WO2020129423A1 - 位置検出装置及び方法 - Google Patents

位置検出装置及び方法 Download PDF

Info

Publication number
WO2020129423A1
WO2020129423A1 PCT/JP2019/042702 JP2019042702W WO2020129423A1 WO 2020129423 A1 WO2020129423 A1 WO 2020129423A1 JP 2019042702 W JP2019042702 W JP 2019042702W WO 2020129423 A1 WO2020129423 A1 WO 2020129423A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
acceleration
inclination
vehicle
yaw
Prior art date
Application number
PCT/JP2019/042702
Other languages
English (en)
French (fr)
Inventor
伸一郎 石川
直 高橋
高橋 智行
直也 家重
貢記 淵上
康介 大西
柴田 直樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2020561195A priority Critical patent/JP7089063B2/ja
Publication of WO2020129423A1 publication Critical patent/WO2020129423A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains

Definitions

  • the present invention relates to a position detection device and method, and is suitable for application to, for example, a vehicle control device mounted on a railway vehicle.
  • the vehicle control system installed in a railway vehicle needs to identify the current position of the vehicle in order to control the drive device and security device of the vehicle and to provide appropriate information to the crew, passengers, and control.
  • the ATO (Automatic Train Operation) system which is being introduced for the purpose of improving stop accuracy at stations where platform doors are installed and improving driving efficiency, can accurately identify the position of the vehicle. is important.
  • a position detection technology for detecting the position of such a railroad vehicle conventionally, an absolute position of the railroad vehicle is detected using a grounding element or a ballis installed on the ground, and the traveling distance from the position is measured by a speed generator or a millimeter.
  • a method of calculating using a wave sensor or the like is generally used, but this method has a problem that the cost required for installation and maintenance of the ground element or ballis becomes a burden on the operator.
  • Patent Document 1 discloses a method for acquiring the position of a rail vehicle.
  • Patent Document 2 a railway vehicle is stopped by detecting the acceleration of the railway vehicle by a three-axis acceleration sensor installed in the vehicle and comparing the detected acceleration with the acceleration registered in the database. There is disclosed a method of identifying the.
  • Patent Document 3 discloses a method for measuring the position or size of a subject based on an image pickup means, a traveling distance detection means, a vertical position detection means, an inclination angle detection means, etc. installed on a bogie of a railway vehicle. ..
  • the applicable target is limited to the railway vehicle of the current collecting system that collects the driving power by the pantograph, and therefore the third rail system or the fourth rail system is collected.
  • a power source such as an internal combustion engine or a battery.
  • Patent Document 2 is a technique limited to only the identification of the station where the railway vehicle is stopped, and there is a problem that the position detection and identification of the railway vehicle running in an arbitrary section cannot be performed. is there.
  • Patent Document 3 since an image pickup unit and an image pickup position detection unit are required for detecting the position of the subject, the configuration of the entire apparatus for performing the position detection becomes large and complicated, and installation and maintenance are performed. There is a problem that the cost required for it becomes high.
  • the present invention has been made in consideration of the above points, and can be applied to various types of railway vehicles, and a position detecting device that can detect the train position with a simple configuration while reducing the installation and maintenance costs of the entire system, and It is intended to propose a method.
  • a position detection device for detecting the position of a moving body traveling on a predetermined track in a predetermined pattern or a position on the track where the moving body is located.
  • At least one of the inclination and acceleration in the roll direction and the yaw direction of the moving body at each point in each curved section of the track, and the inclination and acceleration in the pitch direction of the moving body at each point in each gradient section of the track At least one of a tilt and an acceleration in the roll direction and the yaw direction of the moving body traveling on the track in the predetermined pattern, and an inclination and an acceleration in the pitch direction.
  • a measuring unit that measures, and an inclination and an acceleration of the moving body in the roll direction and the yaw direction, which are measured by the measuring unit, at respective points of the curved sections of the trajectory stored in the first storage device.
  • the inclination and acceleration of the moving body in the pitch direction measured by the measuring unit are compared with the inclination and the acceleration of the moving body in the roll direction and the yaw direction, respectively.
  • the position of the moving body or the position on the orbit where the moving body is located by comparing with the inclination and the acceleration in the pitch direction of the moving body at each point of each gradient section of the trajectory stored in
  • a moving body control unit for detecting
  • position detection performed by a position detection device that detects a position of a moving body traveling on a predetermined track in a predetermined pattern or a position on the track where the moving body is located.
  • the position detecting device is configured such that the roll direction and yaw direction inclination and acceleration of the moving body at each point of each curved section of the track, and the moving body at each point of each gradient section of the track.
  • a tilt and acceleration in the roll direction and the yaw direction of the moving body that has a first storage device that stores at least one of a pitch direction tilt and an acceleration, and that travels on the track in the predetermined pattern, A first step of measuring at least one of the pitch direction inclination and acceleration, and the measured inclination and acceleration of the moving body in the roll direction and the yaw direction stored in the first storage device.
  • the inclination and acceleration of the moving body at each point of each of the curved sections of the track are compared with the inclination and acceleration of the moving body in the roll direction and the yaw direction, respectively, or By comparing the inclination and the acceleration in the pitch direction of the moving body at each point of each gradient section of the trajectory stored in one storage device, the position of the moving body or the position where the moving body is located.
  • the second step of detecting the position on the orbit is provided.
  • a position detection device and method that can be applied to various forms of moving bodies and can detect the position of a moving body with a simple configuration while reducing the installation and maintenance costs of the entire system for position detection are provided. Can be realized.
  • FIG. 3 is a block diagram provided for explaining a schematic configuration of a vehicle control system according to first and second embodiments. It is a block diagram which shows the hardware constitutions of a vehicle control apparatus.
  • (A) is a conceptual diagram for explaining the principle of the present invention
  • (B) is a graph for explaining the principle of the present invention.
  • (A) is a conceptual diagram for explaining the principle of the present invention
  • (B) is a graph for explaining the principle of the present invention. It is a graph with which the method of detecting the tip position of a train based on the measurement result from each measurement part is explained.
  • (A) is a chart showing a schematic structure of a curve section database
  • (B) is a chart showing a schematic structure of a gradient section database.
  • FIG. 6 is a waveform chart provided for explaining an example of maintenance information stored in a storage device by the vehicle control device. It is a block diagram which shows the logical structure of the vehicle control apparatus by 1st Embodiment. It is a flow chart which shows a processing procedure of position detection processing. It is a block diagram which shows the logical structure of the vehicle control apparatus by 2nd Embodiment.
  • reference numeral 1 shows the overall configuration of a vehicle control system according to this embodiment.
  • This vehicle control system 1 is mounted on any one of the vehicles 3 and a measuring unit 4 (4A to 4C) mounted on each railroad vehicle (hereinafter, simply referred to as a vehicle) 3 constituting a train 2.
  • Each measuring unit 4 (4A to 4C) is configured to include, for example, a triaxial acceleration sensor, and is mounted using an existing technique such as inertial navigation based on the triaxial acceleration output from the triaxial acceleration sensor.
  • the calculated tilt and acceleration of the vehicle 3 in the roll direction, the yaw direction, and the pitch direction are respectively calculated, and the calculated results are transmitted to the vehicle control device 10 as measurement values via the communication line 7 or wirelessly.
  • the train car 5 is a communication device having a function of communicating with a plurality of ground elements or varis (not shown) installed along a track (rail) on which the train 2 travels and acquiring position information from these ground elements or varis. ..
  • the car carrier 5 transmits the position information acquired by such communication to the vehicle control device 10 via the communication line 7 or wirelessly.
  • the GPS receiver 6 is a receiver that receives radio waves transmitted from GPS satellites and measures the position of the train.
  • the GPS receiver 6 transmits the measured position of the train to the vehicle control device 10.
  • the vehicle control device 10 determines the inclination and the acceleration in the roll direction, the yaw direction, and the pitch direction of each vehicle, which are respectively transmitted from each measurement unit 4, and the position information transmitted from each of the car top 5 and the GPS receiver 6.
  • the current position of the own train is detected based on the detected result, and the on-vehicle devices such as the driving device 11, the security device 12 and the information device 13 are controlled based on the detection result, or when the own train is running to be used for maintenance.
  • the storage device 14 has a function of storing various acquired information (hereinafter referred to as maintenance information).
  • the vehicle control device 10 includes information processing resources such as a CPU (Central Processing Unit) 20, a memory 21, and a storage device 22.
  • the CPU 20 is a processor that controls the operation of the entire vehicle control device 10.
  • the memory 21 is composed of, for example, a volatile semiconductor memory and is used as a work memory of the CPU 20.
  • a control program 23 and a calculation program 24, which will be described later, are stored and held in this memory 21.
  • the storage device 22 is composed of a large-capacity non-volatile storage device such as a hard disk device or SSD (Solid State Drive), and is used for holding various information for a long time. Both the curve section database 25 and the gradient section database 26, which will be described later, are both stored and held in the storage device 22.
  • SSD Solid State Drive
  • the drive device 11 is a device that drives and controls a motor, a brake device, and the like of a power source (not shown), and operates the motor so as to accelerate or coast the own train based on control information provided from the vehicle control device 10, or ,
  • the brake device is operated so as to decelerate or stop the own train based on the control information.
  • the security device 12 is composed of an automatic train stop device, an automatic train control device and the like, and performs a process of calculating a brake pattern based on control information given from the vehicle control device 10 and a process of operating the brake device.
  • the information device 13 is composed of, for example, a display device that displays necessary information on a monitor screen in a driver's cab or a passenger compartment, and a sound source device that outputs required sound from a speaker installed in the driver's cab or a passenger cabin. It The information device 13 provides the driver with necessary information regarding the stop station via the monitor screen or the speaker when the stop station is approached, or the driver based on the control information given from the vehicle control device 10. Provide necessary information such as guidance to passengers in the cabin.
  • the storage device 14 is composed of, for example, a large-capacity storage device such as a hard disk device or an SSD, and maintenance information used for maintenance of the ground-side equipment and the vehicle acquired when the train runs is used as the vehicle control device. Stored by 10.
  • each threshold value SH of inclination in the roll direction and yaw direction and each threshold value SH of acceleration do not have to be the same value.
  • the inclination and acceleration of each vehicle 3 in the roll direction and the yaw direction have values according to the radius of curvature of the curved section in which the vehicle 3 is traveling and the traveling speed of the train 2 at that time.
  • the inclination and the acceleration in the pitch direction of the vehicle 3 at this time are equal to or less than the predetermined threshold values SH that are set in advance for the inclination and the acceleration in the pitch direction in both the straight section and the curved section.
  • the vehicle 3 It is possible to specify the curved section in which the vehicle is traveling and the point (vehicle position) where the vehicle 3 is located in the curved section with a certain degree of accuracy.
  • the pitch and inclination of each vehicle 3 in the pitch direction are constant threshold values SH (each of the inclination and acceleration in the pitch direction).
  • the threshold value SH does not have to be the same value) or less, but when the train 2 is traveling in a gradient section, the inclination and acceleration in the pitch direction of each vehicle 3 are equal to the inclination angle of the traveling gradient section. , And a value corresponding to the traveling speed of the train 2 at that time.
  • the inclination and the acceleration in the roll direction and the yaw direction of each vehicle 3 at this time are equal to or less than a predetermined threshold value SH which is preset for the inclination and the acceleration in the roll direction and the yaw direction in the horizontal section and the gradient section, respectively.
  • the inclination and the acceleration in the pitch direction of the vehicle 3 at each of a plurality of points in each gradient section are measured and recorded in advance, and the measuring unit 4 is operated while the vehicle 3 is traveling.
  • the measuring unit 4 is operated while the vehicle 3 is traveling.
  • the position of the train 2 can be specified based on the position of the vehicle 3 in the curved section or the slope section acquired as described above. For example, as shown in FIG. 5, when the tip of the leading vehicle 3 of the train 2 is set to the position of the train 2, the above-described procedure is performed based on the measurement value of the measuring unit 4 (4A) mounted on the leading vehicle 3. When the vehicle position (position of the leading vehicle 3) is obtained by adding the distance ⁇ doff from the tip of the leading vehicle 3 to the measuring unit 4 (4A) mounted on the leading vehicle 3, to the obtained vehicle position.
  • the position of the train 2 can be specified by.
  • the calculated vehicle position is set to the calculated vehicle position.
  • the train 2 by adding the distance ⁇ d1 from the measuring unit 4 (4A) mounted on the leading vehicle 3 to the measuring unit 4 (4B) mounted on the second vehicle 3 and the above-mentioned distance ⁇ doff. The position of can be specified.
  • the distance ⁇ d1 from the measuring unit 4 (4A) mounted on the leading vehicle 3 to the measuring unit 4 (4B) mounted on the second vehicle 3 with respect to the determined vehicle position, and The position of the train 2 can be specified by adding the distance ⁇ d2 to the measuring unit 4 (4C) mounted on the vehicle of the mounted measuring unit 4 (4C) and the above-mentioned distance ⁇ doff.
  • the vehicle control system 1 is present within the traveling range of the train 2 on the assumption that the train 2 travels in each station section in a predetermined pattern predetermined for the station section.
  • 6A in which the inclination and the acceleration of the vehicle 3 in the roll direction and the yaw direction at the point are measured in advance at a plurality of points in each curved section, and are recorded in association with the position of the point (distance from the reference position).
  • a first database 25 (hereinafter referred to as a curve section database) 25 is stored in the storage device 22 (FIG. 2) of the vehicle control device 10.
  • a second database (hereinafter referred to as a gradient section database) 26 as shown in FIG. 6B, in which the inclination and the acceleration in the pitch direction are measured in advance and recorded in association with the position of the point, is also stored. Has been done.
  • the vehicle control device 10 acquires the vehicle position by the GPS receiver 6 (FIG. 1) while the train 2 is running, or when the position information can be acquired from the ground element or the ballis.
  • the train position is calculated based on the current vehicle position and the current vehicle position calculated based on the traveling distance from the current vehicle position acquired using a millimeter wave sensor or speed generator (not shown), and based on the calculated train position.
  • the control information to be transmitted to the drive device 11, the security device 12, and/or the information device 13 is generated. Further, the vehicle control device 10 transmits the control information thus generated to the corresponding drive device 11, the security device 12 and/or the information device 13, respectively, so that the drive device 11, the security device 12 and/or the information device 13 are transmitted. It controls the operation of the device 13.
  • the vehicle control device 10 responds to the respective measurement units 4 respectively.
  • the roll of the vehicle 3 (lead vehicle 3) transmitted from the measurement unit 4 (4A) mounted on the lead vehicle 3
  • the pitch direction it is determined whether the vehicle 3 is currently traveling in a curved section or a slope section.
  • the vehicle control apparatus 10 determines the roll direction and yaw direction inclinations and accelerations of the vehicle 3 in the curved section database 25 (see FIG. )), the slope and acceleration in the roll direction and yaw direction at each point of each curve section are compared, and the point at which the slope and acceleration in the roll direction and yaw direction are closest is the vehicle 3 at that time. And the position of the train 2 is detected based on the specified vehicle position.
  • the vehicle control device 10 determines that the vehicle 3 is traveling in the gradient section
  • the inclination and acceleration in the pitch direction of the vehicle 3 are stored in the gradient section database 26 (FIG. 6B).
  • the inclination and acceleration in the pitch direction at each point of each registered gradient section are compared with each other, and the point having the closest value of the inclination and acceleration in the pitch direction is specified as the vehicle position of the vehicle 3 at that time.
  • the position of the train 2 is detected based on the vehicle position.
  • the vehicle control device 10 has an error between the train position detected as described above and the current position of the train 2 obtained using a millimeter wave sensor, a speed generator, or the like, which is larger than a preset threshold value.
  • the current position of the train 2 obtained by using a millimeter wave sensor, a speed generator or the like is replaced with the current position of the train 2 detected as described above for correction.
  • the vehicle control device 10 respectively generates control information to be transmitted to the drive device 11, the security device 12, and/or the information device 13 based on the current position of the train 2 thus detected.
  • the maintenance information collection function From the inclination and acceleration in the roll direction, yaw direction, and pitch direction of the corresponding vehicle 3, which are respectively transmitted from the measurement unit 4 mounted on each vehicle 3 of the train 2, and from the immediately preceding point of each vehicle calculated based on these As shown in FIG. 7, when the train 2 is traveling at a constant speed, the difference in height of the trains is the time difference according to the distance between the measurement units 4 in order from the leading vehicle 3 and the traveling speed of the train 2. The same value is sequentially obtained with.
  • the measurement unit 4 (4A) mounted on the leading vehicle 3 When the next vehicle 3 (the second vehicle 3 from the beginning) and the value such as the inclination and the acceleration in the roll direction, the yaw direction, and the pitch direction of the leading vehicle 3 and the height difference which are output, are passed through the point.
  • the tilt and acceleration in the roll direction, the yaw direction, and the pitch direction of the vehicle 3 output from the measurement unit 4 (4B) mounted on the vehicle 3 and the values such as the height difference are the same, and the time difference ⁇ t1 is , The traveling speed of the train 2 and the distance between the leading vehicle 3 and each measuring unit 4 (4A, 4B) mounted on the second vehicle from the beginning.
  • the inclination and the acceleration in the roll direction, the yaw direction, and the pitch direction of the vehicle 3 output from the measurement unit 4 (4C) mounted on the vehicle 3
  • values such as the height difference are output from the measurement unit 4 (4B) mounted on the second vehicle 3 from the head when the second vehicle 3 from the beginning passes the point, and the roll direction and yaw direction of the vehicle 3 are also output.
  • the values of inclination and acceleration in the pitch direction, height difference, and the like, and the time difference ⁇ t2 is the traveling speed of the train 2 and the measurements mounted on the second car 3 and the last car 3 from the beginning, respectively. It depends on the distance between the parts 4 (4B, 4C).
  • each vehicle 3 has a time difference ( ⁇ t1, ⁇ t2, etc.) depending on the traveling speed of the train 2 and the distance between the measurement units 4 mounted on the adjacent vehicles 3, respectively, in order from the first vehicle 3.
  • the values of the roll direction, yaw direction, pitch direction inclination and acceleration of the corresponding vehicle 3, which are output from the measurement unit 4 mounted on each vehicle 3, and the height difference are calculated in order.
  • each measuring unit 4 is operating normally, the same value should be obtained. To put it the other way around, it can be determined that there is a possibility that a failure has occurred in the measurement unit 4 that does not repeatedly obtain the same value as the other measurement units 4.
  • the vehicle control device 10 provides the vehicle control device 10 with the roll direction and yaw of the vehicle 3 given from the measurement unit 4 of the vehicle 3 at the timing when each vehicle 3 passes through the same point.
  • the inclination and the acceleration in the direction and the pitch direction are sequentially stored in the storage device 14 (FIG. 1) as the above-mentioned maintenance information.
  • the vehicle control device 10 is provided with a control unit 30 and a calculation unit 31, as shown in FIG. ing.
  • the control unit 30 is a functional unit embodied by the CPU 20 (FIG. 2) executing the control program 23 (FIG. 2) stored in the memory 21 (FIG. 2).
  • the inclination and acceleration in the roll direction, yaw direction, and pitch direction of the vehicle 3 to be transferred are transferred to the calculation unit 31, or necessary information is read from the curve section database 25 and the slope section database 26 when necessary and transferred to the calculation unit 31.
  • control unit 30 detects the train position detected by the train car 5, the GPS receiver 6, or the calculation unit 31 as described later, and the movement from the train position obtained by using a millimeter wave sensor, a speed generator, or the like (not shown).
  • the current position of the own train is sequentially calculated based on the distance, and the control information to be transmitted to the drive device 11, the security device 12, and/or the information device 13 is generated based on the calculated current position of the own train.
  • control unit 30 associates the measured values of the inclination and the acceleration in the roll direction, the yaw direction, and the pitch direction of the vehicle 3 given from the measurement unit 4 of the vehicle 3 at the timing when each vehicle 3 passes through the same point. And is stored in the storage device 14 as maintenance information.
  • the arithmetic unit 31 is a functional unit realized by the CPU 20 executing the arithmetic program 24 (FIG. 2) stored in the memory 21.
  • the calculation unit 31 receives the inclination and acceleration in the roll direction, yaw direction, and pitch direction of the corresponding vehicle 3 provided from each measurement unit 4 via the control unit 30, respectively, and the curve section database 25 provided from the control unit 30. And the inclination and acceleration in the roll direction, yaw direction and/or pitch direction of each point of the curve section and the slope section read from the slope section database 26, respectively, and identify the current position of the own train based on the comparison result. To do. Then, the calculation unit 31 notifies the control unit 30 of the current position of the identified own train.
  • FIG. 9 is a process (hereinafter, referred to as a process periodically executed by the vehicle control device 10 regarding the position detection function according to the present embodiment as described above). This is called a position detection process).
  • the GPS receiver 6 controls the GPS receiver 6 based on the position information transmitted from the GPS receiver 6 by the control unit 30 of the vehicle control device 10. It is determined whether or not the current position of can be measured (S1). When the control unit 30 obtains a positive result in this determination, it generates the control information to be transmitted to the drive device 11, the security device 12, and/or the information device 13 based on the position information given from the GPS receiver 6. The position is determined (S2), and then this position detection process ends.
  • the car top 5 can acquire the position information from the ground wire or the ballis after the end of the previous position detection process until the present. It is determined whether or not (S3).
  • the control unit 30 determines to generate control information to be transmitted to the drive device 11, the security device 12, and/or the information device 13 based on the position information acquired from the ground element or ballis. (S4), and thereafter, this position detection processing ends.
  • the control unit 30 transmits from the measurement unit 4 mounted on the specific vehicle 3 (for example, the leading vehicle 3 and hereinafter referred to as the specific vehicle 3).
  • the specific vehicle 3 for example, the leading vehicle 3 and hereinafter referred to as the specific vehicle 3.
  • some or all of the inclinations and accelerations in the roll direction and yaw direction are preset for the inclinations and accelerations in that direction, respectively. It is determined whether or not the threshold is equal to or more than the threshold (S5).
  • obtaining a positive result in this determination means that the specific vehicle 3 is currently likely to be traveling on a curved section.
  • the control unit 30 controls each point in each curve section before and after the current position of the specific vehicle 3 detected by using a millimeter wave sensor, a speed generator or the like (not shown).
  • the inclination and the acceleration of the vehicle 3 in the roll direction and the yaw direction are read from the curve section database 25, and these pieces of information are transferred to the calculation unit 31.
  • the calculation unit 31 receives the current inclination and acceleration in the roll direction and yaw direction of the specific vehicle 3 given from the measuring unit 4 mounted on the specific vehicle 3 at that time via the control unit 30, and As described above, by sequentially comparing the inclination and the acceleration in the roll direction and the yaw direction of the vehicle 3 at each point in each curve section read from the curve section database 25, which is given by the control unit 30, the specific vehicle
  • the current position of 3 (more precisely, the current position of the measuring unit 4 mounted on the specific vehicle 3) is specified (S6).
  • the calculation unit 31 determines the roll direction and yaw direction inclination and acceleration of the vehicle 3 at each point in each curve section read from the curve section database 25, and the specific vehicle 3
  • the Euclidean distance to the current inclination and acceleration in the roll direction and yaw direction of the specific vehicle 3 given from the mounted measuring unit 4 via the control unit 30 is calculated, and the point having the smallest Euclidean distance is specified. It is specified as the current position of the measurement unit 4 mounted on the vehicle 3.
  • the calculation unit 31 detects the position of the train 2 by adding the distance from the measurement unit 4 to the tip position of the leading vehicle 3 to the current position of the measurement unit 4 of the specified specific vehicle 3. Then, the calculation unit 31 notifies the control unit 30 of the specified current position of the train 2.
  • the Euclidean distance is minimized without specifying the current position of the measurement unit 4 of the specific vehicle 3.
  • the point (position on the orbit) may be registered in the storage device 14 via the control unit 30. If the minimum Euclidean distance is greater than the preset threshold value, it is considered that one of the causes is that the trajectory is deformed, and so on. It can be used as business information.
  • step S5 when the control unit 30 obtains a negative result in the determination of step S5, the roll direction, yaw direction, and pitch direction inclination and acceleration of the specific vehicle 3 transmitted from the measurement unit 4 mounted on the specific vehicle 3. Of these, it is determined whether or not a part or all of the pitch direction inclination and the acceleration are equal to or more than the preset threshold values with respect to the pitch direction inclination and the acceleration, respectively (S7).
  • control unit 30 When the control unit 30 obtains a negative result in this determination, it ends this position detection process. Therefore, in this case, the position detection process ends without identifying the current position of the own train.
  • step S7 obtaining a positive result in the determination in step S7 means that the specific vehicle 3 is currently highly likely to be traveling in a slope section.
  • the control unit 30 controls each point in each of the plurality of gradient sections before and after the current position of the specific vehicle 3 detected using a millimeter wave sensor or a speed generator (not shown).
  • the inclination and acceleration of the vehicle in the pitch direction are read from the gradient section database 26, and these pieces of information are transferred to the calculation unit 31.
  • the calculation unit 31 controls the current inclination and acceleration in the pitch direction of the specific vehicle 3 given from the measuring unit 4 mounted on the specific vehicle 3 at that time via the control unit 30, and controls as described above.
  • the current position of the specific vehicle 3 (accurately Specifies the current position of the measuring unit 4 mounted on the specific vehicle 3 (S8).
  • step S8 the calculation unit 31 is mounted on the specific vehicle 3 as well as the inclination and acceleration in the pitch direction of the vehicle 3 at each point in each gradient section read from the gradient section database 26.
  • the Euclidean distance with respect to the current inclination and acceleration in the pitch direction of the specific vehicle 3 given from the measurement unit 4 via the control unit 30 is calculated, and the point having the smallest Euclidean distance is mounted on the specific vehicle 3.
  • the current position of the measuring unit 4 is specified.
  • the calculation unit 31 detects the position of the train 2 by adding the distance from the measurement unit 4 to the tip position of the leading vehicle 3 to the current position of the measurement unit 4 of the specified specific vehicle 3. Then, the calculation unit 31 notifies the control unit 30 of the specified current position of the train 2.
  • the Euclidean distance is minimized without specifying the current position of the measurement unit 4 of the specific vehicle 3.
  • the point (position on the orbit) may be registered in the storage device 14 via the control unit 30. If the minimum Euclidean distance is larger than the preset threshold value, there is a possibility that the trajectory is deformed or the like, as in the case described above with respect to step S7.
  • the position of can be used as maintenance information.
  • control unit 30 specifies the current position of the own train, which is always calculated using the millimeter wave sensor or the speed generator as described above, and the arithmetic unit 31 at step S6 or step S8 as described above.
  • the difference between the current position of the train and the current position is calculated, and it is determined whether the difference is less than or equal to a preset threshold value (S9).
  • a preset threshold value S9
  • step S9 determines in step S6 or step S8 the current position of the train that is always calculated using a millimeter wave sensor, a speed generator, or the like.
  • the current position of the specified own train is replaced and corrected (S10). Then, the control unit 30 thereafter ends this position detection processing.
  • the vehicle control system 1 of the present embodiment with respect to the vehicle 3 that uses the third rail system or the fourth rail system as a current collecting system, or the vehicle 3 that internally includes a power source such as an internal combustion engine or a battery.
  • the present position of the train 2 can be appropriately detected even when the vehicle 3 is traveling without requiring the image pickup unit and the image pickup position detection unit.
  • FIG. 10 in which parts corresponding to those in FIG. 8 are assigned the same reference numerals, is a second embodiment applied in place of the logical configuration of the vehicle control device 10 described above with reference to FIG.
  • the logical structure of the vehicle control apparatus 40 by a form is shown.
  • the hardware configuration of the vehicle control device 40 of the present embodiment is the same as that of the vehicle control device 10 of the first embodiment, so description thereof will be omitted here.
  • the vehicle control device 40 of the present embodiment only the position information from the GPS receiver 6 and the car top 5 is given to the control unit 41, and the measurement value from the measurement unit 4 mounted on each vehicle 3 is The point given to the calculation unit 42 and the point that the calculation unit 42 can directly access the curve section database 25 and the slope section database 26 are largely different from the vehicle control device 10 of the first embodiment, and other points. Has the same function as that of the vehicle control device 10 of the first embodiment.
  • the calculation unit 42 determines the roll direction, yaw direction, and pitch direction of the corresponding vehicle 3 transmitted from each measurement unit 4 without passing through the control unit 41.
  • the inclination and the acceleration are directly acquired, and based on the acquired information, the curved section database 25 and the gradient section database 26 are referred to, and the same as the calculation unit 31 (FIG. 8) of the first embodiment.
  • the current position of the train is detected, and the detection result is notified to the control unit 41.
  • control unit 41 generates necessary control information based on the current position of the own train specified by the calculation unit 42, similarly to the control unit 30 of the first embodiment, and corresponds the generated control information.
  • the information is transmitted to the drive device 11, the security device 12, and/or the information device 13, and necessary maintenance information is stored in the storage device 14.
  • the vehicle control device 40 of the present embodiment having the above configuration, it can be applied to various types of railway vehicles as in the case of the first embodiment, and simplifies while reducing the installation and maintenance costs of the entire system. It is possible to realize a vehicle control system capable of detecting the train position with various configurations.
  • the position detection method of the present invention is applied to specify the position of the train 2 , but the present invention is not limited to this.
  • the position detection method of the present invention may be applied to identify a defective position on the orbit.
  • the curve section database 25 and the gradient section database 26 are prepared, but the present invention is not limited to this.
  • the contents of the curve section database 25 and the gradient section database 26 may be combined into one database to provide only one database.
  • each measuring unit 4 includes a triaxial acceleration sensor, and the inclination of the vehicle 3 in the roll direction, the yaw direction, and the pitch direction is based on the output of the triaxial acceleration sensor.
  • the present invention is not limited to this, and each measurement unit 4 is configured by only the three-axis acceleration sensor, and The inclination of the vehicle 3 may be calculated by the control unit 30 or the calculation unit 42 based on the output (that is, part of the function of the measurement unit of the present invention may be assigned to the control unit 30 or the calculation unit 42).
  • the present invention is not limited to this, and a predetermined track may be used. It can also be applied to the position detection of a moving body such as an autonomous vehicle that travels in a predetermined traveling pattern.
  • the present invention is not limited to this, and for example, the height position from the reference point of the vehicle 3 at each point is measured by inertial navigation or the like on the basis of the acceleration in the pitch direction measured by the measurement unit 4, and the slope section is measured.
  • the height position of each vehicle 3 is measured in the same manner while the train 2 is running, and the inclination and acceleration in the pitch direction of the vehicle 3 and the vehicle 3 at that time are registered in the slope section.
  • the current position of the train 2 may be detected based on the height position.
  • the current position of the own train is detected based only on the measurement value given from the measurement unit 4 mounted on the specific vehicle 3.
  • the present invention is not limited to this, and the current position of the own train may be detected based on the measured values given by more measuring units 4.
  • the measurement value given by the measurement unit 4 mounted on another vehicle 3 The current position of the train may be detected based on the.
  • the roll direction and yaw direction inclination and acceleration of the vehicle 3 at each point of each curve section acquired in advance, and the roll of the vehicle 3 measured by the measuring unit 4 The position of the train 2 traveling in the curved section is detected based on the inclination and acceleration in the direction and yaw direction, and the inclination and acceleration in the pitch direction of the vehicle 3 at each point in each gradient section acquired in advance and the measuring unit.
  • the position of the train 2 traveling in the slope section is detected based on the pitch direction inclination and the acceleration of the vehicle 3 measured by 4 is described, but the present invention is not limited to this, and the curve section is not limited thereto.
  • the position of the train 2 may be detected only in at least one of the slope section.
  • the inclinations and accelerations of the vehicle 3 in the roll direction and the yaw direction measured by the measurement unit 4 are stored in the curve section database 25 for each curve section of the trajectory.
  • the inclination and the acceleration in the roll direction and the yaw direction of the vehicle 3 at the respective points are compared with each other, and the inclination and the acceleration in the pitch direction of the vehicle 3 measured by the measurement unit 4 are stored in the gradient section database 26.
  • the present invention is not limited to this.
  • the above-described function of the vehicle control device 10 is provided in the ground-side facility, and the roll of the vehicle 3 measured by the measurement unit 4 is provided.
  • Direction, yaw direction and pitch direction inclination and acceleration are sequentially transferred from the train 2 to the equipment on the ground side, the position of the train 2 at that time in the equipment on the ground side is calculated as described above, and the calculation result is calculated by the train. It may be transferred to the second side. Even in this case, the same effects as those of the first and second embodiments can be obtained.
  • the present invention can be widely applied to a position detection device that detects the position of various moving bodies traveling on a predetermined track in a predetermined pattern or a position on the track where the moving body is located. ..

Abstract

軌道の各曲線区間の各地点における移動体のロール方向及びヨー方向の傾き及び加速度と、軌道の各勾配区間の各地点における移動体のピッチ方向の傾き及び加速度との少なくとも一方が格納された第1の記憶装置を設け、軌道上を所定パターンで走行する移動体のロール方向及びヨー方向の傾き及び加速度と、ピッチ方向の傾き及び加速度との少なくとも一方を計測し、計測結果を、第1の記憶装置に格納された各地点における移動体のロール方向及び前記ヨー方向の傾き及び加速度や、ピッチ方向の傾き及び加速度とそれぞれ比較して移動体の位置又は当該移動体が位置する前記軌道上の位置を検出するようにした。

Description

位置検出装置及び方法
 本発明は位置検出装置及び方法に関し、例えば鉄道車両に搭載される車両制御装置に適用して好適なものである。
 鉄道車両に搭載された車両制御システムでは、自車両の駆動装置及び保安装置の制御や、乗務員、乗客及び管制への適切な情報提供のために自車両の現在位置を特定する必要がある。特に、ホームドアが設置された駅での停止精度の向上や、運転効率の向上を目的として導入が進められているATO(Automatic Train Operation)システムでは、自車両の位置を正確に特定することが重要である。
 加えて、省力化を主な目的として、記録した位置情報を元に鉄道車両そのものや地上側設備のメンテナンスにフィードバックする動きが近年進められており、このためにも車両の位置を正確に把握することが必要である。
 こうした鉄道車両の位置を検出するための位置検出技術としては、従来、地上に設置された地上子又はバリスを用いて鉄道車両の絶対位置を検出し、そこからの走行距離を速度発電機やミリ波センサなどを用いて演算する方法が一般的であるが、この方法によると、地上子又はバリスの設置やメンテナンスに要するコストが事業者にとって負担となる問題があった。
 これに対して、近年、明かり区間についてはGPS(Global Positioning System)を用いて鉄道車両の位置を検出することにより、コストを抑制しながら連続的に鉄道車両の位置を検出する方法が普及しつつある。しかしながら、この方法によると、都市部でのGPS信号の干渉や減衰による影響を考慮する必要があるほか、トンネル区間などの不感区間に対応できないという問題があった。
 そこで、鉄道車両が走行する区間に依存することなく鉄道車両の位置を取得するための方法として、パンタグラフに設けられた加速度センサにより鉄道車両の加速度を検知し、検知した加速度を規定値と比較することにより、鉄道車両の位置を取得する方法が特許文献1に開示されている。
 また特許文献2には、車両に設置された3軸加速度センサにより鉄道車両の加速度を検出し、検出した加速度をデータベースに登録されている加速度と比較することにより、鉄道車両が停止している駅の同定を行う方法が開示されている。
 さらに特許文献3には、鉄道車両の台車に設置した撮像手段、走行距離検出手段、垂直位置検出手段及び傾斜角検出手段などに基づいて被検体の位置又は寸法を測量する方法が開示されている。
特開2008-265421号公報 特開2012-106554号公報 特開平8-178642号公報
 しかしながら、かかる特許文献1に開示された方法によると、適用可能な対象が駆動電力をパンタグラフによって集電する集電方式の鉄道車両に限定されるため、第3軌条方式又は第4軌条方式を集電方式とする鉄道車両や、内燃機関又はバッテリなどの動力源を内部に備える鉄道車両には適用できないという問題がある。
 また特許文献2に開示された技術は、鉄道車両が停止している駅の同定のみに限定された技術であり、任意の区間を走行中の鉄道車両の位置検出及び同定を行い得ない問題がある。
 さらに特許文献3に開示された技術によると、被検体の位置検出に撮像手段や撮像位置検出手段が必要となるため、かかる位置検出を行う装置全体の構成が大型化及び煩雑化し、設置やメンテナンスに要するコストが高くなるという問題がある。
 本発明は以上の点を考慮してなされたもので、種々の形態の鉄道車両に適用でき、システム全体の設置及びメンテナンスコストを低減しながら簡易な構成で列車位置を検出し得る位置検出装置及び方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、予め定められた軌道上を予め定められた所定パターンで走行する移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する位置検出装置において、前記軌道の各曲線区間の各地点における前記移動体のロール方向及びヨー方向の傾き及び加速度と、前記軌道の各勾配区間の各地点における前記移動体のピッチ方向の傾き及び加速度との少なくとも一方が格納された第1の記憶装置と、前記軌道上を前記所定パターンで走行する前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度と、前記ピッチ方向の傾き及び加速度との少なくとも一方を計測する計測部と、前記計測部により計測された前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較し、並びに又は、前記計測部により計測された前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する移動体制御部とを設けるようにした。
 また本発明においては、予め定められた軌道上を予め定められた所定パターンで走行する移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する位置検出装置において実行される位置検出方法であって、前記位置検出装置は、前記軌道の各曲線区間の各地点における前記移動体のロール方向及びヨー方向の傾き及び加速度と、前記軌道の各勾配区間の各地点における前記移動体のピッチ方向の傾き及び加速度との少なくとも一方が格納された第1の記憶装置を有し、前記軌道上を前記所定パターンで走行する前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度と、前記ピッチ方向の傾き及び加速度との少なくとも一方を計測する第1のステップと、計測した前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較し、並びに又は、計測した前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する第2のステップとを設けるようにした。
 本発明によれば、種々の形態の移動体に適用でき、位置検出のためのシステム全体の設置及びメンテナンスコストを低減しながら簡易な構成で移動体の位置を検出し得る位置検出装置及び方法を実現することができる。
第1及び第2の実施の形態による車両制御システムの概略構成の説明に供するブロック図である。 車両制御装置のハードウェア構成を示すブロック図である。 (A)は本発明の原理説明に供する概念図であり、(B)は本発明の原理説明に供するグラフである。 (A)は本発明の原理説明に供する概念図であり、(B)は本発明の原理説明に供するグラフである。 各計測部からの計測結果に基づいて列車の先端位置を検出する方法の説明に供するグラフである。 (A)は曲線区間用データベースの概略構成を示す図表であり、(B)は勾配区間用データベースの概略構成を示す図表である。 車両制御装置が記憶装置に格納するメンテナンス用情報の一例の説明に供する波形図である。 第1の実施の形態による車両制御装置の論理構成を示すブロック図である。 位置検出処理の処理手順を示すフローチャートである。 第2の実施の形態による車両制御装置の論理構成を示すブロック図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
(1-1)本実施の形態による車両制御システムの構成
 図1において、1は全体として本実施の形態による車両制御システムの概略構成を示す。この車両制御システム1は、列車2を構成する各鉄道車両(以下、これらを単に車両と呼ぶ)3にそれぞれ搭載された計測部4(4A~4C)と、いずれかの車両3に搭載された車上子5及びGPS受信機6と、例えば先頭車両3に搭載された車両制御装置10、駆動装置11、保安装置12、情報装置13及び記憶装置14とを備えて構成される。
 各計測部4(4A~4C)は、例えば3軸加速度センサを備えて構成され、3軸加速度センサから出力される3軸方向の加速度に基づいて、慣性航法などの既存の技術を用いて搭載された車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度をそれぞれ算出し、算出結果を計測値として通信線7を介して又は無線により車両制御装置10に送信する。
 車上子5は、列車2が走行する軌道(レール)に沿って複数設置された図示しない地上子やバリスと通信し、これら地上子やバリスから位置情報を取得する機能を有する通信装置である。車上子5は、かかる通信により取得した位置情報を通信線7を介して又は無線により車両制御装置10に送信する。
 GPS受信機6は、GPS衛星から送信される電波を受信し、自列車の位置を測位する受信機である。GPS受信機6は、測位した自列車の位置を車両制御装置10に送信する。
 車両制御装置10は、各計測部4からそれぞれ送信される各車両のロール方向、ヨー方向及びピッチ方向の傾き及び加速度と、車上子5及びGPS受信機6からそれぞれ送信される位置情報とに基づいて自列車の現在位置を検出し、検出結果に基づいて駆動装置11、保安装置12及び情報装置13などの車上機器を制御したり、メンテナンスに利用するために自列車の走行時等に取得した各種情報(以下、これをメンテナンス用情報と呼ぶ)を記憶装置14に格納する機能を有する。
 この車両制御装置10は、図2に示すように、CPU(Central Processing Unit)20、メモリ21及び記憶装置22などの情報処理資源を備えて構成される。CPU20は、車両制御装置10全体の動作制御を司るプロセッサである。またメモリ21は、例えば揮発性の半導体メモリから構成され、CPU20のワークメモリとして利用される。後述する制御プログラム23や演算プログラム24は、このメモリ21に格納されて保持される。
 記憶装置22は、ハードディスク装置やSSD(Solid State Drive)などの大容量の不揮発性の記憶装置から構成され、各種情報を長期間保持するために利用される。後述する曲線区間用データベース25及び勾配区間用データベース26は、いずれもこの記憶装置22に格納されて保持される。
 駆動装置11は、図示しない動力源のモータやブレーキ装置などを駆動制御するデバイスであり、車両制御装置10から与えられる制御情報に基づいて自列車を加速若しくは惰行させるようにモータを動作させ、又は、当該制御情報に基づいて自列車を減速又は停止させるようにブレーキ装置を動作させる。
 保安装置12は、自動列車停止装置及び自動列車制御装置などから構成され、車両制御装置10から与えられる制御情報に基づいてブレーキパターンを演算する処理やブレーキ装置を動作させる処理などを行う。
 また情報装置13は、例えば、運転台や客室内のモニタ画面に必要な情報を表示する表示装置と、運転台や客室に設置されたスピーカから必要な音声を出力する音源装置となどから構成される。情報装置13は、車両制御装置10から与えられた制御情報に基づいて、停車駅に接近した際にかかるモニタ画面やスピーカを介して当該停車駅に関する必要な情報を運転手に提供したり、乗換え案内などの必要な情報を客室内の乗客に提供する。
 記憶装置14は、例えば、ハードディスク装置やSSDなどの大容量の記憶装置から構成され、自列車の走行時などに取得された地上側設備やその車両のメンテナンスに利用するメンテナンス用情報が車両制御装置10により格納される。
(1-2)本実施の形態による位置検出機能及びメンテナンス用情報収集機能
 次に、車両制御装置10に搭載された本実施の形態の位置検出機能及びメンテナンス用情報収集機能について説明する。まず、本実施の形態の位置検出機能について説明する。
 列車2が図3(A)に示すような直線区間及び曲線区間を有する場所を走行する場合について考える。ここでは、直線区間及び曲線区間共に高低差がないものとする。
 この場合、図3(B)に示すように、列車2が直線区間を走行しているときには、各車両3のロール方向及びヨー方向の傾き及び加速度は、これらロール方向及びヨー方向の傾き及び加速度に対してそれぞれ設定された一定の閾値SH(ロール方向及びヨー方向の傾き及び加速度の各閾値SHは同じ値でなくてもよい)以下となるが、列車2が曲線区間を走行しているときには、各車両3のロール方向及びヨー方向の傾き及び加速度は、走行している曲線区間の曲率半径と、そのときの列車2の走行速度とに応じた値となる。一方で、このときの車両3のピッチ方向の傾き及び加速度は、直線区間及び曲線区間共にピッチ方向の傾き及び加速度に対して予めそれぞれ設定された一定の閾値SH以下となる。
 従って、所定パターンで走行する列車2について、各曲線区間の複数地点でその地点における車両3のロール方向及びヨー方向の傾き及び加速度を予めそれぞれ計測して記録しておき、車両3の走行中に計測部4により計測したロール方向及びヨー方向の傾き及び加速度を、上述のように記録しおいた各曲線区間の各地点におけるロール方向及びヨー方向の傾き及び加速度とそれぞれ比較することにより、車両3が走行中の曲線区間や、その曲線区間におけるその車両3が位置する地点(車両位置)をある程度の精度で特定することができる。
 次に、車両が図4(A)に示すような水平区間及び勾配区間を有する場所を走行する場合について考える。ここでは、水平区間及び勾配区間共に直線区間であるものとする。
 この場合、図4(B)に示すように、列車2が水平区間を走行しているときには、その各車両3のピッチ方向の傾き及び加速度は一定の閾値SH(ピッチ方向の傾き及び加速度の各閾値SHは同じ値でなくてもよい)以下となるが、列車2が勾配区間を走行しているときには、各車両3のピッチ方向の傾き及び加速度は、走行している勾配区間の傾斜角と、そのときの列車2の走行速度とに応じた値となる。一方で、このときの各車両3のロール方向及びヨー方向の傾き及び加速度は、水平区間及び勾配区間共にロール方向及びヨー方向の傾き及び加速度に対してそれぞれ予め設定された一定の閾値SH以下となる。
 従って、所定パターンで走行する列車2について、各勾配区間の複数地点でその地点における車両3のピッチ方向の傾き及び加速度を予めそれぞれ計測して記録しておき、車両3の走行中に計測部4により計測したピッチ方向の傾き及び加速度を、上述のように記録しておいた各勾配区間の各地点におけるピッチ方向の傾き及び加速度とそれぞれ比較することにより、車両3が走行中の勾配区間や、その勾配区間におけるその車両3が位置する地点(車両位置)をある程度の精度で特定することができる。
 また上述のようにして取得した曲線区間や勾配区間における車両3の位置に基づいて、列車2の位置を特定することができる。例えば、図5に示すように、列車2の先頭車両3の先端をその列車2の位置とする場合、先頭車両3に搭載された計測部4(4A)の計測値に基づいて上述のようにして車両位置(先頭車両3の位置)を求めた場合、求めた車両位置に、当該先頭車両3の先端から当該先頭車両3に搭載された計測部4(4A)までの距離Δdoffを加算することにより列車2の位置を特定することができる。
 また2番目の車両3に搭載された計測部4(4B)の計測値に基づいて上述のようにして車両位置(2番目の車両3の位置)を求めた場合には、求めた車両位置に対して、先頭車両3に搭載された計測部4(4A)から2番目の車両3に搭載された計測部4(4B)までの距離Δd1と、上述の距離Δdoffとを加算することにより列車2の位置を特定することができる。
 さらに図1の最後尾の車両3に搭載された計測部4(4C)の計測値に基づいて上述のようにして車両位置(図1の最後尾の車両3の位置)を求めた場合には、求めた車両位置に対して、先頭車両3に搭載された計測部4(4A)から2番目の車両3に搭載された計測部4(4B)までの距離Δd1と、2番目の車両3に搭載された計測部4(4C)の車両に搭載された計測部4(4C)までの距離Δd2と、上述の距離Δdoffとを加算することにより列車2の位置を特定することができる。
 以上の原理を踏まえて、本実施の形態の車両制御システム1では、各駅区間を列車2がその駅区間について予め定められた所定パターンで走行することを前提として、列車2の走行範囲内に存在する各曲線区間の複数地点でその地点における車両3のロール方向及びヨー方向の傾き及び加速度を予め計測し、その地点の位置(基準位置からの距離)と対応付けて記録した図6(A)に示すような第1のデータベース(以下、これを曲線区間用データベースと呼ぶ)25が車両制御装置10の記憶装置22(図2)に格納されている。
 また車両制御装置10の記憶装置22には、各駅区間をかかる所定パターンで列車2が走行することを前提として、列車2の走行範囲内に存在する各勾配区間の複数地点でその地点における車両3のピッチ方向の傾き及び加速度を予め計測し、その地点の位置と対応付けて記録した図6(B)に示すような第2のデータベース(以下、これを勾配区間用データベースと呼ぶ)26も格納されている。
 そして車両制御装置10は、列車2の走行時、GPS受信機6(図1)により車両位置を測位できる場合や、地上子やバリスから位置情報を取得できる場合には、そのようにして取得した現在の車両位置や、図示しないミリ波センサや速度発電機などを用いて取得したそこからの走行距離に基づき算出した現在の車両位置に基づいて列車位置を算出し、算出した列車位置に基づいて駆動装置11や保安装置12及び又は情報装置13に送信する制御情報をそれぞれ生成する。また車両制御装置10は、このようにして生成したこれらの制御情報を対応する駆動装置11、保安装置12及び又は情報装置13にそれぞれ送信することにより、これら駆動装置11、保安装置12及び又は情報装置13の動作を制御する。
 これに対して、車両制御装置10は、GPS受信機6により車両位置を測位できず、さらに地上子やバリスから位置情報を取得できない場合には、各計測部4からそれぞれ送信されてくる対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度の計測値のうち、例えば先頭車両3に搭載された計測部4(4A)から送信されてきたその車両3(先頭車両3)のロール方向、ヨー方向及びピッチ方向の加速度に基づいて、現在、当該車両3が曲線区間や勾配区間を走行しているか否かを判定する。
 そして車両制御装置10は、その車両3が曲線区間を走行中であると判定した場合には、その車両3のロール方向及びヨー方向の傾き及び加速度を、曲線区間用データベース25(図6(A))に登録されている各曲線区間の各地点におけるロール方向及びヨー方向の傾き及び加速度とそれぞれ比較し、最もロール方向及びヨー方向の傾き及び加速度の値が近い地点をそのときのその車両3の車両位置として特定すると共に、特定した車両位置に基づいて列車2の位置を検出する。
 また車両制御装置10は、その車両3が勾配区間を走行中であると判定した場合には、その車両3のピッチ方向の傾き及び加速度を、勾配区間用データベース26(図6(B))に登録されている各勾配区間の各地点におけるピッチ方向の傾き及び加速度とそれぞれ比較し、最もピッチ方向の傾き及び加速度の値が近い地点をそのときのその車両3の車両位置として特定すると共に、特定した車両位置に基づいて列車2の位置を検出する。
 さらに車両制御装置10は、上述のようにして検出した列車位置と、ミリ波センサや速度発電機などを用いて求めていたその列車2の現在位置との誤差が予め設定された閾値よりも大きい場合には、ミリ波センサや速度発電機などを用いて求めた列車2の現在位置を、上述のようにして検出したその列車2の現在位置に置き換えるようにして補正する。そして車両制御装置10は、このようにして検出した列車2の現在位置に基づいて駆動装置11や保安装置12及び又は情報装置13に送信する制御情報をそれぞれ生成する。
 次に、本実施の形態によるメンテナンス用情報収集機能について説明する。列車2の各車両3に搭載された計測部4からそれぞれ送信されてきた対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、これらに基づいて算出した各車両の直前地点からの高低差などは、列車2が一定速度で走行している状態では、図7に示すように、先頭車両3から順番に計測部4間の距離と、列車2の走行速度とに応じた時間差をもって同じ値が順次得られる。
 例えば、図1のような3両編成の列車2において、先頭車両3が任意の地点(地点Aや地点Bなど)を通過したときにその先頭車両3に搭載された計測部4(4A)から出力された当該先頭車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、高低差などの値と、次の車両3(先頭から2番目の車両3)がその地点を通過したときにその車両3に搭載された計測部4(4B)から出力された当該車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、高低差などの値とは同じであり、その時間差Δt1は、列車2の走行速度と、先頭車両3及び先頭から2両目に搭載された各計測部4(4A,4B)間の距離とに依存する。
 また、その後、最後尾の車両3がその地点を通過したときにその車両3に搭載された計測部4(4C)から出力された当該車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、高低差などの値も、先頭から2両目の車両3がその地点を通過したときにその車両3に搭載された計測部4(4B)から出力された当該車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、高低差などの値と同じであり、その時間差Δt2は、列車2の走行速度と、先頭から2両目の車両3及び最後尾の車両3にそれぞれ搭載された計測部4(4B,4C)間の距離とに依存する。
 従って、先頭車両3から順番に、列車2の走行速度と、隣接する各車両3にそれぞれ搭載された計測部4間の距離とに応じた時間差(Δt1やΔt2など)をもって、各車両3がそれぞれ同一地点を通過するタイミングで各車両3にそれぞれ搭載された計測部4から出力される対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度や、高低差などの値を順番に算出した場合、各計測部4が正常に作動しているのであれば、すべて同じ値が得られるはずである。逆を言えば、繰り返し他の計測部4と同じ値が得られない計測部4については、障害が発生している可能性があると判断することができる。
 そこで本実施の形態の車両制御システム1の場合、車両制御装置10には、各車両3がそれぞれ同一地点を通過するタイミングでその車両3の計測部4から与えられるその車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度を、上述のメンテナンス用情報として順次記憶装置14(図1)に格納する。
 以上のような本実施の形態の位置検出機能及びメンテナンス用情報収集機能を実現するための手段として、車両制御装置10には、図8に示すように、制御部30及び演算部31が設けられている。
 制御部30は、CPU20(図2)がメモリ21(図2)に格納された制御プログラム23(図2)を実行することにより具現化される機能部であり、各計測部4から与えられる対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度を演算部31に転送したり、必要時に曲線区間用データベース25や勾配区間用データベース26から必要な情報を読み出して演算部31に転送する機能を有する。
 また制御部30は、車上子5やGPS受信機6又は後述のように演算部31により検出された列車位置と、図示しないミリ波センサや速度発電機などを用いて求めたそこからの移動距離とに基づいて自列車の現在位置を逐次算出し、算出した自列車の現在位置に基づいて駆動装置11や保安装置12及び又は情報装置13に送信する制御情報をそれぞれ生成する。
 さらに制御部30は、各車両3がそれぞれ同一地点を通過するタイミングでその車両3の計測部4から与えられた当該車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度の計測値を関連付けてメンテナンス用情報として記憶装置14に格納する。
 一方、演算部31は、CPU20がメモリ21に格納された演算プログラム24(図2)を実行することにより具現化される機能部である。
 演算部31は、各計測部4から制御部30を経由してそれぞれ与えられる対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度を、制御部30から与えられる曲線区間用データベース25や勾配区間用データベース26から読み出された曲線区間や勾配区間の各地点のロール方向、ヨー方向及び又はピッチ方向の傾き及び加速度とそれぞれ比較し、比較結果に基づいて自列車の現在位置を特定する。そして演算部31は、特定した自列車の現在位置を制御部30に通知する。
(1-3)本実施の形態による位置検出機能に関する制御部の処理
 図9は、上述のような本実施の形態による位置検出機能に関して車両制御装置10により定期的に実行される処理(以下、これを位置検出処理と呼ぶ)の流れを示す。
 この場合、この図9に示す位置検出処理が開始されると、まず、車両制御装置10の制御部30がGPS受信機6から送信されてくる位置情報に基づいて、GPS受信機6が自列車の現在位置を測位できたか否かを判定する(S1)。そして制御部30は、この判定で肯定結果を得ると、GPS受信機6から与えられた位置情報に基づいて駆動装置11、保安装置12及び又は情報装置13に送信する制御情報を生成することを決定し(S2)、この後、この位置検出処理を終了する。
 これに対して、制御部30は、ステップS1の判定で否定結果を得ると、車上子5が前回の位置検出処理の終了後から現在までの間に地上子やバリスから位置情報を取得できたか否かを判定する(S3)。そして制御部30は、この判定で肯定結果を得ると、地上子やバリスから取得した位置情報に基づいて駆動装置11、保安装置12及び又は情報装置13に送信する制御情報を生成することを決定し(S4)、この後、この位置検出処理を終了する。
 一方、制御部30は、ステップS3の判定で否定結果を得ると、特定の車両3(例えば、先頭車両3であり、以下、これを特定車両3と呼ぶ)に搭載された計測部4から送信されてきたその特定車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度のうち、ロール方向及びヨー方向の傾き及び加速度の一部又は全部がその方向の傾きや加速度に対してそれぞれ予め設定された閾値以上であるか否かを判定する(S5)。
 ここで、この判定で肯定結果を得ることは、現在、その特定車両3が曲線区間を走行している可能性が高いことを意味する。かくして、このとき制御部30は、図示しないミリ波センサや速度発電機などを用いて検出しているその特定車両3の現在位置の前後にある複数個分ずつの各曲線区間内の各地点における車両3のロール方向及びヨー方向の傾き及び加速度を曲線区間用データベース25から読み出し、これらの情報を演算部31に転送する。
 そして演算部31は、そのときその特定車両3に搭載された計測部4から制御部30を経由して与えられたその特定車両3の現在のロール方向及びヨー方向の傾き及び加速度と、上述のように制御部30から与えられた、曲線区間用データベース25から読み出された各曲線区間内の各地点における車両3のロール方向及びヨー方向の傾き及び加速度とを順次比較することによりその特定車両3の現在位置(正確には特定車両3に搭載された計測部4の現在位置)を特定する(S6)。
 具体的に、演算部31は、このステップS6において、曲線区間用データベース25から読み出された各曲線区間内の各地点における車両3のロール方向及びヨー方向の傾き及び加速度と、特定車両3に搭載された計測部4から制御部30を経由して与えられたその特定車両3の現在のロール方向及びヨー方向の傾き及び加速度とのユークリッド距離を算出し、そのユークリッド距離が最も小さい地点を特定車両3に搭載された計測部4の現在位置として特定する。また演算部31は、特定した特定車両3の計測部4の現在位置に、当該計測部4から先頭車両3の先端位置までの距離を加算するようにして列車2の位置を検出する。そして演算部31は、特定した列車2の現在位置を制御部30に通知する。
 ただし、かかるユークリッド距離に予め閾値を設けておき、算出した最小のユークリッド距離が当該閾値よりも大きい場合には、特定車両3の計測部4の現在位置を特定せずに、かかるユークリッド距離が最小の地点(軌道上の位置)を制御部30を介して記憶装置14に登録するようにしてもよい。このように最小のユークリッド距離が予め設定された閾値よりも大きい場合、軌道が変形している等の不具合が発生していることが原因の1つとして考えられるため、この軌道上の位置をメンテナンス用情報として利用することができる。
 一方、制御部30は、ステップS5の判定で否定結果を得ると、特定車両3に搭載された計測部4から送信されてきたその特定車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度のうち、ピッチ方向の傾き及び加速度の一部又は全部がピッチ方向の傾きや加速度に対してそれぞれ予め設定された閾値以上であるか否かを判定する(S7)。
 そして制御部30は、この判定で否定結果を得ると、この位置検出処理を終了する。従って、この場合には自列車の現在位置が特定されないまま位置検出処理が終了することになる。
 これに対して、ステップS7の判定で肯定結果を得ることは、現在、その特定車両3が勾配区間を走行している可能性が高いことを意味する。かくして、このとき制御部30は、図示しないミリ波センサや速度発電機などを用いて検出しているその特定車両3の現在位置の前後にある複数個分ずつの各勾配区間内の各地点における車両のピッチ方向の傾き及び加速度を勾配区間用データベース26から読み出し、これらの情報を演算部31に転送する。
 そして演算部31は、そのときその特定車両3に搭載された計測部4から制御部30を経由して与えられたその特定車両3の現在のピッチ方向の傾き及び加速度と、上述のように制御部30から与えられた、勾配区間用データベース26から読み出された各勾配区間内の各地点における車両3のピッチ方向の傾き及び加速度と順次比較することによりその特定車両3の現在位置(正確には特定車両3に搭載された計測部4の現在位置)を特定する(S8)。
 具体的に、演算部31は、このステップS8において、勾配区間用データベース26から読み出された各勾配区間内の各地点における車両3のピッチ方向の傾き及び加速度と、特定車両3に搭載された計測部4から制御部30を経由して与えられたその特定車両3の現在のピッチ方向の傾き及び加速度とのユークリッド距離を算出し、そのユークリッド距離が最も小さい地点を特定車両3に搭載された計測部4の現在位置として特定する。また演算部31は、特定した特定車両3の計測部4の現在位置に、当該計測部4から先頭車両3の先端位置までの距離を加算するようにして列車2の位置を検出する。そして演算部31は、特定した列車2の現在位置を制御部30に通知する。
 ただし、かかるユークリッド距離に予め閾値を設けておき、算出した最小のユークリッド距離が当該閾値よりも大きい場合には、特定車両3の計測部4の現在位置を特定せずに、かかるユークリッド距離が最小の地点(軌道上の位置)を制御部30を介して記憶装置14に登録するようにしてもよい。このように最小のユークリッド距離が予め設定された閾値よりも大きい場合、ステップS7について上述した場合と同様に、軌道が変形している等の不具合が発生しているおそれがあるため、この軌道上の位置をメンテナンス用情報として利用することができる。
 この後、制御部30は、上述のようにミリ波センサや速度発電機などを用いて常に算出している自列車の現在位置と、上述のようにステップS6又はステップS8で演算部31により特定された自列車の現在位置との差分を算出し、その差分が予め設定された閾値以下であるか否かを判定する(S9)。そして制御部30は、この判定で否定結果を得ると、この位置検出処理を終了する。
 これに対して、制御部30は、ステップS9の判定で否定結果を得ると、ミリ波センサや速度発電機などを用いて常に算出している自列車の現在位置を、ステップS6又はステップS8で特定した自列車の現在位置に置き換えるようして補正する(S10)。そして制御部30は、この後、この位置検出処理を終了する。
(1-4)本実施の形態の効果
 以上のように本実施の形態の車両制御システム1では、特定車両3の計測部4により計測された当該特定車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度に基づいて列車2が曲線区間や勾配区間を走行しているか否かを判定し、列車2が曲線区間を走行していると判定した場合には、曲線区間用データベース25を参照して列車2の現在位置を検出し、列車2が勾配区間を走行していると判定した場合には、勾配区間用データベース26を参照して列車2の現在位置を検出する。
 従って、本実施の形態の車両制御システム1によれば、第3軌条方式又は第4軌条方式を集電方式とする車両3や、内燃機関又はバッテリなどの動力源を内部に備える車両3に対しても適用することができ、また撮像手段や撮像位置検出手段を要することなく、かつ車両3が走行中であっても、列車2の現在位置を適切に検出することができる。
 よって本実施の形態によれば、種々の形態の鉄道車両に適用でき、システム全体の設置及びメンテナンスコストを低減しながら簡易な構成で列車位置を検出し得る車両制御システムを実現することができる。
(2)第2の実施の形態
 図8との対応部分に同一符号を付して示す図10は、図8について上述した車両制御装置10の論理構成に代えて適用される第2の実施の形態による車両制御装置40の論理構成を示す。本実施の形態の車両制御装置40のハードウェア構成は第1の実施の形態の車両制御装置10と同様であるため、ここでの説明は省略する。
 本実施の形態の車両制御装置40は、制御部41にはGPS受信機6及び車上子5からの位置情報のみが与えられ、各車両3にそれぞれ搭載された計測部4からの計測値が演算部42に与えられる点と、演算部42が曲線区間用データベース25及び勾配区間用データベース26に直接アクセスできる点とが第1の実施の形態の車両制御装置10と大きく相違し、これ以外の点については第1の実施の形態の車両制御装置10と同様の機能を有する。
 従って、本実施の形態の車両制御装置40では、演算部42は、制御部41を経由することなく、各計測部4から送信されてきた対応する車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度を直接取得し、取得したこれらの情報に基づき、曲線区間用データベース25及び勾配区間用データベース26を参照して、第1の実施の形態の演算部31(図8)と同様に自列車の現在位置を検出し、検出結果を制御部41に通知する。
 また制御部41は、演算部42により特定された自列車の現在位置に基づいて、第1の実施の形態の制御部30と同様に必要な制御情報を生成し、生成した制御情報を対応する駆動装置11、保安装置12及び又は情報装置13に送信したり、必要なメンテナンス用情報を記憶装置14に格納する。
 以上の構成を有する本実施の形態の車両制御装置40によれば、第1の実施の形態と同様に、種々の形態の鉄道車両に適用でき、システム全体の設置及びメンテナンスコストを低減しながら簡易な構成で列車位置を検出し得る車両制御システムを実現することができる。
(3)他の実施の形態
 なお上述の第1及び第2の実施の形態においては、実際に列車2を走行させたときに得られた各曲線区間のロール方向及びヨー方向の傾き及び加速度や、各勾配区間のピッチ方向の傾きや加速度に基づいて曲線区間用データベース25や勾配区間用データベース26を生成するようにした場合について述べたが、本発明はこれに限らず、例えば、軌道(レール)が敷設された地形等や軌道の形状情報と、列車2の走行パターンとなどの情報に基づいて計算により各曲線区間の各地点における車両3のロール方向及びヨー方向の傾き及び加速度の理論値や、各勾配区間の各地点における車両3のピッチ方向の傾き及び加速度の理論値を算出して曲線区間用データベース25及び勾配区間用データベース26を生成するようにしてもよい。
 また上述の第1及び第2の実施の形態においては、列車2の位置を特定するために本発明の位置検出方法を適用するようにした場合について述べたが、本発明はこれに限らず、不具合のある軌道上の位置を特定するために本発明の位置検出方法を適用するようにしてもよい。
 さらに上述の第1及び第2の実施の形態においては、曲線区間用データベース25及び勾配区間用データベース26の2つのデータベースを用意するようにした場合について述べたが、本発明はこれに限らず、これら曲線区間用データベース25及び勾配区間用データベース26の内容を1つのデータベースにまとめてデータベースを1つだけ設けるようにしてもよい。
 さらに上述の第1及び第2の実施の形態においては、各計測部4がそれぞれ3軸加速度センサを備え、3軸加速度センサの出力に基づいてロール方向、ヨー方向及びピッチ方向の車両3の傾きまでも算出して計測値として制御部30や演算部42に送信するようにした場合について述べたが、本発明はこれに限らず、各計測部4を3軸加速度センサのみから構成し、その出力に基づいて制御部30や演算部42において車両3の傾きを算出する(つまり本発明の計測部の機能の一部を制御部30や演算部42に割り当てる)ようにしてもよい。
 さらに上述の第1及び第2の実施の形態においては、本発明を列車2の位置検出に利用するようにした場合について述べたが、本発明はこれに限らず、予め定められた軌道上を予め定められた走行パターンで走行する自動運転自動車などの移動体の位置検出にも適用することができる。
 さらに上述の第1及び第2の実施の形態においては、勾配区間については、各地点における車両3のピッチ方向の傾き及び加速度のみを利用して位置を列車位置を特定するようにした場合について述べたが、本発明はこれに限らず、例えば、計測部4により計測されたピッチ方向の加速度に基づいて各地点における車両3の基準地点からの高さ位置を慣性航法等により計測して勾配区間用データベース26に登録しておき、列車2の走行中も同様にして各車両3の高さ位置を計測し、勾配区間では、車両3のピッチ方向の傾き及び加速度と、そのときの車両3の高さ位置とに基づいて、列車2の現在位置を検出するようにしてもよい。
 さらに上述の第1及び第2の実施の形態においては、特定車両3に搭載された計測部4から与えられる計測値にのみ基づいて自列車の現在位置を検出するようにした場合について述べたが、本発明はこれに限らず、より多くの計測部4から与えられる計測値に基づいて自列車の現在位置を検出するようにしてもよい。例えば、特定車両3に搭載された計測部4から与えられた計測値に基づいて自列車の現在位置を検出できなかった場合には他の車両3に搭載された計測部4から与えられる計測値に基づいて自列車の現在位置を検出するようにしてよい。
 さらに上述の第1及び第2の実施の形態においては、予め取得した各曲線区間の各地点における車両3のロール方向及びヨー方向の傾き及び加速度と、計測部4により計測された車両3のロール方向及びヨー方向の傾き及び加速度とに基づいて曲線区間を走行中の列車2の位置を検出すると共に、予め取得した各勾配区間の各地点における車両3のピッチ方向の傾き及び加速度と、計測部4により計測された車両3のピッチ方向の傾き及び加速度とに基づいて勾配区間を走行中の列車2の位置を検出するようにした場合について述べたが、本発明はこれに限らず、曲線区間及び勾配区間の少なくとも一方においてのみ列車2の位置を検出するようにしてもよい。
 さらに上述の第1及び第2の実施の形態においては、計測部4により計測された車両3のロール方向及びヨー方向の傾き及び加速度を、曲線区間用データベース25に格納された軌道の各曲線区間の各地点における車両3のロール方向及びヨー方向の傾き及び加速度とそれぞれ比較したり、計測部4により計測された車両3のピッチ方向の傾き及び加速度を、勾配区間用データベース26に格納された軌道の各勾配区間の各地点における車両3のピッチ方向の傾き及び加速度とそれぞれ比較することにより、車両3の位置又は車両3が位置する軌道上の位置を検出する移動体制御部としての機能を列車2に持たせるようにした場合について述べたが、本発明はこれに限らず、例えば車両制御装置10における上述の機能を地上側の設備に持たせ、計測部4により計測された車両3のロール方向、ヨー方向及びピッチ方向の傾き及び加速度を列車2から地上側の設備に順次転送し、地上側の設備においてそのときのその列車2の位置を上述のようにして算出し、算出結果を列車2側に転送するようにしてもよい。このようにしても第1及び第2の実施の形態と同様の効果を得ることができる。
 本発明は、予め定められた軌道上を予め定められた所定パターンで走行する種々の移動体の位置又は当該移動体が位置する軌道上の位置を検出する位置検出装置に広く適用することができる。
 1……車両制御システム、2……列車、3……車両、4,4A~4C……計測部、5……車上子、6……GPS受信機、10,40……車両制御装置、11……駆動装置、12……保安装置、13……情報装置、14,22……記憶装置、20……CPU、21……メモリ、23……制御プログラム、24……演算プログラム、25……曲線区間用データベース、26……勾配区間用データベース、30,41……制御部、31,42……演算部。

Claims (10)

  1.  予め定められた軌道上を予め定められた所定パターンで走行する移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する位置検出装置において、
     前記軌道の各曲線区間の各地点における前記移動体のロール方向及びヨー方向の傾き及び加速度と、前記軌道の各勾配区間の各地点における前記移動体のピッチ方向の傾き及び加速度との少なくとも一方が格納された第1の記憶装置と、
     前記軌道上を前記所定パターンで走行する前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度と、前記ピッチ方向の傾き及び加速度との少なくとも一方を計測する計測部と、
     前記計測部により計測された前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較し、並びに又は、前記計測部により計測された前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する移動体制御部と
     を備えることを特徴とする位置検出装置。
  2.  前記移動体制御部は、
     検出した前記移動体の位置に基づいて前記移動体に搭載された車上機器を制御する
     ことを特徴とする請求項1に記載の位置検出装置。
  3.  前記移動体制御部は、
     前記計測部により計測された前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度の一部又は全部が当該ロール方向及び当該ヨー方向の傾き及び加速度についてそれぞれ予め設定された第1の閾値以上のときに、前記計測部により計測された前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する
     ことを特徴とする請求項1に記載の位置検出装置。
  4.  前記移動体制御部は、
     前記計測部により計測された前記移動体の前記ピッチ方向の傾き及び加速度の一部又は全部が当該ピッチ方向の傾き及び加速度についてそれぞれ予め設定された第1の閾値以上のときに、前記計測部により計測された前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する
     ことを特徴とする請求項1に記載の位置検出装置。
  5.  前記移動体は、複数の車両から構成される列車であり、
     各前記車両にそれぞれ前記計測部が搭載され、
     メンテナンス用の情報を格納するための第2の記憶装置を備え、
     前記移動体制御部は、
     各前記車両がそれぞれ同一地点を通過するタイミングで当該地点を通過する前記車両に搭載された前記計測部から与えられる当該車両の前記ロール方向、前記ヨー方向及び前記ピッチ方向の傾き及び加速度の一部又は全部を前記メンテナンス用の情報として前記第2の記憶装置に格納する
     ことを特徴とする請求項1に記載の位置検出装置。
  6.  予め定められた軌道上を予め定められた所定パターンで走行する移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する位置検出装置において実行される位置検出方法であって、
     前記位置検出装置は、
     前記軌道の各曲線区間の各地点における前記移動体のロール方向及びヨー方向の傾き及び加速度と、前記軌道の各勾配区間の各地点における前記移動体のピッチ方向の傾き及び加速度との少なくとも一方が格納された第1の記憶装置を有し、
     前記軌道上を前記所定パターンで走行する前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度と、前記ピッチ方向の傾き及び加速度との少なくとも一方を計測する第1のステップと、
     計測した前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較し、並びに又は、計測した前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する第2のステップと
     を備えることを特徴とする位置検出方法。
  7.  検出した前記移動体の位置に基づいて前記移動体に搭載された車上機器を制御する第3のステップを備える
     ことを特徴とする請求項6に記載の位置検出方法。
  8.  前記第2のステップでは、
     計測した前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度の一部又は全部が当該ロール方向及び当該ヨー方向の傾き及び加速度についてそれぞれ予め設定された第1の閾値以上のときに、計測した前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記曲線区間の各地点における前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する
     ことを特徴とする請求項6に記載の位置検出方法。
  9.  前記第2のステップでは、
     計測した前記移動体の前記ピッチ方向の傾き及び加速度の一部又は全部が当該ピッチ方向の傾き及び加速度についてそれぞれ予め設定された第1の閾値以上のときに、計測した前記移動体の前記ピッチ方向の傾き及び加速度を、前記第1の記憶装置に格納された前記軌道の各前記勾配区間の各地点における前記移動体の前記ピッチ方向の傾き及び加速度とそれぞれ比較することにより、前記移動体の位置又は当該移動体が位置する前記軌道上の位置を検出する
     ことを特徴とする請求項6に記載の位置検出方法。
  10.  前記移動体は、複数の車両から構成される列車であり、
     前記軌道上を前記所定パターンで走行する前記移動体の前記ロール方向及び前記ヨー方向の傾き及び加速度と、前記ピッチ方向の傾き及び加速度との少なくとも一方を計測する前記計測部が各前記車両にそれぞれ搭載され、
     メンテナンス用の情報を格納するための第2の記憶装置を備え、
     前記第2のステップでは、
     各前記車両がそれぞれ同一地点を通過するタイミングで当該地点を通過する前記車両に搭載された計測部により計測された当該車両の前記ロール方向、前記ヨー方向及び前記ピッチ方向の傾き及び加速度の一部又は全部を前記メンテナンス用の情報として前記第2の記憶装置に格納する
     ことを特徴とする請求項6に記載の位置検出方法。
PCT/JP2019/042702 2018-12-20 2019-10-30 位置検出装置及び方法 WO2020129423A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561195A JP7089063B2 (ja) 2018-12-20 2019-10-30 位置検出装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018238950 2018-12-20
JP2018-238950 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129423A1 true WO2020129423A1 (ja) 2020-06-25

Family

ID=71101170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042702 WO2020129423A1 (ja) 2018-12-20 2019-10-30 位置検出装置及び方法

Country Status (2)

Country Link
JP (1) JP7089063B2 (ja)
WO (1) WO2020129423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2597083A (en) * 2020-07-14 2022-01-19 Siemens Mobility Ltd Train route mapping system and method
WO2024042832A1 (ja) * 2022-08-26 2024-02-29 株式会社日立製作所 位置推定システムおよび位置推定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294825A (ja) * 2002-03-28 2003-10-15 Railway Technical Res Inst 列車自車位置検出方法、及び列車自車位置検出システム
JP2007015483A (ja) * 2005-07-06 2007-01-25 Odakyu Dentetsu Kk 鉄道車両の走行位置検出方法
JP2010091296A (ja) * 2008-10-03 2010-04-22 Tokyo Keiki Inc 軌道位置データ付与システム及び軌道位置データ付与方法
JP2013205248A (ja) * 2012-03-28 2013-10-07 Railway Technical Research Institute 速度検出装置、走行位置算出装置及び速度算出方法
JP2014044096A (ja) * 2012-08-24 2014-03-13 Tokyo Keiki Inc 軌道位置データ付与システム及び軌道位置データ付与方法
JP2016141300A (ja) * 2015-02-03 2016-08-08 日本車輌製造株式会社 鉄道車両の走行位置検出システム
JP2018179573A (ja) * 2017-04-05 2018-11-15 日鉄住金レールウェイテクノス株式会社 鉄道車両の走行速度・位置検出方法及び停車時判定方法
JP2018179572A (ja) * 2017-04-05 2018-11-15 日鉄住金レールウェイテクノス株式会社 鉄道車両の走行経路特定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294825A (ja) * 2002-03-28 2003-10-15 Railway Technical Res Inst 列車自車位置検出方法、及び列車自車位置検出システム
JP2007015483A (ja) * 2005-07-06 2007-01-25 Odakyu Dentetsu Kk 鉄道車両の走行位置検出方法
JP2010091296A (ja) * 2008-10-03 2010-04-22 Tokyo Keiki Inc 軌道位置データ付与システム及び軌道位置データ付与方法
JP2013205248A (ja) * 2012-03-28 2013-10-07 Railway Technical Research Institute 速度検出装置、走行位置算出装置及び速度算出方法
JP2014044096A (ja) * 2012-08-24 2014-03-13 Tokyo Keiki Inc 軌道位置データ付与システム及び軌道位置データ付与方法
JP2016141300A (ja) * 2015-02-03 2016-08-08 日本車輌製造株式会社 鉄道車両の走行位置検出システム
JP2018179573A (ja) * 2017-04-05 2018-11-15 日鉄住金レールウェイテクノス株式会社 鉄道車両の走行速度・位置検出方法及び停車時判定方法
JP2018179572A (ja) * 2017-04-05 2018-11-15 日鉄住金レールウェイテクノス株式会社 鉄道車両の走行経路特定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2597083A (en) * 2020-07-14 2022-01-19 Siemens Mobility Ltd Train route mapping system and method
EP3939858A3 (en) * 2020-07-14 2022-01-26 Siemens Mobility Limited Train route mapping method
GB2597083B (en) * 2020-07-14 2023-02-22 Siemens Mobility Ltd Train route mapping system and method
WO2024042832A1 (ja) * 2022-08-26 2024-02-29 株式会社日立製作所 位置推定システムおよび位置推定方法

Also Published As

Publication number Publication date
JP7089063B2 (ja) 2022-06-21
JPWO2020129423A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US6681160B2 (en) Geometric track and track/vehicle analyzers and methods for controlling railroad systems
US7164975B2 (en) Geometric track and track/vehicle analyzers and methods for controlling railroad systems
US7539596B2 (en) Diagnosis and state monitoring of junctions, crossings, crossroads or rail joints by means of a rail vehicle
US8452467B2 (en) System and method for verifying track database information
CN101580071B (zh) 铁路机车车辆运行姿态测量系统
US20140142868A1 (en) Apparatus and method for inspecting track in railroad
EP0794887B1 (en) Storage of track data in a position-controlled tilt system
JP5965251B2 (ja) 軌道位置データ付与システム及び軌道位置データ付与方法
US10919550B2 (en) Method and positioning device for determining the position of a track-guided vehicle, in particular a rail vehicle
US10136106B2 (en) Train asset tracking based on captured images
JP2021512813A (ja) 鉄道車両および軌道区間を検測する方法
CN101666716A (zh) 铁路机车车辆运行姿态测量方法
US11845482B2 (en) Obstacle detection device and obstacle detection method
US11453422B2 (en) Vehicle control system
WO2020129423A1 (ja) 位置検出装置及び方法
KR20100103572A (ko) 자기 유도 차량의 운동을 측정하는 장치
KR101590712B1 (ko) 운행기록을 이용한 철도차량과 선로 감시시스템 및 방법
CN213008144U (zh) 轨道检测车
CN107921976B (zh) 用于监测由车辆、尤其轨道车辆组成的车列的规定的限界的检测设备和方法
KR20220047378A (ko) 트랙의 실제적인 위치를 결정하기 위한 방법 및 측정 차량
JP2008285118A (ja) 鉄道設備の異常診断計測システム
JP2008238888A (ja) 列車位置検知システム
JP4619890B2 (ja) 保線設備データの検出および検査装置
CN108545098B (zh) 一种基于姿态测量装置的列车行车信息采集系统
JP5944794B2 (ja) 軌道位置データ付与システム及び軌道位置データ付与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897951

Country of ref document: EP

Kind code of ref document: A1