WO2024083005A1 - 车辆驱动转矩控制方法、系统、相关装置及车辆 - Google Patents

车辆驱动转矩控制方法、系统、相关装置及车辆 Download PDF

Info

Publication number
WO2024083005A1
WO2024083005A1 PCT/CN2023/123895 CN2023123895W WO2024083005A1 WO 2024083005 A1 WO2024083005 A1 WO 2024083005A1 CN 2023123895 W CN2023123895 W CN 2023123895W WO 2024083005 A1 WO2024083005 A1 WO 2024083005A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
driving torque
maximum
rear axle
Prior art date
Application number
PCT/CN2023/123895
Other languages
English (en)
French (fr)
Inventor
谢俊
刘泽
张洪超
肖柏宏
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Priority to EP23822219.4A priority Critical patent/EP4378785A1/en
Publication of WO2024083005A1 publication Critical patent/WO2024083005A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle

Definitions

  • the present invention relates to the technical field of vehicle drive control, and in particular to a vehicle drive torque control method, a vehicle drive torque control system, a computer-readable storage medium, a computer device and a vehicle.
  • the commonly used control method for vehicles at present is to reduce the wheel speed difference by braking on one side of the wheel to protect the differential, but this may cause problems such as excessive wear of the brake pads and brake thermal decay, thereby increasing the cost of using the vehicle and reducing driving safety.
  • One aspect of the present invention is to solve a technical problem of how to reduce the wheel speed difference and prevent differential damage without affecting the performance of the braking system when the vehicle is driving sideways.
  • the present invention provides a vehicle driving torque control method, system, computer readable storage medium, computer device and vehicle. Specifically, according to one aspect of the present invention, it provides:
  • a vehicle driving torque control method comprising the following steps:
  • the total driving torque is determined according to the stroke of the accelerator pedal stepped by the driver, and the total driving torque is divided into a theoretical front axle driving torque and a theoretical rear axle driving torque;
  • the minimum torque in the first torque group is obtained as the maximum front axle driving torque, and the minimum torque in the second torque group is obtained as the maximum rear axle driving torque;
  • the first torque group includes at least a front axle differential limiting torque associated with the front wheel speed difference
  • the second torque group includes at least a rear axle differential limiting torque associated with the rear wheel speed difference
  • limiting the theoretical front axle drive torque and the theoretical rear axle drive torque comprises the following steps:
  • the theoretical rear axle drive torque and the maximum rear axle drive torque are compared, and the smaller value is taken as the actual rear axle drive torque.
  • the front axle differential limiting torque is a front axle differential maximum torque obtained according to the front wheel speed difference and a preset front wheel torque limiting reference curve;
  • the rear axle differential limiting torque is the maximum torque of the rear axle differential obtained according to the rear wheel speed difference and a preset rear wheel torque limiting reference curve;
  • the front wheel torque limit reference curve is associated with the life of the front axle differential
  • the rear wheel torque limit reference curve is associated with the life of the rear axle differential
  • the front axle differential limiting torque is obtained by adjusting the front axle differential maximum torque according to a first calibration adjustment parameter
  • the rear axle differential is obtained by adjusting the maximum torque of the rear axle differential according to the second calibration adjustment parameter;
  • the first calibrated adjustment parameter and the second calibrated adjustment parameter are associated with a current operating condition of the vehicle.
  • the first torque group when the vehicle is in an abnormal steering state, also includes a vehicle abnormal steering state limiting torque, and the vehicle abnormal steering state limiting torque is an understeering limiting torque or an oversteering limiting torque according to the abnormal steering state of the vehicle.
  • the vehicle steering state limiting torque is obtained through the following steps:
  • the understeering limit torque is obtained by looking up the table according to the difference between the actual steering wheel angle at the current moment and the steady-state steering wheel angle;
  • the oversteering limiting torque is obtained by looking up the table according to the difference between the ideal yaw rate and the actual yaw rate at the current moment.
  • the first torque group also includes the maximum driving torque of the front axle motor, and the maximum driving torque of the front axle motor is obtained by looking up the external characteristic curve of the front axle motor;
  • the second torque group also includes the maximum driving torque of the rear axle motor, and the maximum driving torque of the rear axle motor is obtained by looking up the external characteristic curve of the rear axle motor.
  • the present invention provides a vehicle driving torque control system for executing the vehicle driving torque control method described above, wherein the system comprises:
  • Distribution module determines the total driving torque according to the stroke of the driver's accelerator pedal, and divides the total driving torque into a theoretical front axle driving torque and a theoretical rear axle driving torque;
  • Calculation module obtain a first torque group, and calculate the minimum torque in the first torque group as the maximum front axle driving torque, obtain a second torque group, and calculate the minimum torque in the second torque group as the maximum rear axle driving torque;
  • a comparison module limits the theoretical front axle drive torque and the theoretical rear axle drive torque according to the maximum front axle drive torque and the maximum rear axle drive torque, and outputs an actual front axle drive torque and an actual rear axle drive torque;
  • the first torque group includes a front axle differential limiting torque, which is related to the front wheel speed difference
  • the second torque group includes a rear axle differential limiting torque, which is related to the rear wheel speed difference
  • the present invention provides a computer-readable storage medium, on which a computer program is stored, wherein the computer program implements the above-mentioned vehicle driving torque control method when executed by a processor.
  • the present invention provides a computer device, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the above-mentioned vehicle drive torque control method is implemented when the processor executes the computer program.
  • the present invention provides a vehicle, wherein the vehicle includes the vehicle driving torque control system described above.
  • the benefits of the present invention include: adjusting the speed difference by limiting the driving torque, without the need to use a single-side wheel brake, and without affecting the performance of the braking system.
  • limiting the driving torque the maximum torque that the differential can withstand under different wheel speed differences, the torque limit under abnormal steering conditions, and the maximum torque of the motor are taken into account, thereby improving the safety and handling stability of high-power electric vehicles.
  • FIG1 is a schematic flow chart of a vehicle driving torque control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a vehicle driving torque control system according to an embodiment of the present invention.
  • the vehicle driving torque control method of the present invention comprises the following steps:
  • the total driving torque is determined according to the stroke of the accelerator pedal stepped by the driver, and the total driving torque is divided into a theoretical front axle driving torque and a theoretical rear axle driving torque;
  • the first torque group includes a front axle differential limiting torque, which is related to the front wheel speed difference
  • the second torque group includes a rear axle differential limiting torque, which is related to the rear wheel speed difference
  • the vehicle driving torque control method of the present invention adopts an extreme value, especially a maximum value limitation method to limit the driving torque of the front and rear axles of the vehicle.
  • the method is particularly used for electric vehicles with motors on both the front and rear axles.
  • the total driving torque required by the vehicle is determined, and then the total driving torque is distributed to the front and rear axles to obtain the front and rear axle driving torque.
  • This step is performed via a distribution module in the driving force control system.
  • the front and rear axle driving forces obtained by distribution are only theoretical front and rear axle driving torques, and not the actual front and rear axle driving torques that are ultimately output.
  • the maximum front axle and rear axle drive torque channels used to limit the theoretical front axle and rear axle drive torque It is obtained by calculating the minimum torque in the torque group.
  • the torques contained in the torque group are all limiting torques for the driving torque, that is, the driving torque should not exceed any torque contained in the torque group.
  • the minimum torque of the torque in the torque group By finding the minimum torque of the torque in the torque group and using it to limit the driving torque, multiple influencing factors can be comprehensively considered, taking into account the motor, steering characteristics and differential.
  • For the front axle first obtain the first torque group, the torque in the first torque group is the limiting torque related to the driving torque of the front axle; then find the minimum torque in the first torque group as the maximum front axle driving torque.
  • the first torque group includes the front axle differential limiting torque related to the front wheel speed difference, or a function of the absolute value of the front wheel speed difference.
  • the second torque group includes the rear axle differential limiting torque related to the rear wheel speed difference, or a function of the absolute value of the rear wheel speed difference.
  • the theoretical front axle drive torque is compared with the maximum front axle drive torque
  • the theoretical rear axle drive torque is compared with the maximum rear axle drive torque
  • the smaller values are taken as the actual front axle drive torque and the actual rear axle drive torque, respectively. Taking the smaller value in the torque group as the maximum limit of the drive torque ensures that the drive torque does not exceed any torque in the torque group, so that it can meet the limits of all torques in the torque group.
  • the front axle differential limiting torque is the maximum torque of the front axle differential obtained according to the front wheel speed difference and a preset front wheel torque limiting reference curve.
  • the rear axle differential limiting torque is the maximum torque of the rear axle differential obtained according to the rear wheel speed difference and a preset rear wheel torque limiting reference curve.
  • the front wheel torque limiting reference curve is obtained through bench testing according to the durability requirements and service life of the whole vehicle and the differential, and its input is the absolute value of the front wheel speed difference ⁇ n F , and the output is the maximum torque of the front axle differential T dF , that is, the maximum torque that the front axle differential can carry for different front wheel speed differences ⁇ n F under the durability requirements of the whole vehicle and the front axle differential.
  • the rear wheel torque limiting reference curve is obtained through bench testing according to the durability requirements and service life of the whole vehicle and the rear axle differential, and its input is the absolute value of the rear wheel speed difference ⁇ n R , and the output is the maximum torque of the rear axle differential T dR , that is, the maximum torque that the rear axle differential can carry for different rear axle speed differences under the durability requirements of the whole vehicle and the rear axle differential.
  • the maximum torque that the wheel speed difference ⁇ n R can carry.
  • the front axle differential limiting torque is obtained by adjusting the maximum torque of the front axle differential according to the first calibration adjustment parameter;
  • the rear axle differential limiting torque is obtained by adjusting the maximum torque of the rear axle differential according to the second calibration adjustment parameter;
  • the first calibration adjustment parameter K1 and the second calibration adjustment parameter K2 are associated with the current operating condition of the vehicle.
  • the first calibration adjustment parameter K1 corresponds to the proportion of the maximum torque T dF of the front axle differential that needs to be adjusted under different vehicle working conditions, that is, the correction proportion of the front wheel torque limit reference curve corresponding to the current working condition of the whole vehicle.
  • K1 the maximum torque of the front wheel differential that meets the durability requirements can be adjusted according to the actual performance of the vehicle.
  • K1 is also obtained by bench testing under simulation of different working conditions.
  • the principle of the second calibration adjustment parameter K2 corresponds to the first calibration adjustment parameter K1 mentioned above, and will not be repeated here.
  • the maximum torque of the differential can be determined according to different speed differences and the driving torque can be limited thereby, so as to prevent the wheel speed difference from being too large or the torque borne by the differential from being too large, and prevent the differential from being damaged due to excessive speed difference and torque.
  • the maximum torque of the differential can be limited for different working conditions, thereby protecting the differential under different working conditions.
  • the front axle differential limit torque is the product of the front axle differential maximum torque and the first calibration adjustment parameter
  • the rear axle differential limit torque is the product of the rear axle differential maximum torque and the second calibration adjustment parameter.
  • the method of adjusting the differential maximum torque by calibrating the adjustment parameter is not limited to the product method, and other calculation or limiting methods can also be used.
  • the first torque group when the vehicle is in an abnormal steering state, the first torque group further includes a vehicle abnormal steering state limiting torque, which is an understeering limiting torque Tuslim or an oversteering limiting torque Toslim according to the abnormal steering state of the vehicle.
  • a vehicle abnormal steering state limiting torque which is an understeering limiting torque Tuslim or an oversteering limiting torque Toslim according to the abnormal steering state of the vehicle.
  • T uslim or oversteering limit torque T oslim is the maximum driving torque that can compensate for the abnormal steering state when understeering or oversteering.
  • the steering characteristics of the vehicle can be taken into account when adjusting the driving torque, thereby improving the handling stability of the vehicle when turning.
  • the vehicle steering state limit torque is obtained through the following steps:
  • the understeering limit torque Tuslim is obtained by looking up the table according to the difference between the actual steering wheel angle at the current moment and the steady-state steering wheel angle;
  • the oversteering limit torque T oslim is obtained by looking up the table according to the difference between the ideal yaw rate and the actual yaw rate at the current moment.
  • the first torque group also includes the maximum driving torque T Fmlim of the front axle motor
  • the second torque group also includes the maximum driving torque T Rmlim of the rear axle motor.
  • the torque allocated to the front axle and the rear axle is limited by the maximum driving torque T Fmlim of the front axle motor and the maximum driving torque T Rmlim of the rear axle motor.
  • the maximum driving torque T Fmlim of the front axle motor and the maximum driving torque T Rmlim of the rear axle motor are obtained by looking up the external characteristic curves of the motors of the front axle and the rear axle, respectively. In this way, the driving torque of the front and rear axles is limited to not exceed the maximum driving torque of the motors of the front and rear axles, thereby preventing the motors of the front and rear axles from being damaged due to overload.
  • the second aspect of the present invention further proposes a vehicle driving torque control system.
  • FIG. 2 a schematic diagram of the structure of a vehicle driving torque control system 100 proposed according to an embodiment of the present invention is shown.
  • the system 100 includes:
  • Distribution module 1 determining the total driving torque according to the stroke of the driver's accelerator pedal, and dividing the total driving torque into a theoretical front axle driving torque and a theoretical rear axle driving torque;
  • Calculation module 2 obtaining a first torque group, and calculating the minimum torque in the first torque group as the maximum front axle driving torque, obtaining a second torque group, and calculating the minimum torque in the second torque group as the maximum rear axle driving torque;
  • Comparison module 3 limiting the theoretical front axle drive torque and the theoretical rear axle drive torque according to the maximum front axle drive torque and the maximum rear axle drive torque, and outputting the actual front axle drive torque and the actual rear axle drive torque;
  • the first torque group includes a front axle differential limiting torque, which is related to the front wheel speed difference
  • the second torque group includes a rear axle differential limiting torque, which is related to the rear wheel speed difference
  • the comparison module 3 compares the theoretical front axle drive torque and the maximum front axle drive torque, and takes the smaller value as the actual front axle drive torque; the comparison module compares the theoretical rear axle drive torque and the maximum rear axle drive torque, and takes the smaller value as the actual rear axle drive torque.
  • the front axle differential limiting torque is the product of the maximum torque of the front axle differential obtained by looking up the front wheel torque limiting reference curve through the front wheel speed difference and the first calibrated adjustment parameter of the torque limiting reference curve
  • the rear axle differential limiting torque is the product of the maximum torque of the rear axle differential obtained by looking up the rear wheel torque limiting reference curve through the rear wheel speed difference and the second calibrated adjustment parameter of the torque limiting reference curve.
  • the first torque group when the vehicle is in an abnormal steering state, also includes a vehicle abnormal steering state limiting torque, and the vehicle abnormal steering state limiting torque is an understeering limiting torque or an oversteering limiting torque according to the abnormal steering state of the vehicle.
  • the calculation module 2 calculates the vehicle steering state limiting torque through the following steps:
  • the understeering limit torque is obtained by looking up the table according to the difference between the actual steering wheel angle at the current moment and the steady-state steering wheel angle;
  • the oversteering limiting torque is obtained by looking up the table according to the difference between the ideal yaw rate and the actual yaw rate at the current moment.
  • the first torque group also includes the maximum driving torque of the front axle motor, and the calculation module obtains the maximum driving torque of the front axle motor by looking up the external characteristic curve of the front axle motor.
  • the maximum driving torque of the axle motor also includes the maximum driving torque of the rear axle motor, and the calculation module obtains the maximum driving torque of the rear axle motor by looking up the external characteristic curve of the rear axle motor.
  • control modules such as “allocation module”, “computing module” and the like may include hardware, software or a combination of the two.
  • a module may include hardware circuits, various suitable sensors, communication ports, memories, and may also include software parts, such as program codes, or may be a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor may be implemented in software, hardware or a combination of the two.
  • Non-temporary computer-readable storage media include any suitable media that can store program codes, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random access memory, etc.
  • control module since the setting of the control module is only for illustrating the functional units in the system corresponding to the vehicle drive torque control method of the present invention, the physical device corresponding to the control module can be the processor itself, or a part of the software in the processor, a part of the hardware, or a part of the combination of software and hardware. Therefore, the number of control modules is only one for illustration. It can be understood by those skilled in the art that the control module can be adaptively split according to actual conditions. The specific splitting form of the control module will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solutions after the splitting will fall within the protection scope of the present invention.
  • a third aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, wherein the computer program implements the vehicle driving torque control method described above when executed by a processor.
  • the computer-readable storage medium has all the technical effects of the aforementioned vehicle drive torque control method, which will not be repeated here.
  • a fourth aspect of the present invention provides a computer device, which includes a memory and a processor, wherein the memory is suitable for storing a plurality of program codes, and the program codes are suitable for being loaded and run by the processor to execute the aforementioned vehicle drive torque control method.
  • the computer device has the aforementioned vehicle driving torque control method All technical effects of the present invention will not be described in detail here.
  • the computer device may include a control device formed by various electronic devices.
  • the present invention implements all or part of the process in its vehicle drive torque control method, which can be completed by instructing related hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes a computer program code, and it can be understood that the program code includes but is not limited to the program code for executing the above-mentioned vehicle drive torque control method.
  • the computer program code can be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable storage medium may include: any entity or device, medium, U disk, mobile hard disk, disk, optical disk, computer memory, read-only memory, random access memory, electric carrier signal, telecommunication signal and software distribution medium that can carry the computer program code. It should be noted that the content contained in the computer-readable storage medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, the computer-readable storage medium does not include electric carrier signal and telecommunication signal.
  • a fifth aspect of the present invention provides a vehicle comprising the vehicle drive torque control system described above.
  • vehicle drive torque control system of the present invention can be installed on various vehicles, including cars, trucks, buses, hybrid vehicles, pure electric vehicles, etc. Therefore, the subject matter of the present invention is also intended to protect various vehicles equipped with the vehicle drive torque control system of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

一种车辆驱动转矩控制方法、系统、计算机可读存储介质、计算机设备和车辆,其中,方法包括如下步骤:根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;获取第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组中的最小转矩为最大后轴驱动转矩;根据最大前轴驱动转矩限制理论前轴驱动转矩,根据最大后轴驱动转矩限制理论后轴驱动转矩,以得到最终输出的实际前轴驱动转矩和实际后轴驱动转矩。

Description

车辆驱动转矩控制方法、系统、相关装置及车辆 技术领域
本发明涉及车辆的驱动控制技术领域,具体地,涉及一种车辆驱动转矩控制方法、车辆驱动转矩控制系统、计算机可读存储介质、计算机设备和车辆。
背景技术
当车辆进行侧向驾驶、也就是说车辆在行驶时左右侧负载分布不均时,车辆左右侧发生载荷转移,导致两侧轮胎的垂直载荷不同,从而使得左右侧轮胎可提供的最大附着力极限不同;同时,由于左右侧轮间开放式差速器的存在,左右侧半轴的输出转矩相等,垂直载荷较小一侧的轮速会大于垂直载荷较大一侧的轮速,使得左右侧轮胎存在轮速差。
当车辆在如赛道等具有低附着系数的场地进行侧向极限驾驶时,若电机扭矩输出能力突破了垂直载荷较小一侧轮胎的附着极限,会导致该侧轮胎发生打滑。在牵引力控制系统被关闭或失效情况下,会使得轮胎左右侧轮速差快速上升,轮胎剧烈打滑,可能存在差速器损坏的风险,影响车辆安全性和操纵稳定性。
对于这种工况,目前车辆常用的控制方法是通过单侧轮制动的方式降低轮速差来保护差速器,但这可能会导致刹车片损耗过快、发生刹车热衰减等问题,以至于提高用车成本和降低行驶安全。
发明内容
本发明的一个方面要解决的技术问题是在车辆进行侧向驾驶时,如何在不影响制动系统性能的情况下降低轮速差从而防止差速器损坏。
此外,本发明的其它方面还旨在解决或者缓解现有技术中存在的其它技术问题。
本发明提供了一种车辆驱动转矩控制方法、系统、计算机可读存储介质、计算机设备和车辆,具体而言,根据本发明的一方面,提供了:
一种车辆驱动转矩控制方法,其中,包括如下步骤:
根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
获取第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组中的最小转矩为最大后轴驱动转矩;
根据所述最大前轴驱动转矩限制所述理论前轴驱动转矩,根据最大后轴驱动转矩限制所述理论后轴驱动转矩,以得到最终输出的实际前轴驱动转矩和实际后轴驱动转矩;
其中,所述第一转矩组至少包括关联于前轮转速差的前轴差速器限制转矩,所述第二转矩组至少包括关联于后轮转速差的后轴差速器限制转矩。
可选地,根据本发明的一种实施方式,对所述理论前轴驱动转矩和理论后轴驱动转矩的限制包括如下步骤:
比较所述理论前轴驱动转矩和最大前轴驱动转矩,并取较小的值作为实际前轴驱动转矩;
比较所述理论后轴驱动转矩和最大后轴驱动转矩,并取较小的值作为实际后轴驱动转矩。
可选地,根据本发明的一种实施方式,所述前轴差速器限制转矩为根据所述前轮转速差和预设的前轮转矩限制参考曲线得到的前轴差速器最大转矩;
所述后轴差速器限制转矩为根据所述后轮转速差和预设的后轮转矩限制参考曲线得到的后轴差速器最大转矩;其中
所述前轮转矩限制参考曲线关联于前轴差速器寿命,所述后轮转矩限制参考曲线关联于后轴差速器寿命。
可选地,根据本发明的一种实施方式,所述前轴差速器限制转矩为根据第一标定调整参数对所述前轴差速器最大转矩进行调整后得到;
所述后轴差速器为根据第二标定调整参数对所述后轴差速器最大转矩进行调整后得到;其中
所述第一标定调整参数和所述第二标定调整参数关联于所述车辆的当前工况。
可选地,根据本发明的一种实施方式,在车辆处于异常转向状态中时,所述第一转矩组还包括车辆异常转向状态限制转矩,所述车辆异常转向状态限制转矩根据车辆的异常转向状态为转向不足限制转矩或转向过度限制转矩。
可选地,根据本发明的一种实施方式,通过如下步骤获取所述车辆转向状态限制转矩:
在车辆处于异常转向状态中的情况下,判断车辆处于转向不足还是转向过度;
当车辆处于转向不足时,根据当前时刻的实际方向盘转角与稳态方向盘转角之间的差值查表求得转向不足限制转矩;
当车辆处于转向过度时,根据当前时刻的理想横摆角速度与实际横摆角速度之间的差值查表求得转向过度限制转矩。
可选地,根据本发明的一种实施方式,所述第一转矩组还包括前轴电机最大驱动转矩,所述前轴电机最大驱动转矩通过前轴电机外特性曲线查表求得,所述第二转矩组还包括后轴电机最大驱动转矩,所述后轴电机最大驱动转矩通过后轴电机外特性曲线查表求得。
根据本发明的另一方面,本发明提供了一种车辆驱动转矩控制系统,用于执行以上所述的车辆驱动转矩控制方法,其中,所述系统包括:
分配模块:根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
计算模块:获取第一转矩组,并求出所述第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组,并求出所述第二转矩组中的最小转矩为最大后轴驱动转矩;
比较模块:根据所述最大前轴驱动转矩和最大后轴驱动转矩限制所述理论前轴驱动转矩和理论后轴驱动转矩,并输出实际前轴驱动转矩和实际后轴驱动转矩;
其中,所述第一转矩组包括前轴差速器限制转矩,所述前轴差速器限制转矩与前轮转速差相关,所述第二转矩组包括后轴差速器限制转矩,所述后轴差速器限制转矩与后轮转速差相关。
根据本发明的再一方面,本发明提供了一种计算机可读存储介质,在所述计算机可读存储介质上存储有计算机程序,其中,所述计算机程序被处理器执行时实现以上所述的车辆驱动转矩控制方法。
根据本发明的再一方面,本发明提供了一种计算机设备,所述计算机设备包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以上所述的车辆驱动转矩控制方法。
根据本发明的再一方面,本发明提供了一种车辆,其中,所述车辆包括以上所述的车辆驱动转矩控制系统。
本发明的有益之处包括:采用限制驱动转矩的形式来调整转速差,无需采用单侧轮制动的方式,不影响制动系统的性能。在限制驱动转矩时,兼顾了差速器在不同轮速差的情况下所能承受的最大转矩、异常转向状态下的转矩限制以及电机的最大转矩,提高了大功率电动车的安全性和操纵稳定性。
附图说明
参考附图,本发明的上述以及其它的特征将变得显而易见,其中,
图1示出根据本发明的一个实施方式提出的车辆驱动转矩控制方法的流程示意图;
图2示出根据本发明的一个实施方式提出的车辆驱动转矩控制系统的结构示意图。
具体实施方式
容易理解,根据本发明的技术方案,在不变更本发明实质精神的条件下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
在本说明书中提到或者可能提到的上、下、左、右、前、后、正面、背面、顶部、底部等方位用语是相对于各附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。此外,术语“第一”、“第二”、“第三”等或类似表述仅用于描述与区分目的,而不能理解为指示或暗示相应的构件的相对重要性。
参考图1,其示出根据本发明的一个实施方式提出的车辆驱动转矩控制方法的流程示意图。本发明的车辆驱动转矩控制方法包括如下步骤:
根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
获取第一转矩组,并求出第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组,并求出第二转矩组中的最小转矩为最大后轴驱动转矩;
根据最大前轴驱动转矩和最大后轴驱动转矩限制所述理论前轴驱动转矩和理论后轴驱动转矩,以得到最终输出的实际前轴驱动转矩和实际后轴驱动转矩;
其中,所述第一转矩组包括前轴差速器限制转矩,所述前轴差速器限制转矩与前轮转速差相关,所述第二转矩组包括后轴差速器限制转矩,所述后轴差速器限制转矩与后轮转速差相关。
本发明的车辆驱动转矩控制方法采用极值、尤其极大值的限制方法来限制车辆前后轴的驱动转矩。该方法尤其用于前后轴都具有电机的电动汽车。首先,根据驾驶员给出的油门踏板信号,判断车辆所需要的总驱动力矩,然后将总驱动力矩分配给前后轴得到前后轴驱动力矩。这一步骤经由驱动力控制系统中的分配模块进行。分配得到的前后轴驱动力仅仅是理论前后轴驱动力矩,而并不是最终输出的实际前后轴驱动转矩。
用于限制理论前轴、后轴驱动转矩的最大前轴、后轴驱动转矩通 过计算转矩组中的最小转矩来得到。在此,转矩组中包含的转矩都是对于驱动转矩的限制转矩,也就是说,驱动转矩不应超过转矩组中所包含的任意一个转矩。通过对转矩组中的转矩求最小转矩并用其对驱动转矩进行限制的方式可以综合考虑多种影响因素,兼顾电机、转向特性和差速器。对于前轴来说,首先获取第一转矩组,第一转矩组中的转矩为与前轴的驱动转矩相关的限制转矩;然后求出第一转矩组中的最小转矩为最大前轴驱动转矩。对于后轴来说,首先获取包含与后轴的驱动转矩相关的限制转矩的第二转矩组,并求出第二转矩组中的最小力矩作为最大后轴驱动转矩。第一转矩组包括与前轮轮速差相关、或者说是前轮轮速差的绝对值的函数的前轴差速器限制转矩。第二转矩组包括与后轮轮速差相关、或者说是后轮轮速差的绝对值的函数的后轴差速器限制转矩。
在本发明的一个实施方式中,在求得最大前轴、后轴驱动转矩之后,将理论前轴驱动转矩与最大前轴驱动力矩、理论后轴驱动转矩与最大后轴驱动力矩进行比较,并取其中较小的值分别作为实际前轴驱动力矩和实际后轴驱动力矩。取转矩组中较小的值作为驱动转矩的最大限制保证了驱动转矩不超过转矩组中的任意一个转矩,使得其可以满足转矩组中所有转矩的限制。
在本发明的一个实施方式中,前轴差速器限制转矩为根据前轮转速差和预设的前轮转矩限制参考曲线得到的前轴差速器最大转矩。后轴差速器限制转矩为根据后轮转速差和预设的后轮转矩限制参考曲线得到的后轴差速器最大转矩。前轮转矩限制参考曲线根据整车以及差速器的耐久需求和使用寿命通过台架试验获得,其输入为前轮转速差ΔnF的绝对值,输出则为前轴差速器最大转矩TdF,即前轴差速器在所述整车以及前轴差速器的耐久需求的条件下对于不同的前轮转速差ΔnF最大能够承载的转矩。后轮转矩限制参考曲线根据整车以及后轴差速器的耐久需求和使用寿命通过台架试验获得,其输入为后轮转速差ΔnR的绝对值,输出则为后轴差速器最大转矩TdR,即后轴差速器在所述整车以及后轴差速器的耐久需求的条件下对于不同的后 轮转速差ΔnR最大能够承载的转矩。
在本发明的一个实施方式中,前轴差速器限制转矩为根据第一标定调整参数对前轴差速器最大转矩进行调整后得到;后轴差速器限制转矩为根据第二标定调整参数对后轴差速器最大转矩进行调整后得到;第一标定调整参数K1和第二标定调整参数K2关联于车辆的当前工况。
在本发明的一个实施方式中,第一标定调整参数K1对应在不同的车辆工况下前轴差速器最大转矩TdF需要调整的比例,也就是说相应于整车的当前工况对所述前轮转矩限制参考曲线的修正比例,通过K1可以对满足耐久需求的前轮差速器最大转矩根据车辆的实际性能表现作出调整。通过改变K1的数值,可以调节在不同路面、工况下车辆前轴差速器的最大转矩限制,K1也是通过台架试验在模拟不同工况的情况下获得。第二标定调整参数K2的原理相应于上述第一标定调整参数K1,在此不再赘述。
通过上述转矩限制的方式,可以根据不同的转速差确定差速器的最大转矩并通过其限制驱动转矩,这样可以尽可能防止轮速差过大或者说差速器承受的转矩过大,防止差速器因为速差和转矩过大而受到损伤,并且通过引入标定调整参数的方式可以针对不同工况对差速器的最大转矩进行限定,从而在不同工况的情况下对差速器进行保护。
在本发明的一个实施方式中,前轴差速器限制转矩为前轴差速器最大转矩与第一标定调整参数的乘积,后轴差速器限制转矩为后轴差速器最大转矩与第二标定调整参数的乘积。当然通过标定调整参数调整差速器最大转矩的方式不局限于采用乘积的方式,也可以采用其它的运算或限制方式。
在本发明的一个实施方式中,在车辆处于异常转向状态中时,第一转矩组还包括车辆异常转向状态限制转矩,其根据车辆的异常转向状态为转向不足限制转矩Tuslim或转向过度限制转矩Toslim。在车辆处于异常转向状态中、即转向不足或转向过度中时,车辆可以通过调整驱动转矩来对这两种异常转向状态进行补偿,从而提高车辆的操纵稳 定性。而转向不足限制转矩Tuslim或转向过度限制转矩Toslim则是在转向不足或转向过度时能够实现对所述异常转向状态进行补偿的最大的驱动转矩,如果车辆的驱动转矩超过转向不足限制转矩或转向过度限制转矩,则有可能加剧车辆的异常转向状态,影响车辆的操纵稳定性。因此,通过车辆异常转向状态限制转矩对驱动转矩的限制,可以在调节驱动转矩时兼顾车辆转向特性,提高车辆转向时的操纵稳定性。
车辆转向状态限制转矩通过如下步骤获取:
在车辆处于异常转向状态中的情况下,判断车辆处于转向不足还是转向过度;
当车辆处于转向不足时,根据当前时刻的实际方向盘转角与稳态方向盘转角之间的差值查表求得转向不足限制转矩Tuslim
当车辆处于转向过度时,根据当前时刻的理想横摆角速度与实际横摆角速度之间的差值查表求得转向过度限制转矩Toslim
在本发明的一个实施方式中,所述第一转矩组还包括前轴电机最大驱动转矩TFmlim,所述第二转矩组还包括后轴电机最大驱动转矩TRmlim。通过前轴电机最大驱动转矩TFmlim和后轴电机最大驱动转矩TRmlim来限制分配到前轴和后轴上的转矩。前轴电机最大驱动转矩TFmlim和后轴电机最大驱动转矩TRmlim分别通过前轴和后轴的电机外特性曲线查表获得。通过这种方式限定了前后轴的驱动转矩不超过前后轴的电机最大驱动转矩,防止前后轴的电机因过载而损伤。
本发明的第二方面还提出了一种车辆驱动转矩控制系统。参考图2,其示出根据本发明的一个实施方式提出的车辆驱动转矩控制系统100的结构示意图。其中,所述系统100包括:
分配模块1:根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
计算模块2:获取第一转矩组,并求出所述第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组,并求出第二转矩组中的最小转矩为最大后轴驱动转矩;
比较模块3:根据所述最大前轴驱动转矩和最大后轴驱动转矩限制所述理论前轴驱动转矩和理论后轴驱动转矩,并输出实际前轴驱动转矩和实际后轴驱动转矩;
其中,所述第一转矩组包括前轴差速器限制转矩,所述前轴差速器限制转矩与前轮转速差相关,所述第二转矩组包括后轴差速器限制转矩,所述后轴差速器限制转矩与后轮转速差相关。
在本发明的一个实施方式中,所述比较模块3比较理论前轴驱动转矩和最大前轴驱动转矩,并取其较小的值作为实际前轴驱动转矩;所述比较模块比较理论后轴驱动转矩和最大后轴驱动转矩,并取较小的值作为实际后轴驱动转矩。
在本发明的一个实施方式中,所述前轴差速器限制转矩为通过前轮转速差从前轮转矩限制参考曲线查表得到的前轴差速器最大转矩与所述转矩限制参考曲线的第一标定调整参数的乘积,所述后轴差速器限制转矩为通过后轮转速差从后轮转矩限制参考曲线得到的后轴差速器最大转矩与转矩限制参考曲线的第二标定调整参数的乘积。
在本发明的一个实施方式中,在车辆处于异常转向状态中时,所述第一转矩组还包括车辆异常转向状态限制转矩,所述车辆异常转向状态限制转矩根据车辆的异常转向状态为转向不足限制转矩或转向过度限制转矩。
在本发明的一个实施方式中,所述计算模块2通过如下步骤计算车辆转向状态限制转矩:
在车辆处于异常转向状态中的情况下,判断车辆处于转向不足还是转向过度;
当车辆处于转向不足时,根据当前时刻的实际方向盘转角与稳态方向盘转角之间的差值查表求得转向不足限制转矩;
当车辆处于转向过度时,根据当前时刻的理想横摆角速度与实际横摆角速度之间的差值查表求得转向过度限制转矩。
在本发明的一个实施方式中,所述第一转矩组还包括前轴电机最大驱动转矩,所述计算模块通过前轴电机外特性曲线查表求得所述前 轴电机最大驱动转矩,所述第二转矩组还包括后轴电机最大驱动转矩,所述计算模块通过后轴电机外特性曲线查表求得所述后轴电机最大驱动转矩。
在本发明的描述中,诸如“分配模块”、“计算模块”等的控制模块可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。
进一步,应该理解的是,由于控制模块的设定仅仅是为了说明对应于本发明的车辆驱动转矩控制方法的系统中的功能单元,因此控制模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,控制模块的数量为一个仅仅是示意性的。本领域技术人员能够理解的是,可以根据实际情况,对控制模块进行适应性地拆分。对控制模块的具体拆分形式并不会导致技术方案偏离本发明的原理,因此,拆分之后的技术方案都将落入本发明的保护范围内。
本发明的第三方面提供了一种计算机可读存储介质,在所述计算机可读存储介质上存储有计算机程序,其中,所述计算机程序被处理器执行时实现以上所述的车辆驱动转矩控制方法。
可以理解的是,该计算机可读存储介质具有前述车辆驱动转矩控制方法的所有技术效果,在此不再赘述。
本发明第四方面提供了一种计算机设备,该计算机设备包括存储器和处理器,所述存储器适于存储多条程序代码,所述程序代码适于由所述处理器加载并运行以执行前述的车辆驱动转矩控制方法。
可以理解的是,该计算机设备具有前述的车辆驱动转矩控制方法 的所有技术效果,在此不再赘述。该计算机设备可以包括各种电子设备形成的控制设备。
本领域技术人员能够理解的是,本发明实现其车辆驱动转矩控制方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,可以理解的是,该程序代码包括但不限于执行上述车辆驱动转矩控制方法的程序代码。为了便于说明,仅示出了与本发明相关的部分。所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器、随机存取存储器、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括电载波信号和电信信号。
本发明第五方面提供了一种车辆,该车辆包括上述车辆驱动转矩控制系统。
应当理解的是,本发明的车辆驱动转矩控制系统可装设在各种车辆上,包括轿车、货车、客车、混合动力汽车、纯电动汽车等等。因此,本发明的主题还旨在保护装设有本发明的车辆驱动转矩控制系统各种车辆。
应当理解的是,所有以上的优选实施例都是示例性而非限制性的,本领域技术人员在本发明的构思下对以上描述的具体实施例做出的各种改型或变形都应在本发明的法律保护范围内。

Claims (11)

  1. 一种车辆驱动转矩控制方法,其特征在于,包括如下步骤:
    根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
    获取第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组中的最小转矩为最大后轴驱动转矩;
    根据所述最大前轴驱动转矩限制所述理论前轴驱动转矩,根据所述最大后轴驱动转矩限制所述理论后轴驱动转矩,以得到最终输出的实际前轴驱动转矩和实际后轴驱动转矩;
    其中,所述第一转矩组至少包括关联于前轮转速差的前轴差速器限制转矩,所述第二转矩组至少包括关联于后轮转速差的后轴差速器限制转矩。
  2. 根据权利要求1所述的车辆驱动转矩控制方法,其特征在于,对所述理论前轴驱动转矩和所述理论后轴驱动转矩的限制包括如下步骤:
    比较所述理论前轴驱动转矩和所述最大前轴驱动转矩,并取较小的值作为所述实际前轴驱动转矩;
    比较所述理论后轴驱动转矩和所述最大后轴驱动转矩,并取较小的值作为所述实际后轴驱动转矩。
  3. 根据权利要求1所述的车辆驱动转矩控制方法,其特征在于,所述前轴差速器限制转矩为根据所述前轮转速差和预设的前轮转矩限制参考曲线得到的前轴差速器最大转矩;
    所述后轴差速器限制转矩为根据所述后轮转速差和预设的后轮转矩限制参考曲线得到的后轴差速器最大转矩;其中
    所述前轮转矩限制参考曲线关联于前轴差速器寿命,所述后轮转矩限制参考曲线关联于后轴差速器寿命。
  4. 根据权利要求3所述的车辆驱动转矩控制方法,其特征在于,所述前轴差速器限制转矩为根据第一标定调整参数对所述前轴差速器最大转矩进行调整后得到;
    所述后轴差速器为根据第二标定调整参数对所述后轴差速器最 大转矩进行调整后得到;其中
    所述第一标定调整参数和所述第二标定调整参数关联于所述车辆的当前工况。
  5. 根据权利要求1所述的车辆驱动转矩控制方法,其特征在于,在车辆处于异常转向状态中时,所述第一转矩组还包括车辆异常转向状态限制转矩,所述车辆异常转向状态限制转矩根据车辆的异常转向状态为转向不足限制转矩或转向过度限制转矩。
  6. 根据权利要求5所述的车辆驱动转矩控制方法,其特征在于,通过如下步骤获取所述车辆转向状态限制转矩:
    在车辆处于异常转向状态中的情况下,判断车辆处于转向不足还是转向过度;
    当车辆处于转向不足时,根据当前时刻的实际方向盘转角与稳态方向盘转角之间的差值查表求得转向不足限制转矩;
    当车辆处于转向过度时,根据当前时刻的理想横摆角速度与实际横摆角速度之间的差值查表求得转向过度限制转矩。
  7. 根据权利要求1所述的车辆驱动转矩控制方法,其特征在于,所述第一转矩组还包括前轴电机最大驱动转矩,所述前轴电机最大驱动转矩通过前轴电机外特性曲线查表求得,所述第二转矩组还包括后轴电机最大驱动转矩,所述后轴电机最大驱动转矩通过后轴电机外特性曲线查表求得。
  8. 一种车辆驱动转矩控制系统(100),用于执行根据权利要求1至7中任一项所述的车辆驱动转矩控制方法,其特征在于,所述系统包括:
    分配模块(1):根据驾驶员踩油门踏板的行程确定总驱动转矩,并将总驱动转矩分为理论前轴驱动转矩和理论后轴驱动转矩;
    计算模块(2):获取第一转矩组,并求出所述第一转矩组中的最小转矩为最大前轴驱动转矩,获取第二转矩组,并求出所述第二转矩组中的最小转矩为最大后轴驱动转矩;
    比较模块(3):根据所述最大前轴驱动转矩和最大后轴驱动转 矩限制所述理论前轴驱动转矩和理论后轴驱动转矩,并输出实际前轴驱动转矩和实际后轴驱动转矩;
    其中,所述第一转矩组包括前轴差速器限制转矩,所述前轴差速器限制转矩与前轮转速差相关,所述第二转矩组包括后轴差速器限制转矩,所述后轴差速器限制转矩与后轮转速差相关。
  9. 一种计算机可读存储介质,在所述计算机可读存储介质上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现根据权利要求1至7中任一项所述的车辆驱动转矩控制方法。
  10. 一种计算机设备,所述计算机设备包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现根据权利要求1至7中任一项所述的车辆驱动转矩控制方法。
  11. 一种车辆,其特征在于,所述车辆包括根据权利要求8所述的车辆驱动转矩控制系统(100)。
PCT/CN2023/123895 2022-10-18 2023-10-11 车辆驱动转矩控制方法、系统、相关装置及车辆 WO2024083005A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23822219.4A EP4378785A1 (en) 2022-10-18 2023-10-11 Driving torque control method and system for vehicle, and related apparatuses and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211271482.5 2022-10-18
CN202211271482.5A CN115534959A (zh) 2022-10-18 2022-10-18 车辆驱动转矩控制方法、系统、相关装置及车辆

Publications (1)

Publication Number Publication Date
WO2024083005A1 true WO2024083005A1 (zh) 2024-04-25

Family

ID=84735284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123895 WO2024083005A1 (zh) 2022-10-18 2023-10-11 车辆驱动转矩控制方法、系统、相关装置及车辆

Country Status (3)

Country Link
EP (1) EP4378785A1 (zh)
CN (1) CN115534959A (zh)
WO (1) WO2024083005A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115534959A (zh) * 2022-10-18 2022-12-30 蔚来汽车科技(安徽)有限公司 车辆驱动转矩控制方法、系统、相关装置及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313824A (ja) * 1986-07-04 1988-01-21 Fuji Heavy Ind Ltd 4輪駆動車のトルク配分制御装置
JPH04232125A (ja) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp 4輪駆動車用差動制限制御装置
US20020033291A1 (en) * 2000-09-19 2002-03-21 Nissan Motor Co., Ltd. Front/rear wheel torque distribution control apparatus for four wheel drive vehicle
CN111976504A (zh) * 2020-08-26 2020-11-24 合肥工业大学 一种四电机驱动汽车的扭矩分配控制器、控制方法、设备及存储介质
CN113829891A (zh) * 2021-09-10 2021-12-24 东风汽车集团股份有限公司 电动汽车及其分布式转矩的分配方法和装置
CN113858969A (zh) * 2021-08-31 2021-12-31 云度新能源汽车有限公司 一种纯电动四驱车驱动扭矩分配方法及存储介质
CN115534959A (zh) * 2022-10-18 2022-12-30 蔚来汽车科技(安徽)有限公司 车辆驱动转矩控制方法、系统、相关装置及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313824A (ja) * 1986-07-04 1988-01-21 Fuji Heavy Ind Ltd 4輪駆動車のトルク配分制御装置
JPH04232125A (ja) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp 4輪駆動車用差動制限制御装置
US20020033291A1 (en) * 2000-09-19 2002-03-21 Nissan Motor Co., Ltd. Front/rear wheel torque distribution control apparatus for four wheel drive vehicle
CN111976504A (zh) * 2020-08-26 2020-11-24 合肥工业大学 一种四电机驱动汽车的扭矩分配控制器、控制方法、设备及存储介质
CN113858969A (zh) * 2021-08-31 2021-12-31 云度新能源汽车有限公司 一种纯电动四驱车驱动扭矩分配方法及存储介质
CN113829891A (zh) * 2021-09-10 2021-12-24 东风汽车集团股份有限公司 电动汽车及其分布式转矩的分配方法和装置
CN115534959A (zh) * 2022-10-18 2022-12-30 蔚来汽车科技(安徽)有限公司 车辆驱动转矩控制方法、系统、相关装置及车辆

Also Published As

Publication number Publication date
CN115534959A (zh) 2022-12-30
EP4378785A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US10427669B2 (en) Method and apparatus for controlling distribution of front and rear wheel torque of four-wheel drive vehicle
WO2024083005A1 (zh) 车辆驱动转矩控制方法、系统、相关装置及车辆
CN109835196B (zh) 用于电机驱动车辆的控制方法和控制系统
CN110435628B (zh) 一种汽车四驱控制系统及方法
US11541876B2 (en) Electronic stability control method for vehicle
CN115139815A (zh) 扭矩分配方法、装置、设备和存储介质
WO2023131274A1 (zh) 前驱车辆扭矩控制方法、装置和车辆
EP4143044A1 (en) Torque redistribution and adjustment method, and corresponding control unit and electric vehicle
WO2023011043A1 (zh) 车辆驾驶控制方法、装置和控制设备
CN114083995B (zh) 一种轮毂电机汽车的转矩分配的方法、系统和介质
US20230202453A1 (en) Vehicle and control method thereof, control apparatus, vehicle-mounted device and medium
CN116494776B (zh) 基于轴端滑移率的汽车通过性控制方法及新能源汽车
CN112660101B (zh) 用于分配混合动力车辆的电机扭矩的方法及装置
EP0939016B1 (fr) Procédé de commande de la consigne de freinage sur les roues d'un véhicule
WO2023029711A1 (zh) 高速工况的底盘域控制方法及相关装置
CN115139811A (zh) 一种扭矩分配方法及装置
CN114954477A (zh) 车辆底盘实时状态监测方法、装置、车辆及存储介质
CN111301423B (zh) 一种控制方法、底盘域控制系统及适时四轮驱动式汽车
US20230115854A1 (en) Traction controller, traction control method, and non-transitory computer-readable storage medium
CN115071440B (zh) 基于轮毂电机输出能力的附加横摆转矩分配方法及装置
CN116968567A (zh) 电动汽车的四电机扭矩分配方法、装置以及电子设备
CN115123179A (zh) 车辆扭矩分配方法、装置、车辆及存储介质
US20210276538A1 (en) Device and method for controlling wheel slip of vehicle
CN115556593A (zh) 电动四驱汽车的防滑管理方法、系统、车载设备及车辆
CN117261848A (zh) 一种整车坡道中弯道制动侧倾稳定性控制方法及相关设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023822219

Country of ref document: EP

Effective date: 20231221