WO2024087564A1 - 一种基于高导热均热板的动力电池模组系统 - Google Patents

一种基于高导热均热板的动力电池模组系统 Download PDF

Info

Publication number
WO2024087564A1
WO2024087564A1 PCT/CN2023/091405 CN2023091405W WO2024087564A1 WO 2024087564 A1 WO2024087564 A1 WO 2024087564A1 CN 2023091405 W CN2023091405 W CN 2023091405W WO 2024087564 A1 WO2024087564 A1 WO 2024087564A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
battery module
vapor chamber
system based
thermal conductivity
Prior art date
Application number
PCT/CN2023/091405
Other languages
English (en)
French (fr)
Inventor
尹树彬
赵威
汤勇
张仕伟
黄梓滨
余小媚
Original Assignee
广东畅能投资控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东畅能投资控股有限公司 filed Critical 广东畅能投资控股有限公司
Publication of WO2024087564A1 publication Critical patent/WO2024087564A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model belongs to the technical field of battery heat dissipation, and in particular relates to a power battery module system based on a high thermal conductivity vapor chamber.
  • ternary lithium power battery modules and lithium iron phosphate power battery modules are dominant in the fields of passenger cars and commercial vehicles.
  • passenger car power battery modules are mainly ternary lithium power battery modules
  • commercial vehicle power battery modules are mainly lithium iron phosphate power battery modules.
  • One of the bottlenecks hindering the development of power lithium-ion power battery modules is its safety performance. Due to the high energy density, high operating temperature, and harsh working environment of lithium-ion power battery modules, coupled with the people-oriented safety concept, users have very high requirements for the safety of power battery modules.
  • the biggest problem facing power batteries is the accelerated aging, performance degradation, and even explosion and fire caused by excessive temperature. Therefore, it is very important to achieve rapid heat dissipation of power battery module cells.
  • the prior art discloses a power battery thermal management system based on a phase change material composite heat spreader, comprising a battery module housing, a plurality of battery cells, a plurality of phase change material plates, a plurality of heat spreaders and a bottom water cooling module.
  • the two sides with the largest area of each battery cell are covered by phase change material plates, a heat spreader is placed between two adjacent phase change material plates, and the condensing end of the heat spreader is embedded in the water cooling plate for enhanced heat dissipation.
  • the purpose of the utility model is to provide a power battery module system based on a high thermal conductivity heat spreader, in which the thermal resistance of the battery heat dissipation path is small, the heat transfer efficiency is high, the battery surface temperature is relatively uniform, and there will be no large temperature difference inside the power battery module cell, which can meet the heat dissipation requirements of the power battery with large heat.
  • a power battery module system based on a high thermal conductivity vapor chamber comprising a module housing and a plurality of power battery module cells;
  • a plurality of power battery module cells are arranged side by side in the module housing;
  • a transverse heat spreader is provided between the inner bottom surface of the module housing and the bottom surface of the power battery module cell;
  • Vertical heat spreaders are provided between the side of the module housing and the side of the power battery module cell and between adjacent power battery module cells;
  • the horizontal heat spreader and the vertical heat spreader are bridged to each other to form a grid-like three-dimensional heat-conducting structure.
  • the thickness of the horizontal heat spreader and the vertical heat spreader are both ⁇ 3 mm.
  • the horizontal heat spreader and the vertical heat spreader are provided with hydrophilic materials having high-efficiency capillary properties.
  • the boiling point of the working medium in the horizontal vapor chamber and the vertical vapor chamber is 0-50° C. under negative pressure.
  • the working fluid in the horizontal vapor chamber and the vertical vapor chamber is deionized water, ethanol or acetone.
  • the shell material of the horizontal heat spreader and the vertical heat spreader is copper, aluminum or iron.
  • the parts where the horizontal heat spreader and the vertical heat spreader are fitted to the module housing are filled with thermal grease.
  • the horizontal heat spreader and the vertical heat spreader are bridged to each other through thermal conductive silicone grease.
  • a water cooling plate is provided outside the module housing.
  • the module housing is a fin structure with air cooling.
  • the vertical heat spreaders are respectively abutted against the adjacent power battery module cells on both sides, serving as the first-level heat spreaders.
  • the strong temperature equalization capability of the heat spreaders is utilized to quickly remove heat from the sides of the power battery module cells, thereby achieving rapid cooling of the power battery module cells.
  • the horizontal heat spreaders cover the bottom surface of the power battery module cells, serving as the second-level heat spreaders.
  • the strong temperature equalization capability of the heat spreaders is utilized to quickly remove heat from the bottom surface of the power battery module cells, thereby achieving rapid cooling of the power battery module cells.
  • the horizontal heat spreader and the vertical heat spreader are bridged to each other to form a grid-like three-dimensional heat-conducting structure.
  • the structure utilizes the principle of releasing a large amount of latent heat through the gas-liquid phase change inside the heat spreader to efficiently transfer heat from the inside of the power battery module to the outside of the module casing in a multi-level, multi-dimensional and efficient manner.
  • the outside can be combined with water cooling or forced air cooling and other heat dissipation methods to achieve efficient heat dissipation, thereby achieving efficient thermal control of the power battery module.
  • each power battery module cell Since the bottom and four sides of each power battery module cell are efficiently heat-transferred by the heat spreader, the heat transfer efficiency of each surface is relatively uniform, and a three-dimensional, balanced, rapid heat conduction structure can be formed, which greatly improves the heat dissipation efficiency of the power battery module. There will not be a large temperature difference inside the power battery module cell, thereby improving the overall performance of the power battery module.
  • FIG1 is a schematic diagram of the three-dimensional structure of Example 1 of the utility model.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of Example 2 of the present utility model.
  • FIG3 is a schematic diagram of the three-dimensional structure of Example 3 of the present utility model.
  • a power battery module system based on a high thermal conductivity vapor chamber comprises a module housing 1 and a plurality of power battery module cells 2;
  • a plurality of power battery module cells 2 are arranged side by side in the module housing 1;
  • a transverse heat spreader 33 is provided between the inner bottom surface of the module housing 1 and the bottom surface of the power battery module cell 2;
  • Vertical heat spreaders are provided between the side of the module housing 1 and the side of the power battery module cell 2 and between adjacent power battery module cells 2;
  • the horizontal vapor chamber 33 and the vertical vapor chamber 34 are bridged to each other to form a grid-like three-dimensional heat-conducting structure.
  • the vertical heat spreader includes an inter-cell heat spreader 31 and an outer heat spreader 32.
  • Vertical grooves are provided on the four inner walls of the module housing 1, and the outer heat spreader 32 is embedded in the vertical grooves;
  • an inter-cell heat spreader 31 is provided between the power battery module cells 2, and the inter-cell heat spreaders 31 are respectively abutted against the adjacent power battery module cells 2 on both sides.
  • the vertical heat spreader serves as the first-level heat spreader, and utilizes the strong temperature equalization capability of the heat spreader to quickly remove heat from the sides of the power battery module cells 2, thereby achieving rapid cooling of the power battery module cells 2;
  • a transverse groove is provided at the bottom of the module housing 1, in which a transverse heat spreader 33 is embedded.
  • the transverse heat spreader 33 covers the bottom surface of the power battery module cell 2 and serves as a second-level heat spreader.
  • the heat spreader utilizes the strong temperature equalization capability of the heat spreader to quickly remove heat from the bottom surface of the power battery module cell 2, thereby achieving rapid cooling of the power battery module cell 2.
  • the horizontal vapor chamber 33 and the vertical vapor chamber are bridged to form a grid-like three-dimensional heat-conducting structure.
  • the liquid working medium in the vapor chamber evaporates into a gaseous working medium after being heated, diffuses to various places in the working medium cavity, condenses and releases latent heat.
  • the condensed liquid working medium uses the capillary force of the liquid absorption core structure to flow back to the evaporation end for secondary evaporation, thus realizing the internal heat circulation of the vapor chamber.
  • the principle of releasing a large amount of latent heat through the gas-liquid phase change inside the vapor chamber is used, and the multi-level and multi-layer heat conduction structure is realized.
  • the heat can be transferred from the inside of the power battery module to the outside of the module housing 1 in a high latitude and high efficiency.
  • the outside can be combined with heat dissipation methods such as water cooling or forced air cooling to achieve efficient heat dissipation, thereby achieving efficient thermal control of the power battery module.
  • the horizontal heat spreader 33 and the vertical heat spreader are both ultra-thin heat spreaders with a thickness of 2 mm.
  • the hydrophilic material with high capillary performance in the heat spreader is composed of copper powder and copper wire mesh, and is sintered at 650°C, 5% hydrogen and 95% nitrogen. After treatment, its hydrophilicity is significantly improved, the capillary performance inside the heat spreader is greatly improved, and the thermal conductivity is greatly increased.
  • the shell material of the heat spreader 31 is metallic copper.
  • the working fluid in the heat spreader is deionized water, and its boiling point is 30°C under a negative pressure of 8Pa.
  • the length and width of the heat spreader 31 between the cells are the same as those of the power battery module cell 2 and they fit tightly together.
  • Thermal conductive silicone grease with a thermal conductivity of 5W/m*K is added to fill the gaps between each heat spreader and the module housing 1 to reduce thermal resistance.
  • Water cooling plates 4 are attached to both sides and the bottom of the power battery module housing 1.
  • the flow rate of the coolant in the water cooling plate 4 can be set according to different heating conditions of the power battery module.
  • the high thermal conductivity of the phase change heat spreader and the excellent heat dissipation performance of the traditional water cooling structure are combined to achieve efficient thermal control of the power battery module.
  • forced air cooling is used to remove the heat generated in the power battery module.
  • the fin structure 5 is processed on the outside of the power battery module housing 1.
  • the fin structure 5 is in close contact with the outer heat spreader 32 on the side of the module housing 1, which greatly increases the convection heat exchange area between the heating element and the air.
  • Two blowers 6 are provided on both sides of the end of the power battery module to strengthen the convection heat exchange process between the air and the power battery module, and the efficient temperature equalization effect of the grid-shaped three-dimensional heat spreader combination inside the module is combined to achieve efficient thermal control of the power battery module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种基于高导热均热板的动力电池模组系统,包括模组外壳(1)和多个动力电池模组电芯(2);多个动力电池模组电芯(2)并排设置于模组外壳(1)内;模组外壳(1)内底面与动力电池模组电芯(2)底面之间设有横向均热板(33);模组外壳(1)侧面与动力电池模组电芯(2)侧面之间以及相邻动力电池模组电芯(2)之间均设有竖向均热板;横向均热板(33)与竖向均热板互相桥接形成网格状立体导热结构。由于每个动力电池模组电芯(2)的底面和四个侧面均由均热板高效传热,各面的传热效率比较均匀,能够形成立体的、均衡的快速导热结构,多层次、多纬度、高效率地将热量从动力电池模组内部传输至模组外壳(1)外部,动力电池模组电芯(2)的内部不会有较大温差,提升了动力电池模组的整体性能。

Description

一种基于高导热均热板的动力电池模组系统 技术领域
本实用新型属于电池散热技术领域,具体涉及一种基于高导热均热板的动力电池模组系统。
背景技术
近些年,电动汽车的快速发展带动了动力电池的发展。作为电动汽车的动力来源,电池性能的好坏不但关系到整车续驶里程的长短,而且关系到产品的安全性和可靠性。可以说,动力电池的发展决定着纯电动汽车的未来。
新能源动力电池模组的种类很多,其中,三元锂动力电池模组和磷酸铁锂动力电池模组在乘用车和商用车领域起主导应用,目前乘用车动力电池模组以三元锂动力电池模组为主,商用车动力电池模组以磷酸铁锂动力电池模组为主。目前阻碍动力锂离子动力电池模组发展的瓶颈之一是它的安全性能。由于锂离子动力电池模组具有能量密度大、工作温度高、工作环境恶劣等方面的原因,加上以人为本的安全理念,因此,用户对动力电池模组的安全性提出了非常高的要求。动力电池面临的最大问题就是因温度过高而导致的加速老化、性能衰减甚至爆炸起火等问题,因此实现对动力电池模组电芯的快速散热至关重要。
现有技术公开了一种基于相变材料复合均热板的动力电池热管理系统,包括电池模组壳体,若干电池单元,若干相变材料板,若干均热板和一个底部水冷模块,每个电池单元的面积最大两个侧面均被相变材料板包覆,相邻两个相变材料板之间放置一个均热板,均热板的冷凝端嵌入到水冷板中用于强化散热。
其存在以下技术问题:
电池单元仅有两个最大侧面通过相变材料传热,另外两个侧面的热量只能通过电池模组壳体传递,难以形成立体的、多纬度的、均衡的快速导热结构,电池散热路径热阻较大,传热效率仍有待提高,电池单元各侧面的传热效率不均匀,电池单元的内部存在较大温差,影响电池单元工作性能。
实用新型内容
针对现有技术中存在的技术问题,本实用新型的目的是:提供一种基于高导热均热板的动力电池模组系统,电池散热路径热阻较小,传热效率高,电池表面温度比较均匀,动力电池模组电芯的内部不会有较大温差,能够满足动力电池大热量的散热要求。
本实用新型目的通过以下技术方案实现:
一种基于高导热均热板的动力电池模组系统,包括模组外壳和多个动力电池模组电芯;
多个动力电池模组电芯并排设置于模组外壳内;
模组外壳内底面与动力电池模组电芯底面之间设有横向均热板;
模组外壳侧面与动力电池模组电芯侧面之间以及相邻动力电池模组电芯之间均设有竖向均热板;
横向均热板与竖向均热板互相桥接形成网格状立体导热结构。
进一步,横向均热板与竖向均热板的厚度均≤3mm。
进一步,横向均热板与竖向均热板内具有高效毛细性能的亲水材料。
进一步,横向均热板与竖向均热板内的工质的沸点在负压下为0-50℃。
进一步,横向均热板与竖向均热板内的工质为去离子水、乙醇或丙酮。
进一步,横向均热板与竖向均热板的壳体材料为铜、铝或铁。
进一步,横向均热板与竖向均热板分别与模组外壳的贴合部位填充有导热硅脂。
进一步,横向均热板与竖向均热板通过导热硅脂互相桥接。
进一步,模组外壳外部设有水冷板。
进一步,模组外壳为带有风冷的翅片结构。
与现有技术相比,本实用新型具有以下有益效果:
竖向均热板分别抵接于两侧相邻的动力电池模组电芯,作为第一级均热板,利用均热板的强均温能力,从动力电池模组电芯的侧面快速带走热量,实现动力电池模组电芯快速降温;横向均热板覆盖于动力电池模组电芯的底面,作为第二级均热板,利用均热板的强均温能力,从动力电池模组电芯的底面快速带走热量,实现动力电池模组电芯快速降温。
横向均热板与竖向均热板互相桥接形成网格状立体导热结构,利用均热板内部气液相变释放大量潜热的原理,多层次、多纬度、高效率地将热量从动力电池模组内部传输至模组外壳外部,外部可结合水冷或强迫风冷等散热手段实现高效散热,达到对动力电池模组的高效热控。
由于每个动力电池模组电芯的底面和四个侧面均由均热板高效传热,各面的传热效率比较均匀,能够形成立体的、均衡的快速导热结构,大大提高了动力电池模组的散热效率,动力电池模组电芯的内部不会有较大温差,提升了动力电池模组的整体性能。
附图说明
图1为本实用新型实施例1的立体结构示意图。
图2为本实用新型实施例2的立体结构示意图。
图3为本实用新型实施例3的立体结构示意图。
图中:
1-模组外壳、2-动力电池模组电芯、31-电芯间均热板、32-外围均热板、33-
横向均热板、4-水冷板、5-翅片结构、6-鼓风机。
具体实施方式
下面对本实用新型作进一步详细的描述。
实施例1
一种基于高导热均热板的动力电池模组系统,包括模组外壳1和多个动力电池模组电芯2;
多个动力电池模组电芯2并排设置于模组外壳1内;
模组外壳1内底面与动力电池模组电芯2底面之间设有横向均热板33;
模组外壳1侧面与动力电池模组电芯2侧面之间以及相邻动力电池模组电芯2之间均设有竖向均热板;
横向均热板33与竖向均热板互相桥接形成网格状立体导热结构。
具体地,竖向均热板包括电芯间均热板31和外围均热板32。模组外壳1四个内壁开设竖向沟槽,竖向沟槽内嵌入外围均热板32;动力电池模组电芯2之间设置电芯间均热板31,电芯间均热板31分别抵接于两侧相邻的动力电池模组电芯2。竖向均热板作为第一级均热板,利用均热板的强均温能力,从动力电池模组电芯2的侧面快速带走热量,实现动力电池模组电芯2快速降温;
模组外壳1底部开设横向沟槽,横向沟槽内嵌入横向均热板33,横向均热板33覆盖于动力电池模组电芯2的底面,作为第二级均热板,利用均热板的强均温能力,从动力电池模组电芯2的底面快速带走热量,实现动力电池模组电芯2快速降温。
横向均热板33与竖向均热板互相桥接形成网格状立体导热结构,均热板内的液态工质在受热后蒸发为气态工质,扩散至工质腔内各处冷凝并释放潜热,冷凝形成的液态工质利用吸液芯结构的毛细力回流至蒸发端二次蒸发,实现均热板内部热循环。利用均热板内部气液相变释放大量潜热的原理,多层次、多 纬度、高效率地将热量从动力电池模组内部传输至模组外壳1外部,外部可结合水冷或强迫风冷等散热手段实现高效散热,达到对动力电池模组的高效热控。
其中横向均热板33与竖向均热板均属于超薄均热板,其厚度为2mm,该均热板内高效毛细性能的亲水材料由铜粉、铜丝网组合,在650℃、5%氢气和95%氮气环境下烧结处理,处理后其亲水性显著提高,均热板内部毛细性能大幅提升,热导率大幅增加。均热板31的壳体材料为金属铜。均热板内的工质为去离子水,在8Pa的负压下,其沸点为30℃。
电芯间均热板31与动力电池模组电芯2的长宽面面积相同,且紧密贴合;在各均热板与模组外壳1紧密贴合部位的缝隙中均加入热导率为5W/m*K的导热硅脂填补气隙以减小热阻。
实施例2
本实施例与实施例1的主要区别在于:
如图2所示,采用追加水冷的方式带走动力电池模组内产生的热量,在动力电池模组外壳1两侧及底部贴敷水冷板4,可根据动力电池模组不同发热工况设定水冷板4内冷却液流速。将相变均热板的高导热性能与传统水冷结构的优良散热性能两者结合,实现对动力电池模组的高效热控。
实施例3
本实施例与实施例1的主要区别在于:
如图3所示,采用强迫风冷的方式带走动力电池模组内产生的热量,将动力电池模组外壳1外侧加工出翅片结构5,翅片结构5与模组外壳1侧部的外围均热板32紧密接触,大幅增加发热体与空气的对流换热面积。动力电池模组端部两侧设有2个鼓风机6,强化空气与动力电池模组对流换热过程,结合模组内部网格状立体均热板组合的高效均温作用实现对动力电池模组的高效热控。
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种基于高导热均热板的动力电池模组系统,其特征在于:包括模组外壳和多个动力电池模组电芯;
    多个动力电池模组电芯并排设置于模组外壳内;
    模组外壳内底面与动力电池模组电芯底面之间设有横向均热板;
    模组外壳侧面与动力电池模组电芯侧面之间以及相邻动力电池模组电芯之间均设有竖向均热板;
    横向均热板与竖向均热板互相桥接形成网格状立体导热结构。
  2. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板的厚度均≤3mm。
  3. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板内具有高效毛细性能的亲水材料。
  4. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板内的工质的沸点在负压下为0-50℃。
  5. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板内的工质为去离子水、乙醇或丙酮。
  6. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板的壳体材料为铜、铝或铁。
  7. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板分别与模组外壳的贴合部位填充有导热硅脂。
  8. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:横向均热板与竖向均热板通过导热硅脂互相桥接。
  9. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:模组外壳外部设有水冷板。
  10. 按照权利要求1所述的一种基于高导热均热板的动力电池模组系统,其特征在于:模组外壳为带有风冷的翅片结构。
PCT/CN2023/091405 2022-10-27 2023-04-27 一种基于高导热均热板的动力电池模组系统 WO2024087564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222836062.9 2022-10-27
CN202222836062.9U CN218632227U (zh) 2022-10-27 2022-10-27 一种基于高导热均热板的动力电池模组系统

Publications (1)

Publication Number Publication Date
WO2024087564A1 true WO2024087564A1 (zh) 2024-05-02

Family

ID=85473893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091405 WO2024087564A1 (zh) 2022-10-27 2023-04-27 一种基于高导热均热板的动力电池模组系统

Country Status (2)

Country Link
CN (1) CN218632227U (zh)
WO (1) WO2024087564A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218632227U (zh) * 2022-10-27 2023-03-14 广东畅能投资控股有限公司 一种基于高导热均热板的动力电池模组系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256830A1 (en) * 2016-03-07 2017-09-07 Contemporary Amperex Technology Co., Limited Thermal management system of battery pack
CN109841927A (zh) * 2019-03-01 2019-06-04 华南理工大学 适用于高寒地区的电动汽车动力电池热管理装置
CN208986137U (zh) * 2018-10-26 2019-06-14 上汽大众汽车有限公司 一种基于热管技术的电动汽车电池包散热装置
CN111106411A (zh) * 2019-12-27 2020-05-05 中国矿业大学 一种基于环路热管和相变材料耦合冷却的动力电池模块
CN114094228A (zh) * 2021-10-28 2022-02-25 华南理工大学 一种基于相变材料复合均热板的动力电池热管理系统
CN216354415U (zh) * 2021-09-30 2022-04-19 蜂巢能源科技有限公司 电芯模组及电池包
CN218299952U (zh) * 2022-10-18 2023-01-13 广东畅能达科技发展有限公司 一种框架散热结构及具有该结构的动力电池模组
CN218632227U (zh) * 2022-10-27 2023-03-14 广东畅能投资控股有限公司 一种基于高导热均热板的动力电池模组系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256830A1 (en) * 2016-03-07 2017-09-07 Contemporary Amperex Technology Co., Limited Thermal management system of battery pack
CN208986137U (zh) * 2018-10-26 2019-06-14 上汽大众汽车有限公司 一种基于热管技术的电动汽车电池包散热装置
CN109841927A (zh) * 2019-03-01 2019-06-04 华南理工大学 适用于高寒地区的电动汽车动力电池热管理装置
CN111106411A (zh) * 2019-12-27 2020-05-05 中国矿业大学 一种基于环路热管和相变材料耦合冷却的动力电池模块
CN216354415U (zh) * 2021-09-30 2022-04-19 蜂巢能源科技有限公司 电芯模组及电池包
CN114094228A (zh) * 2021-10-28 2022-02-25 华南理工大学 一种基于相变材料复合均热板的动力电池热管理系统
CN218299952U (zh) * 2022-10-18 2023-01-13 广东畅能达科技发展有限公司 一种框架散热结构及具有该结构的动力电池模组
CN218632227U (zh) * 2022-10-27 2023-03-14 广东畅能投资控股有限公司 一种基于高导热均热板的动力电池模组系统

Also Published As

Publication number Publication date
CN218632227U (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN109037726B (zh) 一种用于燃料电池传热均温的风冷式模块
CN106450572A (zh) 一种基于锂离子电池组分区域热管理的系统及方法
CN107346814B (zh) 一种电池热管理系统
CN102055003A (zh) 具有导热胶的电池组
WO2024082591A1 (zh) 一种框架散热结构及具有该结构的动力电池模组
WO2024087564A1 (zh) 一种基于高导热均热板的动力电池模组系统
CN108808160B (zh) 用于冷却动力电池的高强度传热结构
CN108493514A (zh) 一种电池包的散热和加热装置以及控制方法
WO2019001466A1 (zh) 一种圆柱型锂离子电池
CN114583324A (zh) 基于极耳散热的直冷式电池组热管理装置及热管理系统
CN208489331U (zh) 一种电池包的散热和加热装置
CN214378603U (zh) 一种用于电动汽车锂离子电池的热管理装置
CN109509852A (zh) 电池包
CN112510285A (zh) 一种车用电池模组的散热方法及装置
CN218957851U (zh) 一种电池壳体及大容量电池
CN207530083U (zh) 一种电动汽车用锂离子动力电池包
WO2023070905A1 (zh) 一种动力电池模块及其动力电池包和热管理方法
WO2022143409A1 (zh) 一种电池单体及其电池模块
WO2019001468A1 (zh) 一种锂离子动力电池
WO2019001467A1 (zh) 一种锂离子软包电池
CN113285138B (zh) 一种基于蒸汽腔散热技术的汽车电池液冷散热装置
CN211182266U (zh) 一种安全性能高的锂电池电芯
CN220856679U (zh) 一种电芯、电池包及储能设备
CN207602732U (zh) 内部具有导热片的锂离子电池
WO2019001469A1 (zh) 一种热导锂离子电池