WO2024085091A1 - Conductive paste and method for manufacturing electronic component - Google Patents

Conductive paste and method for manufacturing electronic component Download PDF

Info

Publication number
WO2024085091A1
WO2024085091A1 PCT/JP2023/037247 JP2023037247W WO2024085091A1 WO 2024085091 A1 WO2024085091 A1 WO 2024085091A1 JP 2023037247 W JP2023037247 W JP 2023037247W WO 2024085091 A1 WO2024085091 A1 WO 2024085091A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
thickness
average
less
copper
Prior art date
Application number
PCT/JP2023/037247
Other languages
French (fr)
Japanese (ja)
Inventor
聡一郎 江崎
裕二 秋本
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Publication of WO2024085091A1 publication Critical patent/WO2024085091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a conductive paste using conductive powder whose main component is copper.
  • the present invention relates to a conductive paste for forming terminal electrodes of multilayer electronic components such as multilayer ceramic capacitors, multilayer inductors, and multilayer piezoelectric actuators.
  • the present invention also relates to a method for manufacturing multilayer electronic components.
  • the present invention relates to a method for manufacturing electronic components by forming terminal electrodes on a multilayer base body for multilayer electronic components.
  • Layered ceramic electronic components such as laminated ceramic capacitors, laminated inductors, and laminated piezoelectric actuators are generally manufactured as follows.
  • a conductive paste for the internal electrodes is printed in a specified pattern on a dielectric ceramic green sheet such as a barium titanate ceramic. Then, a number of these sheets are stacked and pressed together to obtain an unfired laminate in which ceramic green sheets and internal electrode paste layers are alternately stacked. The resulting laminate is cut into chips of a specified shape to obtain a laminate element. Note that the laminate element may be fired at a high temperature at this point, or it may not be fired at this point and may be fired simultaneously with a terminal electrode paste layer that is formed later using a conductive paste for the terminal electrodes. In either case, the laminate in the state before the terminal electrode paste layer is formed is referred to as a "laminated element.”
  • a conductive paste for the terminal electrodes which is composed of conductive powder, binder resin, organic solvent, glass frit, etc., is printed on the exposed ends of the internal electrodes of the laminated body using a method such as dip printing to form a conductive paste layer, which is then dried as necessary and fired at a high temperature to form the terminal electrodes.
  • a plating layer of nickel, tin, etc. may be formed on the terminal electrodes by electroplating, etc., as necessary.
  • Precious metals such as palladium, silver-palladium, and platinum have traditionally been used as internal electrode materials.
  • base metals such as nickel, cobalt, and copper
  • copper, nickel, cobalt, or alloys of these metals which easily form good electrical connections with base metal internal electrodes, are being used as terminal electrode materials instead of the conventional silver and silver-palladium.
  • the terminal electrodes are usually fired in a non-oxidizing atmosphere with as low an oxygen partial pressure as possible, for example an inert gas atmosphere with an oxygen content of several ppm to several tens of ppm, at a high peak temperature of around 800°C, so that these base metals are not oxidized during firing.
  • a non-oxidizing atmosphere with as low an oxygen partial pressure as possible, for example an inert gas atmosphere with an oxygen content of several ppm to several tens of ppm, at a high peak temperature of around 800°C, so that these base metals are not oxidized during firing.
  • the main challenge for conductive pastes using metal powders containing base metals, especially copper has traditionally been how to efficiently remove the binder in the early stages of firing and reduce residual carbon before the copper powder begins to sinter at high temperatures.
  • Patent Document 1 discloses a conductor paste for terminal electrodes that uses an aliphatic amine as a surface treatment agent for copper-based conductive powder, thereby improving the dispersibility of the conductive powder and significantly improving the binder removal properties, thereby enabling the formation of dense terminal electrodes with excellent adhesion and conductivity.
  • Patent Document 2 also discloses a conductive paste that contains copper powder, glass frit, and an organic vehicle, the copper powder being a mixture of 0-70 vol% coarse copper powder with an average particle size of 1.0 ⁇ m-3.0 ⁇ m and 30-100 vol% fine copper powder with an average particle size of 0.1-0.8 ⁇ m. It also discloses an electronic component that includes a laminate having multiple ceramic layers and internal electrodes, and external electrodes formed on the outer surface of the laminate, electrically connected to the internal electrodes, and baked with the conductive paste, in which the carbon content in the external electrodes is 0.007 wt% or less when the sintering density of the external electrodes is 80%.
  • Patent Documents 1 and 2 are designed on the assumption that they will be fired at high temperatures, such as 800°C. Therefore, when fired at 800°C, sintering proceeds sufficiently after the binder is removed, resulting in a dense fired film.
  • a low temperature such as 720°C
  • the present invention therefore aims to provide a conductive paste that can form terminal electrodes that are thin, dense, and highly continuous, while maintaining high productivity, even when fired at low temperatures.
  • the present invention also aims to provide a method for manufacturing electronic components that have terminal electrodes that are thin, dense, and highly continuous, while maintaining high productivity, even when fired at low temperatures.
  • the present inventors have found that by combining a fine conductive powder containing copper as a main component, and having a volume-based cumulative 50% particle diameter D50 C of 0.3 ⁇ m or more and 4.5 ⁇ m or less, a ratio of the average major diameter X to the average minor diameter Y of 1.0 or more and 3.0 or less, and a ratio of the average major diameter X to the average thickness Z of 1.1 or more and 9.0 or less, with a fine glass frit having a volume-based cumulative 50% particle diameter D50 G of 0.3 ⁇ m or more and 2.0 ⁇ m or less, as measured by laser diffraction particle size distribution measurement, it is possible to form a terminal electrode that is thin, dense, and excellent in continuity while maintaining high productivity, even when fired at a low temperature, and have completed the present invention.
  • the present invention (1) is a conductive paste containing a conductive powder mainly composed of copper, a glass frit, a binder resin, and an organic solvent
  • the copper-based conductive powder has a volume-based cumulative 50% particle diameter D50C of 0.3 ⁇ m or more and 4.5 ⁇ m or less in a laser diffraction particle size distribution measurement, a ratio of an average major diameter X to an average minor diameter Y of 1.0 or more and 3.0 or less, and a ratio of an average major diameter X to an average thickness Z defined below of 1.1 or more and 9.0 or less
  • the glass frit has a volume-based cumulative 50% particle diameter D50G of 0.3 ⁇ m or more and 2.0 ⁇ m or less in a laser diffraction particle size distribution measurement.
  • the present invention provides a conductive paste characterized by the above-mentioned.
  • (Average thickness) The conductive paste containing the copper-based conductive powder is cast onto a PET film with an applicator to form a coating film with a thickness of 250 ⁇ m, and the coating film is dried under conditions of air, 150° C., and 10 minutes to form a dry film.
  • a cross section of the dry film is exposed by ion milling, and the cross section of the dry film is observed with a scanning electron microscope.
  • 500 conductive particles are randomly selected and the minor axis is measured as the thickness to determine the average value of the thicknesses, and this average value is defined as the "average thickness.”
  • the present invention (2) also provides a conductive paste according to (1), in which the copper-based conductive powder has an aliphatic amine on at least a portion of its surface.
  • the present invention (3) also provides the conductive paste described in (2) in which the aliphatic amine is 0.01 part by mass or more and 1.0 part by mass or less per 100 parts by mass of the conductive powder mainly composed of copper.
  • the present invention (4) provides the conductive paste according to any one of (1) to (3), wherein, when the volume-based cumulative 10% particle diameter of the glass frit is D10 G and the volume-based cumulative 90% particle diameter of the glass frit is D90 G in a laser diffraction particle size distribution measurement, (D90 G -D10 G )/D50 G is 7.5 or less.
  • the present invention (5) provides the conductive paste according to any one of (1) to (4), in which, when the volume-based cumulative 10% particle diameter of the copper-based conductive powder is D10C and the volume-based cumulative 90% particle diameter of the copper-based conductive powder is D90C , ( D90C - D10C )/ D50C is 7.5 or less, as measured by laser diffraction particle size distribution measurement.
  • the present invention (6) provides a conductive paste according to any one of (1) to (5), which satisfies at least one of the following: the ratio of the viscosity at a shear rate of 0.4 s - 1 to the viscosity at a shear rate of 40 s-1, when measured at 25°C, is 2.0 or more and 20.0 or less; and when a strain amount of 1% is applied to the conductive paste at an angular frequency of 1 Hz, the phase difference ⁇ between the strain and the stress generated by the strain is 45° or more and 80° or less.
  • the present invention (7) also provides a conductive paste according to any one of (1) to (6), which satisfies all of the following, as calculated by the following evaluation tests: the electrode area ratio of the terminal electrodes is 90% or more, the average maximum thickness of the terminal electrodes is 40 ⁇ m or less, and the average minimum thickness of the terminal electrodes is 1.0 ⁇ m or more.
  • ⁇ Terminal electrode area ratio evaluation test> The evaluation test samples prepared by the evaluation test sample preparation method described below are observed using a scanning electron microscope in 10 visual fields for each sample, and the ratio of the electrode area to the observed visual fields is calculated as the electrode area ratio of the terminal electrode.
  • ⁇ Maximum terminal electrode thickness evaluation test> An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face of the laminated body in the evaluation test sample, the point where the length of the perpendicular line is longest is measured as the maximum thickness, and the maximum thicknesses of 20 electronic components whose maximum thicknesses were measured are averaged to calculate the average maximum thickness of the terminal electrode.
  • ⁇ Terminal electrode minimum thickness evaluation test> An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and the thickness of the evaluation test sample at the point where the length of a perpendicular line drawn from the outer periphery of the terminal electrode to the end face of the laminated body is the shortest, and the thickness of the point where the distance between the corner of the laminated body and the outer periphery of the terminal electrode is the shortest are measured. The thickness of the thinnest of these points is measured as the minimum thickness, and the minimum thicknesses of 20 electronic components whose minimum thicknesses were measured are averaged to calculate the average minimum thickness of the terminal electrodes.
  • the laminated element is then held in an air atmosphere at 150° C. for 10 minutes, and then heated in a nitrogen atmosphere at a heating rate of 50° C./min.
  • each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross section of each electronic component, thereby preparing an evaluation test sample.
  • the present invention (8) also provides a method for manufacturing an electronic component, comprising a laminate body preparation step of preparing a laminate body for a laminate-type electronic component, which is composed of a plurality of ceramic layers and a plurality of internal electrode layers, and a terminal electrode formation step of applying a conductive paste to the exposed ends of the internal electrodes of the laminate body, and then firing the applied conductive paste to form terminal electrodes, the conductive paste being the conductive paste described in any one of (1) to (7).
  • the present invention (9) also provides a method for manufacturing an electronic component as described in (7), in which the peak temperature of the firing is 720°C or less.
  • the present invention provides the conductive paste according to any one of (1) to (7), wherein the conductive paste is a sintered conductive paste to be used after sintering, and when the peak temperature of the sintering is T 1 °C, the glass frit is placed in a cylindrical container having an inner diameter of 5 mm, and a pressure of 3 MPa is applied in the axial direction for 10 seconds to produce a cylindrical green compact having a diameter of 5 mm and a height of 1 mm, the green compact is placed on a copper plate having a surface roughness Ra of 100 nm such that a flat surface of the green compact is in contact with the copper plate, and the green compact is heated in a nitrogen atmosphere at a heating rate of 10 °C/min to T 1 °C to melt the glass constituting the green compact, whereby a contact angle of the glass with the copper plate is 80° or less.
  • the conductive paste is a sintered conductive paste to be used after sintering, and when the peak temperature of the sintering is
  • the present invention (11) also provides the conductive paste according to any one of (1) to (7) and (10), which has a viscosity of 10.0 Pa ⁇ s or more and 80.0 Pa ⁇ s or less at a shear rate of 4 s-1 when measured at 25°C.
  • the present invention (12) also provides a method for manufacturing an electronic component as set forth in (8) or (9), wherein the electrode area ratio of the terminal electrode calculated by the following calculation method is 90% or more.
  • the electrode area ratio of the terminal electrode calculated by the following calculation method is 90% or more.
  • the 20 electronic components are each embedded in resin, and each electronic component is cut through the center of both end face portions of the electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross section of each electronic component.
  • the cross sections are observed using a scanning electron microscope in 10 fields of view for each electronic component, and the ratio of the electrode area to the observed fields of view is calculated as the electrode area ratio.
  • the present invention (13) also provides a method for producing an electronic component as set forth in any one of (8), (9), and (12), in which an average value of the maximum thickness of the terminal electrodes calculated by the following calculation method is 40 ⁇ m or less.
  • an average value of the maximum thickness of the terminal electrodes calculated by the following calculation method is 40 ⁇ m or less.
  • the 20 electronic components are each embedded in resin, and each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross-section of each electronic component.
  • the cross-section is observed with a scanning electron microscope, and when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body on the cross-section, the point where the length of the perpendicular line is longest is measured as the maximum thickness.
  • the maximum thicknesses of the 20 electronic components whose maximum thicknesses were measured are averaged to calculate an average maximum thickness of the terminal electrodes.
  • the present invention (14) also provides a method for producing an electronic component as set forth in any one of (8), (9), (12), and (13), in which an average value of the minimum thickness of the terminal electrodes calculated by the following calculation method is 1.0 ⁇ m or more.
  • an average value of the minimum thickness of the terminal electrodes calculated by the following calculation method is 1.0 ⁇ m or more.
  • the 20 electronic components are each embedded in resin, and each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross-section of each electronic component.
  • the cross-section is observed with a scanning electron microscope, and the thickness of the point on the cross-section where the length of a perpendicular line drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body is the smallest, and the thickness of the point where the distance between the corner portion of the laminated body and the outer periphery of the terminal electrode is the shortest are measured.
  • the thickness of the thinnest of these parts is measured as the minimum thickness, and the minimum thicknesses of the 20 electronic components whose minimum thicknesses were measured are averaged to calculate an average minimum thickness of the terminal electrodes.
  • thin, dense, and highly continuous terminal electrodes can be formed while maintaining high productivity.
  • electronic components equipped with thin, dense, and highly continuous terminal electrodes can be manufactured while maintaining high productivity.
  • FIG. 1 is a schematic diagram for explaining a method for measuring the fired film thickness of a terminal electrode formed from a conductive paste.
  • the conductive paste of the present invention contains a conductive powder mainly composed of copper, a glass frit, a binder resin, and an organic solvent, and the conductive powder has a cumulative 50% particle diameter D50C based on volume in a laser diffraction particle size distribution measurement of 0.3 ⁇ m to 4.5 ⁇ m, a ratio of the average major diameter X to the average minor diameter Y is 1.0 to 3.0, and a ratio of the average major diameter X to the average thickness Z is 1.1 to 9.0, and the glass frit has a cumulative 50% particle diameter D50G based on volume in a laser diffraction particle size distribution measurement of 0.3 ⁇ m to 2.0 ⁇ m.
  • the filling property of the conductive powder in the coating film of the conductive paste is improved, so that the sintering of the conductive powder can proceed easily even when the conductive paste is fired at a low temperature.
  • the fine glass frit is uniformly dispersed even inside the film before firing in which the conductive powder is densely packed, so that the conductive powder can be uniformly sintered throughout the film, and a debindering path can be properly secured throughout the film, so that a thin, dense, and highly continuous terminal electrode can be formed.
  • the upper limit of D50 G as above, the discontinuous portion of the terminal electrode caused by the voids generated after the glass flows can be reduced.
  • the dispersibility of the conductive powder is improved, and the filling of the conductive powder in the coating film is further improved.
  • the improved filling narrows the binder removal path, reducing the binder removal property, and the surface treatment agent itself must be debindered, which may result in poor sintering or other problems such as blister defects due to insufficient binder removal.
  • an aliphatic amine as the surface treatment agent described below, the conductive powder can be properly debindered even when packed densely.
  • the conductive powder of the present invention that has been surface-treated with an aliphatic amine, the conductive powder can be packed even more densely in the coating film before firing, while the glass frit of the present invention is used and the surface treatment agent for the conductive powder is an aliphatic amine, improving the binder removal property, so that sintering is more likely to proceed even when firing at a low temperature, and a dense fired film is more likely to be obtained.
  • the conductive paste of the present invention is preferably used by applying the conductive paste to a laminated body or the like to form a coating film, drying the coating film as necessary to form a dry film, and then firing the paste.
  • the peak firing temperature There are no particular limitations on the peak firing temperature, and firing is possible at 600°C or higher, which is lower than conventional firing temperatures. From the viewpoints of reducing the environmental load, reducing manufacturing costs, and reducing thermal stress on the laminated body, a peak firing temperature of 600°C or higher and 720°C or lower is preferable, and a peak firing temperature of 600°C or higher and 700°C or lower is particularly preferable.
  • the conductive powder in the present invention may be one that contains copper as a main component, but the ratio of copper in the conductive powder is preferably 80% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less, even more preferably 95% by mass or more and 100% by mass or less, and particularly preferably 100% by mass (pure copper).
  • the ratio of copper in the conductive powder is within the above range, the conductive powders are easily sintered together, making it easier to obtain a dense sintered film.
  • the conductive powder in the present invention contains copper as a main component
  • it may be a mixed powder of copper powder and other element metal powder such as nickel powder or silver powder, or an alloy powder of copper and other element metal such as nickel or silver.
  • it may be a composite powder in which copper powder is coated with glass or ceramic, or may have an oxide film on the surface.
  • it may be surface-treated with an organometallic compound or a surfactant, or two or more of these conductive powders may be mixed and used.
  • main component refers to the component being more than 50 mass% relative to the whole, and in particular, in a conductive powder containing copper as the main component, it refers to the copper component being more than 50 mass% relative to the total conductive powder contained in the conductive paste of the present invention, including the above-mentioned mixed powder, alloy powder, etc.
  • the conductive powder mainly composed of copper in the present invention may have a volume-based cumulative 50% particle diameter D50 C in a laser diffraction particle size distribution measurement of 0.3 ⁇ m or more and 4.5 ⁇ m or less, but is preferably 0.3 ⁇ m or more and 4.0 ⁇ m or less, more preferably 0.5 ⁇ m or more and 4.0 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less, more preferably 0.7 ⁇ m or more and 3.0 ⁇ m or less, even more preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less, and particularly preferably 1.5 ⁇ m or more and 2.5 ⁇ m or less.
  • the D50 C of the conductive powder mainly composed of copper in the above range By having the D50 C of the conductive powder mainly composed of copper in the above range, the sintering of the conductive powder is facilitated even when sintered at a low temperature, and a dense sintered film is easily formed. In addition, a thin sintered film is easily formed.
  • the copper-based conductive powder of the present invention may have a ratio of the average major axis X to the average minor axis Y of 1.0 or more and 3.0 or less, and preferably 1.0 or more and 2.5 or less.
  • a ratio of the average major axis X to the average minor axis Y of the copper-based conductive powder is in the above range, sintering proceeds easily even when sintering at a low temperature, making it easier to form a dense sintered film. It also makes it easier to form a thin sintered film (terminal electrode) with excellent continuity.
  • the above-mentioned average major axis X and average minor axis Y can both be measured, for example, by scanning electron microscope observation. That is, they can be measured by randomly selecting a number of conductive particles (e.g., 500 particles) using a scanning electron microscope, measuring the major axis and minor axis, and calculating the average value of each. They can also be measured, for example, by a flow-type particle image analyzer. That is, they can be measured by using a flow-type particle image analyzer to measure the major axis and minor axis of a number of conductive particles (e.g., 500 particles) and calculating the average value of each. As a flow-type particle image analyzer, for example, the FPIA-3000S manufactured by Sysmex Corporation can be used.
  • the copper-based conductive powder of the present invention may have a ratio of the average major axis X to the average thickness Z defined below of 1.1 to 9.0, preferably 1.1 to 7.5, more preferably 1.2 to 7.5, more preferably 1.2 to 6.0, more preferably 1.5 to 5.0, more preferably 1.6 to 4.5, more preferably 1.6 to 4.0, even more preferably 1.7 to 3.0, and particularly preferably 1.8 to 2.5.
  • a ratio of the average major axis X to the average thickness Z of the copper-based conductive powder in the above range, sintering is facilitated even when sintering at a low temperature, making it easier to form a dense sintered film.
  • the conductive paste containing the copper-based conductive powder is cast on a PET film with an applicator to form a coating film with a thickness of 250 ⁇ m, the coating film is dried under atmospheric conditions at 150° C. for 10 minutes to form a dry film, the cross section of the dry film is exposed by ion milling, the cross section of the dry film is observed with a scanning electron microscope, 500 conductive particles are randomly selected, the minor axis is measured as the thickness, and the average value of the thickness is calculated. This average value is defined as the "average thickness" in this specification (the present invention).
  • the average thickness Z can be measured, for example, by observing the cross section of a dried film formed using the conductive paste of the present invention under a scanning electron microscope. More specifically, for example, the conductive paste of the present invention is cast on a PET film using an applicator to form a coating film having a thickness of 250 ⁇ m, and the coating film is dried under conditions of air atmosphere, 150 ° C., and 10 minutes to form a dried film, and the cross section of the dried film is exposed using an ion milling device (e.g., IM4000 manufactured by Hitachi High-Tech Corporation), and the cross section of the dried film is observed using a scanning electron microscope (e.g., SU-8020 manufactured by Hitachi High-Tech Corporation), and a plurality of conductive particles (e.g., 500 particles) are randomly selected from the observation, and the minor axis is measured as the thickness, and the average value of the thickness is obtained.
  • an ion milling device e.g., IM4000 manufactured by Hitachi High-
  • the conductive paste of the present invention for example, 100 parts by mass of conductive powder mainly composed of copper, acrylic resin (7 parts by mass as resin) dissolved in terpineol, and 10 parts by mass of glass frit are mixed, then kneaded using a three-roll mill, then diluted with terpineol, and adjusted to have a viscosity of 30 Pa ⁇ s at 25°C and a shear rate of 4 s -1 .
  • the conductive powder mainly composed of copper contains other powders such as glass frit, the average thickness of the conductive powder mainly composed of copper can be measured by distinguishing it from the other powders.
  • the conductive powder mainly composed of copper can be distinguished from other powders by observing the element distribution in the cross section of the dried film by EDX (Energy dispersive X-ray spectroscopy).
  • the copper-based conductive powder of the present invention is not particularly limited in shape, so long as it has a D50C of 0.3 ⁇ m or more and 4.5 ⁇ m or less, a ratio of the average major axis X to the average minor axis Y of 1.0 or more and 3.0 or less, and a ratio of the average major axis X to the average thickness Z of 1.1 or more and 9.0 or less, and may have, for example, a flat, cylindrical, elliptical cylindrical, truncated conical, elliptical truncated conical, rectangular parallelepiped, or other shape.
  • the conductive powder of the present invention does not exclude powders of other shapes, such as spherical, and it is sufficient that the " D50C ", "ratio of the average major axis X to the average minor axis Y", and “ratio of the average major axis X to the average thickness Z" of the conductive powder as a whole satisfy the above-mentioned numerical ranges.
  • the content of the conductive powder satisfying the numerical range relative to the total conductive powder is not particularly limited, but is preferably more than 50 mass%, more preferably 55 mass% or more, more preferably 60 mass% or more, more preferably 70 mass% or more, more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 95 mass% or more.
  • the copper-based conductive powder has a volume-based cumulative 10% particle diameter D10 C and a cumulative 90% particle diameter D90 C
  • the (D90 C -D10 C )/D50 C is preferably 7.5 or less, more preferably 6.5 or less, more preferably 5.0 or less, more preferably 4.0 or less, even more preferably 3.0 or less, and particularly preferably 2.0 or less.
  • the lower limit of (D90 C -D10 C )/D50 C is not particularly limited, but can be, for example, 0.2 or more.
  • the sintering of the conductive powder can proceed uniformly throughout the entire film.
  • a binder removal path can be properly secured throughout the film, resulting in the formation of a thin, dense, and highly continuous terminal electrode.
  • the terminal electrode can be prevented from becoming thicker due to the use of extremely large conductive powder.
  • the specific surface area of the conductive powder is preferably 0.2 m 2 /g or more and 3.0 m 2 /g or less, and particularly preferably 0.3 m 2 /g or more and 2.0 m 2 /g or less.
  • the method for producing the conductive powder in the present invention is not particularly limited, and can be produced, for example, by producing spherical conductive powder by spray pyrolysis, physical vapor phase method, chemical vapor phase method, liquid phase reduction method, atomization method, etc., then surface treating the conductive powder with a surface treatment agent such as an aliphatic amine described below as necessary, and then pulverizing using a bead mill, ball mill, stamp mill, etc. Furthermore, the particle size distribution can be adjusted by classification before or after the pulverization process as necessary.
  • the volume-based cumulative 50% particle diameter D50G of the glass frit in the present invention may be 0.3 ⁇ m or more and 2.0 ⁇ m or less, and preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • D50G of the glass frit is in the above range, a dense fired film is easily formed, and a fired film (terminal electrode) having excellent continuity is easily formed.
  • (D90 G -D10 G )/D50 G is preferably 7.5 or less, more preferably 6.5 or less, more preferably 5.0 or less, even more preferably 3.5 or less, and particularly preferably 2.5 or less.
  • the lower limit of (D90 G -D10 G )/D50 G is not particularly limited, but can be, for example, 0.2 or more.
  • the small amount of extremely small glass frit that exists in agglomeration and is prone to softening and flowing makes it easier to suppress the local sintering and the local binder removal failure caused by the sintering.
  • the small amount of extremely large glass frit also makes it possible to suppress exposure of the laminated body due to voids that occur in places where the glass frit flows during the firing process, thereby improving the continuity of the terminal electrode.
  • the conductive paste of the present invention is a sintered conductive paste to be used, and the peak temperature of the sintering is T 1 ° C.
  • the glass frit is placed in a cylindrical container with an inner diameter of 5 mm, and a pressure of 3 MPa is applied in the axial direction for 10 seconds to create a cylindrical green compact with a diameter of 5 mm and a height of 1 mm.
  • the green compact is placed on a copper plate with a surface roughness Ra of 100 nm so that the flat surface of the green compact is in contact with the copper plate, and the green compact is heated in a nitrogen atmosphere at a heating rate of 10 ° C./min to T 1 ° C. to melt the glass constituting the green compact.
  • the contact angle of the glass with respect to the copper plate is preferably 80 ° or less, more preferably 75 ° or less, more preferably 70 ° or less, more preferably 65 ° or less, even more preferably 60 ° or less, and particularly preferably 55 ° or less.
  • the lower limit of the contact angle of the glass with respect to the copper plate is not particularly limited, but can be, for example, 10 ° or more.
  • the glass When the contact angle of the glass with the copper plate is within the above range, the glass has good wettability with the conductive powder whose main component is copper, and while the flow of the glass is suppressed up to the desired temperature in order to properly remove the binder, the glass can quickly wet and spread in the vicinity of the conductive powder once the desired temperature is reached, making it easier to form a terminal electrode that is thin, dense, and highly continuous.
  • composition of the glass frit in the present invention is not particularly limited, and for example, glasses such as BaO-ZnO-based, BaO-ZnO-B 2 O 3 -based, RO-ZnO-B 2 O 3 -MnO 2 -based, RO-ZnO-based, RO-ZnO-MnO 2 -based, RO-ZnO-SiO 2 -based, ZnO-B 2 O 3 -based, SiO 2 -B 2 O 3 -R' 2 O-based, and SiO 2 -RO-R' 2 O-based (wherein R is an alkaline earth metal element, and R' is an alkali metal element) can be used.
  • glasses such as BaO-ZnO-based, BaO-ZnO-B 2 O 3 -based, RO-ZnO-B 2 O 3 -MnO 2 -based, RO-ZnO-based, RO-ZnO-SiO 2 -based, ZnO-B 2 O 3
  • the glass transition point of the glass frit in the present invention is preferably 400°C or higher and 550°C or lower. When the glass transition point of the glass frit is in the above range, the glass is more likely to wet and spread throughout the film even when fired at a low temperature, making it easier to form a dense fired film.
  • the softening point of the glass frit in the present invention is preferably 500°C or higher and 650°C or lower.
  • the softening point of the glass frit is in the above range, the glass is more likely to wet and spread throughout the film even when fired at a low temperature, making it easier to form a dense fired film.
  • the specific surface area of the glass frit is preferably 2.0 m 2 /g or more and 7.0 m 2 /g or less, particularly preferably 3.0 m 2 /g or more and 6.0 m 2 /g or less.
  • the specific surface area of the glass frit is in the above range, the glass frit is easily dispersed uniformly in the film, and therefore, a dense fired film is easily formed.
  • the amount of glass frit per 100 parts by mass of conductive powder is preferably 1 part by mass to 20 parts by mass, more preferably 4 parts by mass to 18 parts by mass, even more preferably 6 parts by mass to 16 parts by mass, and particularly preferably 8 parts by mass to 14 parts by mass.
  • the copper-based conductive powder of the present invention preferably has an aliphatic amine on at least a part of its surface.
  • the copper-based conductive powder has an aliphatic amine on at least a part of its surface, which prevents oxidation of the copper-based conductive powder and improves the dispersibility of the conductive powder in the paste, thereby improving the filling of the conductive powder in the coating film of the conductive paste of the present invention, thereby forming a fired film with excellent density even when fired at a low temperature.
  • the conductive powder can be well dispersed in the paste, which makes it easier to form a thin terminal electrode with excellent continuity.
  • the aliphatic amine is preferably 0.01 to 1.0 parts by mass, more preferably 0.02 to 1.0 parts by mass, more preferably 0.03 to 1.0 parts by mass, more preferably 0.04 to 1.0 parts by mass, more preferably 0.05 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass.
  • the amount of aliphatic amine is within the above range, the dispersibility of the conductive powder in the paste is improved, and the binder removal property is improved during firing, making it easier to form a thin, dense, and highly continuous terminal electrode.
  • various amines can be used, such as primary amines such as octylamine, laurylamine, myristylamine, stearylamine, oleylamine, beef tallow amine, beef tallow propylenediamine, etc., secondary amines such as distearylamine, etc., and tertiary amines such as triethylamine, dimethyloctylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dimethylbehenylamine, dimethyllaurylamine, trioctylamine, etc.
  • primary amines such as octylamine, laurylamine, myristylamine, stearylamine, oleylamine, beef tallow amine, beef tallow propylenediamine, etc.
  • secondary amines such as distearylamine, etc.
  • tertiary amines such as triethylamine,
  • aliphatic amines Two or more of these amines may be used in combination, and a mixture of several aliphatic amines that are usually commercially available as "aliphatic amines" can also be used.
  • alkylamines with a main chain of about 8 to 20 carbon atoms, or aliphatic amines containing such alkylamines as the main component are preferred.
  • the binder resin in the present invention is not particularly limited, but preferably contains an acrylic resin.
  • the ratio of the acrylic resin to the entire binder resin is preferably more than 50% by mass, more preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • an acrylic resin When an acrylic resin is used, it has excellent thermal decomposition properties in a nitrogen atmosphere, so that the binder resin can be removed well without oxidizing copper.
  • the amount of binder resin per 100 parts by mass of conductive powder is not particularly limited, but is preferably 3 parts by mass to 11 parts by mass, more preferably 4 parts by mass to 10 parts by mass, even more preferably 5 parts by mass to 9 parts by mass, and particularly preferably 6 parts by mass to 8 parts by mass.
  • the weight-average molecular weight of the acrylic resin is not particularly limited, but for example, one between 20,000 and 1,000,000 can be used. Two or more types of acrylic resins with different weight-average molecular weights, structures, etc. may be used in combination.
  • Organic solvent in the present invention is not particularly limited, and examples thereof include terpineol, dihydroterpineol, dihydroterpineol acetate, secondary butyl alcohol, butyl carbitol, butyl carbitol acetate, and benzyl alcohol.
  • the conductive paste of the present invention may contain additives such as antifoaming agents, plasticizers, dispersants, and rheology modifiers, as necessary, so long as the effects of the present invention are not impaired.
  • plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, butyl benzyl phthalate, dioctyl adipate, diisononyl adipate, dibutyl sebacate, diethyl sebacate, dioctyl sebacate, tricresyl phosphate, chlorinated paraffin, and cyclohexane 1,2 dicarboxylate diisononyl ester.
  • rheology modifiers include silica powder.
  • the viscosity of the conductive paste of the present invention at a shear rate of 4 s ⁇ 1 measured at 25° C. is not particularly limited, but is preferably 10.0 Pa ⁇ s or more and 80.0 Pa ⁇ s or less, and particularly preferably 20.0 Pa ⁇ s or more and 60.0 Pa ⁇ s or less.
  • the viscosity of the conductive paste is in the above range, it becomes easy to form a terminal electrode that is thin, dense, and excellent in continuity.
  • the ratio of the viscosity at a shear rate of 0.4 s -1 to the viscosity at a shear rate of 40 s -1 when measured at 25°C of the conductive paste of the present invention is not particularly limited, but is preferably 2.0 to 20.0, particularly preferably 3.0 to 8.0.
  • the viscosity ratio of the conductive paste is within the above range, it becomes easy to form a terminal electrode that is thin, dense, and excellent in continuity.
  • the value of the phase difference ⁇ between the strain and the stress generated by the strain is not particularly limited, but is preferably 45° or more and 80° or less, and particularly preferably 45° or more and 78° or less.
  • the conductive paste of the present invention can be used to calculate the electrode area ratio of the terminal electrodes, the average maximum thickness of the terminal electrodes, and the average minimum thickness of the terminal electrodes, as described below, using evaluation test samples prepared, for example, by the following method.
  • the evaluation test sample is prepared, for example, by preparing a rectangular parallelepiped laminated body having a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel are laminated in multiple layers, applying the conductive paste to the end of the laminated body where the internal electrode is exposed by dip printing with a lowering speed of the laminated body of 300 ⁇ m/s and a lifting speed of 100 ⁇ m/s, then holding it in an air atmosphere at 150° C.
  • the conductive paste of the present invention is suitable as a conductive paste for forming electrodes on an electrode-formed body (hereinafter also referred to as an electrode-formed body for electronic components) on which electrodes are formed in the manufacture of electronic components, and is particularly suitable as a conductive paste for forming terminal electrodes on a laminated base body for multilayer electronic components.
  • a suitable method for manufacturing electronic components using the conductive paste of the present invention includes a preparation step of preparing an electronic component electrode-forming body, and an electrode formation step of applying a conductive paste to the outer surface of the electronic component electrode-forming body and then firing the applied conductive paste to form an electrode, and the method forms an electrode on the electronic component electrode-forming body using the conductive paste of the present invention.
  • the preparation step is a step of preparing an electrode-forming body for electronic components.
  • An electrode-forming body for electronic components refers to an object on which an electrode is formed in the manufacturing process of electronic components.
  • Examples of electrode-forming bodies for electronic components include laminates for multilayer electronic components consisting of multiple ceramic layers and multiple internal electrode layers, and cathode-forming bodies for solid electrolytic capacitors consisting of an anode and a dielectric layer formed on the surface of the anode.
  • the electrode formation process is a process in which a conductive paste is applied to the outer surface of an electronic component electrode formation body, and the applied conductive paste is fired to form an electrode.
  • Examples of methods for applying the conductive paste include dip printing, screen printing, and roll coating. Of these, the dip printing method is preferred.
  • the position and method of forming the electrodes, the thickness of the electrodes, the number of electrodes, the type of metal that constitutes the electrodes, the shape of the conductive powder used to form the electrodes, etc. are appropriately selected depending on the electronic components to be manufactured.
  • electrode formation process after electrodes are formed on the electronic component electrode formation body, appropriate processes can be included depending on the type of electronic component. For example, in the case of a multilayer electronic component, in the electrode formation process, electrodes are formed in predetermined positions on the electronic component laminate base body, and then a plating layer is formed on the surface of the electrode.
  • a particularly suitable method for manufacturing electronic components using the conductive paste of the present invention includes a laminate body preparation step for preparing a laminate body for a laminate-type electronic component consisting of a plurality of ceramic layers and a plurality of internal electrode layers, and a terminal electrode formation step for applying a conductive paste to the exposed ends of the internal electrodes of the laminate body and then firing the applied conductive paste to form terminal electrodes, in which the conductive paste of the present invention is used to form terminal electrodes on the laminate body.
  • Laminated bodies for multilayer electronic components consist of multiple ceramic layers and multiple internal electrode layers. In laminated bodies for multilayer electronic components, the ceramic layers and internal electrode layers are stacked alternately. Examples of laminated bodies for multilayer electronic components include laminated bodies for multilayer ceramic capacitors, laminated bodies for multilayer ceramic inductors, and laminated bodies for piezoelectric actuators.
  • Materials for forming the ceramic layers that make up the laminated body for laminate-type electronic components include barium titanate, strontium titanate, calcium titanate, barium zirconate, strontium zirconate, calcium zirconate, and strontium calcium zirconate.
  • the materials forming the internal electrode layers that make up the laminated element for laminate-type electronic components include nickel, palladium, silver, copper, and gold, or alloys containing one or more of these (e.g., an alloy of silver and palladium).
  • the conductive paste of the present invention is applied to the exposed ends of the internal electrodes of the laminate body for multilayer electronic components, and the applied conductive paste is fired to form terminal electrodes.
  • the method for applying the conductive paste includes dip printing, screen printing, and roll coating. Of these, dip printing is preferred.
  • the conductive paste may be dried and then fired.
  • both ends of the laminated body where the internal electrodes are exposed are referred to as “ends”
  • the faces of the ends where the internal electrodes are particularly exposed are referred to as “end faces”
  • the outer edge parts of the ends are referred to as “corner parts”.
  • the conductive paste is applied so as to cover the end faces and corner parts.
  • the size of the laminated element in which the conductive paste of the present invention is used is not particularly limited, and it can be used, for example, in laminated elements for 2012 size laminated ceramic capacitors, laminated elements for 1608 size laminated ceramic capacitors, laminated elements for 1005 size laminated ceramic capacitors, laminated elements for 0603 size laminated ceramic capacitors, laminated elements for 0402 size laminated ceramic capacitors, and laminated elements for 0201 size laminated ceramic capacitors.
  • Thinning of the terminal electrodes is particularly required for small laminated ceramic capacitors, and the conductive paste of the present invention can be suitably used in laminated elements for 1005 size laminated ceramic capacitors, laminated elements for 0603 size laminated ceramic capacitors, laminated elements for 0402 size laminated ceramic capacitors, and laminated elements for 0201 size laminated ceramic capacitors.
  • the electrode area ratio of the terminal electrodes of the laminated electronic components obtained by the present invention is not particularly limited, but is preferably 90% or more, and more preferably 99% or more. This makes it easier to prevent the plating solution from penetrating into the laminated body when plating the terminal electrodes.
  • the electrode area ratio can be calculated, for example, by the following method.
  • a plurality of electronic components e.g., 20 components are embedded in resin, and each electronic component is cut through the center of both end faces of each electronic component and in the lamination direction (perpendicular to the dielectric layer and internal electrode layer) to expose the cross section of each electronic component, and the cross section is observed with a scanning electron microscope (e.g., 10 fields of view for each electronic component), and the ratio of the electrode area in the observed field of view can be calculated as the electrode area ratio.
  • the maximum thickness of the terminal electrodes measured by the method described below is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, even more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the average maximum thickness of the terminal electrodes calculated by the method described below is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, even more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less. This allows the size of the multilayer electronic component to be reduced.
  • the thinner the terminal electrodes are the larger the size of the multilayer base body can be, i.e., the electrode area and number of layers can be increased, thereby improving the performance of the multilayer electronic component.
  • the method for measuring the maximum thickness is not particularly limited, but for example, the electronic component is embedded in resin, and the electronic component is cut through the center of both end face portions of the electronic component in the lamination direction (perpendicular to the dielectric layers and internal electrode layers) to expose the cross section of the electronic component, and the cross section is observed with a scanning electron microscope.
  • the point where the length of the perpendicular line is the maximum can be measured as the maximum thickness.
  • the method for calculating the average maximum thickness is not particularly limited, but for example, the maximum thickness of each terminal electrode of a plurality of electronic components (e.g., 20 electronic components) is measured by the above-mentioned method, and the average of the maximum thicknesses can be calculated.
  • the minimum thickness of the terminal electrodes measured by the method described below is preferably 1.0 ⁇ m or more, more preferably 2.5 ⁇ m or more, and particularly preferably 5.0 ⁇ m or more.
  • the average value of the minimum thickness of the terminal electrodes calculated by the method described below is preferably 1.0 ⁇ m or more, more preferably 2.5 ⁇ m or more, and particularly preferably 5.0 ⁇ m or more. This makes it easier to prevent the plating solution from penetrating into the laminated body when plating the terminal electrodes.
  • the method for measuring the minimum thickness is not particularly limited, but for example, the electronic component is embedded in resin, and the electronic component is cut so as to pass through the center of both end face portions of the electronic component and in the lamination direction (perpendicular to the dielectric layer and the internal electrode layer) to expose the cross section of the electronic component, and the cross section is observed with a scanning electron microscope.
  • the thickness of the part where the length of the perpendicular line is the shortest when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body, and the thickness of the part where the distance between the corner portion of the laminated body and the outer periphery of the terminal electrode is the shortest are measured, and the thickness of the thinnest part among these is measured as the minimum thickness.
  • the method for calculating the average value of the minimum thickness is not particularly limited, but for example, the minimum thickness of each of the terminal electrodes of a plurality of electronic components (e.g., 20 electronic components) is measured by the above-mentioned method, and the average of the minimum thicknesses is calculated to calculate the average minimum thickness of the terminal electrodes.
  • zirconia beads having a diameter of 0.1 mm, spherical copper powder, secondary butyl alcohol, and a predetermined surface treatment agent (aliphatic amine) were mixed, and a bead mill was used to perform a pulverization process by appropriately adjusting the flow rate and the number of passes, and then
  • Copper powder 3 and silver powder 1 were obtained by performing a surface treatment using a predetermined surface treatment agent (aliphatic amine).
  • a predetermined surface treatment agent aliphatic amine
  • the major axis and minor axis of 500 copper particles were measured by scanning electron microscope observation, and the average major axis and average minor axis were calculated.
  • the conductive pastes prepared in Experimental Examples 1 to 16 and 20 to 25 described later were cast on a PET film with an applicator to form a coating film with a thickness of 250 ⁇ m, and the coating film was dried under conditions of air atmosphere, 150 ° C., and 10 minutes to form a dry film, and the cross section of the dry film was exposed with an ion milling device (Hitachi High-Tech Corporation, model number: IM4000), and the cross section of the dry film was observed with a scanning electron microscope (Hitachi High-Tech Corporation, model number: SU-8020), and 500 copper particles were randomly selected from the observation to measure the minor axis, and the minor axis was used as the thickness to calculate the average thickness.
  • an ion milling device Hitachi High-Tech Corporation, model number: IM4000
  • a scanning electron microscope Hitachi High-Tech Corporation, model number: SU-8020
  • the ratio of the average major axis to the average thickness and the ratio of the average major axis to the average minor axis were calculated.
  • the volume-based cumulative 10% particle diameter D10, cumulative 50% particle diameter D50, and cumulative 90% particle diameter D90 were measured using a laser diffraction particle size distribution analyzer (LA-960, manufactured by HORIBA, Inc.). Using these measured values, (D90-D10)/D50 was calculated.
  • copper powder 3 and copper powder 5 were mixed in a mass ratio of 20:80 (used in Experimental Example 18 described later), mixed powder A was mixed in a mass ratio of 45:55 (used in Experimental Example 19 described later), mixed powder B was mixed in a mass ratio of 90:10 (used in Experimental Example 17 described later), and mixed powder C was mixed in a mass ratio of 90:10 (used in Experimental Example 17 described later).
  • the mixed powders i.e., the conductive powder as a whole) were measured and calculated by the above-mentioned method for the "ratio of average major axis to average thickness", "ratio of average major axis to average minor axis", "D50" and "(D90-D10)/D50".
  • the average thickness of mixed powders A to C was measured and calculated by the same method as described above, except that the conductive pastes prepared in Experimental Examples 17 to 19 were used.
  • the average thickness of silver powder 1 was measured and calculated by the same method as described above, except that a conductive paste was prepared in the same manner as in Experimental Example 1 except that silver powder 1 was used instead of copper powder 1, and the conductive paste was used. The results are shown in Table 1.
  • (D90 G -D10 G )/D50 G was calculated.
  • the glass transition point and softening point were measured using the above-mentioned glass frits.
  • the glass frit was placed in a cylindrical container with an inner diameter of 5 mm and pressure of 3 MPa was applied in the axial direction for 10 seconds to prepare a cylindrical green compact with a diameter of 5 mm and a height of 1 mm, which was placed on a copper plate with a surface roughness Ra of 100 nm so that the flat surface of the green compact was in contact with the copper plate, and the green compact was heated in a nitrogen atmosphere at a temperature increase rate of 10°C/min to 700°C to melt the glass constituting the green compact, and the contact angle of the glass with the copper plate was measured.
  • the contact angle of glass frit 4 was also measured when the temperature was increased to 680°C and 720°C, and the contact angle was 50°, similar to the contact angle at 700°C.
  • Conductive pastes were prepared by mixing conductive powder, binder resin, and glass frit in the mixing ratios shown in Tables 3 to 6.
  • the amount of surface treatment agent shown in the tables indicates the amount attached to the powder surface by surface treatment when preparing the conductive powder described above.
  • ⁇ Copper powder 1 to 22, silver powder 1 The ratio of the average major axis X to the average thickness Z, the ratio of the average major axis X to the average minor axis Y, D50, and (D90-D10)/D50 are as shown in Table 1.
  • Example 43 In this experimental example, the conductive paste prepared in experimental example 5 was used.
  • the terminal electrodes were evaluated in the same manner as in experimental example 5, except that a laminated element having a length of 0.4 mm, a width of 0.2 mm, and a height of 0.2 mm and a substantially rectangular parallelepiped shape, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel were laminated in multiple layers, was used as the laminated element.
  • viscosity The viscosity of the conductive paste was measured using a rotational viscometer (manufactured by Brookfield, model number: HADV-II+Pro) at 25° C. and a shear rate of 4 s ⁇ 1 .
  • Viscosity Ratio The viscosity of the conductive paste was measured at a shear rate of 0.4 s -1 and a shear rate of 40 s -1 at 25° C. using a rotational viscometer (Brookfield, model number: HADV-II+Pro). The ratio of the viscosity at a shear rate of 0.4 s- 1 to the viscosity at a shear rate of 40 s - 1 was calculated as the viscosity ratio.
  • Phase difference Using a rheometer (manufactured by TA Instrument, model number: AR2000), measurements were performed using parallel plates with a diameter of 40 mm under conditions of 25° C., an angular frequency of 1 Hz, and a strain of 1%, to obtain the phase difference value of the conductive paste.
  • ⁇ Terminal electrode evaluation test> (Production of Electronic Components with Terminal Electrodes) A laminated element having a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, and having a dielectric layer containing barium titanate and an internal electrode layer containing nickel, was prepared. A conductive paste was applied to the end of the laminated element where the internal electrode was exposed by dip printing with a lowering speed of 300 ⁇ m/s and a lifting speed of 100 ⁇ m/s, and then the laminated element was held for 10 minutes in an air atmosphere at 150° C. After that, the temperature was raised at a heating rate of 50° C./min in a nitrogen atmosphere, and after reaching the temperatures shown in Tables 3 to 6, the temperature was held for 15 minutes to form terminal electrodes, and electronic components equipped with terminal electrodes were produced.
  • Electrode area ratio is 99% or more 2: Electrode area ratio is 90% or more and less than 99% 1: Electrode area ratio is less than 90%
  • ⁇ Evaluation criteria> 3 The average maximum thickness is ⁇ 20 ⁇ m and the average minimum thickness is ⁇ 2.5 ⁇ m 2: The average maximum thickness is ⁇ 40 ⁇ m and the average minimum thickness is ⁇ 1.0 ⁇ m (However, this does not include cases falling under the above rating 3.) 1: Average maximum thickness > 40 ⁇ m, or average minimum thickness ⁇ 1.0 ⁇ m
  • FIG. 1 is a schematic diagram showing an evaluation test sample 10 obtained by forming terminal electrodes 4 on a laminated body 1 using a conductive paste.
  • the length of a perpendicular line drawn from the outer periphery 5 of the terminal electrode 4 to the end face 3 of the laminated element 1 is defined as D.
  • the thickness at the point where the value of D is maximum is measured, and this thickness value is defined as the maximum thickness Dmax .
  • the thickness Da at the point where the value of D is minimum and the thickness Db at the point where the distance between the corner portion 2 of the laminated element 1 and the outer periphery 5 of the terminal electrode 4 is shortest are measured, and the smaller of Da and Db is defined as the minimum thickness Dmin .
  • the minimum thickness is defined as "0 ⁇ m”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

This conductive paste contains: a conductive powder mainly composed of copper; a glass frit; a binder resin; and an organic solvent. The conductive paste is characterized in that: the conductive powder mainly composed of copper has, in a laser diffraction particle size distribution measurement, a volume-based cumulative 50% particle size distribution D50C of 0.3-4.5 μm , a ratio of the average major axis X to the average minor axis Y of 1.0-3.0, a ratio of the average major axis X to the average thickness Z of 1.1-9.0, and a ratio of the average major axis X to the average thickness Z of 1.1-9.0; and the glass frit has, in a laser diffraction particle size distribution measurement, a volume-based cumulative 50% particle size distribution D50G of 0.3-2.0 μm. According to the present invention, a thin and dense terminal electrode having excellent continuity, even when fired at a low temperature, can be formed while maintaining high productivity. Moreover, an electronic component having a thin and dense terminal electrode having excellent continuity, even when fired at a low temperature, can be manufactured while maintaining high productivity.

Description

導電性ペースト及び電子部品の製造方法Conductive paste and method for manufacturing electronic components
 本発明は、銅を主成分とする導電性粉末を用いた導電性ペーストに関する。特に、積層セラミックコンデンサ、積層インダクタ、積層圧電アクチュエータ等の積層型電子部品の端子電極を形成するための導電性ペーストに関する。また、本発明は、積層型電子部品の製造方法に関する。特に、積層型電子部品用の積層素体に端子電極を形成させて電子部品を製造する方法に関する。 The present invention relates to a conductive paste using conductive powder whose main component is copper. In particular, the present invention relates to a conductive paste for forming terminal electrodes of multilayer electronic components such as multilayer ceramic capacitors, multilayer inductors, and multilayer piezoelectric actuators. The present invention also relates to a method for manufacturing multilayer electronic components. In particular, the present invention relates to a method for manufacturing electronic components by forming terminal electrodes on a multilayer base body for multilayer electronic components.
 積層セラミックコンデンサ、積層インダクタ、積層圧電アクチュエータ等の積層セラミック電子部品は、一般に、以下のようにして製造される。 Layered ceramic electronic components such as laminated ceramic capacitors, laminated inductors, and laminated piezoelectric actuators are generally manufactured as follows.
 まず、チタン酸バリウム系セラミック等の誘電体セラミックグリーンシート上に、内部電極用導電性ペーストを所定のパターンで印刷する。その後、このシートを複数枚積み重ね、圧着して、セラミックグリーンシートと内部電極ペースト層とが交互に積層された未焼成の積層体を得る。得られた積層体を所定の形状のチップに切断することで積層素体を得る。なお、積層素体は、この時点で高温焼成される場合もあれば、この時点では焼成されず、後に端子電極用導電性ペーストを用いて形成される端子電極ペースト層とともに同時焼成される場合もある。本明細書においては、そのどちらの場合であっても、端子電極ペースト層を形成する前の状態の積層体を「積層素体」という。 First, a conductive paste for the internal electrodes is printed in a specified pattern on a dielectric ceramic green sheet such as a barium titanate ceramic. Then, a number of these sheets are stacked and pressed together to obtain an unfired laminate in which ceramic green sheets and internal electrode paste layers are alternately stacked. The resulting laminate is cut into chips of a specified shape to obtain a laminate element. Note that the laminate element may be fired at a high temperature at this point, or it may not be fired at this point and may be fired simultaneously with a terminal electrode paste layer that is formed later using a conductive paste for the terminal electrodes. In either case, the laminate in the state before the terminal electrode paste layer is formed is referred to as a "laminated element."
 その後、導電性粉末、バインダ樹脂、有機溶剤、ガラスフリット等を構成成分とする端子電極用導電性ペーストを、積層素体の内部電極の露出する端部に、ディップ印刷法等により印刷して導電性ペースト層を形成した後、必要に応じて乾燥し、更に高温で焼成して端子電極を形成する。 Then, a conductive paste for the terminal electrodes, which is composed of conductive powder, binder resin, organic solvent, glass frit, etc., is printed on the exposed ends of the internal electrodes of the laminated body using a method such as dip printing to form a conductive paste layer, which is then dried as necessary and fired at a high temperature to form the terminal electrodes.
 更に、この後、端子電極上には、必要に応じてニッケル、スズ等のめっき層を、電気めっき等により形成することもある。 Furthermore, after this, a plating layer of nickel, tin, etc. may be formed on the terminal electrodes by electroplating, etc., as necessary.
 内部電極材料としては、従来、パラジウム、銀-パラジウム、白金等の貴金属が用いられていた。しかしながら、省資源やコストダウン等の要求があり、特に焼成タイプにおいては、パラジウム、銀-パラジウムの焼成時の酸化膨張に起因するデラミネーション、クラックの発生防止等の要求があることから、近年ではニッケル、コバルト、銅等の卑金属を用いるのが主流になっている。このため、端子電極材料としても、従来の銀や銀-パラジウムに替わって、卑金属内部電極と良好な電気的接続を形成しやすい銅、ニッケル、コバルト、又はこれらの合金が用いられてきている。 Precious metals such as palladium, silver-palladium, and platinum have traditionally been used as internal electrode materials. However, there is a demand for resource conservation and cost reduction, and in sintered types in particular, there is a demand for preventing delamination and cracks caused by the oxidative expansion of palladium and silver-palladium when sintered, so in recent years the use of base metals such as nickel, cobalt, and copper has become mainstream. For this reason, copper, nickel, cobalt, or alloys of these metals, which easily form good electrical connections with base metal internal electrodes, are being used as terminal electrode materials instead of the conventional silver and silver-palladium.
 このように内部電極及び端子電極に卑金属が使用される場合、端子電極の焼成は、これらの卑金属が焼成中に酸化されないように、通常極力酸素分圧の低い非酸化性雰囲気中、例えば酸素含有量が数ppm~数十ppmの不活性ガス雰囲気中で、ピーク温度が800℃といった高温で行われる。 When base metals are used for the internal electrodes and terminal electrodes in this way, the terminal electrodes are usually fired in a non-oxidizing atmosphere with as low an oxygen partial pressure as possible, for example an inert gas atmosphere with an oxygen content of several ppm to several tens of ppm, at a high peak temperature of around 800°C, so that these base metals are not oxidized during firing.
 しかしながら、特に銅を主成分とする金属粉末を用いて低酸素雰囲気で焼成する場合、バインダ樹脂等の有機成分の燃焼、分解、飛散させる脱バインダを適切に行うことが難しい。焼成初期の比較的低温の段階で、ガラスの流動化と銅粉末の焼結とがおこる前に、脱バインダが十分に行われないと、焼結開始後、カーボンや有機物残渣が膜中に閉じ込められてしまい、その後の高温段階でブリスタ不良等の様々な問題を引き起こす。 However, when firing in a low-oxygen atmosphere, particularly when using metal powder whose main component is copper, it is difficult to properly remove the binder, which burns, decomposes, and scatters organic components such as binder resin. If the binder is not sufficiently removed at the relatively low temperature stage in the early stages of firing, before the glass fluidizes and the copper powder sinters, carbon and organic residues will become trapped in the film after sintering begins, causing various problems such as blistering defects at the subsequent high-temperature stage.
 従って、焼成初期の段階でいかに効率よく脱バインダを行い、高温域での銅粉末の焼結が進む前に残留カーボンを低減させるかが、従来、卑金属、特に銅を主成分とする金属粉末を用いた導電性ペーストの重要な課題であった。 Therefore, the main challenge for conductive pastes using metal powders containing base metals, especially copper, has traditionally been how to efficiently remove the binder in the early stages of firing and reduce residual carbon before the copper powder begins to sinter at high temperatures.
 これを解決する方法として、例えば特許文献1には、銅系の導電性粉末の表面処理剤として脂肪族アミンを用いることにより、導電性粉末の分散性が良好になるとともに、脱バインダ性が著しく改善され、このため緻密で接着性、導電性の優れた端子電極を形成することができる端子電極用導体ペーストが開示されている。 As a method for solving this problem, for example, Patent Document 1 discloses a conductor paste for terminal electrodes that uses an aliphatic amine as a surface treatment agent for copper-based conductive powder, thereby improving the dispersibility of the conductive powder and significantly improving the binder removal properties, thereby enabling the formation of dense terminal electrodes with excellent adhesion and conductivity.
 また、特許文献2には、銅粉と、ガラスフリットと、有機ビヒクルと、を含み、前記銅粉は、平均粒径が1.0μm~3.0μmの粗粒銅粉0~70vol%と、0.1~0.8μmの微粒銅粉30~100vol%と、を混合して構成される導電性ペーストが開示されている。また、複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されており、前述の導電性ペーストを焼き付けてなる外部電極と、を備える電子部品において、前記外部電極の焼結密度が80%の時点での外部電極中の炭素量が0.007wt%以下である電子部品が開示されている。 Patent Document 2 also discloses a conductive paste that contains copper powder, glass frit, and an organic vehicle, the copper powder being a mixture of 0-70 vol% coarse copper powder with an average particle size of 1.0 μm-3.0 μm and 30-100 vol% fine copper powder with an average particle size of 0.1-0.8 μm. It also discloses an electronic component that includes a laminate having multiple ceramic layers and internal electrodes, and external electrodes formed on the outer surface of the laminate, electrically connected to the internal electrodes, and baked with the conductive paste, in which the carbon content in the external electrodes is 0.007 wt% or less when the sintering density of the external electrodes is 80%.
特開2006-004734号公報JP 2006-004734 A 特開2011-187225号公報JP 2011-187225 A
 ところで、近年、環境負荷の低減、製造コストの低減及び積層素体への熱応力の低減のために、前述の端子電極を形成する際の焼成温度を低くすることも求められている。加えて、電子部品の小型化も求められており、それに伴って端子電極の薄層化が求められている。すなわち、適切に脱バインダができ、且つ、焼成温度を低くすることができる、薄層化に適した導電性ペーストが求められている。 In recent years, there has been a demand to lower the firing temperature when forming the aforementioned terminal electrodes in order to reduce the environmental impact, manufacturing costs, and thermal stress on the laminated body. In addition, there is a demand to miniaturize electronic components, which has led to a demand for thinner terminal electrodes. In other words, there is a demand for a conductive paste that is suitable for thin layers, can properly remove the binder, and can be used at a lower firing temperature.
 特許文献1及び特許文献2に記載されている導電性ペーストは、800℃といった高温での焼成を想定してペーストが設計されている。そのため、800℃で焼成する場合には、脱バインダ後に充分に焼結が進行し、緻密な焼成膜が得られる。しかしながら、本発明者等が上述のペーストを用いて720℃といった低温での焼成を試みたところ、数十分或いは数時間といった焼成時間では脱バインダ後に充分に焼結を進行させることができなかった。 The conductive pastes described in Patent Documents 1 and 2 are designed on the assumption that they will be fired at high temperatures, such as 800°C. Therefore, when fired at 800°C, sintering proceeds sufficiently after the binder is removed, resulting in a dense fired film. However, when the inventors of the present invention attempted firing at a low temperature, such as 720°C, using the above-mentioned paste, they were unable to allow sintering to proceed sufficiently after the binder was removed with firing times of several tens of minutes or hours.
 したがって、本発明は、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成できる導電性ペーストを提供することを目的とする。また、本発明は、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を備える電子部品を、高い生産性を維持しつつ製造する方法を提供することを目的とする。 The present invention therefore aims to provide a conductive paste that can form terminal electrodes that are thin, dense, and highly continuous, while maintaining high productivity, even when fired at low temperatures. The present invention also aims to provide a method for manufacturing electronic components that have terminal electrodes that are thin, dense, and highly continuous, while maintaining high productivity, even when fired at low temperatures.
 上記課題を解決すべく鋭意検討を重ねた結果、本発明者等は、銅を主成分とし、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上4.5μm以下であり、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であり、平均厚みZに対する平均長径Xの比が1.1以上9.0以下である微細な導電性粉末に、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上2.0μm以下である微細なガラスフリットを組合せることで、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成できることを見出し、本発明の完成に至った。 As a result of intensive research to solve the above problems, the present inventors have found that by combining a fine conductive powder containing copper as a main component, and having a volume-based cumulative 50% particle diameter D50 C of 0.3 μm or more and 4.5 μm or less, a ratio of the average major diameter X to the average minor diameter Y of 1.0 or more and 3.0 or less, and a ratio of the average major diameter X to the average thickness Z of 1.1 or more and 9.0 or less, with a fine glass frit having a volume-based cumulative 50% particle diameter D50 G of 0.3 μm or more and 2.0 μm or less, as measured by laser diffraction particle size distribution measurement, it is possible to form a terminal electrode that is thin, dense, and excellent in continuity while maintaining high productivity, even when fired at a low temperature, and have completed the present invention.
 すなわち、本発明(1)は、銅を主成分とする導電性粉末と、ガラスフリットと、バインダ樹脂と、有機溶剤と、を含有する導電性ペーストであって、
 前記銅を主成分とする導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上4.5μm以下であり、且つ、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であり、以下で定義される平均厚みZに対する平均長径Xの比が1.1以上9.0以下であり、
 前記ガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上2.0μm以下である、
ことを特徴とする導電性ペーストを提供するものである。
(平均厚み)
 前記銅を主成分とする導電性粉末を含む導電性ペーストをアプリケータによりPETフィルム上にキャスティングして膜厚250μmの塗布膜を形成し、当該塗布膜を、大気雰囲気、150℃、10分の条件で乾燥させて乾燥膜を形成し、イオンミリングにより当該乾燥膜の断面を露出させ、当該乾燥膜断面を走査型電子顕微鏡で観察し、500個の導電性粒子を無作為に選んで短径を厚みとして測定して当該厚みの平均値を求め、この平均値の値を「平均厚み」と定義する。
That is, the present invention (1) is a conductive paste containing a conductive powder mainly composed of copper, a glass frit, a binder resin, and an organic solvent,
The copper-based conductive powder has a volume-based cumulative 50% particle diameter D50C of 0.3 μm or more and 4.5 μm or less in a laser diffraction particle size distribution measurement, a ratio of an average major diameter X to an average minor diameter Y of 1.0 or more and 3.0 or less, and a ratio of an average major diameter X to an average thickness Z defined below of 1.1 or more and 9.0 or less,
The glass frit has a volume-based cumulative 50% particle diameter D50G of 0.3 μm or more and 2.0 μm or less in a laser diffraction particle size distribution measurement.
The present invention provides a conductive paste characterized by the above-mentioned.
(Average thickness)
The conductive paste containing the copper-based conductive powder is cast onto a PET film with an applicator to form a coating film with a thickness of 250 μm, and the coating film is dried under conditions of air, 150° C., and 10 minutes to form a dry film. A cross section of the dry film is exposed by ion milling, and the cross section of the dry film is observed with a scanning electron microscope. 500 conductive particles are randomly selected and the minor axis is measured as the thickness to determine the average value of the thicknesses, and this average value is defined as the "average thickness."
 また、本発明(2)は、前記銅を主成分とする導電性粉末が、表面の少なくとも一部に脂肪族アミンを有する(1)に記載の導電性ペーストを提供するものである。 The present invention (2) also provides a conductive paste according to (1), in which the copper-based conductive powder has an aliphatic amine on at least a portion of its surface.
 また、本発明(3)は、前記銅を主成分とする導電性粉末100質量部に対して前記脂肪族アミンが0.01質量部以上1.0質量部以下である(2)に記載の導電性ペーストを提供するものである。 The present invention (3) also provides the conductive paste described in (2) in which the aliphatic amine is 0.01 part by mass or more and 1.0 part by mass or less per 100 parts by mass of the conductive powder mainly composed of copper.
 また、本発明(4)は、前記ガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50が7.5以下である(1)~(3)のいずれか1項に記載の導電性ペーストを提供するものである。 The present invention (4) provides the conductive paste according to any one of (1) to (3), wherein, when the volume-based cumulative 10% particle diameter of the glass frit is D10 G and the volume-based cumulative 90% particle diameter of the glass frit is D90 G in a laser diffraction particle size distribution measurement, (D90 G -D10 G )/D50 G is 7.5 or less.
 また、本発明(5)は、前記銅を主成分とする導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50が7.5以下である(1)~(4)のいずれか1項に記載の導電性ペーストを提供するものである。 The present invention (5) provides the conductive paste according to any one of (1) to (4), in which, when the volume-based cumulative 10% particle diameter of the copper-based conductive powder is D10C and the volume-based cumulative 90% particle diameter of the copper-based conductive powder is D90C , ( D90C - D10C )/ D50C is 7.5 or less, as measured by laser diffraction particle size distribution measurement.
 また、本発明(6)は、25℃で測定したときの、せん断速度40s-1における粘度に対するせん断速度0.4s-1における粘度の比が2.0以上20.0以下であること、及び、前記導電性ペーストに角周波数1Hzでひずみ量1%を加えたときの該ひずみと該ひずみで生じた応力との位相差δの値が45°以上80°以下であることのうち少なくともいずれかを満たす(1)~(5)のいずれか1項に記載の導電性ペーストを提供するものである。 The present invention (6) provides a conductive paste according to any one of (1) to (5), which satisfies at least one of the following: the ratio of the viscosity at a shear rate of 0.4 s - 1 to the viscosity at a shear rate of 40 s-1, when measured at 25°C, is 2.0 or more and 20.0 or less; and when a strain amount of 1% is applied to the conductive paste at an angular frequency of 1 Hz, the phase difference δ between the strain and the stress generated by the strain is 45° or more and 80° or less.
 また、本発明(7)は、下記各評価試験により算出される、端子電極の電極面積比率が90%以上であること、端子電極の最大厚みの平均値が40μm以下であること、及び、端子電極の最小厚みの平均値が1.0μm以上であること、を全て満たす(1)~(6)のいずれか1項に記載の導電性ペーストを提供するものである。
<端子電極の電極面積比率評価試験>
 下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で試料ごとに10視野ずつ観察し、観察視野中に占める電極面積の比率を前記端子電極の電極面積比率として算出する。
<端子電極の最大厚み評価試験>
 下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で観察し、当該評価試験用試料において、端子電極の外周部から積層素体の端面部まで垂線を引いたとき、当該垂線の長さが最大になる箇所を最大厚みとして測定し、最大厚みを測定した電子部品20個の前記最大厚みを平均することで前記端子電極の最大厚みの平均値を算出する。
<端子電極の最小厚み評価試験>
 下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で観察し、当該評価試験用試料において、端子電極の外周部から積層素体の端面部まで垂線を引いたときに当該垂線の長さが最小になる箇所の厚みと、積層素体のコーナー部と端子電極の外周部との距離が最短になる箇所の厚みを測定し、これらのうち最も薄い部分の厚みを最小厚みとして測定し、最小厚みを測定した電子部品20個の前記最小厚みを平均することで前記端子電極の最小厚みの平均値を算出する。
<評価試験用試料の準備方法>
 長さ0.6mm、幅0.3mm、高さ0.3mmの、直方体形状の、チタン酸バリウムを含む誘電体層とニッケルを含む内部電極層が複数層積層された積層素体を準備し、当該積層素体の内部電極が露出した端部に、積層素体の降下速度を300μm/s、引き上げ速度を100μm/sとしてディップ印刷法により前記導電性ペーストを塗布し、次いで、大気雰囲気、150℃の条件で10分間保持し、次いで、窒素雰囲気において、50℃/分の昇温速度で昇温し、720℃に到達後、15分間保持して端子電極を形成することで、端子電極を備える電子部品を20個作製し、前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断して各電子部品の断面を露出させることで評価試験用試料を準備する。
The present invention (7) also provides a conductive paste according to any one of (1) to (6), which satisfies all of the following, as calculated by the following evaluation tests: the electrode area ratio of the terminal electrodes is 90% or more, the average maximum thickness of the terminal electrodes is 40 μm or less, and the average minimum thickness of the terminal electrodes is 1.0 μm or more.
<Terminal electrode area ratio evaluation test>
The evaluation test samples prepared by the evaluation test sample preparation method described below are observed using a scanning electron microscope in 10 visual fields for each sample, and the ratio of the electrode area to the observed visual fields is calculated as the electrode area ratio of the terminal electrode.
<Maximum terminal electrode thickness evaluation test>
An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face of the laminated body in the evaluation test sample, the point where the length of the perpendicular line is longest is measured as the maximum thickness, and the maximum thicknesses of 20 electronic components whose maximum thicknesses were measured are averaged to calculate the average maximum thickness of the terminal electrode.
<Terminal electrode minimum thickness evaluation test>
An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and the thickness of the evaluation test sample at the point where the length of a perpendicular line drawn from the outer periphery of the terminal electrode to the end face of the laminated body is the shortest, and the thickness of the point where the distance between the corner of the laminated body and the outer periphery of the terminal electrode is the shortest are measured. The thickness of the thinnest of these points is measured as the minimum thickness, and the minimum thicknesses of 20 electronic components whose minimum thicknesses were measured are averaged to calculate the average minimum thickness of the terminal electrodes.
<How to prepare samples for evaluation tests>
A laminated element having a rectangular shape and a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel are laminated in multiple layers, is prepared, and the conductive paste is applied to the end of the laminated element where the internal electrode is exposed by a dip printing method with a lowering speed of the laminated element of 300 μm/s and a lifting speed of 100 μm/s. The laminated element is then held in an air atmosphere at 150° C. for 10 minutes, and then heated in a nitrogen atmosphere at a heating rate of 50° C./min. After reaching 720° C., the temperature is held for 15 minutes to form terminal electrodes, thereby producing 20 electronic components equipped with terminal electrodes, and the 20 electronic components are each embedded in resin. Each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross section of each electronic component, thereby preparing an evaluation test sample.
 また、本発明(8)は、複数のセラミック層と複数の内部電極層からなる積層型電子部品用積層素体を準備する積層素体準備工程と、該積層素体の内部電極の露出する端部に導電性ペーストを塗布し、次いで、当該塗布した導電性ペーストを焼成して端子電極を形成する端子電極形成工程と、を有し、前記導電性ペーストが、(1)~(7)のいずれか1項に記載の導電性ペーストである電子部品の製造方法を提供するものである。 The present invention (8) also provides a method for manufacturing an electronic component, comprising a laminate body preparation step of preparing a laminate body for a laminate-type electronic component, which is composed of a plurality of ceramic layers and a plurality of internal electrode layers, and a terminal electrode formation step of applying a conductive paste to the exposed ends of the internal electrodes of the laminate body, and then firing the applied conductive paste to form terminal electrodes, the conductive paste being the conductive paste described in any one of (1) to (7).
 また、本発明(9)は、前記焼成のピーク温度が720℃以下である(7)に記載の電子部品の製造方法を提供するものである。 The present invention (9) also provides a method for manufacturing an electronic component as described in (7), in which the peak temperature of the firing is 720°C or less.
 また、本発明(10)は、前記導電性ペーストが、焼成して用いられる焼成型導電性ペーストであり、当該焼成のピーク温度がT℃である場合に、前記ガラスフリットを内径5mmの円筒形の容器に入れて軸方向に3MPaで10秒間圧力をかけることで、直径5mmであり高さが1mmである円柱状の圧粉体を作成し、表面粗さRaが100nmの銅板上に、前記圧粉体の平坦面が前記銅板に接するように前記圧粉体を載置し、窒素雰囲気において昇温速度10℃/minでT℃まで昇温して前記圧粉体を加熱することで当該圧粉体を構成するガラスを溶融させたとき、前記銅板に対する前記ガラスの接触角が80°以下である(1)~(7)のいずれか1項に記載の導電性ペーストを提供するものである。 The present invention (10) provides the conductive paste according to any one of (1) to (7), wherein the conductive paste is a sintered conductive paste to be used after sintering, and when the peak temperature of the sintering is T 1 °C, the glass frit is placed in a cylindrical container having an inner diameter of 5 mm, and a pressure of 3 MPa is applied in the axial direction for 10 seconds to produce a cylindrical green compact having a diameter of 5 mm and a height of 1 mm, the green compact is placed on a copper plate having a surface roughness Ra of 100 nm such that a flat surface of the green compact is in contact with the copper plate, and the green compact is heated in a nitrogen atmosphere at a heating rate of 10 °C/min to T 1 °C to melt the glass constituting the green compact, whereby a contact angle of the glass with the copper plate is 80° or less.
 また、本発明(11)は、25℃で測定したときの、せん断速度4s-1における粘度が10.0Pa・s以上80.0Pa・s以下である(1)~(7)及び(10)のいずれか1項に記載の導電性ペーストを提供するものである。 The present invention (11) also provides the conductive paste according to any one of (1) to (7) and (10), which has a viscosity of 10.0 Pa ·s or more and 80.0 Pa·s or less at a shear rate of 4 s-1 when measured at 25°C.
 また、本発明(12)は、下記算出方法により算出した前記端子電極の電極面積比率が、90%以上である(8)又は(9)に記載の電子部品の製造方法を提供するものである。
<端子電極の電極面積比率の算出方法>
 前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断することで各電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を電子部品ごとに10視野ずつ観察し、観察視野中に占める電極面積の比率を電極面積比率として算出する。
The present invention (12) also provides a method for manufacturing an electronic component as set forth in (8) or (9), wherein the electrode area ratio of the terminal electrode calculated by the following calculation method is 90% or more.
<How to calculate the electrode area ratio of terminal electrodes>
The 20 electronic components are each embedded in resin, and each electronic component is cut through the center of both end face portions of the electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross section of each electronic component. The cross sections are observed using a scanning electron microscope in 10 fields of view for each electronic component, and the ratio of the electrode area to the observed fields of view is calculated as the electrode area ratio.
 また、本発明(13)は、下記算出方法により算出した前記端子電極の最大厚みの平均値が、40μm以下である(8)、(9)及び(12)のいずれか1項に記載の電子部品の製造方法を提供するものである。
<端子電極の最大厚みの平均値の算出方法>
 前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断することで各電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を観察し、当該断面において、端子電極の外周部から積層素体の端面部まで垂線を引いたとき、当該垂線の長さが最大になる箇所を最大厚みとして測定し、最大厚みを測定した電子部品20個の前記最大厚みを平均することで前記端子電極の最大厚みの平均値を算出する。
The present invention (13) also provides a method for producing an electronic component as set forth in any one of (8), (9), and (12), in which an average value of the maximum thickness of the terminal electrodes calculated by the following calculation method is 40 μm or less.
<How to calculate the average maximum thickness of terminal electrodes>
The 20 electronic components are each embedded in resin, and each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross-section of each electronic component. The cross-section is observed with a scanning electron microscope, and when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body on the cross-section, the point where the length of the perpendicular line is longest is measured as the maximum thickness. The maximum thicknesses of the 20 electronic components whose maximum thicknesses were measured are averaged to calculate an average maximum thickness of the terminal electrodes.
 また、本発明(14)は、下記算出方法により算出した前記端子電極の最小厚みの平均値が、1.0μm以上である(8)、(9)、(12)及び(13)のいずれか1項に記載の電子部品の製造方法を提供するものである。
<端子電極の最小厚みの平均値の算出方法>
 前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断することで各電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を観察し、当該断面において、端子電極の外周部から積層素体の端面部まで垂線を引いたときに当該垂線の長さが最小になる箇所の厚みと、積層素体のコーナー部と端子電極の外周部との距離が最短になる箇所の厚みを測定し、これらのうち最も薄い部分の厚みを最小厚みとして測定し、最小厚みを測定した電子部品20個の前記最小厚みを平均することで前記端子電極の最小厚みの平均値を算出する。
The present invention (14) also provides a method for producing an electronic component as set forth in any one of (8), (9), (12), and (13), in which an average value of the minimum thickness of the terminal electrodes calculated by the following calculation method is 1.0 μm or more.
<How to calculate the average minimum thickness of terminal electrodes>
The 20 electronic components are each embedded in resin, and each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross-section of each electronic component. The cross-section is observed with a scanning electron microscope, and the thickness of the point on the cross-section where the length of a perpendicular line drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body is the smallest, and the thickness of the point where the distance between the corner portion of the laminated body and the outer periphery of the terminal electrode is the shortest are measured. The thickness of the thinnest of these parts is measured as the minimum thickness, and the minimum thicknesses of the 20 electronic components whose minimum thicknesses were measured are averaged to calculate an average minimum thickness of the terminal electrodes.
 本発明によれば、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成できる。また、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を備える電子部品を、高い生産性を維持しつつ製造できる。 According to the present invention, even when firing at low temperatures, thin, dense, and highly continuous terminal electrodes can be formed while maintaining high productivity. In addition, even when firing at low temperatures, electronic components equipped with thin, dense, and highly continuous terminal electrodes can be manufactured while maintaining high productivity.
図1は、導電性ペーストによって形成された端子電極の焼成膜厚の測定方法を説明する模式図である。FIG. 1 is a schematic diagram for explaining a method for measuring the fired film thickness of a terminal electrode formed from a conductive paste.
<導電性ペースト>
 本発明の導電性ペーストは、銅を主成分とする導電性粉末と、ガラスフリットと、バインダ樹脂と、有機溶剤と、を含有し、前記導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50Cが0.3μm以上4.5μm以下であり、且つ、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であり、平均厚みZに対する平均長径Xの比が1.1以上9.0以下であり、前記ガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上2.0μm以下である。これにより、低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成できる。特に、本発明の銅を主成分とする導電性粉末が、表面の少なくとも一部に後述の脂肪族アミンを有する場合に、本発明の効果がより顕著に発揮される。
<Conductive paste>
The conductive paste of the present invention contains a conductive powder mainly composed of copper, a glass frit, a binder resin, and an organic solvent, and the conductive powder has a cumulative 50% particle diameter D50C based on volume in a laser diffraction particle size distribution measurement of 0.3 μm to 4.5 μm, a ratio of the average major diameter X to the average minor diameter Y is 1.0 to 3.0, and a ratio of the average major diameter X to the average thickness Z is 1.1 to 9.0, and the glass frit has a cumulative 50% particle diameter D50G based on volume in a laser diffraction particle size distribution measurement of 0.3 μm to 2.0 μm. This makes it possible to form a terminal electrode that is thin, dense, and excellent in continuity while maintaining high productivity, even when sintered at a low temperature. In particular, when the copper-based conductive powder of the present invention has an aliphatic amine described below on at least a part of the surface, the effect of the present invention is more remarkable.
 上述の銅を主成分とする導電性粉末を用いることで、導電性ペーストの塗布膜中の導電性粉末の充填性が向上するため、低温で焼成する場合あっても導電性粉末の焼結が進行しやすくなる。また、D50が上記範囲内にあるガラスフリットを用いることで、微細なガラスフリットが、導電性粉末が高密度に充填された焼成前の膜の内部でも均一に分散するため、膜全体にわたって導電性粉末が均一に焼結しやすくなり、また、膜全体にわたって適切に脱バインダ経路を確保することができ、その結果、薄く緻密で連続性に優れる端子電極を形成できる。また、D50の上限を上記とすることで、ガラスの流動後に生じる空隙に起因した端子電極の不連続部分を減らせる。 By using the conductive powder mainly composed of copper, the filling property of the conductive powder in the coating film of the conductive paste is improved, so that the sintering of the conductive powder can proceed easily even when the conductive paste is fired at a low temperature. In addition, by using a glass frit having a D50 G within the above range, the fine glass frit is uniformly dispersed even inside the film before firing in which the conductive powder is densely packed, so that the conductive powder can be uniformly sintered throughout the film, and a debindering path can be properly secured throughout the film, so that a thin, dense, and highly continuous terminal electrode can be formed. In addition, by setting the upper limit of D50 G as above, the discontinuous portion of the terminal electrode caused by the voids generated after the glass flows can be reduced.
 なお、導電性粉末を表面処理することで導電性粉末の分散性が向上するため塗布膜中の導電性粉末の充填性が更に向上する。しかしながら、充填性の向上により脱バインダ経路が狭くなるために脱バインダ性が低下するとともに、表面処理剤自体の脱バインダも必要になるため、かえって焼結性が悪くなったり、脱バインダ不足に起因したブリスタ不良等の他の問題が生じたりといったことがあり得る。本発明の好ましい態様においては、表面処理剤として後述の脂肪族アミンを用いることで、導電性粉末が高密度に充填されている場合であっても適切に脱バインダできる。すなわち、脂肪族アミンで表面処理された本発明における導電性粉末を用いることで、焼成前の塗布膜中において導電性粉末を更に高密度で充填しつつ、本発明におけるガラスフリットを用い且つ導電性粉末の表面処理剤が脂肪族アミンであることで脱バインダ性が向上するため、低温で焼成する場合であっても焼結が進行しやすくなり、緻密な焼成膜がより得られやすくなる。 In addition, by surface treating the conductive powder, the dispersibility of the conductive powder is improved, and the filling of the conductive powder in the coating film is further improved. However, the improved filling narrows the binder removal path, reducing the binder removal property, and the surface treatment agent itself must be debindered, which may result in poor sintering or other problems such as blister defects due to insufficient binder removal. In a preferred embodiment of the present invention, by using an aliphatic amine as the surface treatment agent described below, the conductive powder can be properly debindered even when packed densely. That is, by using the conductive powder of the present invention that has been surface-treated with an aliphatic amine, the conductive powder can be packed even more densely in the coating film before firing, while the glass frit of the present invention is used and the surface treatment agent for the conductive powder is an aliphatic amine, improving the binder removal property, so that sintering is more likely to proceed even when firing at a low temperature, and a dense fired film is more likely to be obtained.
 本発明の導電性ペーストは、当該導電性ペーストを積層素体等に塗布して塗布膜を形成し、必要に応じて当該塗布膜を乾燥させて乾燥膜を形成した後に、焼成して用いることが好ましい。焼成のピーク温度は特に制限されず、従来の焼成温度よりも低温にあたる600℃以上であれば焼成でき、環境負荷の低減、製造コストの低減及び積層素体への熱応力の低減という観点から、600℃以上720℃以下であることが好ましく、600℃以上700℃以下であることが特に好ましい。 The conductive paste of the present invention is preferably used by applying the conductive paste to a laminated body or the like to form a coating film, drying the coating film as necessary to form a dry film, and then firing the paste. There are no particular limitations on the peak firing temperature, and firing is possible at 600°C or higher, which is lower than conventional firing temperatures. From the viewpoints of reducing the environmental load, reducing manufacturing costs, and reducing thermal stress on the laminated body, a peak firing temperature of 600°C or higher and 720°C or lower is preferable, and a peak firing temperature of 600°C or higher and 700°C or lower is particularly preferable.
<導電性粉末>
 本発明における導電性粉末は銅を主成分とするものであればよいが、導電性粉末中の銅の比率が、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましく、95質量%以上100質量%以下であることが更に好ましく、100質量%(純銅)であることが特に好ましい。導電性粉末中の銅の比率が上記範囲にあることにより、導電性粉末同士が焼結しやすくなるため、緻密な焼成膜が得られやすくなる。なお、本発明における導電性粉末は銅を主成分とする限り、ニッケル粉末や銀粉末等の他元素金属粉末と銅粉末との混合粉末であってもよく、或いはニッケルや銀等の他元素金属と銅との合金粉末であってもよい。更には、ガラスやセラミック等により銅粉末を被覆した複合粉末であってもよく、また、表面に酸化膜を有しているものでもよい。更には、有機金属化合物や界面活性剤等で表面処理したものであってもよく、これらの導電性粉末を2種以上混合して用いてもよい。なお、本明細書において「主成分」とは、全体に対して当該成分が50質量%超であることを指し、特に、銅を主成分とする導電性粉末においては、前述の混合粉末や合金粉末等を含む本発明の導電性ペーストに含まれる全導電性粉末に対して銅成分が50質量%超であることを指す。
<Conductive powder>
The conductive powder in the present invention may be one that contains copper as a main component, but the ratio of copper in the conductive powder is preferably 80% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less, even more preferably 95% by mass or more and 100% by mass or less, and particularly preferably 100% by mass (pure copper). When the ratio of copper in the conductive powder is within the above range, the conductive powders are easily sintered together, making it easier to obtain a dense sintered film. In addition, as long as the conductive powder in the present invention contains copper as a main component, it may be a mixed powder of copper powder and other element metal powder such as nickel powder or silver powder, or an alloy powder of copper and other element metal such as nickel or silver. Furthermore, it may be a composite powder in which copper powder is coated with glass or ceramic, or may have an oxide film on the surface. Furthermore, it may be surface-treated with an organometallic compound or a surfactant, or two or more of these conductive powders may be mixed and used. In this specification, the term "main component" refers to the component being more than 50 mass% relative to the whole, and in particular, in a conductive powder containing copper as the main component, it refers to the copper component being more than 50 mass% relative to the total conductive powder contained in the conductive paste of the present invention, including the above-mentioned mixed powder, alloy powder, etc.
 本発明における銅を主成分とする導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50は0.3μm以上4.5μm以下であればよいが、好ましくは0.3μm以上4.0μm以下であり、より好ましくは0.5μm以上4.0μm以下であり、より好ましくは0.5μm以上3.0μm以下であり、より好ましくは0.7μm以上3.0μm以下であり、更に好ましくは1.0μm以上3.0μm以下であり、特に好ましくは1.5μm以上2.5μm以下である。銅を主成分とする導電性粉末のD50が上記範囲にあることにより、低温で焼成する場合あっても導電性粉末の焼結が進行しやすくなり、緻密な焼成膜を形成しやすくなる。また、薄い焼成膜を形成しやすくなる。 The conductive powder mainly composed of copper in the present invention may have a volume-based cumulative 50% particle diameter D50 C in a laser diffraction particle size distribution measurement of 0.3 μm or more and 4.5 μm or less, but is preferably 0.3 μm or more and 4.0 μm or less, more preferably 0.5 μm or more and 4.0 μm or less, more preferably 0.5 μm or more and 3.0 μm or less, more preferably 0.7 μm or more and 3.0 μm or less, even more preferably 1.0 μm or more and 3.0 μm or less, and particularly preferably 1.5 μm or more and 2.5 μm or less. By having the D50 C of the conductive powder mainly composed of copper in the above range, the sintering of the conductive powder is facilitated even when sintered at a low temperature, and a dense sintered film is easily formed. In addition, a thin sintered film is easily formed.
 本発明における銅を主成分とする導電性粉末は、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であればよいが、好ましくは1.0以上2.5以下である。銅を主成分とする導電性粉末の平均短径Yに対する平均長径Xの比が上記範囲にあることにより、低温で焼成する場合あっても焼結が進行しやすくなり、緻密な焼成膜を形成しやすくなる。また、薄く連続性に優れる焼成膜(端子電極)を形成しやすくなる。 The copper-based conductive powder of the present invention may have a ratio of the average major axis X to the average minor axis Y of 1.0 or more and 3.0 or less, and preferably 1.0 or more and 2.5 or less. When the ratio of the average major axis X to the average minor axis Y of the copper-based conductive powder is in the above range, sintering proceeds easily even when sintering at a low temperature, making it easier to form a dense sintered film. It also makes it easier to form a thin sintered film (terminal electrode) with excellent continuity.
 上述の平均長径X及び平均短径Yはいずれも、例えば、走査型電子顕微鏡観察により測定することができる。すなわち、走査型電子顕微鏡観察により複数個(例えば500個)の導電性粒子を無作為に選んで長径と短径を測定してそれぞれの平均値を求めることにより測定できる。また、例えば、フロー式粒子像分析装置により測定することができる。すなわち、フロー式粒子像分析装置を用いて複数個(例えば500個)の導電性粒子の長径と短径を測定し、それぞれの平均値を求めることにより測定することができる。フロー式粒子像分析装置としては、例えば、シスメックス社製のFPIA-3000Sを用いることができる。 The above-mentioned average major axis X and average minor axis Y can both be measured, for example, by scanning electron microscope observation. That is, they can be measured by randomly selecting a number of conductive particles (e.g., 500 particles) using a scanning electron microscope, measuring the major axis and minor axis, and calculating the average value of each. They can also be measured, for example, by a flow-type particle image analyzer. That is, they can be measured by using a flow-type particle image analyzer to measure the major axis and minor axis of a number of conductive particles (e.g., 500 particles) and calculating the average value of each. As a flow-type particle image analyzer, for example, the FPIA-3000S manufactured by Sysmex Corporation can be used.
 本発明における銅を主成分とする導電性粉末は、以下で定義される平均厚みZに対する平均長径Xの比が1.1以上9.0以下であればよいが、好ましくは1.1以上7.5以下であり、より好ましくは1.2以上7.5以下であり、より好ましくは1.2以上6.0以下であり、より好ましくは1.5以上5.0以下であり、より好ましくは1.6以上4.5以下であり、より好ましくは1.6以上4.0以下であり、更に好ましくは1.7以上3.0以下であり、特に好ましくは1.8以上2.5以下である。銅を主成分とする導電性粉末の平均厚みZに対する平均長径Xの比が上記範囲にあることにより、低温で焼成する場合あっても焼結が進行しやすくなり、緻密な焼成膜を形成しやすくなる。また、薄く連続性に優れる焼成膜(端子電極)を形成しやすくなる。
(平均厚み)
 前記銅を主成分とする導電性粉末を含む導電性ペーストをアプリケータによりPETフィルム上にキャスティングして膜厚250μmの塗布膜を形成し、当該塗布膜を、大気雰囲気、150℃、10分の条件で乾燥させて乾燥膜を形成し、イオンミリングにより当該乾燥膜の断面を露出させ、当該乾燥膜断面を走査型電子顕微鏡で観察し、500個の導電性粒子を無作為に選んで短径を厚みとして測定して当該厚みの平均値を求める。この平均値の値を本明細書(本発明)における「平均厚み」と定義する。
The copper-based conductive powder of the present invention may have a ratio of the average major axis X to the average thickness Z defined below of 1.1 to 9.0, preferably 1.1 to 7.5, more preferably 1.2 to 7.5, more preferably 1.2 to 6.0, more preferably 1.5 to 5.0, more preferably 1.6 to 4.5, more preferably 1.6 to 4.0, even more preferably 1.7 to 3.0, and particularly preferably 1.8 to 2.5. By having the ratio of the average major axis X to the average thickness Z of the copper-based conductive powder in the above range, sintering is facilitated even when sintering at a low temperature, making it easier to form a dense sintered film. In addition, it is easier to form a thin sintered film (terminal electrode) with excellent continuity.
(Average thickness)
The conductive paste containing the copper-based conductive powder is cast on a PET film with an applicator to form a coating film with a thickness of 250 μm, the coating film is dried under atmospheric conditions at 150° C. for 10 minutes to form a dry film, the cross section of the dry film is exposed by ion milling, the cross section of the dry film is observed with a scanning electron microscope, 500 conductive particles are randomly selected, the minor axis is measured as the thickness, and the average value of the thickness is calculated. This average value is defined as the "average thickness" in this specification (the present invention).
 また、上述の平均厚みZは、例えば、本発明の導電性ペーストを用いて形成した乾燥膜断面の走査型電子顕微鏡観察により測定することができる。より具体的には、例えば、アプリケータにより本発明の導電性ペーストをPETフィルム上にキャスティングして膜厚250μmの塗布膜を形成し、当該塗布膜を、大気雰囲気、150℃、10分の条件で乾燥させて乾燥膜を形成し、イオンミリング装置(例えば、日立ハイテク社製のIM4000)で当該乾燥膜の断面を露出させ、当該乾燥膜断面を走査型電子顕微鏡(例えば、日立ハイテク社製のSU-8020)で観察し、当該観察により複数個(例えば500個)の導電性粒子を無作為に選んで短径を厚みとして測定して当該厚みの平均値を求めることで測定することができる。本発明の導電性ペーストとして、例えば、銅を主成分とする導電性粉末100質量部と、ターピネオールで溶解したアクリル樹脂(樹脂として7質量部)と、ガラスフリット10質量部と、を混合し、次いで、三本ロールミルを用いて混錬し、次いで、ターピネオールで希釈し、25℃、せん断速度4s-1における粘度が30Pa・sとなるよう調整したものを用いることができる。なお、銅を主成分とする導電性粉末以外に、例えばガラスフリット等の他の粉末を含んでいる場合であっても、当該他の粉末と区別することで銅を主成分とする導電性粉末の平均厚みを測定することができる。区別する方法としては、例えば、EDX(Energy dispersive X-ray spectroscopy)により乾燥膜断面中の元素分布を観察することで、銅を主成分とする導電性粉末と他の粉末を区別することができる。 The average thickness Z can be measured, for example, by observing the cross section of a dried film formed using the conductive paste of the present invention under a scanning electron microscope. More specifically, for example, the conductive paste of the present invention is cast on a PET film using an applicator to form a coating film having a thickness of 250 μm, and the coating film is dried under conditions of air atmosphere, 150 ° C., and 10 minutes to form a dried film, and the cross section of the dried film is exposed using an ion milling device (e.g., IM4000 manufactured by Hitachi High-Tech Corporation), and the cross section of the dried film is observed using a scanning electron microscope (e.g., SU-8020 manufactured by Hitachi High-Tech Corporation), and a plurality of conductive particles (e.g., 500 particles) are randomly selected from the observation, and the minor axis is measured as the thickness, and the average value of the thickness is obtained. As the conductive paste of the present invention, for example, 100 parts by mass of conductive powder mainly composed of copper, acrylic resin (7 parts by mass as resin) dissolved in terpineol, and 10 parts by mass of glass frit are mixed, then kneaded using a three-roll mill, then diluted with terpineol, and adjusted to have a viscosity of 30 Pa·s at 25°C and a shear rate of 4 s -1 . It should be noted that even if the conductive powder mainly composed of copper contains other powders such as glass frit, the average thickness of the conductive powder mainly composed of copper can be measured by distinguishing it from the other powders. As a method of distinction, for example, the conductive powder mainly composed of copper can be distinguished from other powders by observing the element distribution in the cross section of the dried film by EDX (Energy dispersive X-ray spectroscopy).
 本発明における銅を主成分とする導電性粉末は、D50が0.3μm以上4.5μm以下であり、且つ、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であり、平均厚みZに対する平均長径Xの比が1.1以上9.0以下であれば、形状は特に制限されず、例えば、扁平状、円柱状、楕円円柱状、円錐台状、楕円円錐台状、直方体状等の形状とすることができる。なお、本発明の導電性粉末は真球状等の他の形状の粉末を含むことを除外するものではなく、導電性粉末全体として「D50」、「平均短径Yに対する平均長径Xの比」及び「平均厚みZに対する平均長径Xの比」が上記数値範囲を満たしていればよい。その場合、当該数値範囲を満たす導電性粉末の全導電性粉末に対する含有率は特に制限されないが、50質量%超が好ましく、55質量%以上がより好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。 The copper-based conductive powder of the present invention is not particularly limited in shape, so long as it has a D50C of 0.3 μm or more and 4.5 μm or less, a ratio of the average major axis X to the average minor axis Y of 1.0 or more and 3.0 or less, and a ratio of the average major axis X to the average thickness Z of 1.1 or more and 9.0 or less, and may have, for example, a flat, cylindrical, elliptical cylindrical, truncated conical, elliptical truncated conical, rectangular parallelepiped, or other shape. The conductive powder of the present invention does not exclude powders of other shapes, such as spherical, and it is sufficient that the " D50C ", "ratio of the average major axis X to the average minor axis Y", and "ratio of the average major axis X to the average thickness Z" of the conductive powder as a whole satisfy the above-mentioned numerical ranges. In this case, the content of the conductive powder satisfying the numerical range relative to the total conductive powder is not particularly limited, but is preferably more than 50 mass%, more preferably 55 mass% or more, more preferably 60 mass% or more, more preferably 70 mass% or more, more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 95 mass% or more.
 本発明における銅を主成分とする導電性粉末は、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50が7.5以下であることが好ましく、6.5以下であることがより好ましく、5.0以下であることがより好ましく、4.0以下であることがより好ましく、3.0以下であることが更に好ましく、2.0以下であることが特に好ましい。(D90-D10)/D50の下限値は特に制限されないが、例えば、0.2以上とすることができる。銅を主成分とする導電性粉末の(D90-D10)/D50が上記範囲にあること、すなわち導電性粉末の粒度分布が狭いことにより、膜全体にわたって均一に導電性粉末の焼結を進行させることができる。すなわち、膜中での局所的な焼結の進行を抑制できるため、膜全体にわたって適切に脱バインダ経路を確保でき、その結果、薄く緻密で連続性に優れる端子電極を形成できる。また、極端に大きな導電性粉末に起因して端子電極の膜厚が厚くなることを抑制できる。 In the present invention, the copper-based conductive powder has a volume-based cumulative 10% particle diameter D10 C and a cumulative 90% particle diameter D90 C , and the (D90 C -D10 C )/D50 C is preferably 7.5 or less, more preferably 6.5 or less, more preferably 5.0 or less, more preferably 4.0 or less, even more preferably 3.0 or less, and particularly preferably 2.0 or less. The lower limit of (D90 C -D10 C )/D50 C is not particularly limited, but can be, for example, 0.2 or more. When the (D90 C -D10 C )/D50 C of the copper-based conductive powder is in the above range, that is, the particle size distribution of the conductive powder is narrow, the sintering of the conductive powder can proceed uniformly throughout the entire film. In other words, since the local sintering in the film can be suppressed, a binder removal path can be properly secured throughout the film, resulting in the formation of a thin, dense, and highly continuous terminal electrode. Also, the terminal electrode can be prevented from becoming thicker due to the use of extremely large conductive powder.
 導電性粉末の比表面積は、好ましくは0.2m/g以上3.0m/g以下、特に好ましくは0.3m/g以上2.0m/g以下である。銅を主成分とする導電性粉末の比表面積が上記範囲にあることにより、低温で焼成する場合あっても焼結が進行しやすくなり、緻密な焼成膜を形成しやすくなる。また、薄い焼成膜を形成しやすくなる。 The specific surface area of the conductive powder is preferably 0.2 m 2 /g or more and 3.0 m 2 /g or less, and particularly preferably 0.3 m 2 /g or more and 2.0 m 2 /g or less. When the specific surface area of the conductive powder containing copper as a main component is in the above range, sintering proceeds easily even when sintering is performed at a low temperature, and a dense sintered film is easily formed. In addition, a thin sintered film is easily formed.
 本発明における導電性粉末を製造する方法は特に制限されず、例えば、噴霧熱分解法、物理気相法、化学気相法、液相還元法、アトマイズ法等により球状導電性粉末を製造し、次いで、必要に応じて導電性粉末を後述の脂肪族アミン等の表面処理剤により表面処理し、次いで、ビーズミル、ボールミル、スタンプミル等を用いて粉砕処理することで、製造できる。また、必要に応じて粉砕処理前や粉砕処理後に分級を行うことで、粒度分布を調整することができる。 The method for producing the conductive powder in the present invention is not particularly limited, and can be produced, for example, by producing spherical conductive powder by spray pyrolysis, physical vapor phase method, chemical vapor phase method, liquid phase reduction method, atomization method, etc., then surface treating the conductive powder with a surface treatment agent such as an aliphatic amine described below as necessary, and then pulverizing using a bead mill, ball mill, stamp mill, etc. Furthermore, the particle size distribution can be adjusted by classification before or after the pulverization process as necessary.
<ガラスフリット>
 本発明におけるガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50は0.3μm以上2.0μm以下であればよいが、好ましくは0.5μm以上1.5μm以下である。ガラスフリットのD50が上記範囲にあることにより、緻密な焼成膜を形成しやすくなり、また、連続性に優れる焼成膜(端子電極)を形成しやすくなる。
<Glass frit>
The volume-based cumulative 50% particle diameter D50G of the glass frit in the present invention, as measured by laser diffraction particle size distribution measurement, may be 0.3 μm or more and 2.0 μm or less, and preferably 0.5 μm or more and 1.5 μm or less. When the D50G of the glass frit is in the above range, a dense fired film is easily formed, and a fired film (terminal electrode) having excellent continuity is easily formed.
 本発明におけるガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50は、7.5以下であることが好ましく、6.5以下であることがより好ましく、5.0以下であることがより好ましく、3.5以下であることが更に好ましく、2.5以下であることが特に好ましい。(D90-D10)/D50の下限値は特に制限されないが、例えば、0.2以上とすることができる。ガラスフリットの(D90-D10)/D50が上記範囲にあること、すなわちガラスフリットの粒度分布が狭いことにより、大きさの均一なガラスフリットが、導電性粉末が高密度に充填された焼成前の膜の内部でも均一に分布するため、膜全体にわたって導電性粉末が均一に焼結しやすくなる。また、それにより、膜中での局所的な焼結の進行を抑制できるため、膜全体にわたって適切に脱バインダ経路を確保することができ、その結果、薄く緻密で連続性に優れる端子電極を形成できる。凝集して存在し、軟化・流動しやすい極端に小さなガラスフリットが少ないことで、局所的な焼結の進行及び当該焼結の進行に起因する局所的な脱バインダ不良を抑制しやすくなる。また、極端に大きなガラスフリットが少ないことで、焼成過程で当該ガラスフリットが流動した場所に生じる空隙に起因した積層素体の露出を抑制することができるため、端子電極の連続性を向上させることができる。 In the present invention, when the cumulative 10% particle diameter of the glass frit on a volume basis in a laser diffraction particle size distribution measurement is D10 G and the cumulative 90% particle diameter is D90 G , (D90 G -D10 G )/D50 G is preferably 7.5 or less, more preferably 6.5 or less, more preferably 5.0 or less, even more preferably 3.5 or less, and particularly preferably 2.5 or less. The lower limit of (D90 G -D10 G )/D50 G is not particularly limited, but can be, for example, 0.2 or more. When (D90 G -D10 G )/D50 G of the glass frit is in the above range, that is, when the particle size distribution of the glass frit is narrow, the glass frit having a uniform size is uniformly distributed even inside the film before firing in which the conductive powder is densely packed, and the conductive powder is easily sintered uniformly throughout the film. This also makes it possible to suppress the local sintering in the film, thereby ensuring an appropriate binder removal path throughout the film, and as a result, a thin, dense, and highly continuous terminal electrode can be formed. The small amount of extremely small glass frit that exists in agglomeration and is prone to softening and flowing makes it easier to suppress the local sintering and the local binder removal failure caused by the sintering. The small amount of extremely large glass frit also makes it possible to suppress exposure of the laminated body due to voids that occur in places where the glass frit flows during the firing process, thereby improving the continuity of the terminal electrode.
 本発明の導電性ペーストが、焼成して用いられる焼成型導電性ペーストであり、当該焼成のピーク温度がT℃である場合に、前記ガラスフリットを内径5mmの円筒形の容器に入れて軸方向に3MPaで10秒間圧力をかけることで、直径が5mmであり、高さが1mmである円柱状の圧粉体を作成し、表面粗さRaが100nmの銅板上に、前記圧粉体の平坦面が前記銅板に接するように前記圧粉体を載置し、窒素雰囲気において昇温速度10℃/minでT℃まで昇温して前記圧粉体を加熱することで当該圧粉体を構成するガラスを溶融させたとき、前記銅板に対する前記ガラスの接触角が80°以下であることが好ましく、75°以下であることがより好ましく、70°以下であることがより好ましく、65°以下であることがより好ましく、60°以下であることが更に好ましく、55°以下であることが特に好ましい。銅板に対するガラスの接触角の下限値は特に制限されないが、例えば、10°以上とすることができる。銅板に対するガラスの接触角が上記範囲にあることにより、銅を主成分とする導電性粉末に対するガラスの濡れ性が良好となり、脱バインダを適切に行うために所望の温度まではガラスの流動を抑制しつつ、所望の温度に達した時点で速やかに導電性粉末近傍にガラスが濡れ広がることができるため、薄く緻密で連続性に優れる端子電極を形成しやすくなる。 When the conductive paste of the present invention is a sintered conductive paste to be used, and the peak temperature of the sintering is T 1 ° C., the glass frit is placed in a cylindrical container with an inner diameter of 5 mm, and a pressure of 3 MPa is applied in the axial direction for 10 seconds to create a cylindrical green compact with a diameter of 5 mm and a height of 1 mm. The green compact is placed on a copper plate with a surface roughness Ra of 100 nm so that the flat surface of the green compact is in contact with the copper plate, and the green compact is heated in a nitrogen atmosphere at a heating rate of 10 ° C./min to T 1 ° C. to melt the glass constituting the green compact. The contact angle of the glass with respect to the copper plate is preferably 80 ° or less, more preferably 75 ° or less, more preferably 70 ° or less, more preferably 65 ° or less, even more preferably 60 ° or less, and particularly preferably 55 ° or less. The lower limit of the contact angle of the glass with respect to the copper plate is not particularly limited, but can be, for example, 10 ° or more. When the contact angle of the glass with the copper plate is within the above range, the glass has good wettability with the conductive powder whose main component is copper, and while the flow of the glass is suppressed up to the desired temperature in order to properly remove the binder, the glass can quickly wet and spread in the vicinity of the conductive powder once the desired temperature is reached, making it easier to form a terminal electrode that is thin, dense, and highly continuous.
 本発明におけるガラスフリットの組成は特に制限されず、例えば、BaO-ZnO系、BaO-ZnO-B系、RO-ZnO-B-MnO系、RO-ZnO系、RO-ZnO-MnO系、RO-ZnO-SiO系、ZnO-B系、SiO-B-R’O系、SiO-RO-R’O系(但しRはアルカリ土類金属元素、R’はアルカリ金属元素)等のガラスを用いることができる。 The composition of the glass frit in the present invention is not particularly limited, and for example, glasses such as BaO-ZnO-based, BaO-ZnO-B 2 O 3 -based, RO-ZnO-B 2 O 3 -MnO 2 -based, RO-ZnO-based, RO-ZnO-MnO 2 -based, RO-ZnO-SiO 2 -based, ZnO-B 2 O 3 -based, SiO 2 -B 2 O 3 -R' 2 O-based, and SiO 2 -RO-R' 2 O-based (wherein R is an alkaline earth metal element, and R' is an alkali metal element) can be used.
 本発明におけるガラスフリットのガラス転移点は400℃以上550℃以下であることが好ましい。ガラスフリットのガラス転移点が上記範囲にあることにより、低温で焼成する場合でもガラスが膜中に濡れ広がりやすくなるため、緻密な焼成膜を形成しやすくなる。 The glass transition point of the glass frit in the present invention is preferably 400°C or higher and 550°C or lower. When the glass transition point of the glass frit is in the above range, the glass is more likely to wet and spread throughout the film even when fired at a low temperature, making it easier to form a dense fired film.
 本発明におけるガラスフリットの軟化点は、500℃以上650℃以下であることが好ましい。ガラスフリットの軟化点が上記範囲にあることにより、低温で焼成する場合でもガラスが膜中に濡れ広がりやすくなるため、緻密な焼成膜を形成しやすくなる。 The softening point of the glass frit in the present invention is preferably 500°C or higher and 650°C or lower. When the softening point of the glass frit is in the above range, the glass is more likely to wet and spread throughout the film even when fired at a low temperature, making it easier to form a dense fired film.
 ガラスフリットの比表面積は、好ましくは2.0m/g以上7.0m/g以下、特に好ましくは3.0m/g以上6.0m/g以下である。ガラスフリットの比表面積が上記範囲にあることにより、ガラスフリットが膜中に均一に分散しやすくなるため、緻密な焼成膜を形成しやすくなる。 The specific surface area of the glass frit is preferably 2.0 m 2 /g or more and 7.0 m 2 /g or less, particularly preferably 3.0 m 2 /g or more and 6.0 m 2 /g or less. When the specific surface area of the glass frit is in the above range, the glass frit is easily dispersed uniformly in the film, and therefore, a dense fired film is easily formed.
 導電性粉末100質量部に対するガラスフリットの量は、好ましくは1質量部以上20質量部以下であり、より好ましくは4質量部以上18質量部以下であり、更に好ましくは6質量部以上16質量部以下であり、特に好ましくは8質量部以上14質量部以下である。ガラスフリットの量が上記範囲にあることにより、緻密な焼成膜を形成しやすくなる。 The amount of glass frit per 100 parts by mass of conductive powder is preferably 1 part by mass to 20 parts by mass, more preferably 4 parts by mass to 18 parts by mass, even more preferably 6 parts by mass to 16 parts by mass, and particularly preferably 8 parts by mass to 14 parts by mass. By having the amount of glass frit in the above range, it becomes easier to form a dense fired film.
<表面処理剤>
 本発明における銅を主成分とする導電性粉末は、表面の少なくとも一部に脂肪族アミンを有することが好ましい。銅を主成分とする導電性粉末は、表面の少なくとも一部に脂肪族アミンを有することで、銅を主成分とする導電性粉末の酸化を防ぐとともに、ペースト中での導電性粉末の分散性を良好なものとすることができるため、本発明の導電性ペーストの塗布膜中での導電性粉末の充填性を向上させることができ、それにより、低温で焼成した場合であっても緻密性に優れる焼成膜を形成できる。また、ペースト中での導電性粉末の分散性を良好なものとできるため、薄く連続性の優れる端子電極を形成しやすくなる。
<Surface treatment agent>
The copper-based conductive powder of the present invention preferably has an aliphatic amine on at least a part of its surface. The copper-based conductive powder has an aliphatic amine on at least a part of its surface, which prevents oxidation of the copper-based conductive powder and improves the dispersibility of the conductive powder in the paste, thereby improving the filling of the conductive powder in the coating film of the conductive paste of the present invention, thereby forming a fired film with excellent density even when fired at a low temperature. In addition, the conductive powder can be well dispersed in the paste, which makes it easier to form a thin terminal electrode with excellent continuity.
 本発明における脂肪族アミンは、銅を主成分とする導電性粉末100質量部に対して0.01質量部以上1.0質量部以下であることが好ましく、0.02質量部以上1.0質量部以下であることがより好ましく、0.03質量部以上1.0質量部以下であることがより好ましく、0.04質量部以上1.0質量部以下であることがより好ましく、0.05質量部以上1.0質量部以下であることがより好ましく、0.1質量部以上0.5質量部以下であることが特に好ましい。脂肪族アミンの量が上記範囲にあることで、ペースト中での導電性粉末の分散性が向上し、かつ、焼成時には脱バインダ性が向上するため、薄く緻密で連続性に優れる端子電極を形成しやすくなる。 In the present invention, the aliphatic amine is preferably 0.01 to 1.0 parts by mass, more preferably 0.02 to 1.0 parts by mass, more preferably 0.03 to 1.0 parts by mass, more preferably 0.04 to 1.0 parts by mass, more preferably 0.05 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass. When the amount of aliphatic amine is within the above range, the dispersibility of the conductive powder in the paste is improved, and the binder removal property is improved during firing, making it easier to form a thin, dense, and highly continuous terminal electrode.
 本発明における脂肪族アミンとしては、例えば、オクチルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン、牛脂アミン、牛脂プロピレンジアミン等の1級アミン、ジステアリルアミン等の2級アミン、トリエチルアミン、ジメチルオクチルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミン、ジメチルラウリルアミン、トリオクチルアミン等の3級アミン等、種々のものが使用できる。これらのアミンを2種以上併用してもよく、通常「脂肪族アミン」として市販されている、数種の脂肪族アミンの混合物を使用することもできる。特に、銅粉末に対する被覆処理のしやすさと、金属との吸着性の点から、主鎖の炭素数が8~20程度のアルキルアミン、又はこれを主成分とする脂肪族アミンが好ましい。 As the aliphatic amine in the present invention, various amines can be used, such as primary amines such as octylamine, laurylamine, myristylamine, stearylamine, oleylamine, beef tallow amine, beef tallow propylenediamine, etc., secondary amines such as distearylamine, etc., and tertiary amines such as triethylamine, dimethyloctylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dimethylbehenylamine, dimethyllaurylamine, trioctylamine, etc. Two or more of these amines may be used in combination, and a mixture of several aliphatic amines that are usually commercially available as "aliphatic amines" can also be used. In particular, from the standpoint of ease of coating treatment on copper powder and adsorption to metal, alkylamines with a main chain of about 8 to 20 carbon atoms, or aliphatic amines containing such alkylamines as the main component, are preferred.
<バインダ樹脂>
 本発明におけるバインダ樹脂は特に制限されるものではないが、アクリル樹脂を含むことが好ましい。バインダ樹脂全体に対するアクリル樹脂の比率は、50質量%超が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。アクリル樹脂を用いた場合、窒素雰囲気中での熱分解性に優れるため、銅を酸化させずに良好にバインダ樹脂を除去することができる。
<Binder Resin>
The binder resin in the present invention is not particularly limited, but preferably contains an acrylic resin. The ratio of the acrylic resin to the entire binder resin is preferably more than 50% by mass, more preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably 90% by mass or more. When an acrylic resin is used, it has excellent thermal decomposition properties in a nitrogen atmosphere, so that the binder resin can be removed well without oxidizing copper.
 導電性粉末100質量部に対するバインダ樹脂の量は特に制限されないが、好ましくは3質量部以上11質量部以下、より好ましくは4質量部以上10質量部以下であり、更に好ましくは5質量部以上9質量部以下であり、特に好ましくは6質量部以上8質量部以下である。バインダ樹脂の量が上記範囲にあることにより、薄く緻密で連続性に優れる端子電極を形成しやすくなる。 The amount of binder resin per 100 parts by mass of conductive powder is not particularly limited, but is preferably 3 parts by mass to 11 parts by mass, more preferably 4 parts by mass to 10 parts by mass, even more preferably 5 parts by mass to 9 parts by mass, and particularly preferably 6 parts by mass to 8 parts by mass. By using an amount of binder resin within the above range, it becomes easier to form a terminal electrode that is thin, dense, and has excellent continuity.
 アクリル樹脂の重量平均分子量は特に制限されないが、例えば、20000以上1000000以下のものを用いることができる。なお、重量平均分子量や構造等が異なる2種以上のアクリル樹脂を組合せて用いてもよい。 The weight-average molecular weight of the acrylic resin is not particularly limited, but for example, one between 20,000 and 1,000,000 can be used. Two or more types of acrylic resins with different weight-average molecular weights, structures, etc. may be used in combination.
<有機溶剤>
 本発明における有機溶剤は、特に制限されず、ターピネオール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、セカンダリーブチルアルコール、ブチルカルビトール、ブチルカルビトールアセテート、ベンジルアルコール等が挙げられる。
<Organic Solvent>
The organic solvent in the present invention is not particularly limited, and examples thereof include terpineol, dihydroterpineol, dihydroterpineol acetate, secondary butyl alcohol, butyl carbitol, butyl carbitol acetate, and benzyl alcohol.
<添加剤>
 本発明の導電性ペーストは、本発明の効果を損なわない限り、上記成分以外に、必要に応じて、消泡剤、可塑剤、分散剤、レオロジー調整剤等の添加剤を含有することができる。可塑剤としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジ-2-エチルヘキシル、フタル酸ジノルマルオクチル、フタル酸ブチルベンジル、アジピン酸ジオクチル、アジピン酸ジイソノニル、セバシン酸ジブチル、セバシン酸ジエチル、セバシン酸ジオクチル、リン酸トリクレシル、塩素化パラフィン、シクロヘキサン1,2ジカルボン酸ジイソノニルエステル等が挙げられる。レオロジー調整剤としては、例えば、シリカ粉末が挙げられる。
<Additives>
In addition to the above components, the conductive paste of the present invention may contain additives such as antifoaming agents, plasticizers, dispersants, and rheology modifiers, as necessary, so long as the effects of the present invention are not impaired. Examples of plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, butyl benzyl phthalate, dioctyl adipate, diisononyl adipate, dibutyl sebacate, diethyl sebacate, dioctyl sebacate, tricresyl phosphate, chlorinated paraffin, and cyclohexane 1,2 dicarboxylate diisononyl ester. Examples of rheology modifiers include silica powder.
<導電性ペーストの物性>
 本発明の導電性ペーストの、25℃で測定したときのせん断速度4s-1における粘度は特に制限されないが、好ましくは10.0Pa・s以上80.0Pa・s以下であり、特に好ましくは20.0Pa・s以上60.0Pa・s以下である。導電性ペーストの粘度が上記範囲にあることにより、薄く緻密で連続性に優れる端子電極を形成しやすくなる。
<Conductive paste properties>
The viscosity of the conductive paste of the present invention at a shear rate of 4 s −1 measured at 25° C. is not particularly limited, but is preferably 10.0 Pa·s or more and 80.0 Pa·s or less, and particularly preferably 20.0 Pa·s or more and 60.0 Pa·s or less. When the viscosity of the conductive paste is in the above range, it becomes easy to form a terminal electrode that is thin, dense, and excellent in continuity.
 本発明の導電性ペーストの、25℃で測定したときのせん断速度40s-1における粘度に対するせん断速度0.4s-1における粘度の比は特に制限されないが、好ましくは2.0以上20.0以下、特に好ましくは3.0以上8.0以下である。導電性ペーストの粘度の比が上記範囲にあることにより、薄く緻密で連続性に優れる端子電極を形成しやすくなる。 The ratio of the viscosity at a shear rate of 0.4 s -1 to the viscosity at a shear rate of 40 s -1 when measured at 25°C of the conductive paste of the present invention is not particularly limited, but is preferably 2.0 to 20.0, particularly preferably 3.0 to 8.0. When the viscosity ratio of the conductive paste is within the above range, it becomes easy to form a terminal electrode that is thin, dense, and excellent in continuity.
 本発明の導電性ペーストに角周波数1Hzでひずみ量1%を加えたときの、該ひずみと該ひずみで生じた応力との位相差δの値は特に制限されないが、好ましくは45°以上80°以下であり、特に好ましくは45°以上78°以下である。導電性ペーストの位相差δの値が上記範囲にあることにより、薄く緻密で連続性に優れる端子電極を形成しやすくなる。 When a strain of 1% is applied to the conductive paste of the present invention at an angular frequency of 1 Hz, the value of the phase difference δ between the strain and the stress generated by the strain is not particularly limited, but is preferably 45° or more and 80° or less, and particularly preferably 45° or more and 78° or less. By having the phase difference δ value of the conductive paste within the above range, it becomes easier to form a terminal electrode that is thin, dense, and has excellent continuity.
 本発明の導電性ペーストは、例えば次の方法により準備した評価試験用試料を用いて、後出の端子電極の電極面積比率、端子電極の最大厚みの平均値、端子電極の最小厚みの平均値を算出することができる。評価試験用試料は、例えば、長さ0.6mm、幅0.3mm、高さ0.3mmの、直方体形状の、チタン酸バリウムを含む誘電体層とニッケルを含む内部電極層が複数層積層された積層素体を準備し、当該積層素体の内部電極が露出した端部に、積層素体の降下速度を300μm/s、引き上げ速度を100μm/sとしてディップ印刷法により前記導電性ペーストを塗布し、次いで、大気雰囲気、150℃の条件で10分間保持し、次いで、窒素雰囲気において、50℃/分の昇温速度で昇温し、700℃又は720℃に到達後、15分間保持して端子電極を形成することで、端子電極を備える電子部品を20個作製し、前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断して各電子部品の断面を露出させることで、準備することができる。 The conductive paste of the present invention can be used to calculate the electrode area ratio of the terminal electrodes, the average maximum thickness of the terminal electrodes, and the average minimum thickness of the terminal electrodes, as described below, using evaluation test samples prepared, for example, by the following method. The evaluation test sample is prepared, for example, by preparing a rectangular parallelepiped laminated body having a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel are laminated in multiple layers, applying the conductive paste to the end of the laminated body where the internal electrode is exposed by dip printing with a lowering speed of the laminated body of 300 μm/s and a lifting speed of 100 μm/s, then holding it in an air atmosphere at 150° C. for 10 minutes, then heating it in a nitrogen atmosphere at a heating rate of 50° C./min, and holding it for 15 minutes after reaching 700° C. or 720° C. to form terminal electrodes, thereby producing 20 electronic components with terminal electrodes, embedding each of the 20 electronic components in resin, and cutting each electronic component so as to pass through the center of both end face portions of each electronic component and in the lamination direction (perpendicular to the dielectric layer and the internal electrode layer) to expose the cross section of each electronic component.
<電子部品の製造方法>
 本発明の導電性ペーストは、電子部品の製造において電極が形成される被電極形成体(以下、電子部品用被電極形成体とも記載する。)に電極を形成するための導電性ペーストとして好適であり、特に、積層型電子部品用積層素体に端子電極を形成するための導電性ペーストとして好適である。
<Electronic component manufacturing method>
The conductive paste of the present invention is suitable as a conductive paste for forming electrodes on an electrode-formed body (hereinafter also referred to as an electrode-formed body for electronic components) on which electrodes are formed in the manufacture of electronic components, and is particularly suitable as a conductive paste for forming terminal electrodes on a laminated base body for multilayer electronic components.
 本発明の導電性ペーストを用いた好適な電子部品の製造方法は、電子部品用被電極形成体を準備する準備工程と、当該電子部品用被電極形成体の外表面上に導電性ペーストを塗布し、次いで、当該塗布した導電性ペーストを焼成して電極を形成する電極形成工程と、を有する電子部品の製造方法において、本発明の導電性ペーストを用いて、前記電子部品用被電極形成体に電極を形成する、電子部品の製造方法である。本発明の導電性ペーストを上述の電子部品の製造方法に用いることにより、電極形成工程において低温で焼成する場合であっても、薄く緻密で連続性に優れる電極を、高い生産性を維持しつつ形成することができる。すなわち、上述の電子部品の製造方法によれば、電極形成工程において低温で焼成する場合であっても、薄く緻密で連続性に優れる電極を備える電子部品を、高い生産性を維持しつつ製造できる。 A suitable method for manufacturing electronic components using the conductive paste of the present invention includes a preparation step of preparing an electronic component electrode-forming body, and an electrode formation step of applying a conductive paste to the outer surface of the electronic component electrode-forming body and then firing the applied conductive paste to form an electrode, and the method forms an electrode on the electronic component electrode-forming body using the conductive paste of the present invention. By using the conductive paste of the present invention in the above-mentioned method for manufacturing electronic components, even when firing is performed at a low temperature in the electrode formation step, thin, dense, and highly continuous electrodes can be formed while maintaining high productivity. In other words, according to the above-mentioned method for manufacturing electronic components, even when firing is performed at a low temperature in the electrode formation step, electronic components having thin, dense, and highly continuous electrodes can be manufactured while maintaining high productivity.
 前記準備工程は、電子部品用被電極形成体を準備する工程である。電子部品用被電極形成体とは、電子部品の製造工程において、電極が形成される対象を指す。電子部品用被電極形成体としては、複数のセラミック層と複数の内部電極層とからなる積層型電子部品用積層体や陽極と該陽極表面に形成された誘電体層からなる固体電解コンデンサ用被陰極形成体等が挙げられる。 The preparation step is a step of preparing an electrode-forming body for electronic components. An electrode-forming body for electronic components refers to an object on which an electrode is formed in the manufacturing process of electronic components. Examples of electrode-forming bodies for electronic components include laminates for multilayer electronic components consisting of multiple ceramic layers and multiple internal electrode layers, and cathode-forming bodies for solid electrolytic capacitors consisting of an anode and a dielectric layer formed on the surface of the anode.
 前記電極形成工程は、電子部品用被電極形成体の外表面上に導電性ペーストを塗布し、当該塗布した導電性ペーストを焼成して電極を形成する工程である。導電性ペーストを塗布する方法としては、例えば、ディップ印刷法、スクリーン印刷法、ロール塗布法が挙げられる。これらのうち、ディップ印刷法が好ましい。 The electrode formation process is a process in which a conductive paste is applied to the outer surface of an electronic component electrode formation body, and the applied conductive paste is fired to form an electrode. Examples of methods for applying the conductive paste include dip printing, screen printing, and roll coating. Of these, the dip printing method is preferred.
 電極形成工程において、電極を形成する位置、方法、電極の厚み、電極の数、電極を構成する金属の種類、電極形成に用いる導電性粉末の形状等は、製造目的とする電子部品により適宜選択される。 In the electrode formation process, the position and method of forming the electrodes, the thickness of the electrodes, the number of electrodes, the type of metal that constitutes the electrodes, the shape of the conductive powder used to form the electrodes, etc. are appropriately selected depending on the electronic components to be manufactured.
 電極形成工程では、電子部品用被電極形成体に電極を形成させた後に、電子部品の種類により、適宜の工程を有することができる。例えば、積層型電子部品の場合、電極形成工程では、電子部品用積層素体の所定の位置に電極を形成させた後、当該電極の表面に、めっき層を形成する。 In the electrode formation process, after electrodes are formed on the electronic component electrode formation body, appropriate processes can be included depending on the type of electronic component. For example, in the case of a multilayer electronic component, in the electrode formation process, electrodes are formed in predetermined positions on the electronic component laminate base body, and then a plating layer is formed on the surface of the electrode.
 本発明の導電性ペーストを用いた特に好適な電子部品の製造方法は、複数のセラミック層と複数の内部電極層とからなる積層型電子部品用積層素体を準備する積層素体準備工程と、該積層素体の内部電極の露出する端部に導電性ペーストを塗布し、次いで、当該塗布した導電性ペーストを焼成して端子電極を形成する端子電極形成工程と、を有する電子部品の製造方法において、本発明の導電性ペーストを用いて、前記積層素体に端子電極を形成する、電子部品の製造方法である。本発明の導電性ペーストを上述の電子部品の製造方法に用いることにより、端子電極形成工程において低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成することができる。すなわち、上述の電子部品の製造方法によれば、端子電極形成工程において低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を備える電子部品を、高い生産性を維持しつつ製造できる。 A particularly suitable method for manufacturing electronic components using the conductive paste of the present invention includes a laminate body preparation step for preparing a laminate body for a laminate-type electronic component consisting of a plurality of ceramic layers and a plurality of internal electrode layers, and a terminal electrode formation step for applying a conductive paste to the exposed ends of the internal electrodes of the laminate body and then firing the applied conductive paste to form terminal electrodes, in which the conductive paste of the present invention is used to form terminal electrodes on the laminate body. By using the conductive paste of the present invention in the above-mentioned method for manufacturing electronic components, even when firing is performed at a low temperature in the terminal electrode formation step, thin, dense, and highly continuous terminal electrodes can be formed while maintaining high productivity. In other words, according to the above-mentioned method for manufacturing electronic components, even when firing is performed at a low temperature in the terminal electrode formation step, electronic components having thin, dense, and highly continuous terminal electrodes can be manufactured while maintaining high productivity.
 積層型電子部品用積層素体は、複数のセラミック層と複数の内部電極層とからなる。積層型電子部品用積層素体においては、セラミック層と内部電極層とが交互に積層されている。積層型電子部品用積層体としては、積層セラミックコンデンサ用の積層素体、積層セラミックインダクタ用の積層素体、圧電アクチュエータ用の積層素体が挙げられる。  Laminated bodies for multilayer electronic components consist of multiple ceramic layers and multiple internal electrode layers. In laminated bodies for multilayer electronic components, the ceramic layers and internal electrode layers are stacked alternately. Examples of laminated bodies for multilayer electronic components include laminated bodies for multilayer ceramic capacitors, laminated bodies for multilayer ceramic inductors, and laminated bodies for piezoelectric actuators.
 積層型電子部品用積層素体を構成するセラミック層の形成物質としては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ジルコン酸バリウム、ジルコン酸ストロンチウム、ジルコン酸カルシウム、ジルコン酸ストロンチウムカルシウム等が挙げられる。 Materials for forming the ceramic layers that make up the laminated body for laminate-type electronic components include barium titanate, strontium titanate, calcium titanate, barium zirconate, strontium zirconate, calcium zirconate, and strontium calcium zirconate.
 積層型電子部品用積層素体を構成する内部電極層の形成物質としては、ニッケル、パラジウム、銀、銅及び金等のうちのいずれか、或いは、これらのうち1種以上を含む合金(例えば銀とパラジウムとの合金等)が挙げられる。 The materials forming the internal electrode layers that make up the laminated element for laminate-type electronic components include nickel, palladium, silver, copper, and gold, or alloys containing one or more of these (e.g., an alloy of silver and palladium).
 端子電極形成工程では、積層型電子部品用積層素体の内部電極の露出する端部に、本発明の導電性ペーストを塗布し、当該塗布した導電性ペーストを焼成することにより、端子電極を形成する。導電性ペーストの塗布方法としては特に制限されず、例えば、ディップ印刷法、スクリーン印刷法、ロール塗布法が挙げられる。これらのうち、ディップ印刷法が好ましい。なお、導電性ペーストを積層素体に塗布後、乾燥した後に焼成してもよい。 In the terminal electrode formation process, the conductive paste of the present invention is applied to the exposed ends of the internal electrodes of the laminate body for multilayer electronic components, and the applied conductive paste is fired to form terminal electrodes. There are no particular limitations on the method for applying the conductive paste, and examples of the method include dip printing, screen printing, and roll coating. Of these, dip printing is preferred. After the conductive paste is applied to the laminate body, it may be dried and then fired.
 なお、本明細書においては、積層素体のうち内部電極が露出する両端をいずれも「端部」とし、端部のうち特に内部電極が露出している面を「端面部」、端部のうち端面部の外縁の部分を「コーナー部」とする。通常、端子電極形成工程において、端部に導電性ペーストを塗布する場合、端面部とコーナー部とを覆うように導電性ペーストが塗布される。 In this specification, both ends of the laminated body where the internal electrodes are exposed are referred to as "ends", the faces of the ends where the internal electrodes are particularly exposed are referred to as "end faces", and the outer edge parts of the ends are referred to as "corner parts". Normally, when applying conductive paste to the ends in the terminal electrode formation process, the conductive paste is applied so as to cover the end faces and corner parts.
 本発明の導電性ペーストが用いられる積層素体のサイズは特に制限されるものではなく、例えば、2012サイズの積層セラミックコンデンサ用の積層素体、1608サイズの積層セラミックコンデンサ用の積層素体、1005サイズの積層セラミックコンデンサ用の積層素体、0603サイズの積層セラミックコンデンサ用の積層素体、0402サイズの積層セラミックコンデンサ用の積層素体、0201サイズの積層セラミックコンデンサ用の積層素体に用いることができる。端子電極の薄層化は特に小型の積層セラミックコンデンサにおいて要求されており、1005サイズの積層セラミックコンデンサ用の積層素体、0603サイズの積層セラミックコンデンサ用の積層素体、0402サイズの積層セラミックコンデンサ用の積層素体、0201サイズの積層セラミックコンデンサ用の積層素体において本発明の導電性ペーストを好適に用いることができる。 The size of the laminated element in which the conductive paste of the present invention is used is not particularly limited, and it can be used, for example, in laminated elements for 2012 size laminated ceramic capacitors, laminated elements for 1608 size laminated ceramic capacitors, laminated elements for 1005 size laminated ceramic capacitors, laminated elements for 0603 size laminated ceramic capacitors, laminated elements for 0402 size laminated ceramic capacitors, and laminated elements for 0201 size laminated ceramic capacitors. Thinning of the terminal electrodes is particularly required for small laminated ceramic capacitors, and the conductive paste of the present invention can be suitably used in laminated elements for 1005 size laminated ceramic capacitors, laminated elements for 0603 size laminated ceramic capacitors, laminated elements for 0402 size laminated ceramic capacitors, and laminated elements for 0201 size laminated ceramic capacitors.
 本発明により得られる積層型電子部品の端子電極の電極面積比率は特に制限されないが、90%以上であることが好ましく、99%以上であることが特に好ましい。これにより、端子電極にめっきする場合に、めっき液の積層素体への侵入を防ぎやすくなる。なお、前述の電極面積比率は、例えば次の方法で算出することができる。すなわち、電子部品複数個(例えば20個)をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断することで各電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を観察し(例えば、電子部品ごとに10視野ずつ)、観察視野中に占める電極面積の比率を電極面積比率として算出することができる。 The electrode area ratio of the terminal electrodes of the laminated electronic components obtained by the present invention is not particularly limited, but is preferably 90% or more, and more preferably 99% or more. This makes it easier to prevent the plating solution from penetrating into the laminated body when plating the terminal electrodes. The electrode area ratio can be calculated, for example, by the following method. That is, a plurality of electronic components (e.g., 20 components) are embedded in resin, and each electronic component is cut through the center of both end faces of each electronic component and in the lamination direction (perpendicular to the dielectric layer and internal electrode layer) to expose the cross section of each electronic component, and the cross section is observed with a scanning electron microscope (e.g., 10 fields of view for each electronic component), and the ratio of the electrode area in the observed field of view can be calculated as the electrode area ratio.
 後述の方法で測定される端子電極の最大厚みとしては、40μm以下が好ましく、30μm以下がより好ましく、20μm以下がより好ましく、15μm以下が更に好ましく、10μm以下が特に好ましい。また、後述の方法で算出される端子電極の最大厚みの平均値としては、40μm以下が好ましく、30μm以下がより好ましく、20μm以下がより好ましく、15μm以下が更に好ましく、10μm以下が特に好ましい。これにより、積層型電子部品のサイズを小さくできる。また、所定のサイズの積層型電子部品において、端子電極を薄層化するほど、積層素体のサイズを大きくできる、すなわち、電極面積や積層数を増やすことができるため、積層型電子部品の性能を向上させられる。なお、前述の最大厚みの測定方法は特に制限されるものではないが、例えば、電子部品を樹脂包埋し、当該電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、電子部品を切断することで電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を観察し、当該断面において、端子電極の外周部から積層素体の端面部まで垂線を引いたとき、当該垂線の長さが最大になる箇所を最大厚みとして測定することができる。また、前述の最大厚みの平均値の算出方法は特に制限されるものではないが、例えば、電子部品複数個(例えば20個)を用いて上述の方法でそれぞれ端子電極の最大厚みを測定し、当該最大厚みを平均することで、端子電極の最大厚みの平均値を算出することができる。 The maximum thickness of the terminal electrodes measured by the method described below is preferably 40 μm or less, more preferably 30 μm or less, more preferably 20 μm or less, even more preferably 15 μm or less, and particularly preferably 10 μm or less. The average maximum thickness of the terminal electrodes calculated by the method described below is preferably 40 μm or less, more preferably 30 μm or less, more preferably 20 μm or less, even more preferably 15 μm or less, and particularly preferably 10 μm or less. This allows the size of the multilayer electronic component to be reduced. Furthermore, in a multilayer electronic component of a given size, the thinner the terminal electrodes are, the larger the size of the multilayer base body can be, i.e., the electrode area and number of layers can be increased, thereby improving the performance of the multilayer electronic component. The method for measuring the maximum thickness is not particularly limited, but for example, the electronic component is embedded in resin, and the electronic component is cut through the center of both end face portions of the electronic component in the lamination direction (perpendicular to the dielectric layers and internal electrode layers) to expose the cross section of the electronic component, and the cross section is observed with a scanning electron microscope. When a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body on the cross section, the point where the length of the perpendicular line is the maximum can be measured as the maximum thickness. The method for calculating the average maximum thickness is not particularly limited, but for example, the maximum thickness of each terminal electrode of a plurality of electronic components (e.g., 20 electronic components) is measured by the above-mentioned method, and the average of the maximum thicknesses can be calculated.
 後述の方法で測定される端子電極の最小厚みとしては、1.0μm以上が好ましく、2.5μm以上がより好ましく、5.0μm以上が特に好ましい。また、後述の方法で算出される端子電極の最小厚みの平均値としては、1.0μm以上が好ましく、2.5μm以上がより好ましく、5.0μm以上が特に好ましい。これにより、端子電極にめっきする場合に、めっき液の積層素体への侵入を防ぎやすくなる。なお、前述の最小厚みの測定方法は特に制限されるものではないが、例えば、電子部品を樹脂包埋し、当該電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、電子部品を切断することで電子部品の断面を露出させ、走査型電子顕微鏡で当該断面を観察し、当該断面において、端子電極の外周部から積層素体の端面部まで垂線を引いたときに当該垂線の長さが最小になる箇所の厚みと、積層素体のコーナー部と端子電極の外周部との距離が最短になる箇所の厚みを測定し、これらのうち最も薄い部分の厚みを最小厚みとして測定することができる。また、前述の最小厚みの平均値の算出方法は特に制限されるものではないが、例えば、電子部品複数個(例えば20個)を用いて上述の方法でそれぞれ端子電極の最小厚みを測定し、当該最小厚みを平均することで、端子電極の最小厚みの平均値を算出することができる。 The minimum thickness of the terminal electrodes measured by the method described below is preferably 1.0 μm or more, more preferably 2.5 μm or more, and particularly preferably 5.0 μm or more. The average value of the minimum thickness of the terminal electrodes calculated by the method described below is preferably 1.0 μm or more, more preferably 2.5 μm or more, and particularly preferably 5.0 μm or more. This makes it easier to prevent the plating solution from penetrating into the laminated body when plating the terminal electrodes. The method for measuring the minimum thickness is not particularly limited, but for example, the electronic component is embedded in resin, and the electronic component is cut so as to pass through the center of both end face portions of the electronic component and in the lamination direction (perpendicular to the dielectric layer and the internal electrode layer) to expose the cross section of the electronic component, and the cross section is observed with a scanning electron microscope. In the cross section, the thickness of the part where the length of the perpendicular line is the shortest when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face portion of the laminated body, and the thickness of the part where the distance between the corner portion of the laminated body and the outer periphery of the terminal electrode is the shortest are measured, and the thickness of the thinnest part among these is measured as the minimum thickness. In addition, the method for calculating the average value of the minimum thickness is not particularly limited, but for example, the minimum thickness of each of the terminal electrodes of a plurality of electronic components (e.g., 20 electronic components) is measured by the above-mentioned method, and the average of the minimum thicknesses is calculated to calculate the average minimum thickness of the terminal electrodes.
 以下、本発明を具体的な実験例に基づき説明するが、本発明は、これらに限定されるものではない。 The present invention will be explained below based on specific experimental examples, but the present invention is not limited to these.
<導電性粉末の準備>
 まず、粒子径の異なる複数種類の球状銅粉末及び球状銀粉末を準備し、分級により粒度分布及び粒子径を調整し、次いで、直径0.1mmのジルコニアビーズと、球状銅粉末と、セカンダリーブチルアルコールと、所定の表面処理剤(脂肪族アミン)と、を混合し、ビーズミルを用い、適宜、流量やパス回数を調整して粉砕処理を実施し、更にその後必要に応じて分級処理を行うことで粒度分布や粒子径を調製し、表1に記載の銅粉末1~22及び銀粉末1を得た。なお、銅粉末1、銅粉末3及び銀粉末1については、前述の粉砕処理を実施しなかった。銅粉末3及び銀粉末1については、所定の表面処理剤(脂肪族アミン)を使った表面処理を実施して得た。得られた銅粉末1~22及び銀粉末1について、走査型電子顕微鏡観察により銅粒子(銀粉末1の場合は銀粒子、混合粉末Cの場合は銅粒子及び銀粒子)500個の長径及び短径を測定し、平均長径及び平均短径を算出した。また、後述の実験例1~16、20~25にて作製した導電性ペーストを、アプリケータによりPETフィルム上にキャスティングして膜厚250μmの塗布膜を形成し、当該塗布膜を、大気雰囲気、150℃、10分の条件で乾燥させて乾燥膜を形成し、イオンミリング装置(日立ハイテク社製、型番:IM4000)で当該乾燥膜の断面を露出させ、当該乾燥膜断面を走査型電子顕微鏡(日立ハイテク社製、型番:SU-8020)で観察し、当該観察により銅粒子500個を無作為に選んで短径を測定し、当該短径を厚みとして平均厚みを算出した。以上により算出した平均長径、平均短径、平均厚みから、平均厚みに対する平均長径の比及び平均短径に対する平均長径の比を算出した。また、レーザー回折式粒度分布測定装置(HORIBA社製、LA-960)により、体積基準の累積10%粒子径D10、累積50%粒子径D50、累積90%粒子径D90を測定した。当該測定値を用いて、(D90-D10)/D50を算出した。なお、銅粉末3と銅粉末5を、質量比で、20:80の比で混合した粉末(後述の実験例18で使用)を混合粉末A、45:55の比で混合した粉末(後述の実験例19で使用)を混合粉末B、銅粉末5と銀粉末1を、質量比で、90:10の比で混合した粉末(後述の実験例17で使用)を混合粉末Cとして、混合粉末としての(すなわち導電性粉末全体としての)、「平均厚みに対する平均長径の比」、「平均短径に対する平均長径の比」、「D50」及び「(D90-D10)/D50」について上述の方法で測定及び算出した。混合粉末A~Cの平均厚みは、実験例17~19にて作製した導電性ペーストを用いたこと以外は、上述した方法と同様の方法で測定及び算出した。銀粉末1の平均厚みは、銅粉末1の代わりに銀粉末1を用いたこと以外は、実験例1と同様の方法で導電性ペーストを作製し、当該導電性ペーストを用いたこと以外は上述した方法と同様の方法で測定及び算出した。これらの結果を表1に示す。
<Preparation of conductive powder>
First, a plurality of types of spherical copper powder and spherical silver powder having different particle sizes were prepared, and the particle size distribution and particle size were adjusted by classification. Next, zirconia beads having a diameter of 0.1 mm, spherical copper powder, secondary butyl alcohol, and a predetermined surface treatment agent (aliphatic amine) were mixed, and a bead mill was used to perform a pulverization process by appropriately adjusting the flow rate and the number of passes, and then a classification process was performed as necessary to adjust the particle size distribution and particle size, thereby obtaining copper powders 1 to 22 and silver powder 1 shown in Table 1. Note that the above-mentioned pulverization process was not performed for copper powder 1, copper powder 3, and silver powder 1. Copper powder 3 and silver powder 1 were obtained by performing a surface treatment using a predetermined surface treatment agent (aliphatic amine). For the obtained copper powders 1 to 22 and silver powder 1, the major axis and minor axis of 500 copper particles (silver particles in the case of silver powder 1, copper particles and silver particles in the case of mixed powder C) were measured by scanning electron microscope observation, and the average major axis and average minor axis were calculated. In addition, the conductive pastes prepared in Experimental Examples 1 to 16 and 20 to 25 described later were cast on a PET film with an applicator to form a coating film with a thickness of 250 μm, and the coating film was dried under conditions of air atmosphere, 150 ° C., and 10 minutes to form a dry film, and the cross section of the dry film was exposed with an ion milling device (Hitachi High-Tech Corporation, model number: IM4000), and the cross section of the dry film was observed with a scanning electron microscope (Hitachi High-Tech Corporation, model number: SU-8020), and 500 copper particles were randomly selected from the observation to measure the minor axis, and the minor axis was used as the thickness to calculate the average thickness. From the average major axis, average minor axis, and average thickness calculated as above, the ratio of the average major axis to the average thickness and the ratio of the average major axis to the average minor axis were calculated. In addition, the volume-based cumulative 10% particle diameter D10, cumulative 50% particle diameter D50, and cumulative 90% particle diameter D90 were measured using a laser diffraction particle size distribution analyzer (LA-960, manufactured by HORIBA, Inc.). Using these measured values, (D90-D10)/D50 was calculated. In addition, copper powder 3 and copper powder 5 were mixed in a mass ratio of 20:80 (used in Experimental Example 18 described later), mixed powder A was mixed in a mass ratio of 45:55 (used in Experimental Example 19 described later), mixed powder B was mixed in a mass ratio of 90:10 (used in Experimental Example 17 described later), and mixed powder C was mixed in a mass ratio of 90:10 (used in Experimental Example 17 described later). The mixed powders (i.e., the conductive powder as a whole) were measured and calculated by the above-mentioned method for the "ratio of average major axis to average thickness", "ratio of average major axis to average minor axis", "D50" and "(D90-D10)/D50". The average thickness of mixed powders A to C was measured and calculated by the same method as described above, except that the conductive pastes prepared in Experimental Examples 17 to 19 were used. The average thickness of silver powder 1 was measured and calculated by the same method as described above, except that a conductive paste was prepared in the same manner as in Experimental Example 1 except that silver powder 1 was used instead of copper powder 1, and the conductive paste was used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<ガラスフリットの準備>
 BaO-ZnO系ガラス(BaO:30mol%、ZnO:27mol%、B:25mol%、SiO:7mol%、CaO:7mol%、Al:4mol%)を作製し、粉砕や分級により粒径や粒度分布を調整することで表2に記載のガラスフリット1~8を準備した。準備したガラスフリットについて、レーザー回折式粒度分布測定装置(HORIBA社製、LA-960)により、体積基準の累積10%粒子径D10、累積50%粒子径D50、累積90%粒子径D90を測定した。当該測定値を用いて、(D90-D10)/D50を算出した。また、前述のガラスフリットを用いてガラス転移点及び軟化点を測定した。また、前述のガラスフリットを内径5mmの円筒形の容器に入れて軸方向に3MPaで10秒間圧力をかけることで直径5mmであり高さが1mmである円柱状の圧粉体を作成し、表面粗さRaが100nmの銅板上に、前記圧粉体の平坦面が前記銅板に接するように前記圧粉体を載置し、窒素雰囲気において昇温速度10℃/minで700℃まで昇温して前記圧粉体を加熱することで当該圧粉体を構成するガラスを溶融させたときの、前記銅板に対する前記ガラスの接触角を測定した。なお、ガラスフリット4については、680℃及び720℃まで昇温したときの前記接触角も測定したところ、700℃における接触角と同様に接触角は50°であった。
<Preparation of glass frit>
BaO-ZnO glass (BaO: 30 mol%, ZnO: 27 mol%, B 2 O 3 : 25 mol%, SiO 2 : 7 mol%, CaO: 7 mol%, Al 2 O 3 : 4 mol%) was produced, and the particle size and particle size distribution were adjusted by pulverization and classification to prepare glass frits 1 to 8 shown in Table 2. The volume-based cumulative 10% particle diameter D10 G , cumulative 50% particle diameter D50 G , and cumulative 90% particle diameter D90 G of the prepared glass frits were measured using a laser diffraction particle size distribution measuring device (LA-960, manufactured by HORIBA). Using these measured values, (D90 G -D10 G )/D50 G was calculated. In addition, the glass transition point and softening point were measured using the above-mentioned glass frits. The glass frit was placed in a cylindrical container with an inner diameter of 5 mm and pressure of 3 MPa was applied in the axial direction for 10 seconds to prepare a cylindrical green compact with a diameter of 5 mm and a height of 1 mm, which was placed on a copper plate with a surface roughness Ra of 100 nm so that the flat surface of the green compact was in contact with the copper plate, and the green compact was heated in a nitrogen atmosphere at a temperature increase rate of 10°C/min to 700°C to melt the glass constituting the green compact, and the contact angle of the glass with the copper plate was measured. Note that the contact angle of glass frit 4 was also measured when the temperature was increased to 680°C and 720°C, and the contact angle was 50°, similar to the contact angle at 700°C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<導電性ペーストの作製>
 表3~6に示す配合割合で、導電性粉末、バインダ樹脂、ガラスフリットを配合し、導電性ペーストを調製した。なお、表に示す表面処理剤の量は、前述の導電性粉末を準備する際に表面処理することで粉末表面に付着した量を示している。
・銅粉末1~22、銀粉末1
 平均厚みZに対する平均長径Xの比、平均短径Yに対する平均長径Xの比、D50、(D90-D10)/D50は表1に示す通りである。
・アクリル樹脂1
 三菱ケミカル社製、型番:ダイヤナール MB-2677、重量平均分子量:70万
・アクリル樹脂2
 三菱ケミカル社製、型番:ダイヤナール BR-105、重量平均分子量:5万
・ガラスフリット1~8
 D50、(D90-D10)/D50、銅板に対する接触角、軟化点、ガラス転移点は表2に示す通りである。
<Preparation of conductive paste>
Conductive pastes were prepared by mixing conductive powder, binder resin, and glass frit in the mixing ratios shown in Tables 3 to 6. The amount of surface treatment agent shown in the tables indicates the amount attached to the powder surface by surface treatment when preparing the conductive powder described above.
Copper powder 1 to 22, silver powder 1
The ratio of the average major axis X to the average thickness Z, the ratio of the average major axis X to the average minor axis Y, D50, and (D90-D10)/D50 are as shown in Table 1.
Acrylic resin 1
Mitsubishi Chemical Corporation, Model: Dianale MB-2677, Weight average molecular weight: 700,000, Acrylic resin 2
Mitsubishi Chemical Corporation, Model: Dianale BR-105, Weight average molecular weight: 50,000, Glass frit 1-8
Table 2 shows D50 G , (D90 G −D10 G )/D50 G , the contact angle with respect to a copper plate, the softening point, and the glass transition point.
(実験例1~35、41、42)
 表1に示す導電性粉末と、表2に示すガラスフリットと、ターピネオールで溶解したアクリル樹脂1と、を表3~6に示す配合割合で混合し、次いで、三本ロールミル(井上製作所製)を用いて混錬し、次いで、ターピネオールで希釈し、25℃、せん断速度4s-1における粘度が表3~6に示す値となるよう調整し、導電性ペーストを作製した。作製した導電性ペーストを用いて後述の評価を行った。結果を表3~6に示す。なお、実験例に「*」を付したものは、本発明の範囲外の実験例である。
(Experimental Examples 1 to 35, 41, and 42)
The conductive powder shown in Table 1, the glass frit shown in Table 2, and the acrylic resin 1 dissolved in terpineol were mixed in the blending ratios shown in Tables 3 to 6, then kneaded using a three-roll mill (manufactured by Inoue Seisakusho), then diluted with terpineol, and the viscosity at 25°C and a shear rate of 4 s -1 was adjusted to the values shown in Tables 3 to 6 to prepare a conductive paste. The prepared conductive paste was used to carry out the evaluations described below. The results are shown in Tables 3 to 6. The experimental examples marked with "*" are experimental examples outside the scope of the present invention.
(実験例36~40)
 表1に示す導電性粉末と、表2に示すガラスフリットと、ターピネオールで溶解したアクリル樹脂1又はアクリル樹脂2と、を表3~6に示す配合割合で混合し、次いで、三本ロールミル(井上製作所製)を用いて混錬し、次いで、ターピネオール及び必要に応じてジプロピレングリコール-n-プロピルエーテルで希釈し、25℃、せん断速度4s-1における粘度及び粘度比が表6に示す値となるよう調整し、導電性ペーストを作製した。作製した導電性ペーストを用いて後述の評価を行った。結果を表6に示す。
(Experimental Examples 36 to 40)
The conductive powder shown in Table 1, the glass frit shown in Table 2, and the acrylic resin 1 or acrylic resin 2 dissolved in terpineol were mixed in the blending ratios shown in Tables 3 to 6, then kneaded using a three-roll mill (manufactured by Inoue Seisakusho), and then diluted with terpineol and, if necessary, dipropylene glycol-n-propyl ether, and the viscosity and viscosity ratio at 25°C and a shear rate of 4 s -1 were adjusted to the values shown in Table 6 to prepare a conductive paste. The prepared conductive paste was used to perform the evaluations described below. The results are shown in Table 6.
(実験例43)
 本実験例においては、実験例5にて作製した導電性ペーストを用いた。端子電極の評価の際に、積層素体として、長さ0.4mm、幅0.2mm、高さ0.2mmの、略直方体の、チタン酸バリウムを含む誘電体層とニッケルを含む内部電極層が複数層積層された積層素体を用いたこと以外は、実験例5と同様の方法で、端子電極の評価を行った。
(Experimental Example 43)
In this experimental example, the conductive paste prepared in experimental example 5 was used. The terminal electrodes were evaluated in the same manner as in experimental example 5, except that a laminated element having a length of 0.4 mm, a width of 0.2 mm, and a height of 0.2 mm and a substantially rectangular parallelepiped shape, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel were laminated in multiple layers, was used as the laminated element.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<導電性ペーストの物性評価>
(粘度)
 導電性ペーストの粘度を、回転粘度計(ブルックフィールド社製、型番:HADV-II+Pro)を用いて、25℃において、せん断速度4s-1の条件で測定した。
<Evaluation of the physical properties of conductive paste>
(viscosity)
The viscosity of the conductive paste was measured using a rotational viscometer (manufactured by Brookfield, model number: HADV-II+Pro) at 25° C. and a shear rate of 4 s −1 .
(粘度比)
 導電性ペーストの粘度を、回転粘度計(ブルックフィールド社製、型番:HADV-II+Pro)を用いて、25℃において、せん断速度0.4s-1及びせん断速度40s-1の条件で測定した。せん断速度40s-1の粘度に対するせん断速度0.4s-1の粘度の比を粘度比として算出した。
(Viscosity Ratio)
The viscosity of the conductive paste was measured at a shear rate of 0.4 s -1 and a shear rate of 40 s -1 at 25° C. using a rotational viscometer (Brookfield, model number: HADV-II+Pro). The ratio of the viscosity at a shear rate of 0.4 s- 1 to the viscosity at a shear rate of 40 s - 1 was calculated as the viscosity ratio.
(位相差)
 レオメーター(TA Instrument社製、型番:AR2000)を用いて、25℃、角周波数1Hz、ひずみ量1%の条件で、直径40mmのパラレルプレートを使用して測定し、導電性ペーストの位相差の値を得た。
(Phase difference)
Using a rheometer (manufactured by TA Instrument, model number: AR2000), measurements were performed using parallel plates with a diameter of 40 mm under conditions of 25° C., an angular frequency of 1 Hz, and a strain of 1%, to obtain the phase difference value of the conductive paste.
<端子電極の評価試験>
(端子電極を備える電子部品の作製)
 長さ0.6mm、幅0.3mm、高さ0.3mmの、略直方体の、チタン酸バリウムを含む誘電体層とニッケルを含む内部電極層が複数層積層された積層素体を準備した。この積層素体の内部電極が露出した端部に、積層素体の降下速度を300μm/s、引き上げ速度を100μm/sとしてディップ印刷法により導電性ペーストを塗布後、大気雰囲気、150℃の条件で10分間保持した。その後、窒素雰囲気において、50℃/分の昇温速度で昇温し、表3~6に記載の温度に到達後、15分間保持することで端子電極を形成し、端子電極を備える電子部品を作製した。
<Terminal electrode evaluation test>
(Production of Electronic Components with Terminal Electrodes)
A laminated element having a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, and having a dielectric layer containing barium titanate and an internal electrode layer containing nickel, was prepared. A conductive paste was applied to the end of the laminated element where the internal electrode was exposed by dip printing with a lowering speed of 300 μm/s and a lifting speed of 100 μm/s, and then the laminated element was held for 10 minutes in an air atmosphere at 150° C. After that, the temperature was raised at a heating rate of 50° C./min in a nitrogen atmosphere, and after reaching the temperatures shown in Tables 3 to 6, the temperature was held for 15 minutes to form terminal electrodes, and electronic components equipped with terminal electrodes were produced.
(評価試験用試料の作製)
 各実験例において前述の電子部品を20個ずつ準備した。各電子部品をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断することで各電子部品の断面を露出させて評価試験用試料を作製し、以下に示す評価を行った。
(Preparation of evaluation test samples)
Twenty of the above electronic components were prepared for each experimental example. Each electronic component was embedded in resin, and cut through the center of each end face of each electronic component in the lamination direction (perpendicular to the dielectric layers and the internal electrode layers) to expose the cross section of each electronic component to prepare an evaluation test sample, and the following evaluation was performed.
(端子電極の緻密性(電極面積比率))
 前述の評価試験用試料を走査型電子顕微鏡で試料ごとに10視野ずつ合計200視野観察し、視野中に占める電極面積の比率を電極面積比率として算出した。当該電極面積比率の値を以下の評価基準に基づいて評価して評点1~3を付与した。評点が2以上である場合を合格とした。
<評価基準>
 3:電極面積比率が99%以上
 2:電極面積比率が90%以上99%未満
 1:電極面積比率が90%未満
(Terminal electrode density (electrode area ratio))
The above-mentioned evaluation test samples were observed with a scanning electron microscope, with 10 visual fields per sample, for a total of 200 visual fields, and the ratio of the electrode area to the visual fields was calculated as the electrode area ratio. The electrode area ratio value was evaluated based on the following evaluation criteria and given a score of 1 to 3. A score of 2 or more was considered to be a pass.
<Evaluation criteria>
3: Electrode area ratio is 99% or more 2: Electrode area ratio is 90% or more and less than 99% 1: Electrode area ratio is less than 90%
(端子電極の焼成膜厚)
 前述の評価試験用試料を走査型電子顕微鏡で観察し、端子電極(焼成膜)の最も厚い部分における厚み(最大厚み)及び最も薄い部分における厚み(最小厚み)を測定し、最大厚みの平均値と最小厚みの平均値を実験例ごとに算出した。最大厚みの平均値及び最小厚みの平均値の値を以下の評価基準に基づいて評価して、評点1~3を付与した。評点が2以上である場合を合格とした。
<評価基準>
 3:最大厚みの平均値≦20μm、且つ、最小厚みの平均値≧2.5μm
 2:最大厚みの平均値≦40μm、且つ、最小厚みの平均値≧1.0μm
    (但し上記評点3に該当する場合を除く)
 1:最大厚みの平均値>40μm、又は、最小厚みの平均値<1.0μm
(Fired film thickness of terminal electrode)
The above-mentioned evaluation test samples were observed with a scanning electron microscope, and the thicknesses of the thickest part (maximum thickness) and the thinnest part (minimum thickness) of the terminal electrodes (fired films) were measured, and the average values of the maximum thickness and the minimum thickness were calculated for each experimental example. The average values of the maximum thickness and the minimum thickness were evaluated based on the following evaluation criteria and given a score of 1 to 3. A score of 2 or more was considered to be a pass.
<Evaluation criteria>
3: The average maximum thickness is ≦20 μm and the average minimum thickness is ≧2.5 μm
2: The average maximum thickness is ≦40 μm and the average minimum thickness is ≧1.0 μm
(However, this does not include cases falling under the above rating 3.)
1: Average maximum thickness > 40 μm, or average minimum thickness < 1.0 μm
 図1に基づいて焼成膜厚の測定方法について説明する。
図1は、積層素体1に導電性ペーストによって端子電極4を形成して得られた評価試験用試料10を示す模式図である。
 前述の走査型電子顕微鏡で観察した評価試験用試料10の断面において、端子電極4の外周部5から積層素体1の端面部3まで垂線を引いたときの垂線の長さをDとする。当該Dが最大になる箇所の厚みを測定し、この厚みの値を最大厚みDmaxとする。また、当該Dの値が最小になる箇所の厚みDaと、積層素体1のコーナー部2と端子電極4の外周部5との距離が最短になる箇所の厚みDbとを測定し、DaとDbのうち、より小さい方の値を最小厚みDminとする。なお、前述の走査型電子顕微鏡で観察した評価試験用試料10の断面において、端子電極4に孔が空くなどして積層素体1が露出している箇所がある場合には、最小厚みは「0μm」とした。
The method for measuring the fired film thickness will be described with reference to FIG.
FIG. 1 is a schematic diagram showing an evaluation test sample 10 obtained by forming terminal electrodes 4 on a laminated body 1 using a conductive paste.
In the cross section of the evaluation test sample 10 observed with the above-mentioned scanning electron microscope, the length of a perpendicular line drawn from the outer periphery 5 of the terminal electrode 4 to the end face 3 of the laminated element 1 is defined as D. The thickness at the point where the value of D is maximum is measured, and this thickness value is defined as the maximum thickness Dmax . In addition, the thickness Da at the point where the value of D is minimum and the thickness Db at the point where the distance between the corner portion 2 of the laminated element 1 and the outer periphery 5 of the terminal electrode 4 is shortest are measured, and the smaller of Da and Db is defined as the minimum thickness Dmin . Note that, in the cross section of the evaluation test sample 10 observed with the above-mentioned scanning electron microscope, if there is a portion where the laminated element 1 is exposed due to a hole being formed in the terminal electrode 4, the minimum thickness is defined as "0 μm".
 上述の実験例から明らかなように、本発明の導電性ペーストを用いることで、720℃以下といった低温で焼成する場合であっても、薄く緻密で連続性に優れる端子電極を、高い生産性を維持しつつ形成できた。 As is clear from the above experimental examples, by using the conductive paste of the present invention, it is possible to form thin, dense, and highly continuous terminal electrodes while maintaining high productivity, even when firing at low temperatures such as 720°C or less.
  1 積層素体
  2 コーナー部
  3 端面部
  4 端子電極
  5 外周部
 10 評価試験用試料
  D 外周部から端面部まで垂線を引いたときの垂線の長さ
 Da Dの値が最小になる箇所の厚み
 Db コーナー部と外周部との距離が最短になる箇所の厚み
 Dmax Dが最大になる箇所の厚み
 Dmin DaとDbのうち、より小さい方の値
 
 
1 laminated element 2 corner portion 3 end surface portion 4 terminal electrode 5 outer periphery portion 10 evaluation test sample D length of perpendicular line drawn from outer periphery portion to end surface portion Da thickness at point where D value is smallest Db thickness at point where distance between corner portion and outer periphery portion is shortest Dmax thickness at point where D value is largest Dmin smaller value of Da and Db

Claims (9)

  1.  銅を主成分とする導電性粉末と、ガラスフリットと、バインダ樹脂と、有機溶剤と、を含有する導電性ペーストであって、
     前記銅を主成分とする導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上4.5μm以下であり、且つ、平均短径Yに対する平均長径Xの比が1.0以上3.0以下であり、以下で定義される平均厚みZに対する平均長径Xの比が1.1以上9.0以下であり、
     前記ガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積50%粒子径D50が0.3μm以上2.0μm以下である、
    ことを特徴とする導電性ペースト。
    (平均厚み)
     前記銅を主成分とする導電性粉末を含む導電性ペーストをアプリケータによりPETフィルム上にキャスティングして膜厚250μmの塗布膜を形成し、当該塗布膜を、大気雰囲気、150℃、10分の条件で乾燥させて乾燥膜を形成し、イオンミリングにより当該乾燥膜の断面を露出させ、当該乾燥膜断面を走査型電子顕微鏡で観察し、500個の導電性粒子を無作為に選んで短径を厚みとして測定して当該厚みの平均値を求め、この平均値の値を「平均厚み」と定義する。
    A conductive paste containing a conductive powder mainly composed of copper, a glass frit, a binder resin, and an organic solvent,
    The copper-based conductive powder has a volume-based cumulative 50% particle diameter D50C of 0.3 μm or more and 4.5 μm or less in a laser diffraction particle size distribution measurement, a ratio of an average major diameter X to an average minor diameter Y of 1.0 or more and 3.0 or less, and a ratio of an average major diameter X to an average thickness Z defined below of 1.1 or more and 9.0 or less,
    The glass frit has a volume-based cumulative 50% particle diameter D50G of 0.3 μm or more and 2.0 μm or less in a laser diffraction particle size distribution measurement.
    A conductive paste comprising:
    (Average thickness)
    The conductive paste containing the copper-based conductive powder is cast onto a PET film using an applicator to form a coating film with a thickness of 250 μm, and the coating film is dried under conditions of air, 150° C., and 10 minutes to form a dry film. A cross section of the dry film is exposed by ion milling, and the cross section of the dry film is observed with a scanning electron microscope. 500 conductive particles are randomly selected and the minor axis is measured as the thickness to determine the average value of the thicknesses, and this average value is defined as the "average thickness."
  2.  前記銅を主成分とする導電性粉末が、表面の少なくとも一部に脂肪族アミンを有することを特徴とする請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, characterized in that the copper-based conductive powder has an aliphatic amine on at least a portion of its surface.
  3.  前記銅を主成分とする導電性粉末100質量部に対して前記脂肪族アミンが0.01質量部以上1.0質量部以下であることを特徴とする請求項2に記載の導電性ペースト。 The conductive paste according to claim 2, characterized in that the aliphatic amine is present in an amount of 0.01 part by mass or more and 1.0 part by mass or less per 100 parts by mass of the copper-based conductive powder.
  4.  前記ガラスフリットの、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50が7.5以下であることを特徴とする請求項1~3のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, characterized in that, when the cumulative 10% particle diameter of the glass frit on a volume basis in a laser diffraction particle size distribution measurement is defined as D10 G and the cumulative 90% particle diameter is defined as D90 G , (D90 G -D10 G )/D50 G is 7.5 or less.
  5.  前記銅を主成分とする導電性粉末の、レーザー回折式粒度分布測定における体積基準の累積10%粒子径をD10、累積90%粒子径をD90としたとき、(D90-D10)/D50が7.5以下であることを特徴とする請求項1~4のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, characterized in that, when the volume-based cumulative 10% particle diameter of the copper-based conductive powder is D10C and the cumulative 90% particle diameter is D90C in a laser diffraction particle size distribution measurement, ( D90C - D10C ) / D50C is 7.5 or less.
  6.  25℃で測定したときの、せん断速度40s-1における粘度に対するせん断速度0.4s-1における粘度の比が2.0以上20.0以下であること、及び、前記導電性ペーストに角周波数1Hzでひずみ量1%を加えたときの、該ひずみと該ひずみで生じた応力との位相差δの値が45°以上80°以下であることのうち少なくともいずれかを満たすことを特徴とする請求項1~5のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 5, characterized in that the ratio of the viscosity at a shear rate of 0.4 s - 1 to the viscosity at a shear rate of 40 s-1 when measured at 25 ° C. is 2.0 or more and 20.0 or less, and when a strain amount of 1% is applied to the conductive paste at an angular frequency of 1 Hz, the phase difference δ between the strain and the stress generated by the strain is 45 ° or more and 80 ° or less.
  7.  下記各評価試験により算出される、端子電極の電極面積比率が90%以上であること、端子電極の最大厚みの平均値が40μm以下であること、及び、端子電極の最小厚みの平均値が1.0μm以上であること、を全て満たすことを特徴とする請求項1~6のいずれか1項に記載の導電性ペースト。
    <端子電極の電極面積比率評価試験>
     下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で試料ごとに10視野ずつ観察し、観察視野中に占める電極面積の比率を前記端子電極の電極面積比率として算出する。
    <端子電極の最大厚み評価試験>
     下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で観察し、当該評価試験用試料において、端子電極の外周部から積層素体の端面部まで垂線を引いたとき、当該垂線の長さが最大になる箇所を最大厚みとして測定し、最大厚みを測定した電子部品20個の前記最大厚みを平均することで前記端子電極の最大厚みの平均値を算出する。
    <端子電極の最小厚み評価試験>
     下記評価試験用試料の準備方法により準備した評価試験用試料を走査型電子顕微鏡で観察し、当該評価試験用試料において、端子電極の外周部から積層素体の端面部まで垂線を引いたときに当該垂線の長さが最小になる箇所の厚みと、積層素体のコーナー部と端子電極の外周部との距離が最短になる箇所の厚みを測定し、これらのうち最も薄い部分の厚みを最小厚みとして測定し、最小厚みを測定した電子部品20個の前記最小厚みを平均することで前記端子電極の最小厚みの平均値を算出する。
    <評価試験用試料の準備方法>
     長さ0.6mm、幅0.3mm、高さ0.3mmの、直方体形状の、チタン酸バリウムを含む誘電体層とニッケルを含む内部電極層が複数層積層された積層素体を準備し、当該積層素体の内部電極が露出した端部に、積層素体の降下速度を300μm/s、引き上げ速度を100μm/sとしてディップ印刷法により前記導電性ペーストを塗布し、次いで、大気雰囲気、150℃の条件で10分間保持し、次いで、窒素雰囲気において、50℃/分の昇温速度で昇温し、720℃に到達後、15分間保持して端子電極を形成することで、端子電極を備える電子部品を20個作製し、前記電子部品20個をそれぞれ樹脂包埋し、各電子部品において、各電子部品の両端面部の中央部分を通るように、且つ、積層方向(誘電体層と内部電極層に対して垂直方向)に、各電子部品を切断して各電子部品の断面を露出させることで評価試験用試料を準備する。
    The conductive paste according to any one of claims 1 to 6, characterized in that the electrode area ratio of the terminal electrodes is 90% or more, the average maximum thickness of the terminal electrodes is 40 μm or less, and the average minimum thickness of the terminal electrodes is 1.0 μm or more, as calculated by each of the following evaluation tests.
    <Terminal electrode area ratio evaluation test>
    The evaluation test samples prepared by the evaluation test sample preparation method described below are observed using a scanning electron microscope in 10 visual fields for each sample, and the ratio of the electrode area to the observed visual fields is calculated as the electrode area ratio of the terminal electrode.
    <Maximum terminal electrode thickness evaluation test>
    An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and when a perpendicular line is drawn from the outer periphery of the terminal electrode to the end face of the laminated body in the evaluation test sample, the point where the length of the perpendicular line is longest is measured as the maximum thickness, and the maximum thicknesses of 20 electronic components whose maximum thicknesses were measured are averaged to calculate the average maximum thickness of the terminal electrode.
    <Terminal electrode minimum thickness evaluation test>
    An evaluation test sample prepared by the evaluation test sample preparation method described below is observed with a scanning electron microscope, and the thickness of the evaluation test sample at the point where the length of a perpendicular line drawn from the outer periphery of the terminal electrode to the end face of the laminated body is the shortest, and the thickness of the point where the distance between the corner of the laminated body and the outer periphery of the terminal electrode is the shortest are measured. The thickness of the thinnest of these points is measured as the minimum thickness, and the minimum thicknesses of 20 electronic components whose minimum thicknesses were measured are averaged to calculate the average minimum thickness of the terminal electrodes.
    <How to prepare samples for evaluation tests>
    A laminated element having a rectangular shape and a length of 0.6 mm, a width of 0.3 mm, and a height of 0.3 mm, in which a dielectric layer containing barium titanate and an internal electrode layer containing nickel are laminated in multiple layers, is prepared, and the conductive paste is applied to the end of the laminated element where the internal electrode is exposed by a dip printing method with a lowering speed of the laminated element of 300 μm/s and a lifting speed of 100 μm/s. The laminated element is then held in an air atmosphere at 150° C. for 10 minutes, and then heated in a nitrogen atmosphere at a heating rate of 50° C./min. After reaching 720° C., the temperature is held for 15 minutes to form terminal electrodes, thereby producing 20 electronic components equipped with terminal electrodes, and the 20 electronic components are each embedded in resin. Each electronic component is cut so as to pass through the center of both end face portions of each electronic component and in the stacking direction (perpendicular to the dielectric layers and internal electrode layers) to expose a cross section of each electronic component, thereby preparing an evaluation test sample.
  8.  複数のセラミック層と複数の内部電極層からなる積層型電子部品用積層素体を準備する積層素体準備工程と、
     該積層素体の内部電極の露出する端部に導電性ペーストを塗布し、次いで、当該塗布した導電性ペーストを焼成して端子電極を形成する端子電極形成工程と、
    を有し、
     前記導電性ペーストが、請求項1~7のいずれか1項に記載の導電性ペーストであることを特徴とする電子部品の製造方法。
    a laminated body preparation step of preparing a laminated body for a multilayer electronic component, the laminated body including a plurality of ceramic layers and a plurality of internal electrode layers;
    a terminal electrode forming step of applying a conductive paste to the exposed ends of the internal electrodes of the laminated body and then firing the applied conductive paste to form terminal electrodes;
    having
    A method for producing an electronic component, comprising the conductive paste according to any one of claims 1 to 7.
  9.  前記焼成のピーク温度が720℃以下であることを特徴とする請求項8に記載の電子部品の製造方法。 The method for manufacturing electronic components described in claim 8, characterized in that the peak temperature of the firing is 720°C or less.
PCT/JP2023/037247 2022-10-19 2023-10-13 Conductive paste and method for manufacturing electronic component WO2024085091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-167904 2022-10-19
JP2022167904 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024085091A1 true WO2024085091A1 (en) 2024-04-25

Family

ID=90737724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037247 WO2024085091A1 (en) 2022-10-19 2023-10-13 Conductive paste and method for manufacturing electronic component

Country Status (1)

Country Link
WO (1) WO2024085091A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315835A (en) * 2003-04-10 2004-11-11 Mitsui Mining & Smelting Co Ltd Copper powder with irregular shape, method for manufacturing the copper powder with irregular shape, and electroconductive paste using the copper powder with irregular shape
JP2006004734A (en) * 2004-06-17 2006-01-05 Shoei Chem Ind Co Conductive paste for laminated ceramic electronic part terminal electrode
JP2007081351A (en) * 2005-09-16 2007-03-29 Ngk Spark Plug Co Ltd Via paste for laminated electronic component, laminated electronic component using the same and its manufacturing method
JP2012092432A (en) * 2010-09-30 2012-05-17 Dowa Electronics Materials Co Ltd Copper powder for conductive paste and method for manufacturing the same
JP2018181672A (en) * 2017-04-17 2018-11-15 株式会社村田製作所 Conductive paste for external electrode, and manufacturing method of electronic component using conductive paste for external electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315835A (en) * 2003-04-10 2004-11-11 Mitsui Mining & Smelting Co Ltd Copper powder with irregular shape, method for manufacturing the copper powder with irregular shape, and electroconductive paste using the copper powder with irregular shape
JP2006004734A (en) * 2004-06-17 2006-01-05 Shoei Chem Ind Co Conductive paste for laminated ceramic electronic part terminal electrode
JP2007081351A (en) * 2005-09-16 2007-03-29 Ngk Spark Plug Co Ltd Via paste for laminated electronic component, laminated electronic component using the same and its manufacturing method
JP2012092432A (en) * 2010-09-30 2012-05-17 Dowa Electronics Materials Co Ltd Copper powder for conductive paste and method for manufacturing the same
JP2018181672A (en) * 2017-04-17 2018-11-15 株式会社村田製作所 Conductive paste for external electrode, and manufacturing method of electronic component using conductive paste for external electrode

Similar Documents

Publication Publication Date Title
US10090108B2 (en) Conductive paste, electronic component, and method for manufacturing electronic component
US10529486B2 (en) Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
JP6292014B2 (en) Conductive paste and ceramic electronic components
JP5967193B2 (en) Conductive paste and method for producing multilayer ceramic electronic component
JP4513981B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5904305B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
TWI798292B (en) Conductive paste, electronic parts and laminated ceramic capacitors
US9972441B2 (en) Layered ceramic capacitor
JP4916107B2 (en) Conductive paste and ceramic electronic component using the same
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
KR20160071335A (en) Conductive paste and ceramic electronic component
JP2018055819A (en) Thick film conductive paste and manufacturing method of ceramic multilayer laminate electronic component
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
JP2005268204A (en) Conductive paste and ceramic electronic component
JP2020174210A (en) Multilayer ceramic substrate and electronic apparatus
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
WO2024085091A1 (en) Conductive paste and method for manufacturing electronic component
JP5998785B2 (en) Laminated electronic components
JP2018195405A (en) Method of producing conductive paste for internal electrode and method of manufacturing electronic component
CN117524730A (en) Conductive paste and laminated electronic component
JPWO2017199710A1 (en) Multilayer ceramic substrate and electronic device
JP2012028689A (en) Terminal electrode and ceramic electronic component equipped with it
JPWO2017187848A1 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP2004095686A (en) Ceramic electronic component
JPH05274910A (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879734

Country of ref document: EP

Kind code of ref document: A1