WO2024084748A1 - 電波透過型遮熱複層ガラス - Google Patents

電波透過型遮熱複層ガラス Download PDF

Info

Publication number
WO2024084748A1
WO2024084748A1 PCT/JP2023/025232 JP2023025232W WO2024084748A1 WO 2024084748 A1 WO2024084748 A1 WO 2024084748A1 JP 2023025232 W JP2023025232 W JP 2023025232W WO 2024084748 A1 WO2024084748 A1 WO 2024084748A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ghz
radio wave
double
antimony
Prior art date
Application number
PCT/JP2023/025232
Other languages
English (en)
French (fr)
Inventor
正樹 伊地知
治江 伊地知
正宏 伊地知
Original Assignee
ヘラクレスガラス技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023102797A external-priority patent/JP7479734B1/ja
Application filed by ヘラクレスガラス技研株式会社 filed Critical ヘラクレスガラス技研株式会社
Publication of WO2024084748A1 publication Critical patent/WO2024084748A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor

Definitions

  • the present invention relates to a heat-shielding double-glazing unit that has high visible light transmittance while blocking the near-infrared region of sunlight, and that transmits radio waves in the 28 GHz frequency band, which is the millimeter wave band used in the 5th generation mobile communication system, and the 4.5 GHz frequency band and the 3.7 GHz frequency band, which are the Sub6 band.
  • the frequency range of the 28 GHz band is 27.0 GHz to 29.5 GHz
  • the frequency range of the 4.5 GHz band is 4.4 GHz to 4.9 GHz
  • the frequency range of the 3.7 GHz band is 3.6 GHz to 4.2 GHz
  • the structure shown in FIG. 1 is typical of double-glazed glass. That is, a spacer 13 containing a desiccant is placed around two glass sheets 11 and 12 arranged approximately in parallel, and a hollow layer 16 is formed between the two glass sheets. The effect of the hollow layer is to suppress thermal conductivity and improve insulation.
  • low-emissivity glass (so-called LowE glass) has become popular for one of the glass sheets 11 and 12, which suppresses radiant heat transfer and further improves insulation.
  • LowE glass has a high transmittance in the visible light range and ensures transparency, and has a low solar light transmittance, which can improve heat insulation in summer, and is rapidly becoming popular as a glass suitable for residential use for both winter insulation and summer heat insulation.
  • Non-Patent Document 1 Non-Patent Document 1
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-10609 Publication No. WO2013/122181 Publication No. WO2014/126135 JP 2021-172583 A Japanese Patent Application Laid-Open No. 9-100139
  • the present invention provides radio wave-transmitting heat-shielding double-insulating glass that makes it easier to take in the 28 GHz frequency band, which is the millimeter wave band of 5G radio waves used in the fifth generation mobile communication system, and the 4.5 GHz frequency band and the 3.7 GHz frequency band, which are the Sub6 band.
  • the present invention provides "5G-compatible radio wave-transmitting heat-shielding double-insulating glass” that does not block 5G radio waves while maintaining excellent thermal insulation and heat-shielding performance.
  • heat-shielding glass To function as heat-shielding glass, it needs to have high heat-shielding performance and high visible light transmittance. In particular, to function as a residential window, it needs to be transparent and transmit most visible light while blocking out sunlight. It is also desirable to block most ultraviolet rays to protect people and furniture from sunburn.
  • allowing 5G radio waves to pass through means that even after radio waves of the 28 GHz frequency band, which is a millimeter wave band, and the 4.5 GHz frequency band and the 3.7 GHz frequency band, which are Sub6 bands, pass through the heat-shielding double-glazing glass of the present invention, the strength of the radio waves in these frequency ranges is 50% or more (this corresponds to a voltage attenuation rate of the radio waves being 6 dB or less), and more preferably the strength of the radio waves in these frequency ranges is 70% or more (this corresponds to a voltage attenuation rate of the radio waves being 3 dB or less).
  • the present invention provides a radio wave transmitting heat shielding double-glazing unit, characterized in that a mixed coating of composite tungsten oxide microparticles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) microparticles is formed on the air layer side of one of the glass plates that constitutes the double-glazing unit, the ratio of the antimony-doped tin oxide ( SnO2 :Sb) to MxWOy is 5 to 20 wt%, the molar ratio x of the metal M to tungsten W is in the range of 0.8 to 1.1, and the metal M contains at least aluminum (Al), tin (Sn) and zinc (Zn), and the optical properties of the double-glazing unit include a visible light transmittance of 70% or more, a solar radiation transmittance of 40% or less, and an ultraviolet light transmittance of 1% or less, and further a radio wave attenu
  • the present invention further relates to a radio wave transmitting heat shielding double-glazing unit, characterized in that a mixed coating of composite tungsten oxide microparticles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) microparticles is formed on the air layer side of one of the glass plates constituting the double-glazing unit, the ratio of the antimony-doped tin oxide ( SnO2 :Sb) to MxWOy is 5 to 20 wt%, the molar ratio x of the metal M to tungsten W is in the range of 0.8 to 1.1, and the metal M contains at least aluminum (Al), tin (Sn) and zinc (Zn), and the optical properties of the double-glazing unit include a visible light transmittance of 70% or more, a solar radiation transmittance of 40% or less, and an ultraviolet light transmittance of 1% or less, and a radio wave attenuation rate of 3 dB or less in the
  • the metal M in the composite tungsten oxide MxWOy in the mixed coating of composite tungsten oxide particles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) particles replaces tungsten atoms in tungsten oxide or exists in solid solution in tungsten oxide, thereby causing oxygen deficiency, efficiently generating pentavalent tungsten ions W5 + , and promoting the near-infrared light absorption effect, i.e., heat shielding effect, of tungsten oxide.
  • the metal M contains Al, Sn, and Zn, but in addition to these, it may also contain potassium (K), yttrium (Y), zirconium (Zr), magnesium (Mg), nickel (Ni), manganese (Mn), calcium (Ca), strontium (Sr), europium (Eu), niobium (Nb), and iron (Fe).
  • K potassium
  • Y yttrium
  • Zr zirconium
  • magnesium Mg
  • Ni nickel
  • Mn manganese
  • Ca calcium
  • Eu europium
  • Nb niobium
  • Fe iron
  • the molar ratio X of metal M to tungsten W is preferably 0.8 to 1.1. If X exceeds 1.1, there will be an excess of metal ions, and the visible light transmittance will decrease. Conversely, if X is less than 0.8, there will be insufficient production of pentavalent tungsten ions, and the solar transmittance will increase.
  • the composite tungsten oxide contains Zn as the metal M other than W, and further contains at least Al and Sn. These actions allow it to have an ultraviolet shielding effect in addition to the near-infrared absorbing effect.
  • the composite tungsten oxide microparticles forming a mixed coating of composite tungsten oxide microparticles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) microparticles can be prepared by utilizing a known method disclosed in Patent Document 1, etc.
  • tungsten oxide hydrate ( H2WO4 ) or the like can be used as the tungsten oxide raw material
  • zinc acetate dihydrate (Zn( CH3COO ) 2.2H2O ) or the like can be used as the zinc oxide raw material
  • aluminum sulfate hydrate ( Al2 ( SO4 ) 3.16H2O ) or the like can be used as the aluminum oxide raw material
  • tin chloride dihydrate ( SnCl2.2H2O ) or the like can be used as the tin oxide raw material
  • potassium hydroxide ( KOH ) or the like can be used as the potassium oxide raw material
  • yttrium nitrate hydrate (Y( NO3 ) 3.6H2O ) or the like can be used as the yttrium oxide raw material
  • zirconia nanoparticle dispersion liquid or the like can be used as the zirconium oxide raw material.
  • An aqueous solution containing these raw materials in a prescribed ratio is stirred uniformly and
  • the antimony-doped tin oxide ( SnO2 :Sb) microparticles that form a mixed coating of composite tungsten oxide microparticles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) microparticles can be prepared, for example, using the method disclosed in Patent Document 2.
  • the mixed coating of composite tungsten oxide microparticles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) microparticles of the present invention can be prepared by dispersing the composite tungsten oxide microparticles and the antimony-doped tin oxide microparticles in a mixed solution of 40 to 50 wt% butyl cellosolve acetate, 5 to 15 wt% butyl acetate, and 5 to 15 wt% methyl ethyl ketone at 15 to 20 wt% composite tungsten oxide microparticles and 1 to 3% antimony-doped tin oxide, and then spraying and applying the dispersion to the surface of a plate glass using a spray gun.
  • the composite tungsten oxide microparticles are spherical and have an average particle size of 50 nm or less.
  • the composite tungsten oxide microparticles are well dispersed, and a coating with little scattering of visible light is obtained.
  • the particle size of the microparticles is small and they are uniformly dispersed without forming aggregates, the function of the microparticles is improved, the visible light transmittance is kept high, the solar radiation shielding property is improved, and the haze rate can be kept low.
  • the fact that they are highly dispersed without forming aggregates in this way also contributes to increasing the transmittance of 5G radio waves.
  • it is not easy to make the average particle size of the composite tungsten oxide microparticles 40 nm or less and in practice, composite tungsten oxide microparticles with an average particle size of 40 nm to 60 nm are used.
  • the mixing ratio of antimony-doped tin oxide particles in the mixed coating of composite tungsten oxide particles represented by the general formula MxWOy and antimony-doped tin oxide ( SnO2 :Sb) particles is preferably 5 to 20 parts per 100 parts of composite tungsten oxide particles. If it is less than 5 parts, the emissivity of the mixed coating becomes high, and when it is used as a double-glazing, the heat insulation cannot be increased. On the other hand, if it exceeds 20 parts, the transmittance of the mixed coating drops sharply.
  • the doping ratio of antimony in the antimony-doped tin oxide fine particles is preferably 3 to 10 mol%, and more preferably 5 to 7 mol%. If it is less than 5 mol%, the near-infrared shielding ability of the mixed coating begins to decrease, and the emissivity increases, resulting in poor thermal insulation when used as insulating glass. As the doping ratio exceeds 7 mol%, the visible light transmittance drops sharply, which is not preferable.
  • the mixed coating of the composite tungsten oxide and the antimony-doped tin oxide is applied to the surface of the plate glass, and the self-leveling properties at room temperature make it thin and uniform in thickness. It is then heated and dried at 30°C to 60°C for about 10 minutes, and then allowed to dry naturally overnight (temperature about 25°C, humidity about 50%) to form a coating consisting of composite tungsten oxide microparticles and antimony-doped tin oxide microparticles, and the heat-shielding glass used to make the radio wave-transmitting heat-shielding double-insulating glass of the present invention can be produced.
  • the radio wave-transmitting heat-shielding double-glazing of the present invention can be obtained by fabricating the general double-glazing shown in FIG. 1 using the heat-shielding glass obtained by the above-mentioned method as one of the constituent glass plates 11 or 12.
  • the mixed coating of composite tungsten oxide microparticles and the antimony-doped tin oxide microparticles formed on the surface of the heat-shielding glass is arranged so as to face the air layer 16.
  • a high visible light transmittance is 70% or more in radio wave-transmitting heat-shielding insulating glass coated with a mixed coating of composite tungsten oxide microparticles and antimony-doped tin oxide microparticles, and can be achieved by the configuration of the present invention.
  • excellent solar radiation shielding properties means that the radio wave-transmitting heat-shielding double-glazed glass of the present invention is able to satisfy the performance requirements of a solar radiation transmittance of 40% or less and an ultraviolet ray transmittance of 1% or less, which can be achieved by the configuration of the present invention.
  • high radio wave transmittance at 5G means that the attenuation rate of radio waves in the 28 GHz frequency band, which is a millimeter wave band, does not exceed 50% (6 dB or less), and the attenuation rate of radio waves in the 4.5 GHz frequency band and 3.7 GHz frequency band, which are Sub6 bands, does not exceed 30% (3 dB or less).
  • the transmittance of radio waves in the 28 GHz band is 50% or more in terms of radio wave strength
  • the transmittance of radio waves in the 4.5 GHz band and 3.7 GHz band is 70% or more in terms of radio wave strength.
  • the plate glass that can be used in the radio wave transmitting heat shielding double glazing of the present invention may be float plate glass, which is a common clear glass.
  • heat absorbing glass such as green glass may be used.
  • ultraviolet shielding glass may be used.
  • Patent Document 3 discloses heat-blocking glass and double-glazing using the same, which consists of heat-blocking glass made of green glass that absorbs heat rays and ultraviolet rays and is coated with a low-radiation film made of a multilayer film containing a silver layer and has a normal emissivity of 0.2 or less, and double-glazing in which the heat-blocking glass is placed on the outdoor side and clear glass on the indoor side, and the low-radiation film is placed on the inside surface of the heat-blocking glass.
  • Patent Document 4 aims to provide a heat ray reflecting, radio wave transmitting transparent laminate that is excellent in heat ray reflectivity, transparency, and radio wave transmitting properties in the frequency bands of televisions, communication devices, mobile phones, etc., and is a heat ray reflecting, radio wave transmitting transparent laminate in which a transparent dielectric layer B, a discontinuous metal layer C, and a transparent dielectric layer D are sequentially laminated on at least one surface of a substrate A made of a transparent plastic film or the like, and is a heat ray reflecting, radio wave transmitting transparent laminate that has a specific radio wave shielding effect, a specific visible light transmittance, and a specific infrared transmittance.
  • a silver film formed in a spotted form is given as an example of the discontinuous metal layer C.
  • a silver film as a continuous film is inappropriate, and it is necessary to form it in a discontinuous spotted form, etc.
  • Patent Document 5 aims to provide a heat ray reflective, radio wave transmissive transparent laminate that prevents indoor temperature rises by blocking heat rays from the sun, saves energy, maintains and improves transparency by transmitting visible light, and has excellent transmittance for radio waves in the frequency bands of communication devices, televisions, mobile phones, etc.
  • the heat ray reflective, radio wave transmissive transparent laminate has an insulator layer B, a transparent dielectric layer C, a discontinuous metal layer D, and a transparent dielectric layer E laminated in this order on at least one surface of a substrate A.
  • the metal layer D (silver is exemplified) needs to be formed in a discontinuous form such as an island shape.
  • Patent Document 6 discloses a multi-layer glass panel that has a first glass plate, a second glass plate arranged opposite the first glass plate, and a spacer arranged between the first glass plate and the second glass plate to form a gap layer between the first glass plate and the second glass plate, and has a coated area on at least one of the plate surfaces of the first glass plate and the second glass plate, where a Low-E film is formed, and an exposed area on which the Low-E film is not formed, with the aim of providing a multi-layer glass panel that can ensure radio wave transmission while having sufficient thermal insulation properties.
  • the mixed coating of composite tungsten oxide microparticles and the antimony-doped tin oxide microparticles does not need to be in such a discontinuous form or have notches.
  • Patent document 7 aims to obtain a glass plate that effectively balances transparency, mirror properties, and heat insulation properties with a simple film structure, is friendly to people and the environment, has excellent livability, exhibits a deep green glass surface reflection color, and is radio wave transparent, and the glass plate is formed on one surface of a transparent glass substrate with a first layer from the glass surface side, a thin Sn oxide film having a film thickness of 10 nm to 200 nm, and a second layer on top of the first layer, having a film thickness of 1 nm to 15 nm and a surface resistivity of 1 k ⁇ /mm or more.
  • the document discloses a glass plate with improved livability, which is made of a laminated film of at least one thin film selected from the group of metals Ti, SUS, NiCr and nitrides mainly composed of these metals, and a thin film of Sn oxide having a thickness of 30 to 200 nm on the second layer, and either the first or third layer has a thickness of 70 to 200 nm, and the glass surface reflection color is a high saturation green color with an excitation purity of 10% or more in the visible light wavelength range of the reflected light from the glass surface side.
  • radio wave transmittance the only thing stated about radio wave transmittance is that the surface resistance of the thin film was 1 to 5 k ⁇ / ⁇ , and it is unclear whether 5G radio waves can be transmitted through it. And above all, if a visible light transmittance of 50 to 70% is to be ensured, the solar radiation transmittance will be as high as 50 to 60%, and the solar radiation shielding ability will be extremely poor.
  • the radio wave-transmitting heat-shielding double-insulating glass of the present invention maintains a high visible light transmittance of 70% or more, while exhibiting excellent heat-shielding properties with a solar radiation transmittance of 40% or less and excellent ultraviolet shielding properties with an ultraviolet ray transmittance of 1% or less.
  • the transmission loss of the millimeter wave band of 28 GHz which is the 5G radio wave used in the fifth generation mobile communication system, can be suppressed to 6 dB or less
  • the transmission loss of the Sub6 band of 4.5 GHz and 3.7 GHz frequencies can be suppressed to 3 dB or less.
  • the radio wave-transmitting heat-shielding double-insulating glass of the present invention is extremely suitable as a heat-shielding double-insulating glass to be used in future homes.
  • FIG. 1 is a diagram showing the structure of a typical insulating glass.
  • FIG. 2 is a graph comparing the radio wave transmittance in the millimeter wave band of the radio wave transmitting heat insulating double glazing of the present invention with that of a comparative example.
  • FIG. 4 is a graph comparing the radio wave attenuation rate in the millimeter wave band of the radio wave transmitting heat insulating double glazing of the present invention with that of a comparative example.
  • FIG. 2 is a graph showing the radio wave transmittance in the Sub 6 band of the radio wave transmitting heat insulating double glazing of the present invention compared with that of a comparative example.
  • FIG. 2 is a graph showing the radio wave attenuation rate in the Sub 6 band of the radio wave transmitting heat insulating double glazing of the present invention in comparison with that of the comparative example.
  • the visible light transmittance (wavelength range: 380 nm to 780 nm), ultraviolet light transmittance (wavelength range: 300 nm to 380 nm), and solar radiation transmittance (wavelength range: 300 nm to 2500 nm) were measured using a spectrophotometer UH-4150 manufactured by Hitachi, Ltd.
  • composite tungsten oxide was prepared by weighing out tungsten oxide hydrate ( H2WO4 ) as the tungsten oxide raw material, zinc acetate dihydrate (Zn( CH3COO ) 2.2H2O ) as the zinc oxide raw material, aluminum sulfate hydrate ( Al2 ( SO4 ) 3.16H2O ) as the aluminum oxide raw material, and tin chloride dihydrate ( SnCl2.2H2O ) as the tin oxide raw material in a molar fraction of 1: 0.1 : 0.25 : 0.4 , pulverizing them in a mortar to obtain powder, and reducing and firing them by a known method to obtain composite tungsten oxide fine particles.
  • the molar ratio x of metal M to tungsten W is stoichiometrically 1.0.
  • antimony-doped tin oxide manufactured by Mitsubishi Materials Electronic Chemicals
  • the doping ratio of antimony was 5 mol%.
  • 17.5 wt% of the composite tungsten oxide microparticles and 2.5 wt% of antimony-doped tin oxide were dispersed in an organic solvent consisting of 50 wt% butyl cellosolve acetate, 15 wt% butyl acetate, and 15 wt% methyl ethyl ketone as a dispersant.
  • an organic solvent consisting of 50 wt% butyl cellosolve acetate, 15 wt% butyl acetate, and 15 wt% methyl ethyl ketone as a dispersant.
  • a stirrer was used to process the mixture at 1000 rpm for 10 minutes to produce a mixed dispersion of composite tungsten oxide microparticles and antimony-doped tin oxide microparticles.
  • a small amount of baking soda powder was sprinkled on the surface of a transparent glass plate (known as FL3) measuring 150 mm wide x 150 mm long x 3 mm thick, and the surface was cleaned by rubbing it with a sponge moistened with water. The baking soda on the glass surface was then completely washed off with water.
  • FL3 transparent glass plate
  • the previously prepared mixed dispersion of composite tungsten oxide microparticles and antimony-doped tin oxide microparticles was sprayed onto the surface of the glass substrate using a spray gun at approximately 5 g per sheet.
  • the self-leveling properties of the glass allowed it to have a thin, uniform thickness at room temperature. It was then dried by heating at 30°C to 60°C for about 10 minutes, and then naturally dried overnight (temperature about 25°C, humidity about 50%) to form a coating made of composite tungsten oxide particles and antimony-doped tin oxide particles, producing the heat-shielding glass used in the manufacture of the radio wave-transmitting heat-shielding insulating glass of the present invention. The film thickness was measured to be 3 ⁇ m.
  • Table 1 The optical properties of the radio wave-transmitting heat-shielding double-insulating glass obtained in this manner (Example 1) were evaluated, and the results are summarized in Table 1.
  • Table 1 also lists the optical properties of two types of commercially available double-insulating glass. Of the two types, one has a low-emissivity film (so-called soft-coated LowE film) made of Ag film formed on the glass surface, and the other has a low-emissivity film (so-called hard-coated LowE film) made of fluorine-doped tin oxide film formed on the glass surface.
  • Double-insulating glass 1 has a slightly low visible light transmittance and a slightly high ultraviolet light transmittance.
  • Commercially available double-insulating glass 2 has a high solar transmittance of 61%, poor heat shielding properties, and high ultraviolet light transmittance.
  • Example 1 of the present invention was measured at the Kanagawa Industrial Technology Research Institute, a local independent administrative institution. Evaluation was performed by measuring the reception power ratio when the glass was sandwiched between the antennas and when it was not sandwiched between the antennas using a network analyzer.
  • Figure 2 shows the measurement results of radio wave transmittance in the frequency range of 15 GHz to 40 GHz, which is a measurement range sandwiching the 28 GHz frequency band, which is the millimeter wave band.
  • S21 corresponds to the strength of the transmitted radio waves
  • the dashed line shows the reference value when nothing is sandwiched between the antennas.
  • Samples A and B are commercially available double-glazed glass 1 and commercially available double-glazed glass 2, respectively. It can be seen that the radio waves in the vicinity of the 28 GHz band are attenuated to about 30 to 50 dB.
  • sample C which corresponds to Example 1 of the present invention, the deviation from the reference value is small, and it can be seen that there is little attenuation of the radio waves.
  • Figure 3 shows the ratio of the received power in the millimeter wave band (frequency 28 GHz band) when the embodiment 1 (sample C) of the present invention and the commercially available double-glazed glass 1 (sample A) and 2 (sample B) are sandwiched, with the reference value being the state without glass, i.e., the state of nothing but air.
  • the radio wave attenuation rate when the embodiment of the present invention is sandwiched and the radio wave attenuation rate when the commercially available double-glazed glass 1 and 2 are sandwiched are shown, with the air state being 0 dB.
  • the attenuation rate at 15 GHz is almost 0 dB for sample C (radio wave-transmitting heat-shielding double-glazed glass), which is the embodiment 1 of the present invention, and then the attenuation rate gradually increases toward the frequency of 28 GHz, but the attenuation rate at 28 GHz is 2.8 dB, and about 70% of the radio waves are transmitted, and it was found that the radio wave attenuation rate is small. Above 28 GHz, the attenuation rate is 4.97 dB at 29.5 GHz.
  • the attenuation rate gradually increases up to 32-33 GHz, and the radio wave attenuation rate reaches about 10 dB. After that, the attenuation rate gradually decreases toward 40 GHz, and at 40 GHz, the attenuation rate is 1 dB or less.
  • the attenuation rate reaches 35 dB at 15 GHz, and thereafter, there is no significant change in the attenuation rate toward a frequency of 28 GHz.
  • the attenuation rate is 31 dB, and it was found that the radio waves are attenuated to 1/40. Above 28 GHz, the attenuation rate gradually increases, and at 40 GHz, the attenuation rate is approximately 43 dB.
  • the attenuation rate exceeds 22 dB at 15 GHz, and then shows a small increase or decrease toward a frequency of 28 GHz.
  • the attenuation rate at 28 GHz is 16.3 dB, and it was found that the radio waves are attenuated to about 1/7. Above 28 GHz, the attenuation rate gradually increases, and at 40 GHz, the attenuation rate is approximately 29 dB.
  • Table 2 shows the millimeter wave band measurement results for sample C of the present invention, from 24 GHz to 30 GHz in 0.25 GHz increments, and from 30 GHz to 40 GHz in 0.5 GHz increments. Attenuation rates near 3 dB and near 6 dB are shown in detail. Also, data for the 28 GHz band frequencies of 27.0 GHz to 29.5 GHz are enclosed in a thick frame.
  • sample C which is an embodiment of the present invention, has an attenuation rate of 2.15 dB to 4.98 dB, which is below 5 dB.
  • the attenuation rate is 3 dB or less, and more than 70% of the radio waves are transmitted.
  • the attenuation rate is 3 dB to 5 dB.
  • the attenuation rate is 5 dB to 6 dB.
  • Figures 4 and 5 show the measurement results of radio wave transmittance in the Sub6 frequency band of 4.5 GHz and 3.7 GHz.
  • the measured frequency range is 2 GHz to 18 GHz.
  • Figure 4 shows the measurement results comparing the reference value when no glass is sandwiched (when there is only air between the opposing antennas) with the result when glass is sandwiched
  • Figure 5 shows the difference between the measurement results and the reference value for Example 1 of the present invention (Sample C), commercially available double-glazing glass 1 (Sample A), and commercially available double-glazing glass 2 (Sample B).
  • Example 1 (sample C) of the present invention shows almost no radio wave attenuation at 2 GHz, an attenuation rate of 0.9 dB at 3.7 GHz, and 1.6 dB at 4.5 GHz, and then a maximum value of about 10 dB in the 10-11 GHz range.
  • commercially available double-glazed glass 1 (sample A) shows an attenuation of 25 dB at 2 GHz, and then shows maximum values near 4.5 GHz, 10 GHz, and 14 GHz, with an attenuation rate of 40 dB or more, and the radio wave strength attenuating to 1/100 or less.
  • example B shows an attenuation of 20 dB around 2 GHz, and then the attenuation rate is about 20 dB to 30 dB up to 18 GHz, and the strength of the radio waves is attenuated to at least 1/10 or less.
  • Table 3 shows the attenuation rate data for sample C, which is an embodiment of the present invention, in the 3.7 GHz and 4.5 GHz bands, which are radio waves for 5G communication in the Sub6 band.
  • the attenuation rate at 3 GHz was 0.045 dB, which means there was almost no attenuation, and in the 3.7 GHz band, which is the frequency range of 3.6 GHz to 4.2 GHz, the attenuation rate was 0.75 to 1.35 dB, meaning that 85% or more of the radio waves were transmitted. In the 4.5 GHz band, which is the frequency range of 4.4 GHz to 4.9 GHz, the attenuation rate was 1.52 dB to 1.92 dB, meaning that 80% or more of the radio waves were transmitted. Furthermore, on the higher frequency side, the attenuation rate was 3 dB or less up to 6.06 GHz, and was determined to be 6 dB or less up to less than 7.6 GHz.
  • Example 1 of the present invention it was found that the attenuation rate was 2.16 dB to 4.98 dB at frequencies of 27.0 GHz to 29.5 GHz in the 28 GHz band, which is the millimeter wave band used in the fifth generation mobile communication systems, the attenuation rate was 1.52 to 1.92 dB at frequencies of 4.4 GHz to 4.9 GHz in the 4.5 GHz band, which is the Sub6 band, and the attenuation rate was 0.76 dB to 1.35 dB at frequencies of 3.6 GHz to 4.2 GHz in the 3.7 GHz band, which is also the Sub6 band. In other words, it was found that at least 50% of millimeter wave radio waves are transmitted, and at least 70% of Sub6 band radio waves are transmitted.
  • the relationship between the radio wave attenuation rate and the radio wave transmittance has been calculated using the following relational formula. That is, the ratio of the voltage of the emitted radio wave to the voltage of the radio wave transmitted through the glass placed between the network analyzer to measure the radio wave transmittance is the radio wave transmittance, and taking the logarithm of this and multiplying it by 20 is the radio wave attenuation rate (dB), which corresponds to the radio wave reception power ratio. For example, if 0.7 (70%) is substituted into this formula as the radio wave transmittance, the radio wave attenuation rate is calculated as -3.09. This is expressed as a radio wave attenuation rate of 3.09 dB.
  • Transmittance of radio waves Voltage (amplitude) of transmitted radio waves / Voltage (amplitude) of emitted radio waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】本発明は、高い可視光透過率と優れた日射遮蔽性能及び紫外線遮蔽性能を有し、かつ第5世代移動通信システムに使用されるミリ波帯(28GHz帯)及びSub6帯(周波数4.5GHz帯及び3.7GHz帯)の電波を透過する電波透過遮熱複層ガラスを提供することを目的する。 【解決手段】複層ガラスを構成する1枚の板ガラスの空気層側に、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO2:Sb)微粒子の混合被膜が形成されていて、前記アンチモンドープ酸化錫(SnO2:Sb)のMxWOyに対する割合が5から20wt%であって、前記金属MのタングステンWに対するモル比xが0.8~1.1の範囲にあり、金属Mが少なくともアルミニウム(Al)、錫(Sn)及び亜鉛(Zn)を含有する。

Description

電波透過型遮熱複層ガラス
 本発明は、日射光の近赤外線領域を遮蔽しつつ、高い可視光透過率を有する遮熱複層ガラスで、かつ第5世代移動通信システムに用いられるミリ波帯である周波数28GHz帯及びSub6帯である周波数4.5GHz帯及び周波数3.7GHz帯の電波を透過する電波透過型遮熱複層ガラスに関する。なお、28GHz帯の周波数範囲は27.0GHz~29.5GHzであり、4.5GHz帯の周波数範囲は4.4GHz~4.9GHzであり、3.7GHz帯の周波数範囲は3.6GHz~4.2GHzであって、これらの点は当業者にとって周知であり、自明な事項である。
複層ガラスとしては、図1に示す構造のものが一般的である。すなわち、略平行に配置された2枚の板ガラス11及び12の四周に乾燥剤が封入されたスペーサー13が配置されて、2枚の板ガラスの間に中空層16が形成されている。中空層の効果で熱伝導性が抑えられることから断熱性が高められる。近年では、板ガラス11及び12のうち、いずれか一方を低放射率ガラス(いわゆるLowEガラス)として、放射伝熱を抑えることによりさらに断熱性を高めたものが普及している。そして、LowEガラスが、可視光領域では高い透過率を有し透明性を確保するととも、日射光透過率が低いことから夏場の遮熱性を高めることができることにより、冬の断熱にも夏の遮熱にも住宅用に好適なガラスとして、さらに急速に普及してきている。
このようなLowEガラスは、最近の研究によると、次世代(第5世代)移動通信システムで用いられる28GHzのミリ波を1/10000に減衰することが判明した。そのため、LowEガラスを用いた複層ガラス窓が5G電波を透過させるためには、LowEガラスの被膜をミクロン単位の縞模様に加工する必要のあることがわかってきた(非特許文献1)。
特開2012-229388号公報 WO2013―147029号公報 特開平7-10609号公報 WO2013/122181号公報 WO2014/126135号公報 特開2021-172583号公報 特開平9-100139号公報
https://xtech.nikkei.com/atcl/nxt/column/18/00001/05529/
本発明は、第5世代移動通信システムに用いられる5G電波のミリ波帯である周波数28GHz帯及びSub6帯である周波数4.5GHz帯及び周波数3.7GHz帯を屋外から屋内に取り込み易くする電波透過型遮熱複層ガラスを提供するものである。すなわち、本発明は、優れた断熱性能と遮熱性能を保ちつつ5Gの電波を遮らない「5G対応電波透過型遮熱複層ガラス」を提供する。
 ここで遮熱ガラスとして機能するには、高い遮熱性能を有すると同時に、高い可視光透過率を有する必要がある。特に、住宅の窓として機能するには、日射光を遮蔽する中で、可視光線の多くを透過し、透明である必要があるからである。また人体や家具類を日焼けから守るために、紫外線の多くを遮蔽することが望ましい。
 このような遮熱ガラスにおいて、可視光透過率が70%以上、日射透過率が40%以下、紫外線透過率が1%以下という性能を全て満足することは難しく、また、該遮熱ガラスを、複層ガラスを構成する1枚の板ガラスとして用いた複層ガラスにおいても、可視光透過率が70%以上、日射透過率が40%以下、紫外線透過率が1%以下という性能を全て満足することも困難であった。
 すなわち、このような複層ガラスにおいて、可視光透過率が70%以上、日射透過率が40%以下、紫外線透過率が1%以下という性能を満足させて高透明な日射遮蔽複層ガラスとすることは難しいが、本発明では、これらの性能を満足させつつ、さらに5Gの電波も透過させることを目的とする。5Gの電波を透過させるとは、具体的にはミリ波帯である周波数28GHz帯及びSub6帯である周波数4.5GHz帯及び周波数3.7GHz帯の電波が、本発明の遮熱複層ガラスを透過した後も、これらの周波数範囲の電波の強度が50%以上ある(これは、電波の電圧減衰率が6dB以下に相当する。)、さらに望ましくはこれら周波数範囲での電波の強度が70%以上ある(これは、電波の電圧減衰率が3dB以下に相当する。)という意味である。
 前記従来の課題を解決するために、本発明は、複層ガラスであって、該複層ガラスを構成する1枚の板ガラスの空気層側に、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜が形成されていて、前記アンチモンドープ酸化錫(SnO:Sb)のMxWOyに対する割合が5から20wt%であって、前記金属MのタングステンWに対するモル比xが0.8~1.1の範囲にあり、金属Mが少なくともアルミニウム(Al)、錫(Sn)及び亜鉛(Zn)を含有し、該複層ガラスの光学特性が、可視光線透過率が70%以上及び日射透過率が40%以下であり、紫外線透過率が1%以下であり、さらに第5世代移動通信システムで用いられるミリ波帯である周波数28GHz帯の電波減衰率が6dB以下であることを特徴とする電波透過型遮熱複層ガラスである。
 さらに本発明は、複層ガラスであって、該複層ガラスを構成する1枚の板ガラスの空気層側に、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜が形成されていて、前記アンチモンドープ酸化錫(SnO:Sb)のMxWOyに対する割合が5から20wt%であって、前記金属MのタングステンWに対するモル比xが0.8~1.1の範囲にあり、金属Mが少なくともアルミニウム(Al)、錫(Sn)及び亜鉛(Zn)を含有し、該複層ガラスの光学特性が、可視光線透過率が70%以上及び日射透過率が40%以下であり、紫外線透過率が1%以下であり、さらに第5世代移動通信システムで用いられるSub6帯である周波数4.5GHz帯及び周波数3.7GHz帯の電波減衰率が3dB以下であることを特徴とする電波透過型遮熱複層ガラスである。
 本発明において、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜中の複合酸化タングステンMxWOy中の金属Mは、酸化タングステンにおけるタングステン原子を置換するか酸化タングステン中に固溶して存在し、そのことにより酸素欠損を生じさせ、5価のタングステンイオンであるW5+を効率的に生成させ、酸化タングステンの近赤外光吸収効果、すなわち遮熱効果を促進する。本発明においては、金属Mとして、Al、Sn及びZnを含有することが必須であるが、これら以外にカリウム(K)、イットリウム(Y)及びジルコニウム(Zr)、マグネシウム(Mg)、ニッケル(Ni)、マンガン(Mn)、カルシウム(Ca)、ストロンチウム(Sr)、ユーロピウム(Eu)、ニオビウム(Nb)及び鉄(Fe)を含有していてもよい。
 本発明において、金属MのタングステンWに対するモル比Xは、0.8~1.1であるのがよい。Xが1.1を超えると、金属イオンが過多になって可視光透過率が低下する。逆に、Xが0.8より小さいと、5価のタングステンイオンの生成が不足し、日射透過率が増大してしまう。
本発明では、複合タングステン酸化物が、W以外の金属MとしてZnを含有し、さらに少なくともAl及びSnを含有させる。これらの作用によって、近赤外線の吸収効果に加えて、紫外線の遮蔽効果を併せ持つことができる。
 本発明において一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜を形成する複合酸化タングステン微粒子は、特許文献1等に開示されている公知の方法を利用して作製することができる。すなわち、酸化タングステン原料としては酸化タングステン水和物(H2WO4)等を、酸化亜鉛原料としては酢酸亜鉛二水和物(Zn(CH3COO)2・2H2O)等を、酸化アルミニウム原料としては硫酸アルミニウム水和物(Al2(SO4)3・16H2O)等を、酸化スズ原料としては塩化スズ二水和物(SnCl2・2H2O)等を、酸化カリウム原料としては水酸化カリウム(KOH)等を、酸化イットリウム原料としては硝酸イットリウム水和物(Y(NO33・6H2O)等を、酸化ジルコニウム原料としてはジルコニアナノ粒子分散液等を利用することができる。これら原料を所定の比率で含有させた水溶液を均一に撹拌し、不活性ガス雰囲気中で約650℃の温度で焼成することにより、分子レベルで均一な複合酸化タングステン微粒子を得ることができる。
 本発明において一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜を形成するアンチモンドープ酸化錫(SnO:Sb)微粒子は、例えば特許文献2に開示された方法を用いて作製することができる。
 本発明の、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜は、前記複合酸化タングステン微粒子と前記アンチモンドープ酸化錫微粒子とを、ブチルセロソルブアセタート40~50wt%、酢酸ブチル5~15wt%、メチルエチルケトン5~15wt%の混合溶液に、前記複合酸化タングステン微粒子15~20wt%、アンチモンドープ酸化錫1~3%を分散させ、スプレーガンにより板ガラス表面に噴霧し塗布することができる。
本発明において、複合酸化タングステン微粒子は平均粒径が50nm以下の球形とすることが望ましい。平均粒径を50nm以下の球形とすることにより、複合酸化タングステン微粒子の分散状態がよく、可視光の散乱が少ない被膜が得られる。また、微粒子の粒径が小さく、凝集体を形成することなく均一に分散していることから、微粒子の機能が向上し、可視光透過率を高く保ち、日射遮蔽性も向上し、ヘイズ率も低く抑えることができる。そして、このように凝集体を形成することなく、高度に分散していることも、5G電波の透過率を高めることに貢献しているものと考えられる。但し、複合タングステン酸化物微粒子の平均粒径を40nm以下にすることは容易ではなく、実用上は平均粒径が40nm~60nmの複合酸化タングステン微粒子を利用することになる。
本発明において前記一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜中のアンチモンドープ酸化錫微粒子の混合割合は、複合酸化タングステン微粒子100部に対して5部から20部であることが望ましい。5部より少ないと、該混合被膜の放射率が高くなってしまい、複層ガラスとした場合に断熱性を高くすることができない。一方、20部を超えると混合被膜の透過率が急激に低下する。
前記アンチモンドープ酸化錫微粒子中のアンチモンのドープ割合は3~10mol%が適当であって、より望ましくは5~7mol%である。5mol%を下回ると、前記混合被膜の近赤外線遮蔽能が低下しはじめ、また放射率が高くなることから複層ガラスとした場合の断熱性が悪化する。ドープ割合が7mol%を超えるに従い可視光透過率が急激に低下するので好ましくない。
前記複合酸化タングステンと前記アンチモンドープ酸化錫の混合被膜を板ガラス表面に塗布し、常温でセルフレベリング特性により薄く均一な厚さとする。その後30℃から60℃で約10分間加熱乾燥し、さらに一昼夜自然乾燥(温度約25℃、湿度約50%)させて、複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子からなる被膜を形成し、本発明の電波透過型遮熱複層ガラスの作製に用いる遮熱ガラスを作製することができる。
本発明の電波透過型遮熱複層ガラスは、前記した方法で得た遮熱ガラスを、構成する1枚の板ガラス11又は12として、図1に示した一般的な複層ガラスを作製することにより、得ることができる。その場合、遮熱ガラス表面に形成した複合酸化タングステン微粒子と前記アンチモンドープ酸化錫微粒子の混合被膜は空気層16に面するように配置する。
なお、高い可視光線透過率とは、複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子の混合被膜が塗布された電波透過型遮熱複層ガラスにおいて、70%以上であって、本発明の構成によって達成することができる。
また、優れた日射遮蔽性とは、本発明の電波透過型遮熱複層ガラスで、日射透過率が40%以下、紫外線透過率が1%以下という性能を満足することができることを言うが、本発明の構成によって達成することができる。
そして、本発明の電波透過型遮熱複層ガラスにおいて、5Gにおける高い電波透過性とは、ミリ波帯である周波数28GHz帯の電波の減衰率が50%を上回らない(6dB以下)こと及びSub6帯である周波数4.5GHz帯及び周波数3.7GHz帯の電波の減衰率が30%上回らない(3dB以下)ことである。逆に言えば、本発明の電波透過型遮熱複層ガラスを透過後も、28GHz帯の電波の透過率が、電波の強度として50%以上あり、4.5GHz帯及び3.7GHz帯の電波の透過率が、電波の強度として70%以上あることを言う。
本発明の電波透過型遮熱複層ガラスに用いることのできる板ガラスとしては、一般的なクリアガラスであるフロート板ガラスを用いればよい。また、遮熱性を高めるために、グリーンガラスなどの熱線吸収ガラスを用いてもよい。あるいは、紫外線遮蔽性を高めるために、紫外線吸収ガラスを用いることもできる。
ここで、本発明の特徴を明確にするため、いくつかの公知例と比較して、本発明の優位点を説明する。
特許文献3は、熱遮断ガラスおよびそれを用いた複層ガラスを開示したもので、熱線・紫外線吸収緑色系ガラスに、銀層を含む多層膜からなる垂直放射率0.2以下の低放射性膜を被膜形成した熱遮断ガラス、および該熱遮断ガラスを屋外側、クリアー系ガラスを屋内側に配設し、前記低放射性膜を熱遮断ガラスの内側面に配した複層ガラスからなる。優れた日射遮蔽性(40%以下)と比較的高い可視光透過性(67~69%)と断熱性を有するが、電波透過性についてはなんら言及がなく、導電性の高い銀層を含む多層膜を利用していることから第5世代移動通信システムに用いられる電波を反射するものと考えられる。
特許文献4は、熱線反射性、透明性、かつテレビや通信機器、携帯電話等の周波数帯域の電波透過性に優れた熱線反射電波透過透明積層体を提供することを目途としたもので、透明プラスチックフィルムなどからなる基材Aの少なくとも一方の面に、透明誘電体層B、不連続な金属層C、透明誘電体層Dが順次積層された熱線反射電波透過透明積層体であって、特定の電波遮蔽効果、特定の可視光線透過率、及び特定の赤外線透過率を有する熱線反射電波透過透明積層体である。ここで、不連続な金属層Cの例として斑点状に形成した銀膜が挙げられている。テレビや通信機器、携帯電話等の周波数帯域電波を透過させるためには連続膜としての銀膜は不適当であって、不連続な斑点状などの形態で形成する必要があるのである。
特許文献5は、太陽の熱線遮蔽による室内温度の上昇防止や省エネ、可視光線の透過による透明性の保持、向上、通信機器やテレビ、携帯電話等の周波数帯域の電波の透過性に優れた熱線反射電波透過透明積層体を提供することを目途としたもので、熱線反射電波透過透明積層体は、基材Aの少なくとも一方の面に、絶縁体層B、透明誘電体層C、不連続な金属層D、透明誘電体層Eが順次積層されている。ここでも、通信機器やテレビ、携帯電話等の周波数帯域の電波の透過させるためには、金属層D(銀を例示)は島状等の不連続な形態で形成する必要があるのである。
特許文献6は、十分な断熱性を有しつつ電波透過性の確保が可能な複層ガラスパネルを提供することを目途として、第1ガラス板と、第1ガラス板と対向配置される第2ガラス板と、第1ガラス板と第2ガラス板との間に配置され、第1ガラス板と第2ガラス板の間に空隙層を形成するスペーサーとを備え、第1ガラス板及び第2ガラス板の少なくとも一方の板面に、LowE膜が形成された被膜領域と、LowE膜が形成されていない露出領域とを有する複層ガラスパネルを開示している。ここでも、電波透過性を確保するため、Low-E膜が形成されていない露出領域を設けることが必須で、実施例によれば、露出領域に対応する位置に電波を受信するためのアンテナが設けられている。
このように従来の低放射率膜(LowE膜)を用いた複層ガラスにおいては、通信等に用いられる電波を透過させようとすると、低放射率膜を斑点状や島状の不連続な膜として形成するか、電波を透過させるための切り欠きを設ける必要があったが、本発明においては、複合酸化タングステン微粒子と前記アンチモンドープ酸化錫微粒子の混合被膜は、そのような不連続な形態にしたり切り欠きを設ける必要はない。
特許文献7は、簡単な膜構成等で、透明性とミラー性並びに断熱性を効果的にバランスよく持たせて同時に満足し、人や環境に優しくかつ居住性に優れ、濃いグリーン色系ガラス面反射色調を呈しかつ電波透過性を有するガラス板を得ることを目途として、透明なガラス基板の一方の表面に、ガラス面側から第1層目として膜厚が10nm以上200nm 以下であるSnの酸化物薄膜、第1層の上に第2層目として膜厚が1nm以上15nm以下でかつその表面抵抗率が1kΩ/口以上であるTi、SUS、NiCrの金属ならびにこれらを主成分とする窒化物の群から選ばれた少なくとも一つの薄膜、さらに第2層の上に膜厚が30nm以上200nm 以下であるSnの酸化物薄膜を被覆積層した積層膜からなり、かつ第1層目と第3層目のうちどちらか一方の膜厚が70nm~200nm であり、しかもガラス面側からの反射光の可視光線波長域での刺激純度が10%以上である高彩度のグリ-ン色系のガラス面反射色調を呈する居住性を高めたガラス板が開示されている。この引例においては、電波透過性については、前記薄膜の表面抵抗値が1~5kΩ/□であったことが記載されているだけで5G電波を透過するかどうかは不明である。そして何よりも、可視光透過率を50~70%確保しようとすると日射透過率が50~60%と高い値となり、日射遮蔽性が極めて劣る。
 本発明の電波透過型遮熱複層ガラスは、70%以上という高い可視光透過率を維持しながら、日射透過率が40%以下という優れた遮熱性及び紫外線透過率が1%以下という優れた紫外線遮蔽性を示す。また、第5世代移動通信システムで用いられる5G電波である周波数28GHz帯のミリ波帯の透過損失を6dB以下に、及び周波数4.5GHz帯及び周波数3.7GHz帯のSub6帯の透過損失を3dB以下に抑えることができる。これは、市販のいわゆるLowE複層ガラスが、電波を反射する金属膜(銀膜)を使用しているか、遮熱性の低い金属酸化物膜を利用しているのに対して、本発明では遮熱性の高い複合金属酸化物膜を利用しているためと考えられる。これらのことから、本発明の電波透過型遮熱複層ガラスは、今後の住宅に用いられる遮熱複層ガラスとして極めて好適である。
なお、板硝子協会によると、省エネ対策の推進によってLowEガラスの普及が進み日本の新築1戸建ては2019年時点でその使用が8割にまで増えている。このLow-Eガラスの金属膜が5G電波の透過を阻害するのである。この対策としてガラス大手メーカーA社は、LowEガラスの優れた遮熱性を保ちつつ5Gの電波を遮らない技術を開発に成功している(FSS(Frequency Selective Surface)技術:非特許文献1)。しかし、この技術は一度製品になったLowEガラスをレーザービームで精密加工するので、コストや手間が掛かる。これに対して、本発明の「5G対応電波透過型遮熱複層ガラス」は、製造の過程で電波透過型遮熱膜を塗布する方式なので、コスト的にも有利である。
一般的な複層ガラスの構造を示す図である。 本発明の電波透過型遮熱複層ガラスのミリ波帯域での電波透過性を比較例と対比した図である。 本発明の電波透過型遮熱複層ガラスのミリ波帯域での電波減衰率を比較例と対比した図である。 本発明の電波透過型遮熱複層ガラスのSub6帯域での電波透過性を比較例と対比した図である。 本発明の電波透過型遮熱複層ガラスのSub6帯域での電波減衰率を比較例と対比した図である。
以下に、本発明の実施例を具体的に説明する。可視光線透過率(波長範囲:380nm~780nm)、紫外線透過率(波長範囲:300nm~380nm)及び日射透過率(波長範囲:300nm~2500nm)は、日立製作所(株)製の分光光度計UH-4150を用いて測定した。
遮熱複層ガラス作製用の分散液の作製において、複合酸化タングステンは、酸化タングステン原料として酸化タングステン水和物(H2WO4)を、酸化亜鉛原料として酢酸亜鉛二水和物(Zn(CH3COO)2・2H2O)を、酸化アルミニウム原料として硫酸アルミニウム水和物(Al2(SO4)3・16H2O)を、酸化スズ原料として塩化スズ二水和物(SnCl2・2H2O)を、モル分率で1:0.1:0.25:0.4となるよう秤量し、乳鉢で粉砕して粉末とし、公知の方法で還元し焼成し複合酸化タングステン微粒子を得た。この例では、金属MのタングステンWに対するモル比xは化学量論的には1.0となる。
また、遮熱複層ガラス作製用の分散液の作製において、アンチモンドープ酸化錫は市販のアンチモンドープ酸化錫(三菱マテリアル電子化成製)を用いた。アンチモンのドープ割合は5mol%である。
前記複合酸化タングステン微粒子17.5wt%及びアンチモンドープ酸化錫2.5wt%を、分散剤としてブチルセロソルブアセタート50wt%、酢酸ブチル15wt%及びメチルエチルケトン15wt%からなる有機溶剤に分散させた。分散をよくするために、撹拌機を用いて回転数1000rpmで10分間の処理を行い、複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子の混合分散液を作製した。
幅150mm×長さ150mm×厚み3mmの透明板ガラス(いわゆるFL3)の表面に少量の重曹粉末を散布し、水に濡らしたスポンジを擦り付けて洗浄した。このガラス表面の重曹を水で完全に洗い落とした。
 前記板ガラスの表面を洗浄した後、その表面に先に作製しておいた複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子の混合分散液を、スプレーガンを用いてガラス基板上に約5g/枚を噴霧し塗布した。
前記板ガラス上に分散液を塗布した後、常温でセルフレベリング特性により薄く均一な厚さとした。その後30℃から60℃で約10分間加熱乾燥し、さらに一昼夜自然乾燥(温度約25℃、湿度約50%)させて、複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子からなる被膜を形成し、本発明の電波透過型遮熱複層ガラスの作製に用いる遮熱ガラスを作製した。膜厚を測定したところ、3μmであった。
上記で作製した遮熱ガラスと同寸法の板ガラスを、6mm厚みのスペーサーを介して図1の構造の複層ガラスを組み立てることにより、空気層厚みが6mmの電波透過型遮熱複層ガラスを得た。複合酸化タングステン微粒子とアンチモンドープ酸化錫微粒子の混合被膜は、図1において板ガラス11又は12の空気層に面した側に配置されている。
このようにして得た電波透過型遮熱複層ガラス(実施例1)の光学特性を評価した結果を表1にまとめた。表1には本発明の電波透過型遮熱複層ガラスの光学特性の他、市販の2種類の複層ガラスの光学特性も記載している。2種類のうち、1つはガラス表面にAg膜からなる低放射率膜(いわゆるソフトコートLowE膜)が形成されたものであり、もう一つはガラス表面にフッ素ドープ酸化錫膜からなる低放射率膜(いわゆるハードコートLowE膜)が形成されたものである。市販複層ガラス1は、可視光透過率がやや低く、紫外線透過率がやや高い。また、市販複層ガラス2は、日射透過率が61%と高く、遮熱性に劣り、紫外線透過率も高い。
Figure JPOXMLDOC01-appb-T000001
次に、表1に示した本発明の実施例1及び2種類の市販のLowE膜付き複層ガラスの電波透過性の測定を、地方独立行政法人神奈川県立産業技術総合研究所にて実施した。ネットワークアナライザを用いて、アンテナを対向させた状態で、これらのガラスを挟んだ場合と挟まない場合の受信電力比を測定することにより評価した。
ミリ波帯である周波数28GHz帯の周波数領域を挟んだ測定領域である15GHz~40GHzの周波数範囲での電波透過率の測定結果を図2に示す。図2中、S21は透過した電波の強度に対応するもので、破線がアンテナ間に何も挟まない状態での基準値を示している。サンプルA、サンプルBは、それぞれ市販の複層ガラス1、市販の複層ガラス2である。28GHz帯近傍の電波が30~50dB程度となっており減衰していることがわかる。一方、本発明の実施例1に対応するサンプルCでは基準値からの乖離は小さく電波の減衰が少ないことがわかる。
図3は、ガラスを挟まない状態、すなわち何もない空気だけの状態を基準値として本発明の実施例1(サンプルC)と市販の複層ガラス1(サンプルA)及び2(サンプルB)を挟んだ場合のミリ波帯(周波数28GHz帯)の受信電力の比である。つまり、空気の状態を0dBとして、本発明の実施例を挟んだ場合の電波減衰率と市販の複層ガラス1及び2を挟んだ場合の電波減衰率を示している。こうして表すことにより、サンプルA及びサンプルBと本発明であるサンプルCの違いがより明らかになる。第5世代移動通信システムで用いられる、いわゆる5G電波の周波数の1つであるミリ波帯(周波数28GHz帯)では、本発明の実施例1であるサンプルC(電波透過型遮熱複層ガラス)では、15GHzでの減衰率はほぼ0dBであり、その後、周波数28GHzに向けて、徐々に減衰率が増大するが、28GHzでの減衰率は2.8dBであって、約70%の電波が透過していて、電波の減衰率が、小さいことがわかった。28GHzを超えると、29.5GHzで減衰率は4.97dBになる。その後、32~33GHzまで徐々に減衰率が増大し、電波の減衰率が約10dBに達する。その後、40GHzに向けて徐々に減衰率は低下し、40GHzでの減衰率は1dB以下となる。
一方、市販の複層ガラス1では、15GHzでの減衰率は35dBに達し、その後、周波数28GHzに向けて、減衰率に大きな変化はない。28GHzでの減衰率は31dBであって、電波が1/40まで減衰することがわかった。28GHzを超えると、徐々に減衰率は大きくなり、40GHzでの減衰率は約43dBとなる。
市販の複層ガラス2でも、15GHzでの減衰率は22dBを超え、その後、周波数28GHzに向けて、減衰率は小さな増減を示す。そして、28GHzでの減衰率は16.3dBであって、電波は1/7程度まで減衰することがわかった。28GHzを超えると、徐々に減衰率は大きくなり、40GHzでの減衰率は約29dBとなる。
これらをすべてのデータを記載すると膨大になるので、本発明のサンプルCについて、ミリ波帯の測定結果として24GHzから30GHzまで0.25GHzピッチで、30GHzから40GHzまで0.5GHzピッチでの測定結果を表2に示す。減衰率が3dB近傍と6dB近傍は細かく示した。また、28GHz帯の周波数である27.0GHz~29.5GHzのデータは太枠で囲っている。
Figure JPOXMLDOC01-appb-T000002
5G通信に用いられるミリ波帯の周波数である27.0~29.5GHzでは、本発明の実施例であるサンプルCは、減衰率は2.15dB~4.98dBであり、5dBを下回っている。特に、27.0~28.16GHzの周波数領域では、減衰率は3dB以下であり、70%以上の電波を透過する。28.19~29.50GHzの領域では3dB~5dBの減衰率である。29.5GHzを超えると30GHz未満では5dB~6dBの減衰率であると判断できる。
次に、Sub6帯である周波数4.5GHz帯及び3.7GHz帯の電波透過率の測定結果を図4及び図5に示す。測定した周波数領域は、2GHz~18GHzである。図4は、ガラスを挟まない状態(対向するアンテナ間に空気しかない状態)の基準値とガラスを挟んだ場合を比較した測定結果であり、図5は本発明の実施例1(サンプルC)と市販の複層ガラス1(サンプルA)及び市販の複層ガラス2(サンプルB)のそれぞれの測定結果と基準値との差を表したものである。
本発明の実施例1(サンプルC)は、2GHzでは電波の減衰がほとんどなく、3.7GHzで減衰率は0.9dBであり、4.5GHzでは1.6dBであり、その後、10~11GHzの領域で約10dBの極大値を示す。一方、市販の複層ガラス1(サンプルA)は、2GHzで25dBの減衰を示し、その後、4.5GHz近傍、10GHz近傍及び14GHz近傍で極大値を示し、40dB以上の減衰率であって、電波の強度は1/100以下まで減衰する。7GHz近傍、12GHz近傍、16GHz近傍で極小値を示すが、減衰率は30dB以上であり、電波の強度は3%程度まで減衰している。市販の複層ガラス2(サンプルB)は、2GHz近傍で20dBの減衰を示し、その後、18GHzまで20dB~30dB程度の減衰率であって、電波の強度は少なくとも1/10以下にまで減衰している。
本発明の実施例であるサンプルCについて、Sub6帯の5G通信の電波である3.7GHz帯及び4.5GHz帯での減衰率のデータを表3に示す。
Figure JPOXMLDOC01-appb-T000003
本発明の実施例であるサンプルCでは、3GHzにおいて減衰率は0.045dBとほとんど減衰はなく、3.7GHz帯である3.6GHz~4.2GHzの周波数領域では、減衰率は0.75~1.35dBであって、85%以上の電波が透過している。また、4.5GHz帯である4.4GHz~4.9GHzの周波数領域では、減衰率は1.52dB~1.92dBであって、80%以上の電波が透過していることがわかった。なお、さらに高周波数側では、6.06GHzまで減衰率は3dB以下であり、7.6GHz未満まで6dB以下と判断される。
以上の測定結果を整理して、第5世代移動通信システムに用いられるミリ波帯(周波数28GHz帯)及びSub6帯(周波数4.5GHz帯及び周波数3.7GHz帯)の電波が、本発明の実施例1、市販の複層ガラス1及び市販の複層ガラス2でどの程度減衰するのかを表4に整理してまとめた。本発明の実施例1では、第5世代移動通信システムに用いられるミリ波帯である28GHz帯の周波数27.0GHz~29.5GHzでは減衰率は2.16dB~4.98dBであり、Sub6帯である4.5GHz帯の周波数4.4GHz~4.9GHzでは減衰率は1.52~1.92dBであり、同じくSub6帯である3.7GHz帯の周波数3.6GHz~4.2GHzでは減衰率は0.76dB~1.35dBであることがわかった。すなわち、ミリ波帯の電波は、少なくとも50%以上が透過し、Sub6帯の電波は、少なくとも70%以上が透過することがわかった。
なお、これまで電波の減衰率と電波の透過率の関係は、以下の関係式を用いて計算している。すなわち、出射電波の電圧と、電波透過率を測定するためネットワークアナライザの間に置いたガラスからの透過電波の電圧の比が、電波透過率であり、これの対数をとって20倍したものが電波減衰率(dB)であり、電波の受信電力比に相当する。この式に、例えば、電波の透過率として0.7(70%)を代入すると、電波の減衰率は-3.09と計算される。これを電波減衰率が3.09dBと表している。もう一例として、電波の透過率を0.1(10%)を代入すると、-20dBとなり、これを電波減衰率が20dBと表している。
電波の受信電力比=電波の減衰率(dB)=20log10[電波の透過率]
電波の透過率=透過電波の電圧(振幅)/出射電波の電圧(振幅)
Figure JPOXMLDOC01-appb-T000004
10・・・複層ガラス
11,12・・・板ガラス
13・・・スペーサー
14b、14c・・・一次シール材
15・・・二次シール材
16・・・空気層
 

Claims (4)

  1. 複層ガラスであって、該複層ガラスを構成する1枚の板ガラスの空気層側に、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜が形成されていて、前記アンチモンドープ酸化錫(SnO:Sb)のMxWOyに対する割合が5から20wt%であって、前記金属MのタングステンWに対するモル比xが0.8~1.1の範囲にあり、金属Mが少なくともアルミニウム(Al)、錫(Sn)及び亜鉛(Zn)を含有し、該複層ガラスの光学特性として可視光線透過率が70%以上及び日射透過率が40%以下であり、紫外線透過率が1%以下であり、さらに第5世代移動通信システムで用いられるミリ波帯である周波数28GHz帯の電波減衰率が6dB以下であることを特徴とする電波透過型遮熱複層ガラス。
  2.  複層ガラスであって、該複層ガラスを構成する1枚の板ガラスの空気層側に、一般式MxWOyで表される複合酸化タングステン微粒子とアンチモンドープ酸化錫(SnO:Sb)微粒子の混合被膜が形成されていて、前記アンチモンドープ酸化錫(SnO:Sb)のMxWOyに対する割合が5から20wt%であって、前記金属MのタングステンWに対するモル比xが0.8~1.1の範囲にあり、金属Mが少なくともアルミニウム(Al)、錫(Sn)及び亜鉛(Zn)を含有し、該複層ガラスの光学特性として可視光線透過率が70%以上及び日射透過率が40%以下であり、紫外線透過率が1%以下であり、さらに第5世代移動通信システムで用いられるSub6帯(周波数4.5GHz帯及び周波数3.7GHz帯)の電波減衰率が3dB以下であることを特徴とする電波透過型遮熱複層ガラス。
  3.  前記アンチモンドープ酸化錫(SnO:Sb)中のSbのドープ割合が3~10mol%である請求項1又は2に記載の電波透過型遮熱複層ガラス。
  4.  前記複合酸化タングステン微粒子の平均粒径が40nm~60nmである請求項1又は2に記載の電波透過型遮熱複層ガラス。
     
PCT/JP2023/025232 2022-10-20 2023-07-07 電波透過型遮熱複層ガラス WO2024084748A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022168073 2022-10-20
JP2022-168073 2022-10-20
JP2023102797A JP7479734B1 (ja) 2022-10-20 2023-06-22 電波透過型遮熱複層ガラス
JP2023-102797 2023-06-22

Publications (1)

Publication Number Publication Date
WO2024084748A1 true WO2024084748A1 (ja) 2024-04-25

Family

ID=90737425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025232 WO2024084748A1 (ja) 2022-10-20 2023-07-07 電波透過型遮熱複層ガラス

Country Status (1)

Country Link
WO (1) WO2024084748A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151038A (ja) * 1989-11-07 1991-06-27 Nissan Chem Ind Ltd 酸化タングステン一酸化スズ複合ゾル及びその製造法
JP2008101111A (ja) * 2006-10-19 2008-05-01 Sumitomo Metal Mining Co Ltd 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
JP2012144418A (ja) * 2010-12-22 2012-08-02 Bridgestone Corp 熱線遮蔽ガラス、及びこれを用いた複層ガラス
WO2014045853A1 (ja) * 2012-09-24 2014-03-27 旭硝子株式会社 液状組成物およびガラス物品
JP2018039713A (ja) * 2016-09-11 2018-03-15 ヘラクレスガラス技研株式会社 遮熱ガラス及びそれを用いた合わせガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151038A (ja) * 1989-11-07 1991-06-27 Nissan Chem Ind Ltd 酸化タングステン一酸化スズ複合ゾル及びその製造法
JP2008101111A (ja) * 2006-10-19 2008-05-01 Sumitomo Metal Mining Co Ltd 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
JP2012144418A (ja) * 2010-12-22 2012-08-02 Bridgestone Corp 熱線遮蔽ガラス、及びこれを用いた複層ガラス
WO2014045853A1 (ja) * 2012-09-24 2014-03-27 旭硝子株式会社 液状組成物およびガラス物品
JP2018039713A (ja) * 2016-09-11 2018-03-15 ヘラクレスガラス技研株式会社 遮熱ガラス及びそれを用いた合わせガラス

Similar Documents

Publication Publication Date Title
KR101352869B1 (ko) 다중 공동 저방사형 코팅
JP4763569B2 (ja) 高赤外反射コーティング、薄膜コーティング堆積方法および関連技術
JP4370396B2 (ja) 多機能自動調光断熱ガラス及び空調方法
EP0456487B1 (en) Interference filters
Saidur et al. Energy-efficient optical coating for flat glass
EP3560700A1 (en) Low-emissivity coating for a glass substrate
EP0560534A1 (en) Interference filters
WO2014103301A1 (ja) 減圧複層ガラスパネル
JP6754895B2 (ja) 窓戸用機能性建材
Szczyrbowski et al. Bendable silver-based low emissivity coating on glass
JP4013264B2 (ja) 複層ガラス
US6110597A (en) Coated glass for buildings
Yunos et al. Frequency selective surface on low emissivity windows as a means of improving telecommunication signal transmission: A review
JP3454422B2 (ja) 電波透過性波長選択基板およびその製造法
JP7479734B1 (ja) 電波透過型遮熱複層ガラス
WO2024084748A1 (ja) 電波透過型遮熱複層ガラス
JP7479746B1 (ja) 5g電波透過型日射遮蔽高可視光透過ガラス
JPH07249316A (ja) 透明導電膜および該透明導電膜を用いた透明基体
CN113165965A (zh) 涂覆玻璃板
JPH09227157A (ja) 防曇性被膜形成基材、これを用いた防曇膜及びその製造方法
JP2000159546A (ja) 熱線反射ガラス及びこれを用いた複層ガラス
JP2003002691A (ja) 低反射基板およびその製造方法
KR101336876B1 (ko) 적외선 차단용 이중 창호 시스템
KR102433169B1 (ko) 창호용 기능성 건축 자재 및 복층 유리
JPH07333423A (ja) 選択透過膜