WO2023070905A1 - 一种动力电池模块及其动力电池包和热管理方法 - Google Patents

一种动力电池模块及其动力电池包和热管理方法 Download PDF

Info

Publication number
WO2023070905A1
WO2023070905A1 PCT/CN2021/139620 CN2021139620W WO2023070905A1 WO 2023070905 A1 WO2023070905 A1 WO 2023070905A1 CN 2021139620 W CN2021139620 W CN 2021139620W WO 2023070905 A1 WO2023070905 A1 WO 2023070905A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
power battery
battery module
pipe structure
current collector
Prior art date
Application number
PCT/CN2021/139620
Other languages
English (en)
French (fr)
Inventor
朱永刚
梁嘉林
Original Assignee
深圳市顺熵科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市顺熵科技有限公司 filed Critical 深圳市顺熵科技有限公司
Priority to EP21931932.4A priority Critical patent/EP4195363A1/en
Publication of WO2023070905A1 publication Critical patent/WO2023070905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of power batteries, in particular to a power battery module, a power battery pack and a heat management method thereof.
  • the development trend of electric vehicle battery system is to increase energy density, reduce charging time, and start quickly in low temperature environment.
  • improving energy density must be done from two perspectives: single battery energy density and system integration.
  • the non-modularization technology directly integrates the battery cell into a battery pack, cancels the integration of the battery cell to the battery module level, and improves the energy density from the perspective of system integration, which indicates the current development trend of highly integrated battery systems.
  • the traditional heat management structure is designed on the battery shell, and the heat is generated in the battery cell, and then passes through the contact surface of the battery cell and the shell, the shell, and the contact surface of the shell and the heat dissipation element.
  • a plurality of battery cells are stacked in the casing, and the tab fixing device, packing Belt, bottom fixing device and multiple flat heat pipes; one flat heat pipe is set between every two battery cells; the packing band is placed in the gap of the tab fixing device and the bottom fixing device gap, and the edge sealing of the battery cell is fixed on the In the through groove of the tab fixing device and the through groove of the bottom fixing device, that is to say, this scheme uses a flat heat pipe to cool and dissipate the battery cell, which can only dissipate the heat emitted by the battery cell to the outside, and the heat dissipation efficiency is low .
  • the Chinese patent application publication number CN 105703036 A discloses a battery pack heat pipe heat dissipation system, including a battery case, a battery module and a heat pipe heat dissipation system; wherein, the battery module is placed inside the battery case; the heat pipe The heat dissipation system includes a heat conduction plate, heat pipes and finned tubes; wherein, the heat conduction plate is set on the battery module; one end of the heat pipe is set in the heat conduction plate, and the other end passes through the battery case; the finned tube is set on the other end of the heat pipe And it is arranged on the outside of the battery case.
  • the Chinese patent application publication number CN 113036265 A discloses a battery module with a heat pipe, which seals around the cell unit to prevent a single cell unit from igniting and destroying other cell units and the surrounding area of the external copper bar installation surface. support structure, etc., to achieve a good effect of preventing thermal runaway, but its principle of suppressing thermal runaway is different from that of the present invention, and there is no effective explanation for heat dissipation in normal working conditions; moreover, the patent does not clearly define what it refers to.
  • the cell unit in fact, the battery cell unit in this patent is a battery cell, which is essentially different from the definition of the cell unit in the present invention, that is to say, this patent is still aimed at dissipating heat from the battery cell to the outside.
  • the purpose of the present invention is to provide a power battery module, its power battery pack and a thermal management method to solve the above-mentioned problems in the prior art.
  • the two sides of the heat pipe structure are closely attached to the current collector of the battery unit, which can effectively It is beneficial to reduce the heat transfer resistance, greatly increase the heat dissipation/preheating speed, improve the thermal management effect of the power battery, and improve the heat exchange efficiency.
  • the present invention provides the following scheme:
  • the present invention provides a power battery module, comprising several battery cells, several heat pipe structures with one end embedded between the battery cells, and a liquid channel connected to the other end of the heat pipe structure not embedded in the battery cells, the
  • the cell unit includes a positive electrode collector, a positive electrode material, a separator, a negative electrode material, and a negative electrode collector arranged in sequence, and both sides of the heat pipe structure are closely attached to the positive electrode collector or the negative electrode collector.
  • the shell of the heat pipe structure and the current collector closely attached to it are made of the same material.
  • the number of the electric core units between two adjacent heat pipe structures is more than 20.
  • the heat pipe structure is a flat heat pipe.
  • the flat heat pipe includes an outer shell, a liquid-absorbing core arranged close to the inner wall of the outer shell, and support columns arranged between the liquid-absorbent cores on both sides, a steam chamber is formed between the support columns, and the The flat heat pipe remains in a closed state, and the inside is filled with working fluid.
  • the support columns are made of flame-retardant materials, and each support column is divided into several sections.
  • the liquid-absorbing core includes a large-pore copper foam skeleton and a nano-coating disposed on the large-pore copper foam skeleton.
  • the present invention provides a power battery pack, which includes a housing and a power battery module as described above packaged in the housing.
  • the present invention also provides a thermal management method for a power battery module, including the following content:
  • a heat pipe structure is arranged between the battery cells, and both sides of the heat pipe structure are closely attached to the current collectors of the battery cells, and the heat pipe structure is connected with a liquid channel;
  • the temperature in the power battery module is monitored, and when the temperature is higher or lower than a set value, the heat exchange fluid flowing through the liquid channel is cooled or heated to realize the heat exchange between the battery unit and the heat exchange fluid.
  • support columns made of flame-retardant materials are arranged inside the heat pipe structure, and steam chambers are formed between the support columns.
  • steam chambers are formed between the support columns.
  • the two sides of the heat pipe structure are closely bonded to the current collector of the battery unit, which can help reduce the heat transfer resistance, greatly increase the heat dissipation/preheating speed, improve the thermal management effect of the power battery, and improve the efficiency of the battery.
  • Thermal efficiency, and the shell of the heat pipe structure and the current collector are made of the same material, which can avoid adverse effects on the operation of the power battery on the basis of ensuring the heat transfer effect;
  • the present invention introduces thermal management into the battery pack and integrates with the battery system, which can effectively take into account the energy density and thermal management performance of the system, and meet the needs of highly integrated battery systems in super fast charging, low temperature environments and other application scenarios. Thermal management requirements also avoid the poor contact of the contact surface between the cell unit and the casing, and the contact surface between the casing and the cooling element caused by battery aging;
  • the present invention connects the liquid channel with external refrigeration and heating equipment, and the external refrigeration and heating equipment provides cooling liquid and heating heat exchange fluid for the liquid channel.
  • the battery temperature is higher than the set value, it provides cooling heat exchange fluid.
  • Fluid when the battery is at a lower ambient temperature, it provides heating heat exchange fluid to keep the battery temperature within a reasonable range.
  • Fig. 1 is a schematic structural diagram of a power battery pack of the present invention
  • Fig. 2 is a schematic structural diagram of the power battery module of the present invention.
  • Fig. 3 is a schematic diagram of the combination of the battery cell unit and the flat heat pipe of the present invention.
  • Fig. 4 is a schematic diagram of the internal structure of the flat heat pipe of the present invention.
  • the purpose of the present invention is to provide a power battery module and its power battery pack and thermal management method to solve the problems existing in the prior art.
  • the two sides of the heat pipe structure are closely attached to the current collector of the battery unit, which can be beneficial Reducing the heat transfer resistance and greatly increasing the heat dissipation/preheating speed can improve the thermal management effect of the power battery and improve the heat exchange efficiency.
  • the present invention provides a power battery module, including several battery cells 3, several heat pipe structures with one end embedded between the battery cells 3, and a liquid connected to the other end of the heat pipe structure that is not embedded in the battery cells 3 channel 2.
  • the electric core unit 3 adopts the structure including positive electrode current collector 31, positive electrode material 32, separator 33, negative electrode material 34 and negative electrode current collector 35 arranged in sequence as shown in Figure 3, the key is to have a current collector (positive electrode current collector 31 or the negative electrode current collector 35) is bonded to the heat pipe structure; the electric core units 3 sandwiched between the heat pipe structures can be arranged side by side in several groups, and the specific set quantity is designed according to the heating power and thickness of a single electric core unit 3; the heat pipe The structure can choose the heat pipe structure of the prior art, which can be a tubular structure or a plate-shaped structure.
  • the heat pipe structure can transfer the heat of the battery cells 3 to the liquid channel 2, and can also transfer the heat of the liquid channel 2 to the battery cell unit 3, the liquid channel 2 is used to pass through the refrigerated liquid or the heated liquid to realize the exchange of the heat or cold energy transferred from the battery cell unit 3 to the heat pipe structure, so that it can be used
  • the heat pipe structure and the liquid channel 2 realize the thermal management of the power battery module formed by the cell unit 3 .
  • Both sides of the heat pipe structure are respectively closely attached to the current collector of the battery unit 3.
  • the current collector mentioned here can be the positive electrode current collector 31 or the negative electrode current collector 35.
  • the heat pipe structure can directly transfer the heat generated by the battery unit 3 or transfer the heat generated by the outside world, and the tightly bonded structure is conducive to reducing the heat transfer resistance and greatly improving
  • the heat dissipation/preheating speed can further improve the thermal management effect of the power battery, improve the heat exchange efficiency, and thus be suitable for working conditions with large heat generation and low ambient temperature.
  • the method of introducing thermal management into the interior of the battery pack (power battery module) in the present invention can be integrated with the battery system, effectively taking into account the system energy density and thermal management performance, and meeting the requirements of the highly integrated battery system in super fast charging, low temperature Thermal management requirements in application scenarios such as environments.
  • the material of the heat pipe structure shell 41 can be the same as that of the current collector, that is to say, when the heat pipe structure is closely attached to the positive electrode current collector 31, the heat pipe structure can use the same material as the positive electrode current collector 31, such as aluminum, when the heat pipe structure When closely attached to the negative electrode current collector 35, the heat pipe structure can use the same material as the negative electrode current collector 35, such as copper.
  • the shell 41 of the heat pipe structure is made of the same material as the current collector, which can avoid adverse effects on the operation of the power battery on the basis of ensuring the heat transfer effect.
  • the number of electric core units 3 between two adjacent heat pipe structures can be set to more than 20, specifically adjusted according to the heating power and thickness of a single electric core unit 3 .
  • the heat pipe structure can be a flat heat pipe 4.
  • the flat heat pipe 4 is a plate-shaped structure, and a single flat heat pipe 4 can be used to cover the entire surface of the current collector. It has a large coverage area and high integration, and can be well adapted to power batteries.
  • the structure is integrated between the cell units 3 .
  • the flat heat pipe 4 includes a shell 41, a liquid-absorbing core 42 arranged on the inner wall of the shell 41, and a support column 43 arranged between the liquid-absorbing cores 42 on both sides, and the material of the shell 41 can be tightly attached according to the
  • the material of the combined current collector is determined, such as aluminum or copper.
  • the shell 41 forms the package support for the internal structure of the flat heat pipe 4.
  • the shell 41 has good thermal conductivity and is relatively thin.
  • the thickness of the flat heat pipe 4 formed by it is generally not more than 2mm.
  • the shell 41 and the liquid channel 2 can be welded. They are connected together to form a whole.
  • the thickness of the liquid channel 2 is generally not more than 10 mm.
  • the heat exchange fluid of the liquid channel 2 can be water, ethylene glycol/water mixed liquid, refrigerant, etc.
  • a steam chamber 44 is formed between the support columns 43 .
  • the flat heat pipe remains closed, and the inside is filled with working fluid (water, methanol, etc.).
  • working fluid water, methanol, etc.
  • the steam formed by the working fluid absorbing the heat of the cell unit 3 mainly flows upward (in the direction of the liquid channel 2). Liquid channel 2 cooling.
  • the support column 43 can be made of flame-retardant materials, such as polyimide, which has good thermal stability and flame retardancy. When extreme thermal safety accidents (such as thermal safety accidents caused by collision, puncture, short circuit, etc.) occur in the battery cell, the spread of thermal runaway is suppressed.
  • Each support column 43 can be divided into several sections, that is to say, passages are also arranged between the support columns 43 transversely, and the steam in the steam chamber 44 can flow along the length direction of the support column 43 or along the length direction of the support column 43. Passing through in the width direction is beneficial to uniform temperature transfer in the width direction of the support column 43 to achieve uniform temperature.
  • the liquid-absorbing core 42 can comprise the large-aperture copper foam skeleton and the nano coating that is arranged on the large-aperture copper foam skeleton. Large, can reduce the working fluid backflow resistance, the nanostructure on the surface is nanoscale, can generate the capillary force of the working fluid backflow, through the combination of the macroporous skeleton and the nanostructure, the high capillary force and low flow resistance of the liquid-absorbing core 42 are realized decoupling, thereby improving the heat transfer performance of the flat heat pipe 4 .
  • the liquid-absorbent core 42 can also adopt other structures that can achieve similar effects.
  • the present invention provides a power battery pack, including a casing 1 and a power battery module as described above packaged in the casing 1.
  • the casing 1 encapsulates and protects the entire power battery module.
  • the body 1 is provided with openings for connecting lines and openings for the liquid channel 2 .
  • the present invention also provides a thermal management method for a power battery module, which can be applied to the power battery module and power battery pack described above, including the following:
  • a heat pipe structure is arranged between the electric core units 3 (the heat pipe structure can adopt a flat heat pipe 4, or a tubular structure disclosed in the prior art, etc.), and connect the two sides of the heat pipe structure with the current collector of the electric core unit 3 respectively. Close fit, you can choose the positive electrode current collector 31 or the negative electrode current collector 35 when bonding, and furthermore, you can choose the same material for the shell 41 of the heat pipe structure as the current collector to be bonded, and the heat pipe structure is also connected with a liquid channel 2;
  • Use battery temperature monitoring modules such as temperature sensors, detectors or thermocouples to monitor the temperature in the power battery module.
  • the cooling and heating system cools or heats the heat exchange fluid in the liquid channel 2 to realize
  • the heat exchange between the battery cell unit 3 and the heat exchange fluid, using the embedded structure, can quickly realize the heat exchange between the battery cell unit 3 and the heat exchange fluid, better control the temperature of the battery pack, and reduce the occurrence of thermal runaway. And achieve a good uniform temperature effect.
  • the external refrigeration system When cooling, the external refrigeration system reduces the temperature of the heat exchange fluid, and the temperature of the heat exchange fluid flows into the liquid channel 2.
  • the part where the flat heat pipe 4 and the cell unit 3 are attached is the evaporation section, and the part that is combined with the liquid channel 2 is the condensation section.
  • the heat of the core unit 3 is transferred to the evaporation section of the flat heat pipe 4, and the internal working medium in the evaporation section evaporates into steam, flows to the condensation section, transfers the heat to the heat exchange fluid in the liquid channel 2, and condenses into a liquid, which is converted into a liquid in the liquid-absorbing core 42 Under the action of reflux to the evaporation section.
  • the external heating system When heating, the external heating system increases the temperature of the heat exchange fluid, and the heat exchange fluid flows into the liquid channel 2. At this time, the joint part of the flat heat pipe 4 and the cell unit 3 is the condensation section, and the joint part with the liquid channel 2 is the evaporation section. The rest of the process Similar to cooling conditions.
  • Support columns 43 can be set inside the heat pipe structure, and steam chambers 44 are formed between the support pillars 43.
  • the heat pipe structure fails, and the steam chamber 44 is used to form a barrier space to reduce the distance between the battery cells 3.
  • the heat conduction between them, the support column 43 made of flame-retardant material and the steam chamber 44 work together to suppress the spread of thermal runaway.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明公开一种动力电池模块及其动力电池包和热管理方法,动力电池模块包括若干电芯单元、若干一端嵌入所述电芯单元之间的热管结构以及连接在所述热管结构未嵌入所述电芯单元的另一端的液体通道,所述电芯单元包括顺次设置的正极集流体、正极材料、隔膜、负极材料和负极集流体,所述热管结构的两侧分别与所述正极集流体或所述负极集流体紧密贴合;本发明将热管结构的两侧与电芯单元的集流体紧密贴合,能够有利于减小传热热阻,大幅提高散热/预热速度,能够提高动力电池的热管理效果,提高换热效率。

Description

一种动力电池模块及其动力电池包和热管理方法 技术领域
本发明涉及动力电池技术领域,特别是涉及一种动力电池模块及其动力电池包和热管理方法。
背景技术
温度过高或过低都会严重影响锂离子动力电池寿命,甚至可能导致热失控,引发电池热安全问题。因此,电池热管理对电池系统的热安全和性能起到重要的保障作用。
电动汽车电池系统的发展趋势是提高能量密度、减少充电时间、低温环境快速启动。其中,提高能量密度必须从单体电池能量密度和系统集成两个角度双管齐下。无模组化技术将电芯直接集成为电池包,取消电池单体至电池模组级别的集成,从系统集成角度提高能量密度,预示当前电池系统高度集成化的发展趋势。传统的热管理结构是在电池外壳上设计,热量在电芯产生,依次经过电芯与外壳的接触面、外壳、外壳与散热元件的接触面,这个热传递过程较复杂,且电池老化之后,电池会膨胀,电芯与外壳的接触面、外壳与散热元件的接触面也难以保证良好接触。因此,若热管理仍被设计为电池包的外部附属系统,则难以满足高集成化电池系统未来的热管理需求,如:由于中间热阻较大,导致较大的电池包内外温差,引起电池性能衰退;也难以应对超级快充下的冷却以及低温工况电池快速预热。例如申请公布号为CN 105703038 A的中国专利公开了一种具有平板热管的电池模块及散热方法,该方案将多个电池单体以层叠状设置在壳体中,还包括极耳固定装置、打包带、底部固定装置以及多个平板热管;每2个电池单体之间设置1个平板热管;打包带箍于极耳固定装置缺口及底部固定装置缺口内,将电池单体的封边固定于极耳固定装置通槽及底部固定装置通槽内,也就是说,该方案利用平板热管对电池单体进行冷却散热,其只能对电池单体散发到外部的热量进行散热,散热效率较低。
再如申请公布号为CN 105703036 A的中国专利公开了一种电池Pack热管式散热系统,包括电池壳体、电池模组以及热管散热系统;其中,电 池模组置在电池壳体的内侧;热管散热系统包括导热板、热管以及翅片管;其中,导热板设置在电池模组上;热管的一端设置在导热板中,另一端穿出电池壳体;翅片管设置在热管的另一端上且设置在电池壳体外侧,由此可见,该方案仍旧是以电池模组为单位进行散热,而电池模组内部的热量却无法实现有效散热,最终散热效率较低。另外,申请公布号为CN 113036265 A的中国专利公开了一种带热管的电池模组,封堵电芯单元的四周,防止单个电芯单元着火破坏其他电芯单元以及外界铜排安装面周边的支撑结构等,达到良好的防止热失控的效果,但其抑制热失控的原理与本发明不同,也没有针对正常工况的散热进行有效说明;而且该专利并没有明确地定义其所指的电芯单元,实际上,该专利的电芯单元为电池单体,与本发明电芯单元的定义有本质不同,也就是说,该专利仍是针对电池单体散发到外部的热量进行散热。
发明内容
本发明的目的是提供一种动力电池模块及其动力电池包和热管理方法,以解决上述现有技术存在的问题,将热管结构的两侧与电芯单元的集流体紧密贴合,能够有利于减小传热热阻,大幅提高散热/预热速度,能够提高动力电池的热管理效果,提高换热效率。
为实现上述目的,本发明提供了如下方案:
本发明提供一种动力电池模块,包括若干电芯单元、若干一端嵌入所述电芯单元之间的热管结构以及连接在所述热管结构未嵌入所述电芯单元的另一端的液体通道,所述电芯单元包括顺次设置的正极集流体、正极材料、隔膜、负极材料和负极集流体,所述热管结构的两侧分别与所述正极集流体或所述负极集流体紧密贴合。
优选地,所述热管结构的外壳以及与其紧密贴合的集流体采用相同的材料。
优选地,相邻两所述热管结构之间的所述电芯单元数量为20以上。
优选地,所述热管结构为平板热管。
优选地,所述平板热管包括外壳、贴合所述外壳内壁设置的吸液芯以及设置在两侧的所述吸液芯之间的支撑柱,所述支撑柱之间形成蒸汽腔,所述平板热管保持封闭状态,内部充有工质。
优选地,所述支撑柱选用阻燃材料制作,每个所述支撑柱分为若干段。
优选地,所述吸液芯包括大孔径泡沫铜骨架以及设置在所述大孔径泡沫铜骨架上的纳米涂层。
本发明提供一种动力电池包,包括壳体以及封装在所述壳体内的如前文所述的动力电池模块。
本发明还提供一种动力电池模块的热管理方法,包括以下内容:
在电芯单元之间设置热管结构,并将所述热管结构的两侧分别与所述电芯单元的集流体紧密贴合,所述热管结构连接有液体通道;
监测动力电池模块内的温度,当温度高于或低于设定值时,冷却或加热流通液体通道的换热流体,实现所述电芯单元与换热流体之间的热交换。
优选地,在所述热管结构内部设置阻燃材料制作的支撑柱,在所述支撑柱之间形成蒸汽腔,当动力电池模块发生极端热安全事故时,热管结构的外壳破裂,破坏热管结构的封闭状态,热管结构失效,利用所述蒸汽腔形成阻隔空间,减少所述电芯单元之间的热传导,利用所述支撑柱与所述蒸汽腔共同作用,抑制热失控蔓延。
本发明相对于现有技术取得了以下技术效果:
(1)本发明将热管结构的两侧与电芯单元的集流体紧密贴合,能够有利于减小传热热阻,大幅提高散热/预热速度,提高动力电池的热管理效果,提高换热效率,并且热管结构的外壳与集流体采用相同的材料,能够在保证传热效果的基础上避免动力电池的运行产生不利影响;
(2)本发明将热管理引入至电池包内部,与电池系统一体化集成,能有效兼顾系统能量密度及热管理性能,满足高集成化电池系统在超级快充、低温环境等应用场景中的热管理需求,也避免了电池老化引起的电芯 单元与外壳的接触面、外壳与散热元件的接触面接触不良的问题;
(3)当电芯发生极端热安全事故(如碰撞、刺穿、短路等引发的热安全事故)时,电芯热失控已不可避免,高温将使得平板热管内部工质完全蒸发,导致壳体破裂,平板热管失效,内部蒸汽腔形成阻隔空间,大幅减少电芯之间的热传导,同时,阻燃材料制作的支撑柱具有良好的阻燃特性,与蒸汽腔共同作用,抑制热失控蔓延;
(4)本发明将液体通道与外部制冷及加热设备连接,外部制冷及加热设备为液体通道提供冷却用液体和加热用换热流体,当电池温度高于设定值时,提供冷却用换热流体;当电池处于较低环境温度时,提供加热用换热流体,使得电池温度保持在合理范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明动力电池包结构示意图;
图2为本发明动力电池模块结构示意图;
图3为本发明电芯单元与平板热管结合示意图;
图4为本发明平板热管内部结构示意图;
其中,1、壳体;2、液体通道;3、电芯单元;31、正极集流体;32、正极材料;33、隔膜;34、负极材料;35、负极集流体;4、平板热管;41、外壳;42、吸液芯;43、支撑柱;44、蒸汽腔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种动力电池模块及其动力电池包和热管理方 法,以解决现有技术存在的问题,将热管结构的两侧与电芯单元的集流体紧密贴合,能够有利于减小传热热阻,大幅提高散热/预热速度,能够提高动力电池的热管理效果,提高换热效率。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图2所示,本发明提供一种动力电池模块,包括若干电芯单元3、若干一端嵌入电芯单元3之间的热管结构以及连接在热管结构未嵌入电芯单元3的另一端的液体通道2。其中,电芯单元3采用如图3所示的包括顺次设置的正极集流体31、正极材料32、隔膜33、负极材料34和负极集流体35的结构,关键是具有集流体(正极集流体31或负极集流体35)与热管结构贴合;夹在热管结构之间的电芯单元3可以并排设置有若干组,具体设置数量,根据单个电芯单元3的发热功率以及厚度大小设计;热管结构可以选择现有技术的热管结构,可以为管状结构也可以为板状结构,当为管状结构时在电芯单元3之间的夹层内并排设置有多个,当为板状结构时在电芯单元3之间的夹层内并排设置有多个或设置一整块大小能够覆盖电芯单元3的集流体;热管结构能够将电芯单元3的热量传递到液体通道2,也能够将液体通道2的热量传递到电芯单元3,液体通道2用于通入制冷后的液体或制热后的液体,实现电芯单元3所传递到热管结构的热量或冷量的互换,从而能够利用热管结构和液体通道2实现电芯单元3所形成的动力电池模块的热管理。热管结构的两侧分别与电芯单元3的集流体紧密贴合,此处所说的集流体可以是正极集流体31也可以是负极集流体35,在热管结构与集流体紧密贴合的情况下,能够实现二者互相传递热量,热管结构能够直接将电芯单元3所产生的热量传递出或将外界产生的热量传递入,并且紧密贴合的结构有利于减小传热热阻,大幅提高散热/预热速度,从而能够进一步的提高动力电池的热管理效果,提高换热效率,进而能够适用于产热量大和环境温度低的工况。因此,本发明将热管理引入至电池包内部(动力电池模块)的方式,能够与电池系统一体化集成,有效兼顾系统能量密度及热管理性能,满足高集成化电池系统在超级快充、低温环境等应用场景中的热管理需求。
热管结构外壳41的材料可以与集流体的材料相同,也就是说,当热 管结构与正极集流体31紧密贴合时,热管结构可以采用正极集流体31相同的材料,例如采用铝,当热管结构与负极集流体35紧密贴合时,热管结构可以采用负极集流体35相同的材料,例如采用铜。热管结构的外壳41与集流体采用相同的材料,能够在保证传热效果的基础上避免动力电池的运行产生不利影响。
相邻两热管结构之间的电芯单元3数量可以设置为20以上,具体的根据单个电芯单元3的发热功率以及厚度大小进行调整。
如图2所示,热管结构可以为平板热管4,平板热管4为板状结构,能够采用单一平板热管4覆盖整面集流体,其覆盖面积大、集成度高,能够很好的适应动力电池的结构并集成在电芯单元3之间。
如图4所示,平板热管4包括外壳41、贴合外壳41内壁设置的吸液芯42以及设置在两侧的吸液芯42之间的支撑柱43,外壳41的材料可以根据所紧密贴合的集流体的材料进行确定,例如为铝或铜。外壳41形成平板热管4内部结构的包裹支撑,外壳41具有良好的导热性,且厚度较薄,其所形成的平板热管4的厚度一般不超过2mm,外壳41与液体通道2可以采用焊接的方式连接在一起形成一个整体,液体通道2的厚度一般不超过10mm,液体通道2的换热流体可以为水、乙二醇/水混合液、制冷剂等。支撑柱43之间形成蒸汽腔44。平板热管保持封闭状态,内部充有工质(水、甲醇等),在冷却时,工质吸收电芯单元3热量形成的蒸汽主要是往上方(液体通道2的方向)流动,由位于上方的液体通道2冷却。
支撑柱43可以选用阻燃材料制作,如聚亚酰胺,具有良好的热稳定性和阻燃性,阻燃材料制作的支撑柱43具有良好的阻燃特性,与蒸汽腔44共同作用,能够在电芯发生极端热安全事故(如碰撞、刺穿、短路等引发的热安全事故)时抑制热失控蔓延。每个支撑柱43可以分为若干段,也就是说,支撑柱43横向之间也设置有通道,蒸汽腔44内的蒸汽既可以沿支撑柱43的长度方向流动,也可以沿支撑柱43的宽度方向通过,有利于支撑柱43宽度方向的温度均匀传递,实现温度均匀。
吸液芯42可以包括大孔径泡沫铜骨架以及设置在大孔径泡沫铜骨架上的纳米涂层,也就是说,吸液芯42为跨尺度多孔结构,泡沫铜骨架的 孔径为微米尺度,孔径较大,能够减小工质回流阻力,表面的纳米结构为纳米尺度,能够产生工质回流的毛细力,通过大孔骨架与纳米结构的组合,实现吸液芯42高毛细力和低流动阻力的解耦,进而提高平板热管4的传热性能。当然,吸液芯42也可采用其他能达到类似效果的结构。
如图1所示,本发明提供一种动力电池包,包括壳体1以及封装在壳体1内的如前文所记载的动力电池模块,壳体1将整个动力电池模块进行封装保护,在壳体1上设置有连接线路的开孔以及液体通道2的开孔。
参考图1~4所示,本发明还提供一种动力电池模块的热管理方法,可以应用前文所记载的动力电池模块和动力电池包,包括以下内容:
在电芯单元3之间设置热管结构(热管结构可以采用平板热管4,也可以采用现有技术中公开的管状结构等形式),并将热管结构的两侧分别与电芯单元3的集流体紧密贴合,在贴合时可以选择正极集流体31也可以选择负极集流体35,进一步还可以将热管结构的外壳41选择与所贴合的集流体相同的材料,热管结构还连接有液体通道2;
利用温度传感器、探测器或热电偶等电池温度监测模块监测动力电池模块内的温度,当温度高于或低于设定值时,制冷加热系统冷却或加热流通液体通道2的换热流体,实现电芯单元3与换热流体之间的热交换,利用嵌入式结构,可迅速实现电芯单元3与换热流体之间的热交换,较好控制电池包温度,减小热失控的发生,并达到良好的均温效果。
动力电池热管理的具体工作过程为:
冷却时,外部制冷系统降低换热流体温度,换热流体温度流入液体通道2,此时,平板热管4与电芯单元3贴合部分为蒸发段,与液体通道2结合部分为冷凝段,电芯单元3的热量传递至平板热管4蒸发段,蒸发段内部工质蒸发变成蒸汽,流动至冷凝段,将热量传递至液体通道2中的换热流体,冷凝为液体,在吸液芯42的作用下回流至蒸发段。
加热时,外部加热系统提高换热流体温度,换热流体流入液体通道2,此时,平板热管4与电芯单元3贴合部分为冷凝段,与液体通道2结合部分为蒸发段,其余过程与冷却工况时类似。
在热管结构内部可以设置支撑柱43,在支撑柱43之间形成蒸汽腔44,当动力电池模块发生极端热安全事故时,热管结构失效,利用蒸汽腔44 形成阻隔空间,减少电芯单元3之间的热传导,利用阻燃材料制作的支撑柱43与蒸汽腔44共同作用,抑制热失控蔓延。
根据上述过程可知,在本发明处于极端情况时:
当电芯单元3发生极端热安全事故(如碰撞、刺穿、短路等引发的热安全事故)时,电芯单元3热失控已不可避免,高温将使得平板热管4内部工质完全蒸发,导致外壳41破裂,平板热管4失效,内部蒸汽腔44形成阻隔空间,大幅减少电芯单元3之间的热传导。同时,阻燃材料制作的支撑柱43具有良好的阻燃特性,与蒸汽腔44共同作用,抑制热失控蔓延。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种动力电池模块,其特征在于:包括若干电芯单元、若干一端嵌入所述电芯单元之间的热管结构以及连接在所述热管结构未嵌入所述电芯单元的另一端的液体通道,所述电芯单元包括顺次设置的正极集流体、正极材料、隔膜、负极材料和负极集流体,所述热管结构的两侧分别与所述正极集流体或所述负极集流体紧密贴合。
  2. 根据权利要求1所述的动力电池模块,其特征在于:所述热管结构的外壳以及与其紧密贴合的集流体采用相同的材料。
  3. 根据权利要求1所述的动力电池模块,其特征在于:相邻两所述热管结构之间的所述电芯单元数量为20以上。
  4. 根据权利要求1-3任一项所述的动力电池模块,其特征在于:所述热管结构为平板热管。
  5. 根据权利要求4所述的动力电池模块,其特征在于:所述平板热管包括外壳、贴合所述外壳内壁设置的吸液芯以及设置在两侧的所述吸液芯之间的支撑柱,所述支撑柱之间形成蒸汽腔,所述平板热管保持封闭状态,内部充有工质。
  6. 根据权利要求5所述的动力电池模块,其特征在于:所述支撑柱选用阻燃材料制作,每个所述支撑柱分为若干段。
  7. 根据权利要求5所述的动力电池模块,其特征在于:所述吸液芯包括大孔径泡沫铜骨架以及设置在所述大孔径泡沫铜骨架上的纳米涂层。
  8. 一种动力电池包,其特征在于:包括壳体以及封装在所述壳体内的如权利要求1-7任一项所述的动力电池模块。
  9. 一种动力电池模块的热管理方法,其特征在于,包括以下内容:
    在电芯单元之间设置热管结构,并将所述热管结构的两侧分别与所述电芯单元的集流体紧密贴合,所述热管结构连接有液体通道;
    监测动力电池模块内的温度,当温度高于或低于设定值时,冷却或加热流通所述热管结构的换热流体,实现所述电芯单元与换热流体之间的热交换。
  10. 根据权利要求9所述的动力电池模块的热管理方法,其特征在于:在所述热管结构内部设置阻燃材料制作的支撑柱,在所述支撑柱之间形成蒸汽腔,当动力电池模块发生极端热安全事故时,热管结构的外壳破裂,破坏热管结构的封闭状态,热管结构失效,利用所述蒸汽腔形成阻隔空间,减少所述电芯单元之间的热传导,利用所述支撑柱与所述蒸汽腔共同作用,抑制热失控蔓延。
PCT/CN2021/139620 2021-10-28 2021-12-20 一种动力电池模块及其动力电池包和热管理方法 WO2023070905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21931932.4A EP4195363A1 (en) 2021-10-28 2021-12-20 Power battery module, power battery pack thereof, and thermal management method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111260268.5A CN113991215A (zh) 2021-10-28 2021-10-28 一种动力电池模块及其动力电池包和热管理方法
CN202111260268.5 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023070905A1 true WO2023070905A1 (zh) 2023-05-04

Family

ID=79743071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139620 WO2023070905A1 (zh) 2021-10-28 2021-12-20 一种动力电池模块及其动力电池包和热管理方法

Country Status (4)

Country Link
EP (1) EP4195363A1 (zh)
CN (1) CN113991215A (zh)
TW (1) TWI830387B (zh)
WO (1) WO2023070905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991215A (zh) * 2021-10-28 2022-01-28 深圳市顺熵科技有限公司 一种动力电池模块及其动力电池包和热管理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053837A (ja) * 2011-09-06 2013-03-21 Kiko Kagi Kofun Yugenkoshi 板型ヒートパイプの構造
CN104896983A (zh) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 一种超薄泡沫银为吸液芯的均热板制造方法
CN105703038A (zh) 2016-04-11 2016-06-22 江苏科技大学 一种具有平板热管的电池模块及散热方法
CN105703036A (zh) 2016-04-08 2016-06-22 深圳市国创动力系统有限公司 电池Pack热管式散热系统
CN108199115A (zh) * 2018-01-10 2018-06-22 厦门大学嘉庚学院 电动汽车锂电池的散热系统
CN209374492U (zh) * 2018-12-27 2019-09-10 河南新太行电源股份有限公司 一种散热功能好的大容量锂离子电池壳体
CN112421164A (zh) * 2020-11-18 2021-02-26 西安电子科技大学芜湖研究院 一种电池模组快速组装及快速散热结构
CN212934669U (zh) * 2020-06-18 2021-04-09 青岛九环新越新能源科技股份有限公司 可调温控型储能设备电芯、叠层电芯和复合动力电芯
CN113036265A (zh) 2021-03-03 2021-06-25 合肥国轩高科动力能源有限公司 一种带热管的电池模组
CN113991215A (zh) * 2021-10-28 2022-01-28 深圳市顺熵科技有限公司 一种动力电池模块及其动力电池包和热管理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904551A (zh) * 2017-06-28 2019-06-18 湖南妙盛汽车电源有限公司 一种锂离子动力电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053837A (ja) * 2011-09-06 2013-03-21 Kiko Kagi Kofun Yugenkoshi 板型ヒートパイプの構造
CN104896983A (zh) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 一种超薄泡沫银为吸液芯的均热板制造方法
CN105703036A (zh) 2016-04-08 2016-06-22 深圳市国创动力系统有限公司 电池Pack热管式散热系统
CN105703038A (zh) 2016-04-11 2016-06-22 江苏科技大学 一种具有平板热管的电池模块及散热方法
CN108199115A (zh) * 2018-01-10 2018-06-22 厦门大学嘉庚学院 电动汽车锂电池的散热系统
CN209374492U (zh) * 2018-12-27 2019-09-10 河南新太行电源股份有限公司 一种散热功能好的大容量锂离子电池壳体
CN212934669U (zh) * 2020-06-18 2021-04-09 青岛九环新越新能源科技股份有限公司 可调温控型储能设备电芯、叠层电芯和复合动力电芯
CN112421164A (zh) * 2020-11-18 2021-02-26 西安电子科技大学芜湖研究院 一种电池模组快速组装及快速散热结构
CN113036265A (zh) 2021-03-03 2021-06-25 合肥国轩高科动力能源有限公司 一种带热管的电池模组
CN113991215A (zh) * 2021-10-28 2022-01-28 深圳市顺熵科技有限公司 一种动力电池模块及其动力电池包和热管理方法

Also Published As

Publication number Publication date
EP4195363A1 (en) 2023-06-14
TWI830387B (zh) 2024-01-21
CN113991215A (zh) 2022-01-28
TW202337069A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
CN107346814B (zh) 一种电池热管理系统
CN205543155U (zh) 一种电池包散热系统
CN105206895A (zh) 电池组的冷却方法及带有冷却装置的电池组
CN108258162A (zh) 新能源汽车电池包散热装置
CN107634164A (zh) 一种基于微通道热管和相变材料结合的电池热管理系统
AU2019432491A1 (en) Heat management device for electric vehicle power battery suitable for use in extremely cold regions
CN1851908A (zh) 一种功率半导体器件蒸发冷却装置
CN205335394U (zh) 带有冷却装置的电池组
CN208336452U (zh) 一种大功率锂离子电池热管理系统
CN110518309B (zh) 一种多冷却方式动力电池散热装置
WO2020252848A1 (zh) 动力电池包和车辆
CN105895992A (zh) 一种基于余热回收的微通道电池热管理系统
WO2023070905A1 (zh) 一种动力电池模块及其动力电池包和热管理方法
WO2024082591A1 (zh) 一种框架散热结构及具有该结构的动力电池模组
CN106785236B (zh) 圆柱体电池组的热管理系统和方法
WO2023066259A1 (zh) 电池包和储能系统
CN205282609U (zh) 圆柱体电池组的热管理系统
CN112510285A (zh) 一种车用电池模组的散热方法及装置
WO2024087564A1 (zh) 一种基于高导热均热板的动力电池模组系统
WO2020248491A1 (zh) 一种锂电池包热管理系统及方法
CN111540978A (zh) 一种填充相变材料的锂离子电池相框
CN214848774U (zh) 一种电池箱散热装置及电池包
CN115966802A (zh) 一种基于特斯拉阀的电池散热结构
CN111600092A (zh) 一种超宽温域高安全性锂离子动力电池系统
WO2019001467A1 (zh) 一种锂离子软包电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17922057

Country of ref document: US