WO2024087289A1 - 一种磁浮列车的控制方法及相关装置 - Google Patents

一种磁浮列车的控制方法及相关装置 Download PDF

Info

Publication number
WO2024087289A1
WO2024087289A1 PCT/CN2022/134172 CN2022134172W WO2024087289A1 WO 2024087289 A1 WO2024087289 A1 WO 2024087289A1 CN 2022134172 W CN2022134172 W CN 2022134172W WO 2024087289 A1 WO2024087289 A1 WO 2024087289A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
maglev train
track
rail
calibration information
Prior art date
Application number
PCT/CN2022/134172
Other languages
English (en)
French (fr)
Inventor
张文跃
朱跃欧
廖看秋
佟来生
罗华军
汤彪
陈启发
蒋毅
乔若辉
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2024087289A1 publication Critical patent/WO2024087289A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/06Indicating or recording the setting of track apparatus, e.g. of points, of signals

Definitions

  • the present application relates to the field of train control technology, and in particular to a control method for a maglev train; and also to a control device, equipment and computer-readable storage medium for a maglev train.
  • Maglev train is a non-contact ground rail transportation tool. Its biggest feature is that it eliminates the wheels that traditional vehicles rely on for transmission, uses electromagnetic force to achieve suspension and guidance, and is equipped with linear motors for driving. There is no mechanical contact between the maglev train and the track, so it has the advantages of low running noise, low vibration, fast starting and braking speed, small turning radius, strong climbing ability, safety and comfort, and low maintenance cost.
  • the existence of track gaps causes the gap value S measured by the gap sensor to fluctuate more.
  • ⁇ S increases accordingly, and the control current and suspension force in the maglev train suspension control system also fluctuate accordingly, causing the maglev train to be unstable during driving. In severe cases, it is easy to drop points, hit the rails and become unstable.
  • the purpose of the present application is to provide a control method for a maglev train, which can effectively maintain the stable suspension of the maglev train and ensure the comfort and safety of the maglev train.
  • Another purpose of the present application is to provide a control device, equipment and computer-readable storage medium for a maglev train, all of which have the above technical effects.
  • the present application provides a control method for a maglev train, comprising:
  • the track calibration information includes a track gap number, a position coordinate corresponding to the track gap number, and a gap value;
  • the track calibration information contains the position coordinates that are consistent with the real-time coordinates of the maglev train, identifying the track joint number corresponding to the position coordinates;
  • the gap value corresponding to the rail gap number is used as the rated gap value for parameter adjustment.
  • the creating track calibration information includes:
  • the position coordinates of the maglev train are located, and the position coordinates are matched with the track joint numbers.
  • the identifying the track gap according to the gap data of the maglev train running line includes:
  • the gap data measured by each probe of the suspension sensor exceeds a preset value within a preset time period, it is determined that the position where the suspension sensor is located is a rail gap.
  • calculating the gap value corresponding to the rail gap number according to the gap data at the rail gap includes:
  • the gap data measured by each probe of the suspension sensor are comprehensively analyzed to obtain the gap value corresponding to the rail gap number.
  • the comprehensive analysis of the gap data measured by each probe of the suspension sensor to obtain the gap value corresponding to the rail gap number includes:
  • the mean of the selected minimum values is calculated to obtain the gap value corresponding to the rail gap number.
  • a track calibration map is drawn according to the track gap number, the gap value and the position coordinates.
  • the real-time gap value collected by the suspension sensor is used as the rated gap value for parameter adjustment.
  • control device for a maglev train comprising:
  • a creation module used to create track calibration information;
  • the track calibration information includes a track gap number, a position coordinate corresponding to the track gap number, and a gap value;
  • Positioning module used to locate the real-time coordinates of the maglev train
  • an identification module configured to identify the track joint number corresponding to the position coordinate when the track calibration information contains the position coordinate consistent with the real-time coordinate of the maglev train;
  • the parameter adjustment module is used to adjust the parameters by taking the gap value corresponding to the rail gap number as the rated gap value.
  • control device for a maglev train comprising:
  • a processor is used to implement the steps of the control method of a maglev train as described in any one of the above items when executing the computer program.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the steps of the control method of a maglev train as described in any one of the above items are implemented.
  • the control method of the maglev train includes: creating track calibration information; the track calibration information includes a track joint number, a position coordinate corresponding to the track joint number, and a gap value; locating the real-time coordinates of the maglev train; when the track calibration information contains the position coordinate consistent with the real-time coordinates of the maglev train, identifying the track joint number corresponding to the position coordinate; and adjusting the parameters using the gap value corresponding to the track joint number as the rated gap value.
  • the control method of the maglev train pre-creates the track calibration information of the maglev train operation line.
  • the real-time position of the maglev train is located, and the gap value is selected from the track calibration information as the rated gap value for parameter adjustment.
  • control device, equipment and computer-readable storage medium of the maglev train provided in this application all have the above-mentioned technical effects.
  • FIG1 is a schematic flow chart of a control method for a maglev train provided in an embodiment of the present application
  • FIG2 is a schematic diagram of a rail gap identification method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a suspension sensor probe detection provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a track calibration provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a control device for a maglev train provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a control device for a maglev train provided in an embodiment of the present application.
  • the core of this application is to provide a control method for a maglev train, which can effectively maintain the stable suspension of the maglev train and ensure the comfort and safety of the maglev train.
  • Another core of this application is to provide a control device, equipment and computer-readable storage medium for a maglev train, all of which have the above technical effects.
  • FIG. 1 is a flow chart of a control method of a maglev train provided in an embodiment of the present application. Referring to FIG. 1 , the method includes:
  • the track calibration information includes a track gap number, a position coordinate corresponding to the track gap number, and a gap value;
  • This step is to create the track calibration information of the maglev train running track, so that the gap value can be selected as the rated gap value for parameter adjustment during the actual operation of the maglev train. Since the track calibration information is created for selecting the gap value during the actual operation of the maglev train, the step of creating the track calibration information can be performed only once. After the creation is completed, the track calibration information is stored for subsequent use. The track calibration information can also be updated regularly. For example, the track calibration information is updated once a month.
  • creating track calibration information includes:
  • the position coordinates of the maglev train are located, and the position coordinates are matched with the track joint numbers.
  • a suspension sensor at the front of the head car in the direction of travel of the maglev train can be selected, and a wireless acquisition device can be installed on the suspension sensor to collect the gap data detected by the probe of the suspension sensor.
  • the gap refers to the gap between the suspension sensor and the track.
  • the track gap is identified, and the track gap is numbered, and the gap value corresponding to the track gap number is calculated based on the gap data.
  • a satellite positioning module can be installed in the car of the maglev train, connected to the computer using a USB interface, the position coordinates of the maglev train are collected, and the gap data is matched with the position coordinates. On the basis of identifying the track gap based on the gap data and numbering it, the position coordinates are matched with the track gap number.
  • the operation line of the maglev train includes an up line and a down line, so the maglev train is operated at a low speed on the up line and the down line, and the gap data and position coordinates are collected at a preset sampling frequency.
  • the maglev train is operated at a speed not higher than 5 km/h on the up line and the down line, and the gap data and position coordinates are collected at a sampling frequency of 1 kHz.
  • the rule for numbering the track joints on the up line can be: the first track joint at the starting point is recorded as track joint S_1, and the track joints are numbered S_2, S_3, ..., S_N in sequence according to the running direction of the up line, where S_N corresponds to the last track joint at the end point.
  • the rule for numbering the track joints on the up line can be: the first track joint at the starting point is recorded as track joint No. X_1, and the track joints are numbered X_2, X_3, ..., X_M in sequence according to the running direction of the down line, where X_M corresponds to the last track joint at the end point.
  • identifying the track gap according to the gap data of the maglev train running line includes:
  • the gap data measured by each probe of the suspension sensor exceeds the preset value within the preset time, it is determined that the position of the suspension sensor is a rail gap.
  • the criterion for determining a track gap is that the gap data collected by each probe of the suspension sensor exceeds the preset value within a preset time. For example, referring to FIG2 , if the gap data S1, S2, S3, and S4 measured by the four probes of the suspension sensor within 2 seconds all exceed 14 mm, then it is determined that this is a track gap. If the gap data S1, S2, S3, and S4 measured by the four probes of the suspension sensor within 2 seconds do not all exceed 14 mm, then it is determined that this is a normal road condition.
  • calculating the gap value corresponding to the track gap number according to the gap data at the track gap includes:
  • the gap data measured by each probe of the suspension sensor are comprehensively analyzed to obtain the gap value corresponding to the rail gap number.
  • This embodiment integrates the gap data measured by each probe of the suspension sensor to obtain the gap value corresponding to the rail gap, which can ensure that a more reasonable and reliable gap value is obtained.
  • comprehensively analyzing the gap data measured by each probe of the suspension sensor to obtain the gap value corresponding to the rail gap number may include:
  • the mean of the selected minimum values is calculated to obtain the gap value corresponding to the rail gap number.
  • the suspension sensor includes four probes, namely probe 1, probe 2, probe 3 and probe 4.
  • the gap data collected by probe 1 is S1
  • the gap data collected by probe 2 is S2
  • the gap data collected by probe 3 is S3, and the gap data collected by probe 4 is S4.
  • S1 and S2 can be divided into one group
  • S3 and S4 can be divided into one group. Take the minimum value of S1 and S2, take the minimum value of S3 and S4, and then calculate the average of the two minimum values.
  • S 0 represents the gap value corresponding to the rail gap.
  • S104 adjusting parameters by using the gap value corresponding to the rail gap number as the rated gap value.
  • the maglev train During the actual operation of the maglev train, its real-time coordinates are located, and then it is determined whether there is a position coordinate consistent with the real-time coordinate of the maglev train in the track calibration information. If there is a track gap number corresponding to the position coordinate, the corresponding gap value is determined according to the track gap number, and the gap value is used as the rated gap value for parameter adjustment.
  • the real-time gap value collected by the suspension sensor is used as the rated gap value for parameter adjustment.
  • the rated gap value used for parameter adjustment can be obtained by integrating the real-time gap values measured by each probe of the suspension sensor. The manner of integrating the real-time gap values measured by each probe of the suspension sensor can refer to the description of the above embodiment and will not be repeated here.
  • it also includes:
  • a track calibration map is drawn according to the track gap number, the gap value and the position coordinates.
  • control method of the maglev train includes: creating track calibration information; the track calibration information includes a track gap number, a position coordinate corresponding to the track gap number, and a gap value; locating the real-time coordinates of the maglev train; when the track calibration information contains the position coordinates that are consistent with the real-time coordinates of the maglev train, identifying the track gap number corresponding to the position coordinates; and adjusting the parameters using the gap value corresponding to the track gap number as the rated gap value.
  • This control method pre-creates the track calibration information of the maglev train running line.
  • the real-time position of the maglev train is located, and the gap value is selected from the track calibration information as the rated gap value for parameter adjustment.
  • the rated gap value used for parameter adjustment is no longer fixed, and can effectively maintain the stable suspension of the maglev train and ensure the comfort and safety of the maglev train.
  • FIG5 is a schematic diagram of a control device for a maglev train provided in an embodiment of the present application. As shown in FIG5 , the device includes:
  • a creation module 10 is used to create track calibration information;
  • the track calibration information includes a track gap number, a position coordinate corresponding to the track gap number, and a gap value;
  • An identification module 30, configured to identify the track joint number corresponding to the position coordinate when the track calibration information contains the position coordinate that is consistent with the real-time coordinate of the maglev train;
  • the parameter adjustment module 40 is used to adjust the parameters by taking the gap value corresponding to the rail gap number as the rated gap value.
  • the creation module 10 includes:
  • An identification unit used for identifying rail gaps according to gap data of the maglev train running line, and numbering the rail gaps
  • a calculation unit configured to calculate the gap value corresponding to the rail gap number according to the gap data at the rail gap;
  • a matching unit is used to locate the position coordinates of the maglev train and match the position coordinates with the track joint number.
  • the identification unit is specifically used for:
  • the gap data measured by each probe of the suspension sensor exceeds a preset value within a preset time period, it is determined that the position where the suspension sensor is located is a rail gap.
  • the calculation unit is specifically used for:
  • the gap data measured by each probe of the suspension sensor are comprehensively analyzed to obtain the gap value corresponding to the rail gap number.
  • the calculation unit includes:
  • a minimum value selection subunit used for dividing the gap data measured by each of the probes into two groups, and selecting the minimum value in each group;
  • the mean calculation subunit is used to calculate the mean of the selected minimum values to obtain the gap value corresponding to the rail gap number.
  • a drawing module is used to draw a track calibration map according to the track gap number, the gap value and the position coordinates.
  • the second parameter adjustment module is used to adjust the parameters by using the real-time gap value collected by the suspension sensor as the rated gap value when the position coordinates consistent with the real-time coordinates of the maglev train do not exist in the track calibration information.
  • the control device of the maglev train pre-creates the track calibration information of the maglev train operation route.
  • the real-time position of the maglev train is located, and the gap value is selected from the track calibration information as the rated gap value for parameter adjustment. This can effectively solve the problem of the maglev train falling off the track, hitting the rail, and suspension instability caused by the fluctuation of the gap value measured by the suspension sensor probe when the maglev train passes the track gap, maintain the stable suspension of the maglev train, and ensure the comfort and safety of the maglev train.
  • the present application also provides a control device for a maglev train.
  • the device includes a memory 1 and a processor 2 .
  • Memory 1 used for storing computer programs
  • Processor 2 is used to execute the computer program to implement the following steps:
  • the track calibration information includes a track joint number, a position coordinate corresponding to the track joint number, and a gap value; locate the real-time coordinates of the maglev train; when the track calibration information contains the position coordinate consistent with the real-time coordinates of the maglev train, identify the track joint number corresponding to the position coordinate; and adjust the parameters using the gap value corresponding to the track joint number as the rated gap value.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the following steps can be implemented:
  • the track calibration information includes a track joint number, a position coordinate corresponding to the track joint number, and a gap value; locate the real-time coordinates of the maglev train; when the track calibration information contains the position coordinate consistent with the real-time coordinates of the maglev train, identify the track joint number corresponding to the position coordinate; and adjust the parameters using the gap value corresponding to the track joint number as the rated gap value.
  • the computer-readable storage medium may include: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • the steps of the method or algorithm described in conjunction with the embodiments disclosed herein may be implemented directly using hardware, a software module executed by a processor, or a combination of the two.
  • the software module may be placed in a random access memory (RAM), a memory, a read-only memory (ROM), an electrically programmable ROM, an electrically erasable programmable ROM, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种磁浮列车的控制方法、装置、设备以及计算机可读存储介质,涉及列车控制技术领域,包括:创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;定位磁浮列车的实时坐标;当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。该方法能够有效维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。

Description

一种磁浮列车的控制方法及相关装置
本申请要求于2022年10月27日提交至中国专利局、申请号为202211325437.3、发明名称为“一种磁浮列车的控制方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及列车控制技术领域,特别涉及一种磁浮列车的控制方法;还涉及一种磁浮列车的控制装置、设备以及计算机可读存储介质。
背景技术
磁浮列车是一种非接触式地面轨道交通运输工具,其最大的特点是取消了传统车辆赖以传动的轮子,采用电磁力实现悬浮与导向,并配置直线电机实现驱动。磁浮列车与轨道间无机械接触,因此具有运行噪声小、振动低、起动及制动速度快、转弯半径小、爬坡能力强、安全舒适及维护费用少等优点。
由于磁浮列车运行线路轨道的单根轨道最长为12.5m,最短为0.7m,因此在安装过程中轨道对接处不可避免地会出现轨缝。目前在悬浮控制算法中,以ΔS=S-S 0作为影响磁浮列车控制电流、悬浮力以及车辆平稳性的重要因素。轨缝的存在导致间隙传感器测量的间隙值S波动变大,在额定间隙值S 0不变的情况下,△S随之变大,磁浮列车悬浮控制系统中的控制电流与悬浮力也随之波动,导致磁浮列车在行驶过程中出现不平稳的情况,严重时容易出现掉点、砸轨以及悬浮失稳等情况。
有鉴于此,如何维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性已成为本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的是提供一种磁浮列车的控制方法,能够有效维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。本申请的另一个目的是提供一种磁浮列车的控制装置、设备以及计算机可读存储介质,均具有上述技术效果。
为解决上述技术问题,本申请提供了一种磁浮列车的控制方法,包括:
创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
定位磁浮列车的实时坐标;
当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
可选的,所述创建轨道标定信息包括:
根据磁浮列车运行线路的间隙数据识别轨缝,并对所述轨缝编号;
根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值;
定位所述磁浮列车的所述位置坐标,并将所述位置坐标与所述轨缝编号相对应。
可选的,所述根据磁浮列车运行线路的间隙数据识别轨缝包括:
若预设时长内悬浮传感器各探头测量的间隙数据均超出预设值,则确定所述悬浮传感器所在位置处为轨缝。
可选的,所述根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值包括:
综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值。
可选的,所述综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值包括:
将各所述探头测量的所述间隙数据分为两组,并选取每组中的最小值;
计算选取的所述最小值的均值,得到所述轨缝编号对应的所述间隙值。
可选的,还包括:
根据所述轨缝编号、所述间隙值以及所述位置坐标,绘制轨道标定图。
可选的,还包括:
当所述轨道标定信息中不存在与所述磁浮列车的实时坐标一致的所述位置坐标时,以悬浮传感器采集的实时间隙值作为所述额定间隙值进行调参。
为解决上述技术问题,本申请还提供了一种磁浮列车的控制装置,包 括:
创建模块,用于创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
定位模块,用于定位磁浮列车的实时坐标;
识别模块,用于当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
调参模块,用于以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
为解决上述技术问题,本申请还提供了一种磁浮列车的控制设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上任一项所述的磁浮列车的控制方法的步骤。
为解决上述技术问题,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的磁浮列车的控制方法的步骤。
本申请所提供的磁浮列车的控制方法,包括:创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;定位磁浮列车的实时坐标;当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
可见,本申请所提供的磁浮列车的控制方法,预先创建了磁浮列车运行线路的轨道标定信息,在磁浮列车实际运行过程中,通过定位磁浮列车的实时位置,并从轨道标定信息中选取间隙值作为额定间隙值进行参数调节,如此能够有效解决磁浮列车过轨缝时由于悬浮传感器探头测量的间隙值波动导致列车掉点、砸轨以及悬浮失稳的问题,维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。
本申请所提供的磁浮列车的控制装置、设备以及计算机可读存储介质均具有上述技术效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所提供的一种磁浮列车的控制方法的流程示意图;
图2为本申请实施例所提供的一种轨缝识别的示意图;
图3为本申请实施例所提供的一种悬浮传感器探头检测示意图;
图4为本申请实施例所提供的一种轨道标定示意图;
图5为本申请实施例所提供的一种磁浮列车的控制装置的示意图;
图6为本申请实施例所提供的一种磁浮列车的控制设备的示意图。
具体实施方式
本申请的核心是提供一种磁浮列车的控制方法,能够有效维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。本申请的另一个核心是提供一种磁浮列车的控制装置、设备以及计算机可读存储介质,均具有上述技术效果。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1为本申请实施例所提供的一种磁浮列车的控制方法的流程示意图,参考图1所示,该方法包括:
S101:创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
本步骤旨在创建磁浮列车运行轨道的轨道标定信息,以便在磁浮列车实际运行过程中从中选取间隙值作为额定间隙值进行参数调节。由于创建轨道标定信息是为了磁浮列车实际运行过程中选择间隙值,因此,创建轨 道标定信息的步骤可以只执行一次,创建完成后,对轨道标定信息进行存储,供后续使用。也可以定期进行轨道标定信息的更新。例如,每个月更新一次轨道标定信息。
在一些实施例中,所述创建轨道标定信息包括:
根据磁浮列车运行线路的间隙数据识别轨缝,并对所述轨缝编号;
根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值;
定位所述磁浮列车的所述位置坐标,并将所述位置坐标与所述轨缝编号相对应。
具体而言,可以选择磁浮列车行驶方向头部车厢最前方的悬浮传感器,在该悬浮传感器上安装无线采集装置用于采集悬浮传感器的探头探测到的间隙数据。间隙是指悬浮传感器与轨道之间的间隙。基于采集到的间隙数据,识别轨缝,并对轨缝进行编号,以及根据间隙数据计算得到轨缝编号对应的间隙值。可以在磁浮列车的车厢安装卫星定位模块,采用USB接口与计算机连接,采集磁浮列车的位置坐标,并将间隙数据与位置坐标进行匹配。在基于间隙数据识别出轨缝并进行编号的基础上,将位置坐标与轨缝编号相对应。
其中,磁浮列车的运行线路包括上行线路与下行线路,因此,在上行线路与下行线路上,分别低速运行磁浮列车,并以预设采样频率采集间隙数据与位置坐标。例如,在上行线路与下行线路上,分别以不高于5km/h的速度运行磁浮列车,并以1kHz的采样频率采集间隙数据与位置坐标。
上行线路上的轨缝进行编号的规则可以为:起点的第1个轨缝记为S_1号轨缝,根据上行线路运行方向依次编号为S_2、S_3........S_N号轨缝,其中S_N号对应终点的最后一个轨缝。
上行线路上的轨缝进行编号的规则可以为:起点的第1个轨缝记为X_1号轨缝,根据下行线路运行方向依次编号为X_2、X_3........X_M号轨缝,其中X_M号对应终点的最后一个轨缝。
在一些实施例中,所述根据磁浮列车运行线路的间隙数据识别轨缝包括:
若预设时长内悬浮传感器各探头测量的间隙数据均超出预设值,则确 定所述悬浮传感器所在位置处为轨缝。
本实施例中判定为轨缝的标准是预设时长内,悬浮传感器的各个探头所采集的间隙数据均超出预设值。例如,参考图2所示,2s内悬浮传感器的四个探头测量的间隙数据S1、S2、S3以及S4均超出14mm,则判定此处为轨缝。如果2s内悬浮传感器的四个探头测量的间隙数据S1、S2、S3以及S4不都超出14mm,则判定此处为正常路况。
需要说明的是,对于预设时长以及预设值的具体数值,本申请不做唯一限定,可以根据实际应用需要进行差异性设置。
在一些实施例中,所述根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值包括:
综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值。
本实施例综合悬浮传感器的各个探头测量的间隙数据得到轨缝对应的间隙值,可以确保得到更加合理可靠的间隙值。
其中,综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值可以包括:
将各所述探头测量的所述间隙数据分为两组,并选取每组中的最小值;
计算选取的所述最小值的均值,得到所述轨缝编号对应的所述间隙值。
例如,参考图3所示,悬浮传感器包括4路探头,分别为探头1、探头2、探头3以及探头4。探头1采集的间隙数据为S1,探头2采集的间隙数据为S2,探头3采集的间隙数据为S3,探头4采集的间隙数据为S4。可以将S1与S2分为1组,S3与S4分为一组。取S1与S2中的最小值,取S3与S4中的最小值,然后计算两个最小值的均值。
即,
Figure PCTCN2022134172-appb-000001
S 0表示轨缝对应的间隙值。
S102:定位磁浮列车的实时坐标;
S103:当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
S104:以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
磁浮列车实际运行过程中,定位其实时坐标,然后判断轨道标定信息 中是否存在于磁浮列车的实时坐标一致的位置坐标,如果有识别该位置坐标对应的轨缝编号,根据该轨缝编号确定对应的间隙值,并以该间隙值作为额定间隙值进行参数调节。
对于所述轨道标定信息中不存在与所述磁浮列车的实时坐标一致的所述位置坐标的情况,在一些实施例中,当所述轨道标定信息中不存在与所述磁浮列车的实时坐标一致的所述位置坐标时,以悬浮传感器采集的实时间隙值作为所述额定间隙值进行调参。其中,可以综合悬浮传感器的各个探头测量的实时间隙值得到用于参数调节的额定间隙值。综合悬浮传感器的各个探头测量的实时间隙值的方式,可以参照上述实施例的描述,在此不再赘述。
进一步,在一些实施例中,还包括:
根据所述轨缝编号、所述间隙值以及所述位置坐标,绘制轨道标定图。
参考图4所示的轨道标定图,通过绘制轨道标定图,可以更加直观的展示磁浮列车运行轨道的轨缝、位置坐标等情况。
综上所述,本申请所提供的磁浮列车的控制方法,包括:创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;定位磁浮列车的实时坐标;当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。该控制方法,预先创建了磁浮列车运行线路的轨道标定信息,在磁浮列车实际运行过程中,通过定位磁浮列车的实时位置,并从轨道标定信息中选取间隙值作为额定间隙值进行参数调节,如此用于调参的额定间隙值不再是固定不变的,能够有效维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。
本申请还提供了一种磁浮列车的控制装置,下文描述的该装置可以与上文描述的方法相互对应参照。请参考图5,图5为本申请实施例所提供的一种磁浮列车的控制装置的示意图,结合图5所示,该装置包括:
创建模块10,用于创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
定位模块20,用于定位磁浮列车的实时坐标;
识别模块30,用于当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
调参模块40,用于以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
在上述实施例的基础上,作为一种具体的实施方式,创建模块10包括:
识别单元,用于根据磁浮列车运行线路的间隙数据识别轨缝,并对所述轨缝编号;
计算单元,用于根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值;
匹配单元,用于定位所述磁浮列车的所述位置坐标,并将所述位置坐标与所述轨缝编号相对应。
在上述实施例的基础上,作为一种具体的实施方式,所述识别单元具体用于:
若预设时长内悬浮传感器各探头测量的间隙数据均超出预设值,则确定所述悬浮传感器所在位置处为轨缝。
在上述实施例的基础上,作为一种具体的实施方式,所述计算单元具体用于:
综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值。
在上述实施例的基础上,作为一种具体的实施方式,所述计算单元包括:
最小值选取子单元,用于将各所述探头测量的所述间隙数据分为两组,并选取每组中的最小值;
均值计算子单元,用于计算选取的所述最小值的均值,得到所述轨缝编号对应的所述间隙值。
在上述实施例的基础上,作为一种具体的实施方式,还包括:
绘制模块,用于根据所述轨缝编号、所述间隙值以及所述位置坐标,绘制轨道标定图。
在上述实施例的基础上,作为一种具体的实施方式,还包括:
第二调参模块,用于当所述轨道标定信息中不存在与所述磁浮列车的实时坐标一致的所述位置坐标时,以悬浮传感器采集的实时间隙值作为所述额定间隙值进行调参。
本申请所提供的磁浮列车的控制装置,预先创建了磁浮列车运行线路的轨道标定信息,在磁浮列车实际运行过程中,通过定位磁浮列车的实时位置,并从轨道标定信息中选取间隙值作为额定间隙值进行参数调节,如此能够有效解决磁浮列车过轨缝时由于悬浮传感器探头测量的间隙值波动导致列车掉点、砸轨以及悬浮失稳的问题,维持磁浮列车平稳悬浮,保障磁浮列车的舒适性与安全性。
本申请还提供了一种磁浮列车的控制设备,参考图6所示,该设备包括存储器1和处理器2。
存储器1,用于存储计算机程序;
处理器2,用于执行计算机程序实现如下的步骤:
创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;定位磁浮列车的实时坐标;当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
对于本申请所提供的设备的介绍请参照上述方法实施例,本申请在此不做赘述。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时可实现如下的步骤:
创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;定位磁浮列车的实时坐标;当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器 (Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
对于本申请所提供的计算机可读存储介质的介绍请参照上述方法实施例,本申请在此不做赘述。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置、设备以及计算机可读存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本申请所提供的磁浮列车的控制方法、装置、设备以及计算机可读存储介质进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围。

Claims (10)

  1. 一种磁浮列车的控制方法,其特征在于,包括:
    创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
    定位磁浮列车的实时坐标;
    当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
    以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
  2. 根据权利要求1所述的磁浮列车的控制方法,其特征在于,所述创建轨道标定信息包括:
    根据磁浮列车运行线路的间隙数据识别轨缝,并对所述轨缝编号;
    根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值;
    定位所述磁浮列车的所述位置坐标,并将所述位置坐标与所述轨缝编号相对应。
  3. 根据权利要求2所述的磁浮列车的控制方法,其特征在于,所述根据磁浮列车运行线路的间隙数据识别轨缝包括:
    若预设时长内悬浮传感器各探头测量的间隙数据均超出预设值,则确定所述悬浮传感器所在位置处为轨缝。
  4. 根据权利要求2所述的磁浮列车的控制方法,其特征在于,所述根据所述轨缝处的所述间隙数据,计算得到所述轨缝编号对应的所述间隙值包括:
    综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值。
  5. 根据权利要求4所述的磁浮列车的控制方法,其特征在于,所述综合分析悬浮传感器的各个探头测量的间隙数据,得到所述轨缝编号对应的间隙值包括:
    将各所述探头测量的所述间隙数据分为两组,并选取每组中的最小值;
    计算选取的所述最小值的均值,得到所述轨缝编号对应的所述间隙值。
  6. 根据权利要求1所述的磁浮列车的控制方法,其特征在于,还包括:
    根据所述轨缝编号、所述间隙值以及所述位置坐标,绘制轨道标定图。
  7. 根据权利要求1所述的磁浮列车的控制方法,其特征在于,还包括:
    当所述轨道标定信息中不存在与所述磁浮列车的实时坐标一致的所述位置坐标时,以悬浮传感器采集的实时间隙值作为所述额定间隙值进行调参。
  8. 一种磁浮列车的控制装置,其特征在于,包括:
    创建模块,用于创建轨道标定信息;所述轨道标定信息包括轨缝编号、所述轨缝编号对应的位置坐标以及间隙值;
    定位模块,用于定位磁浮列车的实时坐标;
    识别模块,用于当所述轨道标定信息中存在与所述磁浮列车的实时坐标一致的所述位置坐标时,识别所述位置坐标对应的所述轨缝编号;
    调参模块,用于以所述轨缝编号对应的所述间隙值作为额定间隙值进行调参。
  9. 一种磁浮列车的控制设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至7任一项所述的磁浮列车的控制方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的磁浮列车的控制方法的步骤。
PCT/CN2022/134172 2022-10-27 2022-11-24 一种磁浮列车的控制方法及相关装置 WO2024087289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211325437.3A CN115648960A (zh) 2022-10-27 2022-10-27 一种磁浮列车的控制方法及相关装置
CN202211325437.3 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024087289A1 true WO2024087289A1 (zh) 2024-05-02

Family

ID=84992881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134172 WO2024087289A1 (zh) 2022-10-27 2022-11-24 一种磁浮列车的控制方法及相关装置

Country Status (2)

Country Link
CN (1) CN115648960A (zh)
WO (1) WO2024087289A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848055B1 (ko) * 2007-03-28 2008-07-23 현대로템 주식회사 자기부상열차의 궤도 이음매에서의 공극 유지 방법
CN106080658A (zh) * 2016-07-13 2016-11-09 同济大学 一种基于四传感器的中低速磁浮轨道不平顺检测方法
CN109064448A (zh) * 2018-07-04 2018-12-21 西南交通大学 中低速磁浮f轨轨缝检测方法
CN110281779A (zh) * 2019-06-20 2019-09-27 中车城市交通有限公司 一种轨道自适应磁浮控制系统及方法
CN110395118A (zh) * 2019-08-14 2019-11-01 湖南磁浮技术研究中心有限公司 一种磁浮列车过轨道接缝处错台识别方法及悬浮控制策略
CN111267628A (zh) * 2020-02-12 2020-06-12 中车株洲电力机车有限公司 一种磁浮列车悬浮控制方法
CN114043879A (zh) * 2022-01-13 2022-02-15 西南交通大学 基于图像处理的中低速磁悬浮列车过轨道接缝控制系统
CN115027279A (zh) * 2022-06-22 2022-09-09 湖南凌翔磁浮科技有限责任公司 磁浮列车过轨道接缝的悬浮控制方法、装置和计算机设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848055B1 (ko) * 2007-03-28 2008-07-23 현대로템 주식회사 자기부상열차의 궤도 이음매에서의 공극 유지 방법
CN106080658A (zh) * 2016-07-13 2016-11-09 同济大学 一种基于四传感器的中低速磁浮轨道不平顺检测方法
CN109064448A (zh) * 2018-07-04 2018-12-21 西南交通大学 中低速磁浮f轨轨缝检测方法
CN110281779A (zh) * 2019-06-20 2019-09-27 中车城市交通有限公司 一种轨道自适应磁浮控制系统及方法
CN110395118A (zh) * 2019-08-14 2019-11-01 湖南磁浮技术研究中心有限公司 一种磁浮列车过轨道接缝处错台识别方法及悬浮控制策略
CN111267628A (zh) * 2020-02-12 2020-06-12 中车株洲电力机车有限公司 一种磁浮列车悬浮控制方法
CN114043879A (zh) * 2022-01-13 2022-02-15 西南交通大学 基于图像处理的中低速磁悬浮列车过轨道接缝控制系统
CN115027279A (zh) * 2022-06-22 2022-09-09 湖南凌翔磁浮科技有限责任公司 磁浮列车过轨道接缝的悬浮控制方法、装置和计算机设备

Also Published As

Publication number Publication date
CN115648960A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
EP3699052A1 (en) Method and device for eliminating steady-state lateral deviation and storage medium
JP4914785B2 (ja) 車両走行動揺/騒音解析システム、車両走行動揺/騒音解析方法および車両走行騒音解析方法
JP2014044096A (ja) 軌道位置データ付与システム及び軌道位置データ付与方法
CN106809247A (zh) 一种城轨车辆车载自动轨道检测装置
JP2009210437A (ja) Pq測定処理装置及びpq測定処理プログラム
CN105835913A (zh) 一种重载列车平稳操纵优化系统及方法
US20230322279A1 (en) Track condition monitoring device, track condition monitoring system and track condition monitoring method
WO2024087289A1 (zh) 一种磁浮列车的控制方法及相关装置
KR20120134149A (ko) 전기 철도 보수용 차량 위치 측정 장치
JP6245466B2 (ja) 車輪偏摩耗度合い判定システム、車輪偏摩耗度合い判定方法およびプログラム
JP3238012B2 (ja) 軌道形状データ処理方法
JP4436188B2 (ja) 鉄道車輪踏面の異状検出方法及びその装置
WO2020129423A1 (ja) 位置検出装置及び方法
JP3983165B2 (ja) 車輪踏面の損傷状態検出方法及び装置
CN217155460U (zh) 一种轨道几何病害识别装置
KR100733996B1 (ko) 철도차량용 차륜/레일 접촉위치 측정방법 및 그 장치
CN104271428A (zh) 用于调查轮轨接触的方法
CN113830132B (zh) 轨道板上拱的检测方法和装置
JP2003329431A (ja) トロリ線摩耗状態解析装置
JP2008120258A (ja) 車輪踏面状態の検知システム
CN113805106A (zh) 一种轨道交通列车位置与变压器直流偏磁关联分析方法
CN114778152A (zh) 一种自适应动态调整列车脱轨振动阈值的方法及系统
JP5113405B2 (ja) 移動体情報解析装置および移動体情報解析方法
JPH06116903A (ja) 軌道状態の確認方法
JP5388390B2 (ja) Pq測定処理装置及びpq測定処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963268

Country of ref document: EP

Kind code of ref document: A1