JP5967193B2 - Conductive paste and method for producing multilayer ceramic electronic component - Google Patents
Conductive paste and method for producing multilayer ceramic electronic component Download PDFInfo
- Publication number
- JP5967193B2 JP5967193B2 JP2014511209A JP2014511209A JP5967193B2 JP 5967193 B2 JP5967193 B2 JP 5967193B2 JP 2014511209 A JP2014511209 A JP 2014511209A JP 2014511209 A JP2014511209 A JP 2014511209A JP 5967193 B2 JP5967193 B2 JP 5967193B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive paste
- ceramic
- powder
- conductive
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims description 86
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000843 powder Substances 0.000 claims description 80
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 44
- 239000002245 particle Substances 0.000 claims description 41
- 239000004925 Acrylic resin Substances 0.000 claims description 32
- 229920000178 Acrylic resin Polymers 0.000 claims description 32
- 238000010304 firing Methods 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 238000007639 printing Methods 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 description 37
- 239000003985 ceramic capacitor Substances 0.000 description 25
- 239000004020 conductor Substances 0.000 description 25
- 238000011049 filling Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 10
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000002904 solvent Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- DJOYTAUERRJRAT-UHFFFAOYSA-N 2-(n-methyl-4-nitroanilino)acetonitrile Chemical compound N#CCN(C)C1=CC=C([N+]([O-])=O)C=C1 DJOYTAUERRJRAT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000000518 rheometry Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- VZWGRQBCURJOMT-UHFFFAOYSA-N Dodecyl acetate Chemical compound CCCCCCCCCCCCOC(C)=O VZWGRQBCURJOMT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- YLYBTZIQSIBWLI-UHFFFAOYSA-N octyl acetate Chemical compound CCCCCCCCOC(C)=O YLYBTZIQSIBWLI-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HFZLSTDPRQSZCQ-UHFFFAOYSA-N 1-pyrrolidin-3-ylpyrrolidine Chemical compound C1CCCN1C1CNCC1 HFZLSTDPRQSZCQ-UHFFFAOYSA-N 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005698 Dodecyl acetate Substances 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- ZCZSIDMEHXZRLG-UHFFFAOYSA-N acetic acid heptyl ester Natural products CCCCCCCOC(C)=O ZCZSIDMEHXZRLG-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- JPXGPRBLTIYFQG-UHFFFAOYSA-N heptan-4-yl acetate Chemical compound CCCC(CCC)OC(C)=O JPXGPRBLTIYFQG-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
- H01G4/0085—Fried electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Conductive Materials (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、導電性ペーストとそれを用いた積層セラミック電子部品の製造方法に関し、詳しくは、積層セラミック電子部品の製造に用いるのに適した導電性ペーストおよびそれを用いた積層セラミック電子部品の製造方法に関する。 The present invention relates to a conductive paste and a method for manufacturing a multilayer ceramic electronic component using the same, and more particularly, to a conductive paste suitable for use in manufacturing a multilayer ceramic electronic component, and to manufacture a multilayer ceramic electronic component using the same. Regarding the method.
代表的なセラミック電子部品の一つに、例えば、図1に示すような構造を有する積層セラミックコンデンサがある。
この積層セラミックコンデンサは、図1に示すように、誘電体層であるセラミック層3を介して複数の内部電極2(2a,2b)が積層された積層セラミックコンデンサ素子1の両端面4a,4bに、内部電極2(2a,2b)と導通するように外部電極5(5a,5b)が配設された構造を有している。
One typical ceramic electronic component is, for example, a multilayer ceramic capacitor having a structure as shown in FIG.
As shown in FIG. 1, this multilayer ceramic capacitor is provided on both
ところで、このような積層セラミックコンデンサは、通常、
(a)有機バインダと溶剤を含む有機ビヒクルと、導電性金属粉末とを混練してなる導電性ペーストを、その表面に印刷することにより内部電極パターンを形成されたグリーンシート、および、内部電極パターンが形成されていないグリーンシートを用意する工程、
(b)内部電極パターンが形成されたグリーンシート、および、内部電極パターンが形成されていないグリーンシートを所定の順序で積層して、積層体を形成する工程、
(c)上記(b)で形成した積層体を個々の積層セラミックコンデンサ用の素子(未焼成の積層セラミックコンデンサ素子)に分割する工程、
(d)未焼成の積層セラミックコンデンサ素子を、所定の温度で熱処理して脱バインダを行った後、焼成する工程、
(e)焼成後の積層セラミックコンデンサ素子に外部電極を形成する工程
などの一連の工程を経て製造される。
By the way, such a multilayer ceramic capacitor is usually
(a) a green sheet formed with an internal electrode pattern by printing on the surface thereof a conductive paste obtained by kneading an organic vehicle containing an organic binder and a solvent and a conductive metal powder, and the internal electrode pattern A step of preparing a green sheet in which no is formed,
(b) a step of laminating a green sheet on which an internal electrode pattern is formed and a green sheet on which no internal electrode pattern is formed in a predetermined order to form a laminate;
(c) a step of dividing the multilayer body formed in (b) above into individual multilayer ceramic capacitor elements (unfired multilayer ceramic capacitor elements);
(d) a step of firing an unfired multilayer ceramic capacitor element after heat-treating at a predetermined temperature to remove the binder;
(e) Manufactured through a series of processes such as a process of forming external electrodes on the fired multilayer ceramic capacitor element.
そして、近年は、電子部品の小型化、高性能化のため、積層セラミックコンデンサの分野においても、セラミック層や内部電極の薄層化、多層化が進んでいる。 In recent years, ceramic layers and internal electrodes have been made thinner and multilayered in the field of multilayer ceramic capacitors in order to reduce the size and performance of electronic components.
また、内部電極の形成に用いられる導電性ペーストにおいても、印刷性が良好で、塗膜平滑性が高く、低残渣、高充填性の厚膜電極(導体膜)を形成することが可能な導電性ペースト、すなわち、それを用いて形成される内部電極において、緻密性、高信頼性、薄層高カバレッジ性などを実現することが可能な導電性ペーストが求められている。 In addition, the conductive paste used to form the internal electrode also has good printability, high coating film smoothness, and a conductive material capable of forming a thick film electrode (conductor film) with low residue and high filling properties. There is a need for a conductive paste, that is, a conductive paste that can realize denseness, high reliability, thin layer high coverage, and the like in an internal electrode formed using the paste.
このような状況の下で、内部電極などの導体膜形成用の導電性ペーストとして、平均粒径が0.2μm以下の導電性金属粉末と、導電性金属粉末以下の平均粒径を有するセラミック粉末と、有機ビヒクルとを含む導電性ペーストが提案されている(特許文献1参照)。 Under such circumstances, as a conductive paste for forming a conductor film such as an internal electrode, a conductive metal powder having an average particle size of 0.2 μm or less and a ceramic powder having an average particle size of the conductive metal powder or less And a conductive paste containing an organic vehicle has been proposed (see Patent Document 1).
そして、この特許文献1によれば、表面平滑性が高く、かつカバレッジの高い内部電極(導体膜)を形成するのに適した導電性ペーストを提供することができるとされており、実施形態として、有機ビヒクルを構成するバインダ樹脂としてエチルセルロースを用いた導電性ペーストの例が示されている。 And according to this patent document 1, it is supposed that the conductive paste suitable for forming the internal electrode (conductor film) with high surface smoothness and high coverage can be provided, and as an embodiment An example of a conductive paste using ethyl cellulose as a binder resin constituting an organic vehicle is shown.
また、他の導電性ペーストとして、導電性粉末、バインダ樹脂および添加剤を含有し、バインダ樹脂は、酸価が3〜15mgKOH/g、重量平均分子量Mwが50000〜150000であるカルボキシル基を有するアクリル樹脂であるグラビア印刷用の導電性ペーストが提案されている(特許文献2参照)。 In addition, as another conductive paste, it contains conductive powder, a binder resin and an additive, and the binder resin is an acrylic having a carboxyl group with an acid value of 3 to 15 mgKOH / g and a weight average molecular weight Mw of 50,000 to 150,000. A conductive paste for gravure printing, which is a resin, has been proposed (see Patent Document 2).
そして、この特許文献2によれば、グラビア印刷に最適な粘度を有する導電性ペーストが提供することができるとされており、実施形態として、平均粒径0.3μmのニッケル粉末とアクリル樹脂を用いた導電性ペーストの例が示されている。
And according to this
しかしながら、上記特許文献1に開示されている導電性ペーストのように、バインダ樹脂としてエチルセルロースを使用した場合、熱分解性が低く、この導電性ペーストを用いて内部電極を形成した積層体には、炭素の残渣が残りやすく、構造欠陥が発生する場合があり、信頼性が必ずしも十分ではないという問題点がある。 However, as in the case of the conductive paste disclosed in Patent Document 1, when ethyl cellulose is used as the binder resin, the thermal decomposition is low, and in the laminate in which the internal electrode is formed using this conductive paste, There is a problem that carbon residues are likely to remain, structural defects may occur, and reliability is not always sufficient.
また、特許文献2に開示されている導電性ペーストのように、導電性金属粉末として、平均粒径0.3μmのニッケル粉末を使用した場合、印刷した塗膜の表面粗さが粗く、積層体を形成した際に信頼性が低下するという問題点がある。
Moreover, when the nickel powder with an average particle diameter of 0.3 micrometer is used as an electroconductive metal powder like the electroconductive paste currently disclosed by
そこで、これらの課題を解決するために、平均粒径0.2μm以下の金属粉末と、アクリル樹脂を用いて導電性ペーストを作製することが考えられるが、0.2μm以下の金属粉末では構造粘性が強くなり、通常のバインダ樹脂の量では良好な印刷性が得られないという問題点がある。 Therefore, in order to solve these problems, it is conceivable to prepare a conductive paste using a metal powder having an average particle size of 0.2 μm or less and an acrylic resin. However, there is a problem that good printability cannot be obtained with a normal amount of binder resin.
また、印刷性を確保するため、バインダ樹脂の量を増やすと、塗膜の金属充填率が低下し、塗膜の連続性が低下するという問題点がある。 Further, when the amount of the binder resin is increased in order to ensure printability, there is a problem that the metal filling rate of the coating film is lowered and the continuity of the coating film is lowered.
本発明は、上記課題を解決するものであり、印刷性が良好で、印刷後の導電性ペースト膜中の導電性金属粉末の充填性が高く、焼成後に平滑性、連続性に優れ、残渣が少ない導体膜(内部電極)を形成することが可能な導電性ペースト、およびそれを用いた、構造欠陥が少なく、高カバレッジの内部電極を備えた、信頼性の高い積層セラミック電子部品の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, has good printability, high filling property of conductive metal powder in the conductive paste film after printing, excellent smoothness and continuity after firing, and residue A conductive paste capable of forming a small number of conductor films (internal electrodes), and a method for manufacturing a highly reliable multilayer ceramic electronic component using the conductive paste and high coverage internal electrodes using the conductive paste The purpose is to provide.
上記課題を解決するために、本発明の導電性ペーストの発明は、
導電性金属粉末と、有機溶剤と、アクリル樹脂とを含有する導電性ペーストであって、
前記導電性金属粉末の平均粒径が、50〜200nmの範囲にあり、
前記アクリル樹脂の重量平均分子量が、160000〜200000の範囲にあり、かつ、
前記アクリル樹脂の含有率が、前記金属粉末100体積%に対して20〜200体積%の範囲にあること
を特徴としている。
In order to solve the above problems, the invention of the conductive paste of the present invention is
A conductive paste containing a conductive metal powder, an organic solvent, and an acrylic resin,
The conductive metal powder has an average particle size in the range of 50 to 200 nm;
The acrylic resin has a weight average molecular weight in the range of 160000-200000, and
The acrylic resin content is in the range of 20 to 200% by volume with respect to 100% by volume of the metal powder.
なお、上記導電性金属粉末の平均粒径は、粉末のSEM像から、画像解析により粒子径を算出し、粒子数100個の平均値を求めて平均粒径としたものである。
また、アクリル樹脂の重量平均分子量は、ゲル浸透クロマトグラフィーにより測定した値である。
In addition, the average particle diameter of the said conductive metal powder calculates a particle diameter by image analysis from the SEM image of a powder, calculates | requires the average value of 100 particles, and made it an average particle diameter.
The weight average molecular weight of the acrylic resin is a value measured by gel permeation chromatography.
本発明の導電性ペーストにおいて、導電性金属粉末の平均粒径を50〜200nmの範囲としたのは、導電性金属粉末の平均粒径が50nm未満になると、凝集性が高くなって、良好な分散が困難になるばかりでなく、焼結性が高いため、玉化により連続性が高い焼結膜を得ることができなくなり、また、200nmを超えると、塗膜の表面粗さが粗くなり、セラミック層の厚みが薄い領域では信頼性が低下することによる。 In the conductive paste of the present invention, the average particle size of the conductive metal powder is in the range of 50 to 200 nm because when the average particle size of the conductive metal powder is less than 50 nm, the cohesiveness increases and the conductive particle powder is good. Dispersion is not only difficult, but also high sinterability makes it impossible to obtain a sintered film with high continuity due to spheroidization, and if it exceeds 200 nm, the surface roughness of the coating becomes rough and ceramic This is because the reliability is lowered in the region where the layer is thin.
また、アクリル樹脂の含有割合(添加量)を金属粉末100体積%に対して20〜200体積%の範囲としたのは、アクリル樹脂の添加量が20体積%未満になると、導電性ペーストとして安定なレオロジーが得られず、印刷性が低下し、また、200体積%を超えると塗膜中のアクリル樹脂量が多くなり過ぎて、金属粉末の充填性が低下し、連続な焼結膜を得ることが困難になることによる。 In addition, the acrylic resin content (addition amount) is in the range of 20 to 200% by volume with respect to 100% by volume of the metal powder. When the addition amount of the acrylic resin is less than 20% by volume, the conductive paste is stable. Rheology is not obtained, printability is reduced, and if it exceeds 200% by volume, the amount of acrylic resin in the coating film is excessively increased, the filling property of the metal powder is reduced, and a continuous sintered film is obtained. Because it becomes difficult.
また、アクリル樹脂の重量平均分子量を160000〜200000の範囲としたのは、アクリル樹脂の分子量が160000未満になると、導電性金属粉末として微粒粉末を用いたことによる構造粘性が高くなって、良好な印刷性が得られず、また、上記範囲では良好な印刷性が得られることによる。 Moreover, the reason why the weight average molecular weight of the acrylic resin is in the range of 160000 to 200,000 is that when the molecular weight of the acrylic resin is less than 160000, the structural viscosity is increased due to the use of the fine powder as the conductive metal powder. This is because printability is not obtained, and good printability is obtained in the above range.
また、本発明の導電性ペーストは、さらにセラミック粉末を含有することが好ましい。
セラミック粉末を含ませた場合、導電性ペーストをセラミック基材(セラミックグリーンシートなど)に塗布して電極パターンを形成し、これを焼成した場合に、導電性金属粉末の焼結を抑制し、焼成後の膜厚がより薄く、緻密で、連続性の高い導体膜(電極)を得ることが可能になる。
Moreover, it is preferable that the electrically conductive paste of this invention contains a ceramic powder further.
When ceramic powder is included, conductive paste is applied to a ceramic substrate (ceramic green sheet, etc.) to form an electrode pattern, and when this is fired, sintering of the conductive metal powder is suppressed and fired. It becomes possible to obtain a conductor film (electrode) having a thinner film thickness, a dense film, and high continuity.
また、導電性金属粉末が、銅、ニッケル、銀、パラジウムからなる群より選ばれる少なくとも1種の粉末、または、前記群より選ばれる少なくとも1種を含む合金の粉末であることが好ましい。
導電性金属粉末として、銅、ニッケル、銀、あるいはパラジウムを用いることにより、導電性ペーストをセラミック基材(セラミックグリーンシートなど)に塗布して電極パターンを形成し、これを焼成した場合に、電極材料がセラミック素子に拡散することを防止して、膜厚が薄く、連続性の高い導体膜(電極)を得ることが可能になり、本発明をより実効あらしめることができる。
The conductive metal powder is preferably at least one powder selected from the group consisting of copper, nickel, silver, and palladium, or an alloy powder containing at least one selected from the above group.
By using copper, nickel, silver, or palladium as the conductive metal powder, a conductive paste is applied to a ceramic substrate (ceramic green sheet, etc.) to form an electrode pattern, which is then fired. It is possible to prevent the material from diffusing into the ceramic element, and to obtain a conductive film (electrode) having a thin film thickness and high continuity, which can make the present invention more effective.
また、セラミック粉末の平均粒径が5〜100nmの範囲にあることが好ましい。
セラミック粉末の平均粒径を5〜100nmの範囲とすることにより、例えば、セラミック素子上に塗膜を形成して焼成した場合に、導電性金属粉末の過度の焼結を抑制して、焼成後の膜厚がより薄く、かつ、さらに高い連続性を有する導体膜(電極)を得ることが可能になり、本発明をさらに実効あらしめることができる。
なお、上記のセラミック粉末の平均粒径は、BET法により比表面積から算出した値である。
Moreover, it is preferable that the average particle diameter of a ceramic powder exists in the range of 5-100 nm.
By setting the average particle size of the ceramic powder in the range of 5 to 100 nm, for example, when a coating film is formed on the ceramic element and fired, excessive sintering of the conductive metal powder is suppressed and after firing. Thus, it is possible to obtain a conductor film (electrode) having a thinner film thickness and higher continuity, and the present invention can be further effectively realized.
In addition, the average particle diameter of said ceramic powder is the value computed from the specific surface area by BET method.
また、セラミック粉末として、一般式:ABO3で表わされるペロブスカイト構造を有する複合酸化物の粉末を用いることが好ましい。
セラミック粉末として、一般式:ABO3で表わされるペロブスカイト構造を有する複合酸化物の粉末を用いることにより、例えば、本発明の導電性ペーストを、積層セラミックコンデンサの内部電極の形成に用いた場合に、誘電体層として機能するセラミック層を構成するセラミック材料と同種のセラミック粉末を含む導電性ペーストを用いることが可能になり、内部電極パターンを焼成して、内部電極を形成した場合に、セラミック層の特性、ひいては、積層セラミックコンデンサ素子に対して、望ましくない影響を与えることを抑制することが可能になる。
As the ceramic powder, it is preferable to use a composite oxide powder having a perovskite structure represented by the general formula: ABO 3 .
By using a powder of a composite oxide having a perovskite structure represented by the general formula: ABO 3 as the ceramic powder, for example, when the conductive paste of the present invention is used for forming an internal electrode of a multilayer ceramic capacitor, It becomes possible to use a conductive paste containing the same kind of ceramic powder as the ceramic material constituting the ceramic layer that functions as the dielectric layer. When the internal electrode pattern is fired to form the internal electrode, It is possible to suppress an undesirable influence on the characteristics and, consequently, the multilayer ceramic capacitor element.
また、本発明の積層セラミック電子部品の内部電極形成用ペーストは、複数のセラミック層と、複数の内部電極とを備え、前記内部電極が前記セラミック層を介して積層された構造を有する積層セラミック電子部品を製造するにあたって、前記内部電極を形成するために用いられるものであることを特徴としている。
上述の本発明の導電性ペーストを積層セラミック電子部品の内部電極の形成に用いることにより、平滑性、連続性に優れ、残渣が少ない内部電極を備えた、高特性、高信頼性の積層セラミック電子部品を得ることが可能になる。
The internal electrode forming paste of the multilayer ceramic electronic component of the present invention comprises a plurality of ceramic layers and a plurality of internal electrodes, and the multilayer ceramic electronic has a structure in which the internal electrodes are stacked via the ceramic layers. It is characterized in that it is used for forming the internal electrode when manufacturing a component.
By using the above-described conductive paste of the present invention for the formation of internal electrodes of multilayer ceramic electronic components, it has excellent smoothness, continuity, and has few internal residues, and has high characteristics and high reliability. It becomes possible to obtain parts.
また、本発明の積層セラミック電子部品の製造方法は、
複数のセラミック層と、複数の内部電極とを備え、前記内部電極が前記セラミック層を介して積層された構造を有する積層セラミック電子部品の製造方法であって、
焼成後に前記セラミック層となるセラミックグリーンシートと、上述の本発明の導電性ペーストを印刷することにより形成され、焼成後に前記内部電極となる内部電極パターンとを備え、前記内部電極パターンが前記セラミックグリーンシートを介して積層された構造を有する未焼成積層体を形成する工程と、
前記未焼成積層体を焼成する工程と
を具備することを特徴としている。
In addition, the method for manufacturing the multilayer ceramic electronic component of the present invention includes:
A method for manufacturing a multilayer ceramic electronic component comprising a plurality of ceramic layers and a plurality of internal electrodes, wherein the internal electrodes are stacked via the ceramic layers,
A ceramic green sheet that becomes the ceramic layer after firing and an internal electrode pattern that is formed by printing the conductive paste of the present invention described above and becomes the internal electrode after firing, the internal electrode pattern being the ceramic green Forming an unfired laminate having a structure laminated through sheets;
And firing the green laminate.
本発明の導電性ペーストの発明は、導電性金属粉末と、有機溶剤と、アクリル樹脂とを含むとともに、導電性金属粉末の平均粒径を50〜200nm、アクリル樹脂の重量平均分子量を160000〜200000とし、かつ、アクリル樹脂の含有割合を金属粉末100体積%に対して20〜200体積%の範囲としているので、印刷性が良好で、印刷により形成される導電性ペースト膜中の導電性金属粉末の充填性が高く、焼成することにより平滑性、連続性に優れ、残渣が少ない導体膜(内部電極)を形成することが可能な導電性ペーストを提供することができる。
すなわち、本発明の要件を満たすことにより、微粒な金属粉末と、アクリル樹脂を用いた導電性ペーストにおいて、良好な印刷性と高充填性を両立させることが可能になり、平滑性、連続性に優れ、残渣が少ない導体膜を形成することが可能になる。
その結果、本発明の導電性ペーストを用いて内部電極を形成した積層体は、高信頼性、低不良率、薄層高カバレッジの内部電極を備えることによる特性向上の
実現を図ることができる。
The invention of the conductive paste of the present invention includes a conductive metal powder, an organic solvent, and an acrylic resin, an average particle size of the conductive metal powder of 50 to 200 nm, and a weight average molecular weight of the acrylic resin of 160000 to 200000. In addition, since the content of the acrylic resin is in the range of 20 to 200% by volume with respect to 100% by volume of the metal powder, the printability is good and the conductive metal powder in the conductive paste film formed by printing It is possible to provide a conductive paste that can form a conductive film (internal electrode) that has a high filling property, is excellent in smoothness and continuity by firing, and has few residues.
That is, by satisfying the requirements of the present invention, it becomes possible to achieve both good printability and high fillability in the conductive paste using fine metal powder and acrylic resin, and smoothness and continuity can be achieved. It is possible to form a conductor film that is excellent and has few residues.
As a result, the laminate in which the internal electrode is formed using the conductive paste of the present invention can achieve improvement in characteristics by including the internal electrode with high reliability, low defect rate, and thin layer and high coverage.
また、本発明の積層セラミック電子部品の製造方法では、上述の本発明の導電性ペーストを用いてセラミックグリーンシート上に内部電極パターンを形成し、これを焼成することにより内部電極を形成するようにしているので、所望の形状、寸法を有し、平滑性、連続性に優れ、残渣が少ない内部電極を形成することが可能になり、所望の特性を備えた信頼性の高い積層セラミック電子部品を確実に製造することができる。 Further, in the method for manufacturing a multilayer ceramic electronic component of the present invention, an internal electrode pattern is formed on a ceramic green sheet using the above-described conductive paste of the present invention, and this is fired to form an internal electrode. Therefore, it is possible to form an internal electrode having a desired shape and dimensions, excellent smoothness and continuity, and with less residue, and a highly reliable multilayer ceramic electronic component having desired characteristics. It can be manufactured reliably.
以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below to describe the features of the present invention in more detail.
[実施形態1]
<導電性ペーストを作製するための原料の準備>
表1に示すような条件の導電性ペースト、すなわち、本発明の要件を備えた試料番号1〜8(実施例)の導電性ペーストおよび、本発明の要件を備えていない試料番号9〜14(比較例)の導電性ペーストを作製するため、導電性ペーストを構成する原料として、以下の条件の導電性金属粉末、セラミック粉末、アクリル樹脂、および溶剤を用意した(表1参照)。
[Embodiment 1]
<Preparation of raw material for producing conductive paste>
The conductive paste of the conditions as shown in Table 1, that is, the conductive pastes of Sample Nos. 1 to 8 (Examples) having the requirements of the present invention, and Sample Nos. 9 to 14 (Nos. Of the present invention) In order to produce the conductive paste of Comparative Example, conductive metal powder, ceramic powder, acrylic resin, and solvent under the following conditions were prepared as raw materials constituting the conductive paste (see Table 1).
(1)導電性金属粉末
導電性金属粉末としては、表1に示すように、
a)平均粒径が40nm,50nm,150nm,180nm,200nm,および210nmの銅(Cu)、
b)平均粒径が200nmのニッケル(Ni)、
c)平均粒径が150nmの銀(Ag)、
d)平均粒径が150nmのパラジウム(Pd)
を用意した。
ただし、本発明における導電性金属粉末の平均粒径の範囲は、50〜200nmの範囲である。
(1) Conductive metal powder As shown in Table 1, as the conductive metal powder,
a) Copper (Cu) having an average particle size of 40 nm, 50 nm, 150 nm, 180 nm, 200 nm, and 210 nm,
b) Nickel (Ni) having an average particle diameter of 200 nm,
c) Silver (Ag) having an average particle size of 150 nm,
d) Palladium (Pd) with an average particle size of 150 nm
Prepared.
However, the range of the average particle diameter of the conductive metal powder in the present invention is in the range of 50 to 200 nm.
導電性金属粉末は、表1の各試料のいずれにおいても、導電性ペースト中の含有率が6.5体積%を占めるような割合で配合した。
なお、導電性金属粉末の平均粒径は、粉末のSEM像から、画像解析により粒子径を算出し、粒子数100個の平均値を求めて平均粒径としたものである。
The conductive metal powder was blended in such a ratio that the content in the conductive paste occupies 6.5% by volume in any of the samples in Table 1.
The average particle diameter of the conductive metal powder is obtained by calculating the particle diameter from the SEM image of the powder by image analysis and obtaining the average value of 100 particles to obtain the average particle diameter.
(2)セラミック粉末
セラミック粉末としては、
a)平均粒径が5nm,50nm,および100nmのジルコン酸カルシウム(CaZrO3)粉末、
b)平均粒径が50nmのチタン酸バリウム(BaTiO3)粉末
を用意した。
なお、上記のセラミック粉末の平均粒径は、BET法により求めた値である。
(2) Ceramic powder As ceramic powder,
a) Calcium zirconate (CaZrO 3 ) powder having an average particle size of 5 nm, 50 nm, and 100 nm,
b) Barium titanate (BaTiO 3 ) powder having an average particle diameter of 50 nm was prepared.
In addition, the average particle diameter of said ceramic powder is the value calculated | required by BET method.
(3)アクリル樹脂
アクリル樹脂としては、重量平均分子量が150000〜1200000の範囲で異なる6種類(分子量150000,160000,200000,800000,1000000,1200000)のアクリル樹脂を用意した。
なお、アクリル樹脂の重量平均分子量は、ゲル浸透クロマトグラフィーにより測定した値である。
(3) Acrylic resin As the acrylic resin, six kinds of acrylic resins having different weight average molecular weights in the range of 150,000 to 1200000 (molecular weights of 150,000, 160000, 200000, 800,000, 1000000, 1200000) were prepared.
The weight average molecular weight of the acrylic resin is a value measured by gel permeation chromatography.
(4)溶剤
溶剤としては、ジヒドロターピネオールを用意した。なお、表1の各試料においてはいずれも溶剤としてジヒドロターピネオールを用いた。
ただし、溶剤としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、アニソール、フェネトール、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、アセタール、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルペンチルケトン、ジエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、アセトニルアセトン、イソホロン、シクロヘキサノン、メチルシクロヘキサノン、アセトフェノン、ショウノウ、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸ブチル、酢酸ヘキシル、酢酸ヘプチル、酢酸オクチル、酢酸ドデシル、酢酸イソプロピル、酢酸イソブチル、酢酸2−エチルヘキシル、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、酪酸ブチル、ステアリン酸ブチル、安息香酸ブチル、安息香酸ベンジル、エチレングリコールモノアセタート、2酢酸エチレン、モノアセチン、ジアセチン、トリアセチン、ジヒドロターピネオールアセテート、ヘキサン、オクタン、ドデカン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン、αピネン、Dリモネンなどを用いることも可能である。
(4) Solvent Dihydroterpineol was prepared as a solvent. In each sample in Table 1, dihydroterpineol was used as a solvent.
However, as solvents, diethyl ether, dipropyl ether, diisopropyl ether, anisole, phenetole, benzyl ethyl ether, diphenyl ether, dibenzyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, acetal, acetone, methyl ethyl ketone, methyl Propyl ketone, methyl butyl ketone, methyl pentyl ketone, diethyl ketone, methyl isobutyl ketone, diisobutyl ketone, acetonyl acetone, isophorone, cyclohexanone, methyl cyclohexanone, acetophenone, camphor, methyl acetate, ethyl acetate, n-propyl acetate, butyl acetate, Hexyl acetate, heptyl acetate, octyl acetate, dodecyl acetate, isopate Pill, isobutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, butyl propionate, butyl butyrate, butyl stearate, butyl benzoate, benzyl benzoate, ethylene glycol monoacetate, 2 Ethylene acetate, monoacetin, diacetin, triacetin, dihydroterpineol acetate, hexane, octane, dodecane, toluene, xylene, cyclohexane, methylcyclohexane, α-pinene, D limonene and the like can also be used.
<導電性ペーストの作製>
以下に説明する方法により、各原料を下記の範囲で配合し、プラネタリミキサで予備混合した後、3本ロールミルで分散することにより、導電性ペーストを作製した。
(1)導電性金属粉末(銅、ニッケル、銀、パラジウムのいずれかの粉末):6.5体積%
(2)セラミック粉末(CaZrO3、またはBaTiO3):0または1体積%
(3)溶剤(ジヒドロターピネオール):79.0〜92.2体積%
(4)重量平均分子量150000〜1200000のアクリル樹脂:1.0〜14.5体積%
<Preparation of conductive paste>
By the method described below, each raw material was blended within the following range, premixed with a planetary mixer, and then dispersed with a three-roll mill to prepare a conductive paste.
(1) Conductive metal powder (copper, nickel, silver, or palladium powder): 6.5% by volume
(2) Ceramic powder (CaZrO 3 or BaTiO 3 ): 0 or 1% by volume
(3) Solvent (dihydroterpineol): 79.0 to 92.2% by volume
(4) Acrylic resin having a weight average molecular weight of 150,000 to 1200000: 1.0 to 14.5% by volume
表1の試料番号1の試料(導電性ペースト)は、本発明の実施例にかかる試料で、平均粒径200nmの銅粉末6.5体積%、ジヒドロターピネオール84.5体積%、重量平均分子量160000のアクリル樹脂9.0体積%を配合した試料であり、セラミック粉末は配合されていない試料である。 Sample No. 1 (conductive paste) in Table 1 is a sample according to an example of the present invention, 6.5% by volume of copper powder having an average particle diameter of 200 nm, 84.5% by volume of dihydroterpineol, and a weight average molecular weight of 160000. This is a sample in which 9.0% by volume of acrylic resin is blended, and the ceramic powder is not blended.
表1の試料番号2の試料(導電性ペースト)は、本発明の実施例にかかる試料で、平均粒径180nmの銅粉末6.5体積%、ジヒドロターピネオール83.5体積%、重量平均分子量200000のアクリル樹脂9.0体積%を配合した試料であり、セラミック粉末として、平均粒径100nmのジルコン酸カルシウムを1体積%の割合で配合した試料である。 Sample No. 2 (conductive paste) in Table 1 is a sample according to an example of the present invention, 6.5% by volume of copper powder having an average particle diameter of 180 nm, 83.5% by volume of dihydroterpineol, and a weight average molecular weight of 200,000. This sample is a sample in which 9.0% by volume of acrylic resin is blended, and as a ceramic powder, calcium zirconate having an average particle size of 100 nm is blended in a proportion of 1% by volume.
表1の試料番号3,4は参考例にかかる試料、試料番号5〜8の試料は本発明の実施例にかかる試料で、導電性金属粉末種とその粒径、セラミック粉末種とその粒径、アクリル樹脂の重量平均分子量とその添加量などを、表1のとおりとして作製した試料である。 Sample Nos. 3 and 4 in Table 1 are samples according to the reference examples, and samples Nos. 5 to 8 are samples according to the examples of the present invention. The conductive metal powder type and the particle size thereof, the ceramic powder type and the particle size thereof are used. The sample was prepared with the weight average molecular weight of the acrylic resin and the added amount thereof as shown in Table 1.
また、表1の試料番号9〜14の試料(導電性ペースト)は、本発明の要件を備えていない比較例の試料で、導電性金属粉末種とその粒径、セラミック粉末種とその粒径、アクリル樹脂の重量平均分子量とその添加量の組合せなどを表1のとおりとして作製した試料である。 Samples Nos. 9 to 14 (conductive paste) in Table 1 are comparative samples that do not have the requirements of the present invention, and are conductive metal powder species and their particle sizes, ceramic powder species and their particle sizes. Table 1 shows combinations of weight average molecular weight of acrylic resin and addition amount thereof as shown in Table 1.
<積層セラミック電子部品(積層セラミックコンデンサ)の作製>
上述の試料番号1〜14の導電性ペーストを用いて、以下に説明する方法で積層セラミック電子部品(積層セラミックコンデンサ)を作製した。
<Production of multilayer ceramic electronic components (multilayer ceramic capacitors)>
Using the conductive pastes of the above sample numbers 1 to 14, multilayer ceramic electronic components (multilayer ceramic capacitors) were produced by the method described below.
(1)セラミックグリーンシートの作製
まず、平均粒径100〜500nmのジルコン酸カルシウムを主成分とする耐還元性誘電体セラミック原料粉末に、ポリビニルブチラール系バインダおよびエタノールなどの有機溶剤を加えて、ボールミルにより湿式混合し、セラミックスラリーを得た。
それから、このセラミックスラリーをドクターブレード法により、焼成後の厚みが2μmになるようにそれぞれシート状に成形し、セラミックグリーンシートを作製した。
(2)導電性ペーストの印刷
次に、上述のようにして作製したセラミックグリーンシート上に、上述の導電性ペーストをスクリーン印刷することにより、焼成後に内部電極となる導電性ペースト膜(内部電極パターン)を形成した。
(1) Production of ceramic green sheet First, a ball mill is prepared by adding a polyvinyl butyral binder and an organic solvent such as ethanol to a reduction-resistant dielectric ceramic raw material powder mainly composed of calcium zirconate having an average particle size of 100 to 500 nm. To obtain a ceramic slurry.
Then, the ceramic slurry was formed into a sheet shape by a doctor blade method so that the thickness after firing was 2 μm, and a ceramic green sheet was produced.
(2) Printing of conductive paste Next, the above-mentioned conductive paste is screen-printed on the ceramic green sheet produced as described above, thereby forming a conductive paste film (internal electrode pattern) that becomes an internal electrode after firing. ) Was formed.
そして、セラミックグリーンシートに導電性ペーストを印刷したときの、印刷パターンの形状から、かすれ、にじみなどの印刷品位を判定し、導電性ペーストの印刷性を評価した。
なお、導電性ペーストの印刷性については、具体的には、かすれ、にじみがないものを印刷性が良好(○)であると評価し、かすれ、にじみがあるものを印刷性が不良(×)であると評価した。
導電性ペーストの印刷性の評価結果を表1に併せて示す。
Then, print quality such as blurring and blurring was determined from the shape of the printed pattern when the conductive paste was printed on the ceramic green sheet, and the printability of the conductive paste was evaluated.
In addition, regarding the printability of the conductive paste, specifically, those with no blur or blur are evaluated as having good printability (○), and those with blur or blur are poor in printability (×). It was evaluated that.
The evaluation results of the printability of the conductive paste are also shown in Table 1.
また、蛍光X線膜厚計を用いて計測した導体塗布厚みと、実際の塗膜の物理的な厚みの比から、塗膜の導体充填性(金属充填性)を評価した。
なお、導体充填性については、具体的には、物理的な厚みに占める導体塗付厚みが31%以上のものを導体充填性が良好(○)であると評価し、31%未満のものを導体充填性が不良(×)であると評価した。
導体充填性の評価結果を表1に併せて示す。
Moreover, the conductor filling property (metal filling property) of the coating film was evaluated from the ratio of the conductor coating thickness measured using a fluorescent X-ray film thickness meter and the actual physical thickness of the coating film.
As for the conductor filling property, specifically, the conductor coating thickness occupying 31% or more of the physical thickness is evaluated as having good conductor filling property (◯), and the conductor filling thickness is less than 31%. The conductor filling property was evaluated as poor (x).
The evaluation results of the conductor filling properties are also shown in Table 1.
(3)セラミックグリーンシートの積層
上述のようにして、導電性ペーストが印刷されたセラミックグリーンシート(内部電極パターンを備えたセラミックグリーンシート)を作製するにあたって、この実施形態では、印刷された導電性ペースト膜(内部電極パターン)の蛍光X線膜厚計による厚みが0.6μmとなるように印刷条件を設定して導電性ペーストを印刷することにより、セラミックグリーンシートの表面に導電性ペースト膜(内部電極パターン)を形成した。
(3) Lamination of ceramic green sheets In producing a ceramic green sheet (ceramic green sheet having an internal electrode pattern) printed with a conductive paste as described above, in this embodiment, the printed conductive By setting the printing conditions so that the thickness of the paste film (internal electrode pattern) measured by the fluorescent X-ray film thickness meter is 0.6 μm and printing the conductive paste, the conductive paste film ( Internal electrode pattern) was formed.
それから、導電性ペースト膜(内部電極パターン)が形成されたセラミックグリーンシートを含む複数のセラミックグリーンシートを所定の順序で積層し、熱プレスして一体化することにより、熱プレスブロックを作製した。
その後、この熱プレスブロックを所定の寸法にカットすることにより、生の積層体(未焼成積層体)を得た。
Then, a plurality of ceramic green sheets including a ceramic green sheet on which a conductive paste film (internal electrode pattern) was formed were laminated in a predetermined order and integrated by hot pressing to produce a hot press block.
Thereafter, this hot press block was cut into a predetermined size to obtain a raw laminate (unfired laminate).
(4)焼成
次に、この未焼成積層体を、窒素雰囲気中で、200〜300℃に加熱し、バインダを分解させた後、H2−N2−H2Oガスからなる還元性雰囲気中において、最高焼成温度1200〜1300℃で焼成し、焼結体(焼結積層体)を得た。
(4) Firing Next, this unfired laminate is heated to 200 to 300 ° C. in a nitrogen atmosphere to decompose the binder, and then in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas. , Firing at a maximum firing temperature of 1200 to 1300 ° C. to obtain a sintered body (sintered laminate).
(5)外部電極の形成
それから、焼結積層体の内部導体露出面(両端面)上に、銅を導電成分とする導電性ペーストを塗布し、窒素雰囲気中において、600〜800℃の温度で焼付けることにより、内部電極(内部導体膜)と電気的に接続された外部電極を形成した。
(5) Formation of external electrode Then, a conductive paste containing copper as a conductive component is applied on the exposed inner conductor surfaces (both end surfaces) of the sintered laminate, and the temperature is 600 to 800 ° C. in a nitrogen atmosphere. By baking, an external electrode electrically connected to the internal electrode (internal conductor film) was formed.
この実施形態で作製した積層セラミックコンデンサは、図1に示すように、誘電体層であるセラミック層3を介して複数の内部電極2(2a,2b)が積層された積層セラミックコンデンサ素子1の両端面4a,4bに、内部電極2(2a,2b)と導通するように外部電極5(5a,5b)が配設された構造を有するものである。
As shown in FIG. 1, the multilayer ceramic capacitor manufactured in this embodiment has both ends of a multilayer ceramic capacitor element 1 in which a plurality of internal electrodes 2 (2a, 2b) are stacked via a
<積層セラミックコンデンサの信頼性の評価>
上述のようにして作製した積層セラミックコンデンサについて、信頼性(チップ信頼性)を評価した。
チップ信頼性は、具体的には、絶縁抵抗を測定することにより評価したものであり、定格電圧の直流電圧を印加したときの1分後の抵抗値を絶縁抵抗とし、絶縁抵抗が100kΩ以下のチップの割合が1%未満のものを信頼性が良好(○)であると評価し、1%以上のものを信頼性が不良(×)であると評価した。
その評価結果を表1に併せて示す。
<Evaluation of the reliability of multilayer ceramic capacitors>
The multilayer ceramic capacitor produced as described above was evaluated for reliability (chip reliability).
The chip reliability is specifically evaluated by measuring the insulation resistance. The resistance value after 1 minute when the rated DC voltage is applied is defined as the insulation resistance, and the insulation resistance is 100 kΩ or less. A chip having a chip ratio of less than 1% was evaluated as having good reliability (◯), and a chip having a chip ratio of 1% or more was evaluated as having poor reliability (×).
The evaluation results are also shown in Table 1.
ただし、試料番号10〜13(比較例)の積層セラミックコンデンサは、印刷性が悪く、良好なチップに加工できず、信頼性を評価することができなかったので、表1では(−)とした。 However, since the multilayer ceramic capacitors of Sample Nos. 10 to 13 (Comparative Example) have poor printability and could not be processed into good chips and the reliability could not be evaluated, it was set to (−) in Table 1. .
表1に示すように、導電性金属粉末の平均粒径が50nm未満で、本発明の要件を備えていない試料番号13(比較例)の試料の場合、導電性金属粉末の凝集性が高く、分散が困難で、印刷性や導体充填性が不十分になる一方で、焼結性が高いため、玉化が生じ、連続性が高い焼結膜(導体膜)を得ることが困難であることが確認された。 As shown in Table 1, in the case of the sample No. 13 (Comparative Example) in which the average particle size of the conductive metal powder is less than 50 nm and does not satisfy the requirements of the present invention, the conductive metal powder has high cohesiveness, Dispersion is difficult and printability and conductor filling properties are insufficient, while sinterability is high, resulting in spheroidization and difficulty in obtaining a sintered film (conductor film) with high continuity. confirmed.
また、導電性金属粉末の平均粒径が200nmを超え、本発明の要件を備えていない試料番号14(比較例)の試料の場合、印刷性、導体充填性は良好であったが、塗膜の表面粗さが粗く、基材層であるセラミック層の厚みが薄い領域ではチップ信頼性が低下することが確認された。 Moreover, in the case of the sample of sample number 14 (comparative example) in which the average particle diameter of the conductive metal powder exceeds 200 nm and does not satisfy the requirements of the present invention, the printability and the conductor filling property were good. It was confirmed that the chip reliability was lowered in a region where the surface roughness of the ceramic layer was rough and the thickness of the ceramic layer as the base material layer was thin.
また、アクリル樹脂の添加量が金属粉末に対して15.4体積%と、本発明の範囲(20〜200体積%)を下回っている試料番号12(比較例)の試料の場合、ペーストとして安定なレオロジーが得られず、印刷性が低下するとともに、導体充填性も不十分になることが確認された。 In addition, in the case of the sample No. 12 (comparative example) in which the amount of the acrylic resin added is 15.4% by volume with respect to the metal powder and falls below the range of the present invention (20 to 200% by volume), the paste is stable. It was confirmed that the rheology was not obtained, the printability was lowered, and the conductor filling property was insufficient.
また、アクリル樹脂の添加量が金属粉末に対して223.1体積%と、本発明の範囲(20〜200体積%)を超えている試料番号9(比較例)の試料の場合、ペーストとして安定なレオロジーは得られるが、導体充填性が不十分になり、焼成で電極が玉化してチップ信頼性が低下することが確認された In addition, in the case of the sample No. 9 (comparative example) in which the amount of the acrylic resin added is 223.1% by volume with respect to the metal powder and exceeds the range of the present invention (20 to 200% by volume), it is stable as a paste. The rheology was obtained, but the conductor filling property was insufficient, and it was confirmed that the electrode was balled by firing and chip reliability was lowered.
また、アクリル樹脂の平均分子量が150000と、本発明の範囲(160000〜200000)を下回っている試料番号9(比較例)および10(比較例)の試料の場合、樹脂添加量が少ない試料番号10では、微粒粉末による構造粘性が高くなり、良好な印刷性が得られなかった。また、印刷性を確保するため樹脂添加量を増やした試料番号9(比較例)は、導体充填性が低下し、チップ信頼性の点でも望ましくない結果となっている。 In the case of samples No. 9 (Comparative Example) and 10 (Comparative Example), in which the average molecular weight of the acrylic resin is 150,000, which is below the range of the present invention (160000-200000), Sample No. 10 with a small resin addition Then, the structural viscosity due to the fine powder increased, and good printability was not obtained. Further, Sample No. 9 (Comparative Example) in which the resin addition amount is increased in order to ensure the printability has a poor conductor filling property, which is an undesirable result in terms of chip reliability.
また、アクリル樹脂の平均分子量が1200000と、本発明の範囲を超えている試料番号11(比較例)および添加量が本発明の範囲を下回っている試料番号12(比較例)の試料の場合、ペーストの流動性が低下し、良好な印刷性が得られないことが確認された。 Moreover, in the case of the sample of sample number 11 (comparative example) whose average molecular weight of an acrylic resin is 1200000 and exceeds the range of the present invention, and sample number 12 (comparative example) whose addition amount is below the range of the present invention, It was confirmed that the fluidity of the paste was lowered and good printability could not be obtained.
一方、試料番号1〜8の導電性ペーストは、良好な印刷性と、高い導体充填性を兼ね備えていることが確認された。 On the other hand, it was confirmed that the conductive pastes of Sample Nos. 1 to 8 have both good printability and high conductor filling properties.
また、試料番号1〜8の導電性ペーストを用いることにより、薄層、高連続性、高平滑性、低残渣という特徴を有する内部電極を備えた、小型、高性能で、チップ信頼性の高い積層セラミックコンデンサ(積層セラミック電子部品)が得られることが確認された。 In addition, by using the conductive paste of Sample Nos. 1-8, small, high performance and high chip reliability with internal electrodes having the characteristics of thin layer, high continuity, high smoothness and low residue It was confirmed that a multilayer ceramic capacitor (multilayer ceramic electronic component) was obtained.
なお、セラミック粉末を配合した試料番号2,3,5,6の導電性ペーストについては、それらをセラミック基材(セラミックグリーンシート)に塗布して電極パターンを形成し、これを焼成した場合に、導電性金属粉末の焼結を抑制して、焼成後の膜厚がより薄く、緻密で、連続性の高い導体膜(内部電極)が得られることが確認されている。
In addition, about the conductive paste of
上述の実施形態より、本発明の導電性ペーストを用いて、内部電極を形成することにより、小型、高性能で、信頼性の高い積層セラミックコンデンサが得られることがわかる。 From the above embodiment, it can be seen that a multilayer ceramic capacitor with small size, high performance and high reliability can be obtained by forming the internal electrode using the conductive paste of the present invention.
なお、上記実施形態では、本発明にかかる導電性ペーストを用いて積層セラミックコンデンサを製造する場合を例にとって説明したが、本発明の導電性ペーストは、積層セラミックコンデンサに限らず、例えば、積層型LC複合部品、積層バリスタなどの、セラミック積層体の内部に電極を備えた種々の積層セラミック電子部品に適用することが可能である。 In the above embodiment, the case where the multilayer ceramic capacitor is manufactured using the conductive paste according to the present invention has been described as an example. However, the conductive paste of the present invention is not limited to the multilayer ceramic capacitor, for example, a multilayer type The present invention can be applied to various multilayer ceramic electronic components having electrodes inside a ceramic laminate, such as LC composite components and multilayer varistors.
本発明はさらにその他の点においても上記実施形態に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment in other points, and various applications and modifications can be made within the scope of the invention.
1 積層セラミックコンデンサ素子1
2(2a,2b) 内部電極
3 セラミック層
4a,4b 積層セラミックコンデンサ素子の端面
5(5a,5b) 外部電極
1 Multilayer ceramic capacitor element 1
2 (2a, 2b)
Claims (7)
前記導電性金属粉末の平均粒径が、50〜200nmの範囲にあり、
前記アクリル樹脂の重量平均分子量が、160000〜200000の範囲にあり、かつ、
前記アクリル樹脂の含有率が、前記金属粉末に対して20〜200体積%の範囲にあること
を特徴とする導電性ペースト。 A conductive paste containing a conductive metal powder, an organic solvent, and an acrylic resin,
The conductive metal powder has an average particle size in the range of 50 to 200 nm;
The acrylic resin has a weight average molecular weight in the range of 160000-200000, and
The conductive paste characterized by the content rate of the said acrylic resin being in the range of 20-200 volume% with respect to the said metal powder.
焼成後に前記セラミック層となるセラミックグリーンシートと、請求項1〜5記載のいずれかに記載の導電性ペーストを印刷することにより形成され、焼成後に前記内部電極となる内部電極パターンとを備え、前記内部電極パターンが前記セラミックグリーンシートを介して積層された構造を有する未焼成積層体を形成する工程と、
前記未焼成積層体を焼成する工程と
を具備することを特徴とする積層セラミック電子部品の製造方法。 A method for manufacturing a multilayer ceramic electronic component comprising a plurality of ceramic layers and a plurality of internal electrodes, wherein the internal electrodes are stacked via the ceramic layers,
A ceramic green sheet that becomes the ceramic layer after firing, and an internal electrode pattern that is formed by printing the conductive paste according to any one of claims 1 to 5, and that becomes the internal electrode after firing, Forming an unfired laminate having a structure in which internal electrode patterns are laminated via the ceramic green sheets;
And a step of firing the green laminate. A method for producing a multilayer ceramic electronic component comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095440 | 2012-04-19 | ||
JP2012095440 | 2012-04-19 | ||
PCT/JP2013/061172 WO2013157516A1 (en) | 2012-04-19 | 2013-04-15 | Conductive paste, laminated ceramic electronic component and method for manufacturing laminated ceramic electronic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013157516A1 JPWO2013157516A1 (en) | 2015-12-21 |
JP5967193B2 true JP5967193B2 (en) | 2016-08-10 |
Family
ID=49383472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014511209A Active JP5967193B2 (en) | 2012-04-19 | 2013-04-15 | Conductive paste and method for producing multilayer ceramic electronic component |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5967193B2 (en) |
KR (1) | KR101598945B1 (en) |
CN (1) | CN104246911B (en) |
TW (1) | TWI511167B (en) |
WO (1) | WO2013157516A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6015860B2 (en) * | 2013-07-17 | 2016-10-26 | 株式会社村田製作所 | Internal electrode paste |
WO2015111877A1 (en) * | 2014-01-23 | 2015-07-30 | 주식회사 동진쎄미켐 | Electrode manufacturing method and electrode paste composition for peelable electronic material |
JP6613551B2 (en) * | 2014-07-31 | 2019-12-04 | 住友金属鉱山株式会社 | Multilayer ceramic capacitor internal electrode paste and multilayer ceramic capacitor |
JP6835595B2 (en) * | 2015-01-30 | 2021-02-24 | 住友電気工業株式会社 | Manufacturing method of metal powder, ink and metal powder |
JP6594156B2 (en) * | 2015-10-14 | 2019-10-23 | 株式会社ノリタケカンパニーリミテド | Heat-curing conductive paste |
WO2017150438A1 (en) * | 2016-02-29 | 2017-09-08 | 住友金属鉱山株式会社 | Electrically conductive paste, electronic component, and laminated ceramic capacitor |
JP6986360B2 (en) * | 2017-04-05 | 2021-12-22 | 太陽誘電株式会社 | Multilayer ceramic capacitors and their manufacturing methods |
JP6986361B2 (en) | 2017-04-05 | 2021-12-22 | 太陽誘電株式会社 | Multilayer ceramic capacitors and their manufacturing methods |
JP2019046781A (en) * | 2017-08-30 | 2019-03-22 | 住友金属鉱山株式会社 | Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor |
JP7290914B2 (en) * | 2018-02-26 | 2023-06-14 | 太陽誘電株式会社 | Manufacturing method of multilayer ceramic capacitor |
JP6637097B2 (en) * | 2018-03-30 | 2020-01-29 | 株式会社ノリタケカンパニーリミテド | Conductive paste |
JP7053527B2 (en) * | 2019-03-29 | 2022-04-12 | 株式会社ノリタケカンパニーリミテド | Conductive paste |
CN110570993B (en) * | 2019-10-09 | 2021-04-09 | 南通宇华新材料科技有限公司 | Method for manufacturing conductive paste with high dry film density |
WO2023218992A1 (en) * | 2022-05-11 | 2023-11-16 | 昭栄化学工業株式会社 | Plate-shaped conductor film formation method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3042808B2 (en) * | 1992-03-16 | 2000-05-22 | 川崎製鉄株式会社 | Binder and composition for sinterable powder injection molding |
JP2003115416A (en) | 2001-10-05 | 2003-04-18 | Murata Mfg Co Ltd | Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component |
JP2004183027A (en) * | 2002-12-02 | 2004-07-02 | Murata Mfg Co Ltd | Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component |
US20060163073A1 (en) * | 2003-06-27 | 2006-07-27 | Nobuhiro Higashihara | Process for producing metal plating film, process for producing electronic part and plating film forming apparatus |
JP4574269B2 (en) * | 2003-07-30 | 2010-11-04 | 京セラ株式会社 | Manufacturing method of electronic parts |
JP4569100B2 (en) * | 2003-11-27 | 2010-10-27 | Tdk株式会社 | Conductor paste for multilayer ceramic electronic component and method for manufacturing multilayer unit for multilayer ceramic electronic component |
JP4449984B2 (en) * | 2004-09-29 | 2010-04-14 | Tdk株式会社 | Method for producing conductive particles, conductive paste, and method for producing electronic component |
JP4572704B2 (en) | 2005-03-03 | 2010-11-04 | 株式会社村田製作所 | Conductive paste for gravure printing and method for producing multilayer ceramic electronic component |
JP2007243026A (en) * | 2006-03-10 | 2007-09-20 | Tdk Corp | Ceramic powder and conductive paste using the same, laminated ceramic electronic component, and manufacturing method thereof |
JP2009170242A (en) | 2008-01-16 | 2009-07-30 | Sumitomo Metal Mining Co Ltd | Aqueous conductive paste composition for internal electrode of laminated ceramic capacitor |
JP5504846B2 (en) | 2008-12-09 | 2014-05-28 | 三菱マテリアル株式会社 | Conductive paste composition and method for producing electrode using the composition |
JP2011018848A (en) * | 2009-07-10 | 2011-01-27 | Tdk Corp | Method of manufacturing electronic component |
-
2013
- 2013-04-15 KR KR1020147028902A patent/KR101598945B1/en active IP Right Grant
- 2013-04-15 CN CN201380020375.8A patent/CN104246911B/en active Active
- 2013-04-15 WO PCT/JP2013/061172 patent/WO2013157516A1/en active Application Filing
- 2013-04-15 JP JP2014511209A patent/JP5967193B2/en active Active
- 2013-04-17 TW TW102113664A patent/TWI511167B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2013157516A1 (en) | 2013-10-24 |
KR20140138952A (en) | 2014-12-04 |
TWI511167B (en) | 2015-12-01 |
CN104246911B (en) | 2017-06-13 |
TW201349256A (en) | 2013-12-01 |
KR101598945B1 (en) | 2016-03-02 |
JPWO2013157516A1 (en) | 2015-12-21 |
CN104246911A (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967193B2 (en) | Conductive paste and method for producing multilayer ceramic electronic component | |
CN112106149B (en) | Conductive paste, electronic component, and multilayer ceramic capacitor | |
CN1841598B (en) | Multilayer ceramic electronic device and method of production of the same | |
JP5870625B2 (en) | Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component | |
JP2024032861A (en) | Conductive paste, electronic component, and multilayer ceramic capacitor | |
WO2020067362A1 (en) | Conductive paste, electronic component, and laminated ceramic capacitor | |
JP2019121744A (en) | Conductive paste, dried film thereof, internal electrode arranged by baking the same, and multilayer ceramic capacitor having the internal electrodes | |
CN113396458B (en) | Conductive paste, electronic component, and multilayer ceramic capacitor | |
JP2007234330A (en) | Conductor paste and electronic part | |
JP5630363B2 (en) | Conductive paste and method for producing the same | |
JP7206671B2 (en) | Conductive paste, electronic parts and laminated ceramic capacitors | |
CN114641835A (en) | Conductive paste composition for internal electrode of multilayer ceramic capacitor, method for producing same, and conductive paste | |
JP3102454B2 (en) | Conductive paste and method for manufacturing multilayer ceramic electronic component using the same | |
JP2019206623A (en) | Manufacturing method of organic vehicle, manufacturing method of conductive paste, and manufacturing method of laminate ceramic capacitor | |
JP6533371B2 (en) | Paste for laminated ceramic capacitor internal electrode, method of manufacturing the same, and conductive film obtained by paste for laminated ceramic capacitor internal electrode | |
JP2016076627A (en) | Internal electrode material for multilayer ceramic capacitor | |
JP7143875B2 (en) | Multilayer ceramic capacitor internal electrode paste and its manufacturing method | |
JP7559489B2 (en) | Conductive paste, electronic components, and multilayer ceramic capacitors | |
WO2022114121A1 (en) | Conductive paste and multilayer ceramic capacitor | |
JP7211186B2 (en) | Conductive pastes and ceramic electronic components | |
JP5459951B2 (en) | Method for producing ceramic slurry | |
JP2024146128A (en) | Conductive paste, electronic components, and multilayer ceramic capacitors | |
JP5899912B2 (en) | Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component | |
JP2019157089A (en) | Method for producing organic vehicle and method for producing conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5967193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |