WO2024087734A1 - 一种真空管道高温超导磁悬浮高速试验平台及其试验方法 - Google Patents

一种真空管道高温超导磁悬浮高速试验平台及其试验方法 Download PDF

Info

Publication number
WO2024087734A1
WO2024087734A1 PCT/CN2023/106729 CN2023106729W WO2024087734A1 WO 2024087734 A1 WO2024087734 A1 WO 2024087734A1 CN 2023106729 W CN2023106729 W CN 2023106729W WO 2024087734 A1 WO2024087734 A1 WO 2024087734A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature superconducting
magnetic levitation
model car
superconducting magnetic
vacuum
Prior art date
Application number
PCT/CN2023/106729
Other languages
English (en)
French (fr)
Inventor
张卫华
邓自刚
周文祥
毕海权
王远波
马启文
梁乐
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Priority to US18/483,477 priority Critical patent/US12065040B2/en
Publication of WO2024087734A1 publication Critical patent/WO2024087734A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/10Combination of electric propulsion and magnetic suspension or levitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of magnetic suspension, and in particular to a vacuum tube high-temperature superconducting magnetic suspension high-speed test platform and a test method thereof.
  • the purpose of the present invention is to provide a vacuum pipeline high-temperature superconducting magnetic levitation high-speed test platform and its test method to improve the above problems.
  • the technical solution adopted by the present invention is as follows:
  • the present application provides a vacuum pipe high-temperature superconducting magnetic levitation high-speed test platform, including: a vacuum pipe, a support platform, a model car and a gantry, wherein one end of the vacuum pipe is closed, and the other end of the vacuum pipe is provided with a vacuum isolation door; the support platform is arranged in the vacuum pipe, and a permanent magnet track and a stator winding are arranged on the support platform; a mover and a low-temperature dewar are arranged at the bottom of the model car, and a superconducting block material is arranged in the low-temperature dewar, and the stator winding is coupled with the mover after being energized to generate a driving force to push the model car forward, and the superconducting block material cooperates with the permanent magnet track to generate a suspension force, and the side wall of the model car is made of metal material; the gantry is arranged on the support platform, and the gantry A permanent magnet is arranged on the column of the frame,
  • the present application also provides a vacuum tube high-temperature superconducting magnetic levitation high-speed test method, comprising:
  • the field cooling plate is removed, and the model car is suspended on the permanent magnetic track;
  • the mover and the stator winding are energized, and under the action of electromagnetic force, the mover pushes the model car to accelerate in the vacuum pipe;
  • the body of the model car and the permanent magnet When the model car arrives at the area where the gantry is located, the body of the model car and the permanent magnet generate eddy currents to decelerate the model car.
  • the vacuum tube high-temperature superconducting maglev high-speed test platform composed of a vacuum tube, a support platform, a model car and a gantry can accelerate the model car to 400 km/h or above through bilateral linear motors to carry out corresponding research on the suspension and guidance performance of the high-temperature superconducting maglev, and can also carry out research on the high-temperature superconducting maglev vehicle-track coupling mechanism and dynamic stability, the dynamic characteristics of double-track trains meeting, the dynamic coupling mechanism and model of magnetic-electric-force-pneumatic multi-physical fields between the high-temperature superconducting maglev vehicle and the track, and the suspension, guidance and aerodynamic characteristics of the high-temperature superconducting maglev vehicle in a low-pressure environment.
  • FIG1 is a schematic structural diagram of Embodiment 1;
  • FIG2 is a schematic diagram of the cross-sectional structure of Example 2.
  • this embodiment provides a vacuum tube high-temperature superconducting magnetic levitation high-speed test platform.
  • the figure shows a vacuum pipe 15 (the complete pipe body is not shown in the figure), a support platform, a model car 1 and a gantry 8 in the present application.
  • the present application also includes a vacuum system (not shown in the figure) used in conjunction with the vacuum pipe 15, wherein the specific structure of the vacuum system can be a vacuum extraction method combining a molecular pump and a mechanical pump in the prior art, which will not be described in detail in the present application.
  • one end of the vacuum pipe 15 is closed, and the other end of the vacuum pipe 15 is provided with a vacuum isolation door (not shown in the figure), and the inspection and maintenance of the model car 1 is achieved by controlling the opening and closing of the vacuum isolation door.
  • a support platform is arranged in a vacuum pipe 15, and a permanent magnet track 7 and a stator winding 13 are provided on the support platform.
  • the stator winding 13 includes a stator core and a coil electrically connected to the energy supply device.
  • a mover 3 and a cryogenic dewar 5 are provided at the bottom of the model car 1. It should also be noted that in the present application, the mover 3 is also electrically connected to the energy supply device, wherein the cryogenic dewar 5 is fixedly connected to the bogie located on the model car 1, and a superconducting block material is provided in the cryogenic dewar 5.
  • stator winding 13 and the mover 3 are coupled to generate a driving force to form an electrically excited linear synchronous drive system to push the model car 1 forward.
  • the superconducting block material cooperates with the permanent magnet track 7 to generate a suspension force, and the side wall of the model car 1 is made of metal material; a gantry 8 is arranged on the support platform, and a permanent magnet 9 is provided on the column of the gantry 8.
  • the permanent magnet 9 is coupled with the body of the model car 1 to form an eddy current on the body of the model car 1.
  • the cavity formed by the gantry 8, the permanent magnet 9 and the support platform is for the model car 1 to pass through.
  • the projection area of the permanent magnet on the side wall of the model car 1 accounts for more than 30% of the side wall of the model car 1.
  • the projection area of the permanent magnet on the side wall of the model car 1 accounts for a percentage of the area of the side wall of the model car 1 greater than or equal to 30%.
  • the vacuum pipe 15 is used to provide a low vacuum environment for the high-temperature superconducting maglev train to reduce the resistance during the operation of the train, while improving the suspension performance of the maglev system, so that scientific researchers can study the suspension and guidance performance of the high-temperature superconducting maglev at speeds of 400 km and above; and because the vacuum pipe 15 reduces the interference factor of the outside air, the present application can more purely study the high-temperature superconducting maglev vehicle-track coupling mechanism and dynamic stability.
  • the vacuum degree it is also possible to explore the dynamic coupling mechanism of the magnetic-electric-force-gas multi-physical fields between the tracks of the high-temperature superconducting magnetic levitation vehicle and the suspension, guidance, and aerodynamic characteristics of the high-temperature superconducting magnetic levitation vehicle under a low-pressure environment.
  • the eddy current braking system composed of the permanent magnet 9 on the gantry 8 and the side wall of the model car 1 in the present application can produce a greater braking effect, compared with the prior art, its braking distance is shorter, and the existing model car 1 structure can be effectively utilized, without further customization of the bogie required for eddy current braking, reducing the customization cost in this application.
  • the method of directly fixing the permanent magnet 9 on the column of the gantry 8 can effectively control the magnetic flux of the permanent magnet 9 according to the final test speed of the model car 1, and can effectively brake the model car 1 at a speed above 400km/h, ensuring the safety of the entire experimental device.
  • the vacuum pipe 15 is further divided into three areas, the first being the motor acceleration section 18, the second being the motor deceleration section 19 and the third being the eddy current braking section 20.
  • the stator winding 13 is two groups
  • the support platform includes a support structure 11, a bearing platform 12 and a stator mounting frame 16
  • the support structure 11 is fixed to the bottom of the vacuum pipe 15
  • the bearing platform 12 is horizontally arranged on the support structure 11
  • the stator mounting frame 16 is U-shaped
  • the horizontal part of the stator mounting frame 16 is fixedly connected to the bearing platform 12
  • the two groups of stator windings 13 are respectively arranged on the inner side wall of the stator mounting frame 16
  • the mover 3 is arranged between the two groups of stator windings 13.
  • the stator windings 13 on both sides are energized at the same time, and the stator located in the middle is subjected to more alternating repulsion and attraction.
  • the mover 3 is arranged on the symmetry axis of the stator mounting frame 16, and at the same time, in the present application, the length of the stator winding 13 in the vertical direction is greater than the width of the model car 1.
  • the above arrangement can provide a large overlap area between the stator winding 13 and the mover 3 in the vertical direction, and provide a greater speed for the mover 3.
  • a position detection device (not shown in the figure) is set on the stator mounting frame 16, and the specific setting position is located on the vertical part of the stator mounting frame 16. It can be installed above or below the stator winding 13, and no specific restrictions are made in this application.
  • the position detection device can be a laser rangefinder, and then further, a protrusion arranged according to a preset rule is provided at the height corresponding to the mover 3 to eliminate the influence of high speed.
  • the first group of protrusions are arranged in a manner with different spacings
  • the second group of protrusions are arranged in a manner with the same spacings
  • the third group of protrusions are arranged in a manner with different spacings, wherein the spacings used in the first group are all smaller than the spacings used in the third group.
  • a V-shaped groove 10 is provided at the bottom of the inner surface of the stator mounting frame 16, and a section of the mover 3 near the bottom of the stator mounting frame 16 is a V-shaped setting that matches the V-shaped groove 10.
  • a section of the V-shaped shape of the mover 3 extends into the V-shaped groove 10, and the symmetry axis of the V-shaped groove 10 coincides with the symmetry axis of the stator mounting frame 16.
  • the V-shaped groove 10 under the mover 3 suppresses the normal force of the linear motor.
  • the traveling wave magnetic field generated by the stator can generate a normal force perpendicular to the direction of movement in addition to the driving force along the direction of movement. If there is no constraint of the V-shaped groove 10, the mover 3 will collide with the side.
  • the V-shaped groove 10 is added to prevent the side from colliding.
  • the supporting platform also includes a base 4, which is arranged on the top of the stator mounting frame 16 and covers the stator mounting frame 16.
  • a moving opening for the mover 3 to pass through is opened on the base 4, and the symmetry axis of the moving opening coincides with the symmetry axis of the stator mounting frame 16.
  • the two permanent magnet rails of the permanent magnet track 7 are respectively arranged on both sides of the moving opening and are arranged parallel to the moving opening.
  • the base 4 is made of stainless steel.
  • a magnetic isolation base is also provided between the permanent magnetic track 7 and the base 4, and the magnetic isolation base is connected to the permanent magnetic track 7 and the magnetic isolation base by bolts, and the permanent magnetic track is fixed to the stainless steel base 4 by bolts.
  • the permanent magnet 9 is preferably arranged in a strip shape in the present application, and the length of the permanent magnet is greater than the length of the model car 1.
  • the permanent magnet 9 in the present application can be composed of a plurality of small permanent magnets 9, and no specific restrictions are made in the present application.
  • the number of permanent magnets 9 in the present application is two, and the two permanent magnets 9 are respectively arranged on the two inner sides of the gantry 8.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Example 1 a method for testing using Example 1 is provided in the present application, specifically comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Linear Motors (AREA)

Abstract

一种真空管道(15)高温超导磁悬浮高速试验平台及其试验方法,涉及磁悬浮技术领域,该试验平台包括真空管道(15)、支撑平台、模型车(1)和龙门架(8);支撑平台设置于真空管道(15)内,支撑平台上设有永磁轨道(7)和定子绕组(13);模型车(1)的底部设有动子(3)和低温杜瓦(5),低温杜瓦(5)内设有超导块材,模型车(1)的侧壁由金属材料制成;龙门架(8)设于支撑平台上,龙门架(8)的立柱上设有永磁体(9),通过将模型车(1)加速到400km/h及以上对应开展高温超导磁悬浮悬浮和导向性能探究、高温超导磁悬浮车-轨耦合作用机制及动态稳定性、高温超导磁悬浮车-轨-管道间磁-电-力-气多物理场动态耦合机理、模型研究、双线列车会车时的动态特性以及低气压环境下高温超导磁悬浮车的悬浮、导向、气动特性研究。

Description

一种真空管道高温超导磁悬浮高速试验平台及其试验方法 技术领域
本发明涉及磁悬浮技术领域,具体而言,涉及一种真空管道高温超导磁悬浮高速试验平台及其试验方法。
背景技术
在当前对高温超导磁悬浮技术的研究中,主要集中在对其在准静态条件下的悬浮力、导向力以及相应的动力学行为的研究,相关的实验设备也主要集中在对单块或组合超导块材的悬浮性能测试,对于瞄准未来高温超导磁悬浮列车在高速状态下的动力学行为研究缺乏相应的平台支撑。目前,随着高温超导高速磁浮工程化样车的下线,迫切需要对超导磁悬浮列车在高速及超高速下的动态行为进行实验研究的设备,以此得到相关的实验数据。
发明内容
本发明的目的在于提供一种真空管道高温超导磁悬浮高速试验平台及其试验方法,以改善上述问题。为了实现上述目的,本发明采取的技术方案如下:
第一方面,本申请提供了一种真空管道高温超导磁悬浮高速试验平台,包括:真空管道、支撑平台、模型车和龙门架,所述真空管道一端为封闭,所述真空管道的另一端设有真空隔离门;所述支撑平台设置于所述真空管道内,所述支撑平台上设有永磁轨道和定子绕组;所述模型车的底部设有动子和低温杜瓦,所述低温杜瓦内设有超导块材,所述定子绕组与所述动子通电后耦合产生驱动力,推动所述模型车前进,所述超导块材与所述永磁轨道配合产生悬浮力,所述模型车的侧壁由金属材料制成;所述龙门架设于所述支撑平台上,所述龙门 架的立柱上设有永磁体,所述永磁体与所述模型车的车体耦合,在所述模型车的车体上形成涡流。
第一方面,本申请还提供一种真空管道高温超导磁悬浮高速试验方法,包括:
将模型车的低温杜瓦下放置预设厚度的场冷板;
封闭真空隔离门,并对真空管道抽取空气到预设气压;
撤去场冷板,所述模型车悬浮于永磁轨道上;
对动子及定子绕组进行通电,在电磁力的作用下,所述动子推动模型车在所述真空管道内加速运动;
所述模型车抵达龙门架所在区域时,所述模型车的车体与所述永磁体产生涡流,减速所述模型车。
本发明的有益效果为:
本发明通过真空管道、支撑平台、模型车和龙门架构成的真空管道高温超导磁悬浮高速试验平台其可通过双边直线电机将模型车加速到400km/h及以上对应的开展高温超导磁悬浮悬浮和导向性能探究,同时也可以开展高温超导磁浮车-轨耦合作用机制及动态稳定性、双线列车会车时的动态特性、高温超导磁悬浮车轨间磁-电-力-气多物理场动态耦合机理与模型研究以及低气压环境下高温超导磁悬浮车的悬浮、导向、气动特性研究。
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发 明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1的结构示意图;
图2为实施例2的剖面结构示意图。
图中标记:1、模型车;3、动子;4、基座;5、低温杜瓦;7、永磁轨道;8、龙门架;9、永磁体;10、V型槽;11、支撑结构;12、承载平台;13、定子绕组;15、真空管道;16、定子安装架;18、电机加速段;19、电机减速段;20、涡流制动段。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
如图1所示,本实施例提供了一种真空管道高温超导磁悬浮高速试验平台。
参见图1,图中示出了本申请中包括真空管道15(图中未示出完整的管体)、支撑平台、模型车1和龙门架8。其中,其中需要说明的是:在本申请中还包括与真空管道15配合使用的真空系统(图中未示出),其中真空系统具体结构可以是现有技术中分子泵与机械泵的结合抽取真空的方式,本申请中不再赘述。具体而言,在本申请中,真空管道15一端为封闭,真空管道15的另一端设有真空隔离门(图中未示出),通过控制真空隔离门的开启与关闭实现模型车1的检查与维护。进一步地,在本申请中,支撑平台设置于真空管道15内,支撑平台上设有永磁轨道7和定子绕组13,需要说明的是,在本申请中定子绕组13包括定子铁芯和与供能设备电连接的线圈,模型车1的底部设有动子3和低温杜瓦5,还需要说明的是,在本申请中动子3也和供能设备电连接,其中,低温杜瓦5固定连接在位于模型车1的转向架上,低温杜瓦5内设有超导块材,定子绕组13与动子3通电后耦合产生驱动力构成电励磁直线同步驱动系统,推动模型车1前进,超导块材与永磁轨道7配合产生悬浮力,模型车1的侧壁由金属材料制成;龙门架8设于支撑平台上,龙门架8的立柱上设有永磁体9,永磁体9与模型车1的车体耦合,在模型车1的车体上形成涡流。具体而言,龙门架8、永磁体9和支撑平台围合形成的空腔供模型车1穿过,进一步而言,在本申请中,永磁体在模型车1侧壁的投影面积占模型车1侧壁的30%以上,换而言之,永磁体在模型车1侧壁的投影面积占模型车1侧壁面积的百分比大于等于30%。在本申请中,通过真空管道15用于提供高温超导磁悬浮列车的低真空环境,以减小列车运行过程中的阻力,同时提高磁悬浮系统的悬浮性能,使科研人员研究时速400km及以上时的高温超导磁悬浮悬浮和导向性能;并且由于真空管道15减少了外界空气的干扰因素,在本申请中可以较为纯粹的研究高温超导磁浮车-轨耦合作用机制及动态稳定 性。然后,进一步地,通过控制真空度还可以探究高温超导磁悬浮车轨间磁-电-力-气多物理场动态耦合机理以及低气压环境下高温超导磁悬浮车的悬浮、导向、气动特性研究。并且进一步地,由于在本申请中龙门架8上的永磁体9与模型车1侧壁构成的涡流制动制动系统,其由于能产生更大的制动效果,相比于现有技术,其制动距离更短,并且能有效的利用现有的模型车1结构,无需进一步地定制涡流制动所需的转向架,降低本申请中定制成本。同时,在本申请中,将永磁体9直接固定在龙门架8的立柱上方式,可以有效的根据模型车1最终试验的速度进行永磁体9的磁通量控制,可以有效地在400km/h的速度之上对模型车1进行制动,确保整个实验装置的安全性。
进一步地,在本申请中进一步地将真空管道15内分为三个区域,第一个为电机加速段18、第二个为电机减速段19以及第三个为涡流制动段20,通过上述对真空管道15内区域进行划分,可以有效规划实验进程。
进一步地,在本申请中,为了实现400km/h的模型车1速度,在本申请中,定子绕组13为两组,支撑平台包括支撑结构11、承载平台12和定子安装架16,支撑结构11固定于真空管道15底部,承载平台12水平设置于支撑结构11上,定子安装架16为U型设置,定子安装架16的水平部与承载平台12固定连接,两组定子绕组13分别设置于定子安装架16的内侧壁上,动子3设置于两组定子绕组13之间,通过上述方式,采用在两侧的定子绕组13同时通电的方式,位于中部的定子受到更多的交替的斥力和吸力。并且为了平衡水平方向的受力,在本申请中动子3设置于定子安装架16的对称轴上,同时,在本申请中,定子绕组13在竖直方向上的长度大于模型车1的宽度。上述的设置方式,能为定子绕组13和动子3在竖直方向上提供大的重合面积,为动子3提供更大的速度。并且,进一步地,为了 获取模型车1的相关运行数据,在本实施例中,在定子安装架16上设置位置检测装置(图中未示出),具体设置位置位于定子安装架16竖直部分上。其安装与定子绕组13上方或下方均可,本申请中不做出具体的限制。具体而言,位置检测装置可以为激光测距仪,然后进一步地,在动子3对应的高度上设有按照预设规律排布的凸起,排除高速带来的影响。比如,在申请中采用间距均不相同的方式排列第一组凸起,用间距均相同的方式排列第二组凸起,用间距均不相同的方式排列第三组凸起,其中第一组所采用的间距均小于第三组所采用的间距。通过上述的实施过程中,在检测距离信号中,会首先出现第一组突起带来的周期不相同距离变化,第二组较为稳定周期的距离变化,最后出现周期不相同距离变化,且最后出现的距离变化周期大于第一次,依次排除高速运行中设备的设备误差,间接定位在整个试验过程中的模型车1运动情况。同时,在本申请中定子安装架16内面侧的底部开设有V型槽10,动子3靠近定子安装架16底部的一段为与V型槽10相匹配的V字型设置,动子3的V字型的一段延伸至V型槽10内,V型槽10的对称轴与定子安装架16的对称轴重合。在本申请中通过在动子3下的V型槽10的抑制直线电机的法向力,在模型车1运动过程中,定子产生的行波磁场除了能够产生沿运动方向的驱动力之外,还会产生垂直与运动方向的法向力,若没有V型槽10的约束,那么动子3就会与侧面相撞,在本申请中通过增加V型槽10防止侧面发生撞击。
进一步地,在本申请中支撑平台还包括基座4,基座4设置于定子安装架16顶部,并盖合定子安装架16,基座4上开设供动子3穿过的移动口,移动口的对称轴与定子安装架16的对称轴重合,永磁轨道7的两条永磁轨分别设置于移动口的两侧,并与移动口平行设置。 同时了进一步降低本申请中其他零部件对永磁轨道7产生的磁场影响,在本申请中,基座4由不锈钢材料制备而成。而永磁轨道7与基座4之间还设有隔磁基座,隔磁基座与永磁轨道7以及隔磁基座通过螺栓链接,永磁轨道通过螺栓固定在不锈钢的基座4上。
并且,在本申请中为了进一步保障模型车1的安全,尽快地使得模型车1在400km/h以上的速度降低到零,本申请中优选永磁体9为条状设置,永磁体的长度大于模型车1的长度。具体而言,在本申请中永磁体9可以是由多个小永磁体9单元拼接而成,本申请中不做出具体限制。同时,为了平衡模型车1左右两侧的受力,在本申请中永磁体9的数量为两条,两条永磁体9分别设置与龙门架8的两内侧上。
实施例2:
同时,在本申请中提供一种使用实施例1进行测试的方法,具体包括:
S1、将模型车1的低温杜瓦5下放置预设厚度的场冷板;
S2、封闭真空隔离门,并对真空管道15抽取空气到预设气压;
S3、撤去场冷板,模型车1悬浮于永磁轨道7上;
S4、对动子3和定子绕组13进行通电,在电磁力的作用下,动子3推动模型车1在真空管道15内加速运动;
S5、模型车1抵达龙门架8所在区域时,模型车1的车体与永磁体产生涡流,减速模型车1。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种真空管道高温超导磁悬浮高速试验平台,其特征在于,包括:
    真空管道(15),所述真空管道(15)一端为封闭,所述真空管道(15)的另一端设有真空隔离门;
    支撑平台,所述支撑平台设置于所述真空管道(15)内,所述支撑平台上设有永磁轨道(7)和定子绕组(13);可基于所述永磁轨道(7)开展双线列车交会动力学特性研究;
    模型车(1),所述模型车(1)的底部设有动子(3)和低温杜瓦(5),所述低温杜瓦(5)内设有超导块材,所述定子绕组(13)与所述动子(3)通电后耦合产生驱动力,推动所述模型车(1)前进,所述超导块材与所述永磁轨道(7)配合产生悬浮力,所述模型车(1)的侧壁由金属材料制成;
    龙门架(8),所述龙门架(8)设于所述支撑平台上,所述龙门架(8)的立柱上设有永磁体(9),所述永磁体(9)与所述模型车(1)的车体耦合,在所述模型车(1)的车体上形成涡流;
    其中,所述定子绕组(13)为两组,所述动子(3)设置于两组所述定子绕组(13)之间。
  2. 根据权利要求1所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述支撑平台包括支撑结构(11)、承载平台(12)和定子安装架(16),所述支撑结构(11)固定于所述真空管道(15)底部,所述承载平台(12)水平设置于所述支撑结构(11)上,所述定子安装架(16)为U型设置,所述定子安装架(16)的水平部与所述承载平台(12)固定连接,两组定子绕组(13)分别设置于所述定子安装架(16)的内侧壁上。
  3. 根据权利要求2所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述定子安装架(16)内面侧的底部开设有V型槽(10),所述动子(3)靠近所述定子安装架(16)底部的一段为与V型槽(10)相匹配的V字型设置,所述动子(3)的V字型的一段延伸至所述V型槽(10)内。
  4. 根据权利要求2所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述动子(3)设置于所述定子安装架(16)的对称轴上。
  5. 根据权利要求3所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述V型槽(10)的对称轴与所述定子安装架(16)的对称轴重合。
  6. 根据权利要求2所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述支撑平台还包括基座(4),所述基座(4)设置于所述定子安装架(16)顶部,并盖合所述定子安装架(16),所述基座(4)上开设供所述动子(3)穿过的移动口,所述移动口的对称轴与所述定子安装架(16)的对称轴重合,所述永磁轨道(7)的两条永磁轨分别设置于所述移动口的两侧,并与所述移动口平行设置。
  7. 根据权利要求6所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述基座(4)由不锈钢材料制备而成。
  8. 根据权利要求1所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述永磁体(9)为条状设置,所述永磁体(9)的长度大于所述模型车(1)的长度。
  9. 根据权利要求1所述的真空管道高温超导磁悬浮高速试验平台,其特征在于:所述永磁体(9)的数量为两条,两条所述永磁体(9)分别设置与所述龙门架(8)的两内侧上。
  10. 一种真空管道高温超导磁悬浮高速试验方法,使用了如权利要求1至9任意一项的真空管道高温超导磁悬浮高速试验平台,其特征在于,包括:
    将模型车(1)的低温杜瓦(5)下放置预设厚度的场冷板;
    封闭真空隔离门,并对真空管道(15)抽取空气到预设气压;
    撤去场冷板,所述模型车(1)悬浮于永磁轨道(7)上;
    对动子(3)进行通电,在电磁力的作用下,所述动子(3)推动模型车(1)在所述真空管道(15)内加速运动;
    所述模型车(1)抵达龙门架(8)所在区域时,所述模型车(1)的车体与永磁体(9)产生涡流,减速所述模型车(1)。
PCT/CN2023/106729 2022-10-27 2023-07-11 一种真空管道高温超导磁悬浮高速试验平台及其试验方法 WO2024087734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/483,477 US12065040B2 (en) 2022-10-27 2023-10-09 Testing platform and method for evacuated tube high-temperature superconducting magnetic levitatrion (HTS maglev) under high-speed operation state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211325194.3 2022-10-27
CN202211325194.3A CN115389232B (zh) 2022-10-27 2022-10-27 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/483,477 Continuation US12065040B2 (en) 2022-10-27 2023-10-09 Testing platform and method for evacuated tube high-temperature superconducting magnetic levitatrion (HTS maglev) under high-speed operation state

Publications (1)

Publication Number Publication Date
WO2024087734A1 true WO2024087734A1 (zh) 2024-05-02

Family

ID=84127840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106729 WO2024087734A1 (zh) 2022-10-27 2023-07-11 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Country Status (3)

Country Link
US (1) US12065040B2 (zh)
CN (1) CN115389232B (zh)
WO (1) WO2024087734A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389232B (zh) 2022-10-27 2023-02-28 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法
CN116147943B (zh) * 2023-04-23 2023-07-11 成都大学 一种评价高速磁悬浮列车系统运行稳定性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129471A (ja) * 1996-10-25 1998-05-19 Ulvac Japan Ltd 磁気浮上搬送装置
CN105172803A (zh) * 2015-09-28 2015-12-23 西南交通大学 真空管道高温超导磁浮车环形试验线
CN106828184A (zh) * 2017-04-06 2017-06-13 西南交通大学 无齿槽永磁同步直线电机驱动的高温超导磁悬浮车
CN108501963A (zh) * 2018-04-24 2018-09-07 西南交通大学 磁浮交通真空管道过渡舱
CN112240834A (zh) * 2020-09-30 2021-01-19 中国人民解放军海军工程大学 采用差动悬浮导向与双边直线电机的超高速磁浮试验系统
CN114834255A (zh) * 2022-04-14 2022-08-02 西南交通大学 一种涡流制动装置及其制动方法
CN115389232A (zh) * 2022-10-27 2022-11-25 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2173981Y (zh) * 1993-11-12 1994-08-10 清华大学 高临界温度超导体磁悬浮列车演示装置
US6972115B1 (en) * 1999-09-03 2005-12-06 American Inter-Metallics, Inc. Apparatus and methods for the production of powders
US7632381B2 (en) * 2001-03-12 2009-12-15 Curtiss-Wright Flow Control Corporation Systems for providing continuous containment of delayed coker unit operations
CA2871777C (en) * 2005-03-10 2015-07-28 Matthew J. Hayes System and methods for detecting multiple optical signals
US20070052304A1 (en) * 2005-09-07 2007-03-08 Philippe Masson Multi-pattern high temperature superconducting motor using flux trapping and concentration
US20110074231A1 (en) * 2009-09-25 2011-03-31 Soderberg Rod F Hybrid and electic vehicles magetic field and electro magnetic field interactice systems
CN103129843B (zh) * 2013-03-12 2015-01-07 北京宇航世纪超导技术有限公司 一种高温超导磁悬浮系统的无磁低温容器及其制造方法
WO2017165474A1 (en) * 2016-03-24 2017-09-28 Silicon Turbine Systems, Inc. Improved vortex flux generator
CN106926743A (zh) * 2017-04-06 2017-07-07 西南交通大学 涡流阻尼器及磁悬浮车
CN108297893B (zh) * 2017-12-13 2020-03-13 浙江大学 一种涡流轨道制动系统磨耗板、系统及其制造方法
CN208422245U (zh) * 2018-01-29 2019-01-22 东南大学 一种可调速螺旋桨式高温超导磁悬浮列车模型
CN111845367B (zh) * 2019-04-24 2022-02-08 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 高温超导磁悬浮启停系统
CN110588360A (zh) * 2019-10-08 2019-12-20 哈尔滨工业大学 一种用于高速列车的制动力可控永磁式涡流制动装置
CN110979019B (zh) * 2019-11-19 2022-09-20 同济大学 一种多源组合式电磁制动装置及其应用
CN211207766U (zh) * 2019-12-05 2020-08-07 成都睿逸谷科技有限责任公司 一种可驱动控制的交互式磁悬浮列车模型
CN111081124A (zh) * 2020-01-07 2020-04-28 西南交通大学 一种基于高温超导磁悬浮演示模型的驱动系统
CN111141536B (zh) * 2020-01-21 2024-08-27 扬州大学 一种电磁涡流制动模拟试验台
CN111086396A (zh) * 2020-02-04 2020-05-01 中国人民解放军国防科技大学 一种基于Halbach结构的永磁电动型超高速运载装置
CN111964904B (zh) * 2020-08-18 2022-06-07 中车青岛四方车辆研究所有限公司 一种涡流制动器的性能测试设备
CN114823040B (zh) * 2022-06-23 2022-09-13 西南交通大学 增大阻尼及悬浮力的高温超导磁悬浮杜瓦及宽度计算方法
CN217155862U (zh) * 2022-07-01 2022-08-09 成都西交华创科技有限公司 一种悬浮牵引制动实验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129471A (ja) * 1996-10-25 1998-05-19 Ulvac Japan Ltd 磁気浮上搬送装置
CN105172803A (zh) * 2015-09-28 2015-12-23 西南交通大学 真空管道高温超导磁浮车环形试验线
CN106828184A (zh) * 2017-04-06 2017-06-13 西南交通大学 无齿槽永磁同步直线电机驱动的高温超导磁悬浮车
CN108501963A (zh) * 2018-04-24 2018-09-07 西南交通大学 磁浮交通真空管道过渡舱
CN112240834A (zh) * 2020-09-30 2021-01-19 中国人民解放军海军工程大学 采用差动悬浮导向与双边直线电机的超高速磁浮试验系统
CN114834255A (zh) * 2022-04-14 2022-08-02 西南交通大学 一种涡流制动装置及其制动方法
CN115389232A (zh) * 2022-10-27 2022-11-25 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN YIXIANG;ZHOU WENXIANG;KONG ZHENWEN;: "On Analytical Method of Permanent Magnet Eddy Current Brake for High Speed EMU", MODERN URBAN TRANSIT, no. 11, 30 November 2020 (2020-11-30), pages 105 - 109, XP009554181, ISSN: 1672-7533 *

Also Published As

Publication number Publication date
CN115389232A (zh) 2022-11-25
CN115389232B (zh) 2023-02-28
US20240157807A1 (en) 2024-05-16
US12065040B2 (en) 2024-08-20

Similar Documents

Publication Publication Date Title
WO2024087734A1 (zh) 一种真空管道高温超导磁悬浮高速试验平台及其试验方法
KR101137968B1 (ko) 초전도부재를 이용한 자기부상시스템 및 자기부상열차시스템
Borcherts et al. Baseline specifications for a magnetically suspended high-speed vehicle
WO2019114395A1 (zh) 一种亚真空磁悬浮超音速列车模型实验平台
CN108706013A (zh) 一种管道式磁悬浮列车
CN110549863B (zh) 一种悬浮式电磁推进装置及磁浮列车
CN112078376B (zh) 一种永磁磁浮列车过弯导向控制方法及系统
JP2002503437A (ja) 磁気浮上車両の走行システム
WO2024087735A1 (zh) 一种真空管道超高速磁浮交通动模试验平台及试验方法
Lv et al. Three-dimensional electromagnetic characteristics analysis of novel linear synchronous motor under lateral and yaw conditions of MAGLEV
CN112124084B (zh) 用于磁浮列车的悬浮、导向及驱动一体化电磁铁装置
Xu et al. Analysis of the speed limit of transrapid maglev train explored from the perspective of its suspension and guidance systems
CN114954026A (zh) 一种悬挂式永磁电动磁悬浮列车系统
Gutberlet The German magnetic transportation program
Sawada et al. Magnetic levitation (Maglev) technologies
Harding Progress in magnetic suspension applied to high speed ground transportation
Murty et al. Conventional Indian railways and the advanced transportation systems: A comparative review
Li et al. Research on braking characteristics of rail eddy current brake with AC excitation
Tuncar et al. Economic analysis of maglev train technology a case study for ankara-sivas line
Riches Will maglev lift off?
Gao et al. Study on Electromagnetic Force Characteristics of Asymmetric 8-Figure Coils in EDS System
Li et al. The Design of a Testing Platform for Dynamic Stability of Superconducting Null-Flux Electrodynamic Suspension Systems
Koseki Applications of linear machinery in public transport
Ohsaki Review and update on MAGLEV
CN216268709U (zh) 一种磁悬浮列车的悬浮系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881322

Country of ref document: EP

Kind code of ref document: A1