CN111086396A - 一种基于Halbach结构的永磁电动型超高速运载装置 - Google Patents

一种基于Halbach结构的永磁电动型超高速运载装置 Download PDF

Info

Publication number
CN111086396A
CN111086396A CN202010079464.1A CN202010079464A CN111086396A CN 111086396 A CN111086396 A CN 111086396A CN 202010079464 A CN202010079464 A CN 202010079464A CN 111086396 A CN111086396 A CN 111086396A
Authority
CN
China
Prior art keywords
permanent magnet
halbach structure
magnet array
halbach
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010079464.1A
Other languages
English (en)
Inventor
龙志强
胡永攀
曾杰伟
胡海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010079464.1A priority Critical patent/CN111086396A/zh
Publication of CN111086396A publication Critical patent/CN111086396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

本发明公开了一种基于Halbach结构的永磁电动型超高速运载装置,其特征在于,包括车体、悬浮架、悬浮装置、导向装置、牵引装置和支撑装置,所述支撑装置设置于车体的下方,所述悬浮架、悬浮装置、导向装置和牵引装置均设置于车体与支撑装置之间,所述悬浮装置、导向装置、牵引装置均安装于悬浮架上,所述悬浮架安装于所述支撑装置上,所述运载装置在低速运行时依靠支撑装置运动,在高速运行时依靠悬浮装置和导向装置分别实现悬浮、导向作用,所述悬浮装置和/或所述导向装置包括Halbach结构永磁阵列及与其间隙相对设置的导体板,具有结构简单、成本低廉、安装方便且重复利用的优点。

Description

一种基于Halbach结构的永磁电动型超高速运载装置
技术领域
本发明涉及永磁电动悬浮运载技术领域,特别是涉及一种基于Halbach结构的永磁电动型超高速运载装置。
背景技术
超高速电动悬浮运载系统主要应用于高速磁浮列车和超高速火箭橇地面飞行试验。超高速电动悬浮运载系统常采用永磁电动悬浮和超导电动悬浮两种类型。目前,如美国的火箭橇地面飞行试验、日本的高速磁浮列车均采用超导电动悬浮技术,两者均利用超导线圈产生强大的磁场的特点实现电动悬浮,但超导线圈需要的配套设备复杂、成本高,不便维护;而Halbach结构永磁阵列不但结构简单,而且也能产生足够的磁场强度实现悬浮和导向功能,具有成本低、便于安装、维护方便、能重复利用等诸多优点,是一种可以替代超导体的磁体。
发明内容
有鉴于此,如何研发一种基于Halbach结构的永磁电动型超高速运载装置,成了本领域技术人员亟需解决的问题。
一方面,本发明提供了一种Halbach结构的永磁电动型超高速运载装置,包
括车体、悬浮架、悬浮装置、导向装置、牵引装置和支撑装置,所述支撑装置设置于车体的下方,所述悬浮架、悬浮装置、导向装置和牵引装置均设置于车体与支撑装置之间,所述悬浮装置、导向装置、牵引装置均安装于悬浮架上,所述悬浮架安装于所述支撑装置上,所述运载装置在低速运行时依靠支撑装置运动,在高速运行时依靠悬浮装置和导向装置分别实现悬浮、导向作用,所述悬浮装置和/或所述导向装置包括Halbach结构永磁阵列及与其间隙相对设置的导体板。
进一步地,所述悬浮装置包括第一Halbach结构永磁阵列及与其间隙且沿车体横向相对设置的第一导体板;所述导向装置包括第二Halbach结构永磁阵列及与其间隙且沿车体纵向设置的第二导体板。
进一步地,所述悬浮架呈工字型,包括两个横梁框及设置于两个横梁框之间的一个纵梁,所述纵梁分别与两个横梁框活动连接,所述横梁框为刚体结构,所述纵梁为弹性体结构。
进一步地,所述第一Halbach结构永磁阵列、第一导体板、第二Halbach结构永磁阵列和第二导体板的数量均为四个:四个所述第一Halbach结构永磁阵列沿车体横向且两两对称分别分布于两个横梁框的端部,四个所述第二Halbach结构永磁阵列沿车体纵向且两两对称分别分布于两个横梁框的端部;四个所述第一导体板与四个所述第一Halbach结构永磁阵列对应设置并铺设于支撑装置的轨道上表面上,四个所述第二导体板与四个所述第二Halbach结构永磁阵列对应设置并铺设于支撑装置的轨道外侧表面上。
进一步地,所述第一Halbach结构永磁阵列选择钕铁硼磁性材料制作,且第一Halbach结构永磁阵列磁体的充磁方向顺次相差一个小于180°的角度;所述第一导体板的宽度大于1.5倍Halbach结构永磁阵列的宽度且其厚度满足如下条件:
Figure 870227DEST_PATH_IMAGE001
(1)
式中,
Figure 665882DEST_PATH_IMAGE002
表示第一导体板的厚度,
Figure 994095DEST_PATH_IMAGE003
表示第一Halbach结构永磁阵列波长,
Figure 9456DEST_PATH_IMAGE004
表示空气磁导率,
Figure 714107DEST_PATH_IMAGE005
表示第一导体板的电导率,
Figure 131313DEST_PATH_IMAGE006
为车体的额定运行速度,
Figure 630427DEST_PATH_IMAGE007
表示圆周率。
进一步地,所述第一Halbach结构永磁阵列的尺寸依据其受到的悬浮力进行设计,具体表现为:
(1)一个波长的第一Halbach结构永磁阵列受到的悬浮力通过如下公式进行计算:
Figure 133084DEST_PATH_IMAGE008
(2)
式中,
Figure 375846DEST_PATH_IMAGE009
表示悬浮力,
Figure 146094DEST_PATH_IMAGE010
为常数,v为车体的速度,
Figure 816110DEST_PATH_IMAGE011
表示第一导体板的磁导率,k表示一个波长第一Halbach结构永磁阵列与第一导体板之间运动磁场的周期数,且
Figure 806062DEST_PATH_IMAGE012
,其中,
Figure 586936DEST_PATH_IMAGE010
通过如下公式进行计算:
Figure 978735DEST_PATH_IMAGE013
(3)
式中,
Figure 819652DEST_PATH_IMAGE014
表示第一Halbach结构永磁阵列中永磁体的宽度,
Figure 296901DEST_PATH_IMAGE015
表示第一Halbach结构永磁阵列中永磁体剩磁,
Figure 881466DEST_PATH_IMAGE016
表示单位波长第一Halbach结构永磁阵列中永磁体的个数,
Figure 626306DEST_PATH_IMAGE017
表示第一Halbach结构永磁阵列中永磁体的厚度,
Figure 638124DEST_PATH_IMAGE018
表示悬浮间隙;
(2)所述第一Halbach结构永磁阵列中永磁体的厚度通过公式计算:
Figure 337090DEST_PATH_IMAGE019
(4)
(3)所述第一Halbach结构永磁阵列中永磁体的波长通过公式计算:
Figure 725346DEST_PATH_IMAGE020
(5)
(4)单位波长悬浮力的最大值通过如下公式进行计算:
Figure 826157DEST_PATH_IMAGE021
(6)
(5)根据运载装置的额定载重G,通过如下公式计算永磁阵列的组数N
Figure 8876DEST_PATH_IMAGE022
(7)
式中,
Figure 460717DEST_PATH_IMAGE023
为安全系数,取值大于1.5
(6)第一Halbach结构永磁阵列在横梁框四个部位平均分布,每个部位第一Halbach结构永磁阵列的组数
Figure 387085DEST_PATH_IMAGE024
按如下公式进行计算:
Figure 840938DEST_PATH_IMAGE025
(8)
式中,[]表示向上取整。
进一步地,所述第二Halbach结构永磁阵列的制作材料、充磁方向与第一Halbach结构永磁阵列的相同;所述第二导体板的宽度、厚度要求与第一导体板的相同。
进一步地,所述第二Halbach结构永磁阵列组数根据转弯半径和侧向容许的最大偏移量进行计算,具体为:
Figure 460138DEST_PATH_IMAGE026
(9)
式中,
Figure 133696DEST_PATH_IMAGE027
为第二Halbach结构永磁阵列组数,r为拐弯半径,
Figure 332596DEST_PATH_IMAGE028
为安全系数,取值大于1.5,m为该运载装置的总重,
Figure 267054DEST_PATH_IMAGE029
表示单位波长导向力的最大值,其中:
Figure 932522DEST_PATH_IMAGE030
(10)
式中,
Figure 686851DEST_PATH_IMAGE031
表示第二导体板的磁导率,
Figure 955022DEST_PATH_IMAGE032
表示第二Halbach结构永磁阵列中永磁体的宽度,
Figure 884932DEST_PATH_IMAGE033
表示第二导体板的电导率,
Figure 845934DEST_PATH_IMAGE034
表示第二Halbach结构永磁阵列中永磁体剩磁,
Figure 727040DEST_PATH_IMAGE035
表示单位波长第二Halbach结构永磁阵列中永磁体的个数,
Figure 798902DEST_PATH_IMAGE036
表示第二Halbach结构永磁阵列中永磁体的厚度,
Figure 848897DEST_PATH_IMAGE037
表示悬浮间隙,Δ为侧向容许的最大偏移量。
进一步地,所述第二Halbach结构永磁阵列在横梁框四个部位平均分布,每个部位第二Halbach结构永磁阵列的组数按如下式进行计算:
Figure 715222DEST_PATH_IMAGE038
(11)。
进一步地,所述牵引系统为直线电机,所述直线电机包括直线电机定子和直线电机动子,所述直线电机动子位于车体底部,所述直线电机定子在轨道梁上分布,且与直线电机动子相对设置,所述直线电机提供的额定功率通过如下步骤进行计算:
A、通过如下公式计算单位波长磁阻力的大小:
Figure 850668DEST_PATH_IMAGE039
(12)
式中,
Figure 460641DEST_PATH_IMAGE040
为常数,且
Figure 365143DEST_PATH_IMAGE040
通过如下公式进行计算:
Figure 402369DEST_PATH_IMAGE041
(13)
B、根据公式(12)计算单位波长磁阻力的最大值
Figure 523647DEST_PATH_IMAGE042
C、计算直线电机应提供的驱动力大小,驱动力的计算公式按如下公式进行计算:
Figure 937311DEST_PATH_IMAGE043
(14)
式中,
Figure 289795DEST_PATH_IMAGE044
为驱动力,
Figure 170026DEST_PATH_IMAGE045
为安全系数取值大于1.5;
D、计算直线电机需提供的额定功率:
Figure 14485DEST_PATH_IMAGE046
式中,P为直线电机需提供的额定功率。
本发明提供的一种基于Halbach结构的永磁电动型超高速运载装置,通过悬浮架的结构能够使各悬浮点沿悬浮力方向解耦,导向力方向刚性连接,保障超高速运载装置经过弯道时,结构能实现自调节,同时,通过Halbach结构永磁阵列及导体板在运载装置运动时产生的涡流斥力为运载装置提供悬浮和导向作用,具有结构简单、成本低廉、安装方便且重复利用的优点。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种基于Halbach结构的永磁电动型超高速运载装置的结构简图;
图2为图1中悬浮架的俯视图;
图3为图2中A-A的剖视图;
图4为图1中悬浮架的侧视图;
图5为图1中轨道的俯视图;
图6为图5中B-B的剖视图;
图7为本发明中Halbach结构永磁阵列与导体板一实施例的结构简图;
图8为悬浮力理论值与仿真值的对比图;
图9为磁阻力理论值与仿真值的对比图。
其中:1-车体、2-空气弹簧、3-悬浮架、4-第二Halbach结构永磁阵列、5-第二导体板、6-桥梁、7-支墩、8-直线电机定子、9-直线电机动子、10-支撑轮、11-第一导体板、12-第一Halbach结构永磁阵列、13-横梁框、14-纵梁、0A-Halbach结构永磁阵列、0B-导体板。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
在本发明的描述中,需要理解的是,术语“水平”、“竖直”、“前”、“后”、“左”、“右”、“顶”、“底”“内”、“外”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
同时,术语“第一”、“第二”主要用于区分不同的部件,但不对部件进行具体限制。
图1是一种基于Halbach结构的永磁电动型超高速运载装置的结构简图。如图1所示,一种基于Halbach结构的永磁电动型超高速运载装置括车体1、悬浮架3、悬浮装置、导向装置、牵引装置和支撑装置,支撑装置设置于车体1的下方,悬浮架3、悬浮装置、导向装置和牵引装置均设置于车体1与支撑装置之间,悬浮装置、导向装置、牵引装置均安装于悬浮架3上,悬浮架3安装于支撑装置上,悬浮架3用于保障上述运载装置经过弯道时实现自我调节,本发明的运载装置在低速运行时依靠支撑装置运动,在高速运行时依靠悬浮装置和导向装置分别实现悬浮、导向作用,具体地,悬浮装置和/或导向装置包括Halbach结构永磁阵列0A及与其间隙设置的导体板0B,Halbach结构永磁阵列0A与导体板0B相对设置,该Halbach结构永磁阵列0A优选为直线型。需要说明的是,导体板的材料可为铜板或者铝板,当导体板0B与Halbach结构永磁阵列0A之间相对运动时,导体板0B内会产生感应涡流,感应涡流产生的磁场与Halbach结构永磁阵列0A的磁场相互排斥产生悬浮力和/或导向力,悬浮力随间隙的变大而变小,当重力和悬浮力相等时,系统就处在了工作平衡点;悬浮方式是自稳定的,当系统脱离平衡状态时,重力和悬浮力的合力形成回复力使系统回归平衡态。导向系统与悬浮系统类似,通过电动斥力实现无接触导向功能。
优选地,前速支撑装置包括支撑轮10、桥梁6和支墩7,支撑轮10安装于车体1下方,支墩7设置于桥梁6下方,桥梁6上铺设有轨道(桥梁6亦称轨道梁),轨道上开设有沟槽,当车体1未达到悬浮状态时,支撑轮10沿沟槽直线运动,车体1未起浮时,Halbach结构永磁阵列0A与轨道上表面存在一定间隙。同时,本发明运载装置的牵引系统可根据不同的用途配置不同的牵引方式,如用在超过速火箭橇领域采用火箭推进,如果用于载人的轨道交通领域,可采用直线电机牵引。图1所示的实施例即牵引系统采用直线电机,具体地,该直线电机包括直线电机定子8和直线电机动子9,直线电机动子9位于车体1底部,直线电机定子8在轨道上分布,且与直线电机动子9相对设置。
在进一步地技术方案中,如图1所示悬浮装置包括第一Halbach结构永磁阵列12及与其间隙且沿车体1横向相对设置的第一导体板11;所述导向装置包括第二Halbach结构永磁阵列4及与其间隙且沿车体1纵向设置的第二导体板5。需要说明的是,此处车体1横向表示车体1的宽度方向,车体1纵向表示车体1的高度方向。
同时,如图3-图5所示,为进一步地提高本发明运载装置过弯道的自适应性,本发明悬浮架3优选为工字型,包括两个横梁框13及设置于两个横梁框13之间的一个纵梁14,该纵梁14分别与两个横梁框13采用铆接或铰接等方式活动连接,且横梁框13为刚体结构,纵梁14为弹性体结构。通过上述设置,运载装置在过弯道时,纵梁14自身由于弹性会发生扭转,从而适应不同的弯道形状,而横梁框13是刚体结构,因此过弯道时横梁框13两侧间隙不同,两侧产生的斥力大小不同,其合力提供向心力,保障运载装置在不减速情况下顺利通过弯道。且悬浮架3与车体1之间设置有空气弹簧2,该空气弹簧2位于第一Halbach结构永磁阵列12的正上方,其与阻尼器行连接,起到隔振作用。需要说明的是,悬浮架3并非仅限于工字型,其还可为#字型、口字型等,可以实现本发明方案的形状,均在本发明的保护范围。
进一步地,如图5-图7所示,本发明第一Halbach结构永磁阵列12、第一导体板11、第二Halbach结构永磁阵列4和第二导体板5的数量均优选为四个:四个第一Halbach结构永磁阵列12沿车体1横向且两两对称分别分布于两个横梁框13的端部,四个第二Halbach结构永磁阵列4沿车体1纵向且两两对称分别分布于两个横梁框13的端部;四个第一导体板11与四个所述第一Halbach结构永磁阵列12对应设置并铺设于支撑装置的轨道上表面上,四个第二导体板5与四个所述第二Halbach结构永磁阵列4对应设置并铺设于支撑装置的轨道外侧表面上。需要说明的是,第一导体板11的涡流效应产生悬浮力,轨道的感应导体与轨道梁(桥梁6)长度相同,宽度宽于第一Halbach结构永磁阵列12。
作为本发明进一步的实施例,第一Halbach结构永磁阵列12选择钕铁硼磁性材料制作,且第一Halbach永磁阵列磁体的充磁方向顺次相差一个小于180°的角度,该角度越小越好;第一导体板11的宽度大于1.5倍Halbach结构永磁阵列的宽度且其厚度满足如下条件:
Figure 966261DEST_PATH_IMAGE001
(1)
式中,
Figure 845355DEST_PATH_IMAGE002
表示第一导体板11的厚度,
Figure 224384DEST_PATH_IMAGE003
表示第一Halbach结构永磁阵列12波长,
Figure 54674DEST_PATH_IMAGE004
表示空气磁导率,
Figure 278982DEST_PATH_IMAGE005
表示第一导体板11的电导率,
Figure 137217DEST_PATH_IMAGE006
为车体1的额定运行速度,
Figure 828092DEST_PATH_IMAGE007
表示圆周率。
同时,第一Halbach结构永磁阵列12的尺寸依据其受到的悬浮力进行设计,具体表现为:
(1)一个波长的第一Halbach结构永磁阵列12受到的悬浮力通过如下公式进行计算:
Figure 771777DEST_PATH_IMAGE008
(2)
式中,
Figure 940722DEST_PATH_IMAGE009
表示悬浮力,
Figure 653463DEST_PATH_IMAGE010
为常数,v为车体1的速度,
Figure 108715DEST_PATH_IMAGE011
表示第一导体板11的磁导率,k表示一个波长第一Halbach结构永磁阵列与第一导体板之间运动磁场的周期数,且
Figure 415062DEST_PATH_IMAGE012
,其中,
Figure 429110DEST_PATH_IMAGE010
通过如下公式进行计算:
Figure 996358DEST_PATH_IMAGE013
(3)
式中,
Figure 622511DEST_PATH_IMAGE014
表示第一Halbach结构永磁阵列12中永磁体的宽度,
Figure 416155DEST_PATH_IMAGE015
表示第一Halbach结构永磁阵列12中永磁体剩磁,
Figure 51535DEST_PATH_IMAGE016
表示单位波长第一Halbach结构永磁阵列12中永磁体的个数,
Figure 614235DEST_PATH_IMAGE017
表示第一Halbach结构永磁阵列12中永磁体的厚度,
Figure 942448DEST_PATH_IMAGE018
表示悬浮间隙;
(2)第一Halbach结构永磁阵列12中永磁体的厚度通过公式计算:
Figure 957809DEST_PATH_IMAGE019
(4)
(3)第一Halbach结构永磁阵列12中永磁体的波长通过公式计算:
Figure 662459DEST_PATH_IMAGE020
(5)
需要说明的是,第一Halbach结构永磁体厚度与波长按照(4)、(5)式计算可使悬浮力最大,厚度、波长与悬浮间隙的比例达到最优;
(4)单位波长悬浮力的最大值通过如下公式进行计算:
Figure 578201DEST_PATH_IMAGE021
(6)
(5)根据运载装置的额定载重G,通过如下公式计算永磁阵列的组数N
Figure 546157DEST_PATH_IMAGE022
(7)
式中,
Figure 173447DEST_PATH_IMAGE023
为安全系数,取值大于1.5
(6)第一Halbach结构永磁阵列12在横梁框13四个部位平均分布,每个部位第一Halbach结构永磁阵列12的组数
Figure 25996DEST_PATH_IMAGE024
按如下公式进行计算:
Figure 687922DEST_PATH_IMAGE025
(8)
式中,[]表示向上取整。
优选地,第二Halbach结构永磁阵列4的制作材料、充磁方向与第一Halbach结构永磁阵列12的相同;所述第二导体板5的宽度、厚度要求与第一导体板11的相同。
第二Halbach结构永磁阵列4组数根据转弯半径和侧向容许的最大偏移量进行计算,具体为:
Figure 233304DEST_PATH_IMAGE026
(9)
式中,
Figure 347890DEST_PATH_IMAGE027
为第二Halbach结构永磁阵列4组数,r为拐弯半径,
Figure 4131DEST_PATH_IMAGE028
为安全系数,取值大于1.5,m为该运载装置的总重,
Figure 520563DEST_PATH_IMAGE029
表示单位波长导向力的最大值,其中:
Figure 830321DEST_PATH_IMAGE030
(10)
式中,
Figure 806105DEST_PATH_IMAGE031
表示第二导体板5的磁导率,
Figure 390671DEST_PATH_IMAGE032
表示第二Halbach结构永磁阵列4中永磁体的宽度,
Figure 636975DEST_PATH_IMAGE033
表示第二导体板5的电导率,
Figure 648794DEST_PATH_IMAGE034
表示第二Halbach结构永磁阵列4中永磁体剩磁,
Figure 347759DEST_PATH_IMAGE035
表示单位波长第二Halbach结构永磁阵列4中中永磁体的个数,
Figure 736015DEST_PATH_IMAGE036
表示第二Halbach结构永磁阵列4中永磁体的厚度,
Figure 836827DEST_PATH_IMAGE037
表示悬浮间隙,Δ为侧向容许的最大偏移量。
第二Halbach结构永磁阵列4在横梁框13四个部位平均分布,每个部位第二Halbach结构永磁阵列4的组数按如下式进行计算:
Figure 19546DEST_PATH_IMAGE038
(11)。
此外,值得提及的是,本发明直线电机提供的额定功率通过如下步骤进行计算:
A、通过如下公式计算单位波长磁阻力的大小:
Figure 969922DEST_PATH_IMAGE039
(12)
式中,
Figure 365132DEST_PATH_IMAGE040
为常数,且
Figure 445083DEST_PATH_IMAGE040
通过如下公式进行计算:
Figure 939649DEST_PATH_IMAGE041
(13)
B、根据公式(12)计算单位波长磁阻力的最大值
Figure 737841DEST_PATH_IMAGE042
C、计算直线电机应提供的驱动力大小,驱动力的计算公式按如下公式进行计算:
Figure 77687DEST_PATH_IMAGE043
(14)
式中,
Figure 277724DEST_PATH_IMAGE044
为驱动力,
Figure 943192DEST_PATH_IMAGE045
为安全系数,取值大于1.5;
D、计算直线电机需提供的额定功率:
Figure 963100DEST_PATH_IMAGE046
式中,P为直线电机需提供的额定功率。
为验证本方面技术方案的有益效果,通过Ansoft软件对八模块直线型Halbach结构永磁阵列0A和导体板0B(如图7所示)进行仿真,给出悬浮力和磁阻力的理论值、仿真值的对比,来印证悬浮力和磁阻力理论计算公式的可靠性,据此进行悬浮导向结构设计和牵引功率估计是完全有效的(需要说明的是,第一Halbach结构永磁阵列12与第二Halbach结构永磁阵列4均采用八模块直线型Halbach结构永磁阵列OA、第一导体板11和第二导体板5均采用图7中导体板结构0B)。为了形成完整的磁路,仿真共选用了9个永磁体,永磁体之间的磁化角度依次是π/2,π/4,0,-π/4,-π/2,-3π/4,-π,-5π/4 -3π/2。永磁体的长为15mm,宽为40mm,高为40mm,相邻的两个永磁体磁化角度相差π/4,如图7所示。永磁铁的材料为N40,剩磁强度为1.285T,充磁方向如图7中的箭头方向所示。铝板的厚度为30mm,宽度为120mm,永磁阵列与铝板的距离为20mm,其他参数见表1各个参数的物理意义及取值:
Figure 870751DEST_PATH_IMAGE047
永磁体沿着y轴正向做匀速直线运动,速度范围为10km/h—600km/h。选用三维瞬态场对模型进行参数设置,设置铝板为涡流计算对象。仿真结果和理论值的对比如图8和图9所示,可以看出理论值和仿真值较为一致,电磁力的变化趋势一致,
综上所述,本发明具有如下优点:
(1)通过Halbach结构永磁阵列和导体板结构在运载装置运动时产生的涡流斥力为运载装置提供悬浮和导向作用,结构简单、安装方便且可重复利用;
(2)通过工字型悬浮架3,横梁框13的刚体结构可以确保导向回复力的作用效果,纵梁14的弹性结构可使悬浮架3适应不同的弯道形式,提高了运载装置的自适应性;
(3)悬浮及导向装置的设计,具体为第一Halbach结构永磁阵列12、第一导体板11、第二Halbach结构永磁阵列4和第二导体板5的设计能使运载装置获得较大的浮重比,达到用较少的永磁体获得较大承载能力的目的,节省成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于Halbach结构的永磁电动型超高速运载装置,其特征在于,包括车体、悬浮架、悬浮装置、导向装置、牵引装置和支撑装置,所述支撑装置设置于车体的下方,所述悬浮架、悬浮装置、导向装置和牵引装置均设置于车体与支撑装置之间,所述悬浮装置、导向装置、牵引装置均安装于悬浮架上,所述悬浮架安装于所述支撑装置上,所述运载装置在低速运行时依靠支撑装置运动,在高速运行时依靠悬浮装置和导向装置分别实现悬浮、导向作用,所述悬浮装置和/或所述导向装置包括Halbach结构永磁阵列及与其间隙相对设置的导体板。
2.根据权利要求1所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述悬浮装置包括第一Halbach结构永磁阵列及与其间隙且沿车体横向相对设置的第一导体板;所述导向装置包括第二Halbach结构永磁阵列及与其间隙且沿车体纵向设置的第二导体板。
3.根据权利要求2所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述悬浮架呈工字型,包括两个横梁框及设置于两个横梁框之间的一个纵梁,所述纵梁分别与两个横梁框活动连接,所述横梁框为刚体结构,所述纵梁为弹性体结构。
4.根据权利要求3所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第一Halbach结构永磁阵列、第一导体板、第二Halbach结构永磁阵列和第二导体板的数量均为四个:四个所述第一Halbach结构永磁阵列沿车体横向且两两对称分别分布于两个横梁框的端部,四个所述第二Halbach结构永磁阵列沿车体纵向且两两对称分别分布于两个横梁框的端部;四个所述第一导体板与四个所述第一Halbach结构永磁阵列对应设置并铺设于支撑装置的轨道上表面上,四个所述第二导体板与四个所述第二Halbach结构永磁阵列对应设置并铺设于支撑装置的轨道外侧表面上。
5.根据权利要求2至4中任一项所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第一Halbach结构永磁阵列选择钕铁硼磁性材料制作,且第一Halbach结构永磁阵列磁体的充磁方向顺次相差一个小于180°的角度;所述第一导体板的宽度大于1.5倍Halbach结构永磁阵列的宽度且其厚度满足如下条件:
Figure 318856DEST_PATH_IMAGE001
(1)
式中,
Figure 910112DEST_PATH_IMAGE002
表示第一导体板的厚度,
Figure 648261DEST_PATH_IMAGE003
表示第一Halbach结构永磁阵列波长,
Figure 761711DEST_PATH_IMAGE004
表示空气磁导率,
Figure 93466DEST_PATH_IMAGE005
表示第一导体板的电导率,
Figure 848932DEST_PATH_IMAGE006
为车体的额定运行速度,
Figure 582533DEST_PATH_IMAGE007
表示圆周率。
6.根据权利要求5所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第一Halbach结构永磁阵列的尺寸依据其受到的悬浮力进行设计,具体表现为:
(1)一个波长的第一Halbach结构永磁阵列受到的悬浮力通过如下公式进行计算:
Figure 398042DEST_PATH_IMAGE008
(2)
式中,
Figure 951515DEST_PATH_IMAGE009
表示悬浮力,
Figure 510672DEST_PATH_IMAGE010
为常数,v为车体的速度,
Figure 597314DEST_PATH_IMAGE011
表示第一导体板的磁导率,k表示一个波长第一Halbach结构永磁阵列与第一导体板之间运动磁场的周期数,且
Figure 52566DEST_PATH_IMAGE012
,其中,
Figure 483548DEST_PATH_IMAGE010
通过如下公式进行计算:
Figure 456183DEST_PATH_IMAGE013
(3)
式中,
Figure 23431DEST_PATH_IMAGE014
表示第一Halbach结构永磁阵列中永磁体的宽度,
Figure 56109DEST_PATH_IMAGE015
表示第一Halbach结构永磁阵列中永磁体剩磁,
Figure 177648DEST_PATH_IMAGE016
表示单位波长第一Halbach结构永磁阵列中永磁体的个数,
Figure 78608DEST_PATH_IMAGE017
表示第一Halbach结构永磁阵列中永磁体的厚度,
Figure 641308DEST_PATH_IMAGE018
表示悬浮间隙;
(2)所述第一Halbach结构永磁阵列中永磁体的厚度通过公式计算:
Figure 969521DEST_PATH_IMAGE019
(4)
(3)所述第一Halbach结构永磁阵列中永磁体的波长通过公式计算:
Figure 483417DEST_PATH_IMAGE020
(5)
(4)单位波长悬浮力的最大值通过如下公式进行计算:
Figure 922488DEST_PATH_IMAGE021
(6)
(5)根据运载装置的额定载重G,通过如下公式计算永磁阵列的组数N
Figure 339694DEST_PATH_IMAGE023
(7)
式中,
Figure 307650DEST_PATH_IMAGE025
为安全系数,取值大于1.5
(6)第一Halbach结构永磁阵列在横梁框四个部位平均分布,每个部位第一Halbach结构永磁阵列的组数
Figure 934941DEST_PATH_IMAGE026
按如下公式进行计算:
Figure 53069DEST_PATH_IMAGE027
(8)
式中,[]表示向上取整。
7.根据权利要求6所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第二Halbach结构永磁阵列的制作材料、充磁方向与第一Halbach结构永磁阵列的相同;所述第二导体板的宽度、厚度要求与第一导体板的相同。
8.根据权利要求7所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第二Halbach结构永磁阵列组数根据转弯半径和侧向容许的最大偏移量进行计算,具体为:
Figure 714995DEST_PATH_IMAGE028
(9)
式中,
Figure 260377DEST_PATH_IMAGE029
为第二Halbach结构永磁阵列组数,r为拐弯半径,
Figure 109384DEST_PATH_IMAGE030
为安全系数,取值大于1.5,m为该运载装置的总重,
Figure 353958DEST_PATH_IMAGE031
表示单位波长导向力的最大值,其中:
Figure 870390DEST_PATH_IMAGE032
(10)
式中,
Figure 586673DEST_PATH_IMAGE033
表示第二导体板的磁导率,
Figure 922976DEST_PATH_IMAGE034
表示第二Halbach结构永磁阵列中永磁体的宽度,
Figure 382908DEST_PATH_IMAGE035
表示第二导体板的电导率,
Figure 753846DEST_PATH_IMAGE036
表示第二Halbach结构永磁阵列中永磁体剩磁,
Figure 641031DEST_PATH_IMAGE037
表示单位波长第二Halbach结构永磁阵列中永磁体的个数,
Figure 730209DEST_PATH_IMAGE038
表示第二Halbach结构永磁阵列中永磁体的厚度,
Figure 226788DEST_PATH_IMAGE039
表示悬浮间隙,Δ为侧向容许的最大偏移量。
9.根据权利要求8所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述第二Halbach结构永磁阵列在横梁框四个部位平均分布,每个部位第二Halbach结构永磁阵列的组数按如下式进行计算:
Figure 717812DEST_PATH_IMAGE040
(11)。
10.根据权利要求9所述的基于Halbach结构的永磁电动型超高速运载装置,其特征在于,所述牵引系统为直线电机,所述直线电机包括直线电机定子和直线电机动子,所述直线电机动子位于车体底部,所述直线电机定子在轨道梁上分布,且与直线电机动子相对设置,所述直线电机提供的额定功率通过如下步骤进行计算:
A、通过如下公式计算单位波长磁阻力的大小:
Figure 775898DEST_PATH_IMAGE041
(12)
式中,
Figure 86793DEST_PATH_IMAGE042
为常数,且
Figure 888527DEST_PATH_IMAGE042
通过如下公式进行计算:
Figure 234058DEST_PATH_IMAGE043
(13)
B、根据公式(12)计算单位波长磁阻力的最大值
Figure 463045DEST_PATH_IMAGE044
C、计算直线电机应提供的驱动力大小,驱动力的计算公式按如下公式进行计算:
Figure 261237DEST_PATH_IMAGE045
(14)
式中,
Figure 365197DEST_PATH_IMAGE046
为驱动力,
Figure 565234DEST_PATH_IMAGE047
为安全系数,取值大于1.5;
D、计算直线电机需提供的额定功率:
Figure 965122DEST_PATH_IMAGE048
式中,P为直线电机需提供的额定功率。
CN202010079464.1A 2020-02-04 2020-02-04 一种基于Halbach结构的永磁电动型超高速运载装置 Pending CN111086396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010079464.1A CN111086396A (zh) 2020-02-04 2020-02-04 一种基于Halbach结构的永磁电动型超高速运载装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010079464.1A CN111086396A (zh) 2020-02-04 2020-02-04 一种基于Halbach结构的永磁电动型超高速运载装置

Publications (1)

Publication Number Publication Date
CN111086396A true CN111086396A (zh) 2020-05-01

Family

ID=70399811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010079464.1A Pending CN111086396A (zh) 2020-02-04 2020-02-04 一种基于Halbach结构的永磁电动型超高速运载装置

Country Status (1)

Country Link
CN (1) CN111086396A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111942164A (zh) * 2020-07-30 2020-11-17 西南交通大学 一种双导体板式永磁电动悬浮驱动装置及驱动方法
CN114734826A (zh) * 2022-06-13 2022-07-12 西南交通大学 一种永磁电动悬浮系统及其导向方法
CN114834255A (zh) * 2022-04-14 2022-08-02 西南交通大学 一种涡流制动装置及其制动方法
CN115389232A (zh) * 2022-10-27 2022-11-25 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111942164A (zh) * 2020-07-30 2020-11-17 西南交通大学 一种双导体板式永磁电动悬浮驱动装置及驱动方法
CN114834255A (zh) * 2022-04-14 2022-08-02 西南交通大学 一种涡流制动装置及其制动方法
CN114734826A (zh) * 2022-06-13 2022-07-12 西南交通大学 一种永磁电动悬浮系统及其导向方法
US11801756B2 (en) 2022-06-13 2023-10-31 Southwest Jiaotong University Permanent magnet electrodynamic suspension system and guidance method therefor
WO2023241361A1 (zh) * 2022-06-13 2023-12-21 西南交通大学 一种永磁电动悬浮系统及其导向方法
CN115389232A (zh) * 2022-10-27 2022-11-25 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法
CN115389232B (zh) * 2022-10-27 2023-02-28 西南交通大学 一种真空管道高温超导磁悬浮高速试验平台及其试验方法

Similar Documents

Publication Publication Date Title
CN111086396A (zh) 一种基于Halbach结构的永磁电动型超高速运载装置
CN108306477B (zh) 高速磁悬浮直线电磁推进系统
CN106926743A (zh) 涡流阻尼器及磁悬浮车
CN112240834B (zh) 采用差动悬浮导向与双边直线电机的超高速磁浮试验系统
KR101009465B1 (ko) 할바흐 배열을 이용한 자기 부상 시스템 및 자기 부상 방법
CN106043727B (zh) 飞机着舰或着陆直线电磁拦阻装置
CN108306478B (zh) 高速磁悬浮直线涡流制动系统
CN108372864B (zh) 一种真空管道列车磁悬浮ems/eds混合支承结构
CN109562696B (zh) 用于车辆的磁悬浮装置
CN205544881U (zh) 一种横向磁通高温超导磁悬浮直线电机
CN101875318B (zh) 一种磁悬浮车
Paudel et al. Modeling the dynamic electromechanical suspension behavior of an electrodynamic eddy current maglev device
CN108657011A (zh) 一种真空管道磁悬列车混合ems支承结构
CN113428014B (zh) 基于被动阻尼磁体的永磁电动斥力悬浮系统
Bird et al. An electrodynamic wheel: An integrated propulsion and levitation machine
US5253591A (en) High speed maglev design
CN108657012A (zh) 新型高速磁悬浮列车及悬浮机构
CN205725528U (zh) 一种矢量磁悬浮引擎及矢量磁悬浮动力系统
US5586504A (en) Dual-keel electrodynamic maglev system
CN113997797B (zh) 一种永磁电动悬浮导向驱动一体化装置
CN206841206U (zh) 涡流阻尼器及磁悬浮车
CN202163328U (zh) 集成悬浮导向牵引功能的磁浮机构
CN102910086A (zh) 磁浮推动装置
CN115276473A (zh) 一种电动悬浮装置
Zhao et al. Analysis of electromagnetic and damping characteristics of permanent magnet electrodynamic suspension system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200501

RJ01 Rejection of invention patent application after publication