JP2016076627A - Internal electrode material for multilayer ceramic capacitor - Google Patents

Internal electrode material for multilayer ceramic capacitor Download PDF

Info

Publication number
JP2016076627A
JP2016076627A JP2014206729A JP2014206729A JP2016076627A JP 2016076627 A JP2016076627 A JP 2016076627A JP 2014206729 A JP2014206729 A JP 2014206729A JP 2014206729 A JP2014206729 A JP 2014206729A JP 2016076627 A JP2016076627 A JP 2016076627A
Authority
JP
Japan
Prior art keywords
powder
internal electrode
multilayer ceramic
ceramic capacitor
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014206729A
Other languages
Japanese (ja)
Inventor
昌次 二木
Shoji Futaki
昌次 二木
潤志 石井
Junji Ishii
潤志 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014206729A priority Critical patent/JP2016076627A/en
Publication of JP2016076627A publication Critical patent/JP2016076627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-based internal electrode material for a multilayer ceramic capacitor, which never causes the degradation of internal electrode layer's continuity accompanying the excessive sintering of nickel powder, nor the reduction in electrostatic capacitance of a multilayer ceramic capacitor when forming an internal electrode layer arranged in a thin layer of 0.8 μm or less in a sintering step in manufacturing a multilayer ceramic capacitor.SOLUTION: An internal electrode material for a multilayer ceramic capacitor comprises: nickel powder; and boride powder having conductivity. The content of the boride powder is 8-40 mass% to the total mass of the nickel powder and the boride powder.SELECTED DRAWING: None

Description

本発明は、積層セラミックコンデンサの小型化、高容量化に伴う電極層厚が0.8μm以下の薄層化が可能な内部電極材料に関し、詳しくは、積層セラミックコンデンサの内部電極に好適に用いることができるニッケル系の電極材料に関する。   The present invention relates to an internal electrode material that can be thinned with an electrode layer thickness of 0.8 μm or less accompanying the downsizing and high capacity of the multilayer ceramic capacitor, and more specifically, it is suitably used for the internal electrode of the multilayer ceramic capacitor. The present invention relates to a nickel-based electrode material.

ニッケル粉末は、例えば、積層セラミックコンデンサの内部電極、ニッケル水素二次電池の正極材料、燃料電池のニッケル/ジルコニアサーメットをはじめ、種々の電極を形成するための材料として用いられている。
積層セラミックコンデンサは、例えば、チタン酸バリウムのような誘電体グリーンシート上に、ニッケルやパラジウムのような内部電極のための金属粉末とエチルセルロースやポリビニルブチラールのような有機バインダーとターピネオールのような有機溶媒を混練してなる導電性ペーストを印刷、乾燥して得られるシートを1単位として、所望するコンデンサ容量に見合うシート数を積層後、熱圧着して積層体を作製した後、所定の寸法に裁断し積層チップを作製する。
Nickel powder is used as a material for forming various electrodes such as an internal electrode of a multilayer ceramic capacitor, a positive electrode material of a nickel metal hydride secondary battery, and a nickel / zirconia cermet of a fuel cell.
Multilayer ceramic capacitors, for example, on dielectric green sheets such as barium titanate, metal powders for internal electrodes such as nickel and palladium, organic binders such as ethyl cellulose and polyvinyl butyral, and organic solvents such as terpineol A sheet obtained by printing and drying a conductive paste kneaded is laminated as a unit, the number of sheets matching the desired capacitor capacity is laminated, thermocompression-bonded to produce a laminate, and then cut into a predetermined size Then, a laminated chip is manufactured.

こうして作製された積層チップは、250〜400℃程度に加熱して、使用した有機バインダーを燃焼、除去する脱バインダー(脱脂)処理を施した後、積層体を約1300℃の温度まで加熱(焼成)することにより、内部電極層とセラミック誘電体とを共焼結させ、この後、銀、銅、ニッケル等の外部電極を形成して、積層セラミックコンデンサの製品を完成する。   The laminated chip thus produced is heated to about 250 to 400 ° C., subjected to debinding (degreasing) treatment for burning and removing the used organic binder, and then heated (baked) to a temperature of about 1300 ° C. ), The internal electrode layer and the ceramic dielectric are co-sintered, and then external electrodes such as silver, copper, and nickel are formed to complete a multilayer ceramic capacitor product.

最近の電子部品の高性能化、小型化に伴って、積層セラミックコンデンサにも、小型化と高容量化が求められており、そのために、セラミック誘電体と内部電極層の薄膜化と多層化が進んでいる。
内部電極層の薄層化を進める上で、導電性ペーストに含まれる金属粉末の平均粒径は、設計電極層厚の1/3以下が適しているとされ、内部電極を形成するニッケルやパラジウムなどの金属粉末には微粒子化が求められている。特に、内部電極として主に用いられているニッケルの場合、微粒子化に伴う焼結温度の低下が著しく、誘電体の焼結温度である1200〜1300℃まであげた場合、ニッケル粉は過焼結状態となりニッケル電極層の連続性が悪化する結果、コンデンサとしての静電容量が低下する問題がある。
With recent high performance and downsizing of electronic components, multilayer ceramic capacitors are also required to be downsized and high capacity. For this reason, ceramic dielectrics and internal electrode layers are becoming thinner and multilayered. Progressing.
In proceeding with thinning of the internal electrode layer, the average particle size of the metal powder contained in the conductive paste is considered to be 1/3 or less of the design electrode layer thickness, and nickel or palladium forming the internal electrode The metal powder such as is required to be finely divided. In particular, in the case of nickel, which is mainly used as an internal electrode, the sintering temperature is remarkably lowered due to the formation of fine particles. When the dielectric sintering temperature is increased to 1200 to 1300 ° C., the nickel powder is oversintered. As a result, the continuity of the nickel electrode layer deteriorates, resulting in a problem that the capacitance as a capacitor is lowered.

この静電容量が低下する問題を解決するために、特許文献1や特許文献2で開示されているように、内部電極材料であるニッケル粉末に焼結制御を目的に共材と称して誘電体と同じ材質の粉末を混ぜる方法が、一般的に用いられている。
その共材の添加量、共材として用いる誘電体粉末の粒径を最適化することにより焼結性を制御して、静電容量の低下のない内部電極用導電性ペーストを作成して、積層セラミックコンデンサが製造されている。
In order to solve this problem of lowering the electrostatic capacity, as disclosed in Patent Document 1 and Patent Document 2, the nickel powder as the internal electrode material is referred to as a co-material for the purpose of controlling sintering, and is a dielectric. A method of mixing powders of the same material is generally used.
By controlling the sinterability by optimizing the additive amount of the common material and the particle size of the dielectric powder used as the common material, a conductive paste for internal electrodes that does not decrease in capacitance is created and laminated. Ceramic capacitors are manufactured.

確かにこうした共材を添加することにより、微粒子化したニッケル粉末を用い、ある程度までの内部電極層厚を薄くすることは可能ではあるが、内部電極膜厚が0.8μm以下で、平均粒径が0.20μm未満の微細なニッケル粉末の場合は、添加する共材の粒径、添加量の最適化だけでは、静電容量の低下を抑制するのが困難となってくる。これはニッケル粉末の小粒径化に伴って、共材の粒径も小さくせざるを得ず、添加量も増える結果、焼結過程における電極層から誘電体層への共材(誘電体粉末)の物質移動が増えることが原因である。   Although it is possible to reduce the internal electrode layer thickness to a certain extent by adding fine nickel powder by adding such co-materials, the internal electrode film thickness is 0.8 μm or less and the average particle size In the case of a fine nickel powder having a thickness of less than 0.20 μm, it is difficult to suppress a decrease in capacitance only by optimizing the particle size and amount of the added co-material. As the particle size of the nickel powder is reduced, the particle size of the co-material must be reduced and the amount added is increased. As a result, the co-material from the electrode layer to the dielectric layer in the sintering process (dielectric powder) This is due to the increase in mass transfer.

特開平10−172855号公報JP-A-10-172855 特開2001−110233号公報JP 2001-110233 A

本発明は、積層セラミックコンデンサの内部電極の形成に用いられ従来のニッケル粉末における上記問題を解決することを目的として、積層セラミックコンデンサの製造における焼結工程にて、0.8μm以下の薄層化した内部電極層を形成させる際に、ニッケル粉末の過焼結に伴う内部電極層の連続性の悪化がなく、積層セラミックコンデンサの静電容量の低下がないニッケル系積層セラミックコンデンサ用内部電極材料を提供することを目的とする。   The present invention is used to form an internal electrode of a multilayer ceramic capacitor, and has a thickness of 0.8 μm or less in a sintering process in the production of the multilayer ceramic capacitor for the purpose of solving the above-mentioned problems in conventional nickel powder. When forming an internal electrode layer, an internal electrode material for a nickel-based multilayer ceramic capacitor that does not deteriorate the continuity of the internal electrode layer due to oversintering of nickel powder and does not decrease the capacitance of the multilayer ceramic capacitor. The purpose is to provide.

上記課題に対して本発明者らは鋭意検討を重ねた結果、ニッケル粉末と電気伝導性を有するホウ化物粉末とを混ぜて内部電極材料として用いることにより、ニッケル粉末の過焼結に伴う電極層の連続性の悪化、積層セラミックコンデンサの静電容量の低下がないニッケル系積層セラミックコンデンサ用内部電極材料を提供することが出来ることを見出したものである。   As a result of intensive studies on the above-mentioned problems, the inventors of the present invention have mixed nickel powder and boride powder having electrical conductivity and used them as an internal electrode material. It has been found that an internal electrode material for a nickel-based multilayer ceramic capacitor can be provided in which there is no deterioration in the continuity of the multilayer ceramic capacitor and a decrease in the capacitance of the multilayer ceramic capacitor.

即ち、本発明の第1の発明は、ニッケル粉末と、導電性を有するホウ化物粉末とを含有し、そのホウ化物粉末の含有量が、ニッケル粉末とホウ化物粉末の合計量に対して8〜40質量%であることを特徴とする積層セラミックコンデンサ用内部電極材料である。   That is, 1st invention of this invention contains nickel powder and the boride powder which has electroconductivity, and the content of the boride powder is 8 ~ with respect to the total amount of nickel powder and boride powder. It is an internal electrode material for a multilayer ceramic capacitor characterized by being 40% by mass.

本発明の第2の発明は、第1の発明におけるホウ化物粉末が、モリブデンホウ化物粉末、チタンホウ化物粉末、ジルコニアホウ化物粉末、クロムホウ化物粉末、ニオブホウ化物粉末、タンタルホウ化物粉末から選ばれる少なくとも1種以上であることを特徴とする積層セラミックコンデンサ用内部電極材料である。   In the second invention of the present invention, the boride powder in the first invention is at least one selected from molybdenum boride powder, titanium boride powder, zirconia boride powder, chromium boride powder, niobium boride powder, and tantalum boride powder. The internal electrode material for a multilayer ceramic capacitor is characterized by the above.

本発明の第3の発明は、第1及び第2の発明におけるニッケル粉末の最大粒径が、0.8μm未満であることを特徴とする積層セラミックコンデンサ用内部電極材料である。   A third invention of the present invention is an internal electrode material for a multilayer ceramic capacitor, wherein the maximum particle size of the nickel powder in the first and second inventions is less than 0.8 μm.

本発明の第4の発明は、第1から第3の発明におけるホウ化物粉末の平均粒径が、0.01〜0.6μmであることを特徴とする積層セラミックコンデンサ用内部電極材料である。   A fourth invention of the present invention is the internal electrode material for a multilayer ceramic capacitor, wherein the boride powder in the first to third inventions has an average particle size of 0.01 to 0.6 μm.

本発明の第5の発明は、第1から第4の発明に記載の積層セラミックコンデンサ用内部電極材料を用いて形成された内部電極層であって、その内部電極層の厚みが0.8μm以下であることを特徴とする内部電極層である。   A fifth invention of the present invention is an internal electrode layer formed using the internal electrode material for a multilayer ceramic capacitor described in the first to fourth inventions, and the thickness of the internal electrode layer is 0.8 μm or less. It is an internal electrode layer characterized by being.

本発明の第6の発明は、第5の発明における積層セラミックコンデンサ用内部電極材料に含まれるニッケル粉末の平均粒径が、内部電極層の厚みの1/2以上であることを特徴とする内部電極層である。   The sixth invention of the present invention is characterized in that the average particle size of the nickel powder contained in the internal electrode material for a multilayer ceramic capacitor in the fifth invention is ½ or more of the thickness of the internal electrode layer. It is an electrode layer.

本発明の積層セラミックコンデンサ用内部電極材料を用いることにより、0.8μm
以下の薄層化した内部電極層を形成させても、内部電極層の連続性の悪化がなく、積層セラミックコンデンサの静電容量の低下が防止される。
また、必ずしも設計電極層厚の1/3未満の粒径のニッケル粉末を用いる必要もないことからニッケル粉の平均粒径などに対する制約条件も少なくなり、素材供給面やコスト面などで顕著な効果を奏するものである。
By using the internal electrode material for multilayer ceramic capacitor of the present invention, 0.8 μm
Even if the following thin internal electrode layers are formed, the continuity of the internal electrode layers is not deteriorated, and the capacitance of the multilayer ceramic capacitor is prevented from being lowered.
In addition, since it is not always necessary to use nickel powder having a particle size of less than 1/3 of the designed electrode layer thickness, there are fewer restrictions on the average particle size of the nickel powder, and the effect is remarkable in terms of material supply and costs. It plays.

本発明は、導電物質であるニッケル粉末とホウ化物粉末とを含有する積層セラミックコンデンサ用内部電極材料で、共材と称する誘電体粉末を混合させる以外の方法で、ニッケル粉末が過焼結するのを防止する手段を提供するものである。   The present invention is an internal electrode material for a multilayer ceramic capacitor containing nickel powder and boride powder, which are conductive materials, and the nickel powder is oversintered by a method other than mixing dielectric powder called co-material. A means for preventing the problem is provided.

微粒子化したニッケル粉末は、焼結温度が低下することにより、誘電体の焼結温度1200〜1300℃では過焼結してしまい、焼結時にニッケル粉末がアイランド状に孤立粒子化して、内部電極層の連続性が失われてしまう。この孤立粒子化する理由を検討した結果、ニッケル粉末と誘電体との濡れ性が悪いことで、ニッケル粉末の焼結開始温度を超えた領域では、誘電体層近傍のニッケル粉末の物質移動を阻害できず、ニッケル同士の焼結・融着が進行してしまうことが原因であると推測した。   The finely divided nickel powder is oversintered at a dielectric sintering temperature of 1200 to 1300 ° C. due to a decrease in the sintering temperature, and the nickel powder is isolated into island-like particles during the sintering. Layer continuity is lost. As a result of investigating the reason for the formation of isolated particles, the wettability between nickel powder and dielectric material is poor, and in the region where the sintering start temperature of nickel powder is exceeded, the mass transfer of nickel powder near the dielectric layer is hindered. It was not possible, and it was speculated that this was caused by the progress of sintering and fusion between nickel.

ところでホウ化物粉末は、誘電体に対するニッケル粉末の濡れ性を向上させる効果があり、ニッケル粉末と混合させることで、誘電体の焼結温度(1200〜1300℃)でも、特に誘電体層近傍のニッケル粉末の物質移動が抑えられ、過焼結を防止する。
このような働きをする際のホウ化物粉末の含有量は、ニッケル粉末とホウ化物粉末の合計量を基準として、その8〜40質量%の範囲の量が好ましく、より好ましくは10〜30質量%である。
ここで、ホウ化物粉末の含有量が8質量%未満では、誘電体に対するニッケル粉末の濡れ性を改善する効果が不十分で、積層セラミックコンデンサの内部電極層に用いると、焼結時に内部電極層の連続性が失われて積層セラミックコンデンサの静電容量の低下が発生する。一方。ホウ化物粉末の含有量が40質量%を超えると、ビヒクルと誘電性粉末と混練してペーストを作製する時に、固形物の分散が進まず、ペースト化が困難となるためである。
By the way, the boride powder has an effect of improving the wettability of the nickel powder with respect to the dielectric. When mixed with the nickel powder, the nickel powder in the vicinity of the dielectric layer can be obtained even at the sintering temperature (1200 to 1300 ° C.) of the dielectric. The mass transfer of powder is suppressed and oversintering is prevented.
The content of the boride powder in such a function is preferably 8 to 40% by mass, more preferably 10 to 30% by mass, based on the total amount of nickel powder and boride powder. It is.
Here, when the content of boride powder is less than 8% by mass, the effect of improving the wettability of the nickel powder with respect to the dielectric is insufficient, and when used for the internal electrode layer of the multilayer ceramic capacitor, the internal electrode layer during sintering As a result, the capacitance of the multilayer ceramic capacitor is reduced. on the other hand. This is because when the boride powder content exceeds 40% by mass, when the paste is prepared by kneading the vehicle and the dielectric powder, the solids do not disperse and it becomes difficult to form a paste.

なおホウ化物粉末の平均粒径は、0.01〜0.6μmが好ましい。
本発明は薄層化された積層セラミックコンデンサの内部電極用電極材料であり、特に0.8μm以下に薄層化された内部電極層に好適に用いられるものであり、ホウ化物粉末の平均粒径が0.6μmを超えると、ホウ化物粉末自体の粒径により焼結後の内部電極層の連続性が損なわれることがある。またホウ化物粉末の平均粒径が0.01μm未満では、上記誘電体に対するニッケル粉末の濡れ性を向上させる効果が発揮されないためである。ここで平均粒径とは、粉末を走査型電子顕微鏡(SEM)で写真撮影し、粒子形状の全様が見える粒子の面積を画像処理により測定し、面積から各粒子の半径を求め、その平均値を求めたものである。
さらにホウ化物粉末の平均粒径は、ニッケル粉末の平均粒径以下が好ましく、ニッケル粉末の平均粒径の0.8倍以下とするのがより好ましい。この範囲とすることで、上記ホウ化物粉末による誘電体に対するニッケル粉末の濡れ性を向上させる効果を十分に発揮させることができる。
In addition, the average particle diameter of the boride powder is preferably 0.01 to 0.6 μm.
The present invention is an electrode material for an internal electrode of a laminated multilayer ceramic capacitor, and is particularly suitable for an internal electrode layer thinned to 0.8 μm or less, and has an average particle size of boride powder. If the thickness exceeds 0.6 μm, the continuity of the internal electrode layer after sintering may be impaired due to the particle size of the boride powder itself. Moreover, it is because the effect which improves the wettability of the nickel powder with respect to the said dielectric material will not be exhibited if the average particle diameter of boride powder is less than 0.01 micrometer. Here, the average particle size means that the powder is photographed with a scanning electron microscope (SEM), the area of the particles where the entire shape of the particles can be seen is measured by image processing, the radius of each particle is obtained from the area, and the average The value is obtained.
Further, the average particle size of the boride powder is preferably equal to or less than the average particle size of the nickel powder, and more preferably 0.8 times or less than the average particle size of the nickel powder. By setting it as this range, the effect of improving the wettability of the nickel powder with respect to the dielectric by the boride powder can be sufficiently exhibited.

また積層セラミックコンデンサの内部電極層を形成するために用いられるので、ニッケル粉末にホウ化物粉末を混合させても、積層セラミックコンデンサ用内部電極材料が十分な導電性を有することは必要であり、本発明に用いられるホウ化物は導電性を有しているのが好ましい。
具体的には、ホウ化物は、モリブデンホウ化物、チタンホウ化物、ジルコニアホウ化物、クロムホウ化物、ニオブホウ化物、タンタルホウ化物から選ばれる少なくとも1種以上であることが好ましい。つまり、モリブデンホウ化物等は、ニッケル粉末に1種類で混合させる、複数の種類で混合させる、のどちらでもかまわない。
これらのホウ化物は、例えばチタンホウ化物(TiB)の比抵抗が9.0×10−6Ω・cmであるなど、5×10−5Ω・cm以下の比抵抗を示す物質であり、ニッケルの比抵抗(7.0×10−6Ω・cm)と比して十分な導電性を有している。
Also, since it is used to form the internal electrode layer of multilayer ceramic capacitors, it is necessary that the internal electrode material for multilayer ceramic capacitors has sufficient conductivity even when boride powder is mixed with nickel powder. The boride used in the invention preferably has electrical conductivity.
Specifically, the boride is preferably at least one selected from molybdenum boride, titanium boride, zirconia boride, chromium boride, niobium boride, and tantalum boride. That is, molybdenum boride or the like may be mixed with nickel powder by one kind or mixed with plural kinds.
These borides are substances having a specific resistance of 5 × 10 −5 Ω · cm or less, for example, the specific resistance of titanium boride (TiB 2 ) is 9.0 × 10 −6 Ω · cm, nickel The specific resistance (7.0 × 10 −6 Ω · cm) is sufficient.

ニッケル粉末の最大粒径は、0.8μm未満であることが好ましい。
内部電極層の厚みよりも大きいニッケル粉末を含有していると、内部電極層が印刷された誘電体グリーンシートの積層体を焼成する際に、内部電極層の連続性が損なわれたり、内部電極層のニッケル粉により誘電体層にクラックが入ったりすることがある。
The maximum particle size of the nickel powder is preferably less than 0.8 μm.
If nickel powder larger than the thickness of the internal electrode layer is contained, the continuity of the internal electrode layer may be impaired when the laminate of the dielectric green sheet printed with the internal electrode layer is fired. A layer of nickel powder may cause cracks in the dielectric layer.

さらに、本発明の積層セラミックコンデンサ用内部電極材料をペースト化するためには、ビヒクルを含有する。このビヒクルは特に制限されることはなく、従来技術と同様に、溶剤とバインダーとを均一に混合したものを使用することができる。たとえば、溶剤としては、ターピネオール、ブチルカルビトールアセテート、ブチルカルビトール、ジヒドロターピネオール、ジヒドロターピネオールアセテートなどを使用することができる。また、バインダーとしては、エチルセルロースなどのセルロース類、ポリビニルブチラールなどを使用することができる。なお、ビヒクル中におけるバインダーの含有量は、特に制限されることはなく、その用途や要求される特性に応じて適宜選択されるべきものであるが、上述した原料粉末を100質量部として、1質量部〜7質量部に調整することが好ましく、1.5質量部〜6質量部に調整することがより好ましい。   Further, in order to paste the internal electrode material for a multilayer ceramic capacitor of the present invention, a vehicle is contained. This vehicle is not particularly limited, and a vehicle in which a solvent and a binder are uniformly mixed can be used, as in the prior art. For example, terpineol, butyl carbitol acetate, butyl carbitol, dihydroterpineol, dihydroterpineol acetate, etc. can be used as the solvent. As the binder, celluloses such as ethyl cellulose, polyvinyl butyral, and the like can be used. The content of the binder in the vehicle is not particularly limited and should be appropriately selected according to the use and required characteristics. It is preferable to adjust to mass part-7 mass parts, and it is more preferable to adjust to 1.5 mass parts-6 mass parts.

また、導電性ペースト中のビヒクルの含有量は、各構成成分が均一に分散される限り、特に制限されることはないが、原料粉末を100質量部として、40質量部〜80質量部とすることが好ましく、45質量部〜65質量部とすることがよりに好ましく、50質量部〜60質量部とすることがさらに好ましい。   Further, the content of the vehicle in the conductive paste is not particularly limited as long as each component is uniformly dispersed. However, the raw material powder is 100 parts by mass, and 40 parts by mass to 80 parts by mass. It is more preferable to set it as 45 mass parts-65 mass parts, and it is more preferable to set it as 50 mass parts-60 mass parts.

本発明の積層セラミックコンデンサ用内部電極材料は、必ずしも共材を混合させる必要はないが、もちろん共材として誘電体粉末を含有させることを妨げるものではない。共材としての誘電体粉末には、積層セラミックコンデンサの誘電体層を形成するグリーンシートの主要構成材料を使用することが好ましい。なお、グリーンシートの主要構成材料としては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウムなどが挙げられるが、誘電体粉末としては、チタン酸バリウムを含むことが好ましく、誘電体粉末中におけるチタン酸バリウムの含有量が80質量%以上であることがより好ましい。なお誘電体粉末の平均粒径およびその含有量は、適宜設定すればよい。   The internal electrode material for a multilayer ceramic capacitor of the present invention does not necessarily need to be mixed with a common material, but of course does not preclude inclusion of dielectric powder as the common material. For the dielectric powder as the co-material, it is preferable to use the main constituent material of the green sheet forming the dielectric layer of the multilayer ceramic capacitor. The main constituent material of the green sheet includes barium titanate, strontium titanate, magnesium titanate, etc., but the dielectric powder preferably contains barium titanate, and titanate in the dielectric powder. The barium content is more preferably 80% by mass or more. The average particle size and the content of the dielectric powder may be set as appropriate.

また、本発明の積層セラミックコンデンサ用内部電極材料には、その用途、目的に応じて、ミネラルスピリット等の粘度調整剤、分散剤、難燃剤、沈降防止剤等の添加剤も含有させることもできる。   The internal electrode material for a multilayer ceramic capacitor of the present invention can also contain additives such as viscosity modifiers such as mineral spirits, dispersants, flame retardants, anti-settling agents, etc., depending on the application and purpose. .

本発明の積層セラミックコンデンサ用内部電極材料の製造方法は、上記説明したニッケル粉末、ホウ化物粉末、ビヒクル等を均一に混合され得る方法であれば、その混合方法は問わず、公知の3本ロール等を用いて混練すればよい。より好ましくは、ニッケル粉末とホウ化物粉末を、ビーズミル等を用いて一次混合して原料粉末を作製後、ビヒクル等の他の含有物とともに3本ロール等を用いて混練するのがよい。   The manufacturing method of the internal electrode material for a multilayer ceramic capacitor of the present invention is a known three-roll, regardless of the mixing method, as long as the above-described nickel powder, boride powder, vehicle and the like can be uniformly mixed. Etc. may be used for kneading. More preferably, the nickel powder and boride powder are first mixed using a bead mill or the like to produce a raw material powder, and then kneaded together with other contents such as a vehicle using a three roll or the like.

本発明の積層セラミックコンデンサ用内部電極材料は、内部電極層の厚みが0.8μm以下となる積層セラミックコンデンサに使用するのに好適である。上記説明した通り、本発明により誘電体粉末に対するニッケル粉末の濡れ性が向上するため、従来ニッケル粉末は、内部電極層厚の1/3以下の平均粒径が適しているとされていたが、それを超える平均粒径のニッケル粉末を用いることが可能となり、さらには内部電極層厚の1/2以上の平均粒径のニッケル粉末を用いても、焼結後の内部電極層の連続性が確保され、積層セラミックコンデンサの静電容量の低下が防止される。
このように内部電極層厚が薄層化されても、従来よりも平均粒径が大きいニッケル粉末を用いることが可能となるため、積層セラミックコンデンサ用内部電極材料の選択肢を広げることができる。
The internal electrode material for a multilayer ceramic capacitor of the present invention is suitable for use in a multilayer ceramic capacitor having an internal electrode layer thickness of 0.8 μm or less. As described above, according to the present invention, the wettability of the nickel powder with respect to the dielectric powder is improved, so that the conventional nickel powder is said to have an average particle diameter of 1/3 or less of the internal electrode layer thickness. It is possible to use nickel powder having an average particle size exceeding that, and even if nickel powder having an average particle size of 1/2 or more of the internal electrode layer thickness is used, the continuity of the internal electrode layer after sintering is maintained. It is ensured and a decrease in the capacitance of the multilayer ceramic capacitor is prevented.
Even if the thickness of the internal electrode layer is reduced in this way, it is possible to use nickel powder having an average particle size larger than that of the conventional one, so that the options for the internal electrode material for the multilayer ceramic capacitor can be expanded.

以下に実施例と比較例を挙げて本発明を説明する。なお本発明は、これら実施例に限定されるものではない。
実施例1〜10および比較例2、3は、ニッケル粉末(住友金属鉱山株式会社製、SNP−350E、平均粒径0.5μm)と、ホウ化物粉末(株式会社高純度化学研究所製を平均粒径0.3μmまで粉砕)を表1に示す成分、含有量で準備し、アシザワファインテック株式会社製のビーズミルを用いて混合・分散を行い、原料粉末を得た。なお、ホウ化物粉末の含有量は、ニッケル粉末とホウ化物粉末の合計量に対する質量%である。
比較例1は、ニッケル粉(住友金属鉱山株式会社製、SNP−350E、平均粒径0.5μm)のみを原料粉末として用いた。
Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is not limited to these examples.
In Examples 1 to 10 and Comparative Examples 2 and 3, nickel powder (Sumitomo Metal Mining Co., Ltd., SNP-350E, average particle size 0.5 μm) and boride powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) are averaged. Were prepared with the components and contents shown in Table 1, and mixed and dispersed using a bead mill manufactured by Ashizawa Finetech Co., Ltd. to obtain a raw material powder. In addition, content of boride powder is the mass% with respect to the total amount of nickel powder and boride powder.
In Comparative Example 1, only nickel powder (manufactured by Sumitomo Metal Mining Co., Ltd., SNP-350E, average particle size 0.5 μm) was used as a raw material powder.

原料粉末であるニッケル粉末とホウ化物粉末の混合物、或はニッケル粉末のみ(比較例1)50質量%に、エチルセルロースとターピネオールからなるビヒクル30質量%(エチルセルロースの重量が原料粉末に対し3質量部に調整)と、ミネラルスピリット20質量%とを、3本ロールミル(株式会社井上製作所製、43/4×11S型ロール機)にて混練を行い、FOGゲージ(粒ゲージ)にて粒径が10μm以下になるまで混練して積層セラミックコンデンサ内部電極用材料を調製した。   Mixture of nickel powder and boride powder as raw material powder, or nickel powder alone (Comparative Example 1) 50% by mass, vehicle 30% by mass of ethyl cellulose and terpineol (the weight of ethyl cellulose is 3 parts by mass with respect to the raw material powder) Adjustment) and 20% by mass of mineral spirit are kneaded with a three roll mill (manufactured by Inoue Seisakusho Co., Ltd., 43/4 × 11S type roll machine), and the particle size is 10 μm or less with a FOG gauge (grain gauge). Kneaded until a multilayer ceramic capacitor internal electrode material was prepared.

評価に際しては、積層して容量測定をするのが困難なため、簡易的にアルミナ製の25mm□×1mm厚の基板に焼成上がりで0.6μmの膜厚になるようCWプライス社製の印刷機を用いて電極層を印刷して、窒素雰囲気中1300℃で焼成を行い、光学顕微鏡を用い、透過光(バックライト)で電極層の連続状態を評価した。
その評価は、焼結膜の光学顕微鏡写真を撮り、画像の二値化処理を行い、膜の連続性が良好で、光が透過しない場合を100、塗膜がない場合(全透過)を0、として電極膜の連続性を評価した。その評価を表1にバックライトで照らして測定した膜密度としてバックライトデンシティ(BLD)と称して記載している。
In the evaluation, it is difficult to measure the capacity by laminating, so a printing machine manufactured by CW Price Co., Ltd. can be obtained by simply baking to a substrate of 25 mm □ × 1 mm thickness made of alumina to a film thickness of 0.6 μm. The electrode layer was printed using, fired at 1300 ° C. in a nitrogen atmosphere, and the continuous state of the electrode layer was evaluated with transmitted light (backlight) using an optical microscope.
The evaluation was performed by taking an optical micrograph of the sintered film, performing binarization processing of the image, 100 when the film has good continuity and no light is transmitted, and 0 when there is no coating (total transmission). The continuity of the electrode film was evaluated. The evaluation is described as the backlight density (BLD) in Table 1 as the film density measured by illuminating with a backlight.

実施例1〜10より、原料粉末にモリブデン等のホウ化物粉末を8〜40質量%含有させることで、BLDの値が98以上と焼結した電極層の連続性が高いことが分かる。特にホウ化物粉末を10〜30質量%含有させた試料のBLDの値が高いことも分かる。   From Examples 1 to 10, it can be seen that the continuity of the sintered electrode layer with a BLD value of 98 or more is high by containing boride powder such as molybdenum in the raw material powder in an amount of 8 to 40% by mass. It can also be seen that the BLD value of the sample containing 10 to 30% by mass of boride powder is particularly high.

一方、原料粉末にホウ化物粉末を含有させていない比較例1およびホウ化物粉末の含有量が8質量%未満の比較例2及び比較例3では、BLDの値が低く、焼結した電極層の連続性が低いことが分かる。また原料粉末にホウ化物粉末を45質量%含有させた比較例4は、3本ロールミルにて原料粉末とビヒクルと誘電体粉末とミネラルスピリットを混練させても、FOGゲージにて粒径が10μm以下にすることができず、電極層の印刷以降の評価を実施していない。   On the other hand, in Comparative Example 1 in which the boride powder is not contained in the raw material powder and in Comparative Example 2 and Comparative Example 3 in which the content of boride powder is less than 8% by mass, the BLD value is low, and the sintered electrode layer It can be seen that the continuity is low. In Comparative Example 4 in which boride powder is contained in the raw material powder by 45% by mass, the particle size is 10 μm or less by the FOG gauge even when the raw material powder, vehicle, dielectric powder and mineral spirit are kneaded by the three roll mill. And the evaluation after printing of the electrode layer is not performed.

Claims (6)

ニッケル粉末と、導電性を有するホウ化物粉末とを含有し、
前記ホウ化物粉末の含有量が、前記ニッケル粉末とホウ化物粉末の合計量に対して8〜40質量%であることを特徴とする積層セラミックコンデンサ用内部電極材料。
Containing nickel powder and boride powder having conductivity,
A content of the boride powder is 8 to 40% by mass with respect to a total amount of the nickel powder and boride powder.
前記ホウ化物粉末が、モリブデンホウ化物粉末、チタンホウ化物粉末、ジルコニアホウ化物粉末、クロムホウ化物粉末、ニオブホウ化物粉末、タンタルホウ化物粉末から選ばれる少なくとも1種以上であることを特徴とする請求項1に記載の積層セラミックコンデンサ用内部電極材料。   2. The boride powder according to claim 1, wherein the boride powder is at least one selected from molybdenum boride powder, titanium boride powder, zirconia boride powder, chromium boride powder, niobium boride powder, and tantalum boride powder. Internal electrode material for multilayer ceramic capacitors. 前記ニッケル粉末の最大粒径が0.8μm未満であることを特徴とする請求項1又は2に記載の積層セラミックコンデンサ用内部電極材料。   The internal electrode material for a multilayer ceramic capacitor according to claim 1 or 2, wherein the nickel powder has a maximum particle size of less than 0.8 µm. 前記ホウ化物粉末の平均粒径が、0.01〜0.6μmであることを特徴とする請求項1〜3のいずれか1項に記載の積層セラミックコンデンサ用内部電極材料。   The internal electrode material for a multilayer ceramic capacitor according to any one of claims 1 to 3, wherein the boride powder has an average particle size of 0.01 to 0.6 µm. 請求項1〜4のいずれか1項に記載の積層セラミックコンデンサ用内部電極材料を用いて形成された内部電極層であって、
前記内部電極層の厚みが0.8μm以下であることを特徴とする内部電極層。
An internal electrode layer formed by using the internal electrode material for a multilayer ceramic capacitor according to any one of claims 1 to 4,
The internal electrode layer has a thickness of 0.8 μm or less.
前記積層セラミックコンデンサ用内部電極材料に含まれるニッケル粉末の平均粒径が、内部電極層の厚みの1/2以上であることを特徴とする請求項5に記載の内部電極層。   6. The internal electrode layer according to claim 5, wherein an average particle diameter of nickel powder contained in the internal electrode material for a multilayer ceramic capacitor is ½ or more of a thickness of the internal electrode layer.
JP2014206729A 2014-10-07 2014-10-07 Internal electrode material for multilayer ceramic capacitor Pending JP2016076627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206729A JP2016076627A (en) 2014-10-07 2014-10-07 Internal electrode material for multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206729A JP2016076627A (en) 2014-10-07 2014-10-07 Internal electrode material for multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2016076627A true JP2016076627A (en) 2016-05-12

Family

ID=55950074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206729A Pending JP2016076627A (en) 2014-10-07 2014-10-07 Internal electrode material for multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2016076627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056433A (en) * 2016-09-30 2018-04-05 住友金属鉱山株式会社 Method for evaluation of internal electrode film of multilayer ceramic electronic part, and a method for manufacturing multilayer ceramic electronic part
WO2022114121A1 (en) * 2020-11-26 2022-06-02 住友金属鉱山株式会社 Conductive paste and multilayer ceramic capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480008A (en) * 1987-09-19 1989-03-24 Taiyo Yuden Kk Electrode paste for ceramic capacitor
JPH01258306A (en) * 1988-04-07 1989-10-16 Daido Steel Co Ltd Conductive paste
JPH11214242A (en) * 1998-01-26 1999-08-06 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component using the same
JP2002025360A (en) * 2001-04-16 2002-01-25 Murata Mfg Co Ltd Manufacturing method of oxidation resistant conductive powder, conductive powder, conductive paste, and laminated ceramic electronic component
JP2003013101A (en) * 2001-06-26 2003-01-15 Murata Mfg Co Ltd Method for manufacturing electroconductive powder with oxidation resistance, electroconductive powder, electroconductve paste and laminated ceramic electronic component
JP2004319435A (en) * 2003-03-31 2004-11-11 Tdk Corp Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JP2006332334A (en) * 2005-05-26 2006-12-07 Murata Mfg Co Ltd Laminated ceramic electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480008A (en) * 1987-09-19 1989-03-24 Taiyo Yuden Kk Electrode paste for ceramic capacitor
JPH01258306A (en) * 1988-04-07 1989-10-16 Daido Steel Co Ltd Conductive paste
JPH11214242A (en) * 1998-01-26 1999-08-06 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component using the same
JP2002025360A (en) * 2001-04-16 2002-01-25 Murata Mfg Co Ltd Manufacturing method of oxidation resistant conductive powder, conductive powder, conductive paste, and laminated ceramic electronic component
JP2003013101A (en) * 2001-06-26 2003-01-15 Murata Mfg Co Ltd Method for manufacturing electroconductive powder with oxidation resistance, electroconductive powder, electroconductve paste and laminated ceramic electronic component
JP2004319435A (en) * 2003-03-31 2004-11-11 Tdk Corp Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JP2006332334A (en) * 2005-05-26 2006-12-07 Murata Mfg Co Ltd Laminated ceramic electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056433A (en) * 2016-09-30 2018-04-05 住友金属鉱山株式会社 Method for evaluation of internal electrode film of multilayer ceramic electronic part, and a method for manufacturing multilayer ceramic electronic part
WO2022114121A1 (en) * 2020-11-26 2022-06-02 住友金属鉱山株式会社 Conductive paste and multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP6161950B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5967193B2 (en) Conductive paste and method for producing multilayer ceramic electronic component
KR101761939B1 (en) Laminated ceramic electronic parts and manufacturing method thereof
JP6429935B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US20130009515A1 (en) Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
KR20190129980A (en) Conductive paste
JP2011139019A (en) Conductive paste composition for internal electrode, and method of manufacturing laminated ceramic capacitor using the same
US20130002388A1 (en) Multilayered ceramic electronic component and manufacturing method thereof
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2013016454A (en) Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
JP2013214698A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component including the same
JP2012094809A (en) Multilayer ceramic electronic component and manufacturing method for the same
US8804301B2 (en) Conductive paste for internal electrode of multilayer ceramic electronic component and multilayer ceramic electronic component including the same
CN1250664C (en) Electricity conductive rubber and laminated ceramic electronic parts
JP2024032861A (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019121744A (en) Conductive paste, dried film thereof, internal electrode arranged by baking the same, and multilayer ceramic capacitor having the internal electrodes
JP2012195557A (en) Electrode sintered body, laminated electronic component, internal electrode paste, manufacturing method of electrode sintered body, and manufacturing method of laminated electronic component
KR20140025693A (en) Conductive paste for internal electrode, multilayer ceramic components using the same and manufacturing method of the same
KR20130027781A (en) Conductive paste and multi-layer ceramic electronic parts fabricated by using the same
JP2016076627A (en) Internal electrode material for multilayer ceramic capacitor
JP6533371B2 (en) Paste for laminated ceramic capacitor internal electrode, method of manufacturing the same, and conductive film obtained by paste for laminated ceramic capacitor internal electrode
JP6791194B2 (en) Multilayer ceramic capacitor internal electrode paste and its manufacturing method
JP6152808B2 (en) Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor
WO2021060540A1 (en) Electroconductive composition, electroconductive paste, electronic component, and laminated ceramic capacitor
JP7298238B2 (en) Conductive paste for internal electrodes, ceramic electronic components, and multilayer ceramic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807