WO2024087058A1 - 车辆制动方法、装置、设备和存储介质 - Google Patents

车辆制动方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2024087058A1
WO2024087058A1 PCT/CN2022/127710 CN2022127710W WO2024087058A1 WO 2024087058 A1 WO2024087058 A1 WO 2024087058A1 CN 2022127710 W CN2022127710 W CN 2022127710W WO 2024087058 A1 WO2024087058 A1 WO 2024087058A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
braking value
adjustment coefficient
pedal
value
Prior art date
Application number
PCT/CN2022/127710
Other languages
English (en)
French (fr)
Inventor
张宇
张永生
杨维妙
靳彪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/127710 priority Critical patent/WO2024087058A1/zh
Publication of WO2024087058A1 publication Critical patent/WO2024087058A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present application relates to the field of assisted driving technology, and in particular to a vehicle braking method, device, equipment and storage medium.
  • the embodiments of the present application provide a vehicle braking method, device, equipment and storage medium, which can solve the problems of related technologies.
  • the technical solution is as follows:
  • a vehicle braking method comprising: when a braking operation is detected, determining a first braking value based on a pedal stroke, then, if a braking assist condition is met, adjusting the first braking value based on reference information to obtain a second braking value, and finally, performing braking processing based on the second braking value.
  • the reference information may include driving status information.
  • the controller can obtain the pedal stroke corresponding to the brake operation through the pedal stroke sensor. Based on the pedal stroke, the controller can first determine the pedal force corresponding to the pedal stroke, and then determine the first brake pressure through the conversion relationship (conversion table or conversion function) between the pedal force and the first brake pressure, or the pedal stroke can also be determined through the pedal stroke sensor, and the first brake pressure can be directly determined through the conversion relationship (conversion table or conversion function) between the pedal stroke and the first brake pressure.
  • the execution component for performing the braking process can be a brake master cylinder, an oil pot, an electric booster device or an active booster device, a hydraulic device and a brake wheel cylinder, and can also be an electronic brake pedal, a motor and a brake caliper, etc.
  • the braking process can be: the brake master cylinder outputs the first brake pressure (different pedal strokes can generate different brake pressures) under the action of the brake pedal, the brake master cylinder transmits the first brake pressure to the brake wheel cylinder through the brake pipeline, and the brake wheel cylinder brakes the wheel based on the first brake pressure input by the pipeline.
  • the controller calculates the first braking force according to the pedal stroke of the electronic brake pedal, and the controller controls the motor to make the brake caliper generate the first braking force to brake the wheel.
  • the braking assistance conditions are judged by the vehicle braking system. If the braking assistance conditions are met, the braking value provided by the driver will be adjusted according to the reference information to obtain a braking value that is more suitable for the current braking demand of the vehicle, thereby reducing the probability of secondary braking during the braking process and preventing traffic accidents such as rear-end collisions caused by inaccurate judgment of braking needs.
  • the braking assist condition includes at least one of a driving speed condition, a pedal stroke condition, and a pedal speed condition, wherein the driving speed condition is that the driving speed is greater than a driving speed threshold, the pedal stroke condition is that the pedal stroke is greater than a pedal stroke threshold, and the pedal speed condition is that the pedal speed is greater than a pedal speed threshold.
  • the brake assist condition can be set before the vehicle leaves the factory, or after the vehicle leaves the factory, by the salesperson, driver, maintenance personnel, etc.
  • the enabled candidate condition can be set as the vehicle brake assist condition, and the threshold value in the brake assist condition can also be set.
  • the adjustment of the braking value can be triggered under various conditions, thereby improving the flexibility of the braking adjustment processing.
  • the reference information also includes road information.
  • the road information is used to indicate the relevant information of the road on which the vehicle is located when braking.
  • the controller when the controller brakes the vehicle, it can refer to more abundant information to adjust the braking value, which can better improve the braking safety of the vehicle on the current road.
  • the driving state information includes the driving speed of the vehicle.
  • the road information includes road type information and/or road surface state information.
  • the road type information is used to directly or indirectly indicate the maximum allowable driving speed of the road, and the road surface state information is used to directly or indirectly indicate whether there is water or snow on the road surface.
  • the road information may include one or more of the following information: road type information, road surface state information, congestion degree information, lane width, road surface material, guardrail information, and the difference between the speed of the preceding vehicle and the speed of the vehicle.
  • the driving state information is information used to indicate the current driving state of the vehicle, and the driving state information may include one or more of the following information: driving speed, driving acceleration, steering angle, driving slope, lateral slope, etc.
  • the controller when the controller brakes the vehicle, it can refer to more abundant information to adjust the braking value, which can better improve the braking safety of the vehicle on the current road.
  • the first adjustment coefficient may be determined based on the reference information, and then the first braking value may be adjusted based on the fixed braking value and the first adjustment coefficient to obtain the second braking value.
  • the controller determines the first adjustment coefficient according to the corresponding table of reference information and adjustment coefficient.
  • the speed adjustment coefficient is determined according to the corresponding table of driving speed range and speed adjustment coefficient
  • the road type adjustment coefficient is determined according to the corresponding table of road type information and road type adjustment coefficient
  • the road surface state adjustment coefficient is determined according to the road surface state information and the road surface state adjustment coefficient.
  • the second braking value can be made to better match the braking value currently required by the vehicle, thereby reducing the probability of a traffic accident caused by a driver's misjudgment.
  • the product of the fixed braking value and the first adjustment coefficient may be determined, and then the sum of the first braking value and the product may be determined to obtain the second braking value.
  • the set fixed braking value may be obtained and stored in response to the braking value setting instruction.
  • the braking value setting instruction can be an operation instruction triggered by an interface control or an operation instruction triggered by a physical button.
  • the first adjustment coefficient is greater than 0.
  • the scheme shown in the embodiment of the present application can set the values of adjustment coefficients such as speed adjustment coefficient, road type adjustment coefficient, road surface condition adjustment coefficient, etc. to be greater than 0.
  • the first adjustment coefficient calculated by addition, multiplication, weighted summation, weighted average, etc. is also greater than 0.
  • the second adjustment coefficient may be determined based on the reference information, and then the first braking value may be adjusted based on the basic adjustment coefficient and the second adjustment coefficient to obtain the second braking value.
  • the controller determines the second adjustment coefficient according to the corresponding table of reference information and adjustment coefficient.
  • the speed adjustment coefficient is determined according to the corresponding table of driving speed range and speed adjustment coefficient
  • the road type adjustment coefficient is determined according to the corresponding table of road type information and road type adjustment coefficient
  • the road surface state adjustment coefficient is determined according to the road surface state information and the road surface state adjustment coefficient.
  • the second braking value can be made to better match the braking value currently required by the vehicle, thereby reducing the probability of a traffic accident caused by a driver's misjudgment.
  • the product of the basic adjustment coefficient, the first braking value, and the second adjustment coefficient may be determined to obtain the second braking value.
  • the set basic adjustment coefficient may be obtained and stored in response to the coefficient setting instruction.
  • the coefficient setting instruction can be an operation instruction triggered by an interface control or an operation instruction triggered by a physical button.
  • the second adjustment coefficient is greater than 1.
  • the scheme shown in the embodiment of the present application can set the values of adjustment coefficients such as speed adjustment coefficient, road type adjustment coefficient, road surface condition adjustment coefficient, etc. to be greater than 1.
  • the first adjustment coefficient calculated by addition, multiplication, weighted summation, weighted average, etc. is also greater than 1.
  • a vehicle braking device comprising at least one module, and the at least one module is used to implement the vehicle braking method provided by the first aspect and possible implementation methods thereof.
  • a vehicle braking system comprising a controller, a detection component and an execution component.
  • the controller is used to execute the vehicle braking method provided in the first aspect and its possible implementation.
  • the detection component is used to detect the wheel speed, pedal travel and brake pressure of the vehicle.
  • the execution component is used to output the braking force under the control of the controller.
  • a computer device comprising a memory and a processor, wherein the memory is used to store computer instructions; the processor executes the computer instructions stored in the memory so that the computer device executes the vehicle braking method provided by the first aspect and its possible implementation methods.
  • a computer-readable storage medium stores a computer program code.
  • the computer device executes the vehicle braking method provided by the first aspect and possible implementations thereof.
  • a computer program product comprising a computer program code, in response to the computer program code being executed by a computer device, the computer device executes the vehicle braking method provided by the first aspect and possible implementations thereof.
  • FIG1 is a schematic structural diagram of a vehicle braking system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a controller provided in an embodiment of the present application.
  • FIG3 is a flow chart of a vehicle braking method provided by an embodiment of the present application.
  • FIG4 is a schematic structural diagram of a vehicle braking system provided in an embodiment of the present application.
  • FIG5 is a schematic structural diagram of a vehicle braking system provided in an embodiment of the present application.
  • FIG6 is a schematic structural diagram of a vehicle braking system provided in an embodiment of the present application.
  • FIG. 7 is a flow chart of a method for adjusting a first braking value based on reference information provided by an embodiment of the present application
  • FIG. 8 is a flow chart of a method for adjusting a first braking value based on reference information provided by an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of a vehicle braking device provided in an embodiment of the present application.
  • Braking value A numerical value used to indicate the strength of braking, which can be braking pressure, braking force, braking torque or braking deceleration, etc.
  • First braking value The braking value generated by the pedal travel.
  • Second braking value the braking value obtained by adjusting the first braking value.
  • Brake pressure The hydraulic pressure of brake fluid in the brake line.
  • Braking force The rolling friction exerted on the wheels when the vehicle brakes.
  • Braking torque The torque provided by the actuator to reduce the wheel rotation speed when the vehicle brakes.
  • Braking deceleration The amount by which the vehicle's speed decreases per second.
  • Braking travel the distance the vehicle travels from the start of braking to the time when the driving speed drops to 0.
  • Braking assist condition a condition for determining whether the first braking value needs to be adjusted, such as a driving speed condition, a pedal travel condition, a pedal speed condition, and the like.
  • Reference information information used as a reference when adjusting the first braking value, such as driving status information, road information, and the difference between the speed of the preceding vehicle and the speed of the own vehicle, etc.
  • Driving status information information used to indicate the current driving status of the vehicle, for example, one or more of the driving speed, driving acceleration, steering angle, driving slope, lateral slope, etc.
  • Road information used to indicate relevant information about the road on which the vehicle is located when braking, for example, one or more of the following information: road type information, road surface condition information, congestion level information, lane width, road surface material, guardrail information, etc.
  • Road type information information used to directly or indirectly indicate the maximum permissible driving speed of a road.
  • Road type information may include expressways, highways, and town roads, etc.
  • Road surface condition information information used to directly or indirectly indicate whether there is water or snow accumulation on the road surface.
  • Road surface condition information may include water accumulation, snow accumulation, and no water or snow accumulation.
  • Pedal travel sensor A sensor used to obtain pedal travel.
  • Pedal travel The distance between the current position of the brake pedal and the initial position of the brake pedal.
  • Pedal speed The amount of change in pedal travel per second.
  • Wheel speed sensor A sensor used to obtain the rotation speed of the wheel.
  • Wheel speed A value used to indicate the speed at which a wheel rotates, for example, the number of revolutions a wheel makes per second, the angular velocity of the wheel, etc.
  • Driving speed The speed at which a vehicle moves, which can be calculated using wheel speed and wheel radius.
  • FIG1 is a structural schematic diagram of a vehicle braking system provided by an embodiment of the present application, and the vehicle braking system may include a controller, a detection component, and an execution component.
  • the controller is used for related processing during the vehicle braking process.
  • the controller can be a vehicle-mounted terminal, a braking control unit, or a vehicle-mounted terminal and a braking control unit.
  • the embodiment of the present application takes the controller as a braking control unit as an example to illustrate the scheme, and other situations are similar and will not be repeated.
  • the detection component is used to detect the wheel speed, pedal travel and hydraulic pressure of the brake pipeline of the vehicle.
  • the detection component may include a wheel speed sensor, a pedal travel sensor and a pipeline pressure sensor.
  • the actuator is used to output the braking force under the control of the controller.
  • the actuator may include a brake master cylinder, an oil pot, an electric booster or an active booster, a hydraulic device, and a brake wheel cylinder, etc.
  • the braking value may be the braking pressure.
  • the actuator may include an electronic brake pedal, a motor, and a brake caliper, etc. In this case, the braking value may be the braking force.
  • FIG2 is a schematic diagram of the structure of a controller provided in an embodiment of the present application. From the perspective of hardware composition, the structure of the controller may be as shown in FIG2 , including a processor, a memory, and a communication component.
  • the processor 210 may be a microcontroller unit (MCU), a central processing unit (CPU) or a system on chip (SoC), etc.
  • the processor 210 may be used to determine whether the braking assist condition is satisfied, and may also be used to adjust the first braking value to obtain a second braking value.
  • the memory 220 may include various volatile memories or non-volatile memories, such as a solid state disk (SSD), a dynamic random access memory (DRAM), etc.
  • the memory 220 may be used to store and record initial data, intermediate data, and result data used in the vehicle braking process, such as a basic adjustment coefficient or a fixed braking value of the vehicle.
  • the communication component 230 may be a wired network connector, ultra wide band (UWB), wireless fidelity (WiFi) module, Bluetooth module, cellular network communication module, etc.
  • the communication component 230 may be used to transmit data with other devices, which may be servers or terminals, for example, to receive road surface status information and road type information of the current road sent by the server.
  • the present application provides a vehicle braking method, and the corresponding processing flow may be shown in FIG3 , including the following steps:
  • a controller In response to a brake operation, a controller obtains a pedal travel corresponding to the brake operation.
  • the braking operation may be a change in the position of a brake pedal, and the pedal stroke may be obtained by a pedal stroke sensor.
  • the driver When the driver is driving the vehicle to slow down or stop, the driver performs a braking operation, which can be to step on the brake pedal to change the position of the brake pedal.
  • the pedal travel sensor detects the pedal travel of the brake pedal and periodically (e.g., with a period of 10 milliseconds) sends the detected pedal travel to the controller.
  • the pedal travel sent by the pedal travel sensor to the controller is always at the initial value, such as 0.
  • the pedal travel sent by the pedal travel sensor to the controller is no longer the initial value.
  • the controller determines that the pedal travel is no longer the initial value, it can be determined that the driver has performed a braking operation. At this time, the controller can obtain the current pedal travel for subsequent processing.
  • a controller determines a first braking value based on a pedal travel.
  • the first braking value may be a first braking pressure, a first braking force, a first braking torque, a first braking deceleration, or the like.
  • the first brake pressure can be determined according to the pedal stroke, and the determination method can be:
  • Method 1 First, the controller determines the pedal force corresponding to the pedal stroke according to the conversion relationship between the pedal stroke and the pedal force. Then, the first brake pressure is determined according to the conversion relationship between the pedal force and the first brake pressure (i.e., the hydraulic pressure of the brake master cylinder). The conversion relationship between the pedal stroke and the pedal force and the conversion relationship between the pedal force and the first brake pressure can be obtained through multiple experiments, and the above-mentioned various conversion relationships can be conversion tables or conversion functions.
  • Method 2 First, the controller receives the pedal stroke sent by the pedal stroke sensor. Then, the controller determines the first brake pressure corresponding to the pedal stroke according to the conversion relationship between the pedal stroke and the first brake pressure.
  • the conversion relationship between the pedal stroke and the first brake pressure can be set at the factory or manually, and the conversion relationship can be a conversion table or a conversion function.
  • the controller determines that the braking assist condition is met.
  • the brake assist condition includes at least one of a driving speed condition, a pedal stroke condition and a pedal speed condition.
  • the driving speed condition is that the driving speed is greater than a driving speed threshold
  • the pedal stroke condition is that the pedal stroke is greater than a pedal stroke threshold
  • the pedal speed condition is that the pedal speed is greater than a pedal speed threshold.
  • the brake assist condition may include one or more conditions (the embodiment of the present application takes the brake assist condition including the driving speed condition, the pedal stroke condition and the pedal speed condition as an example to illustrate the scheme), and when any one of the conditions is met, it can be determined that the brake assist condition is met.
  • the brake assist condition Before the vehicle leaves the factory, the brake assist condition can be set. After the vehicle leaves the factory, the salesperson, driver, maintenance personnel, etc. can also set the brake assist condition.
  • the brake assist condition can be set in the vehicle terminal.
  • the vehicle terminal can have a graphical operation interface.
  • the operation interface can have a brake assist condition setting window.
  • the brake assist condition setting window displays multiple pre-stored candidate conditions, and an enable button is displayed for each candidate condition.
  • the candidate conditions can be stored before leaving the factory and can also be updated during the upgrade process.
  • the person who sets it can browse the candidate conditions and click the enable button corresponding to any candidate condition to set the candidate condition to be enabled.
  • the candidate condition setting window can include a threshold input field.
  • the threshold input field is used to set the corresponding threshold in the candidate condition, such as the driving speed threshold, the pedal travel threshold, the pedal speed threshold, etc. After the vehicle terminal completes the setting of the above information, the set information can be sent to the controller for storage.
  • the controller can periodically obtain the pedal stroke sent by the pedal stroke sensor, and determine the ratio of the pedal stroke to the cycle duration as the pedal speed.
  • the wheel speed sensor periodically (e.g., with a cycle of 10 milliseconds) sends the wheel speed to the controller, and the controller calculates the driving speed based on the wheel speed and the tire radius.
  • the first braking value can be increased to increase the braking force. If the pedal speed is greater than the pedal speed threshold, it means that the driver has stepped on the brake pedal very quickly, indicating that an emergency has occurred and emergency braking is required. In this case, the first braking value can be increased to increase the braking force. If the driving speed is greater than the driving speed threshold, it means that the current vehicle speed is fast and a larger braking value is required when braking. In this case, the first braking value can be increased to increase the braking force.
  • the controller adjusts the first braking value based on the reference information to obtain a second braking value.
  • the second braking value may be a second braking pressure, a second braking force, a second braking torque or a second braking deceleration, and so on.
  • the adjustment of the first braking value based on the reference information can be an increase adjustment or a decrease adjustment. For some dangerous situations (such as excessive speed, snow on the road, etc.), the increase adjustment is mainly adopted.
  • the specific method of adjusting the first braking value based on the reference information is described in detail in the following steps and will not be repeated here.
  • the controller performs braking processing based on the second braking value.
  • the structure of the vehicle braking system can be shown in FIG4.
  • the actuators include a master brake cylinder, an oil pot, an electric booster, a hydraulic device, and a wheel brake cylinder.
  • the master brake cylinder is connected in series with the hydraulic device and connected to the wheel brake cylinder through a brake line.
  • the electric booster is connected to the master brake cylinder by transmission
  • the brake pedal is also connected to the master brake cylinder by transmission.
  • the controller controls the brake pressure output by the master brake cylinder by controlling the motor in the electric booster.
  • the controller can control the motor by controlling the motor speed or the motor torque.
  • the first braking value can be the first braking pressure
  • the second braking value can be the second braking pressure.
  • the structure of the vehicle braking system can also be as shown in FIG5 , where the actuators are a master brake cylinder, an oil pot, a pedal simulator, an active booster, a hydraulic device and a wheel brake cylinder.
  • the master brake cylinder and the active booster are respectively connected to the hydraulic device through a brake pipe, and the hydraulic device is connected to the wheel brake cylinder through a brake pipe.
  • the hydraulic device can include multiple solenoid valves to isolate the master brake cylinder and the brake pipe of the active booster from each other, so as to prevent the brake fluid in the brake pipe from flowing back to the master brake cylinder when the active booster is turned on.
  • the input end of the pedal simulator is connected to the output end of the master brake cylinder through a pipe, and a pedal isolation valve is provided at the input end of the pedal simulator.
  • the pedal simulator is used to provide force feedback for the brake pedal to optimize the pedaling experience of the brake pedal.
  • the brake pedal is connected to the master brake cylinder in a transmission manner to control the master brake cylinder.
  • the controller controls the boost value of the active booster by controlling the motor in the active booster.
  • the controller can control the motor by controlling the speed of the motor or the torque of the motor.
  • the first braking value can be the first braking pressure
  • the second braking value can be the second braking pressure.
  • the structure of the vehicle braking system can also be as shown in Figure 6.
  • the actuator uses an electronic brake pedal, a motor and a brake caliper.
  • the motor is connected to the brake caliper by transmission.
  • the braking value is the braking force, which is calculated by the controller according to the pedal stroke of the electronic brake pedal.
  • the electronic brake pedal is used to obtain the pedal stroke and also to generate force feedback to optimize the pedaling experience.
  • the controller controls the brake caliper by controlling the motor.
  • the controller's control of the motor can be to control the motor's speed or to control the motor's torque.
  • the first braking value can be the first braking force
  • the second braking value can be the second braking force.
  • the braking processing method may be:
  • Method 1 For the vehicle braking system shown in FIG. 4, the controller controls the speed of the motor as an example.
  • the master brake cylinder outputs the first brake pressure under the action of the brake pedal.
  • the controller controls the speed of the motor in the electric power assist device so that the speed of the motor increases from 0.
  • the brake pressure output by the master brake cylinder connected to the electric power assist device increases from the first brake pressure.
  • the speed of the motor increases by a fixed value (also called a fixed step value) in each increasing cycle.
  • the controller continuously detects whether the line pressure of the output line of the master brake cylinder is equal to the second brake value through the line pressure sensor, and stops increasing when the line pressure is equal to the second brake value.
  • the oil pot replenishes or recovers the brake fluid in the brake line, and the wheel cylinder continuously brakes the wheel based on the brake pressure allocated by the hydraulic device.
  • Method 2 For the vehicle braking system shown in FIG5 , the controller is used to control the speed of the motor as an example for explanation. Under the action of the brake pedal, the master cylinder outputs the first brake pressure, the pedal isolation valve is opened, and the pedal simulator generates force feedback to the brake pedal. After the controller detects that the line pressure is equal to the first brake pressure through the line pressure sensor, the valve of the solenoid valve on the line connected to the master cylinder in the hydraulic device is closed. The controller controls the speed of the motor in the active booster device so that the speed of the motor increases from 0, and the brake pressure output by the active booster device increases from the first brake pressure. The speed of the motor increases by a fixed value (also called a fixed step value) in each increasing cycle.
  • a fixed value also called a fixed step value
  • the controller continuously detects whether the line pressure of the input line of the brake wheel cylinder is equal to the second brake value through the line pressure sensor, and stops increasing when the line pressure is equal to the second brake value.
  • the oil pot replenishes or recovers the brake fluid in the brake line, and the brake wheel cylinder continuously brakes the wheel based on the input brake pressure.
  • Method 3 For the vehicle braking system shown in FIG6 , the controller is used to control the speed of the motor as an example.
  • the controller calculates the second braking force according to the pedal travel of the electronic brake pedal and the brake assist condition, and controls the speed of the motor to make the brake caliper generate the second braking force to brake the wheel.
  • the above content describes the processing when the brake assist condition is met. If the controller determines that the brake assist condition is not met, the brake processing can be performed based on the first braking value.
  • the brake master cylinder outputs the first braking pressure under the action of the brake pedal, the controller does not control the operation of the electric power assist device, the brake master cylinder transmits the first braking pressure to the hydraulic device through the brake pipeline for distribution, and the brake wheel cylinder brakes the wheel based on the first braking pressure distributed by the hydraulic device.
  • the brake master cylinder outputs the first braking pressure under the action of the brake pedal, and the brake master cylinder transmits the first braking pressure to the brake wheel cylinder through the brake pipe.
  • the controller does not control the operation of the active boosting device, and the brake wheel cylinder brakes the wheel based on the input first braking pressure.
  • the controller is used to control the speed of the motor as an example for explanation.
  • the controller calculates the first braking force according to the pedal stroke of the electronic brake pedal, and the controller controls the speed of the motor to make the brake caliper generate the first braking force to brake the wheel.
  • an embodiment of the present application provides a method for adjusting the first braking value based on reference information.
  • the corresponding processing flow may be shown in FIG. 7 , including the following steps:
  • a controller determines a first adjustment coefficient based on reference information.
  • the first adjustment coefficient is greater than 0.
  • the controller obtains reference information.
  • the reference information includes driving status information.
  • the controller can obtain the wheel speed detected by the wheel speed sensor and calculate the driving speed based on the wheel speed. If the driving state information includes driving acceleration, the controller can calculate the driving acceleration based on the driving speed calculated for multiple consecutive cycles. If the driving state information includes steering angle, the controller can obtain the steering angle from the vehicle-mounted terminal, and the steering angle can be converted based on the angle value sent to the vehicle-mounted terminal by the angle sensor of the steering wheel. If the driving state information includes driving slope or lateral slope, the controller can obtain the vehicle posture detected by the gyroscope and calculate the current driving slope or lateral slope of the vehicle.
  • the reference information includes road information.
  • the controller can obtain the road type information from the vehicle terminal.
  • the road type information can be queried by the vehicle terminal from the server on the network side based on the current position, or it can be queried by the vehicle terminal from the pre-stored map data based on the current position.
  • the controller can identify the road surface status information through the camera integrated in the vehicle, or it can obtain the road surface status information from the vehicle terminal.
  • the road surface status information can be queried by the vehicle terminal from the server on the network side based on the current position.
  • the controller can identify the lane width through the camera integrated in the vehicle, or it can obtain the lane width from the vehicle terminal.
  • the lane width can be queried by the vehicle terminal from the server on the network side based on the current position, or it can be queried by the vehicle terminal from the pre-stored map data based on the current position.
  • the road surface material and guardrail information are obtained in the same way as the lane width, which will not be repeated here.
  • the first adjustment coefficient may also be related to the real-time environment around the vehicle.
  • the controller may obtain the real-time environment around the vehicle through an infrared sensor or a camera. For example, when the controller determines through an infrared sensor that the driving speed of the vehicle in front is less than the current driving speed of the vehicle, the first adjustment coefficient is increased according to the difference in the driving speeds of the two vehicles to increase the braking value and prevent rear-end collisions.
  • the controller determines the speed adjustment coefficient corresponding to the driving speed range in which the current driving speed is located according to the corresponding table of driving speed ranges and speed adjustment coefficients (Table 1).
  • Driving speed Speed adjustment factor Driving speed ⁇ 30km/h 0 30km/h ⁇ Driving speed ⁇ 60km/h 0.5 60km/h ⁇ Driving speed ⁇ 80km/h 1 80km/h ⁇ Driving speed ⁇ 120km/h 1.5 120km/h ⁇ Driving speed 2
  • the controller determines the road type adjustment coefficient corresponding to the current road type information according to the correspondence table between the road type information and the road type adjustment coefficient (Table 2).
  • the controller determines the current road state information and the corresponding road surface state adjustment coefficient according to the correspondence table of road state information and road surface state adjustment coefficient (Table 3).
  • the adjustment coefficient can be determined in a similar manner, which is not listed one by one in the embodiments of the present application.
  • different adjustment coefficients can be calculated by addition, weighted addition, or weighted average to obtain the first adjustment coefficient.
  • the controller adjusts the first braking value based on the fixed braking value and the first adjustment coefficient to obtain a second braking value.
  • the controller reads the stored fixed braking value, then multiplies the fixed braking value by the first adjustment coefficient to obtain a product, and finally adds the first braking value to the product, and uses the sum of the first braking value and the product as the second braking value.
  • a fixed braking value may be pre-set.
  • the specific setting operation may be that the controller responds to the braking value setting instruction, obtains the set fixed braking value, and stores it.
  • the fixed braking value may be a fixed braking pressure, a fixed braking force, a fixed braking torque or a fixed braking deceleration, and the like.
  • the braking value setting instruction can be an operation instruction triggered by an interface control or an operation instruction triggered by a physical button.
  • Operation instructions triggered by interface controls There may be a braking value setting option in the operation interface of the vehicle-mounted terminal. After the setting personnel clicks the braking value setting option, the braking value setting window is displayed.
  • the braking value setting window may display a braking value input bar, and the braking value setting instruction may be to enter the braking value in the braking value input bar.
  • the braking value setting window may also display the name of the braking mode to be selected, and the braking value setting instruction may be for the setting personnel to click the name of the braking mode to be selected in the braking value setting window.
  • the braking value setting window may also display a braking value slider and the braking value corresponding to each position on the braking value slider, and the braking value setting instruction may be for the setting personnel to slide the slider on the braking value slider.
  • Operation instructions triggered by physical buttons There may be physical buttons on the vehicle terminal.
  • the braking value setting instruction may be an operation instruction triggered by the operation of the physical button, for example, sliding a physical slider, rotating a physical knob, etc.
  • the vehicle terminal sends the set fixed braking value to the controller.
  • an embodiment of the present application provides a method for adjusting the first braking value based on reference information.
  • the corresponding processing flow may be shown in FIG8 , including the following steps:
  • the controller determines a second adjustment coefficient based on reference information.
  • the second adjustment coefficient is greater than 1.
  • the controller obtains reference information.
  • the reference information is the same as the reference information in step 701 and will not be described again.
  • the first adjustment coefficient may also be related to the real-time environment around the vehicle.
  • the controller may obtain the real-time environment around the vehicle through an infrared sensor or a camera. For example, when the controller determines through an infrared sensor that the driving speed of the vehicle in front is less than the current driving speed of the vehicle, the second adjustment coefficient is increased according to the difference in the driving speeds of the two vehicles to increase the braking value and prevent rear-end collisions.
  • the controller determines the speed adjustment coefficient corresponding to the driving speed range in which the current driving speed is located according to the corresponding table of driving speed ranges and speed adjustment coefficients (Table 4).
  • Driving speed Speed adjustment factor Driving speed ⁇ 30km/h 1 30km/h ⁇ Driving speed ⁇ 60km/h 1.5 60km/h ⁇ Driving speed ⁇ 80km/h 2 80km/h ⁇ Driving speed ⁇ 120km/h 2.5 120km/h ⁇ Driving speed 3
  • the controller determines the road type adjustment coefficient corresponding to the current road type information according to the correspondence table between the road type information and the road type adjustment coefficient (Table 5).
  • the controller determines the road surface condition adjustment coefficient corresponding to the current road state information according to the correspondence table between road state information and road surface condition adjustment coefficient (Table 6).
  • the controller multiplies the speed adjustment coefficient, the road type adjustment coefficient and the road surface state adjustment coefficient to obtain a second adjustment coefficient.
  • the second adjustment coefficient can also be obtained by calculation methods such as addition, weighted addition or weighted average.
  • the controller adjusts the first braking value based on the basic adjustment coefficient and the second adjustment coefficient to obtain a second braking value.
  • the controller reads the stored basic adjustment coefficient, and then multiplies the basic adjustment coefficient, the first braking value and the second adjustment coefficient to obtain a product, which is used as the second braking value.
  • a basic adjustment coefficient may be preset.
  • the specific setting operation may be that the controller responds to a coefficient setting instruction, obtains the set basic adjustment coefficient, and stores it.
  • the coefficient setting instruction can be an operation instruction triggered by an interface control or an operation instruction triggered by a physical button.
  • Operation instructions triggered by interface controls There may be an adjustment coefficient setting option in the operation interface of the vehicle-mounted terminal. After the setting personnel clicks the adjustment coefficient setting option, the adjustment coefficient setting window is displayed.
  • the adjustment coefficient setting window may display an adjustment coefficient input bar, and the adjustment coefficient setting instruction may be to enter the basic adjustment coefficient in the adjustment coefficient input bar.
  • the adjustment coefficient setting window may also display the name of the braking mode to be selected, and the adjustment coefficient setting instruction may be for the setting personnel to click the name of the braking mode to be selected in the braking value setting window.
  • the adjustment coefficient setting window may also display an adjustment coefficient slider and the adjustment coefficient corresponding to each position on the adjustment coefficient slider, and the adjustment coefficient setting instruction may be for the setting personnel to slide the slider on the adjustment coefficient slider.
  • Operation instructions triggered by physical buttons There can be physical buttons on the vehicle terminal.
  • the adjustment coefficient setting instruction can be an operation instruction triggered by the operation of the physical buttons, such as sliding a physical sliding bar, rotating a physical switch knob, etc.
  • the vehicle terminal sends the set basic adjustment coefficient to the controller.
  • the braking assistance conditions are judged by the vehicle braking system. If the braking assistance conditions are met, the braking value provided by the driver will be adjusted according to the reference information to obtain a braking value that is more suitable for the current braking demand of the vehicle, thereby reducing the probability of secondary braking during the braking process and preventing traffic accidents such as rear-end collisions caused by inaccurate judgment of braking demand.
  • an embodiment of the present application further provides a device for processing audio data, which may be the controller in the above embodiment.
  • the device includes:
  • the acquisition module 910 is used to acquire the pedal travel corresponding to the braking operation in response to the braking operation, and can specifically implement the acquisition function in the above step 301 and other implicit steps.
  • the determination module 920 is used to determine the first braking value based on the pedal stroke, and can specifically implement the determination function in the above step 302 and other implicit steps.
  • the adjustment module 930 is used to adjust the first braking value based on the reference information to obtain the second braking value if the braking assistance condition is met, wherein the reference information includes the driving state information. Specifically, the adjustment functions in the above steps 303-304, steps 701-702 and steps 801-802, as well as other implicit steps can be implemented.
  • the braking module 940 is used to perform braking processing based on the second braking value, and can specifically implement the braking function in the above step 305 and other implicit steps.
  • the braking assist condition includes at least one of a driving speed condition, a pedal stroke condition, and a pedal speed condition, wherein the driving speed condition is that the driving speed is greater than a driving speed threshold, the pedal stroke condition is that the pedal stroke is greater than a pedal stroke threshold, and the pedal speed condition is that the pedal speed is greater than a pedal speed threshold.
  • the reference information also includes road information.
  • the driving status information includes the driving speed of the vehicle.
  • the road information includes road type information and/or road surface condition information, wherein the road type information is used to directly or indirectly indicate the maximum allowable driving speed of the road, and the road surface condition information is used to directly or indirectly indicate whether there is water or snow on the road surface.
  • the adjustment module 930 is used to:
  • a first adjustment coefficient is determined based on the reference information.
  • the first braking value is adjusted to obtain a second braking value.
  • the adjustment module 930 is used to:
  • a product of the fixed braking value and the first adjustment factor is determined.
  • the sum of the first braking value and the product is determined to obtain a second braking value.
  • the device further comprises:
  • the storage module is used to obtain and store the set fixed braking value in response to the braking value setting instruction.
  • the first adjustment coefficient is greater than 0.
  • the adjustment module 930 is used to:
  • a second adjustment coefficient is determined based on the reference information.
  • the first braking value is adjusted based on the basic adjustment coefficient and the second adjustment coefficient to obtain the second braking value.
  • the adjustment module 930 is used to:
  • the product of the basic adjustment coefficient, the first braking value and the second adjustment coefficient is determined to obtain the second braking value.
  • the device further comprises:
  • the storage module is used to obtain and store the set basic adjustment coefficient in response to the coefficient setting instruction.
  • the second adjustment coefficient is greater than 1.
  • the braking assistance conditions are judged by the vehicle braking system. If the braking assistance conditions are met, the braking value provided by the driver will be adjusted according to the reference information to obtain a braking value that is more suitable for the current braking demand of the vehicle, thereby reducing the probability of secondary braking during the braking process and preventing traffic accidents such as rear-end collisions due to inaccurate judgment of braking demand.
  • the vehicle braking device provided in the above embodiment is only illustrated by the division of the above functional modules when the vehicle is braked.
  • the above functions can be assigned to different functional modules as needed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the vehicle braking device provided in the above embodiment and the vehicle braking method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • all or part of the embodiments can be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments can be implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the device, all or part of the processes or functions according to the embodiments of the present invention are generated.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by the device or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium can be a magnetic medium (such as a floppy disk, a hard disk and a tape, etc.), an optical medium (such as a digital video disk (DVD), etc.), or a semiconductor medium (such as a solid-state hard disk, etc.).
  • the information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • signals including but not limited to signals transmitted between user terminals and other devices, etc.
  • the collection, use and processing of relevant data must comply with relevant laws, regulations and standards of relevant countries and regions. For example, the current location of the vehicle involved in this application is obtained with full authorization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

本申请实施例公开了一种车辆制动的方法、装置、设备和存储介质,属于辅助驾驶技术领域。所述方法包括:当检测到刹车操作时,基于踏板行程,确定第一制动值,之后,如果满足制动辅助条件,则基于参考信息对第一制动值进行调整,得到第二制动值,其中,参考信息可以包括行驶状态信息,最后,基于第二制动值进行制动处理。采用本方法,在车辆进行制动时,根据参考信息对驾驶员提供的制动值进行调整,得到更适合车辆当前制动需求的制动值,降低在制动过程中产生二次制动的概率,可以防止由于制动需求判断不准确导致的追尾等交通事故。

Description

车辆制动方法、装置、设备和存储介质 技术领域
本申请涉及辅助驾驶技术领域,特别涉及一种车辆制动方法、装置、设备和存储介质。
背景技术
驾驶员在驾驶车辆的过程中经常用到车辆的制动功能,通过该功能完成减速和停车等操作,但是由于驾驶经验不足、车辆制动性能下降或路面存在积雪等原因,驾驶员难以准确估计车辆当前的制动需求,导致制动需求判断不准确,从而在制动过程中产生二次制动,更严重的会导致追尾等交通事故。
发明内容
本申请实施例提供了一种车辆制动的方法、装置、设备和存储介质,能够解决相关技术的问题。技术方案如下:
第一方面,提供了一种车辆制动的方法,该方法包括:当检测到刹车操作时,基于踏板行程,确定第一制动值,之后,如果满足制动辅助条件,则基于参考信息对第一制动值进行调整,得到第二制动值,最后,基于第二制动值进行制动处理。
其中,参考信息可以包括行驶状态信息。
本申请实施例所示的方案,控制器可以通过踏板行程传感器获取刹车操作对应的踏板行程。控制器基于踏板行程,可以先确定踏板行程对应的踏板力,再通过踏板力和第一制动压力之间的转换关系(转换表或转换函数)确定第一制动压力,或者,还可以通过踏板行程传感器确定踏板行程,直接通过踏板行程和第一制动压力之间的转换关系(转换表或转换函数)确定第一制动压力。进行制动处理的执行部件可以为制动主缸、油壶、电助力装置或主动增压装置、液压装置和制动轮缸,还可以为电子制动踏板、电机和制动钳,等等。当控制器确定不满足制动辅助条件时,制动处理可以为:制动主缸在制动踏板的作用下输出第一制动压力(不同的踏板行程可以产生不同的制动压力),制动主缸将第一制动压力通过制动管路传输至制动轮缸,制动轮缸基于管路输入的第一制动压力对车轮进行制动。或者,控制器根据电子制动踏板的踏板行程计算得到第一制动力,控制器控制电机使制动钳产生第一制动力,对车轮进行制动。
通过上述处理,在车辆进行制动时,通过车辆制动系统对制动辅助条件进行判断,如果满足制动辅助条件,则会根据参考信息对驾驶员提供的制动值进行调整,得到更适合车辆当前制动需求的制动值,降低在制动过程中产生二次制动的概率,防止由于制动需求判断不准确导致的追尾等交通事故。
在一种可能的实现方式中,制动辅助条件包括行驶速度条件、踏板行程条件、踏板速度条件中的至少一种,其中,行驶速度条件为行驶速度大于行驶速度阈值,踏板行程条件为踏板行程大于踏板行程阈值,踏板速度条件为踏板速度大于踏板速度阈值。
本申请实施例所示的方案,制动辅助条件可以在车辆出厂前设置,也可以在车辆出厂以后,由卖场的人员、驾驶员、维修人员等进行设置。可以设置启用的候选条件作为车辆制动辅助条件,还可以设置制动辅助条件中的阈值。
通过上述处理,可以在多种条件下触发制动值的调整,提高制动调整处理的灵活性。
在一种可能的实现方式中,参考信息还包括道路信息。
本申请实施例所示的方案,道路信息是用于指示车辆进行制动时所在道路的相关信息,
通过上述处理,在控制器进行车辆制动时,可以参考更加丰富的信息对制动值进行调整,可以更好的提高车辆在当前道路上的制动安全性。
在一种可能的实现方式中,行驶状态信息包括本车的行驶速度。道路信息包括道路类型信息和/或路面状态信息。其中,道路类型信息用于直接或间接指示道路的最大允许行驶速度,路面状态信息用于直接或间接指示路面是否存在积水或积雪。
本申请实施例所示的方案,道路信息可以包括道路类型信息、路面状态信息、拥堵程度信息、车道宽度、路面材料、护栏信息和前车速度较本车速度的差值等信息中的一种或多种。行驶状态信息是用于指示车辆当前行驶状态的信息,行驶状态信息可以包括行驶速度、行驶加速度、转向角、行驶坡度、侧向坡度等信息中的一种或多种。
通过上述处理,在控制器进行车辆制动时,可以参考更加丰富的信息对制动值进行调整,可以更好的提高车辆在当前道路上的制动安全性。
在一种可能的实现方式中,可以基于参考信息确定第一调整系数,然后基于固定制动值和第一调整系数,对第一制动值进行调整,得到第二制动值。
本申请实施例所示的方案,控制器根据参考信息与调整系数的对应表确定出第一调整系数。例如,根据行驶速度范围与速度调整系数的对应表确定速度调整系数,根据道路类型信息与道路类型调整系数的对应表确定道路类型调整系数,根据路面状态信息与路面状态调整系数确定路面状态调整系数,之后,可以对速度调整系数、道路类型调整系数和路面状态调整系数采用相加、加权相加或加权平均等计算方式进行计算,得到第一调整系数。
通过上述处理,可以使第二制动值与车辆当前所需的制动值更匹配,降低驾驶员判断失误导致交通事故的概率。
在一种可能的实现方式中,可以确定固定制动值和第一调整系数的乘积,然后确定第一制动值与乘积之和,得到第二制动值。
通过上述处理,采用较为简单的处理方式,可以提升得到第二制动值的效率。
在一种可能的实现方式中,还可以响应于制动值设置指令,获取设置的固定制动值,进行存储。
本申请实施例所示的方案,制动值设置指令可以是通过界面控件触发的操作指令也可以是通过物理按键触发的操作指令。
通过上述处理,可以提升驾驶员对车辆的制动性能的了解和驾驶体验。
在一种可能的实现方式中,第一调整系数大于0。
本申请实施例所示的方案,可以设置速度调整系数、道路类型调整系数、路面状态调整系数等调整系数的取值均大于0,相应的,通过相加、相乘、加权求和、加权平均等计算得到的第一调整系数也大于0。
通过上述处理,可以防止由于驾驶员判断失误,使产生的第一制动值过小,导致出现追尾等事故。
在一种可能的实现方式中,可以基于参考信息确定第二调整系数,然后基于基础调整系数和第二调整系数,对第一制动值进行调整,得到第二制动值。
本申请实施例所示的方案,控制器根据参考信息与调整系数的对应表确定出第二调整系数。例如,根据行驶速度范围与速度调整系数的对应表确定速度调整系数,根据道路类型信息与道路类型调整系数的对应表确定道路类型调整系数,根据路面状态信息与路面状态调整系数确定路面状态调整系数,之后,可以对速度调整系数、道路类型调整系数和路面状态调整系数可以采用相加、加权相加或加权平均等计算方式进行计算,得到第二调整系数。
通过上述处理,可以使第二制动值与车辆当前所需的制动值更匹配,降低驾驶员判断失误导致交通事故的概率。
在一种可能的实现方式中,可以确定基础调整系数、第一制动值与第二调整系数的乘积,得到第二制动值。
通过上述处理,采用较为简单的处理方式,可以提升得到第二制动值的效率。
在一种可能的实现方式中,还可以响应于系数设置指令,获取设置的基础调整系数,进行存储。
本申请实施例所示的方案,系数设置指令可以是通过界面控件触发的操作指令也可以是通过物理按键触发的操作指令。
通过上述处理,可以提升驾驶员对车辆的制动性能的了解和驾驶体验。
在一种可能的实现方式中,第二调整系数大于1。
本申请实施例所示的方案,可以设置速度调整系数、道路类型调整系数、路面状态调整系数等调整系数的取值均大于1,相应的,通过相加、相乘、加权求和、加权平均等计算得到的第一调整系数也大于1。
通过上述处理,可以防止由于驾驶员判断失误,使产生的第一制动值过小,导致出现追尾等事故。
第二方面,提供了一种车辆制动的装置,该装置包括至少一个模块,该至少一个模块用于实现上述第一方面及其可能的实现方式所提供的车辆制动的方法。
第三方面,提供了一种车辆制动的系统,该系统包括控制器、检测部件和执行部件。控 制器用于执行上述第一方面及其可能的实现方式所提供的车辆制动的方法。检测部件用于检测车辆的轮速、踏板行程和制动压力等。执行部件用于在控制器的控制下输出制动力。
第四方面,提供了一种计算机设备,计算机设备包括存储器和处理器,存储器用于存储计算机指令;处理器执行存储器存储的计算机指令,以使计算机设备执行第一方面及其可能的实现方式所提供的车辆制动的方法。
第五方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序代码,响应于计算机程序代码被计算机设备执行,计算机设备执行第一方面及其可能的实现方式所提供的车辆制动的方法。
第六方面,提供了一种计算机程序产品,计算机程序产品包括计算机程序代码,响应于计算机程序代码被计算机设备执行,计算机设备执行第一方面及其可能的实现方式所提供的车辆制动的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种车辆制动系统的结构示意图;
图2是本申请实施例提供的一种控制器的结构示意图;
图3是本申请实施例提供的一种车辆制动的方法流程图;
图4是本申请实施例提供的一种车辆制动系统的结构示意图;
图5是本申请实施例提供的一种车辆制动系统的结构示意图;
图6是本申请实施例提供的一种车辆制动系统的结构示意图;
图7是本申请实施例提供的一种基于参考信息对第一制动值进行调整的方法流程图;
图8是本申请实施例提供的一种基于参考信息对第一制动值进行调整的方法流程图;
图9是本申请实施例提供的一种车辆制动装置的结构示意图。
具体实施方式
下面对本实施例中使用的一些名词进行解释。
制动值:用于指示制动强弱程度的数值,具体可以为制动压力、制动力、制动力矩或制动减速度,等等。
第一制动值:踏板行程产生的制动值。
第二制动值:对第一制动值进行调整后得到的制动值。
制动压力:制动管路内制动液的液压力。
制动力:车辆进行制动时,车轮受到的滚动摩擦力。
制动力矩:车辆进行制动时,执行部件提供的使车轮转动速度减小的力矩。
制动减速度:车辆行驶速度每秒的减小量。
制动行程:车辆开始制动到行驶速度降为0的过程中运动的距离。
制动辅助条件:判断是否需要对第一制动值进行调整的判断条件,例如,行驶速度条件、踏板行程条件和踏板速度条件,等等。
参考信息:对第一制动值进行调整时参考的信息,例如,行驶状态信息、道路信息和前车速度较本车速度的差值,等等。
行驶状态信息:用于指示车辆当前行驶状态的信息,例如,行驶速度、行驶加速度、转向角、行驶坡度、侧向坡度等信息中的一种或多种。
道路信息:用于指示车辆进行制动时所在道路的相关信息,例如,道路类型信息、路面状态信息、拥堵程度信息、车道宽度、路面材料、护栏信息等信息中的一种或多种。
道路类型信息:用于直接或间接指示道路的最大允许行驶速度的信息,道路类型信息可以包括高速路、公路和城镇道路等。
路面状态信息:用于直接或间接指示路面是否存在积水或积雪的信息,路面状态信息可以包括积水、积雪和未积水积雪。
踏板行程传感器:用于获取踏板行程的传感器。
踏板行程:为制动踏板的当前位置与制动踏板的初始位置之间的距离。
踏板速度:踏板行程每秒的变化量。
轮速传感器:用于获取车轮转动速度的传感器。
轮速:用于指示车轮转动速度的数值,例如,车轮每秒转动的圈数,车轮的角速度,等等。
行驶速度:车辆运动的速度,可以使用轮速和车轮半径计算得到。
本申请实施例提供了一种车辆制动的方法,该方法可以由车辆制动系统实现。图1是本申请实施例提供的一种车辆制动系统的结构示意图,该车辆制动系统可以包括控制器、检测部件和执行部件。
控制器用于车辆制动过程中的相关处理。控制器可以是车载终端、也可以是制动控制单元,还可以是车载终端和制动控制单元组成的整体。本申请实施例以控制器是制动控制单元为例进行方案说明,其他情况与之类似,不再赘述。
检测部件用于检测车辆的轮速、踏板行程和制动管路的液压力等。检测部件可以包括轮速传感器、踏板行程传感器和管路压力传感器等。
执行部件用于在控制器的控制下输出制动力。执行部件可以包括制动主缸、油壶、电助力装置或主动增压装置、液压装置和制动轮缸等,此情况下制动值可以为制动压力。或者,执行部件可以包括电子制动踏板、电机和制动钳等,此情况下制动值可以为制动力。
图2是本申请实施例提供的一种控制器的结构示意图,从硬件组成上来看,控制器的结构可以如图2所示,包括处理器、存储器和通信部件。
处理器210可以是微控制单元(microcontroller unit,MCU)、中央处理器(central processing unit,CPU)或片上系统(system on chip,SoC)等,处理器210可以用于确定满足制动辅助条件,还可以用于对第一制动值进行调整,得到第二制动值。
存储器220可以包括各种易失性存储器或非易失性存储器,如固态硬盘(solid state disk, SSD)、动态随机存取存储器(dynamic random access memory,DRAM)内存等。存储器220可以用于存储记录车辆制动过程中使用到的初始数据、中间数据和结果数据,例如,车辆的基础调整系数或固定制动值等。
通信部件230可以是有线网络连接器、超宽带技术(ultra wide band,UWB)、无线保真(wireless fidelity,WiFi)模块、蓝牙模块、蜂巢网通信模块等。通信部件230可以用于与其他设备进行数据传输,其他设备可以是服务器、也可以是终端等,例如,接收服务器发送的当前道路的路面状态信息和道路类型信息等。
本申请实施例提供的一种车辆制动的方法,相应的处理流程可以如图3所示,包括如下步骤:
301,控制器响应于刹车操作,获取刹车操作对应的踏板行程。
其中,刹车操作可以为制动踏板的位置发生变化,踏板行程可以通过踏板行程传感器获取。
驾驶员在驾驶车辆进行减速或者停车时,驾驶员进行刹车操作,刹车操作可以为脚踩制动踏板,使制动踏板的位置发生变化。在车辆处于工作状态时,踏板行程传感器会检测制动踏板的踏板行程,并周期性(如,以10毫秒为周期)的向控制器发送检测到的踏板行程。在驾驶员没有踩下制动踏板时,踏板行程传感器向控制器发送的踏板行程一直处于初始值,如0。在驾驶员踩下制动踏板时,踏板行程传感器向控制器发送的踏板行程不再是初始值。控制器确定踏板行程不再是初始值时,则可以确定驾驶员进行了刹车操作。此时,控制器可以获取当前的踏板行程,进行后续的处理。
302,控制器基于踏板行程,确定第一制动值。
其中,第一制动值可以为第一制动压力、第一制动力、第一制动力矩或第一制动减速度,等等。
第一制动压力可以根据踏板行程确定,确定方式可以为:
方式一:首先,控制器根据踏板行程与踏板力之间的转换关系,确定踏板行程对应的踏板力。然后,根据踏板力与第一制动压力(即制动主缸液压力)之间的转换关系确定第一制动压力。其中,踏板行程与踏板力之间的转换关系以及踏板力与第一制动压力之间的转换关系可以通过多次实验获得,上述各种转换关系可以是转换表,也可以是转换函数。
方式二:首先,控制器接收踏板行程传感器发送的踏板行程。然后,控制器根据踏板行程与第一制动压力之间的转换关系,确定踏板行程对应的第一制动压力。其中,踏板行程与第一制动压力之间的转换关系可以在出厂时设置,也可以手动设置,转换关系可以是转换表,也可以是转换函数。
303,控制器确定满足制动辅助条件。
其中,制动辅助条件包括行驶速度条件、踏板行程条件和踏板速度条件中的至少一种。行驶速度条件为行驶速度大于行驶速度阈值,踏板行程条件为踏板行程大于踏板行程阈值,踏板速度条件为踏板速度大于踏板速度阈值。制动辅助条件可以包括一种或多种条件(本申请实施例以制动辅助条件包括行驶速度条件、踏板行程条件和踏板速度条件为例进行方案说明),当满足其中任意一个条件的时候则可以判定满足制动辅助条件。
在车辆出厂前,可以设置制动辅助条件。在车辆出厂以后,卖场的人员、驾驶员、维修 人员等也可以对制动辅助条件进行设置。可以在车载终端中设置制动辅助条件,车载终端可以有图形化的操作界面,操作界面中可以有制动辅助条件设置窗口,制动辅助条件设置窗口中显示多个预存的候选条件,并对应每个候选条件显示启用按钮。其中,候选条件可以在出厂前存储,还可以在升级过程中进行更新。进行设置的人员可以浏览各候选条件,点击任意候选条件对应的启用按钮,可以设置该候选条件启用。制动辅助条件设置窗口中还可以有每个候选条件对应的设置按钮,点击该候选条件设置按钮进入候选条件设置窗口,候选条件设置窗口中可以包括阈值输入栏,阈值输入栏用于设置候选条件中的相应阈值,如行驶速度阈值、踏板行程阈值、踏板速度阈值等。车载终端完成上述信息的设置之后可以将设置的信息发送至控制器进行存储。
在车辆行驶过程中,控制器可以周期性获取踏板行程传感器发送的踏板行程,将踏板行程和周期时长的比值确定为踏板速度。轮速传感器周期性(如,以10毫秒为周期)向控制器发送车轮转速,控制器基于车轮转速和轮胎半径计算得到行驶速度。当某个周期获取的踏板行程大于踏板行程阈值,或者确定出的踏板速度大于踏板速度阈值,或者确定出的行驶速度大于行驶速度阈值时,确定满足制动辅助条件,进而可以触发对第一制动值的调整。
这里,踏板行程大于踏板行程阈值,说明驾驶员踩制动踏板踩的比较深,说明当前出现了紧急情况,需要急刹车,这种情况可以考虑对第一制动值进行增大调整以增大制动力。踏板速度大于踏板速度阈值,说明驾驶员踩制动踏板的速度很快,说明当前出现了紧急情况,需要急刹车,这种情况可以考虑对第一制动值进行增大调整以增大制动力。行驶速度大于行驶速度阈值,说明当前车辆速度较快,在进行制动时需要较大的制动值,这种情况可以考虑对第一制动值进行增大调整以增大制动力。
304,控制器基于参考信息对第一制动值进行调整,得到第二制动值。
其中,第二制动值可以为第二制动压力、第二制动力、第二制动力矩或第二制动减速度,等等。
基于参考信息对第一制动值的调整可以是增大调整、也可以是缩小调整,对于一些存在危险的情况(如车速过高、路面积雪等),主要采用的是增大调整。基于参考信息对第一制动值进行调整的具体方法在后面步骤中有详细说明,此处不再赘述。
305,控制器基于第二制动值进行制动处理。
车辆制动系统的结构可以如图4所示,执行部件采用制动主缸、油壶、电助力装置、液压装置和制动轮缸,制动主缸与液压装置串接后通过制动管路与制动轮缸相连,另外,电助力装置与制动主缸传动连接,制动踏板也与制动主缸传动连接,控制器通过对电助力装置中电机的控制来控制制动主缸输出的制动压力,控制器对电机的控制可以为控制电机的转速,也可以为控制电机的扭矩。这种结构下第一制动值可以为第一制动压力,第二制动值可以为第二制动压力。
车辆制动系统的结构还可以如图5所示,执行部件采用制动主缸、油壶、踏板模拟器、主动增压装置、液压装置和制动轮缸,制动主缸和主动增压装置分别通过制动管路与液压装置,液压装置通过制动管路与制动轮缸相连。液压装置中可以包含多个电磁阀,使制动主缸与主动增压装置的制动管路相互隔离,防止制动管路中制动液在主动增压装置开启时回流至制动主缸。踏板模拟器的输入端与制动主缸的输出端通过管路连通,踏板模拟器的输入端设置有踏板隔离阀,踏板模拟器用于为制动踏板提供力反馈,优化制动踏板的踩踏体验。另外, 制动踏板与制动主缸传动连接,对制动主缸进行控制,控制器通过对主动增压装置中电机的控制来控制主动增压装置增压的数值,控制器对电机的控制可以为控制电机的转速,也可以为控制电机的扭矩。这种结构下第一制动值可以为第一制动压力,第二制动值可以为第二制动压力。
车辆制动系统的结构还可以如图6所示,执行部件采用电子制动踏板、电机和制动钳,电机与制动钳传动连接,此情况下制动值为制动力,制动力由控制器根据电子制动踏板的踏板行程计算得到。电子制动踏板用于获取踏板行程,还用于产生力反馈,优化踩踏体验。控制器通过对电机的控制来实现对制动钳的控制,控制器对电机的控制可以为控制电机的转速,也可以为控制电机的扭矩。这种结构下第一制动值可以为第一制动力,第二制动值可以为第二制动力。
得到第二制动值后,进行制动处理方法可以为:
方法一:对于图4所示车辆制动系统,以控制器控制电机的转速为例进行说明。制动主缸在制动踏板的作用下输出第一制动压力。控制器控制电助力装置中电机的转速,使电机的转速由0开始递增,与电助力装置传动连接的制动主缸输出的制动压力由第一制动压力开始递增,电机的转速在每个递增周期增加固定数值(也称作固定步长值),在递增过程中,控制器通过管路压力传感器持续检测制动主缸的输出管路的管路压力是否与第二制动值大小相等,当管路压力与第二制动值相等时停止递增。在上述过程中,油壶对制动管路中的制动液进行补充或回收,制动轮缸持续基于液压装置分配的制动压力对车轮进行制动。
方法二:对于图5所示车辆制动系统,以控制器控制电机的转速为例进行说明。制动主缸在制动踏板的作用下输出第一制动压力,踏板隔离阀打开,踏板模拟器对制动踏板产生力反馈。控制器通过管路压力传感器检测到管路压力与第一制动压力相等后,液压装置中与制动主缸相连的管路上电磁阀的阀门关闭。控制器控制主动增压装置中电机的转速,使电机的转速由0开始递增,主动增压装置输出的制动压力由第一制动压力开始递增,电机的转速在每个递增周期增加固定数值(也称作固定步长值),在递增过程中,控制器通过管路压力传感器持续检测制动轮缸的输入管路的管路压力是否与第二制动值大小相等,当管路压力与第二制动值相等时停止递增。在上述过程中,油壶对制动管路中的制动液进行补充或回收,制动轮缸持续基于输入的制动压力对车轮进行制动。
方法三:对于图6所示车辆制动系统,以控制器控制电机的转速为例进行说明。控制器根据电子制动踏板的踏板行程和制动辅助条件计算得到第二制动力,控制器控制电机的转速,使制动钳产生第二制动力,对车轮进行制动。
上述内容对满足制动辅助条件情况下的处理进行了说明,若控制器确定不满足制动辅助条件,可以基于第一制动值进行制动处理。
对于图4所示车辆制动系统,制动主缸在制动踏板的作用下输出第一制动压力,控制器不控制电助力装置工作,制动主缸将第一制动压力通过制动管路传输至液压装置进行分配,制动轮缸基于液压装置分配的第一制动压力对车轮进行制动。
对于图5所示车辆制动系统,制动主缸在制动踏板的作用下输出第一制动压力,制动主缸将第一制动压力通过制动管路传输至制动轮缸,控制器不控制主动增压装置工作,制动轮缸基于输入的第一制动压力对车轮进行制动。
对于图6所示车辆制动系统,以控制器控制电机的转速为例进行说明。控制器根据电子 制动踏板的踏板行程计算得到第一制动力,控制器控制电机的转速,使制动钳产生第一制动力,对车轮进行制动。
针对上述应用场景,本申请实施例提供了一种基于参考信息对第一制动值进行调整的方法,相应的处理流程可以如图7所示,包括如下步骤:
701,控制器基于参考信息确定第一调整系数。
其中,第一调整系数大于0。
首先,控制器获取参考信息。
对于参考信息包括行驶状态信息的情况。
如果行驶状态信息包括行驶速度,控制器可以获取轮速传感器检测的车轮转速,基于车轮转速计算行驶速度。如果行驶状态信息包括行驶加速度,控制器可以基于连续多个周期的计算的行驶速度计算行驶加速度。如果行驶状态信息包括转向角,控制器可以向车载终端获取转向角,该转向角可以基于方向盘的角度传感器向车载终端发送的角度值转换得到。如果行驶状态信息包括行驶坡度或侧向坡度,控制器可以获取陀螺仪检测的车辆姿态,计算得到车辆当前的行驶坡度或侧向坡度。
对于参考信息包括道路信息的情况。
如果道路信息包括道路类型信息,控制器可以向车载终端获取道路类型信息,道路类型信息可以是由车载终端基于当前位置向网络侧的服务器查询的,也可以是由车载终端基于当前位置从预先存储的地图数据中查询的。如果道路信息包括路面状态信息,控制器可以通过车辆集成的摄像头识别路面状态信息,也可以向车载终端获取路面状态信息,路面状态信息可以是由车载终端基于当前位置向网络侧的服务器查询的。如果道路信息包括车道宽度,控制器可以通过车辆集成的摄像头识别车道宽度,也可以向车载终端获取车道宽度,车道宽度可以是由车载终端基于当前位置向网络侧的服务器查询的,也可以是由车载终端基于当前位置从预先存储的地图数据中查询的。路面材料和护栏信息与车道宽度的获取方式相同,此处不再赘述。
另外,第一调整系数还可以与车辆周围的实时环境相关,控制器可以通过红外传感器或摄像头获取车辆周围的实时环境,例如,当控制器通过红外传感器确定前方车辆的行驶速度小于本车当前行驶速度时,根据两车行驶速度的差值增大第一调整系数,以提高制动值,防止发生追尾。
然后,控制器根据行驶速度范围与速度调整系数的对应表(表1),确定当前的行驶速度所在的行驶速度范围对应的速度调整系数。
表1
行驶速度 速度调整系数
行驶速度≤30km/h 0
30km/h<行驶速度≤60km/h 0.5
60km/h<行驶速度≤80km/h 1
80km/h<行驶速度≤120km/h 1.5
120km/h<行驶速度 2
控制器根据道路类型信息与道路类型调整系数的对应表(表2),确定当前的道路类型信 息对应的道路类型调整系数。
表2
道路类型信息 道路类型调整系数
最大允许行驶速度30km/h 1
最大允许行驶速度60km/h 1.1
最大允许行驶速度80km/h 1.2
最大允许行驶速度120km/h 1.3
控制器根据道路状态信息与路面状态调整系数的对应表(表3),确定当前的道路状态信息与对应的路面状态调整系数。
表3
路面状态信息 路面状态调整系数
无积水积雪 1
积水 0.9
积雪 0.8
如果还存在其他的行驶状态信息和道路信息,可以采用类似的方式确定调整系数,本申请实施例不一一列举。
最后,控制器可以将速度调整系数、道路类型调整系数和路面状态调整系数等系数相乘得到第一调整系数。例如,当车辆以100km/h的行驶速度在最大允许行驶速度为120km/h的有积雪的道路上行驶,确定的第一调整系数为1.5×1.3×0.8=1.56。可选的,还可以采用相加、加权相加或加权平均等计算方式对不同的调整系数进行计算,得到第一调整系数。
702,控制器基于固定制动值和第一调整系数,对第一制动值进行调整,得到第二制动值。
首先,控制器读取存储的固定制动值。然后,将固定制动值与第一调整系数相乘,得到乘积。最后,将第一制动值与该乘积相加,将第一制动值与该乘积之和作为第二制动值。
另外,在控制器基于参考信息对第一制动值进行调整前,可以预先设置固定制动值,具体设置操作可以为,控制器响应于制动值设置指令,获取设置的固定制动值,进行存储。
其中,固定制动值可以为固定制动压力、固定制动力、固定制动力矩或固定制动减速度,等等。
首先,设置人员通过制动值设置指令设置固定制动值。然后,控制器将设置的固定制动值进行存储。制动值设置指令可以是通过界面控件触发的操作指令也可以是通过物理按键触发的操作指令。
界面控件触发的操作指令:车载终端的操作界面中可以有制动值设置选项,设置人员点击制动值设置选项后,显示制动值设置窗口,制动值设置窗口中可以显示制动值输入栏,制动值设置指令可以为在制动值输入栏中输入制动值。或者,制动值设置窗口中还可以显示待选制动模式名称,制动值设置指令可以为设置人员在制动值设置窗口中点击待选制动模式名称。或者,制动值设置窗口中还可以显示制动值滑动条及制动值滑动条上的每个位置对应的制动值,制动值设置指令可以为设置人员滑动制动值滑动条上的滑块。通过界面控件触发的操作指令设置固定制动值后,车载终端将设置的固定制动值发送至控制器。
物理按键触发的操作指令:车载终端上可以有物理按键,设置人员设置固定制动值时,制动值设置指令可以为对物理按键的操作触发的操作指令,例如,滑动实体滑动条,旋转实 体旋钮,等等,通过物理按键触发的操作指令设置固定制动值后,车载终端将设置的固定制动值发送至控制器。
针对上述应用场景,本申请实施例提供了一种基于参考信息对第一制动值进行调整的方法,相应的处理流程可以如图8所示,包括如下步骤:
801,控制器基于参考信息确定第二调整系数。
其中,第二调整系数大于1。
首先,控制器获取参考信息。参考信息与步骤701中的参考信息相同,此处不再赘述。
另外,第一调整系数还可以与车辆周围的实时环境相关,控制器可以通过红外传感器或摄像头获取车辆周围的实时环境,例如,当控制器通过红外传感器确定前方车辆的行驶速度小于本车当前行驶速度时,根据两车行驶速度的差值增大第二调整系数,以提高制动值,防止发生追尾。
然后,控制器根据行驶速度范围与速度调整系数的对应表(表4),确定当前的行驶速度所在的行驶速度范围对应的速度调整系数。
表4
行驶速度 速度调整系数
行驶速度≤30km/h 1
30km/h<行驶速度≤60km/h 1.5
60km/h<行驶速度≤80km/h 2
80km/h<行驶速度≤120km/h 2.5
120km/h<行驶速度 3
控制器根据道路类型信息与道路类型调整系数的对应表(表5),确定当前的道路类型信息对应的道路类型调整系数。
表5
道路类型信息 道路类型调整系数
最大允许行驶速度30km/h 1
最大允许行驶速度60km/h 1.1
最大允许行驶速度80km/h 1.2
最大允许行驶速度120km/h 1.3
控制器根据道路状态信息与路面状态调整系数的对应表(表6),确定当前的道路状态信息对应的路面状态调整系数。
表6
路面状态信息 路面状态调整系数
无积水积雪 1
积水 0.9
积雪 0.8
最后,控制器将速度调整系数、道路类型调整系数和路面状态调整系数相乘得到第二调整系数。例如,当车辆以100km/h的行驶速度在最大允许行驶速度为120km/h的有积雪的道路上行驶,确定的第二调整系数为2.5×1.3×0.8=2.6。其中,还可以采用相加、加权相加或 加权平均等计算方式得到第二调整系数。
802,控制器基于基础调整系数和第二调整系数,对第一制动值进行调整,得到第二制动值。
首先,控制器读取存储的基础调整系数。然后,将基础调整系数、第一制动值与第二调整系数三者相乘得到乘积,将乘积作为第二制动值。
另外,在控制器基于参考信息对第一制动值进行调整前,可以预先设置基础调整系数,具体设置操作可以为,控制器响应于系数设置指令,获取设置的基础调整系数,进行存储。
首先,设置人员通过系数设置指令设置基础调整系数。然后,控制器将设置的基础调整系数进行存储。系数设置指令可以是通过界面控件触发的操作指令也可以是通过物理按键触发的操作指令。
界面控件触发的操作指令:车载终端的操作界面中可以有调整系数设置选项,设置人员点击调整系数设置选项后,显示调整系数设置窗口,调整系数设置窗口中可以显示调整系数输入栏,调整系数设置指令可以为在调整系数输入栏中输入基础调整系数。或者,调整系数设置窗口中还可以显示待选制动模式名称,调整系数设置指令可以为设置人员在制动值设置窗口中点击待选制动模式名称。或者,调整系数设置窗口中还可以显示调整系数滑动条及调整系数滑动条的上每个位置对应的调整系数,调整系数设置指令可以为设置人员滑动调整系数滑动条上的滑块。通过界面控件触发的操作指令设置调整系数后,车载终端将设置的基础调整系数发送至控制器。
物理按键触发的操作指令:车载终端上可以有物理按键,设置人员设置基础调整系数时,调整系数设置指令可以为对物理按键的操作触发的操作指令,例如,滑动实体滑动条,旋转实体开关旋钮,等等,通过物理按键触发的操作指令设置基础调整系数后,车载终端将设置的基础调整系数发送至控制器。
本申请实施例中,在车辆进行制动时,通过车辆制动系统对制动辅助条件进行判断,如果满足制动辅助条件,则会根据参考信息对驾驶员提供的制动值进行调整,得到更适合车辆当前制动需求的制动值,降低在制动过程中产生二次制动的概率,防止由于制动需求判断不准确导致的追尾等交通事故。
基于相同的技术构思,本申请实施例还提供了一种处理音频数据的装置,该装置可以是上述实施例中的控制器,如图9所示,该装置包括:
获取模块910,用于响应于刹车操作,获取刹车操作对应的踏板行程。具体可以实现上述步骤301中的获取功能,以及其他隐含步骤。
确定模块920,用于基于踏板行程,确定第一制动值。具体可以实现上述步骤302中的确定功能,以及其他隐含步骤。
调整模块930,用于如果满足制动辅助条件,则基于参考信息对第一制动值进行调整,得到第二制动值,其中,参考信息包括行驶状态信息。具体可以实现上述步骤303-304、步骤701-702和步骤801-802中的调整功能,以及其他隐含步骤。
制动模块940,用于基于第二制动值进行制动处理。具体可以实现上述步骤305中的制动功能,以及其他隐含步骤。
可选的,制动辅助条件包括行驶速度条件、踏板行程条件、踏板速度条件中的至少一种,其中,行驶速度条件为行驶速度大于行驶速度阈值,踏板行程条件为踏板行程大于踏板行程阈值,踏板速度条件为踏板速度大于踏板速度阈值。
可选的,参考信息还包括道路信息。
可选的,行驶状态信息包括本车的行驶速度。
道路信息包括道路类型信息和/或路面状态信息,其中,道路类型信息用于直接或间接指示道路的最大允许行驶速度,路面状态信息用于直接或间接指示路面是否存在积水或积雪。
可选的,调整模块930,用于:
基于参考信息确定第一调整系数。
基于固定制动值和第一调整系数,对第一制动值进行调整,得到第二制动值。
可选的,调整模块930,用于:
确定固定制动值和第一调整系数的乘积。
确定第一制动值与乘积之和,得到第二制动值。
可选的,该装置还包括:
存储模块,用于响应于制动值设置指令,获取设置的固定制动值,进行存储。
可选的,第一调整系数大于0。
可选的,调整模块930,用于:
基于参考信息确定第二调整系数。
基于基础调整系数和第二调整系数,对第一制动值进行调整,得到第二制动值。
可选的,调整模块930,用于:
确定基础调整系数、第一制动值与第二调整系数的乘积,得到第二制动值。
可选的,该装置还包括:
存储模块,用于响应于系数设置指令,获取设置的基础调整系数,进行存储。
可选的,第二调整系数大于1。
在本申请实施例中,在车辆进行制动时,通过车辆制动系统对制动辅助条件进行判断,如果满足制动辅助条件,则会根据参考信息对驾驶员提供的制动值进行调整,得到更适合车辆当前制动需求的制动值,降低在制动过程中产生二次制动的概率,防止由于制动需求判断不准确导致的追尾等交通事故。
需要说明的是:上述实施例提供的车辆制动的装置在车辆制动时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的车辆制动的装置与车辆制动的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令,在设备上加载和执行计算机程序指令时,全部或部分地产生按照本发 明实施例的流程或功能。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴光缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(如软盘、硬盘和磁带等),也可以是光介质(如数字视盘(Digital Video Disk,DVD)等),或者半导体介质(如固态硬盘等)。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号(包括但不限于用户终端与其他设备之间传输的信号等),均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。例如,本申请中涉及到的车辆的当前位置等信息都是在充分授权的情况下获取的。

Claims (26)

  1. 一种车辆制动的方法,其特征在于,所述方法包括:
    响应于刹车操作,获取所述刹车操作对应的踏板行程;
    基于所述踏板行程,确定第一制动值;
    如果满足制动辅助条件,则基于参考信息对第一制动值进行调整,得到第二制动值,其中,所述参考信息包括行驶状态信息;
    基于第二制动值进行制动处理。
  2. 根据权利要求1所述的方法,其特征在于,所述制动辅助条件包括行驶速度条件、踏板行程条件、踏板速度条件中的至少一种,其中,所述行驶速度条件为行驶速度大于行驶速度阈值,所述踏板行程条件为所述踏板行程大于踏板行程阈值,所述踏板速度条件为踏板速度大于踏板速度阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考信息还包括道路信息。
  4. 根据权利要求3所述的方法,其特征在于,所述行驶状态信息包括本车的行驶速度;
    所述道路信息包括道路类型信息和/或路面状态信息,其中,所述道路类型信息用于直接或间接指示道路的最大允许行驶速度,所述路面状态信息用于直接或间接指示路面是否存在积水或积雪。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述基于参考信息对第一制动值进行调整,得到第二制动值,包括:
    基于所述参考信息确定第一调整系数;
    基于固定制动值和所述第一调整系数,对所述第一制动值进行调整,得到第二制动值。
  6. 根据权利要求5所述的方法,其特征在于,所述基于固定制动值和所述第一调整系数,对所述第一制动值进行调整,得到第二制动值,包括:
    确定固定制动值和所述第一调整系数的乘积;
    确定所述第一制动值与所述乘积之和,得到第二制动值。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    响应于制动值设置指令,获取设置的所述固定制动值,进行存储。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述第一调整系数大于0。
  9. 根据权利要求1-4任一项所述的方法,其特征在于,所述基于参考信息对第一制动值进行调整,得到第二制动值,包括:
    基于所述参考信息确定第二调整系数;
    基于基础调整系数和所述第二调整系数,对所述第一制动值进行调整,得到第二制动值。
  10. 根据权利要求9所述的方法,其特征在于,所述基于基础调整系数和所述第二调整系数,对所述第一制动值进行调整,得到第二制动值,包括:
    确定基础调整系数、所述第一制动值与所述第二调整系数的乘积,得到第二制动值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    响应于系数设置指令,获取设置的所述基础调整系数,进行存储。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第二调整系数大于1。
  13. 一种车辆制动的装置,其特征在于,所述装置包括:
    获取模块,用于响应于刹车操作,获取所述刹车操作对应的踏板行程;
    确定模块,用于基于所述踏板行程,确定第一制动值;
    调整模块,用于如果满足制动辅助条件,则基于参考信息对第一制动值进行调整,得到第二制动值,其中,所述参考信息包括行驶状态信息;
    制动模块,用于基于第二制动值进行制动处理。
  14. 根据权利要求13所述的装置,其特征在于,所述制动辅助条件包括行驶速度条件、踏板行程条件、踏板速度条件中的至少一种,其中,所述行驶速度条件为行驶速度大于行驶速度阈值,所述踏板行程条件为所述踏板行程大于踏板行程阈值,所述踏板速度条件为踏板速度大于踏板速度阈值。
  15. 根据权利要求13或14所述的装置,其特征在于,所述参考信息还包括道路信息。
  16. 根据权利要求15所述的装置,其特征在于,所述行驶状态信息包括本车的行驶速度;
    所述道路信息包括道路类型信息和/或路面状态信息,其中,所述道路类型信息用于直接或间接指示道路的最大允许行驶速度,所述路面状态信息用于直接或间接指示路面是否存在积水或积雪。
  17. 根据权利要求13-16任一项所述的装置,其特征在于,所述调整模块,用于:
    基于所述参考信息确定第一调整系数;
    基于固定制动值和所述第一调整系数,对所述第一制动值进行调整,得到第二制动值。
  18. 根据权利要求17所述的装置,其特征在于,所述调整模块,用于:
    确定固定制动值和所述第一调整系数的乘积;
    确定所述第一制动值与所述乘积之和,得到第二制动值。
  19. 根据权利要求17或18所述的装置,其特征在于,所述装置还包括:
    存储模块,用于响应于制动值设置指令,获取设置的所述固定制动值,进行存储。
  20. 根据权利要求17-19任一项所述的装置,其特征在于,所述第一调整系数大于0。
  21. 根据权利要求13-16任一项所述的装置,其特征在于,所述调整模块,用于:
    基于所述参考信息确定第二调整系数;
    基于基础调整系数和所述第二调整系数,对所述第一制动值进行调整,得到第二制动值。
  22. 根据权利要求21所述的装置,其特征在于,所述调整模块,用于:
    确定基础调整系数、所述第一制动值与所述第二调整系数的乘积,得到第二制动值。
  23. 根据权利要求21或22所述的装置,其特征在于,所述装置还包括:
    存储模块,用于响应于系数设置指令,获取设置的所述基础调整系数,进行存储。
  24. 根据权利要求21-23任一项所述的装置,其特征在于,所述第二调整系数大于1。
  25. 一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器用于存储计算机指令;
    所述处理器执行所述存储器存储的计算机指令,以使所述计算机设备执行上述权利要求1至12中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序代码,响应于所述计算机程序代码被计算机设备执行,所述计算机设备执行上述权利要求1至12中任一项所述的方法。
PCT/CN2022/127710 2022-10-26 2022-10-26 车辆制动方法、装置、设备和存储介质 WO2024087058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127710 WO2024087058A1 (zh) 2022-10-26 2022-10-26 车辆制动方法、装置、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127710 WO2024087058A1 (zh) 2022-10-26 2022-10-26 车辆制动方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024087058A1 true WO2024087058A1 (zh) 2024-05-02

Family

ID=90829796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127710 WO2024087058A1 (zh) 2022-10-26 2022-10-26 车辆制动方法、装置、设备和存储介质

Country Status (1)

Country Link
WO (1) WO2024087058A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833327A (en) * 1995-10-30 1998-11-10 Aisin Seiki Kabushiki Kaisha Braking force control system for an automotive vehicle
US20130297168A1 (en) * 2012-05-02 2013-11-07 Ford Global Technologies, Llc Method for operating a brake assistance system in a vehicle
US20150239448A1 (en) * 2012-10-02 2015-08-27 Bentley Motors Limited Adaptive braking system and method
CN109131306A (zh) * 2018-08-31 2019-01-04 北京新能源汽车股份有限公司 一种电动汽车的制动控制方法、制动控制系统及汽车
CN112373300A (zh) * 2020-11-26 2021-02-19 中国人民解放军国防科技大学 一种车辆混合智能限速控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833327A (en) * 1995-10-30 1998-11-10 Aisin Seiki Kabushiki Kaisha Braking force control system for an automotive vehicle
US20130297168A1 (en) * 2012-05-02 2013-11-07 Ford Global Technologies, Llc Method for operating a brake assistance system in a vehicle
US20150239448A1 (en) * 2012-10-02 2015-08-27 Bentley Motors Limited Adaptive braking system and method
CN109131306A (zh) * 2018-08-31 2019-01-04 北京新能源汽车股份有限公司 一种电动汽车的制动控制方法、制动控制系统及汽车
CN112373300A (zh) * 2020-11-26 2021-02-19 中国人民解放军国防科技大学 一种车辆混合智能限速控制方法及装置

Similar Documents

Publication Publication Date Title
US8788144B2 (en) Braking torque adjustments based on wheel slip
CN101405176B (zh) 对驾驶方式敏感的车辆子系统控制方法和装置
US8620547B2 (en) Methods and systems for controlling braking of a vehicle when the vehicle is stationary
EP3056404A1 (en) Vehicle motion control device
WO2023284787A1 (zh) 爬行控制方法、装置、车辆及存储介质
CN109131306B (zh) 一种电动汽车的制动控制方法、制动控制系统及汽车
US20100280726A1 (en) Prevention of a rear crash during an automatic braking intervention by a vehicle safety system
CN106976455A (zh) 车速控制系统
US20200156602A1 (en) Method for estimating the achievable total braking forces for the automated deceleration of a utility vehicle, braking system and utility vehicle having said braking system
WO2022000444A1 (zh) 一种踏板感觉调节装置、控制方法
US20100280724A1 (en) Methods and systems for calibrating braking systems and controlling braking in vehicles
CN114734999A (zh) 车辆控制方法、装置、终端设备及介质
US8209100B2 (en) Methods and systems for controlling braking in vehicles
WO2024087058A1 (zh) 车辆制动方法、装置、设备和存储介质
CN112918443B (zh) 制动控制方法、装置、设备及存储介质
CN116443097A (zh) 液压转向系统的控制方法、液压转向系统及可读存储介质
CN103661674A (zh) 防抱死制动系统的压力模型的参数调节方法和装置
CN115246379B (zh) 一种车辆制动冗余方法及装置
CN112660088B (zh) 车辆制动控制方法、系统、可读取介质及装置
CN116533952B (zh) 一种半挂车制动方法、装置、设备及存储介质
CN107804305B (zh) 一种考虑载质量变化的制动距离增量预估系统及方法
WO2024027262A1 (zh) 车辆控制方法、装置、车辆及存储介质
WO2023102731A1 (zh) 制动控制方法及相关装置
US20240100958A1 (en) Method for controlling braking of vehicle
CN115352226B (zh) 胎压控制方法、装置、设备及可读存储介质