WO2023241361A1 - 一种永磁电动悬浮系统及其导向方法 - Google Patents

一种永磁电动悬浮系统及其导向方法 Download PDF

Info

Publication number
WO2023241361A1
WO2023241361A1 PCT/CN2023/097512 CN2023097512W WO2023241361A1 WO 2023241361 A1 WO2023241361 A1 WO 2023241361A1 CN 2023097512 W CN2023097512 W CN 2023097512W WO 2023241361 A1 WO2023241361 A1 WO 2023241361A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
train
magnet array
power supply
braking
Prior art date
Application number
PCT/CN2023/097512
Other languages
English (en)
French (fr)
Inventor
邓自刚
石洪富
向雨晴
曹婷
鲁浩
刘峻志
梁乐
郑珺
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Publication of WO2023241361A1 publication Critical patent/WO2023241361A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • B60L13/08Means to sense or control vehicle position or attitude with respect to railway for the lateral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to the technical field of permanent magnet electric magnetic levitation systems. Specifically, it relates to a permanent magnet electric levitation system and its guiding method.
  • Electric maglev trains have the characteristics of fast speed, low energy consumption, strong climbing ability, safety and comfort, low operating noise, no fuel and less pollution, and are suitable for high-speed and ultra-high-speed operation scenarios.
  • the track form needs to be "U" shaped, which on the one hand complicates the structure and increases construction costs; on the other hand, because it is in direct contact with the guide rails, there is mechanical friction and wear, which is not conducive to the train's cornering. travel, not suitable for high-speed maglev trains.
  • the working gap of the normal magnetic guidance system is small, requires a precise control system, consumes a lot of energy, and has poor self-stability.
  • the permanent magnet electric magnetic repulsion guide scheme has better self-stability, the additional two rows of guide permanent magnets will increase the cost and make the guide unstable; the conductor track is changed from the original flat plate type to a "U" type guide rail, which improves The difficulty of laying conductor tracks on the ground increases, and the cost of laying and maintaining conductor tracks also increases; while the guide permanent magnets generate guiding force, they will also produce inherent magnetic resistance that hinders the train's progress, increasing the energy consumption of the overall system.
  • the object of the present invention is to provide a permanent magnet electric levitation system and its guiding method, which can solve the above problems.
  • the technical solutions adopted by the present invention are as follows:
  • This application provides a permanent magnet electric levitation system, including:
  • Conductor track the conductor track is erected on the roadbed
  • a suspension guide device the suspension guide device is arranged above the conductor track, the suspension guide device includes a first permanent magnet array and a second permanent magnet array, the first permanent magnet array and the second permanent magnet array The magnetization directions are arranged in the same manner; the first permanent magnet array and the second permanent magnet array are arranged perpendicularly to each other.
  • the lifting device is a thread transmission lifting mechanism or a slope transmission lifting mechanism.
  • the motor fixedly connected to the curved arm drives the wire
  • the lever rotates to drive the nut plate fixedly connected to the magnet base to rise and fall, thereby adjusting the magnetic gap between the permanent magnet on the magnet base and the conductor track.
  • a guidance method for a permanent magnet electric suspension system including:
  • Receive a first command which is a command to start and accelerate the train from a stationary state
  • the power supply situation includes the actual power supply frequency and power supply slip rate.
  • the operating status includes the vehicle operating speed and operating position;
  • Send a first control command which includes a control command for the train to gradually reach a preset speed based on the adjusted optimal power supply frequency, optimal power supply slip rate and the acceleration.
  • the permanent magnet electric levitation system is a weakly damped or under-damped system.
  • the guide damping device can provide lateral damping for the permanent magnet electric levitation system, achieve stable guidance, enhance the stability and safety of system operation, and thus solve the problem of non-guided functions. This problem.
  • the guide damping function can be achieved by simply adding a set of guide permanent magnets to the car body.
  • the conductor track does not need to be modified.
  • the weakly magnetic good conductor plate only needs to be laid flat along the driving path. It interacts with the suspended permanent magnets to achieve the levitation function, and also interacts with the guide permanent magnets to generate guide damping.
  • the difficulty of laying conductor tracks with this patented technology is reduced, the laying and maintenance costs are also smaller, and the service life is also improved.
  • Figure 1 is a schematic diagram of the overall structure provided by an embodiment of the present invention.
  • Figure 2 is a top view of the overall structure provided by the embodiment of the present invention.
  • Figure 3 is a perspective view of the overall structure of key components provided by the embodiment of the present invention.
  • Figure 4 is a schematic diagram of a suspension system provided by an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a guide and damping device provided by an embodiment of the present invention.
  • Figure 6 is a top view of the overall structure of the component provided by the embodiment of the present invention.
  • FIG. 7 is a graph showing the variation of the guiding force with the offset provided by the embodiment of the present invention.
  • Figure 8 is a graph showing the variation of the guiding force with the offset at different speeds according to an embodiment of the present invention.
  • Figure 9 is a graph of the change of the guide force with time when no guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • Figure 10 is a graph of the change of the guide force with time when the guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • Figure 11 is a graph showing the variation of the suspension gap with time when no guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • Figure 12 is a graph of the suspension gap changing with time when the guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • Figure 13 is a graph showing the variation of the deflection angle of the vehicle body over time when no guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • Figure 14 is a graph showing the variation of the deflection angle of the vehicle body with time when the guide magnet is installed during the experiment provided by the embodiment of the present invention.
  • the principle of permanent magnet electric levitation technology is mainly based on Lenz's law.
  • an induced current is generated in the weakly magnetic good conductor material.
  • This induced current will form a connection with the source.
  • the mirror magnetic field with the opposite magnetic field generates electromagnetic force through the interaction between the mirror magnetic field and the source magnetic field. Its component force in the vertical direction acts as a suspension force to overcome the self-weight of the system, while its component force in the horizontal direction acts as an obstacle to both. Magnetic resistance that causes relative motion.
  • the permanent magnet electric levitation system is a weakly damped or under-damped system, and a small disturbance will make the system extremely unstable. In particular, during high-speed operation, factors such as strong lateral gas disturbance and uneven conductor tracks will pose a greater threat to the system. Therefore, as a high-speed ground transportation tool, the guide device is the basis for ensuring its safe and stable operation.
  • guide wheel auxiliary guidance is often used as a mechanical guide in maglev systems.
  • the principle of the normal magnetic guidance system is similar to that of the magnetic suspension system.
  • a set of special guide electromagnets are installed on both sides of the train to ensure a fixed gap between the car body and the guide rail. When the train deviates left or right At this time, the train returns to its original position through the interaction between the on-board guide electromagnet and the guide rail.
  • the first is the superconducting electric magnetic repulsion type, such as the Japanese MLX superconducting maglev train, which uses "8"-shaped coils evenly laid on the conductor tracks on both sides. When the train deviates left and right, the gaps between the on-board superconducting magnets and the coils on both sides are different. The guiding force generated on the side with a small gap is greater than that on the side with a large gap. The overall performance is a restoring force to return the train to its original position.
  • the second type is the permanent magnet electric magnetic repulsion type, which changes the cross-sectional shape of the guide rail.
  • Magplane in the United States uses an arc-shaped conductor track to use the component of the suspension force as the guiding force to return the train to its original position when it deviates; Or install a set of permanent magnet arrays on both sides of the train.
  • the guiding force generated on the side with a small gap is greater than that on the side with a large gap.
  • the overall performance is that the restoring force makes the train return to its original position to achieve the guiding function.
  • the control system has high energy consumption and poor self-stability; although the permanent magnet electric magnetic repulsion type has better self-stability, the additional two rows of guide permanent magnets will increase the cost and make the guide unstable; the track is changed from the original
  • the flat-plate type guide rail is changed into a "U"-shaped guide rail, which increases the difficulty of ground track laying, and the track laying and maintenance costs also increase; while the guide permanent magnets generate guiding force, they will also generate inherent magnetic resistance that hinders the train's progress, making the overall System energy consumption increases.
  • the electromagnetic force generated between the guide permanent magnet and the guide rail is mainly the guiding force in the y direction, and the kinetic energy generated by the deflection will be consumed by the heat energy generated by the guiding force.
  • the guide magnet When the guide magnet is not installed, the guiding force received by the car body after entering the guide rail is reduced, and the guiding force acts for a short time; the car body deviates greatly, and the deflection angle can reach 180 degrees; causing the car body to exit quickly In the suspended state, the suspension gap is small, the suspension time is short, and the whole journey cannot be completed smoothly.
  • the guiding force it receives increases significantly, and the guiding force acts for a long time; the deflection angle is significantly reduced, making the car body easier to control; the suspension gap of the car body increases, the suspension time becomes longer, and the vehicle body can be successfully completed Travel the entire distance within the guide rail.
  • the effectiveness of the guide magnet in achieving the guiding role in the permanent magnet electric levitation system is proved.
  • this embodiment provides a permanent magnet electric levitation system, including:
  • Conductor track 3 conductor track 3 is erected on the roadbed
  • the suspension guide device is arranged above the conductor track 3.
  • the suspension guide device includes a first permanent magnet array 1 and a second permanent magnet array 2.
  • the first permanent magnet array 1 and the second permanent magnet array 2 are arranged in the same magnetization direction. ;
  • the first permanent magnet array 1 and the second permanent magnet array 2 are arranged perpendicularly to each other.
  • the first permanent magnet array 1 is composed of at least one permanent magnet block arranged side by side laterally, the first permanent magnet array 1 is a strip structure, and the first permanent magnet array 1 is arranged in parallel to the extension of the conductor track 3 direction, the changing direction of the magnetic field of the first permanent magnet array 1 is parallel to the forward direction of the train;
  • the second permanent magnet array 2 is composed of at least one permanent magnet block vertically arranged side by side, the second permanent magnet array 2 has a strip structure, and the second permanent magnet array 2 is arranged vertically on the conductor track 3 In the extension direction, the changing direction of the magnetic field of the second permanent magnet array 2 is perpendicular to the forward direction of the train.
  • the guide damping device used in the permanent magnet electric suspension system mainly consists of a first permanent magnet array 1, a second permanent magnet array 2 and a conductor track 3.
  • the first permanent magnet array 1 is a suspended permanent magnet
  • the second permanent magnet array 2 is a guide permanent magnet, in which the conductor track 3 is a weakly magnetic good conductor track 3; the suspended permanent magnet and the guide permanent magnet are both spliced by several NdFeB permanent magnets, and their magnetization direction is according to the Halbach array.
  • the magnetization angle is preferably between 30° and 90°.
  • the structural difference between the suspended permanent magnets and the guided permanent magnets in the present invention is that the first permanent magnet array 1 is arranged in a Halbach array along the x direction, while the second permanent magnet array 2 is arranged in a Halbach array along the y direction. .
  • the first permanent magnet array 1 interacts with the weakly magnetic good conductor track 3 while advancing along the x direction to achieve the levitation function.
  • the second permanent magnet array 2 will interact with the weakly magnetic good conductor track 3 to generate an electromagnetic force, which acts in the y direction.
  • the component force will hinder the system deflection in the form of guide damping to achieve the guide function and ensure the train's centered operation.
  • a bogie 8 is provided on the train, and a lifting device 7 is provided below the bogie 8.
  • the array 1 is connected to the bottom of the bogie 8 of the train through the first lifting assembly; the second permanent magnet array 2 is connected to the bottom of the bogie 8 of the train through the second lifting assembly.
  • the lifting device 7 includes an outer frame and a screw connector, and the outer frame is connected below the bogie 8 through the screw connector.
  • a conductor plate 4 is disposed below the bogie 8
  • a stator coil 5 is disposed below the conductor plate 4
  • a stator insulating base 6 is disposed in the stator coil 5
  • the stator insulating base 6 is disposed on the roadbed. superior.
  • the stator coil 5, the stator insulating base 6 and the vehicle-mounted induction conductor plate 4 constitute a linear induction motor to pull the train forward in the x direction.
  • the stator coil 5, the stator insulating base 6 and the weakly magnetic good conductor track 3 are laid on the roadbed.
  • the end surface of the first permanent magnet array 1 close to the conductor track 3 and the end surface of the second permanent magnet array 2 close to the conductor track 3 are located at the same level.
  • Figure 3 shows a relative position scheme of the suspended permanent magnets and the guide permanent magnets.
  • Figure 6 is a top view of the scheme.
  • Figure 1 is a schematic diagram of the train in the suspended operating state, in which the first permanent magnet array 1 and the first The two permanent magnet arrays 2 are connected to the bottom of the train bogie 8 through a lifting device 7 .
  • the weak magnetic good conductor track 3 can be made of aluminum, copper and other materials.
  • the magnitude of the electromagnetic force generated by the permanent magnet electric levitation system is directly related to the operating speed and working gap. Therefore, the height of the lifting device 7 can be controlled to control the work between the levitation and guide magnets and the track of the conductor plate 4. gap to control the size of the electromagnetic force.
  • This embodiment is divided into three processes for description, namely the start-up acceleration process, the suspension operation process and the braking and parking process.
  • the start-up acceleration process is:
  • a guidance method for a permanent magnet electric suspension system including:
  • Receive the first command which is a command to start and accelerate the train from a stationary state; obtain the power supply situation and operating status of the train in real time.
  • the power supply situation includes the actual power supply frequency and power supply slip rate, and the operating status includes the vehicle operating speed and operating position. ;
  • the current optimal power supply frequency of the train the optimal power supply slip rate corresponding to the optimal power supply frequency, and the required acceleration of the train are calculated;
  • Send a first control command which includes a control command for the train to gradually reach a preset speed based on the adjusted optimal power supply frequency, optimal power supply slip rate and acceleration.
  • the control system will control the ground power supply to pass through the traction inverter and inductor to the stator coil 5 in the form of three-phase alternating current, and monitor the linear induction in real time Based on the motor's actual power supply frequency f, power supply slip s, vehicle running speed v, running position, motor working air gap, working voltage and current and other information, the optimal power supply frequency f' of the motor and the corresponding optimal power supply slip are calculated.
  • f is the actual power supply frequency of the linear induction motor
  • s is the power supply slip of the motor
  • v is the running speed of the vehicle
  • f' is the optimal power supply frequency obtained after calculation
  • sf' is the optimal power supply slip
  • is the pole pitch of the motor
  • v * is the given running speed of the train.
  • the suspension operation process is:
  • a levitation command is sent.
  • the levitation command is to send a switch signal to control the start of the levitation magnet lifting device 7 when the train speed reaches the levitation speed;
  • Receive a second control command includes controlling the speed of the train to a preset speed and driving at a constant speed;
  • v v 1
  • a suspension command will be sent to the control system
  • the control system will send a switch signal to control the start of the suspension magnet lifting device 7, and collect real-time change information of the suspension height h.
  • v 1 is the lifting speed of the train
  • h * is the suspension height preset by the system.
  • the control system will receive a constant speed Run command to control the train to keep running at a given speed.
  • the control system will collect the real-time change information of the train's deflection speed v y in the y direction and the guide magnet height h'.
  • the entire car body 9 When the train passes through a curve or experiences uneven track surface, the entire car body 9 will generate When there is an obvious y-direction deviation, and the deviation speed v y exceeds the threshold, a guidance command will be sent to the control system.
  • v y is the deflection speed of the train in the y direction.
  • x y is the preset minimum y-direction offset.
  • the working height h * ' of the guide magnet is calculated.
  • the braking process is as follows:
  • Receive a third control command includes sending a switch signal to the lifting device 7 to raise the first permanent magnet array 1 and the second permanent magnet array 2 to a preset braking height;
  • the first information includes calculating the actual distance between the train and the platform;
  • the first information is to adjust the power supply current to the train until the braking requirements are met.
  • receiving a second command the second command being a command to brake the train
  • the levitation command is to send a switching signal to the first permanent magnet array 1 and the second permanent magnet array 2 to cause the first permanent magnet array 1 and the second permanent magnet array 2 to rise. to the preset braking height;
  • the second information includes calculating the actual distance between the train and the platform;
  • the second information Compare the second information with the braking displacement required by the train to determine whether the train meets the braking requirements in the current state. If the braking displacement is less than the second information, the status quo is maintained; if the braking displacement is greater than the braking displacement The second information is to adjust the power supply current to the train until the braking requirements are met.
  • h' h 0 ', where h 0 and h 0 ' are the preset braking heights of the suspension and guide magnets respectively.
  • ax is the braking deceleration of the train
  • x is the calculated braking displacement
  • x' is the actual distance between the train and the platform.
  • the working principle of the permanent magnet electric levitation system device of the present invention is as follows:
  • the levitation permanent magnets are arranged along the x-direction, and the magnetic field intensity of the magnetic field is approximately sinusoidal in the x-direction and uniformly distributed in the y-direction.
  • the levitation permanent magnets advance in the x-direction at a certain speed, the levitation permanent magnets There is a relative displacement in the x direction between the magnet and the weakly magnetic good conductor track 3 under a certain working gap.
  • the source magnetic field generated by the suspended permanent magnet cuts the conductor track 3. Due to the non-uniformity of the magnetic field in the x direction, induction will occur inside the conductor. Eddy currents, resulting in induced magnetic fields and induced electromotive force:
  • e is the induced electromotive force
  • i(t) is the induced current
  • is the magnetic flux passing through the conductor plate
  • R is the conductor plate resistance
  • L is the conductor plate inductance
  • is the equivalent angular frequency
  • the induced magnetic field will interact with the permanent magnet source magnetic field, and the component of the generated electromagnetic force F in the z direction is expressed as a suspension force that overcomes the self-weight of the car body to achieve the suspension function.
  • the component of the electromagnetic force F in the x direction is The force manifests as magnetic resistance, which will hinder the vehicle body from moving forward.
  • F J ⁇ B
  • F is the electromagnetic force generated
  • J is the induced current generated in the conductor
  • B is the magnetic induction intensity of the permanent magnet source magnetic field.
  • the guide permanent magnets are arranged along the y direction, and the magnetic field intensity of the magnetic field is approximately sinusoidal in the y direction and uniformly distributed in the x direction.
  • the vehicle body 9 is deflected in the y direction as a whole during normal driving, , there is a relative displacement in the y direction between the guide permanent magnet and the weakly magnetic good conductor track 3. Due to the non-uniformity of the magnetic field in the y direction, the source magnetic field generated by the guide permanent magnet interacts with the induced magnetic field generated on the conductor track 3, resulting in The component force of the electromagnetic force in the z direction behaves as a levitation force, which will enhance the system's levitation performance.
  • the component force in the y direction behaves as a guiding force Fy, which prevents the system from continuing to deflect and plays the role of guiding damping.
  • Fy guiding force
  • Figure 7 reflects the trend of the guide force changing with the offset of the car body 9 in the y direction. It can be seen that the guide force increases with the increase of the offset, which is consistent with the guide damping working state, and its working state can be equivalent to is elastic damping.
  • Figure 8 shows the changing trend of the guiding force with the deflection of the vehicle body 9 in the y direction at different deflection speeds. It can be seen that the guiding force value will be affected by the speed and increases with the increase of the speed. Therefore, the guiding force Force F y can be equivalent to damping force F d :
  • B 0 is the magnetic induction intensity on the surface of the magnet on the strong magnetic field side
  • R is the conductor plate resistance
  • L is the conductor plate inductance
  • is the equivalent angular frequency
  • k is the wave number
  • C is the damping coefficient
  • m is the train mass
  • V y is The velocity of the vehicle body 9 deflecting in the y direction
  • a is the acceleration in the y direction.
  • the lateral guiding force is always opposite to the lateral speed, that is, when the train is running, the car body 9 is deflected laterally, so that when the lateral velocity component is large, the guiding force will generate a large reverse acceleration a, making the train lateral The speed decreases to 0 for a shorter period of time.
  • x y is the offset of the car body along the y direction
  • Q is the heat energy consumed by the induced eddy current
  • the beneficial effects of the present invention are: the permanent magnet electric levitation system is generally an under-damped system, and the guide damping device can provide damping for the general permanent magnet electric levitation system, enhancing the stability and safety of the system operation; the structure is simple , low cost.
  • the guide damping function can be realized by just adding a set of guide permanent magnets to the car body 9.
  • the car body 9 is easy to modify and feasible; the conductor track 3 does not need to be modified, and the weakly magnetic good conductor plate 4 only needs to be laid flat along the driving path, which is consistent with the driving path.
  • the suspended permanent magnets interact with each other to achieve the levitation function, and also interact with the guide permanent magnets to produce guide damping.
  • the difficulty of track laying with this patented technology is reduced, the laying and maintenance costs are also smaller, and the service life is also improved; during normal driving, the guide permanent magnets move along the driving direction.
  • the magnetic resistance generated by the interaction with the guide rail when moving forward is very small and can be ignored, which will not increase the energy consumption of the system.

Abstract

一种永磁电动悬浮系统,包括导体轨道(3),架设在路基上;悬浮导向装置,设置在导体轨道(3)上方,悬浮导向装置包括第一永磁体阵列(1)和第二永磁体阵列(2),第一永磁体阵列(1)和第二永磁体阵列(2)磁化方向的排列相同,第一永磁体阵列(1)和第二永磁体阵列(2)相互垂直设置;其中,第一永磁体阵列(1)为条形结构,由至少一块永磁体块横向并排构成,平行设置于导体轨道(3)的延伸方向上,第一永磁体阵列(1)的磁场变化方向与列车的前进方向平行;第二永磁体阵列(2)为条形结构,由至少一块永磁体块竖向并排构成,第二永磁体阵列(2)垂直设置于导体轨道(3)的延伸方向上,第二永磁体阵列(2)的磁场变化方向与列车的前进方向垂直,且第二永磁体阵列(2)沿车辆的横向分布。永磁电动悬浮系统可增加系统阻尼进而提高运行的平稳性和安全性,铺设难度降低,使用寿命提高,且不额外增加系统能耗。还包括一种永磁电动悬浮系统的导向方法。

Description

一种永磁电动悬浮系统及其导向方法 技术领域
本发明涉及永磁电动磁悬浮系统的技术领域,具体而言,涉及一种永磁电动悬浮系统及其导向方法。
背景技术
电动式磁悬浮列车具有速度快、能耗低、爬坡能力强、安全舒适、运行噪声小、无燃油和污染少等特点,适用于高速及超高速运行场景。采用导向辅助轮时,轨道形式需要采用“U”字型,一方面使结构变得复杂,增加建设成本;另一方面,由于其与导轨直接接触,存在机械摩擦和磨损,不利于列车过弯行驶,不适用于高速磁悬浮列车。
常导磁吸式导向系统的工作间隙较小,需要精确的控制系统,且能耗较大,自稳定性差。永磁电动磁斥式导向方案虽然自稳定性较好,但额外增设的两列导向永磁体会使得成本增加,且导向不稳定;导体轨道由原来的平板式变为“U”型导轨,提升了地面导体轨道铺设难度,导体轨道铺设、维护成本也随之增加;导向永磁体在产生导向力的同时也将产生阻碍列车前进的固有磁阻力,使整体系统能耗增加。
发明内容
本发明的目的在于提供一种永磁电动悬浮系统及其导向方法,其能解决上述问题。为了实现上述目的,本发明采取的技术方案如下:
本申请提供了一种永磁电动悬浮系统,包括:
导体轨道,所述导体轨道架设在路基上;
悬浮导向装置,所述悬浮导向装置设置在所述导体轨道上方,所述悬浮导向装置包括第一永磁体阵列和第二永磁体阵列,所述第一永磁体阵列和所述第二永磁体阵列磁化方向的排列相同;所述第一永磁体阵列和第二永磁体阵列相互垂直设置。
综合上述提供的技术方案,在一些可能的实现方式中,所述升降装置是螺纹传动升降机构或斜面传动升降机构。
综合上述提供的技术方案,在一些可能的实现方式中,弯臂上固定连接的电机带动丝 杠转动,驱动磁体基座上固定连接的螺母盘升降,从而调节磁体基座上的永磁体与导体轨道之间的磁力间隙。
一种永磁电动悬浮系统的导向方法,包括:
接收第一命令,所述第一命令为令列车由静止状态启动加速的命令;
实时获取列车的供电情况和运行状态,所述供电情况包括实际供电频率和供电转差率,所述运行状态包括车辆运行速度和运行位置;
根据所述供电情况和所述运行状态,计算得到列车当前的最优供电频率、与所述最优供电频率对应的最优供电转差率和列车所需的加速度;
基于当前列车的运行速度,调整所述最优供电频率、最优供电转差率和所述加速度;
发送第一控制命令,所述第一控制命令包括根据调整后的最优供电频率、最优供电转差率和所述加速度对列车逐渐达到预设速度的控制命令。
本发明的有益效果为:
1、永磁电动悬浮系统为弱阻尼或欠阻尼系统,该导向阻尼装置可为永磁电动悬浮系统提供横向阻尼作用,实现稳定导向,增强系统运行的平稳性和安全性,从而解决无导向功能这一难题。
2、结构简单,造价低廉,易操作实现。仅需在车体上增加一组导向永磁体即可实现导向阻尼功能。
3、导体轨道无需进行改造,弱磁性良导体板仅需沿行驶路径平铺,其与悬浮永磁体相互作用实现悬浮功能,同时也与导向永磁体相互作用产生导向阻尼。相较于目前的永磁电动磁斥式导向技术,本专利技术导体轨道铺设的难度降低,铺设、维护成本也较小,使用寿命也得以提高。
4、在正常行驶过程中,导向永磁体在沿行驶方向前进时与导板导体轨道相互作用产生的磁阻力很小,因此对悬浮系统的影响微乎其微,不会额外增加系统能耗。
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的整体结构示意图。
图2为本发明实施例提供的整体结构俯视图。
图3为本发明实施例提供的关键部件整体结构立体图。
图4为本发明实施例提供的悬浮系统示意图。
图5为本发明实施例提供的导向阻尼装置示意图。
图6为本发明实施例提供的部件整体结构俯视图。
图7为本发明实施例提供的导向力随偏移量变化曲线图。
图8为本发明实施例提供的不同速度下导向力随偏移量变化曲线图。
图9为本发明实施例提供的实验过程中未安装导向磁体时的导向力随时间变化曲线图。
图10为本发明实施例提供的实验过程中已安装导向磁体时的导向力随时间变化曲线图。
图11为本发明实施例提供的实验过程中未安装导向磁体时的悬浮间隙随时间变化曲线图。
图12为本发明实施例提供的实验过程中已安装导向磁体时的悬浮间隙随时间变化曲线图。
图13为本发明实施例提供的实验过程中未安装导向磁体时的车体偏转角度随时间变化曲线图。
图14为本发明实施例提供的实验过程中已安装导向磁体时的车体偏转角度随时间变化曲线图。
图中标记:1、第一永磁体阵列;2、第二永磁体阵列;3、导体轨道;4、导体板;5、定子线圈;6、定子绝缘基座;7、升降装置;8、转向架;9、车体。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
永磁电动悬浮技术的原理主要基于楞次定律,通过永磁体产生的源磁场与弱磁性良导体材料之间的相对运动,在弱磁性良导体材料中产生感应电流,该感应电流将形成与源磁场相反的镜像磁场,通过镜像磁场与源磁场的相互作用产生电磁力,其在竖直方向上的分力表现为克服系统自重的悬浮力,而在水平方向上的分力表现为阻碍二者发生相对运动的磁阻力。然而永磁电动悬浮系统是一个弱阻尼或欠阻尼系统,一个微小的扰动会使得系统极其不稳定。特别地,在高速运行过程中,强大的横向气体扰动和导体轨道不平整等因素将对该系统造成较大的威胁。所以作为高速运行的地面交通运输工具,导向装置是保证其安全稳定运行的基础。
目前导向技术主要分为三种,即导向轮辅助导向、常导磁吸式导向、电动磁斥式导向。导向辅助轮常作为机械导向方式广泛应用于磁悬浮系统中,通过在车体两侧安装导向辅助轮,利用其与导体轨道间的滚动摩擦来实现限位支撑,使列车沿着导轨中心线行驶。常导磁吸式导向系统与磁吸式悬浮系统的原理类似,是在列车的两侧再安装一组专门的导向电磁铁,以保证车体与导轨间的固定间隙,当列车发生左右偏移时,通过车载导向电磁铁与导轨间的相互作用使列车回复到原来的位置。
电动磁斥式导向目前常用的主要有两种形式:第一种为超导电动磁斥式,如日本MLX型超导磁悬浮列车,利用其两侧导体轨道上均匀铺设的“8”字形线圈,当列车发生左右偏移时,车载超导磁体与两侧线圈的间隙不同,间隙小的一侧产生的导向力大于间隙大的一侧,整体表现为一个回复力使列车回到原来位置。第二种为永磁电动磁斥式,通过改变导轨截面形状,如美国的Magplane,采用弧形截面导体轨道以悬浮力的分力作为导向力,使列车发生偏移时回复到原来的位置;或在列车的两侧再各安装一组永磁体阵列,当列车发生偏移时,由于车载导向永磁体与两侧导轨的间隙不同,间隙小的一侧产生的导向力大于间隙大的一侧,整体表现为回复力使列车回到原来的位置实现导向功能。
现有技术中采用导向辅助轮时,由于其与导轨直接接触,存在机械摩擦和磨损,噪音较大,且不适用于高速磁悬浮列车;常导磁吸式导向系统的工作间隙较小,需要精确的控制系统,且能耗较大,自稳定性差;永磁电动磁斥式虽然自稳定性较好,但额外增设的两列导向永磁体会使得成本增加,且导向不稳定;轨道由原来的平板式变为“U”型导轨,提升了地面轨道铺设难度,轨道铺设、维护成本也随之增加;导向永磁体在产生导向力的同时也将产生阻碍列车前进的固有磁阻力,使整体系统能耗增加。
而本发明在实施过程中,当车体正常对中行驶时,由于车载悬浮永磁体与弱磁性良导体轨道间的相互作用,将产生悬浮力和磁阻力,实现悬浮功能。通过车载导向永磁体与弱磁性良导体轨道间的相互作用实现导向功能,保证车辆平稳安全运行。当车体产生y方向的微小偏移时,导向永磁体与导轨间产生电磁力主要为y方向的导向力,由偏移产生的动能将由该导向力产生的热能所消耗。
实验分析:将普通小型轿车进行改装,在其底盘下安装悬浮磁体和可拆卸式导向磁体,分别开展相同工况下无导向磁体实验和有导向磁体实验。实验过程为:车体首先在普通路面上进行加速,在达到一定初速度后,保证悬浮磁体与导体板轨道对中驶入导体板轨道,悬浮磁体与导板轨道相互作用实现悬浮,尽量保证车体不发生大的偏移,顺利驶出轨道。实验过程中对导向力、悬浮间隙和横向偏转角度进行实时监测,并收集数据,有无安装导向磁体的实验结果如图9-图14所示。当未安装导向磁体时,车体在进入导板轨道后,受到的导向力减小,且导向力作用时间短;车体发生较大的偏移,偏转角可达180度;使车体迅速退出悬浮状态,悬浮间隙小,悬浮时间短,不能顺利完成全程行驶。当车体加装导向磁体后,受到的导向力显著增加,且导向力作用时间长;偏转角度明显减小,使车体更容易控制;车体悬浮间隙增加,悬浮时间变长,能顺利完成导板轨道内全程行驶。证明了导向磁体在永磁电动悬浮系统中实现导向作用的有效性。
在车体通过曲线或在经过路面不平顺的激励作用下,车体整体发生明显横向(y)偏移时,导向永磁体与导轨之间相互作用产生的y向分力将作为导向阻尼阻碍车体的继续偏移,增强整体系统的运行安全性和平稳性,以下为本发明的实施例:
实施例1
如图1和图2所示,本实施例提供了一种永磁电动悬浮系统,包括:
导体轨道3,导体轨道3架设在路基上;
悬浮导向装置,悬浮导向装置设置在导体轨道3上方,悬浮导向装置包括第一永磁体阵列1和第二永磁体阵列2,第一永磁体阵列1和第二永磁体阵列2磁化方向的排列相同;第一永磁体阵列1和第二永磁体阵列2相互垂直设置。
在一些可选的实施方案中,第一永磁体阵列1由至少一块永磁体块横向并排构成,第一永磁体阵列1为条形结构,第一永磁体阵列1平行设置于导体轨道3的延伸方向上,第一永磁体阵列1的磁场变化方向与列车的前进方向平行;
在一些可选的实施方案中,第二永磁体阵列2由至少一块永磁体块竖向并排构成,第二永磁体阵列2为条形结构,第二永磁体阵列2垂直设置于导体轨道3的延伸方向上,第二永磁体阵列2的磁场变化方向与列车的前进方向垂直。
需要说明的是,用于永磁电动悬浮系统的导向阻尼装置主要由第一永磁体阵列1、第二永磁体阵列2和导体轨道3组成,其第一永磁体阵列1为悬浮永磁体,其中第二永磁体阵列2为导向永磁体,其中导体轨道3为弱磁性良导体轨道3;其中悬浮永磁体和导向永磁体均由若干块钕铁硼永磁体拼接而成,其磁化方向按照Halbach阵列周期性排列,磁化角在30°到90°之间较好。
其中,本发明中悬浮永磁体和导向永磁体在结构上的区别在于:第一永磁体阵列1是沿x方向以Halbach阵列排列,而第二永磁体阵列2是沿y方向以Halbach阵列排列的。
如图4所示,第一永磁体阵列1在沿x方向前进过程中与弱磁性良导体轨道3相互作用以实现悬浮功能。
在正常行驶过程中,当系统受到扰动整体发生y方向偏移时,如图5所示,第二永磁体阵列2将与弱磁性良导体轨道3相互作用产生一个电磁力,其在y方向上的分力将以导向阻尼的形式阻碍系统偏移,以实现导向功能保证列车对中运行。
在一些可选的实施方案中,列车上设置有转向架8,转向架8下方设置有升降装置7,升降装置7为两个,分别为第一升降组件和第二升降组件,第一永磁体阵列1通过第一升降组件连接在列车的转向架8底部;第二永磁体阵列2通过第二升降组件连接在列车的转向架8底部。
在一些可选的实施方案中,升降装置7包括外框和丝杆连接件,外框通过丝杆连接件连接在转向架8的下方。
在一些可选的实施方案中,转向架8下方设置有导体板4,导体板4的下方设置有定子线圈5,定子线圈5内设置有定子绝缘基座6,定子绝缘基座6设置在路基上。定子线圈5、定子绝缘基座6和车载感应导体板4构成直线感应电机以牵引列车沿x方向前进,定子线圈5、定子绝缘基座6和弱磁性良导体轨道3铺设于路基上。
第一永磁体阵列1靠近导体轨道3的端面与第二永磁体阵列2靠近导体轨道3的端面位于同一水平高度上。
综上,图3给出了一种悬浮永磁体与导向永磁体的相对位置方案,图6为该方案俯视图,图1为列车处于悬浮运行状态时的示意图,其中第一永磁体阵列1和第二永磁体阵列2通过可升降装置7连接在列车转向架8的底部。
需要说明的是,弱磁性良导体轨道3可采用铝、铜等材料。
实施例2
本实施例中,永磁电动悬浮系统所产生的电磁力大小与运行速度和工作间隙有着直接的关系,所以可通过控制升降装置7的高度来控制悬浮和导向磁体与导体板4轨道间的工作间隙,以此控制电磁力的大小。
本实施例分为三个过程进行阐述,分别为启动加速过程、悬浮运行过程和制动停车过程,其中,启动加速过程为:
一种永磁电动悬浮系统的导向方法,包括:
接收第一命令,第一命令为令列车由静止状态启动加速的命令;实时获取列车的供电情况和运行状态,供电情况包括实际供电频率和供电转差率,运行状态包括车辆运行速度和运行位置;
根据供电情况和运行状态,计算得到列车当前的最优供电频率、与最优供电频率对应的最优供电转差率和列车所需的加速度;
基于当前列车的运行速度,调整最优供电频率、最优供电转差率和加速度;
发送第一控制命令,第一控制命令包括根据调整后的最优供电频率、最优供电转差率和加速度对列车逐渐达到预设速度的控制命令。
具体地,当列车欲由静止状态启动加速时,控制系统接收到加速命令后,将控制地面电源通过牵引逆变器、电感,以三相交流电的形式通入定子线圈5,并实时监控直线感应电机的实际供电频率f、供电转差率s、车辆运行速度v、运行位置,电机工作气隙、工作电压电流等信息,计算得到电机的最优供电频率f’、对应的最优供电转差率sf’以及列车所需的加速度,基于列车运行速度v=2τf(1-s),可通过调整f和s使满足:f=f’,并使列车逐渐加速达到给定速度v*。其中,f为直线感应电机的实际供电频率,s为电机的供电转差率,v为车辆的运行速度,f’为计算后得到的最优供电频率,sf’为最优供电转差率,τ为电机的极距,v*为列车的给定运行速度。
其中,悬浮运行过程为:
在一些可选的实施方案中,发送悬浮命令,悬浮命令为当列车速度达到起浮速度时,发送开关信号控制悬浮磁体升降装置7启动;
采集列车实时的悬浮高度信息;
将采集到的列车实时的悬浮高度调整至预设的悬浮高度;
接收第二控制命令,第二控制命令包括将列车的速度控制到预设速度进行匀速行驶;
采集列车在y向的偏移速度及第二永磁体阵列2高度的实时变化信息;
判断列车在行进过程中的车体9产生y向偏移时,偏移速度是否超过阈值,若超过,则发送开关信号控制导向磁体升降装置7启动;若不超过,则继续实时监控y向偏移速度。
具体地,列车在直线感应电机的驱动下速度由0加速到v*的过程中,当监测到列车运行速度达到起浮速度v1时,即v=v1,将向控制系统发送悬浮命令,此时控制系统将发送开关信号控制悬浮磁体升降装置7启动,并收集悬浮高度h的实时变化信息,根据系统预设的悬浮高度h*,通过控制升降装置7降下磁体,使满足h=h*,使悬浮磁体在预设的悬浮高度下工作,系统进入悬浮运行状态。其中,v1为列车的起浮速度,h*为系统预设的悬浮高度。
需要说明的是,进入悬浮运行状态后,列车与轨道实现无接触运行,通过直线感应电机驱动继续加速,直到列车达到给定速度v*,即v=v*,此时控制系统将接收到匀速运行命令,控制列车保持给定速度匀速行驶。同时控制系统将收集列车在y向的偏移速度vy及导向磁体高度h’的实时变化信息,当列车在通过曲线或经历轨面不平顺,车体9整体产生 明显y向偏移时,此时偏移速度vy超过阈值,将向控制系统发送导向命令。其中,vy为列车在y向的偏移速度。
基于公式计算使列车y向偏移速度降至0所需的减速度ay。
其中,xy为预设的最小y向偏移量。并根据公式Fg=may,计算出提供所需减速度的导向力Fg,其中,m为列车的质量。基于所得Fg计算出导向磁体的工作高度h*’,同时控制系统将发送开关信号控制导向磁体升降装置启动,使导向磁体降至要求高度,即h’=h*’,实现导向功能。
制动停车过程为:
接收第三控制命令,所述第三控制命令包括发送开关信号至所述升降装置7,使所述第一永磁体阵列1和所述第二永磁体阵列2上升至预设制动高度;
根据所述第三控制命令,采集列车实时的制动减速度;
根据采集到的所述制动减速度,计算得出列车所需的制动位移;
获取第一信息,所述第一信息包括计算列车实际与站台间之间的距离;
对比所述第一信息和列车所需的制动位移,判断列车在当前状态是否满足制动要求,若所述制动位移小于所述第一信息,则维持现状;若制动位移大于所述第一信息,则调整对列车的供电电流直到满足制动要求为止。
在一些可选的实施方案中,接收第二命令,所述第二命令为令列车制动的命令;
发送悬浮命令,所述悬浮命令为发送开关信号至所述第一永磁体阵列1和所述第二永磁体阵列2,使所述第一永磁体阵列1和所述第二永磁体阵列2上升至预设制动高度;
根据采集到的所述制动减速度,计算得出列车所需的制动位移;
获取第二信息,所述第二信息包括计算列车实际与站台间之间的距离;
对比所述第二信息和列车所需的制动位移,判断列车在当前状态是否满足制动要求,若所述制动位移小于所述第二信息,则维持现状;若制动位移大于所述第二信息,则调整对列车的供电电流直到满足制动要求为止。
在一些可选的实施方案中,当列车需要制动停车时,控制系统接收到停车命令后,向悬浮、导向磁体升降装置发送开关信号,使悬浮、导向磁体上升,使满足h=h0,h’=h0’,其中h0、h0’分别为悬浮、导向磁体的预设制动高度。同时控制系统向直线电机发送制动信号,通过调整f和s,使满足:f=f’,使列车运行速度v不断降低。实时采集列车制动减速度ax,根据2axx=0-v2计算列车所需制动位移x,通过对比制动位移x与列车实际与站台间的距离x’,判断列车在当前状态是否满足制动要求,若x<x’,则维持现状, 若x>x’,则增大电机供电电流或改变电机三相电流相序,直至满足制动要求。其中,ax为列车的制动减速度,x为计算的制动位移,x’为列车与站台间的实际距离。
本发明的永磁电动悬浮系统装置的工作原理如下:
悬浮系统与导向系统的工作原理均基于电磁感应定律。对于悬浮系统而言,悬浮永磁体沿x方向排列,其磁场的磁场强度在x方向近似于正弦分布,在y方向呈均匀分布,当车载悬浮永磁体以一定速度沿x方向前进时,悬浮永磁体与弱磁性良导体轨道3在一定工作间隙下存在x方向上的相对位移,悬浮永磁体产生的源磁场切割导体轨道3,由于该磁场在x方向的非均匀性,将在导体内部产生感应涡流,从而产生感应磁场和感应电动势:

式中,e为感应电动势,i(t)为感应电流,φ为穿过导体板的磁通量,R为导体板电阻,L为导体板电感,ω为等效角频率。
该感应磁场将与永磁体源磁场相互作用,产生的电磁力F在z方向上的分力表现为克服车体自重的悬浮力,以实现悬浮功能,但同时该电磁力在x方向上的分力表现为磁阻力,将阻碍车体前进。
F=J×B
式中,F为产生的电磁力,J为导体内产生的感应电流,B为永磁体源磁场的磁感应强度。
对于导向系统而言,导向永磁体沿y方向排列,其磁场的磁场强度在y方向近似于正弦分布,在x方向呈均匀分布,当车体9在正常行驶过程中整体发生y方向偏移时,导向永磁体与弱磁性良导体轨道3存在y方向上的相对位移,由于磁场在y方向的非均匀性,导向永磁体产生的源磁场与导体轨道3上产生的感应磁场相互作用,产生的电磁力在z方向上的分力表现为悬浮力,将增益系统悬浮性能,在y方向上的分力表现为导向力Fy,阻碍系统继续偏移,起到导向阻尼的作用。而在车体9沿x方向正常行驶过程中,由于磁场在x方向呈均匀分布,其与导体轨道3间的相互作用很小,不会影响整个系统的正常运行。
图7反映了导向力大小随车体9在y方向的偏移量变化的趋势,可看出导向力大小随着偏移量的增加而增加,符合导向阻尼工作状态,其工作状态可等效为弹性阻尼。
图8给出了不同偏移速度下导向力大小随车体9在y方向的偏移量变化趋势,可看出导向力值会受到速度的影响,并随速度的增加而增加,因此该导向力Fy可等效为阻尼力Fd

式中,B0为强磁场侧磁体表面磁感应强度,R为导体板电阻,L为导体板电感,ω为等效角频率,k为波数,C为阻尼系数,m为列车质量,Vy为车体9沿y方向偏移的速度,a为y向加速度。
值得注意的是横向导向力始终与横向速度相反,即当列车运行时,车体9发生侧向偏移,使得横向速度分量较大时,导向力会产生一个较大反向加速度a使得列车横向速度在较短的时间内减为0。
此时由于y方向位移所产生的动能将转化为等效阻尼产生的势能,也就是导轨内感应涡流所消耗的热能:
其中,xy为车体沿y方向的偏移量,Q为感应涡流所消耗的热能。
综上所述,本发明的有益效果为:永磁电动悬浮系统一般为欠阻尼系统,该导向阻尼装置可为一般永磁电动悬浮系统提供阻尼,增强系统运行的平稳性和安全性;结构简单,造价低廉。仅需在车体9上增加一组导向永磁体即可实现导向阻尼功能,车体9改装方便可行;导体轨道3无需进行改造,弱磁性良导体板4仅需沿行驶路径平铺,其与悬浮永磁体相互作用实现悬浮功能,同时也与导向永磁体相互作用产生导向阻尼。相较于目前的永磁电动磁斥式导向技术,本专利技术轨道铺设的难度降低,铺设、维护成本也较小,使用寿命也得以提高;在正常行驶过程中,导向永磁体在沿行驶方向前进时与导板轨道相互作用产生的磁阻力很小,可忽略不计,不会额外增加系统能耗。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (8)

  1. 一种永磁电动悬浮系统,其特征在于,包括:
    导体轨道(3),所述导体轨道(3)架设在路基上;
    悬浮导向装置,所述悬浮导向装置设置在所述导体轨道(3)上方,所述悬浮导向装置包括第一永磁体阵列(1)和第二永磁体阵列(2),所述第一永磁体阵列(1)和所述第二永磁体阵列(2)磁化方向的排列相同;所述第一永磁体阵列(1)和第二永磁体阵列(2)相互垂直设置;
    其中,所述第一永磁体阵列(1)由至少一块永磁体块横向并排构成,所述第一永磁体阵列(1)为条形结构,所述第一永磁体阵列(1)平行设置于所述导体轨道(3)的延伸方向上,所述第一永磁体阵列(1)的磁场变化方向与列车的前进方向平行;
    所述第二永磁体阵列(2)由至少一块永磁体块竖向并排构成,所述第二永磁体阵列(2)为条形结构,所述第二永磁体阵列(2)垂直设置于所述导体轨道(3)的延伸方向上,所述第二永磁体阵列(2)的磁场变化方向与列车的前进方向垂直,且所述第二永磁体阵列(2)沿车辆的横向分布。
  2. 根据权利要求1所述的永磁电动悬浮系统,其特征在于:列车上设置有转向架(8),所述转向架(8)下方设置有升降装置(7),所述升降装置(7)为两个,分别为第一升降组件和第二升降组件,所述第一永磁体阵列(1)通过所述第一升降组件连接在列车的所述转向架(8)底部;所述第二永磁体阵列(2)通过所述第二升降组件连接在列车的所述转向架(8)底部。
  3. 根据权利要求2所述的永磁电动悬浮系统,其特征在于:所述升降装置(7)包括外框和丝杆连接件,所述外框通过丝杆连接件连接在所述转向架(8)的下方。
  4. 根据权利要求2所述的永磁电动悬浮系统,其特征在于:所述转向架(8)下方设置有导体板(4),所述导体板(4)的下方设置有定子线圈(5),所述定子线圈(5)内设置在定子绝缘基座(6)上,所述定子绝缘基座(6)设置在路基上。
  5. 根据权利要求1所述的永磁电动悬浮系统,其特征在于:所述第一永磁体阵列(1)靠近所述导体轨道(3)的端面与所述第二永磁体阵列(2)靠近所述导体轨道(3)的端面位于同一水平高度上。
  6. 一种永磁电动悬浮系统的导向方法,如权利要求1-4中任意一项所述的永磁电动悬浮系统,其特征在于,包括:
    接收第一命令,所述第一命令为使列车由静止状态启动加速的命令;
    实时获取列车的供电情况和运行状态,所述供电情况包括实际供电频率和供电转差率,所述运行状态包括车辆运行速度和运行位置;
    根据所述供电情况和所述运行状态,计算得到列车当前的最优供电频率、与所述最优供电频率对应的最优供电转差率和列车所需的加速度;
    基于当前列车的运行速度,调整所述最优供电频率、最优供电转差率和所述加速度;
    发送第一控制命令,所述第一控制命令包括根据调整后的最优供电频率、最优供电转差率和所述加速度对列车逐渐达到预设速度的控制命令;
    其中,发送悬浮命令,所述悬浮命令为当列车速度达到起浮速度时,发送开关信号控制悬浮磁体升降装置(7)启动;
    采集列车实时的悬浮高度信息;
    将采集到的列车实时的悬浮高度调整至预设的悬浮高度;
    接收第二控制命令,所述第二控制命令包括将列车的速度控制到预设速度进行匀速行驶;
    采集列车在y向的偏移速度及所述第二永磁体阵列(2)高度的实时变化信息;
    当列车即将进入悬浮状态时,即发送开关信号控制导向磁体升降装置启动,将导向高度调整至预设高度,以保证列车从未悬浮状态稳定进入悬浮状态;当列车在悬浮状态运行过程中,判断列车在行进过程中的车体(9)产生y向偏移时,偏移速度是否超过阈值,若超过,则发送开关信号控制导向磁体升降装置启动,减小导向高度,提高导向能力;若不超过,则继续实时监控y向偏移速度。
  7. 根据权利要求6所述的永磁电动悬浮系统的导向方法,其特征在于:
    接收第三控制命令,所述第三控制命令包括发送开关信号至所述升降装置(7),使所述第一永磁体阵列(1)和所述第二永磁体阵列(2)上升至预设制动高度;
    根据所述第三控制命令,采集列车实时的制动减速度;
    根据采集到的所述制动减速度,计算得出列车所需的制动位移;
    获取第一信息,所述第一信息包括计算列车实际与站台间之间的距离;
    对比所述第一信息和列车所需的制动位移,判断列车在当前状态是否满足制动要求,若所述制动位移小于所述第一信息,则维持现状;若制动位移大于所述第一信息,则调整对列车的供电电流直到满足制动要求为止。
  8. 根据权利要求7所述的永磁电动悬浮系统的导向方法,其特征在于:
    接收第二命令,所述第二命令为令列车制动的命令;
    发送悬浮命令,所述悬浮命令为发送开关信号至所述第一永磁体阵列(1)和所述第二永磁体阵列(2),使所述第一永磁体阵列(1)和所述第二永磁体阵列(2)上升至预设制动高度;
    根据采集到的所述制动减速度,计算得出列车所需的制动位移;
    获取第二信息,所述第二信息包括计算列车实际与站台间之间的距离;
    对比所述第二信息和列车所需的制动位移,判断列车在当前状态是否满足制动要求,若所述制动位移小于所述第二信息,则维持现状;若制动位移大于所述第二信息,则调整对列车的供电电流直到满足制动要求为止。
PCT/CN2023/097512 2022-06-13 2023-05-31 一种永磁电动悬浮系统及其导向方法 WO2023241361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210659353.7 2022-06-13
CN202210659353.7A CN114734826B (zh) 2022-06-13 2022-06-13 一种永磁电动悬浮系统及其导向方法

Publications (1)

Publication Number Publication Date
WO2023241361A1 true WO2023241361A1 (zh) 2023-12-21

Family

ID=82287426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097512 WO2023241361A1 (zh) 2022-06-13 2023-05-31 一种永磁电动悬浮系统及其导向方法

Country Status (3)

Country Link
US (1) US11801756B2 (zh)
CN (1) CN114734826B (zh)
WO (1) WO2023241361A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734826B (zh) * 2022-06-13 2022-09-02 西南交通大学 一种永磁电动悬浮系统及其导向方法
CN115326440B (zh) * 2022-10-14 2022-12-30 西南交通大学 一种永磁电动悬浮实验装置及实验方法
CN115807361A (zh) * 2023-02-01 2023-03-17 成都西交华创科技有限公司 一种磁悬浮列车永磁轨道的安装基础及磁悬浮列车
CN116572752B (zh) * 2023-07-10 2023-09-08 西南交通大学 一种永磁电动悬浮对中导向系统
CN117719554B (zh) * 2024-02-18 2024-04-26 成都磁速科技有限公司 高温超导磁悬浮轨道巡检预警系统
CN117719354A (zh) * 2024-02-18 2024-03-19 西南交通大学 一种用于永磁悬浮交通系统的永磁悬浮装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339370A (zh) * 2001-09-28 2002-03-13 刘尚举 永磁感应悬浮与导向装置
US20060016365A1 (en) * 2004-07-23 2006-01-26 General Atomics Method and apparatus for use in guiding magnetically levitated vehicles
US20180237996A1 (en) * 2017-02-22 2018-08-23 Hyperloop Transportation Technologies, Inc. Magnetic levitation train system
WO2020038964A1 (en) * 2018-08-20 2020-02-27 Hyper Poland Spolka Z Ograniczona Odpowiedzialnoscia Magnetic levitation railway system
CN111086396A (zh) * 2020-02-04 2020-05-01 中国人民解放军国防科技大学 一种基于Halbach结构的永磁电动型超高速运载装置
CN113415170A (zh) * 2021-06-30 2021-09-21 中铁二院工程集团有限责任公司 一种具有悬浮和导向的磁浮装置、磁浮列车及磁浮系统
CN114734826A (zh) * 2022-06-13 2022-07-12 西南交通大学 一种永磁电动悬浮系统及其导向方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2139506C3 (de) * 1971-08-06 1975-03-20 Siemens Ag Magnetsystem für die Schwebeführung eines bewegten Fahrzeugs
DE3635258C1 (de) * 1986-02-27 1987-10-01 Peter Schuster Magnetkraftsystem fuer reibungsarmen Transport von Lasten
US6629503B2 (en) * 2001-06-29 2003-10-07 The Regents Of The University Of California Inductrack configuration
CN100577465C (zh) * 2008-07-15 2010-01-06 西南交通大学 一种提高高温超导磁悬浮系统稳定性的方法
CN101656458A (zh) * 2008-08-24 2010-02-24 刘忠臣 直线永磁驱动机及磁悬浮车路系统
CN105463957B (zh) * 2015-12-28 2017-04-26 西南交通大学 一种永磁导轨
CN109292464A (zh) * 2018-10-24 2019-02-01 西南交通大学 一种电动悬浮管道货物运输系统
RU2698408C1 (ru) * 2018-10-25 2019-08-26 Вячеслав Васильевич Селин Устройство магнитной системы левитации для устойчивого высокоскоростного перемещения грузов
CN113652909A (zh) * 2021-09-24 2021-11-16 江西理工大学 磁悬浮轨道及磁悬浮系统
CN113882197A (zh) * 2021-10-22 2022-01-04 中车工业研究院有限公司 一种永磁磁悬浮轨道、磁悬浮机构及磁悬浮列车
CN114083992B (zh) * 2021-12-24 2024-01-23 中国科学院电工研究所 一种双永磁阵列的永磁电动悬浮导向一体化机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339370A (zh) * 2001-09-28 2002-03-13 刘尚举 永磁感应悬浮与导向装置
US20060016365A1 (en) * 2004-07-23 2006-01-26 General Atomics Method and apparatus for use in guiding magnetically levitated vehicles
US20180237996A1 (en) * 2017-02-22 2018-08-23 Hyperloop Transportation Technologies, Inc. Magnetic levitation train system
WO2020038964A1 (en) * 2018-08-20 2020-02-27 Hyper Poland Spolka Z Ograniczona Odpowiedzialnoscia Magnetic levitation railway system
CN111086396A (zh) * 2020-02-04 2020-05-01 中国人民解放军国防科技大学 一种基于Halbach结构的永磁电动型超高速运载装置
CN113415170A (zh) * 2021-06-30 2021-09-21 中铁二院工程集团有限责任公司 一种具有悬浮和导向的磁浮装置、磁浮列车及磁浮系统
CN114734826A (zh) * 2022-06-13 2022-07-12 西南交通大学 一种永磁电动悬浮系统及其导向方法

Also Published As

Publication number Publication date
CN114734826A (zh) 2022-07-12
US20230241980A1 (en) 2023-08-03
US11801756B2 (en) 2023-10-31
CN114734826B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023241361A1 (zh) 一种永磁电动悬浮系统及其导向方法
US4793263A (en) Integrated linear synchronous unipolar motor with controlled permanent magnet bias
KR100583677B1 (ko) 자기부상 차량이 설치된 운송시스템의 구동용 장치
US10208431B1 (en) Permanent magnet maglev using passive, low-frequency electromagnetic stabilization
CN106926744B (zh) 一种磁悬浮列车
CN217074053U (zh) 一种永磁电动悬浮式驱动装置
CN111284330B (zh) 一种高温超导电动磁悬浮列车
CN114834255B (zh) 一种涡流制动装置及其制动方法
WO2021068894A1 (zh) 电磁悬浮列车轨道系统及悬浮电磁铁
US3797402A (en) Magnetically suspended railway system
WO2007013991A2 (en) Guideway activated magnetic switching of vehicles
JP2002503437A (ja) 磁気浮上車両の走行システム
CN111071268A (zh) 一种次级分块式磁通切换直线电机驱动的列车系统
CN110549863B (zh) 一种悬浮式电磁推进装置及磁浮列车
CN105083029A (zh) 交流励磁轨道涡流制动器及其制动方法
CN215420055U (zh) 一种长定子直线电机导向的高速磁浮结构
CN110682925A (zh) 一种直线驱动及电磁导向的悬挂式列车
JP2000041304A (ja) 磁気浮上式鉄道の軌道装置
CN116394770A (zh) 一种永磁电动悬浮系统及磁浮列车制式结构
CN115189545A (zh) 悬浮与导向自稳定的增强型直线感应电机
CN114293415B (zh) 提升车辆运行性能的永磁磁浮轨道系统及同步直线电机
CN214245153U (zh) 一种用于高速永磁磁浮列车的轨道结构
CN114954026A (zh) 一种悬挂式永磁电动磁悬浮列车系统
CN108974055B (zh) 悬挂式磁悬浮列车系统多模态优化驱动控制方法
CN116198334A (zh) 一种磁悬浮列车及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822931

Country of ref document: EP

Kind code of ref document: A1