的信干比γ(2),更新后的第一队列的第二位置为第3个时间单元对应的信干比γ(3),……,更新后 的第一队列的队尾为第T+1个时间单元对应的信干比γ(T+1)。也就是说,更新后的第一队列中依次包括第2个时间单元至第T+1个时间单元对应的T个信干比。
第三步,第二设备更新第t个时间单元对应的第一天线子集的权重系数a(t),以及确定第T+1个时间单元对应的第一天线子集的权重系数a(T+1)。其中,第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与更新后的第一队列中第t个时间单元对应的信干比γ(t)确定的,t={2,...,T},i={1,2,...,T-1};第T+1个时间单元对应的第一天线子集的权重系数a(T+1)为根据更新后的第一队列的第T个元素与第T+1个时间单元进行通信时的信干比确定。
举例来说,假设第一序列={0.729,0.81,0.9,1},T=4,其中第一序列中依次存储有第1个时间单元对应的信干比γ(1)=1,第2个时间单元对应的信干比γ(2)=1.5,第3个时间单元对应的信干比γ(3)=1.2,第4个时间单元对应的信干比γ(4)=1.1,即第一队列={1,1.5,1.2,1.1}。因此,可以计算得到第1个时间单元对应的第一天线子集的权重系数a(1)=1×0.729=0.729,第2个时间单元对应的第一天线子集的权重系数a(2)=1.5×0.81=1.215,第3个时间单元对应的第一天线子集的权重系数a(3)=1.2×0.9=1.08,第4个时间单元对应的第一天线子集的权重系数a(4)=1.1×1=1.1。
又假设后续在第5个时间单元获取到第5个时间单元对应的信干比γ(5)=1.8,那么可以从第一队列的队首删除第1个时间单元对应的信干比γ(1)=1,并且将第5个时间单元对应的信干比γ(5)=1.8存入第一队列的队尾,得到更新后的第一队列,即更新后的第一队列={1.5,1.2,1.1,1.8}。因此,可以更新得到第2个时间单元对应的第一天线子集的权重系数a(2)=1.5×0.729=1.0935,第3个时间单元对应的第一天线子集的权重系数a(3)=1.2×0.81=0.972,第4个时间单元对应的第一天线子集的权重系数a(4)=1.1×0.9=0.99,以及计算得到第5个时间单元对应的第一天线子集的权重系数a(5)=1.8×1=1.8。
可选的,在一些可行的实施方式中,第二设备还可以向第一设备发送第一消息,相应地,第一设备接收来自第二设备的第一消息。该第一消息中包括T。可选的,第二设备还可以向第一设备发送第二消息,相应地,第一设备接收来自第二设备的第二消息。该第二消息中包括β。可理解的,第二设备可以周期性地向第一设备发送第一消息和/或第二消息,或者,第二设备也可以非周期性地向第一设备发送第一消息和/或第二消息。即第一消息和/或第二消息可以是周期性发送的,也可以是非周期发送的。一般而言,周期性发送是由标准协议规定的定时器数值;而非周期发送可以根据具体事件触发,例如,根据影响电磁波在传播环境中的因素罗列如下事件:
(1)第一设备到第二设备之间的信道路径上突然出现或消失障碍物;
(2)第一设备的运动速度发生突变,变化包括速度大小和/或运动方向;
(3)第一设备附近突然出现强干扰源;
(4)第二设备天线的物理(下倾)角度或虚拟波束角度突然发生变化。
可选的,在一些可行的实施方式中,T和β的取值也并非始终不变的,其可以根据信道状态或传播环境进行调整。通常来说,电磁波在传播环境中的变化越剧烈,则T的数值越小,退化失效系数β的数值也越小(即退化失效速度越快)。其中,T的最小取值是0(即无记忆信道),最大取值是信道相干时间(coherence time)与符号周期(symbol period)的比值。其中,信道相干时间为信道保持恒定的最大时间差范围,符号周期为一个调制符号持续的时间周期。β的最小取值是0(即无记忆信道),最大取值是1(即无退化信道)。
示例性地,当T个时间单元对应的T个信干比的平均值小于或者等于第一预设阈值时,可以增大T的取值;当T个时间单元对应的T个信干比的平均值大于或者等于第二预设阈值时,可以减小T的取值。其中,第一预设阈值小于第二预设阈值。这里,增大或减小的幅度可根据实际场景确定,在此不做限制,例如增大T的取值时可以是将原T的取值增大一倍,即变为2T;减小T的取值时可以是将原T的取值减小一倍,即变为T/2等。
再一个示例中,当T个时间单元对应的信干比的方差小于或者等于第三预设阈值时,可以增大β的取值;当T个时间单元对应的信干比的方差大于或者等于第四预设阈值时,可以减小β的取值;第三预设阈值小于第四预设阈值。这里,增大或减小的幅度可根据实际场景确定,在此不做限制,例如增大β的取值时可以是在原β的基础上增加一个值△β,即β+△β;减小β的取值时可以是在原β的基础上减去一个值△β,即β-△β。其中△β为大于0的常数。
需要说明的是,当T或β的取值有更新时,还需要向第一设备发送更新后的T或β的取值。
在本申请实施例中,通过获取历史先验信息(即第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数),利用历史先验信息预测/推导出第T+1个时间单元对应的天线配置(即根据该T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集确定第T+1个时间单元对应的第一天线子集),可实现从第二设备的天线阵列中选择出与射频通道数量相同的天线,以达成最优或接近最优的接收效果,并且这种通过历史先验信息推导的方式确定第T+1个时间单元对应的第一天线子集的方式可减少信道探测和信令开销,以及降低了确定第T+1个时间单元对应的第一天线子集的计算过程的计算复杂度。
请参见图7,图7是本申请实施例提供的通信方法的另一流程示意图。如图7所示,该通信方法包括如下步骤S701~S704。图7所示的方法执行主体可以为第一设备或第二设备。或者,图7所示的方法执行主体可以为第一设备或第二设备中的芯片,以下本申请实施例以第一设备和第二设备为例进行示意性说明。其中,第一设备具体可以理解为UE,第二设备具体可以理解为接入网设备。需要说明的是,图7所示流程主要针对第一设备为装备了N tx=2个天线和L tx=2个射频通道的1个终端设备,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景。其中:
S701、第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数。
这里,有关步骤S701的理解可参见图4中对S401的描述,区别在于:①图4中的第一设备为单天线,图7中的第一设备为多天线(例如以2根天线为例),因此,在发送第一信道探测序列时,步骤S701中第一设备需要分别采用2根天线向第二设备发送第一信道探测序列,其中,该2根天线发送的第一信道探测序列为正交码字序列,以便第二设备可以区分来自不同的天线的第一信道探测序列。因此,第二设备在第t个时间单元通过侦听第一信道探测序列得到的第一信道矩阵H(t)是N rx行N tx列的矩阵,其中N rx表示第二设备的天线数量,N tx表示第一设备的天线数量。每个矩阵元素分别表示为复数h n,m,1≤n≤N rx,1≤m≤N tx。当N tx=2时,第t个时间单元对应的第一信道矩阵H(t)是N rx行2列的矩阵。②步骤S701中,第二设备根据第一信道矩阵H(t)从Nrx个天线中确定出第t个时间单元对应的第一天线子集时,参与每个天线的接收功率p n计算的信道响应h n,*是一个行向量,即信道矩阵第n行的所有列元 素组成的行向量,也即每个天线的接收功率
Figure PCTCN2022117086-appb-000009
1≤n≤N rx
S702、第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集。
这里,有关步骤S702的理解可参见图4中对S402的描述,在此不再进行赘述。
S703、第二设备向第一设备发送第一指示信息。相应地,第一设备接收来自第二设备的第一指示信息。
其中,该第一指示信息用于指示第一天线,N tx个天线包括第一天线,第一天线用于第一设备与第二设备进行通信。也就是说,第二设备需要确定天线配置方案,并向第一设备发送天线配置方案,以建议第一设备在后续发送数据过程中采用多根天线中的哪根天线向第二设备发送上行用户数据。
示例性地,第二设备可以根据第T+1个时间单元对应的第一天线子集S(T+1)和第t个时间单元对应的第一信道矩阵H(t)从N tx个天线中确定出第一天线,t为整数且t∈[1,T]。具体计算方法如下所示:
第一步,将步骤S702中生成的S(T+1)表示成一个L rx行1列的列向量;
第二步,获取第1个时间单元至第T个时间单元中任意一个时间单元(例如以第t个时间单元为例)对应的第一信道矩阵H(t),抽取第一信道矩阵H(t)中由S(T+1)定义的L rx行及其所有列,以组成一个新的L rx行N tx列信道矩阵
Figure PCTCN2022117086-appb-000010
也就是说,需要从大矩阵得到小矩阵。原因是在第1个时间单元至第T个时间单元的第一信道矩阵H(t)是N rx行N tx列,可是,第二设备的射频通道数量L rx<天线数量N rx,因此,在第T+1个时间单元,需要从N rx选择L rx个天线用于在第T+1个时间单元进行数据传输;
第三步,采用正则化迫零(regularized zero-forcing,RZF)算法,如下
Figure PCTCN2022117086-appb-000011
其中,上标'*'表示共轭转置,上标'-1'表示矩阵求逆,I为N tx行N tx列的单位矩阵,ψ是正则化系数。特别的,正则化系数ψ根据信道质量的不同而取值不同,取值范围通常在10 -3到10 3之间。其中,W是一个N tx行L rx列的矩阵。
第四步,第一设备的天线配置方案F的计算公式,如下
Figure PCTCN2022117086-appb-000012
其中,F是一个L rx行N rx列的矩阵。可理解的,F指示了全部发送天线的配置方案,即如何从N rx个天线映射到L rx个射频通道。此外,其还指示了这些发送天线的相位偏移值。因此,根据天线配置方案F即可确定出第一天线。
S704、第二设备通过第T+1个时间单元对应的第一天线子集与第一设备进行通信。
这里,有关步骤S704的理解可参见图4中对S403的描述,区别在于,由于第一设备包括多根天线,因此,当第一设备接收到来自第二设备的第一指示信息以后,第一设备采用该第一指示信息指示的第一天线与第二设备进行通信。
在本申请实施例中,当第一设备配置了多个天线时,第二设备除了选择本地的天线拓扑方案,还建议第一设备的天线配置方案(即指示第一设备使用的第一天线),可更好地匹配传 播环境,有利于提高系统吞吐量。
需要说明的是,当第一设备为装备了N tx=1个天线和L tx=1个射频通道的多个(例如2个)终端设备,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景时,针对每个第一设备,都需要执行上述图4中所示的步骤S401~步骤S403。示例性地,以2个第一设备分别为第一设备1和第一设备2为例,因此,针对每个第一设备,都可以从第二设备的天线阵列中选择出与射频通道数量相同的天线连接到射频通道上,以达成与该第一设备最优或接近最优的接收效果。也就是说,当第一设备1和第一设备2同时向第二设备发送上行用户数据,第二设备使用第一设备1在第T+1个时间单元对应的第一天线子集S1(T+1)和第一设备2在第T+1个时间单元对应的第一天线子集S2(T+1)分别接收来自第一设备1和第一设备2的上行用户数据时,该第一天线子集S1(T+1)和S2(T+1)可使得多个第一设备到达第二设备的信号间的干扰最小化。
需要说明的是,当第一设备为装备了N tx=2个天线和L tx=2个射频通道的多个(例如2个)终端设备,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景时,针对每个第一设备,都需要执行上述图7中所示的步骤S701~步骤S704。
请参见图8,图8是本申请实施例提供的通信方法的另一流程示意图。如图8所示,该通信方法包括如下步骤S801~S804。图8所示的方法执行主体可以为第一设备或第二设备。或者,图8所示的方法执行主体可以为第一设备或第二设备中的芯片,以下本申请实施例以第一设备和第二设备为例进行示意性说明。其中,第一设备具体可以理解为UE,第二设备具体可以理解为接入网设备。需要说明的是,图8所示流程主要针对第一设备为装备了N tx个天线的多层紧致天线和L tx个射频通道的1个终端设备,且第一设备的天线数量N tx>射频通道数量L tx,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景。需要说明的是,由于第一设备为单天线(即只有1根天线),因此第一设备只能采用该1根天线与第二设备进行交互。其中:
S801、第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数。
S802、第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集。
需要说明的是,有关步骤S801~S802的理解可参见图4中对步骤S401~S402的描述,在此不再进行赘述。有关
S803、第二设备在第T+1个时间单元至第2T个时间单元分别通过第T+1个时间单元对应的第一天线子集向第一设备发送第二信道探测序列。相应地,第一设备在第T+1个时间单元至第2T个时间单元,接收来自第二设备的第二信道探测序列。
其中,第二信道探测序列用于确定T个第二天线子集,T个第二天线子集中的每个第二天线子集和每个第二天线子集的权重系数用于确定第一设备在第2T+1个时间单元对应的第二天线子集,T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。其中,有关第二设备如何根据第二信道探测序列确定第T+1个时间单元至第2T个时间单元对应的第二天线子集,以及如何根据确定出的第T+1个时间单元至第2T个时间单元对应的 第二天线子集以及每个第二天线子集的权重系数确定第2T+1个时间单元对应的第二天线子集的实现方案可参见第一设备根据第一信道探测序列确定第1个时间单元至第T个时间单元对应的第一天线子集,以及根据确定出的第1个时间单元至第T个时间单元对应的第一天线子集以及每个第一天线子集的权重系数确定第T+1个时间单元对应的第一天线子集的描述,在此不再赘述。
S804、第二设备使用第(T+1)个时间单元对应的第一天线子集与第一设备进行数据通信。相应地,第一设备使用第(2T+1)个时间单元对应的第二天线子集与第一设备进行数据通信。
这里,第一设备与第二设备之间的数据通信可以理解为第一设备向第二设备发送上行用户数据,其中,第一设备发送上行用户数据使用的天线为第(T+1)个时间单元对应的第一天线子集,第二设备接收上行用户数据使用的天线为第(2T+1)个时间单元对应的第二天线子集。
在本申请实施中,当第一设备也配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,还可以通过第二设备向第一设备发送第二信道探测序列,以用于第一设备确定第一设备在第2T+1个时间单元对应的最佳的第二天线子集,增加了本方案的普适性。
可选的,针对第一设备为装备了N tx个天线的多层紧致天线和L tx个射频通道的1个终端设备,且第一设备的天线数量N tx>射频通道数量L tx,第二设备为装备了N rx个天线和L rx个射频通道的1个接入网设备,且该第二设备的天线数量N rx>射频通道数量L rx的场景,在另一种实现,还包括图9所示的步骤S901~S907:
S901、第二设备获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和T个第一天线子集的T个权重系数。
S902、第二设备根据T个第一天线子集和T个权重系数确定第T+1个时间单元对应的第一天线子集。
S903、第二设备在第T+1个时间单元至第2T个时间单元分别通过第T+1个时间单元对应的第一天线子集向第一设备发送第二信道探测序列。相应地,第一设备在第T+1个时间单元至第2T个时间单元,接收来自第二设备的第二信道探测序列。
需要说明的是,有关步骤S901~S903的理解可参见图8中对步骤S801~S803的描述,在此不再进行赘述。
S904、第二设备确定第(N*T+1)个时间单元对应的第一天线子集与第((N-2)*T+1)个时间单元对应的第一天线子集的变化量。
其中,上述N为大于2的整数。也就是说,可将上述S901~S903交互迭代N次,进一步地,第二设备判断第(N*T+1)个时间单元与第S((N-2)*T+1)个时间单元对应的第一天线子集的变化量是否小于第一预设门限。
S905、当变化量小于第一预设门限时,第二设备向第一设备发送第二指示信息。相应地,第一设备接收来自第二设备的第二指示信息。
可理解的,当变化量小于第一预设门限时,即认为第(N*T+1)个时间单元对应的第一天线子集已经收敛趋于稳定,因此第二设备可以向第一设备发送第二指示信息。该第二指示信息用于指示第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信,或者,理解为该第二指示信息用于通知第一设备停止迭代。
S906、第二设备使用第(N*T+1)个时间单元对应的第一天线子集与第一设备进行数据通信。
这里,第二设备通过第(N*T+1)个时间单元对应的第一天线子集与第一设备进行通信可理解为:在第(N*T+1)个时间单元至第(N*T+1)+x个时间单元通过第(N*T+1)个时间单元对应的第一天线子集与第一设备进行通信,x为大于0的整数。为方便描述,以下主要以x=0进行说明,即在第(N*T+1)个时间单元通过第(N*T+1)个时间单元对应的第一天线子集与第一设备进行数据通信。这里的通信可以理解为数据通信,例如,第二设备在第(N*T+1)个时间单元使用第(N*T+1)个时间单元对应的第一天线子集S(N*T+1)接收来自第一设备的上行用户数据。又例如,第二设备在第(N*T+1)个时间单元使用第(N*T+1)个时间单元对应的第一天线子集S(N*T+1)向第一设备发送下行用户数据。
在该种实现中,当第一设备配置了多个天线,且该多个天线的数量大于第一设备的射频通道的数量时,通过收发两端的迭代式交互使得两侧的天线拓扑同时达到收敛和稳定状态时,即为最适配传播环境的最佳天线拓扑,有利于提高系统吞吐量。
可选的,在上述S906之后,即使用第(N*T+1)个时间单元对应的第一天线子集与第一设备进行数据通信之后,还可以包括如下步骤S907:
S907、若数据通信的通信质量不满足预设通信质量,则第二设备向第一设备发送第三指示信息。相应地,第一设备接收来自第二设备的第三指示信息。
其中,第三指示信息用于指示第二设备发送第一信道探测序列,第一信道探测序列用于更新第二设备与第一设备进行数据通信的第一天线子集。也就是说,第二设备与第一设备之间可通过监测通信性能动态地重启和关闭多次迭代发送信道探测序列(即第一信道探测序列和第二信道探测序列)的过程,即重新迭代执行上述步骤S901~S905,以使得双方的动态天线拓扑能够更好地适应时变信道的方法流程。其中,通信质量可通过误码率(bit error ratio,BER)或者误块率(block error ratio,BLER)体现,在此不做限制。
在该种实现方式下,第二设备通过检测与第一设备间的通信质量,以根据通信质量间歇式发送信道探测序列,增加了本申请方案对时变信道的适应性,且增加了系统吞吐量的鲁棒性。
下面将结合图10~图13对本申请提供的通信装置进行详细说明。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图。图10所示的通信装置可以用于执行上述图4~图9所描述的方法实施例中第一设备的部分或全部功能。该装置可以是第一设备,也可以是第一设备中的装置,或者是能够和第一设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图10所示的通信装置可以包括收发单元1001和处理单元1002。其中,处理单元1002,用于进行数据处理。收发单元1001集成有接收单元和发送单元。收发单元1001也可以称为通信单元。或者,也可将收发单元1001拆分为接收单元和发送单元。下文的处理单元1002和收发单元1001同理,下文不再赘述。其中:
处理单元1002,用于确定第一信道探测序列;
收发单元1001,用于在T个时间单元中的第t个时间单元,向第二设备发送所述第一信道探测序列;所述T为正整数,所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N rx为所述第二设备包括的天线数量,所述N tx为所述第一设备包括的天线数量,所述N rx和所述N tx为大于0的整数,所述t={1,2,...,T},所述第一信道矩阵H(t)用于从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集,所述T个时间单元对应的T个第一天线子集中的每个第一天线子集和所述每个第一天线子集的权重系数用于确定所述第二设备在第T+1个时间单元对应的第一天线子集,所述 每个第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线中的L rx个,所述L rx为正整数,且N rx>L rx
在一种可能的实现中,所述收发单元1001还用于:
在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,所述x为大于0的整数。
在一种可能的实现中,所述收发单元1001还用于:
接收来自所述第二设备的第一消息,所述第一消息中包括所述T。
在一种可能的实现中,所述收发单元1001还用于:
接收来自所述第二设备的第二消息,所述第二消息中包括退化失效系数β。
在一种可能的实现中,N tx为大于1的整数;
所述收发单元1001还用于:
接收来自所述第二设备的第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在一种可能的实现中,所述第一设备还包括L tx个射频通道,N tx>L tx为正整数,且N tx>L tx;所述x等于T;在所述在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信时,所述收发单元1001还用于:
在所述第T+1个时间单元至第2T个时间单元,接收来自所述第二设备的第二信道探测序列;所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和所述每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在一种可能的实现中,所述收发单元1001还用于:
接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信,所述N为大于2的整数。
在一种可能的实现中,所述收发单元1001还用于:
接收来自所述第二设备的第三指示信息,所述第三指示信息用于指示所述第一设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
该通信装置的其他可能的实现方式,可参见上述图4~图9对应的方法实施例中对第一设备功能的相关描述,在此不赘述。
请参见图11,图11是本申请实施例提供的另一种通信装置的结构示意图。图11所示的通信装置可以用于执行上述图4~图9所描述的方法实施例中第二设备的部分或全部功能。该装置可以是第二设备,也可以是第二设备中的装置,或者是能够和第二设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图11所示的通信装置可以包括收发单元1101和处理单元1102。其中:
收发单元1101,用于获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和所述T个第一天线子集的T个权重系数;所述T个时间单元对应的T个第一天线子集基于第一信道探测序列确定;所述T为正整数,每个所述第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线的L rx个;所述T个第一天线子集用于在所述T个时间单元与第 一设备进行通信;
处理单元1102,用于根据所述T个第一天线子集和所述T个权重系数确定所述第T+1个时间单元对应的第一天线子集;
所述收发单元1101,用于通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信。
在一种可能的实现中,在所述通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信时,所述收发单元1101用于:
在第T+1个时间单元至第T+x个时间单元通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,所述x为大于0的整数。
在一种可能的实现中,在所述获取T个时间单元对应的T个第一天线子集时,所述收发单元1101用于:
在所述T个时间单元中的第t个时间单元,通过s个天线子集接收来自所述第一设备的所述第一信道探测序列;所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N tx为所述第一设备包括的天线数量,所述N tx为大于0的整数,所述s个天线子集中每个天线子集中包括L rx个天线,不同天线子集包括的天线中至少有一个不同,所述t={1,2,...,T},
Figure PCTCN2022117086-appb-000013
根据所述第一信道矩阵H(t)从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集。
在一种可能的实现中,所述收发单元1101还用于:
向所述第一设备发送第一消息,所述第一消息中包括所述T。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述处理单元1102还用于:
当所述T个时间单元对应的T个信干比的平均值小于或者等于第一预设阈值时,增大所述T的取值;
当所述T个时间单元对应的T个信干比的平均值大于或者等于第二预设阈值时,减小所述T的取值;所述第一预设阈值小于所述第二预设阈值。
在一种可能的实现中,所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述第t个时间单元对应的信干比γ(t)确定的,所述第一序列是单调不减的,所述t={1,2,...,T},所述i={1,2,...,T}。
在一种可能的实现中,所述处理单元1102还用于:
获取第一队列,所述第一队列中依次包括所述T个时间单元对应的T个信干比;
获取所述第T+1个时间单元对应的信干比;
从所述第一队列的队首删除第1个时间单元对应的信干比,并且将所述第T+1个时间单元对应的信干比存入所述第一队列的队尾,得到更新后的第一队列;
更新第t个时间单元对应的第一天线子集的权重系数a(t);所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述更新后的第一队列中所述第t个时间单元对应的信干比γ(t)确定的,所述t={2,...,T},所述i={1,2,...,T-1};
确定第T+1个时间单元对应的第一天线子集的权重系数a(T+1);所述第T+1个时间单元对应的第一天线子集的权重系数a(T+1)为根据所述更新后的第一队列的第T个元素与所述第 T+1个时间单元进行所述通信时的信干比确定。
在一种可能的实现中,所述w(i)满足:
w(i)=d;
其中,所述d∈[0,1]。
在一种可能的实现中,所述第一序列由退化失效系数β和T确定;其中,所述β∈[0,1]。
在一种可能的实现中,所述w(i)满足:
w(i)=c*(β) T-i+e;
其中,所述i={1,2,...,T},所述c为正常数,所述e为常数。
在一种可能的实现中,所述T个时间单元对应T个信干比;所述处理单元1102还用于:
当所述T个时间单元对应的信干比的方差小于或者等于第三预设阈值时,增大所述β的取值;
当所述T个时间单元对应的信干比的方差大于或者等于第四预设阈值时,减小所述β的取值;所述第三预设阈值小于所述第四预设阈值。
在一种可能的实现中,所述收发单元1101还用于:
向所述第一设备发送第二消息,所述第二消息中包括所述β,所述β用于确定所述第一设备在第T+1个时间单元至第2T个时间单元中每个时间单元对应的第二天线子集的权重系数。
在一种可能的实现中,所述第T+1个时间单元对应的第一天线子集包括目标天线集合中权重系数最大的L rx个天线,所述目标天线集合为所述T个第一天线子集的并集,所述目标天线集合中天线z的权重系数为所述天线z所在的第一天线子集的权重系数之和,所述天线z为所述目标天线集合中的任意一个天线。
在一种可能的实现中,所述第一设备包括N tx个天线,N tx为大于1的整数;
所述收发单元1101还用于:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
在一种可能的实现中,所述收发单元1101还用于:
根据所述第T+1个时间单元对应的第一天线子集和所述第t个时间单元对应的第一信道矩阵H(t)从N tx个天线中确定出所述第一天线,所述t为整数且t∈[1,T]。
在一种可能的实现中,所述第一设备包括N tx个天线和L tx个射频通道,所述N tx和L tx正整数,且N tx>L tx
在所述通过所述第T+1个时间单元对应的第一天线子集与第一设备进行通信时,所述收发单元1101用于:
在所述第T+1个时间单元至第2T个时间单元分别通过所述第T+1个时间单元对应的第一天线子集向所述第一设备发送第二信道探测序列,所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
在一种可能的实现中,所述处理单元1102,还用于确定第(N*T+1)个时间单元对应的第一天线子集与第((N-2)*T+1)个时间单元对应的第一天线子集的变化量;所述N为大于2的整数;
所述收发单元1101,还用于当所述变化量小于第一预设门限时,向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信;
所述收发单元1101,还用于使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信。
在一种可能的实现中,所述使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信之后,所述处理单元1102还用于:
若所述数据通信的通信质量不满足预设通信质量,则通过所述收发单元1101向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第二设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
该通信装置的其他可能的实现方式,可参见上述图4~图9对应的方法实施例中对第二设备功能的相关描述,在此不赘述。
请参见图12,图12是本申请实施例提供的另一种通信装置的结构示意图。如图12所示,该通信装置可以为本申请实施例中描述的第一设备,用于实现上述图4~图9中第一设备的功能。其中第一设备可以为接入网设备,也可以为终端设备,为了便于说明,图12主要以第一设备为终端设备为例进行说明,其中,图12仅示出了终端设备1200的主要部件。如图12所示,终端设备1200包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1200进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。可选的,存储器和处理器可以集成在一起。
以终端设备1200为手机为例,当终端设备1200开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备1200时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在一些实施例中,终端设备1200可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备1200进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备1200可以包括多个基带处理器以适应不同的网络制式,终端设备1200可以包括多个中央处理器以增强其处理能力,终端设备1200的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可 以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1200的收发单元1210,将具有处理功能的处理器视为终端设备1200的处理单元1220。如图12所示,终端设备1200包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
请参见图13,图13是本申请实施例提供的另一种通信装置的结构示意图。如图13所示,该通信装置可以为本申请实施例中描述的第二设备,用于实现上述图4~图9中第二设备的功能。其中,第二设备可以为接入网设备,也可以为终端设备,为了便于说明,图13主要以第二设备为接入网设备为例进行说明。该第二设备包括:基带装置131,射频装置132、天线133。在上行方向上,射频装置132通过天线133接收终端设备发送的信息,将终端设备发送的信息发送给基带装置131进行处理。在下行方向上,基带装置131对终端设备的信息进行处理,并发送给射频装置132,射频装置132对终端设备的信息进行处理后经过天线133发送给终端设备。
基带装置131包括一个或多个处理单元1311,存储单元1312和接口1313。其中处理单元1311用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元1312用于存储软件程序和/或数据。接口1313用于与射频装置132交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元1312与处理单元1311可以位于同一个芯片中,即片内存储元件。或者存储单元1312与处理单元1311也可以为与处理单元1311处于不同芯片上,即片外存储元件。所述存储单元1312可以是一个存储器,也可以是多个存储器或存储元件的统称。可选的,存储单元和处理单元可以集成在一起。
第二设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图4~图9中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过 其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,其特征在于,所述方法应用于第一设备,所述方法包括:
    确定第一信道探测序列;
    在T个时间单元中的第t个时间单元,向第二设备发送所述第一信道探测序列;所述T为正整数,所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N rx为所述第二设备包括的天线数量,所述N tx为所述第一设备包括的天线数量,所述N rx和所述N tx为大于0的整数,所述t={1,2,...,T},所述第一信道矩阵H(t)用于从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集,所述T个时间单元对应的T个第一天线子集中的每个第一天线子集和所述每个第一天线子集的权重系数用于确定所述第二设备在第T+1个时间单元对应的第一天线子集,所述每个第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线中的L rx个,所述L rx为正整数,且N rx>L rx
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,所述x为大于0的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二设备的第一消息,所述第一消息中包括所述T。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二设备的第二消息,所述第二消息中包括退化失效系数β。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,N tx为大于1的整数;
    所述方法还包括:
    接收来自所述第二设备的第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
  6. 根据权利要求2所述的方法,其特征在于,所述第一设备还包括L tx个射频通道,N tx>L tx为正整数,且N tx>L tx;所述x等于T;所述在第T+1个时间单元至第T+x个时间单元与所述第二设备进行通信,包括:
    在所述第T+1个时间单元至第2T个时间单元,接收来自所述第二设备的第二信道探测序列;所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和所述每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信,所述N为大于2的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二设备的第三指示信息,所述第三指示信息用于指示所述第一设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
  9. 一种通信方法,其特征在于,所述方法应用于包括N rx个天线和L rx个射频通道的第二设备,所述N rx和所述L rx为正整数,且N rx>L rx,所述方法包括:
    获取第T+1个时间单元之前的T个时间单元对应的T个第一天线子集和所述T个第一天线子集的T个权重系数;所述T个时间单元对应的T个第一天线子集基于第一信道探测序列确定;所述T为正整数,每个所述第一天线子集中包括L rx个天线,所述L rx个天线为所述N rx个天线的L rx个;所述T个第一天线子集用于在所述T个时间单元与第一设备进行通信;
    根据所述T个第一天线子集和所述T个权重系数确定所述第T+1个时间单元对应的第一天线子集;
    通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信。
  10. 根据权利要求9所述的方法,其特征在于,所述通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,包括:
    在第T+1个时间单元至第T+x个时间单元通过所述第T+1个时间单元对应的第一天线子集与所述第一设备进行通信,所述x为大于0的整数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述获取T个时间单元对应的T个第一天线子集,包括:
    在所述T个时间单元中的第t个时间单元,通过s个天线子集接收来自所述第一设备的所述第一信道探测序列;所述第一信道探测序列用于确定第一信道矩阵H(t),所述第一信道矩阵H(t)为N rx行N tx列的矩阵,所述N tx为所述第一设备包括的天线数量,所述N tx为大于0的整数,所述s个天线子集中每个天线子集中包括L rx个天线,不同天线子集包括的天线中至少有一个不同,所述t={1,2,...,T},
    Figure PCTCN2022117086-appb-100001
    根据所述第一信道矩阵H(t)从所述N rx个天线中确定出所述第t个时间单元对应的第一天线子集。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一消息,所述第一消息中包括所述T。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述T个时间单元对应T个信干比;所述方法还包括:
    当所述T个时间单元对应的T个信干比的平均值小于或者等于第一预设阈值时,增大所述T的取值;
    当所述T个时间单元对应的T个信干比的平均值大于或者等于第二预设阈值时,减小所 述T的取值;所述第一预设阈值小于所述第二预设阈值。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述第t个时间单元对应的信干比γ(t)确定的,所述第一序列是单调不减的,所述t={1,2,...,T},所述i={1,2,...,T}。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    获取第一队列,所述第一队列中依次包括所述T个时间单元对应的T个信干比;
    获取所述第T+1个时间单元对应的信干比;
    从所述第一队列的队首删除第1个时间单元对应的信干比,并且将所述第T+1个时间单元对应的信干比存入所述第一队列的队尾,得到更新后的第一队列;
    更新第t个时间单元对应的第一天线子集的权重系数a(t);所述第t个时间单元对应的第一天线子集的权重系数a(t)为根据第一序列中第i个元素w(i)与所述更新后的第一队列中所述第t个时间单元对应的信干比γ(t)确定的,所述t={2,...,T},所述i={1,2,...,T-1};
    确定第T+1个时间单元对应的第一天线子集的权重系数a(T+1);所述第T+1个时间单元对应的第一天线子集的权重系数a(T+1)为根据所述更新后的第一队列的第T个元素与所述第T+1个时间单元进行所述通信时的信干比确定。
  16. 根据权利要求14或15所述的方法,其特征在于,所述w(i)满足:
    w(i)=d;
    其中,所述d∈[0,1]。
  17. 根据权利要求14或15所述的方法,其特征在于,所述第一序列由退化失效系数β和T确定;其中,所述β∈[0,1]。
  18. 根据权利要求17所述的方法,其特征在于,所述w(i)满足:
    w(i)=c*(β) T-i+e;
    其中,所述i={1,2,...,T},所述c为正常数,所述e为常数。
  19. 根据权利要求17或18所述的方法,其特征在于,所述T个时间单元对应T个信干比;所述方法还包括:
    当所述T个时间单元对应的信干比的方差小于或者等于第三预设阈值时,增大所述β的取值;
    当所述T个时间单元对应的信干比的方差大于或者等于第四预设阈值时,减小所述β的取值;所述第三预设阈值小于所述第四预设阈值。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第二消息,所述第二消息中包括所述β,所述β用于确定所述第一设备在第T+1个时间单元至第2T个时间单元中每个时间单元对应的第二天线子集的权重系数。
  21. 根据权利要求9-20任一项所述的方法,其特征在于,所述第T+1个时间单元对应的第一天线子集包括目标天线集合中权重系数最大的L rx个天线,所述目标天线集合为所述T个第一天线子集的并集,所述目标天线集合中天线z的权重系数为所述天线z所在的第一天线子集的权重系数之和,所述天线z为所述目标天线集合中的任意一个天线。
  22. 根据权利要求9-21任一项所述的方法,其特征在于,所述第一设备包括N tx个天线,N tx为大于1的整数;
    所述方法还包括:
    向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一天线,所述N tx个天线包括所述第一天线,所述第一天线用于所述第一设备与所述第二设备进行通信。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    根据所述第T+1个时间单元对应的第一天线子集和所述第t个时间单元对应的第一信道矩阵H(t)从N tx个天线中确定出所述第一天线,所述t为整数且t∈[1,T]。
  24. 根据权利要求9-23任一项所述的方法,其特征在于,所述第一设备包括N tx个天线和L tx个射频通道,所述N tx和L tx正整数,且N tx>L tx
    所述通过所述第T+1个时间单元对应的第一天线子集与第一设备进行通信,包括:
    在所述第T+1个时间单元至第2T个时间单元分别通过所述第T+1个时间单元对应的第一天线子集向所述第一设备发送第二信道探测序列,所述第二信道探测序列用于确定T个第二天线子集,所述T个第二天线子集中的每个第二天线子集和每个第二天线子集的权重系数用于确定所述第一设备在第2T+1个时间单元对应的第二天线子集,所述T个第二天线子集为第T+1个时间单元至第2T个时间单元对应的第二天线子集。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    确定第(N*T+1)个时间单元对应的第一天线子集与第((N-2)*T+1)个时间单元对应的第一天线子集的变化量;所述N为大于2的整数;
    当所述变化量小于第一预设门限时,向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第一设备使用第((N-1)*T+1)个时间单元对应的第二天线子集与第二设备进行数据通信;
    使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信。
  26. 根据权利要求25所述的方法,其特征在于,所述使用所述第(N*T+1)个时间单元对应的第一天线子集与所述第一设备进行数据通信之后,所述方法还包括:
    若所述数据通信的通信质量不满足预设通信质量,则向所述第一设备发送第三指示信息,所述第三指示信息用于指示所述第二设备发送所述第一信道探测序列,所述第一信道探测序列用于更新所述第二设备与所述第一设备进行数据通信的第一天线子集。
  27. 一种通信装置,其特征在于,包括用于执行权利要求1-8中任一项所述方法的单元或模块,或者,包括用于执行权利要求9-26中任一项所述方法的单元或模块。
  28. 一种通信装置,其特征在于,包括:
    一个或多个处理器,一个或多个收发器和一个或多个存储器;
    其中,所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器和所述一个或多个收发器用于执行存储于所述一个或多个存储器中的计算机程序,以使得所述通信装置执行如权利要求1-8中任一项所述的方法,或者,执行如权利要求9-26中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求9-26中任一项所述的方法,或者,执行如权利要求1-8中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以实现权利要求1-8中任一项所述的方法,或者,执行如权利要求9-26中任一项所述的方法。
  31. 一种通信系统,其特征在于,包括第一设备和第二设备,其中所述第一设备用于执行如权利要求1-8中任一项所述的方法,所述第二设备用于执行如权利要求9-26中任一项所述的方法。
PCT/CN2022/117086 2022-09-05 2022-09-05 通信方法及相关装置 WO2024050667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117086 WO2024050667A1 (zh) 2022-09-05 2022-09-05 通信方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117086 WO2024050667A1 (zh) 2022-09-05 2022-09-05 通信方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024050667A1 true WO2024050667A1 (zh) 2024-03-14

Family

ID=90192637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117086 WO2024050667A1 (zh) 2022-09-05 2022-09-05 通信方法及相关装置

Country Status (1)

Country Link
WO (1) WO2024050667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502180A (zh) * 2001-04-07 2004-06-02 Ħ��������˾ 控制多输入、多输出通信信道的收发器中的方法和系统
CN101258730A (zh) * 2005-09-30 2008-09-03 三菱电机研究实验室 用于在mimo无线lan中选择天线和波束的训练信号
CN101405957A (zh) * 2006-03-23 2009-04-08 三菱电机株式会社 多输入多输出无线通信网络中选择天线的方法
US20110249760A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on measurements in a wireless device
CN110800219A (zh) * 2017-07-06 2020-02-14 华为技术有限公司 波束赋形训练的方法、接收设备和发送设备
CN112054825A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种信道测量方法和通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502180A (zh) * 2001-04-07 2004-06-02 Ħ��������˾ 控制多输入、多输出通信信道的收发器中的方法和系统
CN101258730A (zh) * 2005-09-30 2008-09-03 三菱电机研究实验室 用于在mimo无线lan中选择天线和波束的训练信号
CN101405957A (zh) * 2006-03-23 2009-04-08 三菱电机株式会社 多输入多输出无线通信网络中选择天线的方法
US20110249760A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on measurements in a wireless device
CN110800219A (zh) * 2017-07-06 2020-02-14 华为技术有限公司 波束赋形训练的方法、接收设备和发送设备
CN112054825A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种信道测量方法和通信装置

Similar Documents

Publication Publication Date Title
JP7184893B2 (ja) 無線ネットワーク用の結合ビーム報告
Psomas et al. Impact of directionality on interference mitigation in full-duplex cellular networks
US10924161B2 (en) Method for performing communication based on beam group, and device
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
EP3940968B1 (en) A method and an apparatus for a transmission scheme
WO2021041859A1 (en) Deep learning aided fingerprint based beam alignment
EP3793096A1 (en) Efficient data generation for beam pattern optimization
WO2022175035A1 (en) Wireless telecommunications network including a multi-layer transmissive reconfigureable intelligent surface
WO2024027394A1 (zh) 一种通信方法及装置
US11664867B2 (en) Computation of beamforming parameters
WO2024050667A1 (zh) 通信方法及相关装置
WO2022206328A1 (zh) 一种通信协作方法及装置
CN113541750B (zh) 协作波束赋形方法、通信装置、通信系统及存储介质
WO2020238922A1 (zh) 通信方法及装置
CN117397173A (zh) 信息传输方法、设备及存储介质
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression
US11985009B2 (en) Determining covariance using a lossy compression method
WO2023020034A1 (zh) 一种权值确定方法及装置
Zhihong et al. Review on strategic technology of dense connection for the future mobile network [J]
WO2024059969A1 (zh) 一种信道估计方法、装置及系统
EP4120579A1 (en) Interference aware eigen-beamforming based on second order statistics
WO2024087028A1 (zh) 一种信道测量方法及装置
US11824610B2 (en) Calculation of beamforming weights for reciprocity based beamforming without UE transmit antenna selection
WO2023232040A1 (zh) 通信方法及通信装置
WO2024065833A1 (en) Model monitoring for ml-based csi compression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957642

Country of ref document: EP

Kind code of ref document: A1