WO2024087194A1 - 发光基板及其制备方法、背光模组、显示装置 - Google Patents

发光基板及其制备方法、背光模组、显示装置 Download PDF

Info

Publication number
WO2024087194A1
WO2024087194A1 PCT/CN2022/128351 CN2022128351W WO2024087194A1 WO 2024087194 A1 WO2024087194 A1 WO 2024087194A1 CN 2022128351 W CN2022128351 W CN 2022128351W WO 2024087194 A1 WO2024087194 A1 WO 2024087194A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
sub
pattern
printing
Prior art date
Application number
PCT/CN2022/128351
Other languages
English (en)
French (fr)
Inventor
汤海
耿霄霖
张冰
高亮
Original Assignee
京东方科技集团股份有限公司
合肥京东方瑞晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方瑞晟科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280003862.2A priority Critical patent/CN118266093A/zh
Priority to PCT/CN2022/128351 priority patent/WO2024087194A1/zh
Publication of WO2024087194A1 publication Critical patent/WO2024087194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a light-emitting substrate and a preparation method thereof, a backlight module, and a display device.
  • Sub-millimeter light emitting diodes Mini Light Emitting Diode, Mini LED for short
  • mini light emitting diodes also known as mini light emitting diodes
  • micro light emitting diodes Micro Light Emitting Diode, Micro LED for short
  • have many advantages such as self-luminescence, high efficiency, high brightness, high reliability, energy saving and fast response speed. They are applied to micro-displays, mobile phones, TVs and other medium-sized displays to large-screen displays in theaters.
  • Sub-millimeter light emitting diodes or micron light emitting diodes are active self-luminous components. Among them, the size of Mini LED is about 80 ⁇ m to 500 ⁇ m, and the size of Micro LED is about less than 80 ⁇ m.
  • a light-emitting substrate comprising: a substrate, a reflective layer, a reflective sheet and a plurality of light-emitting devices.
  • the reflective layer is located on one side of the substrate, and the reflective layer has a plurality of annular patterns arranged at intervals.
  • the reflective sheet is located on the side of the reflective layer away from the substrate, and the reflective sheet has a plurality of first openings.
  • a first opening exposes an annular pattern, and in a direction perpendicular to the substrate, the outer sidewall of the annular pattern surrounds the corresponding first opening, and the inner sidewall of the annular pattern is located in the corresponding first opening.
  • a light-emitting device is located in the inner sidewall of one of the annular patterns.
  • a minimum distance between an outer side wall of the annular pattern and an inner side wall of the annular pattern is greater than or equal to 2.3 mm.
  • a minimum distance between an outer side wall of the annular pattern and the first opening is greater than or equal to 2 mm.
  • the annular pattern includes a first sub-section, a second sub-section, a third sub-section and a fourth sub-section connected end to end in sequence.
  • the first sub-section and the third sub-section extend along a first direction
  • the second sub-section and the fourth sub-section extend along a second direction.
  • the first direction intersects with the second direction.
  • the annular pattern includes a first sub-section, a second sub-section, a third sub-section and a fourth sub-section that are sequentially cross-connected.
  • the first sub-section and the third sub-section extend along a first direction
  • the second sub-section and the fourth sub-section extend along a second direction. The first direction intersects the second direction.
  • the first sub-section, the second sub-section, the third sub-section, and the fourth sub-section are an integral structure.
  • the plurality of annular patterns are arranged in a plurality of columns along the first direction and in a plurality of rows along the second direction.
  • the reflective layer further comprises a plurality of connection patterns; the plurality of connection patterns comprise: a plurality of first connection patterns extending along the first direction, a plurality of third connection patterns, and a plurality of second connection patterns extending along the second direction, a plurality of fourth connection patterns.
  • the two first sub-portions of two adjacent annular patterns are connected to the first connection pattern, and the two third sub-portions of two adjacent annular patterns are connected to the third connection pattern; along the second direction, the two second sub-portions of two adjacent annular patterns are connected to the second connection pattern, and the two fourth sub-portions of two adjacent annular patterns are connected to the fourth connection pattern.
  • the annular pattern and the connection pattern connected to the annular pattern are an integral structure.
  • the thickness of the reflective layer ranges from 50 ⁇ m to 80 ⁇ m.
  • At least a portion of the inner sidewall of the annular pattern forms an acute angle with the plane where the substrate is located. And/or, at least a portion of the outer sidewall of the annular pattern forms an acute angle with the plane where the substrate is located.
  • At least a portion of the inner sidewall of the annular pattern is in the shape of an arc surface. And/or, at least a portion of the outer sidewall of the annular pattern is in the shape of an arc surface.
  • the outer boundary line of the orthographic projection of the annular pattern on the substrate includes at least one outer curve segment, and the outer curve segment protrudes in a direction away from the corresponding light-emitting device.
  • the inner boundary line of the orthographic projection of the annular pattern on the substrate includes at least one inner curve segment, and the inner curve segment protrudes in a direction close to the corresponding light-emitting device.
  • a surface of the annular pattern away from the substrate has a plurality of protruding structures.
  • the annular pattern includes a first ring portion and a second ring portion connected to each other.
  • the first ring portion surrounds at least a portion of the light emitting device
  • the second ring portion surrounds the light emitting device and surrounds the first ring portion; and the thickness of the first ring portion is less than or equal to the thickness of the second ring portion.
  • a distance between an inner sidewall of the annular pattern and the light-emitting device ranges from 0 ⁇ m to 300 ⁇ m.
  • a minimum distance between the first opening and the light-emitting device is greater than or equal to 500 ⁇ m.
  • the shape of the first opening includes a rectangle or a circle.
  • the light-emitting substrate further comprises: an encapsulation layer located on a side of the plurality of light-emitting devices away from the substrate, the encapsulation layer comprising a plurality of encapsulation patterns.
  • An orthographic projection of one of the light-emitting devices on the substrate is located within an orthographic projection range of an encapsulation pattern on the substrate.
  • An orthographic projection of one of the encapsulation patterns on the substrate overlaps with an orthographic projection of one of the annular patterns on the substrate.
  • an orthographic projection of the packaging pattern on the substrate partially overlaps with an orthographic projection of the reflective sheet on the substrate.
  • an orthographic projection of the packaging pattern on the substrate and an orthographic projection of the reflective sheet on the substrate do not overlap.
  • a method for preparing a light-emitting substrate comprising: providing a substrate; fixing a plurality of light-emitting devices on the substrate; forming a reflective layer on the substrate using a 3D printing process; the reflective layer having a plurality of annular patterns arranged at intervals; a light-emitting device being located within an inner side wall of an annular pattern; attaching a reflective sheet to a side of the reflective layer away from the substrate; the reflective sheet having a plurality of first openings, a first opening exposing an annular pattern, and in a direction perpendicular to the substrate, an outer side wall of the annular pattern surrounds a corresponding first opening, and an inner side wall of the annular pattern is located within the corresponding first opening.
  • the plurality of light emitting devices are arranged in a plurality of columns along a first direction and in a plurality of rows along a second direction; the first direction intersects the second direction.
  • the substrate has a plurality of first printing areas; one first printing area surrounds one of the light emitting devices.
  • the use of a 3D printing process to form a reflective layer on the substrate comprises: using a surrounding printing process to form an annular pattern in the first printing area; a plurality of the annular patterns form the reflective layer.
  • the first printing area includes: a first sub-area and a second sub-area; the first sub-area is closer to the light-emitting device than the second sub-area; the first sub-area surrounds at least a portion of the light-emitting device, and the second sub-area surrounds the light-emitting device.
  • the use of a surrounding printing process to form an annular pattern in the first printing area includes: using a surrounding printing process or a dotted line printing process to print a first ring portion in the first sub-area; the first ring portion surrounds at least a portion of the light-emitting device; using a surrounding printing process to print a second ring portion in the second sub-area; the second ring portion surrounds the light-emitting device and surrounds the first ring portion; the thickness of the first ring portion is less than or equal to the thickness of the second ring portion; the first ring portion is connected to the second ring portion to form the annular pattern.
  • the plurality of light-emitting devices are arranged in a plurality of columns along the first direction and in a plurality of rows along the second direction; the first direction intersects with the second direction.
  • the substrate has a plurality of second printing areas and a plurality of third printing areas extending along the first direction, and a plurality of fourth printing areas and a fifth printing area extending along the second direction; the second printing area and the third printing area are respectively arranged on opposite sides of the light-emitting device along the second direction, and the fourth printing area and the fifth printing area are respectively arranged on opposite sides of the light-emitting device along the first direction.
  • the use of the 3D printing process to form a reflective layer on the substrate includes: using a dotted line printing process to form a first sub-section in the second printing area on one side of each of the light-emitting devices; using a dotted line printing process to form a third sub-section in the third printing area on one side of each of the light-emitting devices; using a dotted line printing process to form a second sub-section in the fourth printing area on one side of each of the light-emitting devices; using a dotted line printing process to form a fourth sub-section in the fifth printing area on one side of each of the light-emitting devices; the first sub-section, the second sub-section, the third sub-section and the fourth sub-section located around the same light-emitting device are connected to form a ring pattern of the reflective layer.
  • the plurality of light-emitting devices are arranged in a plurality of columns along the first direction and in a plurality of rows along the second direction; the first direction intersects with the second direction.
  • the substrate has a plurality of sixth printing areas and a plurality of seventh printing areas extending along the first direction, and a plurality of eighth printing areas and a plurality of ninth printing areas extending along the second direction; a row of light-emitting devices is provided with a sixth printing area and a seventh printing area on opposite sides along the second direction, respectively, and a column of light-emitting devices is provided with an eighth printing area and a ninth printing area on opposite sides along the first direction, respectively.
  • the use of a 3D printing process to form a reflective layer on the substrate comprises: using a straight-line printing process to form a first reflective pattern in the sixth printing area on one side of each row of light-emitting devices, the first reflective pattern comprising a first sub-portion corresponding to each light-emitting device and a first connecting pattern connecting two adjacent first sub-portions.
  • a third reflective pattern is formed in the eighth printing area on one side of each column of light-emitting devices by adopting a linear printing process, and the third reflective pattern includes a second sub-section corresponding to each light-emitting device and a second connecting pattern connecting two adjacent second sub-sections.
  • a fourth reflective pattern is formed in the ninth printing area on one side of each column of light-emitting devices by adopting a linear printing process, and the fourth reflective pattern includes a fourth sub-section corresponding to each light-emitting device and a fourth connecting pattern connecting two adjacent fourth sub-sections; the first sub-section, the second sub-section, the third sub-section and the fourth sub-section located around the same light-emitting device are connected to form an annular pattern of the reflective layer; a plurality of first reflective patterns, a plurality of second reflective patterns, a plurality of third reflective patterns and a plurality of fourth reflective patterns form the reflective layer.
  • the preparation method before attaching the reflective sheet to the side of the reflective layer away from the substrate, the preparation method further includes: forming an encapsulation layer on the side of the reflective layer away from the substrate; the encapsulation layer includes a plurality of encapsulation patterns, and the encapsulation patterns correspond to the light-emitting devices.
  • the orthographic projection of one of the light-emitting devices on the substrate is within the orthographic projection range of one of the encapsulation patterns on the substrate; the orthographic projection of one of the encapsulation patterns on the substrate overlaps with the orthographic projection of one of the annular patterns on the substrate.
  • a backlight module comprising: the light-emitting substrate as described in the above embodiment, and an optical film located on the light-emitting side of the light-emitting substrate.
  • a display device comprising: a backlight module as described in the above embodiment; a color filter substrate located at a light emitting side of the backlight module; and an array substrate located between the backlight module and the color filter substrate.
  • FIG. 1a is a structural diagram of a display device according to some embodiments of the present disclosure.
  • FIG1b is a structural diagram of another display device according to some embodiments of the present disclosure.
  • FIG2 is a structural diagram of a backlight module according to some embodiments of the present disclosure.
  • FIG3 is a structural diagram of a light-emitting substrate according to some embodiments of the present disclosure.
  • FIG4a is a structural diagram of another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG4b is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG4c is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG5a is a structural diagram of a light-emitting substrate cut along the A-A' line in FIG4a;
  • FIG5b is a structural diagram of another light-emitting substrate cut along the A-A' line in FIG4a;
  • FIG6a is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG6b is a local enlarged structural diagram of the BB' region in FIG6a;
  • FIG6c is another partial enlarged structural diagram of the BB' region in FIG6a;
  • FIG6d is another partial enlarged structural diagram of the BB' region in FIG6a;
  • FIG7a is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG7b is a local enlarged structural diagram of the CC' region in FIG7a;
  • FIG8 is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG9 is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG10 is a flow chart of preparing a light-emitting substrate according to some embodiments of the present disclosure.
  • 11a to 11d are structural diagrams of a light-emitting substrate at different preparation stages according to some embodiments of the present disclosure.
  • FIG12a is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • 12b to 12e are schematic diagrams of various 3D printing processes according to some embodiments of the present disclosure.
  • FIG12f is a schematic diagram of a print bar formed by a 3D printing process according to some embodiments of the present disclosure.
  • FIG12g is a schematic diagram of a printed pattern formed by a 3D printing process according to some embodiments of the present disclosure.
  • FIG13 is a flow chart of preparing another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG. 14a to 14b are structural diagrams of another light-emitting substrate at different preparation stages according to some embodiments of the present disclosure.
  • FIG15 is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG16 is a flow chart of preparing another light-emitting substrate according to some embodiments of the present disclosure.
  • 17a to 17d are structural diagrams of another light-emitting substrate at different preparation stages according to some embodiments of the present disclosure.
  • FIG18 is a structural diagram of yet another light-emitting substrate according to some embodiments of the present disclosure.
  • FIG19 is a flow chart of preparing another light-emitting substrate according to some embodiments of the present disclosure.
  • 20a to 20d are structural diagrams of yet another light-emitting substrate at different preparation stages according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection and its derivative expressions may be used.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that” or “if [a stated condition or event] is detected” are optionally interpreted to mean “upon determining that” or “in response to determining that” or “upon detecting [a stated condition or event]” or “in response to detecting [a stated condition or event],” depending on the context.
  • perpendicular and “equal” include the conditions described and conditions similar to the conditions described, the range of which is within an acceptable deviation range, wherein the acceptable deviation range is determined by a person of ordinary skill in the art taking into account the measurement in question and the errors associated with the measurement of a particular quantity (i.e., the limitations of the measurement system).
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity may also be, for example, a deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality may be, for example, that the difference between the two equalities is less than or equal to 5% of either one of them.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in shape relative to the drawings due to, for example, manufacturing techniques and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing. For example, an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shape of regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the display device 1 can be any display device that displays either motion (e.g., video) or fixed (e.g., still images) and whether text or images. More specifically, it is expected that the display device of the embodiment can be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, cameras, game consoles, watches, clocks, calculators, TV monitors, flat panel displays, computer monitors, car displays (e.g., odometer displays, etc.), navigators, cockpit controllers and/or displays, displays of camera views (e.g., displays of rear-view cameras in vehicles), electronic photos, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., displays of images of a piece of jewelry), etc.
  • PDAs personal data assistants
  • GPS receivers/navigators cameras
  • MP4 video players cameras
  • game consoles
  • the display device 1 may include multiple sub-display devices, and the multiple sub-display devices are spliced together to form a large-size display device to meet the large-size display requirements.
  • the display device can be called a spliced display device.
  • the display device 1 may be an LCD (Liquid Crystal Display) display device.
  • the display device 1 includes: a backlight module 10 , an array substrate 20 located on the light emitting side of the backlight module 10 , and a color film substrate 30 located on a side of the array substrate 20 away from the backlight module 10 .
  • the backlight module 10 can be used as a light source to provide backlight.
  • the backlight provided by the backlight module 10 can be white light or blue light.
  • the light emitting side of the backlight module 10 refers to the side from which the backlight module 10 emits light.
  • the array substrate 20 may include a plurality of pixel driving circuits and a plurality of pixel electrodes, the plurality of pixel driving circuits being arranged in an array, for example, and the plurality of pixel driving circuits being electrically connected to the plurality of pixel electrodes in a one-to-one correspondence, and the pixel driving circuits providing pixel voltages to the corresponding pixel electrodes.
  • the color film substrate 30 may include a variety of color filters, etc.
  • the color filters may include a red filter, a green filter, a blue filter, etc.
  • the red filter can only allow the red light in the incident light to pass through
  • the green filter can only allow the green light in the incident light to pass through
  • the blue filter can only allow the blue light in the incident light to pass through.
  • the color filters may include a red filter, a green filter, etc.
  • the display device 1 further includes a common electrode.
  • the common electrode can receive a common voltage.
  • the common electrode may be disposed on the array substrate 20 .
  • the common electrode may be disposed on the color filter substrate 30 .
  • the display device 1 further includes: a liquid crystal layer 40 located between the color filter substrate 30 and the array substrate 20 .
  • the liquid crystal layer 40 includes a plurality of liquid crystal molecules.
  • an electric field may be formed between the pixel electrode and the common electrode, and the liquid crystal molecules between the pixel electrode and the common electrode may be deflected under the action of the electric field.
  • the backlight provided by the backlight module 10 can pass through the array substrate 20 and be incident on the liquid crystal molecules of the liquid crystal layer 40.
  • the liquid crystal molecules flip, thereby changing the amount of light passing through the liquid crystal molecules, so that the light emitted by the liquid crystal molecules reaches a preset brightness.
  • the above light passes through the filters of different colors in the color filter substrate 30 and then emits.
  • the emitted light includes light of various colors, such as red light, green light, blue light, etc. The light of various colors cooperates with each other to enable the display device 1 to achieve display.
  • backlight modules 10 in the display device 1 there are various types of backlight modules 10 in the display device 1 , which can be configured according to actual conditions, and the present disclosure does not limit this.
  • the backlight module 10 may be an edge-type backlight module, or the backlight module 10 may be a direct-type backlight module.
  • the backlight module 10 as a direct-type backlight module as an example.
  • the backlight module 10 includes a light emitting substrate 100 and an optical film 200 located on the light emitting side of the light emitting substrate 100 .
  • Z in FIG. 2 refers to a third direction Z
  • the third direction Z is a thickness direction of the display device 1 .
  • the optical film 200 includes: a diffuser plate 210 , a quantum dot film 220 , a diffuser sheet 230 , and a composite film 240 , which are sequentially stacked on the light-emitting side of the light-emitting substrate 100 .
  • the diffusion plate 210 and the diffusion sheet 230 are used to eliminate lamp shadows and to even out the light emitted by the light-emitting substrate 100 to improve the uniformity of the light.
  • the quantum dot film 220 is used to convert the light emitted by the light emitting substrate 100.
  • the quantum dot film 220 can convert the blue light into white light and improve the purity of the white light.
  • the composite film 240 is used to increase the brightness of the light emitted by the light emitting substrate 100 .
  • the brightness of the light emitted by the light emitting substrate 100 after being incident on the optical film 200 is enhanced, and the purity and uniformity of the emitted light are higher.
  • the backlight module 10 may include a plurality of light-emitting substrates 100 and corresponding optical films.
  • the plurality of light-emitting substrates 100 may be spliced together, and the corresponding optical films may also be spliced together, so that the backlight module 10 has a larger size.
  • the backlight module 10 may be called a spliced display module, and may be applied to the spliced display device.
  • the backlight module 10 further includes: a support column 201 disposed between the light emitting substrate 100 and the diffusion plate 210 of the optical film 200 .
  • the support column 201 can be fixed on the light-emitting substrate 100 by glue.
  • the support column 201 can also be set on the light-emitting substrate 100 by riveting.
  • the support column 201 can be used to support the optical film 200, and make the light emitted by the light-emitting substrate 100 obtain a certain light mixing distance, so as to further eliminate the lamp shadow and improve the uniformity of the light.
  • the display device 1 also includes: a frame, a display chip and other electronic accessories.
  • the light emitting substrate 100 includes: a substrate 110 and a plurality of light emitting devices 120 .
  • the substrate 110 may be a flexible substrate.
  • the flexible substrate may be, for example, a PET (Polyethylene Terephthalate) substrate, a PEN (Polyethylene Naphthalate Two Formic Acid Glycol Ester) substrate, or a PI (Polyimide) substrate.
  • the substrate 110 may also be a rigid substrate.
  • the material of the substrate may be glass, etc.
  • the substrate 110 may also be a printed circuit board (PCB), an aluminum substrate, etc.
  • the substrate is made of glass as an example.
  • the plurality of light emitting devices 120 may be Mini LEDs, LEDs, or Micro LEDs.
  • the plurality of light emitting devices 120 may be arranged in a plurality of columns along the first direction X and in a plurality of rows along the second direction Y. As shown in FIG. 3 , the plurality of light emitting devices 120 may be arranged in a plurality of columns along the first direction X and in a plurality of rows along the second direction Y. As shown in FIG. 3
  • the plurality of light emitting devices 120 are arranged in an array. Any row of light emitting devices 120 includes a plurality of light emitting devices 120 arranged at intervals along a first direction X, and any column of light emitting devices 120 includes a plurality of light emitting devices 120 arranged at intervals along a second direction Y.
  • the angle between the first direction X and the second direction Y may be 85°, 90°, 95°, etc.
  • the present disclosure takes the angle between the first direction X and the second direction Y as 90° as an example for description.
  • the light emitting device 120 may be used as a light source of the light emitting substrate 100 .
  • the light-emitting substrate further includes: a reflective structure.
  • the reflective structure may be a reflective layer located on a side of the light-emitting device close to the substrate.
  • the reflective layer may reflect the light emitted by the light-emitting device to improve the light efficiency of the light-emitting substrate.
  • the reflective layer has a second opening.
  • a light-emitting device is located in a corresponding second opening.
  • the reflective layer covers other areas on the substrate except the light-emitting device.
  • the reflective layer has a large area, and more reflective layer materials are required to prepare the reflective layer, which makes the preparation cost of the reflective layer and the light-emitting substrate high, especially the material cost is high. And because the area of the reflective layer to be prepared is large, the preparation time of the reflective layer is long, and the preparation efficiency of the reflective layer is low, which in turn affects the overall preparation efficiency of the light-emitting substrate.
  • One solution is to directly attach a reflective sheet to the substrate of the light-emitting substrate as a reflective structure, and omit the preparation step of the reflective layer. Since the reflective sheet can be directly selected from a finished reflective sheet, or the reflective sheet can be made separately, and then the reflective sheet can be directly attached to the substrate, it will not affect the preparation time of the light-emitting substrate, thereby improving the preparation efficiency of the light-emitting substrate; and the reflectivity of the reflective sheet is higher than that of the reflective layer, and has a higher light efficiency.
  • the precision of the opening on the reflective sheet is low (the precision of the opening is usually ⁇ 0.1mm), and in the process of attaching the reflective sheet, it is also necessary to consider the attachment tolerance of the opening (the attachment tolerance is generally ⁇ 0.2mm) and the material extension displacement of the reflective sheet (the extension displacement is about 0.4mm/m, and the extension displacement here refers to the overall size of the material will expand or shrink after the material returns to the normal temperature environment from a high temperature environment or a low temperature environment, and the extension or shrinkage of the material per 1m is about 0.4mm).
  • the attachment tolerance is generally ⁇ 0.2mm
  • the material extension displacement of the reflective sheet the extension displacement is about 0.4mm/m, and the extension displacement here refers to the overall size of the material will expand or shrink after the material returns to the normal temperature environment from a high temperature environment or a low temperature environment, and the extension or shrinkage of the material per 1m is about 0.4mm).
  • the opening area of the reflective sheet is relatively large, which makes the distance between the light-emitting device and the
  • the light emitted by the light-emitting device will be incident into the opening, which will cause a large loss of light emitted by the light-emitting device, thereby reducing the light efficiency of the light-emitting substrate.
  • the area used for reflection in the reflective sheet is reduced to a certain extent compared to the reflection area of the reflection layer in one implementation method, which reduces the reflectivity of the reflection structure.
  • the light-emitting substrate 100 also includes: a reflective layer 130 located on one side of the substrate 110, and the reflective layer 130 has a plurality of annular patterns 131 arranged at intervals.
  • the sum of the areas of the plurality of annular patterns 131 is the effective area of the reflective layer 130.
  • the plurality of light emitting devices 120 correspond one to one with the plurality of annular patterns 131.
  • the plurality of light emitting devices 120 are arranged in an array, and the plurality of annular patterns 131 are also arranged in an array.
  • annular patterns 131 are not directly connected to each other.
  • the annular pattern 131 has a certain thickness, and the annular pattern 131 has an outer side wall OW and an inner side wall IW.
  • the orthographic projection of the inner side wall IW of the annular pattern 131 on the substrate 110 is located within the orthographic projection range of the outer side wall OW of the annular pattern 131 on the substrate 110.
  • the boundary line of the orthographic projection of the inner side wall IW of the annular pattern 131 on the substrate 110 encloses a closed figure, which is, for example, a first closed figure.
  • the boundary line of the orthographic projection of the outer side wall OW of the annular pattern 131 on the substrate 110 also encloses a closed figure, which is, for example, a second closed figure.
  • the first closed figure is located inside the second closed figure.
  • the shape of the first closed figure can be the same as the shape of the second closed figure, for example, both are circular.
  • the shape of the first closed figure can also be different from the shape of the second closed figure, for example, the shape of the first closed figure is rectangular, and the shape of the second closed figure is circular.
  • one light emitting device 120 is located inside the inner wall IW of one ring pattern 131 .
  • the light-emitting device 120 is located inside the inner wall IW of the corresponding annular pattern 131. Since the preparation precision of the annular pattern 131 is relatively high (compared with the opening precision of the first opening in the reflective sheet mentioned below), the distance between the light-emitting device 120 and the annular pattern 131 can be made relatively small, thereby preventing the light emitted by the light-emitting device 120 from being incident on the gap between the light-emitting device 120 and the annular pattern 131 and causing light loss, thereby improving the light efficiency of the light-emitting substrate 100.
  • the reflective layer 130 further includes a connection portion connected to the plurality of annular patterns 131.
  • the connection portion covers the area of the substrate 110 except the annular patterns.
  • the connection portion can protect the surface of the substrate close to the light emitting device to prevent water vapor from intruding.
  • the annular pattern 131 includes a first portion and a second portion which are stacked, and an orthographic projection of the first portion on the substrate completely overlaps with an orthographic projection of the second portion on the substrate.
  • the thickness of the annular pattern 131 is greater than the thickness of the connecting portion.
  • the annular pattern 131 protrudes from the connecting portion.
  • the connecting portion protect the surface of the substrate 110, but also the amount of the reflective layer material can be reduced, and the annular pattern 131 can have a sufficient thickness, thereby ensuring the light effect of the annular pattern 131 and improving the light effect of the light-emitting substrate 100.
  • the thickness of the first portion is the same as the thickness of the connecting portion.
  • the thickness of the first portion and the thickness of the connecting portion may both be 25 ⁇ m, and the thickness of the annular pattern 131 is 80 ⁇ m, that is, the sum of the thickness of the first portion and the thickness of the second portion is 80 ⁇ m.
  • the first portion and the connecting portion may be made of the same layer and the same material, and the first portion and the connecting portion are an integrated structure, so that they can be formed in one manufacturing process, thereby simplifying the manufacturing process of the reflective layer 130 .
  • the thickness of the first portion is the same as the thickness of the second portion.
  • the thickness of the first portion is different from the thickness of the second portion.
  • the light emitting substrate 100 further includes: a reflective sheet 140 located on a side of the reflective layer 130 away from the substrate 110 , the reflective sheet 140 having a plurality of first openings 141 , and one first opening 141 exposes one annular pattern 131 .
  • a light emitting device 120 is located in a first opening 141.
  • the light emitting device 120 can be exposed through the first opening 141, thereby preventing the light emitted by the light emitting device 120 from being blocked by the reflective sheet 140, so that the light emitted by the light emitting device 120 can be reflected by the reflective sheet 140, thereby improving the light efficiency of the light emitting substrate 100.
  • the outer sidewall OW of the ring-shaped pattern 131 surrounds the corresponding first opening 141
  • the inner sidewall IW of the ring-shaped pattern 131 is located in the corresponding first opening 141 .
  • the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is located outside the first opening 141.
  • the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is located inside the first opening 141.
  • the portion of the reflective sheet 140 close to the first opening 141 overlaps the corresponding annular pattern 131, and the reflective sheet 140 partially overlaps each annular pattern 131.
  • the thickness of the annular pattern 131 is relatively small and can be ignored compared to the thickness of the reflector 140 . Therefore, the part where the reflector 140 overlaps the annular pattern will not form an obvious step difference, and will not affect the reflector 140's reflection of the light emitted by the light-emitting device 120 .
  • a reflective layer 130, a reflective sheet 140 and a light-emitting device 120 are sequentially arranged on one side of a substrate 110 of a light-emitting substrate 100, so that the reflective area of a reflective structure composed of the reflective sheet 140 and the reflective layer 130 is larger, and the gap between the reflective structure and the light-emitting device 120 is smaller, thereby improving the reflectivity of the reflective structure, reducing the light consumption of the light-emitting substrate 100, and improving the light efficiency of the reflective structure and the light-emitting substrate 100;
  • the reflective layer 130 is provided with a plurality of annular patterns 131 arranged at intervals, and the reflective sheet 140 has a plurality of first openings 141, one first opening 141 exposes one annular pattern 131, and in a direction perpendicular to the substrate 110, The outer wall of the annular pattern 131 surrounds the corresponding first opening 141, and the inner wall of the annular pattern 131 is located in the corresponding first opening 141,
  • a minimum distance d1 between an outer sidewall of the annular pattern 131 and an inner sidewall of the annular pattern 131 is greater than or equal to 2.3 mm.
  • the spacing between the outer wall of the annular pattern 131 and the inner wall of the annular pattern 131 is the ring width of the annular pattern 131
  • the minimum spacing d1 between the outer wall of the annular pattern 131 and the inner wall of the annular pattern 131 is the minimum ring width of the annular pattern 131.
  • the minimum distance d1 between the outer side wall of the annular pattern 131 and the inner side wall of the annular pattern 131 may be 2.3 mm, 2.6 mm, 3 mm, 4.0 mm or 5.0 mm.
  • the projection area of the annular pattern 131 on the substrate 110 can be larger, and to a certain extent, it can ensure that the reflective sheet 140 and the annular pattern 131 have sufficient overlapping area, thereby avoiding the projection area of the annular pattern 131 on the substrate 110 being small, resulting in a small overlapping area between the reflective sheet 140 and the annular pattern 131 or even no overlapping, thereby avoiding the formation of a gap between the reflective sheet 140 and the annular pattern 131 and avoiding a low reflectivity of the reflective structure.
  • a minimum distance d2 between the outer sidewall of the annular pattern 131 and the first opening 141 is greater than or equal to 2 mm.
  • the minimum distance d2 between the outer sidewall of the annular pattern 131 and the first opening 141 may be 2 mm, 2.5 mm, 3 mm, 4 mm or 4.5 mm.
  • the overlapping area between the annular pattern 131 and the reflective sheet 140 can be made larger, ensuring that the reflective sheet 140 is overlapped on each annular pattern 131, thereby ensuring that the reflectivity of the reflective structure is high, avoiding the situation where the reflective sheet 140 is not overlapped on the annular pattern 131, avoiding the formation of gaps between the annular pattern 131 and the reflective sheet 140, avoiding the gaps that reduce the reflectivity of the reflective structure, and thus avoiding the light efficiency of the light-emitting substrate 100.
  • annular pattern 131 there are various structures of the annular pattern 131 , which can be configured according to actual needs, and the present disclosure does not limit this.
  • the shape of the outer sidewall of the annular pattern 131 and the shape of the inner sidewall of the annular pattern 131 may be the same or different.
  • the shape formed by the outer sidewalls of the annular pattern 131 may be an irregular shape, while the shape formed by the inner sidewalls of the annular pattern 131 may be a regular shape, which may be a circle or a rectangle.
  • the shape formed by the outer sidewalls of the annular pattern 131 and the shape of the inner sidewalls of the annular pattern 131 are both regular shapes, which may be a rectangle.
  • the annular pattern 131 includes a first sub-portion 132, a second sub-portion 133, a third sub-portion 134, and a fourth sub-portion 135 connected end to end.
  • the first sub-portion 132 and the third sub-portion 134 extend along the first direction X
  • the second sub-portion 133 and the fourth sub-portion 135 extend along the second direction Y.
  • the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 are all strip structures, and the strip structure has two ends along its extension direction.
  • the above-mentioned "head to tail connection” means that the connection point between the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 is one of the two ends of the strip structure.
  • two ends of the first sub-section 132 are connected and overlapped with one end of the second sub-section 133 and one end of the fourth sub-section 135.
  • Two ends of the third sub-section 134 are connected and overlapped with the other end of the second sub-section 133 and the other end of the fourth sub-section 135.
  • the annular pattern 131 is in the shape of a Chinese character "U". That is, the shape formed by the outer sidewall of the annular pattern 131 and the shape formed by the inner sidewall of the annular pattern 131 are both rectangular.
  • the annular pattern 131 includes a first sub-portion 132, a second sub-portion 133, a third sub-portion 134 and a fourth sub-portion 135 which are sequentially cross-connected.
  • the first sub-portion 132 and the third sub-portion 134 extend along the first direction X
  • the second sub-portion 133 and the fourth sub-portion 135 extend along the second direction Y.
  • first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 are all strip structures, and the strip structure has two ends along its extension direction.
  • the above-mentioned "cross connection" means that the connection points between the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 are close to one of the two ends of the strip structure and do not overlap.
  • the end of the first sub-portion 132 adjacent to the second sub-portion 133 protrudes from the connection point between the first sub-portion 132 and the second sub-portion 133
  • the end of the first sub-portion 132 adjacent to the fourth sub-portion 135 protrudes from the connection point between the first sub-portion 132 and the fourth sub-portion 135 .
  • the annular pattern 131 is in a "well" shape on a plane parallel to the plane where the substrate 110 is located. That is, on a plane parallel to the plane where the substrate 110 is located, the shape formed by the outer sidewall of the annular pattern 131 is different from the shape formed by the inner sidewall of the annular pattern 131, and the shape formed by the inner sidewall of the annular pattern 131 is a rectangle.
  • the reliability of the connection between the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 can be ensured, and the integrity of the annular pattern 131 formed by the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 can be ensured.
  • the first sub-section 132 , the second sub-section 133 , the third sub-section 134 and the fourth sub-section 135 in the above two embodiments are an integrated structure.
  • the above-mentioned "integrated structure” means that the two connected patterns are arranged in the same layer, and the two patterns are continuous and not separated.
  • the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 can be formed in the same preparation process, thereby simplifying the preparation process of the reflective layer 130 and the light-emitting substrate 100.
  • the plurality of annular patterns 131 are arranged in a plurality of columns along the first direction X, and are arranged in a plurality of rows along the second direction Y.
  • any row of the annular patterns 131 includes a plurality of annular patterns 131 sequentially arranged at intervals along the first direction X.
  • Any column of the annular patterns 131 includes a plurality of annular patterns 131 sequentially arranged at intervals along the second direction Y.
  • the reflective layer 130 further includes a plurality of connection patterns 136 .
  • the plurality of connection patterns 136 are arranged in a plurality of rows along the first direction X, and are arranged in a plurality of columns along the second direction Y.
  • the plurality of connection patterns 136 include: a plurality of first connection patterns 136 a extending along the first direction X, a plurality of third connection patterns 136 c , and a plurality of second connection patterns 136 b extending along the second direction Y, and a plurality of fourth connection patterns 136 d .
  • the two first sub-portions 132 of two adjacent annular patterns 131 are connected to the first connecting pattern 136a, and the two third sub-portions 134 of two adjacent annular patterns 131 are connected to the third connecting pattern 136c; along the second direction Y, the two second sub-portions 133 of two adjacent annular patterns 131 are connected to the second connecting pattern 136b, and the two fourth sub-portions 135 of two adjacent annular patterns 131 are connected to the fourth connecting pattern 136d.
  • the annular pattern 131 may include a first sub-portion 132, a second sub-portion 133, a third sub-portion 134, and a fourth sub-portion 135 connected end to end in sequence.
  • the annular pattern 131 may also include a first sub-portion 132, a second sub-portion 133, a third sub-portion 134, and a fourth sub-portion 135 connected crosswise in sequence.
  • the plurality of connection patterns 136 in the reflective layer 130 and the plurality of ring patterns 131 form a dam-type structure.
  • connection reliability among the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 can be further guaranteed, thereby ensuring the integrity of the annular pattern 131 formed by the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135.
  • the annular pattern 131 and the connection pattern 136 connected to the annular pattern 131 are an integral structure.
  • the annular pattern 131 and the connection pattern 136 connected to the annular pattern 131 can be formed in the same preparation process, thereby simplifying the preparation process of the reflective layer 130 and the light-emitting substrate 100 .
  • the thickness of the reflective layer 130 ranges from 50 ⁇ m to 80 ⁇ m.
  • the thickness H of the reflective layer 130 may be 50 ⁇ m, 57 ⁇ m, 63 ⁇ m, 72 ⁇ m or 80 ⁇ m.
  • the thickness H of the reflective layer 130 can be made more appropriate, thereby ensuring that the reflectivity of the reflective layer 130 is high and avoiding the risk of a decrease in the reflectivity of the reflective layer 130 due to a small thickness.
  • the angle ⁇ between at least part of the inner wall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle; and/or, the angle ⁇ between at least part of the outer wall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • an angle ⁇ between at least a portion of the inner sidewall of the ring pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the angle ⁇ between at least a portion of the inner sidewall of the ring pattern 131 and the plane where the substrate 110 is located may be 30°, 45°, 60°, 75° or 80°.
  • At least a portion of the inner sidewall of the ring-shaped pattern 131 is protruding in a direction close to the center of the corresponding light emitting device 120 .
  • an angle ⁇ between a portion of the inner sidewall of the ring pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the angle ⁇ between the inner sidewall of the ring pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the light emitted by the light-emitting device 120 When the light emitted by the light-emitting device 120 is incident on at least part of the inner wall, the light can be reflected on the inner wall and emitted roughly in the light-emitting direction of the light-emitting substrate 100, thereby increasing the reflectivity of the reflective layer 130 and improving the light efficiency of the light-emitting substrate 100.
  • an angle ⁇ between at least a portion of the outer sidewall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the angle ⁇ between at least a portion of the outer sidewall of the ring pattern 131 and the plane where the substrate 110 is located may be 30°, 45°, 60°, 75° or 80°.
  • At least a portion of the outer sidewall of the annular pattern 131 is protruding in a direction away from the center of the corresponding light emitting device 120 .
  • an angle ⁇ between a portion of the outer sidewall of the ring pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the angle ⁇ between the outer sidewall of the ring pattern 131 and the plane where the substrate 110 is located is an acute angle.
  • the angle ⁇ between at least part of the inner sidewall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle
  • the angle ⁇ between at least part of the outer sidewall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle
  • At least a portion of the inner sidewall of the annular pattern 131 protrudes in a direction close to the center of the corresponding light emitting device 120
  • at least a portion of the outer sidewall of the annular pattern 131 protrudes in a direction away from the center of the corresponding light emitting device 120 .
  • At least a portion of the inner sidewall IW of the annular pattern 131 is in an arc shape; and/or at least a portion of the outer sidewall OW of the annular pattern 131 is in an arc shape.
  • At least a portion of the inner sidewall IW of the annular pattern 131 is in a curved shape.
  • one annular pattern 131 corresponds to one light emitting device 120 , and the arc-shaped inner sidewall IW protrudes in a direction approaching the corresponding light emitting device 120 .
  • a portion of the inner sidewall IW of the ring pattern 131 is in an arc shape.
  • the inner sidewall IW of the ring pattern 131 is in an arc shape.
  • the light emitted by the light-emitting device 120 When the light emitted by the light-emitting device 120 is incident on at least part of the inner wall IW, the light can be reflected on the inner wall IW and emitted roughly in the light-emitting direction of the light-emitting substrate 100, thereby increasing the reflectivity of the reflective layer 130 and improving the light efficiency of the light-emitting substrate 100.
  • At least a portion of the outer sidewall OW of the annular pattern 131 is in an arc shape.
  • one annular pattern 131 corresponds to one light emitting device 120 , and the arc-shaped outer side wall OW protrudes in a direction away from the corresponding light emitting device 120 .
  • a portion of the outer side wall OW of the ring pattern 131 is in an arc shape.
  • the outer side wall OW of the ring pattern 131 is in an arc shape.
  • At least a portion of the inner sidewall IW of the annular pattern 131 is in an arc shape; and, at least a portion of the outer sidewall OW of the annular pattern 131 is in an arc shape.
  • the outer boundary line of the positive projection of the annular pattern 131 on the substrate 110 includes at least one outer curve segment EC, and the outer curve segment EC protrudes in a direction away from the corresponding light-emitting device 120; and/or, the inner boundary line of the positive projection of the annular pattern 131 on the substrate 110 includes at least one inner curve segment NC, and the inner curve segment NC protrudes in a direction close to the corresponding light-emitting device 120.
  • an outer boundary line of an orthographic projection of the ring pattern 131 on the substrate 110 includes at least one outer curve segment EC, and the outer curve segment EC protrudes in a direction away from the corresponding light emitting device 120 .
  • the outer curve segment EC is a curved line segment.
  • the corresponding light emitting device 120 mentioned above refers to a light emitting device corresponding to the annular pattern 131 .
  • the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes an outer curve segment EC, a part of the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is a curve segment, and another part of the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 can be a straight line segment.
  • the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes multiple outer curve segments EC.
  • a part of the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is a plurality of curve segments, or the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is a plurality of interconnected curve segments.
  • the inner boundary line of the orthographic projection of the ring pattern 131 on the substrate 110 includes at least one inner curve segment NC, and the inner curve segment NC protrudes in a direction approaching the corresponding light emitting device 120 .
  • the inner curve segment NC is a curved line segment.
  • the corresponding light emitting device 120 mentioned above refers to a light emitting device corresponding to the annular pattern 131 .
  • the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes an inner curve segment NC, that is, a part of the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is a curve segment, and the other part of the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 can be a straight line segment.
  • the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes a plurality of inner curve segments NC, that is, a portion of the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 is a plurality of curve segments, or the inner boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 as a whole is a plurality of curve segments connected to each other.
  • the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes at least one outer curve segment EC, which protrudes in a direction away from the corresponding light-emitting device 120.
  • the outer boundary line of the orthographic projection of the annular pattern 131 on the substrate 110 includes at least one inner curve segment NC, which protrudes in a direction close to the corresponding light-emitting device 120.
  • the outer curve segment and the inner curve segment of the annular pattern 131 are reflected and emitted roughly in the light emitting direction of the light-emitting substrate 100, thereby avoiding the loss of light and improving the light efficiency of the light-emitting substrate 100.
  • the surface of the ring pattern 131 away from the substrate 110 has a plurality of protrusion structures 137 .
  • the surface of the annular pattern 131 away from the substrate 110 is a non-flat surface.
  • the protruding structure 137 is a morphological feature brought by the preparation method of the reflective layer 130 .
  • the light emitted by the light emitting device 120 can be reflected on the above convex structure 137, thereby improving the uniformity of the light emitted by the light emitting substrate 100.
  • the protrusion structures 137 have a certain height.
  • the heights of the plurality of protrusion structures 137 are determined by the specific preparation method and preparation process of the reflective layer 130.
  • the heights of the plurality of protrusion structures 137 may be the same or different.
  • the height of the protrusion structure 137 close to the corresponding light emitting device 120 may be less than or equal to the height of the protrusion structure 137 far from the corresponding light emitting device 120 .
  • the annular pattern 131 includes a first ring portion 138 and a second ring portion 139 connected to each other.
  • the first ring portion 138 surrounds at least a portion of the light emitting device 120
  • the second ring portion 139 surrounds the light emitting device 120 and the first ring portion 138; the thickness of the first ring portion 138 is less than or equal to the thickness of the second ring portion 139.
  • the first ring portion 138 surrounds a portion of the light emitting device 120, and the first ring portion 138 may be located at two opposite sides of the light emitting device 120 along the first direction X.
  • the first ring portion 138 may also be located at two opposite sides of the light emitting device 120 along the second direction Y.
  • the inner sidewall of the first ring portion 138 constitutes a portion of the inner sidewall of the annular pattern 131
  • a portion of the inner sidewall of the second ring portion 139 constitutes another portion of the inner sidewall of the annular pattern 131
  • the outer sidewall of the second ring portion 139 constitutes the outer sidewall of the annular pattern 131.
  • the first ring portion 138 surrounds the light emitting device 120 .
  • the inner sidewall of the first ring portion 138 constitutes the inner sidewall of the ring pattern 131 .
  • the outer sidewall of the second ring portion 139 constitutes the outer sidewall of the ring pattern 131 .
  • the second ring portion 139 and the first ring portion 138 may be concentric rings, and the outer wall of the first ring portion 138 is connected to the inner wall of the second ring portion 139 .
  • the thickness of the first ring portion 138 may be smaller than the thickness of the second ring portion 139 .
  • the thickness of the first ring portion 138 may be equal to the thickness of the second ring portion 139 .
  • the above thickness refers to the average thickness of the annular pattern 131 .
  • the preparation accuracy of the first ring portion 138 can be higher, and the distance between the inner wall of the ring pattern 131 and the corresponding light-emitting device 120 can be better controlled, thereby better controlling the morphology accuracy of the prepared ring pattern 131, and further improving the preparation accuracy of the reflective layer 130 and the light-emitting substrate 100.
  • a distance d3 between the inner sidewall of the ring pattern 131 and the light emitting device 120 ranges from 0 ⁇ m to 300 ⁇ m.
  • the distance d3 between the inner sidewall of the ring pattern 131 and the light emitting device 120 may be 0 ⁇ m, 10 ⁇ m, 50 ⁇ m, 200 ⁇ m or 300 ⁇ m.
  • the distance between the inner wall of the annular pattern 131 and the light-emitting device 120 can be relatively small, so that the sum of the areas of the multiple annular patterns 131 in the reflective layer 130 is larger, and thus the area of the reflective structure composed of the reflective layer 130 and the reflective sheet 140 is larger, and thus the reflective area and reflectivity of the reflective structure can be increased, thereby reducing the light loss of the light-emitting substrate 100 and improving the light efficiency of the light-emitting substrate 100.
  • a minimum distance d4 between the first opening 141 and the light emitting device 120 is greater than or equal to 500 ⁇ m.
  • the minimum distance d4 between the first opening 141 and the light emitting device 120 may be 500 ⁇ m, 700 ⁇ m, 1000 ⁇ m, 1500 ⁇ m or 2000 ⁇ m.
  • the light emitting substrate 100 further includes: a packaging layer 150 located on a side of the plurality of light emitting devices 120 away from the substrate 110 .
  • the packaging layer 150 includes a plurality of packaging patterns 151 .
  • the material of the encapsulation layer 150 may be encapsulation glue, which may be a transparent material.
  • the plurality of encapsulation patterns 151 in the encapsulation layer 150 are arranged at intervals, and the plurality of encapsulation patterns 151 are independent and not connected to each other.
  • an orthographic projection of a light emitting device 120 on the substrate 110 is located within a range of an orthographic projection of a package pattern 151 on the substrate 110 .
  • one packaging pattern 151 is disposed corresponding to one light emitting device 120 .
  • one encapsulation pattern 151 covers a corresponding one of the light emitting devices 120 .
  • the encapsulation pattern 151 in the encapsulation layer 150 can encapsulate the light-emitting device 120 , thereby preventing external water and oxygen from invading the interior of the light-emitting device 120 and affecting the light emission of the light-emitting device 120 .
  • an orthographic projection of a package pattern 151 on the substrate 110 overlaps with an orthographic projection of a ring pattern 131 on the substrate 110 .
  • one encapsulation pattern 151 is disposed corresponding to one light emitting device 120 , and one light emitting device 120 is disposed corresponding to one annular pattern 131 , and thus one encapsulation pattern 151 is also disposed corresponding to one annular pattern 131 .
  • one encapsulation pattern 151 covers a portion of one ring pattern 131 .
  • the packaging pattern 151 can be used to protect the annular pattern 131, and the packaging pattern 151 can also be used to increase the bonding strength between the annular pattern 131 and the substrate 110, thereby avoiding edge warping of the annular pattern 131, avoiding affecting the reflection of light emitted by the light-emitting device 120 by the annular pattern 131, and ensuring the reflectivity of the annular pattern 131.
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 partially overlaps with the orthographic projection of the reflective sheet 140 on the substrate 110 .
  • one first opening 141 on the reflector 140 is provided corresponding to one light emitting device 120, and thus one first opening 141 is provided corresponding to one packaging pattern 151.
  • Each packaging pattern 151 covers a portion of the reflector 140 located around each first opening 141. In other words, each packaging pattern 151 overlaps a portion of the reflector 140 around each first opening 141.
  • the encapsulation pattern 151 can be used to protect the reflective sheet 140, and the encapsulation pattern 151 can also be used to increase the bonding strength between the reflective sheet 140 and the substrate 110 or the reflective layer 130, so as to avoid the edge of the reflective sheet 140 from warping, etc., and avoid affecting the reflective sheet 140 from reflecting the light emitted by the light-emitting device 120, thereby ensuring the reflectivity of the reflective sheet 140.
  • the thickness of the reflective sheet 140 is generally greater than 100 ⁇ m
  • the thickness of the reflective layer 130 is in the range of 50 ⁇ m to 80 ⁇ m, and the reflectivity of the reflective sheet 140 is greater than or equal to the reflectivity of the reflective layer 130.
  • the orthographic projection of a packaging pattern 151 on the substrate 110 overlaps with the orthographic projection of a ring pattern 131 on the substrate 110
  • the orthographic projection of the packaging pattern 151 on the substrate 110 partially overlaps with the orthographic projection of the reflective sheet 140 on the substrate 110.
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 does not overlap with the orthographic projection of the reflective sheet 140 on the substrate 110 .
  • a boundary line of an orthographic projection of the encapsulation pattern 151 on the substrate 110 does not intersect a boundary line of an orthographic projection of the reflection sheet 140 on the substrate 110 .
  • the opening area of the first opening 141 of the reflector 140 in the above-mentioned setting method can be relatively large, thereby reducing the attachment accuracy of the reflector 140 and reducing the difficulty of the preparation process of the light-emitting substrate 100.
  • the first opening 141 has a variety of shapes, which can be selected according to actual needs.
  • the shape and size of the first opening 141 can be selected according to the structure of the reflective layer 130, the shape and size of the light emitting device 120, etc.
  • the shape of the orthographic projection of the package pattern 151 on the substrate 110 may be a circle, for example, the diameter of the circle may be 2.5 mm.
  • the shape of the first opening 141 includes a rectangle or a circle.
  • the shape of the first opening 141 may be circular.
  • a circular first opening 141 may be selected.
  • the circular first opening 141 is easier to process and shape, and during the attachment process of the reflector 140, the first opening 141 can better release the attachment stress applied by the outside world, thereby reducing the difficulty of attaching the reflector 140 and improving the preparation efficiency of the light-emitting substrate 100.
  • the diameter of the circular first opening 141 may be in the range of 3.5 mm to 5 mm.
  • the diameter of the circular first opening 141 may be 3.5 mm, 3.8 mm, 4.2 mm, 4.7 mm, or 5 mm.
  • the diameter of the circular first opening 141 may also be less than or equal to 2 mm.
  • the diameter of the circular first opening 141 may be 1.0 mm, 1.2 mm, 1.5 mm, 1.7 mm, or 2 mm.
  • the shape of the first opening 141 may be a rectangle.
  • a rectangular first opening 141 may be selected.
  • the length of any side of the rectangular first opening 141 may range from 1 mm to 10 mm.
  • the length of any side of the rectangular first opening 141 may be 1 mm, 2 mm, 5 mm, 7 mm, or 10 mm.
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 is a circle with a diameter of 2.5 mm as an example
  • the first opening 141 is a circle with a diameter less than 2 mm
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 overlaps with the orthographic projection of the reflector 140 on the substrate 110.
  • the first opening 141 is a circle with a diameter greater than 2 mm
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 does not overlap with the orthographic projection of the reflector 140 on the substrate 110.
  • the light emitting substrate 100 further includes: a plurality of driving chips 160 disposed on one side of the substrate 110 and located on the same side of the substrate 110 as the plurality of light emitting devices 120 .
  • a driver chip 160 is electrically connected to at least one light emitting device 120 , and the driver chip 160 is configured to drive the at least one light emitting device 120 to emit light.
  • one driving chip 160 may be electrically connected to one light emitting device 120 and drive the light emitting device 120 to emit light.
  • one driving chip 160 may be electrically connected to four light emitting devices 120 and drive the four light emitting devices 120 to emit light.
  • one driving chip 160 may be electrically connected to nine light emitting devices 120 and drive the nine light emitting devices 120 to emit light.
  • the orthographic projection of at least one driver chip 160 on the substrate 110 is within the orthographic projection range of the reflective sheet 140 on the substrate 110. At least one driver chip 160 is covered by the reflective sheet 140, and the remaining driver chips 160 may be exposed through the first opening 141 of the reflective sheet 140.
  • a corresponding annular pattern 131 of the reflective layer 130 may be disposed around the portion of the driver chip 160.
  • the structural features of the annular pattern 131 may refer to the description of the annular pattern 131 in some of the above embodiments, which will not be described again.
  • the reflective layer 130 may not be disposed around the driver chip 160 covered by the reflective sheet 140.
  • the orthographic projections of the plurality of driving chips 160 on the substrate 110 are located within the orthographic projection range of the reflective sheet 140 on the substrate 110 .
  • the number of the first openings 141 on the reflective sheet 140 can be reduced, thereby simplifying the manufacturing process of the reflective sheet 140, and the number of the annular patterns 131 in the reflective layer 130 can be reduced, thereby simplifying the manufacturing process of the reflective layer 130.
  • the reflective sheet 140 can also play a certain protective role for the driver chip 160, preventing the driver chip 160 from being corroded or leaking due to the invasion of external water vapor.
  • the light emitting substrate 100 further includes a binding structure 170 .
  • the binding structure 170 is electrically connected to the driving chip 160 , for example.
  • the binding structure 170 is located on one side close to the edge of the light-emitting substrate 100.
  • the binding structure 170 is used to transmit different types of working signals to the driver chip 160, and the driver chip 160 can generate a driving signal according to the different types of working signals, and transmit the driving signal to the corresponding light-emitting device 120, thereby driving the light-emitting device 120 to emit light.
  • the area where the binding structure 170 is located is not covered by the reflective layer 130 and the reflective sheet 140 .
  • the binding structure 170 can be bound to a PCB (Printed Circuit Board) or FPC (Flexible Printed Circuit) by using COF (Chip On Film).
  • PCB Printed Circuit Board
  • FPC Flexible Printed Circuit
  • beneficial effects that can be achieved by the backlight module and the display device provided in some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the light-emitting substrate provided in some of the above embodiments, and will not be repeated here.
  • Some embodiments of the present disclosure further provide a method for preparing the above-mentioned light-emitting substrate 100 . As shown in FIG. 10 , the method includes: S100 to S400 .
  • S100 as shown in FIG. 11 a , provides a substrate 110 .
  • a plurality of light emitting devices 120 are fixed on the substrate 110 .
  • a plurality of light emitting devices 120 may be fixed on the substrate 110 by using a die bonding process.
  • the light emitting device 120 may be: LED, Micro LED, Mini LED, etc.
  • the structure of the Mini LED may include a face-up structure, a vertical structure or an inverted structure.
  • the plurality of light emitting devices 120 may be relatively evenly distributed on the substrate 110 , so that the light emitted from the entire surface of the light emitting substrate 100 is relatively even, thereby improving the display quality of the backlight module 10 and the display device 1 .
  • a reflective layer 130 is formed on the substrate 110 by using a 3D printing process.
  • the reflective layer 130 has a plurality of annular patterns 131 arranged at intervals.
  • a light emitting device 120 is located inside the inner side wall of one annular pattern 131 .
  • the material of the reflective layer 130 may include epoxy resin, phenyl silicone resin, polytetrafluoroethylene resin, etc.
  • the disclosed embodiment can use a 3D printing device to perform a 3D printing process.
  • the 3D printing device includes a plurality of print nozzles with the same function, and a print nozzle valve is provided on the print nozzle.
  • the material of the reflective layer 130 is placed in the 3D printing device after a certain pretreatment, and then the state of the print nozzle valve is controlled to move the print nozzle according to the set printing path on the substrate 110, so that the material of the reflective layer 130 is sprayed out from the print nozzle valve in a dot-like manner.
  • the reflective layer material dripped in a dot-like manner drips onto the substrate 110 and then adheres together to form a linear reflective layer material.
  • Adjacent linear reflective layer materials are connected to form a planar reflective layer material to form a printed pattern. The entirety of all printed patterns forms the reflective layer 130.
  • 3D printing has a high degree of freedom, and the printing nozzle and the substrate 110 to be printed are non-contact glue discharge, and the dimensional accuracy of the reflective layer 130 formed by printing and the dimensional accuracy of the opening are high, which is conducive to improving the area ratio of the substrate 110 occupied by the reflective layer 130, thereby improving the reflectivity of the reflective layer 130 and improving the utilization rate of the light emitted by the light-emitting device 120.
  • 3D printing can also centrally seal and provide reflective layer materials, so that the loss rate of the reflective layer materials is low during the preparation process, generally less than about 5%.
  • the 3D printing process to prepare the reflective layer 130 can greatly reduce the material cost of the reflective layer, thereby reducing the preparation cost of the light-emitting substrate 100, the backlight module 10 and the display device 1.
  • the thickness of the printed pattern formed by a single print can already meet the reflection effect, therefore, the process flow of the reflective layer 130 can be greatly simplified, and the preparation time of the reflective layer 130 can be shortened, thereby improving the preparation efficiency of the reflective layer 130 and the preparation efficiency of the light-emitting substrate 100.
  • shortening the preparation time of the reflective layer 130 can also reduce the utilization rate of the 3D printing equipment, thereby increasing the life of spare parts of the 3D printing equipment by more than about 80%.
  • a reflective sheet 140 is attached to a side of the reflective layer 130 away from the substrate 110.
  • the reflective sheet 140 has a plurality of first openings 141, each first opening 141 exposes one annular pattern 131, and in a direction perpendicular to the substrate 110, an outer sidewall of the annular pattern 131 surrounds a corresponding first opening 141, and an inner sidewall of the annular pattern 131 is located in the corresponding first opening 141.
  • the first opening 141 on the reflective sheet 140 may be aligned with the light emitting device 120 and the annular pattern 131 on the substrate 110 before being attached.
  • the plurality of first openings 141 are arranged in a plurality of columns along the first direction X, and are arranged in a plurality of rows along the second direction Y.
  • the distance between the side wall of the first opening 141 and the corresponding light emitting device 120 is greater than or equal to the distance between the inner side wall of the corresponding ring pattern 131 and the light emitting device 120 .
  • the reflective layer 130 is formed after the solid crystal process (here refers to the process of fixing the light-emitting device 120 on the substrate 110), the reflective layer material can be less deposited or almost not deposited on the pad connected to the light-emitting device 120 (the residue of the reflective layer material on the pad is reduced by about 80%), thereby avoiding the phenomenon of light failure or cold soldering caused by the reflective layer material being deposited on the pad when the reflective layer 130 is formed first, thereby improving the preparation yield of the light-emitting substrate 100.
  • the above-mentioned preparation method can also avoid the phenomenon that when the reflective layer is formed before the solid crystal process, the reflective layer material is subjected to the high temperature of the reflow process in the solid crystal process, causing the reflective layer material to oxidize and turn yellow, thereby avoiding a reduction in the reflectivity of the reflective layer 130, and further improving the light efficiency of the reflective layer 130, improving the luminous efficiency of the light-emitting substrate 100, and further improving the display brightness of the backlight module 10 and the display device 1, and reducing the power consumption of the backlight module 10 and the display device 1.
  • the reflective layer 130 formed in the preparation method of the present disclosure includes a plurality of annular patterns 131 arranged at intervals, and a light-emitting device 120 is located within the inner side wall of an annular pattern 131, that is, the reflective layer 130 is arranged only in a local area on the substrate 110 (only in the area around the light-emitting device 120 on the substrate), and then a reflective sheet 140 is attached to the reflective layer 130, and a first opening 141 is arranged on the reflective sheet 140 to expose an annular pattern 131, and in a direction perpendicular to the substrate 110, the outer side wall of the annular pattern 131 surrounds the corresponding first opening 141, and the inner side wall of the annular pattern 131 is located within the corresponding first opening 141, so that the effective area (the effective area refers to the sum of the areas of the plurality of annular patterns) of the reflective layer 130 on the light-emitting substrate 100 is reduced, thereby reducing the amount of reflective layer material used, shortening the preparation time of
  • the reflective sheet 140 attached in the preparation method of the present invention has multiple first openings 141.
  • one first opening 141 exposes an annular pattern 131, and in the direction perpendicular to the substrate 110, the outer side wall of the annular pattern 131 surrounds the corresponding first opening 141, and the inner side wall of the annular pattern 131 is located in the corresponding first opening 141, so that the part of the reflective sheet 140 close to the first opening 141 overlaps the annular pattern 131 of the reflective layer 130, so that the reflective area of the reflective structure composed of the reflective sheet 140 and the reflective layer 130 is larger, and the gap between the reflective structure and the light-emitting device is smaller, thereby improving the reflectivity of the reflective structure, reducing the light consumption of the light-emitting substrate 100, improving the light efficiency of the reflective structure and the light-emitting substrate 100, and reducing the light consumption of the display device 1.
  • the preparation method of the above-mentioned reflective layer 130 can also be a screen printing process combined with a dot filling process, or a screen printing process combined with an exposure and development process.
  • the steps of preparing the light-emitting substrate 100 may be: material preparation ⁇ screen printing process ⁇ die bonding ⁇ dot filling ⁇ attaching a reflective sheet, etc.
  • the reflective layer 130 formed by the above preparation method has a spacing between the reflective layer 130 and the light-emitting device 120 of about 0.30 mm ⁇ 0.15 mm, and the thickness of the reflective pattern formed by a single screen printing is about 30 ⁇ m ⁇ 5 ⁇ m, and in order to make the reflective layer reach a certain thickness, for example, 55 ⁇ m, two screen printing processes are required.
  • the reflectivity of the reflective layer 130 formed by the preparation method (the reflectivity is the reflectivity of blue light with a test wavelength of 450 nm) is about 92%.
  • the spacing between the reflective layer 130 and the light-emitting device 120 is large, the reflectivity of the reflective layer is low, the optical effect of the reflective layer is relatively poor, and the loss rate of the reflective layer material is as high as 30%.
  • the steps of preparing the light-emitting substrate 100 may be: material preparation ⁇ screen printing process ⁇ exposure ⁇ development ⁇ crystal bonding, etc.
  • the reflective layer 130 formed by the above preparation method has a spacing between the reflective layer 130 and the light-emitting device 120 of about 0.05mm ⁇ 0.03mm, and the thickness of the reflective pattern formed by a single screen printing is about 30 ⁇ m ⁇ 5 ⁇ m, and in order to make the reflective layer reach a certain thickness, for example, 55 ⁇ m, two screen printing processes are required.
  • the reflectivity of the reflective layer 130 formed by the preparation method (the reflectivity is the reflectivity of the blue light with a wavelength of 450nm) is about 92%.
  • the spacing between the reflective layer formed by the preparation method and the light-emitting device is reduced, but the production capacity of two screen printings and two exposure and development is required, which makes the preparation cost of the reflective layer high, and the loss rate of the reflective layer material is as high as 30%.
  • a 3D printing process is used to form a reflective layer 130 on the substrate 110, and a reflective pattern of the required thickness can be formed in one printing (the thickness of the reflective layer material in one printing ranges from 30 ⁇ m to 100 ⁇ m), thereby reducing the production capacity loss of the light-emitting substrate 100, and the printing cost is low, thereby reducing the preparation cost of the reflective layer and the light-emitting substrate.
  • the reflective layer of the preparation method is formed after solid crystal, and the risk of reducing the reflectivity of the reflective layer 130 due to the reflow process in the solid crystal process can be avoided, thereby improving the light efficiency of the reflective layer 130, improving the luminous efficiency of the light-emitting substrate 100, and thereby improving the display brightness of the backlight module 10 and the display device 1, and reducing the power consumption of the backlight module 10 and the display device 1.
  • the reflectivity of the reflective layer in the present disclosure is about 93.5% (the reflectivity is the reflectivity of the blue light with a wavelength of 450 nm), which is greater than the reflectivity of the reflective layer formed by the above-mentioned screen printing preparation, and the loss rate of the reflective layer material is less than 5%.
  • the reflective layer material ejected by the 3D printing device drips onto the substrate in a dotted shape, forming a circular pattern on the substrate, and a plurality of adjacent circular patterns partially overlap to form a printed pattern.
  • the amount of the reflective layer material ejected by the printing nozzle of the printing device can be adjusted according to actual needs to control the size of the circular pattern formed on the substrate.
  • the 3D printing device can adjust the printing valve to eject a larger dot-shaped reflective layer material onto the substrate, thereby reducing the number of printing times of the printing device and improving the printing efficiency.
  • a small dot printing method (the small dot printing method refers to a printing method that makes the printing valve eject a smaller dot-shaped reflective layer material) can be used, so that the precision of the formed annular pattern can be accurately controlled; and in the area far away from the light-emitting device 120 (for example, the second sub-area P02 hereinafter), a large dot printing method (the large dot printing method refers to a printing method that makes the printing valve eject a larger dot-shaped reflective layer material) can be used, thereby improving the preparation efficiency of the annular pattern 131.
  • a large dot printing method can be used to print the annular pattern 131, thereby reducing the number of printing times of the printing device and improving the printing efficiency.
  • the thickness of the printed pattern formed by the large dot printing method is greater than the thickness of the printed pattern formed by the small dot printing method.
  • the preparation method of the reflective layer 130 may further include: forming the first portion and the connection portion by a screen printing process; forming the second portion by a screen printing process and a dot filling process; the first portion and the second portion form an annular pattern 131, and the annular pattern 131 and the connection portion form the reflective layer 130.
  • connection portion protect the surface of the substrate 110 to prevent water vapor from intruding, but also the amount of reflective layer material used can be reduced, and the annular pattern 131 can have a sufficient thickness, thereby ensuring the light effect of the annular pattern 131 and improving the light effect of the light-emitting substrate 100.
  • the reflective layer in some embodiments of the present disclosure is formed by the above-mentioned 3D printing process, some structural and morphological features of the reflective layer 130 are unique to the 3D printing process.
  • the edge of the annular pattern formed by the 3D printing process has a specific morphology and printing texture.
  • the morphological features of a single print bar are shown in Figure 12f, and the edge of the print bar is a plurality of connected curved segments. Multiple print bars overlap and connect to form a print pattern as shown in Figure 12g.
  • the edge of the print pattern is a plurality of connected curved shapes, which are wavy. This is a unique morphology of the print pattern formed by 3D printing in some embodiments of the present disclosure.
  • the angle ⁇ between at least part of the inner sidewall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle; and/or, the angle ⁇ between at least part of the outer sidewall of the annular pattern 131 and the plane where the substrate 110 is located is an acute angle (see FIG5b).
  • the features of the angle ⁇ and the angle ⁇ can be referred to the introduction in some of the above embodiments of this article, and will not be repeated here.
  • At least a portion of the inner sidewall of the annular pattern 131 is in an arc shape; and/or, at least a portion of the outer sidewall of the annular pattern 131 is in an arc shape.
  • the inner sidewall of the annular pattern 131 being in an arc shape and the outer sidewall of the annular pattern being in an arc shape, reference can be made to the description of some of the above embodiments of this document, which will not be repeated here.
  • the outer boundary line of the positive projection of the annular pattern 131 on the substrate 110 includes at least one outer curve segment, and the outer curve segment protrudes in a direction away from the corresponding light-emitting device; and/or, the inner boundary line of the positive projection of the annular pattern on the substrate includes at least one inner curve segment, and the inner curve segment protrudes in a direction close to the corresponding light-emitting device.
  • the inner curve segment and the outer curve segment reference can be made to the introduction in some of the above embodiments of this document, and no further description is given here.
  • the surface of the annular pattern 131 away from the substrate 110 has a plurality of raised structures 137. Since 3D printing can prepare the reflective layer by combining the above-mentioned large dot printing method and small dot printing method, the morphology of the raised structures 137 on the surface of the annular pattern 131 away from the substrate 110 is different. The height of the raised structures 137 on the printed pattern formed by the large dot printing method is greater than the height of the raised structures 137 on the printed pattern formed by the small dot printing method.
  • the thickness of the reflective layer 130 in a direction perpendicular to the substrate 110 ranges from 50 ⁇ m to 80 ⁇ m.
  • a distance d3 between the inner sidewall of the ring pattern 131 and the light emitting device 120 ranges from 0 ⁇ m to 300 ⁇ m.
  • a minimum distance d4 between the first opening 141 and the light emitting device 120 is greater than or equal to 500 ⁇ m.
  • the plurality of light emitting devices 120 are arranged into a plurality of columns along the first direction X, and are arranged into a plurality of rows along the second direction Y; the first direction X and the second direction Y intersect.
  • the substrate 110 has a plurality of first printing regions P1 , and one first printing region P1 surrounds one light emitting device 120 .
  • the shape of the first printing area P1 may be ring-shaped.
  • the plurality of first printing areas P1 are arranged in a plurality of columns along the first direction X, and are arranged in a plurality of rows along the second direction Y.
  • any row of the first printing area P1 includes a plurality of first printing areas P1 sequentially arranged at intervals along the first direction X.
  • Any column of the first printing area P1 includes a plurality of first printing areas P1 sequentially arranged at intervals along the second direction Y.
  • the 3D printing process is used in the above S300, and forming a reflective layer on the substrate includes S310.
  • a ring pattern 131 is formed in the first printing area P1 by adopting a wrap-around printing process.
  • a plurality of ring patterns 131 form a reflective layer 130 .
  • the 3D printing device needs to set a printing path before printing.
  • the surround printing process means that the printing path of the 3D printing device is non-linear as a whole, and after printing is completed, the overall outline of the printed pattern formed is a closed ring or a part of a ring.
  • the printing nozzle valve can be a piezoelectric valve or a solenoid valve.
  • the printing frequency of the 3D printing device controlled by the piezoelectric valve is 300Hz to 600Hz, the printing frequency is relatively high, and the glue output of the printing nozzle is relatively small, and there will be no tailing phenomenon at the starting printing position, so that a high-precision printing effect can be obtained, so that the thickness of the printed pattern formed by printing is relatively small, and the morphological accuracy of the annular pattern 131 can be improved, so that the spacing between the annular pattern 131 and the light-emitting device 120 can be accurately controlled, and the spacing between the light-emitting device 120 and the annular pattern 131 can be relatively small or even zero, and the reflectivity of the reflective layer 130 can be improved, the light efficiency of the light-emitting substrate 100 can be improved, and the power consumption of the backlight module 10 and the display device 1 can be reduced.
  • the annular pattern 131 formed by the above-mentioned preparation method has a positive projection shape on the substrate 110 that is a “U” shape.
  • a plurality of light-emitting devices 120 are evenly arranged on the substrate 110, the spacing between two adjacent light-emitting devices 120 is 10 mm, the number of light-emitting devices 120 is 100, and the area of the light-emitting region in the light-emitting substrate 100 is 10000 mm2 (the light-emitting region is a square with a side length of 100 mm and an area of 100 mm*100 mm).
  • a reflective layer is prepared on the light-emitting substrate 100, and a second opening is provided on the reflective layer, and the second opening corresponds to the light-emitting device.
  • the number of the second openings is 100, and the shape of the second opening can be a square with a side length of 1 mm.
  • the area of the reflective layer to be printed is 9900 mm2 (the area is obtained by the difference between the area of the light-emitting region 10000 mm2 and the area of 100 second openings and 100 mm2).
  • the reflective layer 130 is a plurality of annular patterns 131, and the annular pattern 131 is the above-mentioned "U"-shaped structure.
  • the side length of the square formed by the outer side wall of the annular pattern 131 is 4 mm, and the side length of the square formed by the inner side wall of the annular pattern 131 is 1 mm.
  • the area of the reflective layer 130 to be printed is 1500 mm2 (the area is the sum of the areas of 100 annular patterns 131), and the area of the reflective layer 130 formed by printing is 1500 mm2, which is much smaller than the above-mentioned 9900 mm2 . It can be seen that compared with the design of the reflective layer in one implementation, the area of the reflective layer in the present disclosure is reduced by 85%, thereby saving about 85% of the material cost of the reflective layer.
  • the first printing area P1 includes: a first sub-area P01 and a second sub-area P02 .
  • the first sub-area P01 is closer to the light emitting device 120 than the second sub-area P02 ; the first sub-area P01 surrounds at least a portion of the light emitting device 120 , and the second sub-area P02 surrounds the light emitting device 120 .
  • the first sub-region P01 surrounds a portion of the light emitting device 120.
  • the first sub-region P01 may be located at two opposite sides of the light emitting device 120 along the first direction X, or the first sub-region P01 may be located at two opposite sides of the light emitting device 120 along the second direction Y.
  • the first sub-region P01 surrounds the light emitting device 120.
  • the first sub-region P01 is a ring-shaped region.
  • the second sub-region P02 surrounds the first sub-region P01, and the first sub-region P01 and the second sub-region P02 are connected to each other.
  • a surround printing process is used in the above S310 to form a ring pattern in the first printing area, including S311 to S312 .
  • a first ring portion 138 is formed by printing in the first sub-area P01 using a surrounding printing process or a dotted line printing process; the first ring portion 138 surrounds at least a portion of the light emitting device 120 .
  • a circumferential printing process may be used to print and form the first ring portion 138 in the first sub-area P01.
  • a dotted line printing process may also be used to print and form the first ring portion 138 in the first sub-area P01.
  • the above-mentioned dotted line printing process refers to that the 3D printing device moves along a set printing path, and the printing nozzle valve is intermittently opened or closed. After completing one printing, the shape of the printed pattern formed is discontinuous and intermittent, similar to a dotted line shape.
  • the printing nozzle valve can be a pneumatic valve.
  • the printing frequency of the 3D printing device controlled by the pneumatic valve is 20Hz to 50Hz.
  • the cost of spare parts of the printing device is low, which can reduce the cost of preparing the reflective layer 130, thereby reducing the preparation cost of the light-emitting substrate 100.
  • a second ring portion 139 is formed by printing in the second sub-area P02 using a surrounding printing process.
  • the second ring portion 139 surrounds the light-emitting device 120 and the first ring portion 138.
  • the thickness of the first ring portion 138 is less than or equal to the thickness of the second ring portion 139; the first ring portion 138 is connected to the second ring portion 139 to form a ring pattern 131.
  • the glue output of the printing device can be reduced first, so that the size of the dot-shaped material ejected from the printing nozzle of the printing device is smaller, thereby more accurately controlling the structural characteristics and morphological characteristics of the first ring portion 138 formed by the dot-shaped material, thereby making the morphology of the inner wall of the formed ring pattern 131 more precise, thereby accurately controlling the distance between the inner wall of the ring pattern 131 and the light-emitting device 120 to be smaller, thereby ensuring that the reflectivity of the reflective layer 130 is higher.
  • the annular pattern 131 printed and formed is in the shape of a Chinese character “ ⁇ ”.
  • the cost of the reflective layer material can be reduced during the preparation process, and the morphology of the formed annular pattern 131 can be made more precise, so that the distance between the inner wall of the annular pattern 131 and the light-emitting device 120 can be as small as possible, thereby improving the reflectivity of the annular pattern 131, improving the light efficiency of the light-emitting device 120, avoiding large light consumption, and reducing the energy consumption of the display device 1.
  • the substrate 110 has a plurality of second printing areas P2 and a plurality of third printing areas P3 extending along the first direction X, and a plurality of fourth printing areas P4 and a fifth printing area P5 extending along the second direction Y.
  • the second printing areas P2 and the third printing areas P3 are respectively disposed on opposite sides of the light emitting device 120 along the second direction Y
  • the fourth printing areas P4 and the fifth printing areas P5 are respectively disposed on opposite sides of the light emitting device 120 along the first direction X.
  • the 3D printing process is used in the above S300 , and forming a reflective layer on the substrate includes S320 to S350 .
  • a first sub-portion 132 is formed in a second printing area P2 on one side of each light emitting device 120 by using a dotted line printing process.
  • the printing valve of the 3D printing device can be opened to spray the reflective layer material to form the first sub-section 132.
  • the printing valve of the 3D printing device can be closed.
  • a third sub-portion 134 is formed in a third printing area P3 on one side of each light emitting device 120 by adopting a dotted line printing process.
  • the printing valve of the 3D printing device can be opened to spray the reflective layer material to form the third sub-section 134.
  • the printing valve of the 3D printing device can be closed.
  • a second sub-portion 133 is formed in a fourth printing area P4 on one side of each light emitting device 120 by adopting a dotted line printing process.
  • the printing valve of the 3D printing device can be opened to spray the reflective layer material to form the second sub-section 133.
  • the printing valve of the 3D printing device can be closed.
  • a fourth sub-portion 135 is formed in the fifth printing area P5 on one side of each light emitting device 120 by using a dotted line printing process.
  • the first sub-portion 132, the second sub-portion 133, the third sub-portion 134 and the fourth sub-portion 135 located around the same light emitting device 120 are connected to form a ring pattern 131 of the reflective layer 130.
  • the printing valve of the 3D printing device can be opened to spray the reflective layer material to form the fourth sub-section 135.
  • the printing valve of the 3D printing device can be closed.
  • the first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 located around the same light emitting device 120 may be connected end to end in sequence.
  • the annular pattern 131 printed by the above preparation method is in the shape of a Chinese character " ⁇ ".
  • first sub-section 132, the second sub-section 133, the third sub-section 134 and the fourth sub-section 135 located around the same light emitting device 120 may also be cross-connected in sequence.
  • the annular pattern 131 printed by the above preparation method is in a "well" shape.
  • the printing nozzle valve can be a pneumatic valve, and the printing frequency of the 3D printing device controlled by the pneumatic valve is 20Hz to 50Hz. The accuracy of the printing starting area can be ignored, thereby reducing the printing cost and the preparation cost of the light-emitting substrate 100.
  • first sub-portion 132, the second sub-portion 133, the third sub-portion 134 and the fourth sub-portion 135 in the above-mentioned annular pattern 131 are formed in one composition process, and the first sub-portion 132, the second sub-portion 133, the third sub-portion 134 and the fourth sub-portion 135 are an integrated structure.
  • the preparation efficiency of the reflective layer 130 can be improved, and the preparation time of the light-emitting substrate 100 can be shortened, thereby improving the preparation efficiency of the light-emitting substrate 100 .
  • the substrate 110 has a plurality of sixth printing areas P6 and a plurality of seventh printing areas P7 extending along the first direction X, and a plurality of eighth printing areas P8 and a plurality of ninth printing areas P9 extending along the second direction Y; the sixth printing area P6 and the seventh printing area P7 are respectively arranged on opposite sides of a row of light emitting devices 120 along the second direction Y, and the eighth printing area P8 and the ninth printing area P9 are respectively arranged on opposite sides of a column of light emitting devices 120 along the first direction X.
  • the sixth printing area P6, the eighth printing area P8 and the plurality of ninth printing areas P9 all have overlapping areas
  • the seventh printing area P7, the eighth printing area P8 and the plurality of ninth printing areas P9 all have overlapping areas.
  • the 3D printing process is adopted in the above S300 , and forming a reflective layer on the substrate includes S360 to S390 .
  • the first reflective pattern G1 includes a first sub-portion 132 corresponding to each light-emitting device 120 and a first connecting pattern 136a connecting two adjacent first sub-portions 132.
  • the above-mentioned straight line printing process means that the 3D printing device controls the printing valves to be in an open state along the set printing path. After completing one printing, the printed pattern formed is continuous and uninterrupted, and the shape of the printed pattern is similar to a straight line shape.
  • the plurality of first sub-portions 132 and the plurality of first connection patterns 136 a are arranged alternately.
  • the plurality of first sub-portions 132 and the plurality of first connection patterns 136 a are formed in one patterning process and are an integrated structure.
  • a straight line printing process is used to form a second reflective pattern G2 in the seventh printing area P7 on one side of each row of light-emitting devices 120.
  • the second reflective pattern G2 includes a third sub-portion 134 corresponding to each light-emitting device 120 and a third connecting pattern 136c connecting two adjacent third sub-portions 134.
  • the plurality of third sub-portions 134 and the plurality of third connection patterns 136 c are arranged alternately.
  • a straight line printing process is used to form a third reflective pattern G3 in the eighth printing area P8 on one side of each column of light-emitting devices 120.
  • the third reflective pattern G3 includes a second sub-portion 133 corresponding to each light-emitting device 120 and a second connecting pattern 136b connecting two adjacent second sub-portions 133.
  • the plurality of second sub-portions 133 and the plurality of second connection patterns 136 b are arranged alternately.
  • the plurality of second sub-portions 133 and the plurality of second connection patterns 136 b are formed in one patterning process and are an integrated structure.
  • a fourth reflective pattern G4 is formed in the ninth printing area P9 on one side of each column of light emitting devices 120 by a straight line printing process, and the fourth reflective pattern G4 includes a fourth sub-portion 135 corresponding to each light emitting device 120 and a fourth connecting pattern 136d connecting two adjacent fourth sub-portions 135.
  • the first sub-portion 132, the second sub-portion 133, the third sub-portion 134 and the fourth sub-portion 135 located around the same light emitting device 120 are connected to form a ring pattern of the reflective layer.
  • a plurality of first reflective patterns G1, a plurality of second reflective patterns G2, a plurality of third reflective patterns G3 and a plurality of fourth reflective patterns G4 form a reflective layer 130.
  • the plurality of fourth sub-portions 135 and the plurality of fourth connection patterns 136 d are arranged alternately.
  • the plurality of fourth sub-portions 135 and the plurality of fourth connection patterns 136 d are formed in one patterning process and are an integrated structure.
  • the plurality of connection patterns 136 and the plurality of annular patterns 131 in the reflective layer 130 formed by printing are integrally formed into a dam type.
  • the above-mentioned linear printing process can use a pneumatic valve to control the opening or closing of the printing nozzle valve of the 3D printing device.
  • the preparation efficiency of the reflective layer 130 can be improved, and the preparation time of the light-emitting substrate 100 can be shortened, thereby improving the preparation efficiency of the light-emitting substrate 100 .
  • the light-emitting substrate 100 further includes: an encapsulation layer 150.
  • an encapsulation layer 150 In the preparation process of the light-emitting substrate 100, there are many preparation sequences of the encapsulation layer 150 and the reflective sheet 140, which can be selected according to actual needs, and the present disclosure does not limit this.
  • the preparation method before attaching the reflective sheet 140 to the side of the reflective layer 130 away from the substrate 110 in S400 , the preparation method further includes S401 .
  • the encapsulation layer 150 includes a plurality of encapsulation patterns 151, and the encapsulation patterns 151 correspond to the light-emitting devices 120.
  • the orthographic projection of one light-emitting device 120 on the substrate 110 is located within the orthographic projection range of one encapsulation pattern 151 on the substrate 110; the orthographic projection of one encapsulation pattern 151 on the substrate 110 overlaps with the orthographic projection of one annular pattern 131 on the substrate 110.
  • a packaging glue may be used to form the packaging layer 150 to package the light emitting device 120 , thereby preventing water vapor from invading the interior of the light emitting device 120 and affecting the light emission of the light emitting device 120 .
  • the encapsulation layer 150 is formed before attaching the reflective sheet 140 , so that the formation process of the encapsulation layer 150 can avoid affecting the reflective sheet 140 and the reflectivity of the reflective sheet 140 .
  • the encapsulation layer 150 is formed before the reflective sheet 140 is attached, so the orthographic projection of the encapsulation pattern 151 on the substrate 110 does not overlap with the orthographic projection of the reflective sheet 140 on the substrate 110 .
  • the boundary line of the orthographic projection of the encapsulation pattern 151 on the substrate 110 does not intersect with the boundary line of the orthographic projection of the reflective sheet 140 on the substrate 110.
  • the encapsulation pattern 151 is formed in the front, and the encapsulation pattern 151 cannot cover the reflective sheet 140 attached later.
  • the area of the first opening 141 of the reflective sheet 140 is large, and the encapsulation pattern 151 is located in the first opening 141 of the reflective sheet 140, so it is less difficult to attach the reflective sheet 140, and it is less difficult to prepare the light-emitting substrate 100.
  • the relative position relationship between the packaging pattern 151 and the reflective sheet 140 can be referred to the description in some of the above embodiments, which will not be repeated here.
  • the preparation method further includes S501.
  • the encapsulation layer 150 includes a plurality of encapsulation patterns 151, and the encapsulation patterns 151 correspond to the light-emitting devices 120.
  • the orthographic projection of one light-emitting device 120 on the substrate 110 is located within the orthographic projection range of one encapsulation pattern 151 on the substrate 110; the orthographic projection of one encapsulation pattern 151 on the substrate 110 overlaps with the orthographic projection of one annular pattern 131 on the substrate 110.
  • a packaging glue may be used to form the packaging layer 150 to package the light emitting device 120 , thereby preventing water vapor from invading the interior of the light emitting device 120 and affecting the light emission of the light emitting device 120 .
  • the encapsulation layer 150 is formed after the reflective sheet 140 is attached, and the orthographic projection of the encapsulation pattern 151 on the substrate 110 may not overlap with the orthographic projection of the reflective sheet 140 on the substrate 110.
  • the orthographic projection of the encapsulation pattern 151 on the substrate 110 may also partially overlap with the orthographic projection of the reflective sheet 140 on the substrate 110.
  • the packaging pattern 151 can be used to protect the reflective sheet 140, and the packaging pattern 151 can also be used to increase the bonding strength between the reflective sheet 140 and the substrate 110 or the reflective layer 130 to avoid edge warping of the reflective sheet 140, avoid affecting the reflective sheet 140's reflection of light emitted by the light-emitting device 120, ensure the reflectivity of the reflective sheet 140, and improve the manufacturing yield rate of the light-emitting substrate 100.
  • the above manufacturing method further includes: fixing a plurality of driving chips 160 on the substrate 110 .
  • the driving chip 160 is electrically connected to at least one light emitting device 120 .
  • the above preparation method further comprises: cleaning a portion of the substrate 110 located around each light emitting device 120 .
  • the above-mentioned cleaning operation can change the surface tension coefficient of the portion of the substrate 110 located around the light-emitting device 120, thereby improving the wetting effect of the reflective material on the substrate 110, and then in the subsequent printing of the reflective material, alleviate or improve the rejection phenomenon between the reflective layer material and the area around the light-emitting device 120, thereby improving the morphology accuracy of the formed reflective layer 130 and improving the luminous brightness of the light-emitting substrate 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光基板包括:衬底,反射层,反射片及多个发光器件。所述反射层位于所述衬底一侧,所述反射层具有间隔排布的多个环形图案。所述反射片位于所述反射层远离所述衬底一侧,所述反射片具有多个第一开口。一个第一开口暴露一个环形图案,且在垂直于所述衬底的方向上,所述环形图案的外侧壁环绕相应的所述第一开口,所述环形图案的内侧壁位于相应的所述第一开口内。一个发光器件位于一个所述环形图案的内侧壁内。

Description

发光基板及其制备方法、背光模组、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种发光基板及其制备方法、背光模组、显示装置。
背景技术
次毫米发光二极管(Mini Light Emitting Diode,简称Mini LED)又称迷你发光二极管,和微型发光二极管(Micro Light Emitting Diode,简称Micro LED)因具有自发光、高效率、高亮度、高可靠度、节能及反应速度快等诸多优点,被应用至微显示、手机、电视等中等尺寸显示到影院大屏幕显示等领域中。次毫米发光二极管或微米发光二极管为主动自发光元器件。其中,Mini LED的尺寸约为80μm~500μm,Micro LED的尺寸约为小于80μm。
发明内容
一方面,提供一种发光基板,所述发光基板包括:衬底,反射层,反射片及多个发光器件。所述反射层位于所述衬底一侧,所述反射层具有间隔排布的多个环形图案。所述反射片位于所述反射层远离所述衬底一侧,所述反射片具有多个第一开口。一个第一开口暴露一个环形图案,且在垂直于所述衬底的方向上,所述环形图案的外侧壁环绕相应的所述第一开口,所述环形图案的内侧壁位于相应的所述第一开口内。一个发光器件位于一个所述环形图案的内侧壁内。
在一些实施例中,在平行于所述衬底所在平面的方向上,所述环形图案的外侧壁与所述环形图案的内侧壁之间的最小间距,大于或等于2.3mm。
在一些实施例中,在平行于所述衬底所在平面的方向上,所述环形图案的外侧壁与所述第一开口之间的最小间距,大于或等于2mm。
在一些实施例中,所述环形图案包括依次首尾连接的第一子部、第二子部、第三子部及第四子部。所述第一子部、所述第三子部沿第一方向延伸,所述第二子部、所述第四子部沿第二方向延伸。所述第一方向与所述第二方向相交。
在一些实施例中,所述环形图案包括依次交叉连接的第一子部、第二子部、第三子部及第四子部。所述第一子部、所述第三子部沿第一方向延伸,所述第二子部、所述第四子部沿第二方向延伸。所述第一方向与所述第二方向相交。
在一些实施例中,所述第一子部、所述第二子部、所述第三子部及所述第四子部为一体结构。
在一些实施例中,所述多个环形图案沿第一方向排列为多列,沿第二方向排布为多行。所述反射层还包括多个连接图案;所述多个连接图案包括:沿所述第一方向延伸的多个第一连接图案、多个第三连接图案,以及沿所述第二方向延伸的多个第二连接图案、多个第四连接图案。沿所述第一方向,相邻的两个环形图案的两个第一子部与第一连接图案相连接,相邻的两个环形图案的两个第三子部与第三连接图案相连接;沿所述第二方向,相邻的两个环形图案的两个第二子部与第二连接图案相连接,相邻的两个环形图案的两个第四子部与第四连接图案相连接。
在一些实施例中,所述环形图案和,与所述环形图案连接的连接图案,呈一体结构。
在一些实施例中,在垂直于所述衬底的方向上,所述反射层的厚度范围为50μm~80μm。
在一些实施例中,所述环形图案的至少部分内侧壁与所述衬底所在的平面的夹角为锐 角。和/或,所述环形图案的至少部分外侧壁与所述衬底所在的平面的夹角为锐角。
在一些实施例中,所述环形图案的至少部分内侧壁呈弧面状。和/或,所述环形图案的至少部分外侧壁呈弧面状。
在一些实施例中,所述环形图案在所述衬底上的正投影的外边界线包括至少一个外曲线段,所述外曲线段向远离相应的所述发光器件的方向凸出。和/或,所述环形图案在所述衬底上的正投影的内边界线包括至少一个内曲线段,所述内曲线段向靠近相应的所述发光器件的方向凸出。
在一些实施例中,所述环形图案远离所述衬底的表面具有多个凸起结构。
在一些实施例中,所述环形图案包括相连接的第一环部和第二环部。所述第一环部环绕所述发光器件的至少一部分,所述第二环部环绕所述发光器件,且环绕所述第一环部;所述第一环部的厚度小于或等于所述第二环部的厚度。
在一些实施例中,在平行于所述衬底所在平面的方向上,所述环形图案的内侧壁与所述发光器件的间距范围为0μm~300μm。
在一些实施例中,在平行于所述衬底所在平面的方向上,所述第一开口与所述发光器件之间的最小间距,大于或等于500μm。
在一些实施例中,所述第一开口的形状包括矩形或圆形。
在一些实施例中,所述发光基板还包括:位于所述多个发光器件远离所述衬底一侧的封装层,所述封装层包括多个封装图案。一个所述发光器件在所述衬底上的正投影,位于一个封装图案在所述衬底上的正投影范围之内。一个所述封装图案在所述衬底上的正投影,与一个所述环形图案在所述衬底上的正投影,相交叠。
在一些实施例中,所述封装图案在所述衬底上的正投影,与所述反射片在所述衬底上的正投影,部分相交叠。
在一些实施例中,所述封装图案在所述衬底上的正投影,与所述反射片在所述衬底上的正投影,无交叠。
另一方面,提供一种发光基板的制备方法,所述制备方法包括:提供衬底;在所述衬底上固定多个发光器件;采用3D打印工艺,在所述衬底上形成反射层;所述反射层具有间隔排布的多个环形图案;一个发光器件位于一个环形图案的内侧壁内;在所述反射层远离所述衬底的一侧贴附反射片;所述反射片具有多个第一开口,一个第一开口暴露一个环形图案,且在垂直于所述衬底的方向上,所述环形图案的外侧壁环绕相应的所述第一开口,所述环形图案的内侧壁位于相应的所述第一开口内。
在一些实施例中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交。所述衬底具有多个第一打印区域;一个第一打印区域环绕一个所述发光器件。所述采用3D打印工艺,在所述衬底上形成反射层包括:采用环绕打印工艺,在所述第一打印区域形成环形图案;多个所述环形图案形成所述反射层。
在一些实施例中,所述第一打印区域包括:第一子区和第二子区;所述第一子区相比于所述第二子区,更靠近所述发光器件;所述第一子区环绕所述发光器件的至少一部分,所述第二子区环绕所述发光器件。所述采用环绕打印工艺,在所述第一打印区域形成环形图案,包括:采用环绕打印工艺或虚线打印工艺,在所述第一子区打印形成第一环部;所述第一环部环绕所述发光器件的至少一部分;采用环绕打印工艺,在所述第二子区打印形成第二环部;所述第二环部环绕所述发光器件,且环绕所述第一环部;所述第一环部的厚 度小于或等于所述第二环部的厚度;所述第一环部与所述第二环部相连接,构成所述环形图案。
在一些实施例中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交。所述衬底具有沿第一方向延伸的多个第二打印区域和多个第三打印区域,及沿第二方向延伸的多个第四打印区域和第五打印区域;所述发光器件的沿第二方向的相对两侧分别设置第二打印区域和第三打印区域,所述发光器件的沿第一方向的相对两侧分别设置第四打印区域和第五打印区域。所述采用3D打印工艺,在所述衬底上形成反射层包括:采用虚线打印工艺,在各所述发光器件一侧的第二打印区域形成第一子部;采用虚线打印工艺,在各所述发光器件一侧的第三打印区域形成第三子部;采用虚线打印工艺,在各所述发光器件一侧的第四打印区域形成第二子部;采用虚线打印工艺,在各所述发光器件一侧的第五打印区域形成第四子部;位于同一发光器件周围的第一子部、第二子部、第三子部和第四子部相连接形成所述反射层的环形图案。
在一些实施例中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交。所述衬底具有沿第一方向延伸的多个第六打印区域和多个第七打印区域,以及沿第二方向延伸的多个第八打印区域和多个第九打印区域;一行发光器件的沿第二方向的相对两侧分别设置第六打印区域和第七打印区域,一列发光器件的沿第一方向的相对两侧分别设置第八打印区域和第九打印区域。所述采用3D打印工艺,在所述衬底上形成反射层包括:采用直线打印工艺,在各行发光器件一侧的第六打印区域形成第一反射图案,所述第一反射图案包括与各发光器件相对应的第一子部和连接相邻两个第一子部的第一连接图案。采用直线打印工艺,在各行发光器件一侧的第七打印区域形成第二反射图案,所述第二反射图案包括与各发光器件相对应的第三子部和连接相邻两个第三子部的第三连接图案。采用直线打印工艺,在各列述发光器件一侧的第八打印区域形成第三反射图案,所述第三反射图案包括与各发光器件相对应的第二子部和连接相邻两个第二子部的第二连接图案。采用直线打印工艺,在各列发光器件一侧的第九打印区域形成第四反射图案,所述第四反射图案包括与各发光器件相对应的第四子部和连接相邻两个第四子部的第四连接图案;位于同一发光器件周围的第一子部、第二子部、第三子部和第四子部相连接形成所述反射层的环形图案;多个第一反射图案、多个第二反射图案、多个第三反射图案及多个第四反射图案形成所述反射层。
在一些实施例中,所述在所述反射层远离所述衬底的一侧贴附反射片之前,所述制备方法还包括:在所述反射层远离所述衬底的一侧形成封装层;所述封装层包括多个封装图案,封装图案与所述发光器件对应。一个所述发光器件在所述衬底上的正投影,位于一个封装图案在所述衬底上的正投影范围之内;一个所述封装图案在所述衬底上的正投影,与一个所述环形图案在所述衬底上的正投影,相交叠。
另一方面,提供一种背光模组,包括:如上述实施例中所述的发光基板,以及位于所述发光基板的出光侧的光学膜片。
又一方面,提供一种显示装置,包括:如上述实施例中所述的背光模组;位于所述背光模组出光侧的彩膜基板;以及,位于所述背光模组与所述彩膜基板之间的阵列基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实 施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1a为根据本公开的一些实施例中的一种显示装置的结构图;
图1b为根据本公开的一些实施例中的另一种显示装置的结构图;
图2为根据本公开的一些实施例中的一种背光模组的结构图;
图3为根据本公开的一些实施例中的一种发光基板的结构图;
图4a为根据本公开的一些实施例中的另一种发光基板的结构图;
图4b为根据本公开的一些实施例中的又一种发光基板的结构图;
图4c为根据本公开的一些实施例中的又一种发光基板的结构图;
图5a为沿图4a中A-A’向剖开的一种发光基板的结构图;
图5b为沿图4a中A-A’向剖开的另一种发光基板的结构图;
图6a为根据本公开的一些实施例中的又一种发光基板的结构图;
图6b为图6a中BB’区域的一种局部放大结构图;
图6c为图6a中BB’区域的另一种局部放大结构图;
图6d为图6a中BB’区域的又一种局部放大结构图;
图7a为根据本公开的一些实施例中的又一种发光基板的结构图;
图7b为图7a中CC’区域的一种局部放大结构图;
图8为根据本公开的一些实施例中的又一种发光基板的结构图;
图9为根据本公开的一些实施例中的又一种发光基板的结构图;
图10为根据本公开的一些实施例中一种发光基板的制备流程图;
图11a~图11d为根据本公开的一些实施例中一种发光基板在不同制备阶段下的结构图;
图12a为根据本公开的一些实施例中的又一种发光基板的结构图;
图12b~图12e为根据本公开的一些实施例中的多种3D打印工艺的示意图;
图12f为根据本公开的一些实施例中的一种3D打印工艺形成的打印条的示意图;
图12g为根据本公开的一些实施例中的一种3D打印工艺形成的打印图案的示意图;
图13为根据本公开的一些实施例中另一种发光基板的制备流程图;
图14a~图14b为根据本公开的一些实施例中另一种发光基板在不同制备阶段下的结构图;
图15为根据本公开的一些实施例中的又一种发光基板的结构图;
图16为根据本公开的一些实施例中又一种发光基板的制备流程图;
图17a~图17d为根据本公开的一些实施例中又一种发光基板在不同制备阶段下的结构图;
图18为根据本公开的一些实施例中的又一种发光基板的结构图;
图19为根据本公开的一些实施例中又一种发光基板的制备流程图;
图20a~图20d为根据本公开的一些实施例中又一种发光基板在不同制备阶段下的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种显示装置1。如图1a所示,该显示装置1可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字的还是图像的任何显示装置中。更明确地说,预期所述实施例的显示装置可实施应用在多种电子中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
示例性的,在上述显示装置1为大尺寸的显示装置的情况下,显示装置1可以包括多个子显示装置,多个子显示装置之间相互拼接形成大尺寸的显示装置,以满足大尺寸显示,该显示装置可以称为拼接显示装置。
在一些示例中,上述显示装置1可以为LCD(Liquid Crystal Display,液晶显示)显示装置。
在一些示例中,如图1b所示,显示装置1包括:背光模组10,位于背光模组10出光侧的阵列基板20,以及,位于阵列基板20远离背光模组10一侧的的彩膜基板30。
示例性的,上述背光模组10可以作为光源,用于提供背光。例如背光模组10提供的背光可以为白光或蓝光。
例如,背光模组10的出光侧,指的是,背光模组10发出光线的一侧。
示例性的,阵列基板20可以包括多个像素驱动电路、多个像素电极,该多个像素驱动电路例如呈阵列状排布。多个像素驱动电路与多个像素电极一一对应电连接,像素驱动电路为相应的像素电极提供像素电压。
示例性的,彩膜基板30可以包括多种彩色滤光片等。例如,在背光模组10提供的背光为白光的情况下,上述彩色滤光片可以包括红色滤光片、绿色滤光片和蓝色滤光片等。例如红色滤光片仅可以使得入射光线中的红光透过,绿色滤光片仅可以使得入射光线中的绿光透过,蓝色滤光片仅可以使得入射光线中的蓝光透过。又如,在在背光模组10提供的背光为蓝光的情况下,上述彩色滤光片可以包括红色滤光片和绿色滤光片等。
示例性的,显示装置1还包括公共电极。公共电极可以接收公共电压。
例如,上述公共电极可以设置在阵列基板20上。
又如,上述公共电极可以设置在彩膜基板30上。
在一些示例中,如图1b所示,显示装置1还包括:位于彩膜基板30与阵列基板20之间的液晶层40。
示例性的,液晶层40包括多个液晶分子。例如,在上述像素电压和公共电压的作用下,像素电极和公共电极之间可以形成电场,位于像素电极和公共电极之间的液晶分子可 以在该电场的作用下,发生偏转。
可以理解的是,背光模组10所提供的背光,可以透过阵列基板20,入射至液晶层40的液晶分子。液晶分子在像素电极和公共电极之间形成的电场的作用下,发生翻转,从而改变透过液晶分子的光线的量,使得经液晶分子出射的光线达到预设亮度。上述光线穿过彩膜基板30中不同颜色的滤光片后出射。该出射的光线,包括各种颜色的光,例如红色光、绿色光、蓝色光等,各种颜色的光线相互配合,使得显示装置1实现显示。
示例性的,显示装置1中的背光模组10的类型有多种,可以根据实际情况进行设置,本公开对此不作限制。
例如,背光模组10可以为侧入式背光模组,背光模组10也可以为直下式背光模组。
为方便描述,本公开以下的实施例以背光模组10为直下式背光模组为例进行介绍。
在一些实施例中,如图2所示,背光模组10包括:发光基板100及位于发光基板100的出光侧的光学膜片200。
可以理解的是,图2中的Z指的是第三方向Z,第三方向Z为显示装置1的厚度方向。
示例性的,光学膜片200包括:依次层叠设置在发光基板100出光侧的扩散板210、量子点膜220、扩散片230和复合膜240等。
例如,扩散板210和扩散片230用于消除灯影,并将发光基板100发出的光线进行均匀化处理,提高光线的均一性。
例如,量子点膜220用于对发光基板100发出的光进行转换。可选地,在发光基板100发出的光为蓝光的情况下,量子点膜220可以将该蓝光转换为白光,并且提高该白光的纯度。
例如,复合膜240用于提高发光基板100发出的光线的亮度。
可以理解的是,发光基板100发出的光线,入射至上述光学膜片200后射出的光线的亮度得到增强,且射出的光线纯度更高,均匀性更好。
上述背光模组10可以包括多个发光基板100及与其对应的光学膜片,多个发光基板100可以互相拼接,相应的光学膜片也互相拼接,使得背光模组10具有较大的尺寸。此时,该背光模组10可以称为拼接显示模组,可以应用于上述拼接显示装置中。
在一些示例中,如图2所示,背光模组10还包括:设置在发光基板100与光学膜片200的扩散板210之间的支撑柱201。
示例性的,支撑柱201可以通过胶水固定在发光基板100上。支撑柱201也可以通过铆接的方式设置在发光基板100上。支撑柱201可以用于支撑光学膜片200,并使得发光基板100发出的光获得一定的混光距离,从而可以进一步地消除灯影,提高光线的均匀性。
示例性的,显示装置1还包括:框架、显示芯片以及其他电子配件等。
在一些示例中,上述发光基板100包括:衬底110和多个发光器件120。
示例性的,上述衬底110可以为柔性衬底。该柔性衬底例如可以为PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)衬底、PEN(Polyethylene Naphthalate Two Formic Acid Glycol Ester,聚萘二甲酸乙二醇酯)衬底或PI(Polyimide,聚酰亚胺)衬底等。
示例性的,上述衬底110也可以为刚性衬底。例如,该衬底的材料可以为玻璃等。上述衬底110也可以为印刷电路板(Printed Circuit Board,简称PCB)、铝基板等。
为方便描述,下面以衬底的材料为玻璃材料为例进行说明。
在一些示例中,上述多个发光器件120可以为Mini LED,也可以为LED或Micro LED。
示例性的,如图3所示,上述多个发光器件120可以沿第一方向X呈多列排列,沿第二方向Y呈多行排布。
例如,多个发光器件120呈阵列状排布。任一行发光器件120中包括沿第一方向X间隔排布的多个发光器件120,任一列发光器件120包括沿第二方向Y间隔排布的多个发光器件120。
例如,第一方向X与第二方向Y的夹角可以为85°、90°、95°等,本公开以第一方向X与第二方向Y的夹角为90°为例进行说明。
示例性的,发光器件120可以作为发光基板100的光源。
在一种实现方式中,发光基板还包括:反射结构。该反射结构可以为位于发光器件靠近衬底一侧的反射层。反射层可以对发光器件发出的光进行反射,提高发光基板的光效。该反射层具有第二开口。一个发光器件位于相应的一个第二开口内。反射层覆盖衬底上除发光器件外的其他区域。反射层的面积较大,需要使用较多的反射层材料来进行反射层的制备,使得反射层及发光基板的制备成本较高,尤其是材料成本较高。且由于需要制备的反射层的面积较大,使得反射层的制备时间较长,反射层的制备效率较低,进而影响发光基板的整体制备效率。
一种解决方案是,在发光基板的衬底上直接贴附反射片作为反射结构,省略反射层的制备步骤。由于反射片可以直接选用成品的反射片,或者反射片可以单独制作,然后将反射片直接贴附在衬底上即可,不会影响发光基板的制备时间,从而可以提高发光基板的制备效率;且反射片的反射率高于反射层,具备更高的光效。然而,反射片上的开口的精度较低(该开口的精度通常为±0.1mm),且在贴附反射片的过程中还需要考虑开口的贴附公差(该贴附公差一般为±0.2mm)以及反射片的材料延展位移(延展位移约为0.4mm/m,此处的延展位移指的是,在材料由高温环境或低温环境,回到常温环境后,材料的整体尺寸会发生延展或内缩,每1m材料的延展量或内缩量为0.4mm左右)等。在综合了上述多种因素后,需要选择开口面积较大的反射片。然而反射片的开口面积较大,就使得发光器件与开口之间的间距较大,发光器件发出光会入射至开口内,进而使得发光器件发出的光的损耗量较大,降低了发光基板的光效,且反射片中用于反射的面积相对来于一种实现方式中反射层的反射面积有一定程度的减小,使得反射结构的反射率降低。
基于此,本公开的一些实施例提供了一种发光基板100,如图4a、图4b及图4c所示,发光基板100还包括:位于衬底110一侧的反射层130,反射层130具有间隔排布的多个环形图案131。
示例性的,多个环形图案131的面积之和,为反射层130的有效面积。反射层130的有效面积较小,可以节省反射层材料,从而降低反射层130及发光基板100的制备成本。此外,反射层130的有效面积较小,也可以缩短反射层130的制备时间,提高反射层130及发光基板100的制备效率或生产效率。
示例性的,多个发光器件120与多个环形图案131一一对应。由上文可知,多个发光器件120呈阵列状排布,则,多个环形图案131也呈阵列状排布。
示例性的,多个环形图案131中,相邻的两个环形图案131之间没有直接相连接。
示例性的,如图5a所示,环形图案131具有一定的厚度,环形图案131具有外侧壁OW和内侧壁IW。环形图案131的内侧壁IW在衬底110上的正投影,位于环形图案131 的外侧壁OW在衬底110上的正投影范围之内。环形图案131的内侧壁IW在衬底110上的正投影的边界线围成一个封闭图形,该封闭图形例如为第一封闭图形。环形图案131的外侧壁OW在衬底110上的正投影的边界线也围成一个封闭图形,该封闭图形例如为第二封闭图形。第一封闭图形,位于第二封闭图形的内部。第一封闭图形的形状,与第二封闭图形的形状可以相同,例如均为圆形。第一封闭图形的形状,与第二封闭图形的形状也可以不同,例如第一封闭图形的形状为矩形,第二封闭图形的形状为圆形。
示例性的,一个发光器件120位于一个环形图案131的内侧壁IW内。
采用上述设置方式,发光器件120位于相应的环形图案131的内侧壁IW内,由于环形图案131的制备精度较高(相比于下文中提到的反射片中第一开口的开口精度),可以使得发光器件120与环形图案131之间的间距相对较小,可以避免发光器件120发出的光入射至发光器件120与环形图案131之间的间隙而造成光损耗,进而可以提高发光基板100的光效。
在一些示例中,反射层130还包括与多个环形图案131相连接的连接部。连接部覆盖衬底110除环形图案外的区域。由此,连接部可以对衬底靠近发光器件一侧的表面进行保护,避免水汽入侵。
示例性的,环形图案131包括层叠设置的第一部分和第二部分。第一部分在衬底上的正投影,与第二部分在衬底上的正投影完全重合。
示例性的,环形图案131的厚度,大于连接部的厚度。环形图案131凸出于连接部。由此,不仅可以使得连接部对衬底110的表面进行保护,也可以减少反射层材料的用量,又可以使得环形图案131具有足够的厚度,从而保证环形图案131的光效,提高发光基板100的光效。
例如,第一部分的厚度与连接部的厚度相同。
例如,第一部分的厚度与连接部的厚度可以均为25μm,环形图案131的厚度为80μm,也即第一部分的厚度和第二部分的厚度之和为80μm。
示例性的,第一部分与连接部可以同层同材料,第一部分与连接部为一体结构。由此,可以在一次制备工艺中形成,进而可以简化反射层130的制备流程。
例如,第一部分的厚度与第二部分的厚度相同。
又如,第一部分的厚度与第二部分的厚度不同。
在一些示例中,如图4a~图5a所示,发光基板100还包括:位于反射层130远离衬底110一侧的反射片140,反射片140具有多个第一开口141,一个第一开口141暴露一个环形图案131。
例如,一个发光器件120位于一个第一开口141内。由此,可以使得发光器件120通过第一开口141裸露,进而避免发光器件120发出的光被反射片140遮挡,使得发光器件120发出的光可以被反射片140反射,从而提高发光基板100的光效。
示例性的,在垂直于衬底110的方向上,环形图案131的外侧壁OW环绕相应的第一开口141,环形图案131的内侧壁IW位于相应的第一开口141内。
例如,环形图案131在衬底110的正投影的外边界线,位于第一开口141外。环形图案131在衬底110的正投影的内边界线,位于第一开口141内。反射片140中靠近第一开口141的部分,搭接在相应的环形图案131上,反射片140与每个环形图案131均部分相交叠。
可以理解的是,环形图案131的厚度相对较小,相对于反射片140的厚度来说可以忽略不计,因此,反射片140搭接在环形图案的部分,并不会形成明显的段差,进而不会影响到反射片140对发光器件120发出的光线的反射。
本公开的一些实施例,通过在发光基板100的衬底110的一侧依次设置反射层130、反射片140及发光器件120,从而使得反射片140与反射层130组成的反射结构的反射面积较大,反射结构与发光器件120之间的间隙较小,进而提高反射结构的反射率,降低发光基板100的光耗,提高反射结构及发光基板100的光效;此外设置反射层130具有间隔排布的多个环形图案131,反射片140具有多个第一开口141,一个第一开口141暴露一个环形图案131,且在垂直于衬底110的方向上,环形图案131的外侧壁环绕相应的第一开口141,环形图案131的内侧壁位于相应的第一开口141内,使得反射片140中靠近第一开口141的部分,搭接在反射层130的环形图案131上,一个发光器件120位于一个环形图案131的内侧壁内,从而使得发光基板100上的反射层130的有效面积(多个环形图案的面积之和)减小,从而可以减少反射层材料的用量,缩短反射层130的制备时间,从而可以降低反射层130及发光基板100的制备成本,提高反射层130及发光基板100的生产效率。
在一些示例中,如图5a所示,在平行于衬底110所在平面的方向上,环形图案131的外侧壁与环形图案131的内侧壁之间的最小间距d1,大于或等于2.3mm。
例如,在平行于衬底110所在平面的方向上,环形图案131的外侧壁与环形图案131的内侧壁之间的间距为环形图案131的环宽,而在平行于衬底110所在平面的方向上,环形图案131的外侧壁与环形图案131的内侧壁之间的最小间距d1,为环形图案131的最小环宽。
示例性的,在平行于衬底110所在平面的方向上,环形图案131的外侧壁与环形图案131的内侧壁之间的最小间距d1,可以为2.3mm、2.6mm、3mm、4.0mm或5.0mm。
采用上述设置方式,可以使得环形图案131在衬底110上的投影面积较大,在一定程度上可以保证反射片140与环形图案131具有足够的交叠面积,避免环形图案131在衬底110上的投影面积较小而使得反射片140与环形图案131之间交叠面积较小甚至无法交叠,进而避免使得反射片140与环形图案131之间出现空隙,避免反射结构的反射率较低。
在一些示例中,如图5a所示,在平行于衬底110所在平面的方向上,环形图案131的外侧壁与第一开口141之间的最小间距d2,大于或等于2mm。
示例性的,在平行于衬底110所在平面的方向上,环形图案131的外侧壁与第一开口141之间的最小间距d2,可以为2mm、2.5mm、3mm、4mm或4.5mm。
采用上述设置方式,可以使得环形图案131与反射片140的交叠面积较大,保证反射片140搭接在每个环形图案131上,从而可以保证反射结构的反射率较高,避免出现环形图案131上未搭接反射片140的情况,避免环形图案131与反射片140之间出现空隙,避免该空隙使得反射结构的反射率降低,进而避免发光基板100的光效。
可以理解的是,环形图案131的结构有多种,可以根据实际需要进行设置,本公开对此不作限制。
示例性的,在平行于衬底110所在的平面上,环形图案131的外侧壁的形状,与环形图案131的内侧壁的形状,可以相同,也可以不同。
例如,在平行于衬底110所在的平面上,环形图案131的外侧壁所围成的形状可以为 不规则形状,而环形图案131的内侧壁所围成的形状可以为规则形状,该规则形状可以为圆形或矩形。又如,在平行于衬底110所在的平面上,环形图案131的外侧壁所围成的形状和环形图案131所围成的内侧壁的形状均为规则形状,该规则形状可以矩形。
在一些实施例中,如图6a及图6b所示,环形图案131包括依次首尾连接的第一子部132、第二子部133、第三子部134及第四子部135。第一子部132、第三子部134沿第一方向X延伸,第二子部133、第四子部135沿第二方向Y延伸。
例如,第一子部132、第二子部133、第三子部134及第四子部135均为条状结构,条状结构具有沿其延伸方向的两个端部,上述“首尾连接”指的是,第一子部132、第二子部133、第三子部134及第四子部135相互之间的连接点,为条状结构的两个端部中的一个。
例如,如图6a所示,第一子部132的两个端部,分别与第二子部133的一个端部和第四子部135的一个端部相连接且重合。第三子部134的两个端部,分别与第二子部133的另一个端部和第四子部135的另一个端部相连接且重合。
示例性的,在平行于衬底110所在平面的平面上,环形图案131呈“回”字型。也就是说,环形图案131的外侧壁所围成的形状和环形图案131的内侧壁所围成的形状,均为矩形。
在另一些实施例中,如图7a所示,环形图案131包括依次交叉连接的第一子部132、第二子部133、第三子部134及第四子部135。第一子部132、第三子部134沿第一方向X延伸,第二子部133、第四子部135沿第二方向Y延伸。
例如,第一子部132、第二子部133、第三子部134及第四子部135均为条状结构,条状结构具有沿其延伸方向的两个端部,上述“交叉连接”指的是,第一子部132、第二子部133、第三子部134及第四子部135相互之间的连接点,靠近条状结构的两个端部中的一个,且未重合。
例如,与第二子部133相邻的第一子部132的端部,凸出于该第一子部132与第二子部133的连接点,与第四子部135相邻的第一子部132的端部,凸出于该第一子部132与第四子部135的连接点。
示例性的,在平行于衬底110所在平面的平面上,环形图案131呈“井”字型。也就是说,在平行于衬底110所在平面的平面上,环形图案131的外侧壁所围成的形状和环形图案131的内侧壁所围成的形状不同,环形图案131的内侧壁所围成的形状为矩形。
采用上述设置方式,可以保证第一子部132、第二子部133、第三子部134及第四子部135相互之间的连接可靠性,保证第一子部132、第二子部133、第三子部134及第四子部135构成的环形图案131的完整性。
在一些示例中,如图6a及图7a所示,上述两个实施例中的第一子部132、第二子部133、第三子部134及第四子部135为一体结构。
上述“一体结构”指的是,相连接的两个图案同层设置,且该两个图案是连续的,未分隔开。采用上述设置方式,可以使得第一子部132、第二子部133、第三子部134及第四子部135在同一个制备工艺中形成,从而可以简化反射层130及发光基板100的制备工艺。
在一些实施例中,多个环形图案131沿第一方向X排列为多列,沿第二方向Y排布为多行。
例如,任一行环形图案131包括沿第一方向X依次间隔排布的多个环形图案131。任 一列环形图案131包括沿第二方向Y依次间隔排布的多个环形图案131。
在一些示例中,如图8所示,反射层130还包括多个连接图案136。
示例性的,多个连接图案136沿第一方向X排列为多行,沿第二方向Y排列为多列。
示例性的,多个连接图案136包括:沿第一方向X延伸的多个第一连接图案136a、多个第三连接图案136c,以及沿第二方向Y延伸的多个第二连接图案136b、多个第四连接图案136d。
示例性的,沿第一方向X,相邻的两个环形图案131的两个第一子部132与第一连接图案136a相连接,相邻的两个环形图案131的两个第三子部134与第三连接图案136c相连接;沿第二方向Y,相邻的两个环形图案131的两个第二子部133与第二连接图案136b相连接,相邻的两个环形图案131的两个第四子部135与第四连接图案136d相连接。
可以理解的是,在该示例中,环形图案131可以包括,依次首尾连接的第一子部132、第二子部133、第三子部134及第四子部135。环形图案131也可以包括,依次交叉连接的第一子部132、第二子部133、第三子部134及第四子部135。
示例性的,如图8所示,反射层130中的多个连接图案136与多个环形图案131形成的整体为围坝型。
采用上述设置方式,可以进一步保证第一子部132、第二子部133、第三子部134及第四子部135相互之间的连接可靠性,从而保证第一子部132、第二子部133、第三子部134及第四子部135构成的环形图案131的完整性。
在一些示例中,环形图案131和,与该环形图案131连接的连接图案136,呈一体结构。
采用上述设置方式,可以使得环形图案131和,与该环形图案131连接的连接图案136在同一种制备工艺中形成,从而可以简化反射层130及发光基板100的制备工艺。
在一些示例中,在垂直于衬底110的方向上,反射层130的厚度范围为50μm~80μm。
例如,如图5b所示,反射层130的厚度H可以为50μm、57μm、63μm、72μm或80μm。
采用上述设置方式,可以使得反射层130的厚度H较为适宜,从而可以保证反射层130的反射率较高,避免因反射层130的厚度较小而造成其反射率下降的风险。
在一些实施例中,如图5b所示,环形图案131的至少部分内侧壁与衬底110所在的平面的夹角α为锐角;和/或,环形图案131的至少部分外侧壁与衬底110所在的平面的夹角β为锐角。
在一些示例中,环形图案131的至少部分内侧壁与衬底110所在的平面的夹角α为锐角。
例如,环形图案131的至少部分内侧壁与衬底110所在的平面的夹角α可以为30°、45°、60°、75°或80°。
示例性的,环形图案131的至少部分内侧壁是沿靠近相应的发光器件120的中心方向凸出的。
例如,环形图案131的部分内侧壁与衬底110所在的平面的夹角α为锐角。
又如,环形图案131的内侧壁与衬底110所在的平面的夹角α为锐角。
发光器件120发出的光在入射至上述至少部分内侧壁的情况下,该光可以在该内侧壁上发生反射,并大致朝着发光基板100的出光方向出射,进而可以提高反射层130的反射率,提高发光基板100的光效。
在另一些示例中,环形图案131的至少部分外侧壁与衬底110所在的平面的夹角β为锐角。
例如,环形图案131的至少部分外侧壁与衬底110所在的平面的夹角β可以为30°、45°、60°、75°或80°。
示例性的,环形图案131的至少部分外侧壁是沿远离相应的发光器件120的中心方向凸出的。
例如,环形图案131的部分外侧壁与衬底110所在的平面的夹角β为锐角。
又如,环形图案131的外侧壁与衬底110所在的平面的夹角β为锐角。
采用上述设置方式,可以简化环形图案131及反射层130的制备工艺。
在又一些示例中,环形图案131的至少部分内侧壁与衬底110所在的平面的夹角α为锐角,且,环形图案131的至少部分外侧壁与衬底110所在的平面的夹角β为锐角。由此,发光器件120发出的光在入射至上述至少部分内侧壁的情况下,该光可以在该内侧壁上发生反射,并大致朝着发光基板100的出光方向出射,进而可以提高反射层130的反射率,提高发光基板100的光效。也可以简化环形图案131及反射层130的制备工艺。
示例性的,环形图案131的至少部分内侧壁是沿靠近相应的发光器件120的中心方向凸出的。且,环形图案131的至少部分外侧壁是沿远离相应的发光器件120的中心方向凸出的。
在一些实施例中,如图5b所示,环形图案131的至少部分内侧壁IW呈弧面状;和/或,环形图案131的至少部分外侧壁OW呈弧面状。
在一些示例中,环形图案131的至少部分内侧壁IW呈弧面状。
示例性的,一个环形图案131与一个发光器件120对应,上述弧面状的内侧壁IW,沿靠近相应的发光器件120的方向凸出。
例如,环形图案131的部分内侧壁IW呈弧面状。
又如,环形图案131的内侧壁IW呈弧面状。
发光器件120发出的光在入射至上述至少部分内侧壁IW的情况下,该光可以在该内侧壁IW上发生反射,并大致朝着发光基板100的出光方向出射,进而可以提高反射层130的反射率,提高发光基板100的光效。
在另一些示例中,环形图案131的至少部分外侧壁OW呈弧面状。
示例性的,一个环形图案131与一个发光器件120对应,上述弧面状的外侧壁OW,沿远离相应的发光器件120的方向凸出。
例如,环形图案131的部分外侧壁OW呈弧面状。
又如,环形图案131的外侧壁OW呈弧面状。
采用上述设置方式,可以简化环形图案131及反射层130的制备工艺。
在又一些示例中,环形图案131的至少部分内侧壁IW呈弧面状;和,环形图案131的至少部分外侧壁OW呈弧面状。由此,发光器件120发出的光在入射至上述至少部分内侧壁的情况下,该光可以在该内侧壁IW上发生反射,并大致朝着发光基板100的出光方向出射,进而可以提高反射层130的反射率,提高发光基板100的光效。也可以简化环形图案131及反射层130的制备工艺。
在一些实施例中,如图6c、图6d及图7b所示,环形图案131在衬底110上的正投影的外边界线包括至少一个外曲线段EC,外曲线段EC向远离相应的发光器件120的方向凸 出;和/或,环形图案131在衬底110上的正投影的内边界线包括至少一个内曲线段NC,内曲线段NC向靠近相应的发光器件120的方向凸出。
在一些示例中,环形图案131在衬底110上的正投影的外边界线包括至少一个外曲线段EC,外曲线段EC向远离相应的发光器件120的方向凸出。
示例性的,外曲线段EC为曲线状的线段。上述相应的发光器件120指的是,与该环形图案131对应的发光器件。
例如,环形图案131在衬底110上的正投影的外边界线包括一个外曲线段EC,环形图案131在衬底110上的正投影的外边界线的一部分为曲线段,环形图案131在衬底110上的正投影的外边界线的另一部分可以为直线段。
又如,环形图案131在衬底110上的正投影的外边界线包括多个外曲线段EC。环形图案131在衬底110上的正投影的外边界线的一部分为多个曲线段,或者环形图案131在衬底110上的正投影的外边界线整体为相互连接的多个曲线段。
在另一些示例中,环形图案131在衬底110上的正投影的内边界线包括至少一个内曲线段NC,内曲线段NC向靠近相应的发光器件120的方向凸出。
示例性的,内曲线段NC为曲线状的线段。上述相应的发光器件120指的是,与该环形图案131对应的发光器件。
例如,环形图案131在衬底110上的正投影的内边界线包括一个内曲线段NC,也就是说,环形图案131在衬底110上的正投影的内边界线的一部分为曲线段,环形图案131在衬底110上的正投影的内边界线的另一部分可以为直线段。
又如,环形图案131在衬底110上的正投影的内边界线包括多个内曲线段NC,也就是说,环形图案131在衬底110上的正投影的内边界线的一部分为多个曲线段,或者环形图案131在衬底110上的正投影的内边界线整体为相互连接的多个曲线段。
采用上述设置方式,在发光器件120发出的光线入射上述环形图案131的内曲线段NC的情况下,在该内曲线段NC发生反射并大致朝着发光基板100的出光方向出射,进而避免光线的损失,提高发光基板100的光效。
在又一些示例中,环形图案131在衬底110上的正投影的外边界线包括至少一个外曲线段EC,外曲线段向远离相应的发光器件120的方向凸出。且,环形图案131在衬底110上的正投影的外边界线包括至少一个内曲线段NC,内曲线段向靠近相应的发光器件120的方向凸出。由此,在发光器件120发出的光线入射上述环形图案131的外曲线段及内曲线段的情况下,在该外曲线段及内曲线段发生反射并大致朝着发光基板100的出光方向出射,进而避免光线的损失,提高发光基板100的光效。
在一些实施例中,如图9所示,环形图案131远离衬底110的表面具有多个凸起结构137。
示例性的,环形图案131远离衬底110的表面为非平整表面。该凸起结构137为反射层130的制备方法所带来的形貌特征。
采用上述设置方式,可以使得发光器件120发出的光线在上述凸起结构137上发生反射,提高发光基板100发出的光均匀性。
示例性的,凸起结构137具有一定的高度。多个凸起结构137的高度由反射层130的具体制备方法和制备工艺决定的。多个凸起结构137的高度可以相同,也可以不同。
例如,多个凸起结构137中,靠近相应的发光器件120的凸起结构137的高度,可以 小于或等于,远离相应的发光器件120的凸起结构137的高度。
在一些实施例中,如图6b和图6c所示,环形图案131包括相连接的第一环部138和第二环部139。第一环部138环绕发光器件120的至少一部分,第二环部139环绕发光器件120,且环绕第一环部138;第一环部138的厚度小于或等于第二环部139的厚度。
例如,如图6d所示,第一环部138环绕发光器件120的一部分,第一环部138可以位于发光器件120沿第一方向X的相对两侧。第一环部138也可以位于发光器件120沿第二方向Y的相对两侧。第一环部138的内侧壁构成环形图案131的一部分内侧壁,第二环部139的部分内侧壁构成环形图案131的另一部分内侧壁,第二环部139的外侧壁构成环形图案131的外侧壁。
又如,如图6c所示,第一环部138环绕发光器件120。第一环部138的内侧壁构成环形图案131的内侧壁。第二环部139的外侧壁构成环形图案131的外侧壁。
例如,如图6c所示,在第一环部138环绕发光器件120的情况下,第二环部139与第一环部138可以为同心环,第一环部138的外侧壁与第二环部139的内侧壁相连接。
例如,第一环部138的厚度可以小于第二环部139的厚度。
又如,第一环部138的厚度可以等于第二环部139的厚度。
示例性的,由于环形图案131远离衬底110的表面具有多个凸起结构137,上述厚度指的是环形图案131的平均厚度。
采用上述设置方式,可以使得第一环部138的制备精度较高,进而可以更好的控制环形图案131的内侧壁与相应的发光器件120之间的间距,从而更好的控制制备形成的环形图案131的形貌精度,进一步地提高反射层130及发光基板100的制备精度。
在一些实施例中,如图5a所示,在平行于衬底110所在平面的方向上,环形图案131的内侧壁与发光器件120的间距d3的范围为0μm~300μm。
例如,在平行于衬底110所在平面的方向上,环形图案131的内侧壁与发光器件120的间距d3可以为0μm、10μm、50μm、200μm或300μm。
采用上述设置方式,可以使得环形图案131的内侧壁与发光器件120之间的间距相对较小,使得反射层130中多个环形图案131的面积之和较大,进而使得反射层130与反射片140组成的反射结构的面积较大,进而可以提高反射结构反射面积及反射率,进而降低发光基板100的光损耗,提高发光基板100的光效。
在一些实施例中,如图5a所示,在平行于衬底110所在平面的方向上,第一开口141与发光器件120之间的最小间距d4,大于或等于500μm。
例如,在平行于衬底110所在平面的方向上,第一开口141与发光器件120之间的最小间距d4,可以为500μm、700μm、1000μm、1500μm或2000μm。
采用上述设置方式,可以避免因反射片140与衬底110对位不准的情况下,反射片140可能对发光器件120的遮挡,进而避免遮挡发光器件120发出的光,从而可以提高发光基板100的制备良率。
在一些实施例中,如图5a所示,发光基板100还包括:位于多个发光器件120远离衬底110一侧的封装层150。封装层150包括多个封装图案151。
示例性的,封装层150的材料可以为封装胶。封装胶可以为透明材料。
例如,封装层150中多个封装图案151是间隔排布的,多个封装图案151之间是独立的,未相互连接的。
在一些示例中,一个发光器件120在衬底110上的正投影,位于一个封装图案151在衬底110上的正投影范围之内。
例如,一个封装图案151与一个发光器件120对应设置。
例如,一个封装图案151覆盖相应的一个发光器件120。
由此,封装层150中的封装图案151可以对发光器件120进行封装,从而可以避免外界的水氧等入侵至发光器件120的内部,避免影响发光器件120的发光。
在一些示例中,如图5a所示,一个封装图案151在衬底110上的正投影,与一个环形图案131在衬底110上的正投影,相交叠。
例如,一个封装图案151与一个发光器件120对应设置,而一个发光器件120与一个环形图案131对应设置,由此,一个封装图案151也与一个环形图案131对应设置。
例如,一个封装图案151覆盖一个环形图案131的一部分。
采用上述设置方式,可以利用封装图案151对环形图案131进行保护,也可以利用封装图案151增加环形图案131与衬底110的结合强度,避免环形图案131的边缘翘曲等,避免影响环形图案131对发光器件120发出光线的反射,保证环形图案131的反射率。
可以理解的是,封装图案151与反射片140的相对位置关系有多种,可以根据实际需要进行设置,本公开对此不作限制。
在一些示例中,如图5a所示,封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,部分相交叠。
示例性的,反射片140上的一个第一开口141与一个发光器件120对应设置,由此,一个第一开口141与一个封装图案151对应设置。每个封装图案151,均覆盖反射片140中位于每一个第一开口141周围的部分。或者说,每个封装图案151均搭接在反射片140中每一个第一开口141周围的部分。
采用上述设置方式,可以利用封装图案151对反射片140进行保护,也可以利用封装图案151增加反射片140与衬底110或反射层130的结合强度,避免反射片140的边缘翘曲等,避免影响反射片140对发光器件120发出光线的反射,保证反射片140的反射率。此外,由于反射片140的厚度一般大于100μm,反射层130的厚度在50μm~80μm范围内,且,反射片140的反射率大于或等于反射层130的反射率。在一个封装图案151在衬底110上的正投影,与一个环形图案131在衬底110上的正投影相交叠的情况下,封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,部分相交叠,由此,可以提高靠近发光器件120周围的反射结构的反射率,提高反射结构的反射效果,避免由于反射层130的反射率相对较小对反射结构整体的反射率的影响。
在另一些示例中,如图5b所示,封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,无交叠。
示例性的,封装图案151在衬底110上的正投影的边界线,与反射片140在衬底110上的正投影的边界线无交叉。
在封装图案151在衬底110上的正投影的面积一定的情况下,上述设置方式中的反射片140的第一开口141的开口面积可以相对较大,由此,可以降低反射片140的贴附精度,降低发光基板100的制备工艺难度。
示例性的,第一开口141的形状有多种,可以根据实际需要进行选择。例如,可以根据反射层130的结构、发光器件120的形状及尺寸等,选择相配合的第一开口141的形状 和尺寸。
示例性的,封装图案151在衬底110上的正投影的形状可以为圆形,例如该圆形的直径可以为2.5mm。
在一些示例中,第一开口141的形状包括矩形或圆形。
示例性的,如图4b及图4c所示,第一开口141的形状可以为圆形。在发光器件120的尺寸较小的情况下,可以选择圆形的第一开口141。圆形形状的第一开口141更容易加工成型,且,在该反射片140的贴附过程中,该第一开口141可以更好的释放外界施加的贴附应力,进而可以降低反射片140的贴附难度,提高发光基板100的制备效率。
示例性的,上述圆形形状的第一开口141的直径范围可以为3.5mm~5mm。
例如,该圆形形状的第一开口141的直径可以为3.5mm、3.8mm、4.2mm、4.7mm或5mm。
示例性的,上述圆形形状的第一开口141的直径范围也可以为小于或等于2mm。
例如,该圆形形状的第一开口141的直径可以为1.0mm、1.2mm、1.5mm、1.7mm或2mm。
示例性的,如图4a所示,第一开口141的形状可以为矩形。在发光器件120的尺寸较大的情况下(例如发光器件120的剖视形状为矩形,该剖视形状的矩形的任一边的边长大于2mm),可以选择矩形形状的第一开口141。该矩形形状的第一开口141的任一边长的尺寸范围可以为1mm~10mm。例如,该矩形形状的第一开口141的任一边长可以为1mm、2mm、5mm、7mm或10mm。
以封装图案151在衬底110上的正投影的形状为圆形,该圆形的直径为2.5mm的情况为例,若第一开口141为圆形且直径小于2mm,则封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影有交叠。若第一开口141为圆形且直径大于2mm,则封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影无交叠。
在一些实施例中,如图3所示,发光基板100还包括:设置在衬底110一侧、且与多个发光器件120位于衬底110同一侧的多个驱动芯片160。
在一些示例中,一个驱动芯片160与至少一个发光器件120电连接,且驱动芯片160被配置为,驱动该至少一个发光器件120发光。
例如,一个驱动芯片160可以与一个发光器件120电连接,且驱动该发光器件120发光。
又如,一个驱动芯片160可以与四个发光器件120电连接,且驱动该四个发光器件120发光。
又如,一个驱动芯片160可以与九个发光器件120电连接,且驱动该九个发光器件120发光。
在一些示例中,至少一个驱动芯片160在衬底110上的正投影,位于反射片140在衬底110上的正投影范围之内。至少一个驱动芯片160被反射片140覆盖,其余驱动芯片160可以通过反射片140的第一开口141暴露出来。
例如,在部分驱动芯片160通过反射片140的第一开口141暴露出来的情况下,该部分驱动芯片160周围也可以设置对应的反射层130的环形图案131,该环形图案131的结构特征可以参考上述一些实施例中关于环形图案131的描述,此处不再赘述。而被反射片140覆盖的驱动芯片160周围可以不设置反射层130。
在又一些示例中,多个驱动芯片160在衬底110上的正投影,位于反射片140在衬底110上的正投影范围之内。
采用上述设置方式,可以减少反射片140上的第一开口141的数量,进而可以简化反射片140的制备工艺,也可以减少反射层130中环形图案131的数量,从而简化反射层130的制备工艺。此外,反射片140还可以对驱动芯片160起到一定的保护作用,避免外界水汽入侵驱动芯片160而导致的驱动芯片160腐蚀或漏电等不良现象。
在一些示例中,如图3所示,发光基板100还包括:绑定结构170。其中,绑定结构170例如与驱动芯片160电连接。
示例性的,绑定结构170位于发光基板100靠近边缘的一侧。绑定结构170用于传输不同类型的工作信号至驱动芯片160,驱动芯片160可以根据该不同类型的工作信号生成驱动信号,并将该驱动信号传输至相应的发光器件120,从而驱动该发光器件120发光。
示例性的,绑定结构170所在的区域,未被反射层130及反射片140覆盖。
示例性的,上述绑定结构170可以采用COF(Chip On Film,覆晶薄膜)实现与PCB(Printed Circuit Board,印刷电路板)或FPC(Flexible Printed Circuit,柔性电路板)的绑定。
可以理解的是,上述实施例中的发光基板100的制备方法有多种,可以根据实际情况进行选择。
可以理解的是,本公开中的一些实施例所提供的背光模组及显示装置所能实现的有益效果,与上述一些实施例中提供的发光基板所能实现的有益效果相同,此处不再赘述。
本公开的一些实施例还提供了一种上述发光基板100的制备方法,如图10所示,该制作方法包括:S100~S400。
S100,如图11a所示,提供衬底110。
示例性的,关于衬底110的结构,可以参考本公开上述一些实施例中的介绍,此处不再赘述。
S200,如图11b所示,在衬底110上固定多个发光器件120。
示例性的,示例性的,可以采用固晶工艺在衬底110上固定多个发光器件120。
示例性的,发光器件120可以为:LED、Micro LED、Mini LED等。
例如,以发光器件120为Mini LED为例,Mini LED的结构可以包括正装结构、垂直结构或倒装结构。
示例性的,上述多个发光器件120可以较为均匀地分布在衬底110上,从而使得发光基板100的整个面发光的光线较为均匀,进而提高背光模组10及显示装置1的显示质量。
S300,如图11c所示,采用3D打印工艺,在衬底110上形成反射层130。反射层130具有间隔排布的多个环形图案131。一个发光器件120位于一个环形图案131的内侧壁内。
在一些示例中,反射层130的材料可以包括:环氧树脂、苯基硅树脂、聚四氟乙烯树脂等。
本公开实施例可以采用3D打印设备进行3D打印工艺。3D打印设备包括具有相同功能的多个打印喷头,打印喷头上设置有打印喷阀。将反射层130的材料经过一定的预处理后放入3D打印设备中,然后通过控制打印喷阀的状态,在衬底110上根据设定的打印路径移动打印喷头,使得反射层130的材料以点状方式从打印喷阀中喷出。该点状方式滴落的反射层材料滴落到衬底110上后粘合在一起,形成线条状的反射层材料,相邻的线条状 反射层材料连接成面状的反射层材料即形成打印图案。所有打印图案的整体形成反射层130。
示例性的,3D打印的自由度高,打印喷头与待打印的衬底110之间为非接触式出胶,且打印形成的反射层130对应的尺寸精度及与开口的尺寸精度较高,有利于提高反射层130占据的衬底110的面积比例,进而可以提高反射层130的反射率,提高发光器件120发出光线的利用率。3D打印还可以集中密封提供反射层材料,从而在制备过程中使得反射层材料的损耗率较低,一般损耗率小于5%左右,因此,3D打印工艺制备形成反射层130可以大大地降低反射层的材料成本,进而降低发光基板100、背光模组10及显示装置1的制备成本。此外,3D打印工艺中,单次打印形成的打印图案的厚度已经可以满足反射效果,因此,可以极大地简化反射层130的工艺流程,缩短反射层130的制备时间,从而提高反射层130的制备效率及发光基板100的制备效率。且反射层130制备时间的缩短也可以降低3D打印设备的使用率,从而可以提升3D打印设备的备件寿命,可以提升备件的寿命约80%以上。
S400,如图11d所示,在反射层130远离衬底110的一侧贴附反射片140。反射片140具有多个第一开口141,一个第一开口141暴露一个环形图案131,且在垂直于衬底110的方向上,环形图案131的外侧壁环绕相应的第一开口141,环形图案131的内侧壁位于相应的第一开口141内。
示例性的,可以将反射片140上的第一开口141与衬底110上的发光器件120、环形图案131对位后再进行贴附。
示例性的,多个第一开口141沿第一方向X排列为多列,沿第二方向Y排列为多行。
示例性的,第一开口141的侧壁与相应的发光器件120之间的距离,大于或等于,相应的环形图案131的内侧壁与该发光器件120之间的距离。
本公开的一些实施例所提供的发光基板100的制备方法中,由于先在衬底110上将发光器件120固定,然后采用3D打印工艺形成反射层130,使得反射层130在固晶工艺(此处指的是将发光器件120固定在衬底110上的工艺)后形成,可以使得反射层材料较少沉积或者几乎不会沉积到与发光器件120连接的焊盘上(反射层材料在焊盘上的残留物降低80%左右),进而可以避免在先形成反射层130的情况下,出现的反射层材料沉积在焊盘上而带来的灭灯或虚焊的现象,从而提高发光基板100的制备良率。上述制备方法还可以避免反射层在固晶工艺前形成的情况下,反射层材料受到固晶工艺中的回流焊工艺的高温作用而使得反射层材料氧化变黄的现象,从而可以避免反射层130的反射率的降低,进而可以提高反射层130的光效,提高发光基板100的发光率,进而提高背光模组10及显示装置1的显示亮度,降低背光模组10及显示装置1的功耗。
其次,本公开中的制备方法中形成的反射层130包括间隔设置的多个环形图案131,一个发光器件120位于一个环形图案131的内侧壁内,也就是说,仅在衬底110上局部区域(仅在衬底上发光器件120周围的区域)设置反射层130,然后在反射层130上贴附反射片140,设置反射片140上的一个第一开口141暴露一个环形图案131,且在垂直于衬底110的方向上,环形图案131的外侧壁环绕相应的第一开口141,环形图案131的内侧壁位于相应的第一开口141内,从而使得发光基板100上的反射层130的有效面积(有效面积指的是多个环形图案的面积之和)减小,从而可以减少反射层材料的用量,缩短反射层130的制备时间,从而可以降低制备反射层130的设备的损坏率,降低反射层130材料 成本(材料成本节省约80%左右)和设备成本,降低发光基板100的材料成本和设备成本,提高反射层130及发光基板100的生产效率。
此外,本公开的制备方法中贴附的反射片140具有多个第一开口141,在反射片贴附的过程中,使得一个第一开口141暴露一个环形图案131,且在垂直于衬底110的方向上,环形图案131的外侧壁环绕相应的第一开口141,环形图案131的内侧壁位于相应的第一开口141内,使得反射片140中靠近第一开口141的部分,搭接在反射层130的环形图案131上,从而使得反射片140与反射层130组成的反射结构的反射面积较大,反射结构与发光器件之间的间隙较小,进而提高反射结构的反射率,降低发光基板100的光耗,提高反射结构及发光基板100的光效,降低显示装置1的光耗。
可以理解的是,上述反射层130的制备方法,也可以为丝网印刷工艺结合补点工艺,或者丝网印刷工艺结合曝光显影工艺。
在反射层130的制备方法为丝网印刷工艺结合补点工艺的情况下,发光基板100的制备步骤可以为:备料→丝网印刷工艺→固晶→补点→贴附反射片等。
示例性的,上述制备方法形成的反射层130,反射层130与发光器件120之间的间距约为0.30mm±0.15mm,单次丝网印刷形成的反射图案的厚度约为30μm±5μm,且为使反射层达到一定的厚度,例如为55μm,需要两次丝网印刷工艺形成。该制备方法形成的反射层130的反射率(该反射率为测试波长450nm的蓝光的反射率)为92%左右。该制备方法中反射层130与发光器件120之间的间距较大,反射层的反射率较低,反射层的光学效果相对较差,且反射层材料的损耗率高达30%。
在反射层130的制备方法为丝网印刷工艺结合曝光显影工艺的情况下,发光基板100的制备步骤可以为:备料→丝网印刷工艺→曝光→显影→固晶等。
示例性的,上述制备方法形成的反射层130,反射层130与发光器件120之间的间距约为0.05mm±0.03mm,单次丝网印刷形成的反射图案的厚度约为30μm±5μm,且为使反射层达到一定的厚度,例如为55μm,需要两次丝网印刷工艺形成。该制备方法形成的反射层130的反射率(该反射率为测试450nm波长的蓝光的反射率)为92%左右。该制备方法形成的反射层与发光器件之间的间距有所减小,然而需要两次丝网印刷及两次曝光显影的产能,使得反射层的制备成本较高,且反射层材料的损耗率高达30%。
而本公开上述一些实施例所提供的发光基板的制备方法中,采用3D打印工艺,在衬底110上形成反射层130,可以在一次打印中形成所需厚度的反射图案(一次打印中反射层材料的厚度范围为30μm~100μm),进而可以减少发光基板100的产能损耗,且打印成本较低,降低了反射层及发光基板的制备成本。此外,该制备方法反射层在固晶后形成,还可以避免固晶工艺中的回流焊工艺使得反射层130的反射率的降低的风险,进而可以提高反射层130的光效,提高发光基板100的发光率,进而提高背光模组10及显示装置1的显示亮度,降低背光模组10及显示装置1的功耗。本公开中反射层的反射率为93.5%(该反射率为测试450nm波长的蓝光的反射率)左右,大于上述丝网印刷制备形成的反射层的反射率,且反射层材料的损耗率小于5%。
示例性的,3D打印设备喷射出的反射层材料,以点状滴落至衬底上,在衬底上形成圆形的图案,多个相邻的圆形图案部分重叠,形成打印图案。由此,可以根据实际需要调节打印设备的打印喷阀喷出的反射层材料的量,来控制在衬底上形成的圆形图案的大小。
具体地,如图12b所示,在所需的打印图案或环形图案的环宽较小的情况下,3D打印 设备可以调节打印喷阀,使其喷射出较大的点状反射层材料至衬底上,进而可以减少打印设备的打印次数,提高打印效率。如图12c及图12d所示,在所需打印图案例如环形图案的精度较高的情况下,在靠近发光器件120的区域(例如下文中的第一子区P01),可以采用小点打印的方式(小点打印的方式指的是,使得打印喷阀喷出较小的点状反射层材料的打印方式),从而可以精确的控制所形成的环形图案的精度;而在远离发光器件120的区域(例如下文中的第二子区P02),可以采用大点打印的方式(大点打印的方式指的是,使得打印喷阀喷出较大的点状反射层材料的打印方式),从而提高环形图案131的制备效率。如图12e所示,在所需的打印图案或环形图案131的环宽较大的情况下,可以采用大点打印方式进行环形图案131的打印,进而可以减少打印设备的打印次数,提高打印效率。大点打印方式形成的打印图案的厚度,大于小点打印方式形成的打印图案的厚度。
在上述反射层130包括与多个环形图案131相连接的连接部,连接部覆盖衬底110中除环形图案外的区域,环形图案131的厚度,大于连接部的厚度的情况下,上述反射层130的制备方法还可以包括:采用丝网印刷工艺,形成第一部分及连接部;采用丝网印刷工艺及补点工艺,形成第二部分;第一部分与第二部分形成环形图案131,环形图案131与连接部形成反射层130。由此,不仅可以使得连接部对衬底110的表面进行保护,避免水汽入侵,也可以减少反射层材料的用量,又可以使得环形图案131具有足够的厚度,从而保证环形图案131的光效,提高发光基板100的光效。
可以理解的是,由于本公开一些实施例中的反射层采用上述3D打印工艺形成,因此,反射层130的一些结构和形貌特征为3D打印工艺所特有的特征。
由于采用3D打印工艺,点状反射层材料滴落至衬底上后,会发生一定程度的流平,因此,采用3D打印工艺形成的环形图案的边缘具有特定的形貌和打印纹路。单个打印条的形貌特征如图12f所示,打印条的边缘为相连接的多个曲线形段。多个打印条相互重合连接,形成的打印图案如图12g所示。打印图案的边缘为多个相连接的曲线形状,呈波浪状。这是本公开中一些实施例中采用3D打印形成的打印图案的特有形貌。
示例性的,如图5b所示,上述3D打印工艺形成的反射层130中,环形图案131的至少部分内侧壁与衬底110所在的平面的夹角α为锐角;和/或,环形图案131的至少部分外侧壁与衬底110所在的平面的夹角β为锐角(参见图5b所示)。关于夹角α及夹角β的特征可以参考本文上述一些实施例中的介绍,此处不再赘述。
示例性的,如图5b所示,环形图案131的至少部分内侧壁呈弧面状;和/或,环形图案131的至少部分外侧壁呈弧面状。关于环形图案131的内侧壁呈弧面状及环形图案的外侧壁呈弧面状的特征,可以参考本文上述一些实施例中的介绍,此处不再赘述。
示例性的,如图6b及图6c所示,环形图案131在衬底110上的正投影的外边界线包括至少一个外曲线段,外曲线段向远离相应的发光器件的方向凸出;和/或,环形图案在衬底上的正投影的内边界线包括至少一个内曲线段,内曲线段向靠近相应的发光器件的方向凸出。关于内曲线段和外曲线段的特征,可以参考本文上述一些实施例中的介绍,此处不再赘述。
示例性的,如图9所示,环形图案131远离衬底110的表面具有多个凸起结构137。由于3D打印可以采用上述大点打印方式和小点打印方式相结合的方式进行反射层的制备,使得环形图案131远离衬底110一侧的表面的凸起结构137的形貌不同。采用大点打印方式形成的打印图案上的凸起结构137的高度,大于采用小点打印方式形成的打印图案上的 凸起结构137的高度。
关于凸起结构的特征可以参考本文上述一些实施例中的介绍,此处不再赘述。
示例性的,在垂直于衬底110的方向上反射层130的厚度范围为50μm~80μm。
示例性的,在平行于衬底110所在平面的方向上,环形图案131的内侧壁与发光器件120的间距d3的范围为0μm~300μm。
示例性的,在平行于衬底110所在平面的方向上,第一开口141与发光器件120之间的最小间距d4,大于或等于500μm。
需要说明的是,本公开上述实施例所提出的采用3D打印工艺形成反射层130的制备方法有多种,可以根据需要形成的环形图案131的结构等特征进行选择,本公开对此不作限制。下面对本公开上文中提到的“回”字形,“井”字形和围坝形的环形图案131的制备方法分别进行介绍。
示例性的,多个发光器件120沿第一方向X排列为多列,沿第二方向Y排列为多行;第一方向X与第二方向Y相交。
在一些实施例中,如图12a所示,衬底110具有多个第一打印区域P1。一个第一打印区域P1环绕一个发光器件120。
示例性的,第一打印区域P1的形状可以为环状。
示例性的,多个第一打印区域P1沿第一方向X排列为多列,沿第二方向Y排列为多行。
例如,任一行第一打印区域P1包括沿第一方向X依次间隔排列的多个第一打印区域P1。任一列第一打印区域P1包括沿第二方向Y依次间隔排列的多个第一打印区域P1。
在一些示例中,上述S300中采用3D打印工艺,在衬底上形成反射层包括S310。
S310,如图12b~图12e所示,采用环绕打印工艺,在第一打印区域P1形成环形图案131。多个环形图案131形成反射层130。
示例性的,3D打印设备在进行打印工作前,需要先设定打印路径。环绕打印工艺指的是,3D打印设备的打印路径整体是非直线的,完成打印后,所形成的打印图案的整体轮廓是封闭的环形或环形的一部分。
在采用环绕打印工艺的情况下,打印喷阀可以为压电阀或电磁阀。压电阀控制的3D打印设备的打印频率为300Hz~600Hz,打印频率较高,且打印喷头的出胶量较少,在起始打印位置不会存在拖尾现象,从而可以得到高精度的打印效果,使得打印形成的打印图案的厚度较小,进而可以提高环形图案131的形貌精度,从而可以精确控制环形图案131与发光器件120之间的间距,进而可以使得发光器件120与环形图案131之间的间距较小甚至为零,进而可以提高反射层130的反射率,提高发光基板100的光效,降低背光模组10及显示装置1的功耗。
如图11d所示,采用上述制备方法形成的环形图案131,在衬底110上的正投影形状为“回”字形。
下面对一种实现方式中制备形成的反射层与本公开实施例中制备形成的反射层进行对比介绍。例如,多个发光器件120均匀的排布在衬底110上,相邻两个发光器件120之间的间距为10mm,发光器件120的数量为100个,发光基板100中用于发光的区域的面积为10000mm 2(发光的区域为正方形,边长为100mm,面积为100mm*100mm)。在一种实现方式中,在发光基板100上制备形成反射层,反射层上设置有第二开口,第二开口 与发光器件对应,则第二开口的数量为100个,第二开口的形状可以为正方形,该正方形的边长为1mm,则需要打印形成的反射层的面积为9900mm 2(该面积由发光的区域的面积10000mm 2与,100个第二开口的面积和100mm 2的差得到)。而本公开中,反射层130为多个环形图案131,环形图案131为上述“回”字形的结构,在垂直于衬底110所在平面的平面上,环形图案131的外侧壁围成的正方形的边长为4mm,环形图案131的内侧壁所围成的正方形的边长为1mm,则需要打印形成的反射层130的面积为1500mm 2(该面积为100个环形图案131的面积之和),该打印形成的反射层130的面积为1500mm 2远小于上述9900mm 2。可见,相比于一种实现方式中反射层的设计方案来说,本公开中反射层的面积降低了85%,进而可以使得反射层的材料成本节省85%左右。
在上述示例中,如图12a所示,第一打印区域P1包括:第一子区P01和第二子区P02。第一子区P01相比于第二子区P02,更靠近发光器件120;第一子区P01环绕发光器件120的至少一部分,第二子区P02环绕发光器件120。
例如,第一子区P01环绕发光器件120的一部分。第一子区P01可以位于发光器件120沿第一方向X的相对两侧,或,第一子区P01可以位于发光器件120沿第二方向Y的相对两侧。
又如,第一子区P01环绕发光器件120。第一子区P01为环形区域。
例如,第二子区P02环绕第一子区P01。且第一子区P01与第二子区P02相互连接。
在一些示例中,如图13所示,上述S310中采用环绕打印工艺,在第一打印区域形成环形图案,包括S311~S312。
S311,如图14a所示,采用环绕打印工艺或虚线打印工艺,在第一子区P01打印形成第一环部138;第一环部138环绕发光器件120的至少一部分。
示例性的,可以采用环绕打印工艺,在第一子区P01打印形成第一环部138。也可以采用虚线打印工艺,在第一子区P01打印形成第一环部138。
示例性的,上述虚线打印工艺指的是,3D打印设备沿着设定的打印路径移动,通过使打印喷阀进行间歇性的打开或关闭,在完成一次打印后,所形成的打印图案的形状为不连续的、间断的类似虚线线条形状。
例如,在采用上述虚线打印工艺的情况下,打印喷阀可以为气动阀。气动阀控制的3D打印设备的打印频率为20Hz~50Hz,该打印设备备件的成本较低,可以降低制备反射层130的成本,从而可以降低发光基板100的制备成本。
S312,如图14b所示,采用环绕打印工艺,在第二子区P02打印形成第二环部139。第二环部139环绕发光器件120,且环绕第一环部138。第一环部138的厚度小于或等于第二环部139的厚度;第一环部138与第二环部139相连接,构成环形图案131。
示例性的,在打印第一环部138的过程中,可以先将打印设备的出胶量调小,使得打印设备从打印喷阀喷出的点状材料的尺寸较小,从而可以较为精确的控制该点状材料形成的第一环部138的结构特征和形貌特征,进而使得形成的环形图案131的内侧壁的形貌较为精准,从而可以精准控制环形图案131的内侧壁与发光器件120之间的间距较小,保证反射层130的反射率较高。
可以理解的是,采用上述制备方法,打印形成的环形图案131为“回”字形。
采用上述制备方法,可以在制备过程中降低反射层材料的成本,且可以使得形成的环形图案131的形貌更为精准,从而使得环形图案131的内侧壁与发光器件120之间的间距 尽可能小,从而可以使得环形图案131的反射率提高,提高发光器件120的光效,避免光耗较大,降低显示装置1的能耗。
在另一些实施例中,如图15所示,衬底110具有沿第一方向X延伸的多个第二打印区域P2和多个第三打印区域P3,及沿第二方向Y延伸的多个第四打印区域P4和第五打印区域P5。发光器件120的沿第二方向Y的相对两侧分别设置第二打印区域P2和第三打印区域P3,发光器件120的沿第一方向X的相对两侧分别设置第四打印区域P4和第五打印区域P5。
在一些示例中,如图16所示,上述S300中采用3D打印工艺,在衬底上形成反射层包括S320~S350。
S320,如图17a所示,采用虚线打印工艺,在各发光器件120一侧的第二打印区域P2形成第一子部132。
示例性的,在第二打印区域P2中待形成第一子部132的区域内,可以打开3D打印设备的打印喷阀,使其喷出反射层材料,形成第一子部132。而在第二打印区域P2的其他区域,可以关闭3D打印设备的打印喷阀。
S330,如图17b所示,采用虚线打印工艺,在各发光器件120一侧的第三打印区域P3形成第三子部134。
示例性的,在第三打印区域P3中待形成第三子部134的区域内,可以打开3D打印设备的打印喷阀,使其喷出反射层材料,形成第三子部134。而在第三打印区域P3的其他区域,可以关闭3D打印设备的打印喷阀。
S340,如图17c所示,采用虚线打印工艺,在各发光器件120一侧的第四打印区域P4形成第二子部133。
示例性的,在第四打印区域P4中待形成第二子部133的区域内,可以打开3D打印设备的打印喷阀,使其喷出反射层材料,形成第二子部133。而在第四打印区域P4的其他区域,可以关闭3D打印设备的打印喷阀。
S350,如图17d所示,采用虚线打印工艺,在各发光器件120一侧的第五打印区域P5形成第四子部135。位于同一发光器件120周围的第一子部132、第二子部133、第三子部134和第四子部135相连接形成反射层130的环形图案131。
示例性的,在第五打印区域P5中待形成第四子部135的区域内,可以打开3D打印设备的打印喷阀,使其喷出反射层材料,形成第四子部135。而在第五打印区域P5的其他区域,可以关闭3D打印设备的打印喷阀。
在一些示例中,上述位于同一发光器件120周围的第一子部132、第二子部133、第三子部134和第四子部135可以是依次首尾连接。在这种情况下,采用上述制备方法,打印形成的环形图案131为“回”字形。
在另一些示例中,上述位于同一发光器件120周围的第一子部132、第二子部133、第三子部134和第四子部135也可以是依次交叉连接。在这种情况下,采用上述制备方法,打印形成的环形图案131为“井”字形。
示例性的,在打印形成的环形图案131为“井”字形的情况下,打印喷阀可以为气动阀,气动阀控制的3D打印设备的打印频率为20Hz~50Hz,可以忽略打印起始区域的精度,降低打印成本,降低发光基板100的制备成本。
当然,上述环形图案131中第一子部132、第二子部133、第三子部134及第四子部 135在一次构图工艺中形成,第一子部132、第二子部133、第三子部134及第四子部135为一体结构。
采用上述制备方法形成环形图案131,可以提高反射层130的制备效率,缩短发光基板100的制备时间,从而提高发光基板100的制备效率。
在另一些实施例中,如图18所示,衬底110具有沿第一方向X延伸的多个第六打印区域P6和多个第七打印区域P7,以及沿第二方向Y延伸的多个第八打印区域P8和多个第九打印区域P9;一行发光器件120的沿第二方向Y的相对两侧分别设置第六打印区域P6和第七打印区域P7,一列发光器件120的沿第一方向X的相对两侧分别设置第八打印区域P8和第九打印区域P9。
示例性的,第六打印区域P6与,第八打印区域P8及多个第九打印区域P9,均有交叠区域。第七打印区域P7与,第八打印区域P8及多个第九打印区域P9,均有交叠区域。
如图19所示,上述S300中采用3D打印工艺,在衬底上形成反射层包括S360~S390。
S360,如图20a所示,采用直线打印工艺,在各行发光器件120一侧的第六打印区域P6形成第一反射图案G1,第一反射图案G1包括与各发光器件120相对应的第一子部132和连接相邻两个第一子部132的第一连接图案136a。
示例性的,上述直线打印工艺指的是,3D打印设备沿着设定的打印路径,控制打印喷阀均处于打开状态,在完成一次打印后,所形成的打印图案为连续的、不间断的,且该打印图案的形状为类似直线线条形状。
示例性的,多个第一子部132与多个第一连接图案136a交替排布。
示例性的,多个第一子部132与多个第一连接图案136a在一次构图工艺中形成,且呈一体结构。
S370,如图20b所示,采用直线打印工艺,在各行发光器件120一侧的第七打印区域P7形成第二反射图案G2,第二反射图案G2包括与各发光器件120相对应的第三子部134和连接相邻两个第三子部134的第三连接图案136c。
示例性的,多个第三子部134与多个第三连接图案136c交替排布。
S380,如图20c所示,采用直线打印工艺,在各列发光器件120一侧的第八打印区域P8形成第三反射图案G3,第三反射图案G3包括与各发光器件120相对应的第二子部133和连接相邻两个第二子部133的第二连接图案136b。
示例性的,多个第二子部133与多个第二连接图案136b交替排布。
示例性的,多个第二子部133与多个第二连接图案136b在一次构图工艺中形成,且呈一体结构。
S390,如图20d所示,采用直线打印工艺,在各列发光器件120一侧的第九打印区域P9形成第四反射图案G4,第四反射图案G4包括与各发光器件120相对应的第四子部135和连接相邻两个第四子部135的第四连接图案136d。位于同一发光器件120周围的第一子部132、第二子部133、第三子部134和第四子部135相连接形成反射层的环形图案。多个第一反射图案G1、多个第二反射图案G2、多个第三反射图案G3及多个第四反射图案G4形成反射层130。
示例性的,多个第四子部135与多个第四连接图案136d交替排布。
示例性的,多个第四子部135与多个第四连接图案136d在一次构图工艺中形成,且呈一体结构。
可以理解的是,采用上述制备方法,打印形成的反射层130中的多个连接图案136与多个环形图案131形成的整体为围坝型。
示例性的,上述直线打印工艺,可以采用气动阀控制3D打印设备的打印喷阀的打开或关闭。
采用上述制备方法形成反射层,可以提高反射层130的制备效率,缩短发光基板100的制备时间,从而提高发光基板100的制备效率。
可以理解的是,发光基板100还包括:封装层150。在发光基板100的制备过程中,封装层150与反射片140的制备先后顺序有多种,可以根据实际需要进行选择,本公开对此不作限制。
在一些实施例中,在S400中在反射层130远离衬底110的一侧贴附反射片140之前,制备方法还包括S401。
S401,在反射层130远离衬底110的一侧形成封装层150。封装层150包括多个封装图案151,封装图案151与发光器件120对应。一个发光器件120在衬底110上的正投影,位于一个封装图案151在衬底110上的正投影范围之内;一个封装图案151在衬底110上的正投影,与一个环形图案131在衬底110上的正投影,相交叠。
示例性的,可以采用封装胶形成封装层150,对发光器件120进行封装,从而可以避免水汽入侵至发光器件120的内部,避免影响发光器件120的发光。
采用上述制备方法,在贴附反射片140之前形成封装层150,可以避免封装层150的形成过程对反射片140的影响,避免影响反射片140的反射率。
在上述制备方法中,封装层150在反射片140贴附之前形成,则封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,无交叠。
示例性的,封装图案151在衬底110上的正投影的边界线,与反射片140在衬底110上的正投影的边界线无交叉。也就是说,封装图案151在前形成,封装图案151无法覆盖在后贴附的反射片140。在这种情况下,反射片140的第一开口141的面积较大,封装图案151位于反射片140的第一开口141内,反射片140的贴附难度较小,发光基板100的制备难度较小。
封装图案151与反射片140的相对位置关系可以参考上文一些实施例中的说明,此处不再赘述。
在另一些实施例中,在上述S400中在反射层130远离衬底110的一侧贴附反射片140之后,制备方法还包括S501。
S501,在反射层130远离衬底110的一侧形成封装层150。封装层150包括多个封装图案151,封装图案151与发光器件120对应。一个发光器件120在衬底110上的正投影,位于一个封装图案151在衬底110上的正投影范围之内;一个封装图案151在衬底110上的正投影,与一个环形图案131在衬底110上的正投影,相交叠。
示例性的,可以采用封装胶形成封装层150,对发光器件120进行封装,从而可以避免水汽入侵至发光器件120的内部,避免影响发光器件120的发光。
在上述制备方法中,封装层150在反射片140贴附之后形成,则封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,可以无交叠。封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,也可以部分交叠。
在封装图案151在衬底110上的正投影,与反射片140在衬底110上的正投影,部分 交叠的情况下,可以利用封装图案151对反射片140进行保护,也可以利用封装图案151增加反射片140与衬底110或反射层130的结合强度,避免反射片140的边缘翘曲等,避免影响反射片140对发光器件120发出光线的反射,保证反射片140的反射率,提高发光基板100的制备良品率。
示例性的,在上述S200中在衬底110上固定多个发光器件120后,上述制备方法还包括:在衬底110上固定多个驱动芯片160。
示例性的,驱动芯片160与至少一个发光器件120电连接。
示例性的,在上述S200中在衬底110上固定多个发光器件120后,上述制备方法还包括:对衬底110中位于各发光器件120周围的部分进行清洗。
示例性的,上述清洗操作可以改变衬底110中位于发光器件120周围部分的表面张力系数,进而提高反射材料在衬底110上的润湿效果,进而在后续的反射材料打印中,缓解或改善反射层材料与发光器件120周围区域的排异现象,进而可以提高形成的反射层130的形貌精度,提高发光基板100的发光亮度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种发光基板,包括:
    衬底;
    位于所述衬底一侧的反射层,所述反射层具有间隔排布的多个环形图案;
    位于所述反射层远离所述衬底一侧的反射片,所述反射片具有多个第一开口,一个第一开口暴露一个环形图案,且在垂直于所述衬底的方向上,所述环形图案的外侧壁环绕相应的所述第一开口,所述环形图案的内侧壁位于相应的所述第一开口内;以及,
    多个发光器件,一个发光器件位于一个所述环形图案的内侧壁内。
  2. 根据权利要求1所述的发光基板,其中,在平行于所述衬底所在平面的方向上,所述环形图案的外侧壁与所述环形图案的内侧壁之间的最小间距,大于或等于2.3mm。
  3. 根据权利要求1或2所述的发光基板,其中,在平行于所述衬底所在平面的方向上,所述环形图案的外侧壁与所述第一开口之间的最小间距,大于或等于2mm。
  4. 根据权利要求1~3中任一项所述的发光基板,其中,所述环形图案包括依次首尾连接的第一子部、第二子部、第三子部及第四子部;所述第一子部、所述第三子部沿第一方向延伸,所述第二子部、所述第四子部沿第二方向延伸;
    所述第一方向与所述第二方向相交。
  5. 根据权利要求1~3中任一项所述的发光基板,其中,所述环形图案包括依次交叉连接的第一子部、第二子部、第三子部及第四子部;所述第一子部、所述第三子部沿第一方向延伸,所述第二子部、所述第四子部沿第二方向延伸;
    所述第一方向与所述第二方向相交。
  6. 根据权利要求4或5所述的发光基板,其中,所述第一子部、所述第二子部、所述第三子部及所述第四子部为一体结构。
  7. 根据权利要求4~6中任一项所述的发光基板,其中,所述多个环形图案沿所述第一方向排列为多列,沿所述第二方向排布为多行;
    所述反射层还包括多个连接图案;所述多个连接图案包括:沿所述第一方向延伸的多个第一连接图案、多个第三连接图案,以及沿所述第二方向延伸的多个第二连接图案、多个第四连接图案;
    沿所述第一方向,相邻的两个环形图案的两个第一子部与第一连接图案相连接,相邻的两个环形图案的两个第三子部与第三连接图案相连接;沿所述第二方向,相邻的两个环形图案的两个第二子部与第二连接图案相连接,相邻的两个环形图案的两个第四子部与第四连接图案相连接。
  8. 根据权利要求7所述的发光基板,其中,所述环形图案和,与所述环形图案连接的连接图案,呈一体结构。
  9. 根据权利要求1~8中任一项所述的发光基板,其中,在垂直于所述衬底的方向上,所述反射层的厚度范围为50μm~80μm。
  10. 根据权利要求1~9中任一项所述的发光基板,其中,所述环形图案的至少部分内侧壁与所述衬底所在的平面的夹角为锐角;和/或,
    所述环形图案的至少部分外侧壁与所述衬底所在的平面的夹角为锐角。
  11. 根据权利要求1~10中任一项所述的发光基板,其中,所述环形图案的至少部分内侧壁呈弧面状;和/或,
    所述环形图案的至少部分外侧壁呈弧面状。
  12. 根据权利要求1~11中任一项所述的发光基板,其中,所述环形图案在所述衬底上的正投影的外边界线包括至少一个外曲线段,所述外曲线段向远离相应的所述发光器件的方向凸出;和/或,
    所述环形图案在所述衬底上的正投影的内边界线包括至少一个内曲线段,所述内曲线段向靠近相应的所述发光器件的方向凸出。
  13. 根据权利要求1~12中任一项所述的发光基板,其中,所述环形图案远离所述衬底的表面具有多个凸起结构。
  14. 根据权利要求1~13中任一项所述的发光基板,其中,所述环形图案包括相连接的第一环部和第二环部;
    所述第一环部环绕所述发光器件的至少一部分,所述第二环部环绕所述发光器件,且环绕所述第一环部;所述第一环部的厚度小于或等于所述第二环部的厚度。
  15. 根据权利要求1~14中任一项所述的发光基板,其中,在平行于所述衬底所在平面的方向上,所述环形图案的内侧壁与所述发光器件的间距范围为0μm~300μm。
  16. 根据权利要求1~15中任一项所述的发光基板,其中,在平行于所述衬底所在平面的方向上,所述第一开口与所述发光器件之间的最小间距,大于或等于500μm。
  17. 根据权利要求1~16中任一项所述的发光基板,其中,所述第一开口的形状包括矩形或圆形。
  18. 根据权利要求1~17中任一项所述的发光基板,还包括:位于所述多个发光器件远离所述衬底一侧的封装层,所述封装层包括多个封装图案;
    一个所述发光器件在所述衬底上的正投影,位于一个封装图案在所述衬底上的正投影范围之内;
    一个所述封装图案在所述衬底上的正投影,与一个所述环形图案在所述衬底上的正投影,相交叠。
  19. 根据权利要求18所述的发光基板,其中,所述封装图案在所述衬底上的正投影,与所述反射片在所述衬底上的正投影,部分相交叠。
  20. 根据权利要求18所述的发光基板,其中,所述封装图案在所述衬底上的正投影,与所述反射片在所述衬底上的正投影,无交叠。
  21. 一种发光基板的制备方法,包括:
    提供衬底;
    在所述衬底上固定多个发光器件;
    采用3D打印工艺,在所述衬底上形成反射层;所述反射层具有间隔排布的多个环形图案;一个发光器件位于一个环形图案的内侧壁内;
    在所述反射层远离所述衬底的一侧贴附反射片;所述反射片具有多个第一开口,一个第一开口暴露一个环形图案,且在垂直于所述衬底的方向上,所述环形图案的外侧壁环绕相应的所述第一开口,所述环形图案的内侧壁位于相应的所述第一开口内。
  22. 根据权利要求21所述的制备方法,其中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交;
    所述衬底具有多个第一打印区域;一个第一打印区域环绕一个所述发光器件;
    所述采用3D打印工艺,在所述衬底上形成反射层包括:
    采用环绕打印工艺,在所述第一打印区域形成环形图案;多个所述环形图案形成所述 反射层。
  23. 根据权利要求22所述的制备方法,其中,所述第一打印区域包括:第一子区和第二子区;所述第一子区相比于所述第二子区,更靠近所述发光器件;所述第一子区环绕所述发光器件的至少一部分,所述第二子区环绕所述发光器件;
    所述采用环绕打印工艺,在所述第一打印区域形成环形图案,包括:
    采用环绕打印工艺或虚线打印工艺,在所述第一子区打印形成第一环部;所述第一环部环绕所述发光器件的至少一部分;
    采用环绕打印工艺,在所述第二子区打印形成第二环部;所述第二环部环绕所述发光器件,且环绕所述第一环部;所述第一环部的厚度小于或等于所述第二环部的厚度;所述第一环部与所述第二环部相连接,构成所述环形图案。
  24. 根据权利要求21所述的制备方法,其中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交;
    所述衬底具有沿第一方向延伸的多个第二打印区域和多个第三打印区域,及沿第二方向延伸的多个第四打印区域和第五打印区域;所述发光器件的沿第二方向的相对两侧分别设置第二打印区域和第三打印区域,所述发光器件的沿第一方向的相对两侧分别设置第四打印区域和第五打印区域;
    所述采用3D打印工艺,在所述衬底上形成反射层包括:
    采用虚线打印工艺,在各所述发光器件一侧的第二打印区域形成第一子部;
    采用虚线打印工艺,在各所述发光器件一侧的第三打印区域形成第三子部;
    采用虚线打印工艺,在各所述发光器件一侧的第四打印区域形成第二子部;
    采用虚线打印工艺,在各所述发光器件一侧的第五打印区域形成第四子部;位于同一发光器件周围的第一子部、第二子部、第三子部和第四子部相连接形成所述反射层的环形图案。
  25. 根据权利要求21所述的制备方法,其中,所述多个发光器件沿第一方向排列为多列,沿第二方向排列为多行;所述第一方向与所述第二方向相交;
    所述衬底具有沿第一方向延伸的多个第六打印区域和多个第七打印区域,以及沿第二方向延伸的多个第八打印区域和多个第九打印区域;一行发光器件的沿第二方向的相对两侧分别设置第六打印区域和第七打印区域,一列发光器件的沿第一方向的相对两侧分别设置第八打印区域和第九打印区域;
    所述采用3D打印工艺,在所述衬底上形成反射层包括:
    采用直线打印工艺,在各行发光器件一侧的第六打印区域形成第一反射图案,所述第一反射图案包括与各发光器件相对应的第一子部和连接相邻两个第一子部的第一连接图案;
    采用直线打印工艺,在各行发光器件一侧的第七打印区域形成第二反射图案,所述第二反射图案包括与各发光器件相对应的第三子部和连接相邻两个第三子部的第三连接图案;
    采用直线打印工艺,在各列述发光器件一侧的第八打印区域形成第三反射图案,所述第三反射图案包括与各发光器件相对应的第二子部和连接相邻两个第二子部的第二连接图案;
    采用直线打印工艺,在各列发光器件一侧的第九打印区域形成第四反射图案,所述第 四反射图案包括与各发光器件相对应的第四子部和连接相邻两个第四子部的第四连接图案;位于同一发光器件周围的第一子部、第二子部、第三子部和第四子部相连接形成所述反射层的环形图案;多个第一反射图案、多个第二反射图案、多个第三反射图案及多个第四反射图案形成所述反射层。
  26. 根据权利要求21~25中任一项所述的制备方法,所述在所述反射层远离所述衬底的一侧贴附反射片之前,所述制备方法还包括:
    在所述反射层远离所述衬底的一侧形成封装层;所述封装层包括多个封装图案,封装图案与所述发光器件对应;一个所述发光器件在所述衬底上的正投影,位于一个封装图案在所述衬底上的正投影范围之内;一个所述封装图案在所述衬底上的正投影,与一个所述环形图案在所述衬底上的正投影,相交叠。
  27. 一种背光模组,包括:如权利要求1~20中任一项所述的发光基板,以及位于所述发光基板的出光侧的光学膜片。
  28. 一种显示装置,包括:如权利要求27所述的背光模组;
    位于所述背光模组出光侧的彩膜基板;
    以及,位于所述背光模组与所述彩膜基板之间的阵列基板。
PCT/CN2022/128351 2022-10-28 2022-10-28 发光基板及其制备方法、背光模组、显示装置 WO2024087194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003862.2A CN118266093A (zh) 2022-10-28 2022-10-28 发光基板及其制备方法、背光模组、显示装置
PCT/CN2022/128351 WO2024087194A1 (zh) 2022-10-28 2022-10-28 发光基板及其制备方法、背光模组、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128351 WO2024087194A1 (zh) 2022-10-28 2022-10-28 发光基板及其制备方法、背光模组、显示装置

Publications (1)

Publication Number Publication Date
WO2024087194A1 true WO2024087194A1 (zh) 2024-05-02

Family

ID=90829737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128351 WO2024087194A1 (zh) 2022-10-28 2022-10-28 发光基板及其制备方法、背光模组、显示装置

Country Status (2)

Country Link
CN (1) CN118266093A (zh)
WO (1) WO2024087194A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103292A (ko) * 2008-03-28 2009-10-01 서울반도체 주식회사 Led 패키지
CN112713166A (zh) * 2019-10-25 2021-04-27 成都辰显光电有限公司 显示面板、电子设备及显示面板的制作方法
CN215896398U (zh) * 2021-07-30 2022-02-22 合肥京东方星宇科技有限公司 一种阵列基板、发光装置和拼接显示装置
CN114520281A (zh) * 2020-11-20 2022-05-20 隆达电子股份有限公司 发光装置、背光板及显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103292A (ko) * 2008-03-28 2009-10-01 서울반도체 주식회사 Led 패키지
CN112713166A (zh) * 2019-10-25 2021-04-27 成都辰显光电有限公司 显示面板、电子设备及显示面板的制作方法
CN114520281A (zh) * 2020-11-20 2022-05-20 隆达电子股份有限公司 发光装置、背光板及显示面板
CN215896398U (zh) * 2021-07-30 2022-02-22 合肥京东方星宇科技有限公司 一种阵列基板、发光装置和拼接显示装置

Also Published As

Publication number Publication date
CN118266093A (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
US20240210754A1 (en) Backplane and method for manufacturing the same, and display device
CN110970546B (zh) 显示基板及其制作方法、拼接显示装置
EP3375256B1 (en) Display module and method for coating the same
EP2551705B1 (en) Backlight unit and display device using the same
CN215680685U (zh) 发光基板及显示装置
EP4207280A1 (en) Light emitting substrate and preparation method therefor, and display device
EP4131435A1 (en) Display substrate and manufacturing method therefor, and display apparatus
CN217691209U (zh) 发光基板、背光模组及显示装置
JP2006201216A (ja) 電気光学装置、電気光学装置の製造方法、電子機器
WO2024087194A1 (zh) 发光基板及其制备方法、背光模组、显示装置
WO2019012793A1 (ja) 発光装置、表示装置および照明装置
WO2022227469A1 (zh) 发光基板及显示装置
CN217639870U (zh) 背光模组、显示模组和显示装置
WO2023230830A1 (zh) 发光基板及其制备方法、背光模组、显示装置
KR101824037B1 (ko) 디스플레이 장치
CN113439334B (zh) 显示基板及其制备方法、显示装置
CN116931319A (zh) 背光模组、显示模组和显示装置
JP2008258042A (ja) 照明装置およびこの照明装置を用いた表示装置
JP2006201215A (ja) 電気光学装置、電気光学装置の製造方法、電子機器
WO2024026722A1 (zh) 发光基板及其制备方法、背光模组、显示装置
US20240014182A1 (en) Backlight module and display device
US20230163264A1 (en) Display substrate and method for manufacturing the same, and display apparatus
WO2023225944A1 (zh) 发光基板以及显示装置
WO2024021074A1 (zh) 发光基板、背光模组、显示装置及发光基板的制备方法
WO2024113233A1 (zh) 发光基板及其制造方法、背光模组和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963176

Country of ref document: EP

Kind code of ref document: A1