WO2024082841A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2024082841A1
WO2024082841A1 PCT/CN2023/116760 CN2023116760W WO2024082841A1 WO 2024082841 A1 WO2024082841 A1 WO 2024082841A1 CN 2023116760 W CN2023116760 W CN 2023116760W WO 2024082841 A1 WO2024082841 A1 WO 2024082841A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
module
base
cover portion
lens
Prior art date
Application number
PCT/CN2023/116760
Other languages
English (en)
French (fr)
Inventor
何雨航
朱美军
陈伟
熊国访
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024082841A1 publication Critical patent/WO2024082841A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the present application relates to the field of camera technology, and in particular to a camera module and electronic equipment.
  • the camera modules of most electronic devices have an anti-shake function.
  • To achieve the anti-shake function it is necessary to set a driving structure in the camera module to change the relative position of the lens and the photosensitive element.
  • the driving structure is not designed properly, the size of the camera module will be too large.
  • the present application provides a camera module and an electronic device, wherein the volume of the camera module can be made smaller than that of related technologies.
  • the present application provides a camera module, the camera module comprising:
  • a receiving assembly comprising a base and a protective shell, the protective shell and the base together forming a receiving space;
  • the lens assembly is at least partially located in the receiving space and is movably connected to the base;
  • a first piezoelectric module wherein the first piezoelectric module is located in the receiving space, one end of the first piezoelectric module is connected to the receiving assembly, and the other end of the first piezoelectric module is movably abutted against the lens assembly, and the first piezoelectric module is used to drive the lens assembly to move in a first direction or a second direction along the surface of the base when powered on, wherein the first direction and the second direction are not parallel and are both perpendicular to the optical axis.
  • the present application also provides an electronic device, which includes the above-mentioned camera module.
  • FIG1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of the electronic device shown in FIG1 from another viewing angle
  • FIG3 is a schematic diagram of a three-dimensional viewing angle of a camera module provided in an embodiment of the present application.
  • FIG4 is a top view of the camera module shown in FIG3 ;
  • FIG5 is a schematic diagram of the camera module shown in FIG3 with some parts hidden;
  • FIG6 is an exploded view of the camera module shown in FIG3 in one embodiment
  • FIG7 is a schematic diagram of a first piezoelectric module in the camera module shown in FIG6 ;
  • FIG8 is a cross-sectional view of the first piezoelectric module shown in FIG7 along line B-B;
  • FIG9 is a cross-sectional view of the camera module shown in FIG4 along line A-A;
  • FIG10 is a schematic diagram of a lens assembly of the camera module shown in FIG6 ;
  • FIG11 is an exploded view of the lens assembly shown in FIG10 in one embodiment
  • FIG12 is a schematic diagram of a receiving assembly of the camera module shown in FIG3 ;
  • FIG13 is an exploded view of the receiving assembly shown in FIG12;
  • FIG14 is a schematic diagram of a protective shell in the receiving assembly shown in FIG13;
  • FIG15 is a schematic diagram of a support seat in the lens assembly shown in FIG11;
  • FIG16 is a schematic diagram of the camera module shown in FIG3 with some parts hidden;
  • FIG17 is a cross-sectional view of the receiving assembly shown in FIG12;
  • FIG18 is an exploded view of the camera module shown in FIG3 in another embodiment
  • FIG19 is a schematic diagram of elastic connection between a protective shell and a first piezoelectric module provided in an embodiment of the present application
  • FIG20 is a schematic diagram of elastic connection between a protective shell and a first piezoelectric module provided by another embodiment of the present application.
  • FIG21 is an exploded view of the lens assembly shown in FIG10 in another embodiment
  • FIG22 is a schematic diagram of a second piezoelectric module provided in an embodiment of the present application.
  • FIG23 is an exploded view of the second piezoelectric module shown in FIG22;
  • FIG. 24 is a schematic diagram of a lens unit in the lens assembly shown in FIG. 21 .
  • the present application provides a camera module, the camera module comprising:
  • a receiving assembly comprising a base and a protective shell, the protective shell and the base together forming a receiving space;
  • the lens assembly is at least partially located in the receiving space and is movably connected to the base;
  • a first piezoelectric module wherein the first piezoelectric module is located in the receiving space, one end of the first piezoelectric module is connected to the receiving assembly, and the other end of the first piezoelectric module is movably abutted against the lens assembly, and the first piezoelectric module is used to drive the lens assembly to move in a first direction or a second direction along the surface of the base when powered on, wherein the first direction and the second direction are not parallel and are both perpendicular to the optical axis.
  • the first piezoelectric module includes a carrier, a first piezoelectric body, and a first friction member, the first friction member is connected to one end of the carrier and the first friction member movably abuts against the lens assembly, one end of the carrier away from the first friction member is connected to the receiving assembly, the first piezoelectric body is connected to the carrier, and the first piezoelectric body is used to drive the first friction member to move through the carrier when power is turned on, so that the first friction member drives the lens assembly to move.
  • the first piezoelectric body includes a first sub-piezoelectric body and a second sub-piezoelectric body, the first sub-piezoelectric body and the second sub-piezoelectric body are both connected to the supporting member and arranged along the circumference of the supporting member, the first sub-piezoelectric body is used to drive the lens assembly to move in the first direction, and the second sub-piezoelectric body is used to drive the lens assembly to move in the second direction.
  • the first piezoelectric module further includes a third sub-piezoelectric body, the third sub-piezoelectric body is arranged on a side of the carrier away from the first sub-piezoelectric body, and the first sub-piezoelectric body and the third sub-piezoelectric body are used to jointly drive the lens assembly to move in the first direction;
  • the first piezoelectric module further includes a fourth sub-piezoelectric body, the fourth sub-piezoelectric body is arranged on a side of the carrier away from the second sub-piezoelectric body, and the second sub-piezoelectric body and the fourth sub-piezoelectric body are used to jointly drive the lens assembly to move in the second direction.
  • At least one cavity is defined inside the carrier.
  • the lens assembly includes a support seat and a lens unit
  • the lens unit support seat is on the support seat
  • the support seat includes a bottom cover portion
  • the bottom cover portion is arranged opposite to the base and is movably connected to the base
  • the protective shell includes a top cover portion, the top cover portion is located on the side of the bottom cover portion away from the base, one end of the first piezoelectric module is connected to the top cover portion, and the other end of the first piezoelectric module is movably abutted against the bottom cover portion.
  • the lens assembly includes a support seat and a lens unit, the lens unit is supported on the support seat, the support seat includes a bottom cover portion and a surrounding portion, the bottom cover portion is arranged opposite to the base and is movably connected to the base, the surrounding portion is bent and connected to the periphery of the bottom cover portion, the surrounding portion surrounds the outer periphery of the lens unit and is spaced apart from the lens unit, the first piezoelectric module is arranged between the lens unit and the surrounding portion, and the first piezoelectric module is spaced apart from the lens unit and the surrounding portion.
  • the lens unit includes a lens and a lens carrier, the lens is carried by the lens carrier, the lens carrier is carried by the support seat, the lens carrier has an avoidance space, the avoidance space is recessed from the outer side surface of the lens carrier toward the direction of the lens, and the first piezoelectric module is arranged in the avoidance space.
  • the protective shell includes a first shell, the first shell includes a first top cover part and a first circumferential part, the first top cover part faces the base, the first circumferential part is bent and connected to the periphery of the first top cover part, the first top cover part, the first circumferential part and the base are jointly arranged to form a receiving space, and the end of the first circumferential part away from the first top cover part is connected to the base.
  • the protective shell also includes a second shell, the second shell is located in the receiving space, the second shell includes a second top cover portion, the second top cover portion is arranged opposite to the first top cover portion and the second top cover portion is connected to the first piezoelectric module.
  • the second shell further includes a second circumferential portion, which is bent and connected to the periphery of the second top cover portion.
  • the second circumferential portion surrounds the outer periphery of the lens assembly and is located between the first circumferential portion and the lens assembly.
  • the camera module further includes a filter, the filter is carried on the base, and the filter is arranged opposite to the lens assembly.
  • the base includes a first base and a second base which are stacked, the first base and the protective shell together constitute the containing space, the second base is arranged on the side of the first base away from the lens assembly, the second base is used to carry the filter, and the first base and the second base are a split structure or an integrated structure.
  • the first piezoelectric module abuts against the lens assembly along the optical axis direction.
  • the protective shell includes a top cover part and an elastic member, the top cover part is arranged opposite to the base, the elastic member is connected to the top cover part, and the elastic member elastically abuts against the first piezoelectric module along the direction of the top cover part toward the base.
  • the elastic member includes an abutting portion, a first connecting portion, and a second connecting portion, the first connecting portion and the second connecting portion are respectively connected to opposite ends of the abutting portion, and the first connecting portion and the second connecting portion are both connected to the top cover portion, the side of the abutting portion away from the top cover portion is connected to the first piezoelectric module, and the abutting portion is spaced apart from the top cover portion, and the abutting portion is used to apply an elastic force to the first piezoelectric module.
  • the protective shell also includes an adjusting member, the top cover portion has a mounting hole, the mounting hole passes through the top cover portion, the first piezoelectric module is at least partially located in the mounting hole, the adjusting member is screwed into the mounting hole through a thread, the elastic member is located between the adjusting member and the first piezoelectric module, and the opposite ends of the elastic member are respectively abutted against the adjusting member and the first piezoelectric module.
  • the lens assembly includes a support seat and a lens unit, the lens unit support seat is on the support seat, the support seat includes a bottom cover part and a surrounding part, the bottom cover part is arranged opposite to the base and is movably connected to the base, the surrounding part is bent and connected to the periphery of the bottom cover part and is arranged around the lens unit, the camera module also includes a second piezoelectric module, the second piezoelectric module is carried by the surrounding part and movably abuts against the outer wall of the lens unit, and the second piezoelectric module is used to drive the lens unit to move along the optical axis when power is turned on.
  • the first piezoelectric module includes a preload, a second piezoelectric body, and a second friction member
  • the second friction member is arranged on the side of the second piezoelectric body facing the lens unit
  • the preload is connected to the second piezoelectric body and is carried by the surrounding part
  • the second piezoelectric body drives the second friction member to abut against the outer wall of the lens unit under the action of the preload
  • the second piezoelectric body is used to drive the second friction member to drive the lens unit to move along the optical axis when power is turned on.
  • the preload member is provided with an opening, and the opening is a through hole or a groove.
  • the present application also provides an electronic device, which includes a camera module.
  • the present application provides an electronic device 1 , wherein the electronic device 1 comprises a device body 20 and The camera module 10 is installed on the device body 20 .
  • the electronic device 1 may be a mobile phone, a tablet computer, a laptop computer, a super mobile personal computer, a wearable device (such as a smart watch, a bracelet, a VR device, etc.), a television, a vehicle-mounted device, an electronic reader, etc. It should be noted that the embodiment of the present application is only exemplified by taking the electronic device 1 as a mobile phone, but this should not be regarded as a limitation to the present application.
  • the device body 20 refers to the main part of the electronic device 1, which includes electronic components that realize the main functions of the electronic device 1 and a shell that protects and carries these electronic components.
  • the device body 20 may include a display screen 21, a middle frame 22, and a battery cover 23.
  • the display screen 21 and the battery cover 23 are both connected to the middle frame 22 and are arranged on opposite sides of the middle frame 22.
  • the camera module 10 can be exposed on any side of the electronic device 1, and this application does not limit this.
  • the camera module 10 can be exposed on the front, back, and side of the mobile phone.
  • the so-called front refers to the side of the mobile phone with a display screen 21
  • the so-called back refers to the side of the mobile phone with a battery cover 23
  • the so-called side refers to the circumferential side of the middle frame 22 of the mobile phone.
  • the definition of the front, back, side, etc. of the electronic device 1 may be different for different types, and other types of electronic devices 1 are not described in detail here.
  • one motor can only drive the lens to move in one direction, so two motors need to be set, one of which drives the lens to move along the X-axis direction, and the other drives the lens to move along the Y-axis direction.
  • each motor needs to be fixed, so two independent bearing seats need to be set to carry the two motors respectively.
  • this structural form will result in a larger volume of the camera module.
  • the present application hopes to provide a camera module that can solve but is not limited to the above-mentioned technical problems, and its details will be explained in subsequent embodiments.
  • the present application provides a camera module 10, which includes: a receiving assembly 110, a lens assembly 120, and a first piezoelectric module 130.
  • the receiving assembly 110 includes a base 112 and a protective shell 111, and the protective shell 111 and the base 112 together constitute a receiving space X1.
  • the lens assembly 120 is at least partially located in the receiving space X1 and is movably connected to the base 112.
  • the first piezoelectric module 130 is located in the receiving space X1, one end of the first piezoelectric module 130 is connected to the receiving assembly 110, and the other end of the first piezoelectric module 130 is movably abutted against the lens assembly 120.
  • the first piezoelectric module 130 is used to drive the lens assembly 120 to move in the first direction D1 or the second direction D2 along the surface of the base 112 when powered on.
  • the first direction D1 and the second direction D2 are not parallel and are both perpendicular to the optical axis G.
  • the base 112 is mainly used to carry the components in the receiving space X1.
  • the protective shell 111 is mainly used to protect the components in the receiving space X1.
  • the base 112 and the protective shell 111 are connected together to confine the lens assembly 120 and the like in the receiving space X1.
  • the first piezoelectric module 130 may also be referred to as a stator, a motor, a driver, or an actuator.
  • the first piezoelectric module 130 at least includes a piezoelectric material. When an electric field is applied in the polarization direction of the piezoelectric material, the piezoelectric material will deform. When the electric field is removed, the deformation of the piezoelectric material disappears. Based on this characteristic, the deformation of the piezoelectric material can be controlled by electric control to generate high-frequency vibration, thereby realizing the driving function.
  • the first piezoelectric module 130 is connected to the receiving assembly 110, so as to fix or limit the first piezoelectric module 130.
  • the first piezoelectric module 130 can be connected to the protective shell 111 or to the base 112, which is not limited here. This application only uses the first piezoelectric module 130 connected to the protective shell 111 for exemplary description.
  • the other end of the first piezoelectric module 130 is in abutment with the lens assembly 120, and abutment means that there is pressure between the two.
  • abutment means that there is pressure between the two.
  • the first piezoelectric module 130 can be deformed in both the first direction D1 and the second direction D2, that is, the first piezoelectric module 130 has two degrees of freedom, so the first piezoelectric module 130 can provide a driving force to the lens assembly 120 in the first direction D1 and the second direction D2, and the driving force is embodied as a friction force.
  • the direction of the friction force applied by the first piezoelectric module 130 to the lens assembly 120 is the first direction D1
  • the lens 1211 moves in the first direction D1
  • the direction of the friction force applied by the first piezoelectric module 130 to the lens assembly 120 is the second direction D2, the lens 1211 moves in the second direction D2.
  • the lens assembly 120 can move in the first direction D1 and the second direction D2, the lens assembly 120 can reach any position in the same plane, thereby ensuring that the camera module 10 has a better anti-shake effect.
  • first direction D1 and the second direction D2 are perpendicular to each other, which is more conducive to developers designing a driver for controlling the first piezoelectric module 130 according to the movement path of the lens assembly 120 .
  • D1+ represents the positive direction of the first direction
  • D1- represents the negative direction of the first direction, that is, D1+ and D1- are parallel and opposite.
  • D2+ represents the positive direction of the second direction
  • D2- represents the negative direction of the second direction, that is, D2+ and D2- are parallel and opposite.
  • the first piezoelectric module 130 can drive the lens assembly 120 to move through friction. Since the first piezoelectric module 130 can drive the lens assembly 120 to move in both the first direction D1 and the second direction D2, the first piezoelectric module 130 is equivalent to integrating two single-degree-of-freedom motors. In other words, the first piezoelectric module 130 has dual degrees of freedom.
  • the use of the first piezoelectric module 130 with dual degrees of freedom means that the number of motors is reduced, thereby reducing the components required to carry the motors. Therefore, the camera module 10 provided by the present application can reduce the volume of the camera module 10.
  • the first piezoelectric module 130 abuts against the lens assembly 120 along the direction of the optical axis G, that is, the direction in which the first piezoelectric module 130 abuts against the lens assembly 120 is parallel to the direction of the optical axis G, and therefore, the direction of the friction force applied by the first piezoelectric module 130 to the lens assembly 120 is perpendicular to the direction of the optical axis G.
  • the friction force applied by the first piezoelectric module 130 to the lens assembly 120 is completely converted into a driving force for driving the lens assembly 120 to move, thereby reducing the power consumption of the first piezoelectric module 130 and ensuring that a first piezoelectric module 130 with a smaller volume can also provide sufficient driving force.
  • the first piezoelectric module 130 includes a carrier 131, a first piezoelectric body 132, and a first friction member 133.
  • the first friction member 133 is connected to one end of the carrier 131 and the first friction member 133 is movably abutted against the lens assembly 120.
  • One end of the carrier 131 away from the first friction member 133 is connected to the receiving assembly 110.
  • the first piezoelectric body 132 is connected to the carrier 131.
  • the first piezoelectric body 132 is used to drive the first friction member 133 to move through the carrier 131 when power is turned on, so that the first friction member 133 drives the lens assembly 120 to move.
  • the first piezoelectric body 132 is a piezoelectric material
  • the piezoelectric material can be selected from lead zirconate titanate (PZT) based piezoelectric ceramics, potassium sodium niobate (KNN) based piezoelectric ceramics, barium titanate (BT) based piezoelectric ceramics, lead magnesium niobate-lead indium niobate (PMN-PT) based piezoelectric single crystals, textured ceramics, etc.
  • PZT lead zirconate titanate
  • KNN potassium sodium niobate
  • BT barium titanate
  • PMN-PT lead magnesium niobate-lead indium niobate
  • the first friction member 133 can also be called a friction head.
  • the shape of the first friction member 133 can be cylindrical, semi-cylindrical, spherical, triangular cone or other irregular shapes.
  • the number of the first friction member 133 can be one or more.
  • the surface of the first friction member 133 can be chamfered or rounded.
  • Its material can be selected from wear-resistant materials such as aluminum oxide (Al2O3), silicon oxide (SiO2), zirconium oxide (ZrO2) or carbon fiber, polyester fiber, aluminum, iron, copper, stainless steel, etc., which can not only ensure that the driving force of the first piezoelectric module 130 can be well transmitted to the lens assembly 120, but also prevent wear under long-term work and maintain matching accuracy.
  • wear-resistant materials such as aluminum oxide (Al2O3), silicon oxide (SiO2), zirconium oxide (ZrO2) or carbon fiber, polyester fiber, aluminum, iron, copper, stainless steel, etc.
  • the carrier 131 may be a cylinder, a cuboid, a cube, etc., and the present application uses a cuboid as an example.
  • the carrier 131 is a carrier that carries the first piezoelectric body 132 and the first friction member 133.
  • the material of the carrier 131 may be metal, such as common metals such as copper, iron, and aluminum, and in some cases, non-metallic materials such as acrylic or other high-strength materials may also be used.
  • the carrier 131, the first piezoelectric body 132, and the first friction member 133 are connected as a whole.
  • the carrier 131 transmits the vibration to the first friction member 133.
  • the first friction member 133 forms a certain vibration amplitude in the direction perpendicular to the optical axis G, so that friction is generated between the first friction member 133 and the lens assembly 120, and the direction of the friction force is perpendicular to the direction of the optical axis G.
  • the deformation amount of the first piezoelectric body 132 each time it vibrates is small, the corresponding lens assembly 120 The displacement amount is also small, but under the high-frequency vibration of the first piezoelectric body 132, the lens assembly 120 can obtain a larger displacement amount through several displacement accumulations in a shorter time.
  • the first piezoelectric body 132 includes a plurality of sub-piezoelectric bodies (the number is greater than or equal to two), and the plurality of sub-piezoelectric bodies are all connected to the carrier 131.
  • the carrier 131 is deformed accordingly, thereby causing the first friction member 133 to move.
  • the first piezoelectric module 130 includes four sub-piezoelectric bodies, namely, a first sub-piezoelectric body 1321, a second sub-piezoelectric body 1322, a third sub-piezoelectric body 1323, and a fourth sub-piezoelectric body 1324.
  • the carrier 131 has a first side surface M1, a second side surface M2, a third side surface M3, and a fourth side surface M4 that are bent and connected in sequence, wherein the first side surface M1 and the third side surface M3 are disposed opposite to each other, and the second side surface M2 and the fourth side surface M4 are disposed opposite to each other.
  • the first sub-piezoelectric body 1321 is connected to the first side surface M1
  • the second sub-piezoelectric body 1322 is connected to the second side surface M2
  • the third sub-piezoelectric body 1323 is connected to the third side surface M3
  • the fourth sub-piezoelectric body 1324 is connected to the fourth side surface M4.
  • the first sub-piezoelectric body 1321 and the third sub-piezoelectric body 1323 are used to jointly drive the lens assembly 120 to move in the first direction D1.
  • the second sub-piezoelectric body 1322 and the fourth sub-piezoelectric body 1324 are used to jointly drive the lens assembly 120 to move in the second direction D2.
  • the first sub-piezoelectric body 1321, the second sub-piezoelectric body 1322, the third sub-piezoelectric body 1323, and the fourth sub-piezoelectric body 1324 can also work simultaneously to drive the lens assembly 120 to move in the first direction D1 (or the second direction D2).
  • the movement of the first friction member 133 is a composite motion of multi-modal coupling.
  • the first direction D1 is the relative direction of the first side surface M1 and the third side surface M3.
  • the second direction D2 is the relative direction of the second side surface M2 and the fourth side surface M4.
  • the first piezoelectric module 130 includes three sub-piezoelectric bodies, namely, a first sub-piezoelectric body 1321, a second sub-piezoelectric body 1322, and a third sub-piezoelectric body 1323.
  • the carrier 131 has a first side surface M1, a second side surface M2, and a third side surface M3 that are bent and connected in sequence, wherein the first side surface M1 and the third side surface M3 are arranged opposite to each other.
  • the first sub-piezoelectric body 1321 is connected to the first side surface M1
  • the second sub-piezoelectric body 1322 is connected to the second side surface M2
  • the third sub-piezoelectric body 1323 is connected to the third side surface M3.
  • the third sub-piezoelectric body 1323 is arranged on the side of the carrier 131 away from the first sub-piezoelectric body 1321.
  • the first sub-piezoelectric body 1321 and the third sub-piezoelectric body 1323 are used to jointly drive the lens assembly 120 to move in the first direction D1. It can be understood that the first sub-piezoelectric body 1321 and the third sub-piezoelectric body 1323 working together can provide a greater driving force to the lens assembly 120 in the first direction D1.
  • the first piezoelectric module 130 includes three sub-piezoelectric bodies, a first sub-piezoelectric body 1321, a second sub-piezoelectric body 1322, and a fourth sub-piezoelectric body 1324.
  • the carrier 131 has a first side surface M1, a second side surface M2, and a fourth side surface M4 that are bent and connected in sequence, wherein the second side surface M2 and the fourth side surface M4 are arranged opposite to each other.
  • the first sub-piezoelectric body 1321 is connected to the first side surface M1
  • the second sub-piezoelectric body 1322 is connected to the second side surface M2
  • the fourth sub-piezoelectric body 1324 is connected to the fourth side surface M4.
  • the fourth sub-piezoelectric body 1324 is arranged on the side of the carrier 131 away from the second sub-piezoelectric body 1322.
  • the second sub-piezoelectric body 1322 and the fourth sub-piezoelectric body 1324 are used to jointly drive the lens assembly 120 to move in the second direction D2. It can be understood that the second sub-piezoelectric body 1322 and the fourth sub-piezoelectric body 1324 working together can provide a greater driving force to the lens assembly 120 in the second direction D2.
  • the first piezoelectric body 132 includes two sub-piezoelectric bodies, namely a first sub-piezoelectric body 1321 and a second sub-piezoelectric body 1322.
  • the carrier 131 has a first side surface M1 and a second side surface M2, and the first side surface M1 and the second side surface M2 are bent and connected.
  • the first sub-piezoelectric body 1321 is connected to the first side surface M1
  • the second sub-piezoelectric body 1322 is connected to the second side surface M2, that is, the first sub-piezoelectric body 1321 and the second sub-piezoelectric body 1322 are both connected to the carrier 131 and arranged along the circumference of the carrier 131.
  • the first sub-piezoelectric body 1321 is used to drive the lens assembly 120 to move in the first direction D1, that is, when the first sub-piezoelectric body 1321 is energized to generate deformation, the first friction member 133 drives the lens assembly 120 to move in the first direction D1.
  • the second sub-piezoelectric body 1322 is used to drive the lens assembly 120 to move in the second direction D2. That is, when the second sub-piezoelectric body 1322 is energized and deformed, the first friction member 133 drives the lens assembly 120 to move in the second direction D2.
  • the carrier 131 is made of a conductive material, so that the carrier 131 can be electrically connected to each of the above-mentioned sub-piezoelectric bodies at the same time, so that four sub-piezoelectric bodies can be connected by using one wire connected to the carrier 131. It can be understood that this can reduce the number of wires connected to the sub-piezoelectric bodies and optimize the wire layout.
  • the carrier 131 is a cuboid, that is, the first side M1 and the second side M2 are perpendicular to each other, the third side M3 is parallel to the first side M1, and the fourth side M4 is parallel to the second side M2.
  • This arrangement ensures that the driving forces provided by the first piezoelectric module 130 to the lens assembly 120 in the first direction D1 and the second direction D2 are perpendicular to each other, and can also improve the anti-shake effect of the camera module 10.
  • the camera module includes an independent first motor and a second motor, the first motor is used to drive the lens to move in the first direction, and the second motor is used to drive the lens to move in the second direction, so as to perform displacement compensation in the first direction and the second direction to achieve anti-shake.
  • the first direction and the second direction need to be perpendicular to each other, the first motor and the second motor need to face different sides of the lens, and the connecting lines of the first motor, the lens, and the second motor form a right angle, so that the directions of the driving forces provided by the first motor and the second motor to the lens are perpendicular to each other.
  • the first motor and the second motor face different sides of the lens, the distance between them is relatively large.
  • the first motor and the second motor due to the existence of errors in assembly and processing, in actual products, it is difficult for the first motor and the second motor to be installed exactly at the theoretical position. In other words, the directions of the driving forces provided by the first motor and the second motor to the lens are difficult to be perpendicular to each other, resulting in low displacement compensation accuracy of the lens and poor anti-shake effect.
  • the shape of the carrier 131 is easier to set as a rectangular parallelepiped, so as to ensure that the driving forces provided by the first piezoelectric module 130 to the lens assembly 120 in the first direction D1 and the second direction D2 are perpendicular to each other. Therefore, the structural form of the camera module 10 provided in the present application can improve the anti-shake effect.
  • each sub-piezoelectric body can only be made larger to make the supporting member 131 produce a larger amplitude.
  • the increase in the volume of the sub-piezoelectric body will cause the volume of the camera module 10 to increase.
  • At least one cavity X2 is provided inside the carrier 131, that is, a cavity is provided inside the carrier 131.
  • a cavity is provided inside the carrier 131.
  • the first friction member 133 is driven by the carrier 131, that is, the carrier 131 will deform along with the deformation of the sub-piezoelectric body.
  • the rigidity of the carrier 131 is reduced and the deformation ability is enhanced, so that the carrier 131 can be ensured to have a larger vibration amplitude, which means that the first friction member 133 can drive the lens assembly 120 to move a larger displacement per unit time, so that the lens assembly 120 can move to the target position more quickly.
  • the extension direction of the cavity X2 may be parallel to the direction of the optical axis G.
  • the extension direction of the cavity X2 may also be perpendicular to the direction of the optical axis G.
  • the extension direction of the cavity X2 is the relative direction of the first side surface M1 and the third side surface M3.
  • the extension direction of the cavity X2 may also be other feasible implementations, which are not limited here.
  • the cavity X2 may completely penetrate the carrier 131.
  • the cavity X2 penetrates the first side surface M1 and the second side surface M2 at the same time.
  • the cavity X2 may also not penetrate the carrier 131.
  • the lens assembly 120 includes a support seat 122 and a lens unit 121, the support seat 122 is arranged in the receiving space X1, and the lens unit 121 is carried by the support seat 122.
  • the support seat 122 includes a bottom cover portion 1221 and a surrounding portion 1222, the bottom cover portion 1221 is arranged opposite to the base 112 and is movably connected to the base 112, the surrounding portion 1222 is bent and connected to the periphery of the bottom cover portion 1221, and the surrounding portion 1222 protrudes from the bottom cover portion 1221 in a direction away from the base 112.
  • the lens unit 121 can be carried on the bottom cover portion 1221, and can also be carried on the surrounding portion 1222.
  • Both the protective shell 111 and the base 112 are provided with a light-transmitting hole X7.
  • the light-transmitting hole X7 runs through the protective shell 111 and the base 112.
  • the light-transmitting hole X7 is used to transmit light.
  • the lens unit 121 is arranged opposite to the light-transmitting hole X7.
  • the protective shell 111 includes a top cover portion 1113 and a peripheral portion 1114.
  • the top cover portion 1113 is located on the side of the bottom cover portion 1221 away from the base 112.
  • the peripheral portion 1114 is bent and connected to the top cover portion 1113, and the peripheral portion 1114 protrudes from the top cover portion 1113 in the direction close to the base 112.
  • the end of the peripheral portion 1114 away from the top cover portion 1113 is connected to the base 112, so that the lens assembly 120 and the like are confined in the receiving space X1.
  • One end of the first piezoelectric module 130 is connected to the top cover 1113, and the other end of the first piezoelectric module 130 is movably abutted against the bottom cover 1221.
  • friction is generated between the first piezoelectric module 130 and the bottom cover portion 1221 of the support seat 122, thereby driving the support seat 122 to move relative to the base 112, and the support seat 122 further drives the lens unit 121 to move, so as to achieve displacement compensation.
  • the connection form between the first piezoelectric module 130 and the top cover portion 1113 of the protective shell 111 can be a fixed connection.
  • the first piezoelectric module 130 is connected to the top cover portion 1113 by dispensing, welding, riveting, etc.
  • a positioning groove X6 can be provided on the side of the top cover portion 1113 facing the base 112.
  • the carrier 131 of the first piezoelectric module 130 is at least partially located in the positioning groove X6.
  • the purpose of providing the positioning groove X6 is to quickly determine the connection position between the top cover portion 1113 and the first piezoelectric module 130, thereby increasing the assembly speed.
  • a first friction plate 123 may be disposed on a side of the bottom cover 1221 of the support seat 122 away from the base 112.
  • the first friction plate 123 may be embedded in the bottom cover 1221 in an embedded manner, or may be bonded to the bottom cover 1221.
  • the material of the first friction plate 123 may be alumina (Al 2 O 3 ), silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ) or carbon fiber, polyester fiber, aluminum, iron, copper, stainless steel or other wear-resistant materials.
  • the lens assembly 120 includes a support seat 122 and a lens unit 121, wherein the lens unit 121 is supported on the support seat 122.
  • the support seat 122 includes a bottom cover portion 1221 and a surrounding portion 1222, wherein the bottom cover portion 1221 is disposed opposite to the base 112 and is movably connected to the base 112, wherein the surrounding portion 1222 is bent and connected to the periphery of the bottom cover portion 1221, and wherein the surrounding portion 1222 protrudes from the bottom cover portion 1221 in a direction away from the base 112.
  • the surrounding portion 1222 surrounds the periphery of the lens unit 121 and is spaced apart from the lens unit 121.
  • the first piezoelectric module 130 is disposed between the lens unit 121 and the surrounding portion 1222, and wherein the first piezoelectric module 130 is spaced apart from the lens unit 121 and the surrounding portion 1222. Since the first piezoelectric module 130 realizes vibration by generating deformation when working, the first piezoelectric module 130 is arranged between the lens unit 121 and the surrounding part 1222 at intervals, so that sufficient deformation space can be reserved around the first piezoelectric module 130, so that the first piezoelectric module 130 will not interfere with the lens unit 121 and the surrounding part 1222 when vibrating, ensuring that the first piezoelectric unit has a larger amplitude.
  • the lens unit 121 includes a lens 1211 and a lens carrier 1212.
  • the lens 1211 is carried by the lens carrier 1212, and the lens carrier 1212 is carried by the support seat 122.
  • the lens carrier 1212 has an escape space X3, and the escape space X3 is recessed from the outer side of the lens carrier 1212 toward the direction of the lens 1211.
  • the first piezoelectric module 130 is disposed in the escape space X3.
  • the lens 1211 and the lens carrier 1212 can be connected by, but not limited to, threading, snapping or dispensing.
  • the lens carrier 1212 is provided with an escape space X3 on the outside of the surrounding portion 1222 facing the support seat 122, and the escape space X3 is equivalent to the groove on the side wall of the lens carrier 1212.
  • the first piezoelectric module 130 is arranged in the escape space X3 to avoid the volume of the support seat 122 being too large.
  • the volume of the lens assembly 120 can be made smaller, thereby reducing the overall volume of the camera module 10.
  • the lens 1211 includes a lens group and a lens barrel, the lens group is arranged in the lens barrel, the lens barrel is connected to the lens carrier 1212, and the lens group includes a plurality of lenses, and the number of lenses can be but is not limited to 2, 3, 4, 5, 6, etc.
  • the protective shell 111 includes a first shell 1111, and the first shell 1111 includes a first top cover portion 1111a and a first circumferential portion 1111b.
  • the first top cover portion 1111a faces the base 112, and the first circumferential portion 1111b is bent and connected to the periphery of the first top cover portion 1111a.
  • the first top cover portion 1111a, the first circumferential portion 1111b, and the base 112 are jointly arranged to form a receiving space X1, and the end of the first circumferential portion 1111b away from the first top cover portion 1111a is connected to the base 112.
  • the connection method between the first circumferential portion 1111b and the base can be, but is not limited to, gluing, welding, etc.
  • the protective shell 111 may also include a second shell 1112, the second shell 1112 is located in the accommodating space X1, the second shell 1112 includes a second top cover portion 1112a, the second top cover portion 1112a is arranged opposite to the first top cover portion 1111a, and the second top cover portion 1112a is connected to the first piezoelectric module 130.
  • the second shell 1112 may also include a second circumferential portion 1112b, which is bent and connected to the periphery of the second top cover portion 1112a.
  • the second circumferential portion 1112b surrounds the outer periphery of the support seat 122 and is located between the first circumferential portion 1111b and the support seat 122.
  • the protective shell 111 may include a first shell 1111 and a second shell 1112 at the same time, which can increase the protective The overall strength of the shell 111 is more conducive to protecting the devices in the accommodating space X1.
  • the protective shell 111 may also only include the first shell 1111, which is conducive to reducing the difficulty of assembly and reducing costs.
  • the second shell 1112 may only include the second top cover portion 1112a, and the second top cover portion 1112a may be directly connected to the first top cover portion 1111a by means of bonding or the like. In this structural form, the first piezoelectric module 130 abuts against the second top cover portion 1112a.
  • the second shell 1112 may also include a second circumferential portion 1112b.
  • the provision of the second circumferential portion 1112b can enhance the strength of the protective shell 111 in the circumferential direction to avoid being damaged by the external environment.
  • the base 112 includes a first base 1121 and a second base 1122 which are stacked, and the first base 1121 and the protective shell 111 together constitute the receiving space X1.
  • the second base 1122 is arranged on the side of the first base 1121 away from the support base 122, and the second base 1122 is used to carry the filter 140.
  • the first base 1121 and the second base 1122 are split structures or integrated structures. Among them, the so-called integrated structure means that the first base 1121 and the second base 1122 are inseparable as a whole.
  • the so-called split structure means that the first base 1121 and the second base 1122 are two independent wholes.
  • the camera module 10 further includes a filter 140, the filter 140 is carried on the base 112, and the filter 140 is arranged opposite to the lens 1211 of the lens assembly 120.
  • the camera module 10 further includes a photosensitive component 180, which is arranged on a side of the filter 140 away from the lens 1211.
  • the photosensitive component 180 includes a photosensitive element 181 and a circuit board 182, the photosensitive element 181 is electrically connected to the circuit board 182, and the photosensitive element 181 is located on a side of the circuit board 182 close to the filter 140.
  • the lens 1211 is used to collect the light of the photographed scene and focus the light on the photosensitive element 181.
  • the filter 140 is used to eliminate unnecessary light to improve the effective resolution and color reproduction.
  • the filter 140 can be but is not limited to an infrared filter 140.
  • the photosensitive element 181 is also called a photosensitive chip or an image sensor or a sensor, which is used to receive the light passing through the filter 140 and convert the optical signal into an electrical signal.
  • the photosensitive element 181 can be a charge coupled device (CCD) or a complementary metal oxide conductor device (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide conductor device
  • the camera module 10 further includes a first rolling body 160, which is disposed between the base 112 and the support base 122.
  • the support base 122 drives the first rolling body 160 to roll. It is understandable that when the first piezoelectric module 130 is powered on, since the support base 122 will move relative to the base 112, if the support base 122 is in direct contact with the base 112, sliding friction with greater resistance will be generated, causing the first piezoelectric module 130 to need to provide a greater driving force to drive the support base 122 to move, which will greatly increase power consumption.
  • first rolling body 160 After the first rolling body 160 is disposed between the support base 122 and the base 112, rolling friction can be made between the support base 122, the first rolling body 160, and the base 112, which can not only reduce the power consumption of the first piezoelectric module 130, but also make the movement process smoother.
  • each sub-piezoelectric body can only be made larger to provide a larger amplitude.
  • the increase in the volume of the sub-piezoelectric body will lead to an increase in the volume of the camera module 10.
  • the protective shell 111 includes a top cover 1113 and an elastic member 1115.
  • the top cover 1113 is arranged opposite to the base 112.
  • the elastic member 1115 is connected to the top cover 1113.
  • the elastic member 1115 elastically abuts against the first piezoelectric module 130 along the direction from the top cover 1113 toward the base 112.
  • the elastic member 1115 plays two roles. On the one hand, it provides elastic constraints to the first piezoelectric module 130. Compared with directly fixing the first piezoelectric module 130 to the top cover 1113, the elastic constraints mean that the first piezoelectric module 130 is less constrained, and the vibration range of the first piezoelectric module 130 can be larger.
  • a large vibration range means a larger amplitude, so that the lens assembly 120 can be driven to the target position more quickly.
  • the protective shell 111 can make the first piezoelectric module 130 and the lens assembly 120 contact each other through the elastic member 1115, so as to ensure that the pre-tightening force between the first piezoelectric module 130 and the lens assembly 120 reaches a preset value, thereby ensuring that the first piezoelectric module 130 can provide sufficient friction driving force to the lens assembly 120 when powered on.
  • the elastic member 1115 can be, but is not limited to, a spring, a spring sheet, etc.
  • connection between the first piezoelectric module 130 and the top cover portion 1113 of the protective shell 111 may be an elastic connection. Two feasible implementations are described below.
  • the elastic member 1115 includes an abutting portion 1115c, a first connecting portion 1115a, and a second connecting portion 1115b, wherein the first connecting portion 1115a and the second connecting portion 1115b are respectively connected to opposite ends of the abutting portion 1115c, and the first connecting portion 1115a and the second connecting portion 1115b are both connected to the top cover portion 1113, so as to fix the elastic member 1115 on the top cover portion 1113.
  • the side of the abutting portion 1115c away from the top cover portion 1113 is connected to the first piezoelectric module 130, and the abutting portion 1115c is spaced apart from the top cover portion 1113, and the abutting portion 1115c is used to apply elastic force to the first piezoelectric module 130 to ensure that the preload force between the first piezoelectric module 130 and the lens assembly 120 reaches a preset value.
  • the spacing between the abutting portion 1115c and the top cover portion 1113 means that there is a gap space between them, and the gap space can provide space for the elastic deformation of the abutting portion 1115c.
  • the protective shell 111 further includes an adjusting member 1116.
  • the top cover 1113 has a mounting hole X4, and the mounting hole X4 runs through the top cover 1113.
  • the first piezoelectric module 130 is at least partially located in the mounting hole X4, and the adjusting member 1116 is screwed into the mounting hole X4 by a thread.
  • the elastic member 1115 is located between the adjusting member 1116 and the first piezoelectric module 130, and the opposite ends of the elastic member 1115 abut against the adjusting member 1116 and the first piezoelectric module 130, respectively.
  • the mounting hole X4 has an internal thread
  • the adjusting member 1116 has an external thread.
  • the adjusting member 1116 can change the depth of screwing into the mounting hole X4. It can be understood that when the depth of the adjusting member 1116 extending into the mounting hole X4 is greater, the elastic member 1115 is further compressed, and the preload force between the first piezoelectric module 130 and the lens assembly 120 is greater. When the depth of the adjusting member 1116 extending into the mounting hole X4 is smaller, the elastic member 1115 is further relaxed, and the preload force between the first piezoelectric module 130 and the lens assembly 120 is smaller. Therefore, this structural form enables the preload force between the first piezoelectric module 130 and the lens assembly 120 to be adjusted, thereby making it easier to adjust the preload force to a desired value.
  • the lens assembly 120 includes a support seat 122 and a lens unit 121, and the lens unit 121 is carried by the support seat 122.
  • the support seat 122 includes a bottom cover portion 1221 and a surrounding portion 1222, the bottom cover portion 1221 is arranged opposite to the base 112 and is movably connected to the base 112, and the surrounding portion 1222 is bent and connected to the periphery of the bottom cover portion 1221 and is arranged around the lens unit 121.
  • the camera module 10 also includes a second piezoelectric module 150, which is carried by the surrounding portion 1222 and movably abuts against the outer side wall of the lens unit 121.
  • the second piezoelectric module 150 is used to drive the lens unit 121 to move along the optical axis G direction when powered on. That is, the second piezoelectric module 150 is used to drive the lens unit 121 to move to the target position to achieve focusing.
  • the first piezoelectric module 130 and the second piezoelectric module 150 are arranged diagonally.
  • the surrounding portion 1222 is provided with a receiving space X7, and the second piezoelectric module 150 is arranged in the receiving space X7.
  • the second piezoelectric module 150 can also be referred to as a stator, a motor, a driver, or an actuator.
  • the second piezoelectric module 150 at least includes a piezoelectric material.
  • the piezoelectric material When an electric field is applied in the polarization direction of the piezoelectric material, the piezoelectric material will deform. When the electric field is removed, the deformation of the piezoelectric material disappears. According to this characteristic, the deformation of the piezoelectric material can be controlled by electric control to generate high-frequency vibration, thereby realizing the driving function.
  • the first piezoelectric module 130 includes a pre-tightening member 151, a second piezoelectric body 152, and a second friction member 153.
  • the second friction member 153 is arranged on the side of the second piezoelectric body 152 facing the lens unit 121.
  • the pre-tightening member 151 is connected to the second piezoelectric body 152 and is carried by the surrounding portion 1222. Under the action of the pre-tightening member 151, the second piezoelectric body 152 drives the second friction member 153 to abut against the outer wall of the lens unit 121.
  • the second piezoelectric body 152 is used to drive the second friction member 153 to drive the lens unit 121 to move along the optical axis G direction when powered on.
  • the introduction of the second piezoelectric body 152 and the second friction member 153 please refer to the description of the first piezoelectric body 132 and the first friction member 133 in the previous embodiment, which will not be repeated here.
  • the preload member 151 is used to apply a force to the second piezoelectric body 152 in the direction of the first piezoelectric module 130 toward the lens unit 121, so that the second friction member 153 can press the outer wall of the lens unit 121, and the preload force between the second friction member 153 and the lens unit 121 reaches a preset value.
  • the constraint of the preload 151 on the second piezoelectric body 152 is an elastic constraint.
  • the so-called elastic constraint means that the preload 151 will produce corresponding elastic deformation due to the vibration of the second piezoelectric body 152.
  • the elastic constraint can make the second piezoelectric body 152 have a larger vibration range, that is, a larger amplitude.
  • a second piezoelectric body 152 with a smaller vibration range can have a larger amplitude, so that the volume of the second piezoelectric body 152 can be designed to be smaller, thereby reducing the size of the camera module 10.
  • the pre-tightening member 151 may be, but is not limited to, a spring sheet.
  • the preload member 151 is provided with an opening X5, which is a through hole or a groove.
  • the shape of the opening X5 can be, but is not limited to, circular, rectangular, elliptical, etc. Regardless of whether a groove or a through hole is provided, the rigidity of the preload member 151 will be reduced, making it more susceptible to deformation.
  • the second piezoelectric body 152 excites at least one mode when working.
  • at least one mode means that the number of modes is one or more (the so-called multiple means that the number is greater than or equal to two).
  • the second piezoelectric body 152 generates micro-vibration and driving force by relying on one mode, and then converts the accumulated micro-vibration into macroscopic linear motion of the lens unit 121 through the second friction member 153, thereby realizing the driving function. It can be understood that the driving control method corresponding to one mode is simpler, thereby reducing the design difficulty.
  • the second piezoelectric body 152 can work under the coupling of multiple modes. Specifically, after applying an alternating current signal of a certain frequency to the second piezoelectric body 152, the second piezoelectric body 152 excites multiple modes at the same time. The second piezoelectric body 152 generates micro-vibrations and driving forces by coupling multiple modes, and then converts the accumulated micro-vibrations into macroscopic linear motions of the lens unit 121 through the second friction member 153, thereby realizing the driving function. It can be understood that the second piezoelectric body 152 excites multiple modes and multiple modes are coupled.
  • the mode coupling can be but is not limited to the L1-B2 working mode coupled with the lateral telescopic mode (such as: L1 mode) and the longitudinal bending mode (such as: B2 mode).
  • the camera module 10 further includes a second rolling body 170, which is movably abutted between the surrounding portion 1222 and the lens unit 121.
  • the lens unit 121 moves along the optical axis G, the lens unit 121 drives the second rolling body 170 to roll.
  • the second rolling body 170 may be cylindrical or spherical.
  • the outer side wall of the lens carrier 1212 of the lens unit 121 may be provided with a second friction plate 125, and the second friction plate 125 may be embedded in the lens carrier 1212 in an embedded manner, or the second friction plate 125 may be bonded to the lens carrier 1212.
  • the material of the second friction plate 125 may be alumina ( Al2O3 ), silicon oxide ( SiO2 ), zirconium oxide ( ZrO2 ) or carbon fiber, polyester fiber, aluminum, iron, copper, stainless steel and other wear-resistant materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

本申请提供一种摄像头模组和电子设备。所述摄像头模组包括:收容组件,所述收容组件包括基座和保护壳,所述保护壳和所述基座共同构成收容空间;镜头组件,所述镜头组件至少部分位于所述收容空间内且活动连接于所述基座;以及第一压电模块,所述第一压电模块位于所述收容空间内,所述第一压电模块的一端连接于所述收容组件,所述第一压电模块的另一端活动抵接于所述镜头组件,所述第一压电模块用于在通电时驱动所述镜头组件沿所述基座的表面往第一方向或第二方向运动,其中,所述第一方向和所述第二方向不平行且均垂直于光轴。本申请提供的摄像头模组体积相较于相关技术而言可以做的更小。

Description

摄像头模组及电子设备
本申请要求于2022年10月19日提交中国专利局、申请号为202211282515.6、申请名称为“摄像头模组及电子设备”的中国专利申请的优先权,上述在先申请的内容通过引用结合在本申请中。
技术领域
本申请涉及摄像头技术领域,具体涉及一种摄像头模组及电子设备。
背景技术
目前,大部分电子设备(比如手机)的摄像头模组都具有防抖功能。防抖功能的实现,需要在摄像头模组中设置驱动结构,以改变镜头与感光元件的相对位置。然而,若驱动结构设计的不合理,将导致摄像头模组的体积过大。
发明内容
本申请提供一种摄像头模组和电子设备,所述摄像头模组体积相较于相关技术而言可以做的更小。
第一方面,本申请提供一种摄像头模组,所述摄像头模组包括:
收容组件,所述收容组件包括基座和保护壳,所述保护壳和所述基座共同构成收容空间;
镜头组件,所述镜头组件至少部分位于所述收容空间内且活动连接于所述基座;以及
第一压电模块,所述第一压电模块位于所述收容空间内,所述第一压电模块的一端连接于所述收容组件,所述第一压电模块的另一端活动抵接于所述镜头组件,所述第一压电模块用于在通电时驱动所述镜头组件沿所述基座的表面往第一方向或第二方向运动,其中,所述第一方向和所述第二方向不平行且均垂直于光轴。
第二方面,本申请还提供一种电子设备,所述电子设备包括上述摄像头模组。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的电子设备的示意图;
图2为图1所示的电子设备在另一视角的示意图;
图3为本申请一实施例提供的摄像头模组的三维视角示意图;
图4为图3所示的摄像头模组的俯视图;
图5为图3所示的摄像头模组隐藏了部分零件后的示意图;
图6为图3所示的摄像头模组在一实施例中的分解图;
图7为图6所示的摄像头模组中第一压电模块的示意图;
图8为图7所示的第一压电模块沿B-B线的剖视图;
图9为图4所示的摄像头模组沿A-A线的断面图;
图10为图6所示的摄像头模组的镜头组件的示意图;
图11为图10所示的镜头组件在一实施例中的分解图;
图12为图3所示的摄像头模组的收容组件的示意图;
图13为图12所示的收容组件的分解图;
图14为图13所示的收容组件中保护壳的示意图;
图15为图11所示的镜头组件中支撑座的示意图;
图16为图3所示的摄像头模组隐藏了部分零件后的示意图;
图17为图12所示的收容组件的剖视图;
图18为图3所示的摄像头模组在另一实施例中的分解图;
图19为本申请一实施例提供的保护壳和第一压电模块弹性连接的示意简图;
图20为本申请另一实施例提供的保护壳和第一压电模块弹性连接的示意简图;
图21为图10所示的镜头组件在另一实施例中的分解图;
图22为本申请一实施例提供的第二压电模块的示意图;
图23为图22所示的第二压电模块的分解图;
图24为图21所示的镜头组件中镜头单元的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提供一种摄像头模组,所述摄像头模组包括:
收容组件,所述收容组件包括基座和保护壳,所述保护壳和所述基座共同构成收容空间;
镜头组件,所述镜头组件至少部分位于所述收容空间内且活动连接于所述基座;以及
第一压电模块,所述第一压电模块位于所述收容空间内,所述第一压电模块的一端连接于所述收容组件,所述第一压电模块的另一端活动抵接于所述镜头组件,所述第一压电模块用于在通电时驱动所述镜头组件沿所述基座的表面往第一方向或第二方向运动,其中,所述第一方向和所述第二方向不平行且均垂直于光轴。
其中,所述第一压电模块包括承载件、第一压电体、第一摩擦件,所述第一摩擦件连接于所述承载件的一端且所述第一摩擦件活动抵接于所述镜头组件,所述承载件上远离所述第一摩擦件的一端连接于所述收容组件,所述第一压电体连接于所述承载件,所述第一压电体用于在通电时通过所述承载件带动所述第一摩擦件运动,以使所述第一摩擦件带动所述镜头组件移动。
其中,所述第一压电体包括第一子压电体、第二子压电体,所述第一子压电体和所述第二子压电体均连接于所述承载件且沿所述承载件的周向布置,所述第一子压电体用于驱动所述镜头组件往所述第一方向运动,所述第二子压电体用于驱动所述镜头组件往所述第二方向运动。
其中,所述第一压电模块还包括第三子压电体,所述第三子压电体设置于所述承载件背离所述第一子压电体的一侧,所述第一子压电体和所述第三子压电体用于共同驱动所述镜头组件往第一方向运动;
和/或,所述第一压电模块还包括第四子压电体,所述第四子压电体设置于所述承载件背离所述第二子压电体的一侧,所述第二子压电体和所述第四子压电体用于共同驱动所述镜头组件往第二方向运动。
其中,所述承载件的内部开设至少一个腔体。
其中,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述保护壳包括顶盖部,所述顶盖部位于所述底盖部背离所述基座的一侧,所述第一压电模块的一端连接于所述顶盖部,所述第一压电模块的另一端活动抵接于所述底盖部。
其中,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部和环绕部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述环绕部弯折连接于所述底盖部的周缘,所述环绕部环绕所述镜头单元的外周且与所述镜头单元间隔设置,所述第一压电模块设置于所述镜头单元和所述环绕部之间,且所述第一压电模块间隔于所述镜头单元和所述环绕部。
其中,所述镜头单元包括镜头和镜头载体,所述镜头承载于所述镜头载体,所述镜头载体承载于所述支撑座,所述镜头载体具有避让空间,所述避让空间自所述镜头载体的外侧面往所述镜头的所在方向凹陷,所述第一压电模块设置于所述避让空间内。
其中,所述保护壳包括第一壳体,所述第一壳体包括第一顶盖部和第一环周部,所述第一顶盖部面向于所述基座,所述第一环周部弯折连接于所述第一顶盖部的周缘,所述第一顶盖部、所述第一环周部、所述基座共同围设成收容空间,且所述第一环周部远离所述第一顶盖部的一端连接于所述基座。
其中,所述保护壳还包括第二壳体,所述第二壳体位于所述收容空间内,所述第二壳体包括第二顶盖部,所述第二顶盖部与所述第一顶盖部相对设置且所述第二顶盖部连接于所述第一压电模块。
其中,所述第二壳体还包括第二环周部,所述第二环周部弯折连接于所述第二顶盖部的周缘,所述第二环周部环绕于所述镜头组件的外周,且位于所述第一环周部和所述镜头组件之间。
其中,所述摄像头模组还包括滤光片,所述滤光片承载于所述基座,所述滤光片与所述镜头组件相对设置。
其中,所述基座包括层叠设置的第一基座和第二基座,所述第一基座与所述保护壳共同构成所述收容空间,所述第二基座设置于所述第一基座背离所述镜头组件的一侧,所述第二基座用于承载所述滤光片,所述第一基座和所述第二基座为分体式结构或一体式结构。
其中,所述第一压电模块沿光轴方向抵接于所述镜头组件。
其中,所述保护壳包括顶盖部、弹性件,所述顶盖部与所述基座相对设置,所述弹性件连接于所述顶盖部,所述弹性件沿顶盖部朝向基座的方向弹性抵接于所述第一压电模块。
其中,所述弹性件包括抵接部、第一连接部、第二连接部,所述第一连接部和所述第二连接部分别连接于所述抵接部的相背两端,且所述第一连接部和所述第二连接部均连接于所述顶盖部,所述抵接部背离所述顶盖部的一侧连接于所述第一压电模块,且所述抵接部与所述顶盖部间隔设置,所述抵接部用于向所述第一压电模块施加弹性力。
其中,所述保护壳还包括调节件,所述顶盖部具有安装孔,所述安装孔贯穿所述顶盖部,所述第一压电模块至少部分位于所述安装孔内,所述调节件通过螺纹旋合于所述安装孔内,所述弹性件位于所述调节件和所述第一压电模块之间,且所述弹性件的相背两端分别抵接于所述调节件和所述第一压电模块。
其中,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部和环绕部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述环绕部弯折连接于所述底盖部的周缘且环绕所述镜头单元设置,所述摄像头模组还包括第二压电模块,所述第二压电模块承载于所述环绕部且活动抵接于所述镜头单元的外侧壁,所述第二压电模块用于在通电时驱动所述镜头单元沿光轴方向运动。
其中,所述第一压电模块包括预紧件、第二压电体、第二摩擦件,所述第二摩擦件设置于所述第二压电体面向于所述镜头单元的一侧,所述预紧件连接于所述第二压电体且承载于所述环绕部,所述第二压电体在所述预紧件的作用下驱使所述第二摩擦件抵接于所述镜头单元的外侧壁,所述第二压电体用于在通电时驱动所述第二摩擦件驱动所述镜头单元沿所述光轴方向运动。
其中,所述预紧件上设有开口,所述开口为通孔或凹槽。
本申请还提供一种电子设备,所述电子设备包括摄像头模组。
请参照图1和图2,本申请提供一种电子设备1,所述电子设备1包括设备本体20以及 摄像头模组10,所述摄像头模组10安装于所述设备本体20。
所述电子设备1可以是手机、平板电脑、笔记本电脑、超级移动个人计算机、可穿戴设备(如智能手表、手环、VR设备等)、电视机、车载设备、电子阅读器等。需说明的是,本申请实施例仅以电子设备1为手机进行示例性说明,但不应视作为是对本申请的限制。
其中,所述设备本体20是指电子设备1的主体部分,主体部分包括实现电子设备1主要功能的电子组件以及保护、承载这些电子组件的壳体。以手机为例,设备本体20可以包括显示屏21、中框22、电池盖23,显示屏21和电池盖23均连接于中框22,且设置于中框22的相背两侧。
根据实际需求,摄像头模组10可以显露于电子设备1的任意一侧,本申请对此不作限定。以手机为例,所述摄像头模组10可以显露于手机的正面、背面、侧面。其中,所谓正面是指手机具备显示屏21的一侧;所谓背面是指手机具备电池盖23的一侧;所谓侧面是指手机的中框22的环周侧。可以理解的是,电子设备1的类型不同,其正面、背面、侧面等称呼的定义可能不同,对于其它类型的电子设备1在此不一一详述。
可以理解的是,用户在使用电子设备进行拍摄时,难免会因为自身或外部因素出现手抖的情况,而抖动将导致电子设备上的摄像头模组相对于被拍摄物体移动,进而造成拍摄画面模糊,为了克服该问题,防抖技术应运而生。目前,厂商大多采用OIS光学防抖,在此类摄像头模组中设有马达,该马达可以驱动镜头垂直光轴G运动,以进行位移补偿实现防抖。一般来讲,镜头在X轴方向和Y轴方向上都具有移动自由度,使得镜头能够在X/Y方向进行位移补偿,其中,X/Y轴垂直于光轴G。
相关技术中,一个马达只能驱动镜头往一个方向上运动,因而需要设置两个马达,其中的一个马达驱动镜头沿X轴方向运动,另一个马达驱动镜头沿Y轴方向运动。此外,每个马达需要固定承载,因而需要设置两个独立的承载座来分别承载两个马达。然而,该结构形式将导致摄像头模组的体积较大。
基于此,本申请希望提供一种能够解决但不仅限于上述技术问题的摄像头模组,其详细内容将在后续实施例中得以阐述。
请参照图3至图6,本申请提供一种摄像头模组10,所述摄像头模组10包括:收容组件110、镜头组件120、第一压电模块130。所述收容组件110包括基座112和保护壳111,所述保护壳111和所述基座112共同构成收容空间X1。所述镜头组件120至少部分位于所述收容空间X1内且活动连接于所述基座112。所述第一压电模块130位于所述收容空间X1内,所述第一压电模块130的一端连接于所述收容组件110,所述第一压电模块130的另一端活动抵接于所述镜头组件120。所述第一压电模块130用于在通电时驱动所述镜头组件120沿所述基座112的表面往第一方向D1或第二方向D2运动。其中,所述第一方向D1和所述第二方向D2不平行且均垂直于光轴G。
其中,基座112主要用于对位于收容空间X1内的零部件起到承载作用。保护壳111主要用于对位于收容空间X1内的零部件起到保护作用。基座112和保护壳111两者连接在一起,从而将镜头组件120等限定在收容空间X1内。
其中,第一压电模块130也可以称之为定子、或马达、或驱动器、或致动器。第一压电模块130至少包含压电材料,当在压电材料的极化方向上施加电场时,压电材料将会发生变形,当电场去掉后,压电材料的变形随之消失。根据该特性,可通过电控来控制压电材料变形,使其产生高频振动,从而可实现驱动功能。
第一压电模块130的一端连接于收容组件110,从而实现将第一压电模块130固定或限位。第一压电模块130可以连接于保护壳111,也可以连接于基座112,在此不做限定,本申请仅以第一压电模块130连接于保护壳111进行示例性说明。
第一压电模块130的另一端与镜头组件120为抵接关系,抵接则意味着两者之间存在压力。当第一压电模块130振动时,第一压电模块130与镜头组件120两者之间将产生摩擦。由于镜头组件120活动连接于基座112,因而在第一压电模块130的摩擦作用下,镜头组件120将相对基座112运动,摄像头模组10的防抖功能得以实现。
进一步的,第一压电模块130在第一方向D1和第二方向D2上均能够产生变形,即第一压电模块130具有双自由度,因而第一压电模块130能够在第一方向D1和第二方向D2上向镜头组件120提供驱动力,该驱动力体现为摩擦力。当第一压电模块130向镜头组件120施加的摩擦力的方向为第一方向D1时,镜头1211则往第一方向D1运动,当第一压电模块130向镜头组件120施加的摩擦力的方向为第二方向D2时,镜头1211则往第二方向D2运动。
可以理解的是,由于镜头组件120可以在第一方向D1和第二方向D2运动,因此镜头组件120可以到达同一平面内的任意位置,从而确保使得摄像头模组10具有较好的防抖效果。
可选的,第一方向D1和第二方向D2相互垂直,如此更有利于开发人员根据镜头组件120的运动路径设计控制第一压电模块130的驱动程序。
需说明的是,在图4中,D1+代表第一方向的正方向,D1-代表第一方向的负方向,即D1+和D1-平行且相反。D2+代表第二方向的正方向,D2-代表第二方向的负方向,即D2+和D2-平行且相反。
综上,本申请提供的摄像头模组10中,通过将第一压电模块130的一端连接于收容组件110,将另一端抵接于镜头组件120,从而使得第一压电模块130可以通过摩擦带动镜头组件120运动。由于第一压电模块130能够在第一方向D1和第二方向D2两个方向上驱动镜头组件120运动,因而第一压电模块130相当于集成了两个单自由度的马达,换而言之,第一压电模块130为双自由度。相对于使用两个单自由度马达来驱动镜头组件120往两个不同的方向运动的结构形式而言,采用双自由度的第一压电模块130则意味着减少了马达的数量,从而也就减少了承载马达所需的零部件。因此,本申请提供的摄像头模组10可以减小摄像头模组10的体积。
可选的,所述第一压电模块130沿所述光轴G方向抵接于镜头组件120,也就是说,第一压电模块130抵接于镜头组件120的方向平行于光轴G方向,因此,第一压电模块130向镜头组件120施加的摩擦力的方向垂直于光轴G方向。如此设置,使得第一压电模块130向镜头组件120施加的摩擦力全部转化为驱动镜头组件120位移的驱动力,从而可以减少第一压电模块130的电量消耗,也可以确保较小体积的第一压电模块130也能提供足够的驱动力。
请参照图7至图8,所述第一压电模块130包括承载件131、第一压电体132、第一摩擦件133。所述第一摩擦件133连接于所述承载件131的一端且所述第一摩擦件133活动抵接于所述镜头组件120。所述承载件131上远离所述第一摩擦件133的一端连接于所述收容组件110。所述第一压电体132连接于所述承载件131。所述第一压电体132用于在通电时通过所述承载件131带动所述第一摩擦件133运动,以使所述第一摩擦件133带动所述镜头组件120移动。
其中,第一压电体132为压电材料,压电材料可选用锆钛酸铅(PZT)基压电陶瓷、铌酸钾钠(KNN)基压电陶瓷、钛酸钡(BT)基压电陶瓷、铌镁酸铅-铌铟酸铅(PMN-PT)基压电单晶、织构陶瓷等。
其中,第一摩擦件133也可称之为摩擦头。第一摩擦件133的形状可采用圆柱形,半圆柱形状,球形、三角锥形或其他一些不规则形状设计。第一摩擦件133的数量可以采用一个,也可以采用多个。特别的,第一摩擦件133表面可以做倒角或倒圆角设计。其材料可选用氧化铝(Al2O3)、氧化硅(SiO2)、氧化锆(ZrO2)或碳纤维、聚酯纤维、铝、铁、铜、不锈钢等耐磨材料,这样既能保证第一压电模块130的驱动力能良好的传递给镜头组件120,同时也能防止长时间工作下的磨损,保持配合精度。
其中,承载件131可以为圆柱体、长方体、正方体等,本申请以长方体进行示例性说明。承载件131为承载第一压电体132和第一摩擦件133的载体。承载件131的材料可以为金属,如铜、铁、铝等常用金属,一些情况下也可采用非金属材料,如亚克力或其他高强度材料。
承载件131、第一压电体132、第一摩擦件133连接为一体。当第一压电体132通电振动时,承载件131将振动传递给第一摩擦件133。第一摩擦件133在垂直于光轴G的方向上形成一定的振动幅度,从而使得第一摩擦件133和镜头组件120之间产生摩擦,摩擦力的方向垂直于光轴G的方向。虽然第一压电体132每次振动时的形变量较小,对应的镜头组件120 的位移量也较小,但是,在第一压电体132的高频振动下,镜头组件120可在较短时间内经过若干次位移累积获得较大的位移量。
需说明的是,第一压电体132包含多个子压电体(数量大于或等于两个),多个子压电体均连接于承载件131。当子压电体产生形变时,承载件131相应产生形变,进而使得第一摩擦件133运动。所有子压电体中的部分压电体用于驱动镜头组件120往第一方向D1运动,另一部分子压电体用于驱动镜头组件120往第二方向D2运动。可以理解的是,将多个子压电体都集中连接在同一个承载件131上,从而避免了多个子压电体需要多个零部件来承载的技术问题。因此,将多个子压电体集中在承载件131的设置形式可以减小摄像头模组10的体积。
请参照图7和图8,在一种实施方式中,所述第一压电模块130包括第一子压电体1321、第二子压电体1322、第三子压电体1323、第四子压电体1324四个子压电体。承载件131具有依次弯折连接的第一侧面M1、第二侧面M2、第三侧面M3、第四侧面M4,其中,第一侧面M1和第三侧面M3相背设置,第二侧面M2和第四侧面M4相背设置。第一子压电体1321连接于第一侧面M1,第二子压电体1322连接于第二侧面M2,第三子压电体1323连接于第三侧面M3,第四子压电体1324连接于第四侧面M4。所述第一子压电体1321和所述第三子压电体1323用于共同驱动所述镜头组件120往第一方向D1运动。所述第二子压电体1322和所述第四子压电体1324用于共同驱动所述镜头组件120往第二方向D2运动。需说明的是,在本实施方式中,第一子压电体1321、第二子压电体1322、第三子压电体1323、第四子压电体1324也可以同时工作以驱动镜头组件120往第一方向D1(或第二方向D2)运动,例如,通过向不同的子压电体施加不同相位的驱动信号以激发产生不同的模态,从而使第一摩擦件133的运动为多模态耦合的复合运动。其中,第一方向D1为第一侧面M1与第三侧面M3的相对方向。第二方向D2为第二侧面M2与第四侧面M4的相对方向。
在另一种实施方式中,所述第一压电模块130包括第一子压电体1321、第二子压电体1322、第三子压电体1323三个子压电体。承载件131具有依次弯折连接的第一侧面M1、第二侧面M2、第三侧面M3,其中,第一侧面M1和第三侧面M3相背设置。第一子压电体1321连接于第一侧面M1,第二子压电体1322连接于第二侧面M2,第三子压电体1323连接于第三侧面M3,换而言之,所述第三子压电体1323设置于所述承载件131背离所述第一子压电体1321的一侧。所述第一子压电体1321和所述第三子压电体1323用于共同驱动所述镜头组件120往第一方向D1运动,可以理解的是,第一子压电体1321和第三子压电体1323共同工作可以在第一方向D1上向镜头组件120提供更大的驱动力。
在又一种实施方式中,所述第一压电模块130包括第一子压电体1321、第二子压电体1322、第四子压电体1324三个子压电体。承载件131具有依次弯折连接的第一侧面M1、第二侧面M2、第四侧面M4,其中,第二侧面M2和第四侧面M4相背设置。第一子压电体1321连接于第一侧面M1,第二子压电体1322连接于第二侧面M2,第四子压电体1324连接于第四侧面M4,换而言之,所述第四子压电体1324设置于所述承载件131背离所述第二子压电体1322的一侧。所述第二子压电体1322和所述第四子压电体1324用于共同驱动所述镜头组件120往第二方向D2运动,可以理解的是,第二子压电体1322和第四子压电体1324共同工作可以在第二方向D2上向镜头组件120提供更大的驱动力。
在又一种实施方式中,所述第一压电体132包括第一子压电体1321、第二子压电体1322两个子压电体。承载件131具有第一侧面M1和第二侧面M2,第一侧面M1和第二侧面M2弯折连接。第一子压电体1321连接于第一侧面M1,第二子压电体1322连接于第二侧面M2,也就是说,所述第一子压电体1321和所述第二子压电体1322均连接于所述承载件131且沿所述承载件131的周向布置。其中,所述第一子压电体1321用于驱动所述镜头组件120往所述第一方向D1运动,即当第一子压电体1321通电产生形变时,第一摩擦件133则带动镜头组件120在第一方向D1上运动。所述第二子压电体1322用于驱动所述镜头组件120往所述第二方向D2运动,即当第二子压电体1322通电产生形变时,第一摩擦件133则带动镜头组件120在第二方向D2上运动。
可选的,承载件131采用导电材料制成,这样可以使得承载件131同时电连接于上述各个子压电体,从而可以使用一条导线连接于承载件131就实现了连接四个子压电体,可以理解的是,这样可以减少连接于子压电体导线的数量,优化了导线布局。
在以上各实施方式中,承载件131为长方体,也就是说,第一侧面M1和第二侧面M2相互垂直,第三侧面M3平行于第一侧面M1,第四侧面M4平行于第二侧面M2。如此设置,从而可以确保第一压电模块130向镜头组件120在第一方向D1和第二方向D2分别提供的驱动力相互垂直,并且还能够提高摄像头模组10的防抖效果。具体来讲,相关技术中,摄像头模组中包含独立第一马达和第二马达,第一马达用于驱动镜头往第一方向运动,第二马达用于驱动镜头往第二方向运动,从而在第一方向和第二方向进行位移补偿以实现防抖。由于第一方向和第二方向需要相互垂直,因而第一马达和第二马达需要面向于镜头的不同侧面,且第一马达、镜头、第二马达三者的连线构成直角,以使第一马达和第二马达向镜头提供的驱动力的方向相互垂直。然而,由于第一马达和第二马达面向于镜头的不同侧面,导致两者间隔较远,再加上装配、加工等误差的存在,在实际产品中,第一马达和第二马达难以刚好安装在理论位置上,换而言之,第一马达和第二马达向镜头提供的驱动力的方向难以做到相互垂直,从而造成镜头的位移补偿精度不高,防抖效果不佳。相较于相关技术中将第一马达和第二马达设置在理论位置而言,在本申请中,承载件131的形状较为容易设置为长方体,从而能够确保第一压电模块130向镜头组件120在第一方向D1和第二方向D2分别提供的驱动力相互垂直,因此,本申请提供的摄像头模组10的结构形式可以提升防抖效果。
进一步的,由于第一摩擦件133的运动需要通过承载件131变形振动来实现,若承载件131的产生形变的能力差,则会导致承载件131的振幅较小,第一摩擦件133从而不能很好的驱动镜头组件120,此时只能将各个子压电体做的更大,才能使承载件131产生更大的振幅,然而,子压电体的体积增大后会导致摄像头模组10的体积增大。
请参照图7,所述承载件131的内部开设至少一个腔体X2,即承载件131的内部设有空腔。在本实施例中,承载件131设置腔体X2后,从而更容易产生形变,进而有利于第一压电模块130驱动镜头组件120运动。具体来讲,子压电体在工作时,是通过承载件131来带动第一摩擦件133,也就是说,承载件131将跟随子压电体的变形而变形。在承载件131上设置腔体X2后,承载件131的刚度减小,形变能力增强,从而可以确保承载件131具有较大的振动振幅,这意味着在单位时间内第一摩擦件133可以驱动镜头组件120运动较大的位移,使得镜头组件120可以更快速的运动到目标位置。
其中,腔体X2的延伸方向可以平行于光轴G方向。腔体X2的延伸方向也可以垂直于光轴G方向,例如,腔体X2的延伸方向为第一侧面M1和第三侧面M3的相对方向。当然,腔体X2的延伸方向也可以是其他可行的实施方式,在此不做限定。腔体X2可以完全贯穿承载件131,例如,腔体X2同时贯穿第一侧面M1和第二侧面M2。腔体X2也可以未贯穿承载件131。
请参照图9、图10和图11,所述镜头组件120包括支撑座122和镜头单元121,所述支撑座122设置于所述收容空间X1内,所述镜头单元121承载于所述支撑座122。所述支撑座122包括底盖部1221和环绕部1222,所述底盖部1221与所述基座112相对设置且活动连接于所述基座112,所述环绕部1222弯折连接于所述底盖部1221的周缘,且所述环绕部1222往背离所述基座112的方向凸出于底盖部1221。所述镜头单元121可以承载于底盖部1221上,也可以承载于环绕部1222上。
请参照图9、图12和图13,保护壳111和基座112都设有透光孔X7,透光孔X7贯穿保护壳111和基座112,透光孔X7用于透过光线,镜头单元121正对透光孔X7设置。所述保护壳111包括顶盖部1113和环周部1114,所述顶盖部1113位于所述底盖部1221背离所述基座112的一侧,所述环周部1114弯折连接于顶盖部1113,且所述环周部1114往靠近所述基座112的方向凸出于顶盖部1113。所述环周部1114远离所述顶盖部1113的一端连接于基座112,从而将镜头组件120等限定在收容空间X1内。所述第一压电模块130的一端连接于所述顶盖部1113,所述第一压电模块130的另一端活动抵接于所述底盖部1221,也就是说,当 所述第一压电模块130通电振动时,第一压电模块130与支撑座122的底盖部1221产生摩擦,从而驱动支撑座122相对基座112运动,支撑座122进而带动镜头单元121运动,以实现位移补偿。
请参照图14,第一压电模块130与保护壳111的顶盖部1113的连接形式可以是固定连接,例如,第一压电模块130通过点胶、焊接、铆接等方式连接于顶盖部1113。顶盖部1113面向基座112的一侧可以设置定位槽X6,第一压电模块130的承载件131至少部分位于定位槽X6内,设置定位槽X6的目的在于快速确定顶盖部1113与第一压电模块130的连接位置,从而可以提高装配速度。可以理解的是,当第一压电模块130与顶盖部1113为固定连接时,第一压电模块130与支撑座122的抵接效果通过顶盖部1113实现,即顶盖部1113压迫第一压电模块130抵接于支撑座122。
请参照图15,支撑座122的底盖部1221背离基座112的一侧可以设置第一摩擦片123,第一摩擦片123可以采用内嵌的方式嵌入于底盖部1221,第一摩擦片123也可以采用粘接的方式与底盖部1221结合。第一摩擦片123的材料可选用氧化铝(Al2O3)、氧化硅(SiO2)、氧化锆(ZrO2)或碳纤维、聚酯纤维、铝、铁、铜、不锈钢等耐磨材料。
请参照图10、图11和图16,所述镜头组件120包括支撑座122和镜头单元121,所述镜头单元121承载于所述支撑座122。所述支撑座122包括底盖部1221和环绕部1222,所述底盖部1221与所述基座112相对设置且活动连接于所述基座112,所述环绕部1222弯折连接于所述底盖部1221的周缘,且所述环绕部1222往背离所述基座112的方向凸出于底盖部1221。所述环绕部1222环绕所述镜头单元121的外周且与所述镜头单元121间隔设置。所述第一压电模块130设置于所述镜头单元121和所述环绕部1222之间,且所述第一压电模块130间隔于所述镜头单元121和所述环绕部1222。由于第一压电模块130在工作时通过产生形变来实现振动,将第一压电模块130间隔的设置在镜头单元121和环绕部1222之间,从而可以在第一压电模块130的周围保留足够的形变空间,以使得第一压电模块130在振动时不会干涉到镜头单元121和环绕部1222,确保第一压电单元具有较大的振幅。
请参照图10、图11和图16,所述镜头单元121包括镜头1211和镜头载体1212,所述镜头1211承载于所述镜头载体1212,所述镜头载体1212承载于所述支撑座122。所述镜头载体1212具有避让空间X3,所述避让空间X3自所述镜头载体1212的外侧面往所述镜头1211的所在方向凹陷,所述第一压电模块130设置于所述避让空间X3内。其中,镜头1211和镜头载体1212可以但不仅限于通过螺纹、卡扣或点胶的方式进行连接。镜头载体1212面向于支撑座122的环绕部1222的外侧设有避让空间X3,该避让空间X3相当于镜头载体1212侧壁上的凹槽,将第一压电模块130设置在避让空间X3内则可以避免支撑座122的体积过大,反之,镜头组件120的体积可以做的更小,从而减小摄像头模组10的整体体积。其中,镜头1211包括透镜组和镜筒,透镜组设置在镜筒内,镜筒连接于镜头载体1212,透镜组包含多枚镜片,镜片的数量可以但不仅限于为2枚、3枚、4枚、5枚、6枚等。
请参照图17,可选的,所述保护壳111包括第一壳体1111,所述第一壳体1111包括第一顶盖部1111a和第一环周部1111b。所第一顶盖部1111a面向于所述基座112,所述第一环周部1111b弯折连接于所第一顶盖部1111a的周缘。所第一顶盖部1111a、所述第一环周部1111b、所述基座112共同围设成收容空间X1,且所述第一环周部1111b远离所第一顶盖部1111a的一端连接于所述基座112。其中,第一环周部1111b与底座的连接方式可以但不仅限于为点胶、焊接等。
请参照图17,可选的,所述保护壳111还可以包括第二壳体1112,所述第二壳体1112位于所述收容空间X1内,所述第二壳体1112包括第二顶盖部1112a,所述第二顶盖部1112a与所第一顶盖部1111a相对设置且所述第二顶盖部1112a连接于所述第一压电模块130。
请参照图18,可选的,所述第二壳体1112还可以包括第二环周部1112b,所述第二环周部1112b弯折连接于所述第二顶盖部1112a的周缘,所述第二环周部1112b环绕于所述支撑座122的外周,且位于所述第一环周部1111b和所述支撑座122之间。
具体来讲,保护壳111可以同时包含第一壳体1111和第二壳体1112,这样可以增大保护 壳111的整体强度,更有利于保护收容空间X1内的器件。保护壳111也可以仅包含第一壳体1111,这样有利于减小装配难度,降低成本等。进一步的,第二壳体1112可以仅包含第二顶盖部1112a,第二顶盖部1112a可以通过粘接等手段直接连接在第一顶盖部1111a上,此结构形式中,第一压电模块130抵接于第二顶盖部1112a,可以理解的是,设置第二顶盖部1112a后,可以避免由于第一顶盖部1111a强度较小而不能向第一压电模块130提供足够大预紧力的问题。进一步的,第二壳体1112还可以包含第二环周部1112b,设置第二环周部1112b可以在保护壳111的周向方向上提升强度,以避免被外部环境破坏。
请参照图9和图17,所述基座112包括层叠设置的第一基座1121和第二基座1122,所述第一基座1121与所述保护壳111共同构成所述收容空间X1。所述第二基座1122设置于所述第一基座1121背离所述支撑座122的一侧,所述第二基座1122用于承载所述滤光片140。所述第一基座1121和所述第二基座1122为分体式结构或一体式结构。其中,所谓的一体式结构是指第一基座1121和第二基座1122为不可拆分的整体。所谓分体式结构是指第一基座1121和第二基座1122为两个独立的整体。
请参照图9,所述摄像头模组10还包括滤光片140,所述滤光片140承载于所述基座112,所述滤光片140与所述镜头组件120的镜头1211相对设置。摄像头模组10还包括感光组件180,感光组件180设置于滤光片140背离镜头1211的一侧。感光组件180包括感光元件181和电路板182,感光元件181电连接电路板182,且感光元件181位于电路板182靠近滤光片140的一侧。
其中,镜头1211用于收集被摄景物的光线,并将光线聚焦于感光元件181。滤光片140用于消除不必要的光线,以提高有效分辨率和彩色还原性。滤光片140可以但不仅限于为红外滤光片140。感光元件181也称为感光芯片或图像传感器或Sensor,其用于接收穿过滤光片140的光线,并将光信号转换为电信号。感光元件181可以是电荷耦合器件(Charge Coupled Device,CCD),也可以是互补金属氧化物导体器件(Complementary Metal Oxide Semiconductor,CMOS)。
请参照图18,所述摄像头模组10还包括第一滚动体160,所述第一滚动体160设置于所述基座112和所述支撑座122之间。当所述第一压电模块130驱动所述支撑座122运动时,所述支撑座122带动所述第一滚动体160滚动。可以理解的是,当第一压电模块130通电时,由于支撑座122将相对基座112运动,若支撑座122与基座112直接接触,将会产生阻力较大的滑动摩擦,造成第一压电模块130需要提供较大的驱动力才能驱使支撑座122运动,这将导致耗电量的大大增加。而在支撑座122和基座112之间设置第一滚动体160后,则可以使支撑座122、第一滚动体160、基座112三者之间为滚动摩擦,这样既能减小第一压电模块130的电量消耗,又能使运动过程更顺畅。
进一步的,由于承载件131连接于保护壳111,因而承载件131在振动时将受到保护壳111的约束。若保护壳111的约束作用过强,则会导致承载件131的振幅较小,从而不能很好的驱动镜头组件120,此时只能将各个子压电体做的更大,才能提供较大的振幅,然而,子压电体的体积增大后会导致摄像头模组10的体积增大。
请参照图19和图20,可选的,所述保护壳111包括顶盖部1113、弹性件1115,所述顶盖部1113与所述基座112相对设置,所述弹性件1115连接于所述顶盖部1113,所述弹性件1115沿顶盖部1113朝向基座112的方向弹性抵接于所述第一压电模块130。其中,弹性件1115起到两方面的作用,一方面是:向第一压电模块130提供弹性约束,相较于将第一压电模块130直接固定连接于顶盖部1113而言,弹性约束则代表第一压电模块130受到的约束作用更小,第一压电模块130的振动范围则可以更大,振动范围大即意味着较大的振幅,从而可以将镜头组件120更快速的驱动到目标位置。另一方面是:由于所述弹性件1115沿顶盖部1113朝向基座112的方向弹性抵接于所述第一压电模块130,使得保护壳111可以通过弹性件1115使第一压电模块130和镜头组件120之间抵紧,以确保第一压电模块130与镜头组件120之间的预紧力达到预设值,从而确保第一压电模块130在通电时能够向镜头组件120提供足够的摩擦驱动力。其中,弹性件1115可以但不仅限于为弹簧、弹片等。
第一压电模块130与保护壳111的顶盖部1113的连接形式可以是弹性连接,下面介绍两种可行的实施方式。
请参照图19,在一种实施方式中,弹性件1115包括抵接部1115c、第一连接部1115a、第二连接部1115b,其中,第一连接部1115a和第二连接部1115b分别连接于抵接部1115c的相背两端,且第一连接部1115a和第二连接部1115b均连接于顶盖部1113,以实现将弹性件1115固定在顶盖部1113上。抵接部1115c背离顶盖部1113的一侧连接于第一压电模块130,且抵接部1115c与顶盖部1113间隔设置,抵接部1115c用于向第一压电模块130施加弹性力,以确保第一压电模块130与镜头组件120之间的预紧力达到预设值。可以理解的是,抵接部1115c与顶盖部1113间隔设置则意味着两者之间存在间隙空间,该间隙空间可以为抵接部1115c的弹性变形提供空间。
请参照图20,在另一种实施方式中,所述保护壳111还包括调节件1116,所述顶盖部1113具有安装孔X4,所述安装孔X4贯穿所述顶盖部1113。所述第一压电模块130至少部分位于所述安装孔X4内,所述调节件1116通过螺纹旋合于所述安装孔X4内。所述弹性件1115位于所述调节件1116和所述第一压电模块130之间,且所述弹性件1115的相背两端分别抵接于所述调节件1116和所述第一压电模块130。其中,安装孔X4具有内螺纹,调节件1116具有外螺纹,通过内外螺纹的配合,调节件1116可以改变旋入安装孔X4的深度。可以理解的是,当调节件1116伸入安装孔X4的深度越大时,弹性件1115进一步被压缩,第一压电模块130与镜头组件120之间的预紧力越大。当调节件1116伸入安装孔X4的深度越小时,弹性件1115进一步被放松,第一压电模块130与镜头组件120之间的预紧力越小。因此,该结构形式使得第一压电模块130与镜头组件120之间预紧力可以实现调节,从而更容易将预紧力调节到所需的值。
请参照图9和图21,所述镜头组件120包括支撑座122和镜头单元121,所述镜头单元121承载于所述支撑座122。所述支撑座122包括底盖部1221和环绕部1222,所述底盖部1221与所述基座112相对设置且活动连接于所述基座112,所述环绕部1222弯折连接于所述底盖部1221的周缘且环绕所述镜头单元121设置。所述摄像头模组10还包括第二压电模块150,所述第二压电模块150承载于所述环绕部1222且活动抵接于所述镜头单元121的外侧壁。所述第二压电模块150用于在通电时驱动所述镜头单元121沿光轴G方向运动。也就是说,第二压电模块150用于驱动镜头单元121运动到目标位置,以实现对焦。所述第一压电模块130和所述第二压电模块150呈对角设置。所述环绕部1222设有容纳空间X7,所述第二压电模块150设置在容纳空间X7内。第二压电模块150也可以称之为定子、或马达、或驱动器、或致动器。第二压电模块150至少包含压电材料,当在压电材料的极化方向上施加电场时,压电材料将会发生变形,当电场去掉后,压电材料的变形随之消失。根据该特性,可通过电控来控制压电材料变形,使其产生高频振动,从而可实现驱动功能。
请参照图22和图23,所述第一压电模块130包括预紧件151、第二压电体152、第二摩擦件153。所述第二摩擦件153设置于所述第二压电体152面向于所述镜头单元121的一侧。所述预紧件151连接于所述第二压电体152且承载于所述环绕部1222。所述第二压电体152在所述预紧件151的作用下驱使所述第二摩擦件153抵接于所述镜头单元121的外侧壁。所述第二压电体152用于在通电时驱动所述第二摩擦件153驱动所述镜头单元121沿所述光轴G方向运动。其中,关于第二压电体152、第二摩擦件153的介绍请参照前面实施例中第一压电体132、第一摩擦件133的描述,在此不再赘述。
其中,预紧件151用于在第一压电模块130朝向镜头单元121的方向上向第二压电体152施加作用力,以使得第二摩擦件153能够压紧镜头单元121的外侧壁,且第二摩擦件153和镜头单元121之间的预紧力达到预设值。
可选的,预紧件151对第二压电体152的约束作用为弹性约束。所谓的弹性约束是指预紧件151会因第二压电体152的振动而产生相应的弹性形变。弹性约束可以使第二压电体152具有更大的振动范围,即振幅更大,换而言之,较小提交的第二压电体152都可以具有较大的振幅,从而可以将第二压电体152的体积设计的更小,进而减小摄像头模组10的提交。其 中,预紧件151可以但不仅限于为弹片。
请参照图22和图23,所述预紧件151上设有开口X5,所述开口X5为通孔或凹槽。开口X5的形状可以但不仅限于为圆形、矩形、椭圆形等。不管设置凹槽还是通孔,预紧件151的刚度都会减小,从而更容易发生形变。
第二压电体152在工作时激发至少一个模态。其中,至少一个模态是指模态的数量为一个或多个(所谓多个是指数量大于或等于两个)。当模态的数量为一个时,第二压电体152依靠一个模态产生微幅振动和驱动力,然后通过第二摩擦件153将多次累积的微幅振动转化为镜头单元121的宏观直线运动,从而实现驱动功能。可以理解的是,一个模态所对应的驱动控制方式更简单,从而可减小设计难度。
当模态的数量为多个时,第二压电体152可以在多个模态的耦合下进行工作。具体而言,在向第二压电体152施加一定频率的交流电信号后,第二压电体152同时激发出多个模态。第二压电体152依靠多个模态耦合产生微幅振动和驱动力,然后通过第二摩擦件153将多次累积的微幅振动转化为镜头单元121的宏观直线运动,从而实现驱动功能。可以理解的是,第二压电体152激发多个模态,且多个模态耦合,相较于第二压电体152只激发一个模态而言,多个模态耦合后第二压电体152产生的能量密度更大,即驱动力更大,在相同驱动力的条件下,多个模态耦合的第二压电体152的体积可以做的更小。其中,模态耦合可以但不仅限于为横向伸缩模态(如:L1模态)和纵向弯曲模态(如:B2模态)相耦合的L1-B2工作模态等。
请参照图21,所述摄像头模组10还包括第二滚动体170,所述第二滚动体170活动抵接于所述环绕部1222和所述镜头单元121之间,当所述镜头单元121沿所述光轴G方向运动时,所述镜头单元121带动所述第二滚动体170滚动。第二滚动体170可以为圆柱状,也可以为球状。
请参照图24,镜头单元121的镜头载体1212的外侧壁可以设置第二摩擦片125,第二摩擦片125可以采用内嵌的方式嵌入于镜头载体1212,第二摩擦片125也可以采用粘接的方式与镜头载体1212结合。第二摩擦片125的材料可选用氧化铝(Al2O3)、氧化硅(SiO2)、氧化锆(ZrO2)或碳纤维、聚酯纤维、铝、铁、铜、不锈钢等耐磨材料。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (21)

  1. 一种摄像头模组,其特征在于,所述摄像头模组包括:
    收容组件,所述收容组件包括基座和保护壳,所述保护壳和所述基座共同构成收容空间;
    镜头组件,所述镜头组件至少部分位于所述收容空间内且活动连接于所述基座;以及
    第一压电模块,所述第一压电模块位于所述收容空间内,所述第一压电模块的一端连接于所述收容组件,所述第一压电模块的另一端活动抵接于所述镜头组件,所述第一压电模块用于在通电时驱动所述镜头组件沿所述基座的表面往第一方向或第二方向运动,其中,所述第一方向和所述第二方向不平行且均垂直于光轴。
  2. 如权利要求1所述的摄像头模组,其特征在于,所述第一压电模块包括承载件、第一压电体、第一摩擦件,所述第一摩擦件连接于所述承载件的一端且所述第一摩擦件活动抵接于所述镜头组件,所述承载件上远离所述第一摩擦件的一端连接于所述收容组件,所述第一压电体连接于所述承载件,所述第一压电体用于在通电时通过所述承载件带动所述第一摩擦件运动,以使所述第一摩擦件带动所述镜头组件移动。
  3. 如权利要求2所述的摄像头模组,其特征在于,所述第一压电体包括第一子压电体、第二子压电体,所述第一子压电体和所述第二子压电体均连接于所述承载件且沿所述承载件的周向布置,所述第一子压电体用于驱动所述镜头组件往所述第一方向运动,所述第二子压电体用于驱动所述镜头组件往所述第二方向运动。
  4. 如权利要求3所述的摄像头模组,其特征在于,所述第一压电模块还包括第三子压电体,所述第三子压电体设置于所述承载件背离所述第一子压电体的一侧,所述第一子压电体和所述第三子压电体用于共同驱动所述镜头组件往第一方向运动;
    和/或,所述第一压电模块还包括第四子压电体,所述第四子压电体设置于所述承载件背离所述第二子压电体的一侧,所述第二子压电体和所述第四子压电体用于共同驱动所述镜头组件往第二方向运动。
  5. 如权利要求2所述的摄像头模组,其特征在于,所述承载件的内部开设至少一个腔体。
  6. 如权利要求1所述的摄像头模组,其特征在于,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述保护壳包括顶盖部,所述顶盖部位于所述底盖部背离所述基座的一侧,所述第一压电模块的一端连接于所述顶盖部,所述第一压电模块的另一端活动抵接于所述底盖部。
  7. 如权利要求1所述的摄像头模组,其特征在于,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部和环绕部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述环绕部弯折连接于所述底盖部的周缘,所述环绕部环绕所述镜头单元的外周且与所述镜头单元间隔设置,所述第一压电模块设置于所述镜头单元和所述环绕部之间,且所述第一压电模块间隔于所述镜头单元和所述环绕部。
  8. 如权利要求7所述的摄像头模组,其特征在于,所述镜头单元包括镜头和镜头载体,所述镜头承载于所述镜头载体,所述镜头载体承载于所述支撑座,所述镜头载体具有避让空间,所述避让空间自所述镜头载体的外侧面往所述镜头的所在方向凹陷,所述第一压电模块设置于所述避让空间内。
  9. 如权利要求1所述的摄像头模组,其特征在于,所述保护壳包括第一壳体,所述第一壳体包括第一顶盖部和第一环周部,所述第一顶盖部面向于所述基座,所述第一环周部弯折连接于所述第一顶盖部的周缘,所述第一顶盖部、所述第一环周部、所述基座共同围设成收容空间,且所述第一环周部远离所述第一顶盖部的一端连接于所述基座。
  10. 如权利要求9所述的摄像头模组,其特征在于,所述保护壳还包括第二壳体,所述第二壳体位于所述收容空间内,所述第二壳体包括第二顶盖部,所述第二顶盖部与所述第一顶盖部相对设置且所述第二顶盖部连接于所述第一压电模块。
  11. 如权利要求10所述的摄像头模组,其特征在于,所述第二壳体还包括第二环周部,所述第二环周部弯折连接于所述第二顶盖部的周缘,所述第二环周部环绕于所述镜头组件的 外周,且位于所述第一环周部和所述镜头组件之间。
  12. 如权利要求1所述的摄像头模组,其特征在于,所述摄像头模组还包括滤光片,所述滤光片承载于所述基座,所述滤光片与所述镜头组件相对设置。
  13. 如权利要求12所述的摄像头模组,其特征在于,所述基座包括层叠设置的第一基座和第二基座,所述第一基座与所述保护壳共同构成所述收容空间,所述第二基座设置于所述第一基座背离所述镜头组件的一侧,所述第二基座用于承载所述滤光片,所述第一基座和所述第二基座为分体式结构或一体式结构。
  14. 如权利要求1所述的摄像头模组,其特征在于,所述第一压电模块沿光轴方向抵接于所述镜头组件。
  15. 如权利要求1所述的摄像头模组,其特征在于,所述保护壳包括顶盖部、弹性件,所述顶盖部与所述基座相对设置,所述弹性件连接于所述顶盖部,所述弹性件沿顶盖部朝向基座的方向弹性抵接于所述第一压电模块。
  16. 如权利要求15所述的摄像头模组,其特征在于,所述弹性件包括抵接部、第一连接部、第二连接部,所述第一连接部和所述第二连接部分别连接于所述抵接部的相背两端,且所述第一连接部和所述第二连接部均连接于所述顶盖部,所述抵接部背离所述顶盖部的一侧连接于所述第一压电模块,且所述抵接部与所述顶盖部间隔设置,所述抵接部用于向所述第一压电模块施加弹性力。
  17. 如权利要求15所述的摄像头模组,其特征在于,所述保护壳还包括调节件,所述顶盖部具有安装孔,所述安装孔贯穿所述顶盖部,所述第一压电模块至少部分位于所述安装孔内,所述调节件通过螺纹旋合于所述安装孔内,所述弹性件位于所述调节件和所述第一压电模块之间,且所述弹性件的相背两端分别抵接于所述调节件和所述第一压电模块。
  18. 如权利要求1-17任意一项所述的摄像头模组,其特征在于,所述镜头组件包括支撑座和镜头单元,所述镜头单元支撑座于所述支撑座,所述支撑座包括底盖部和环绕部,所述底盖部与所述基座相对设置且活动连接于所述基座,所述环绕部弯折连接于所述底盖部的周缘且环绕所述镜头单元设置,所述摄像头模组还包括第二压电模块,所述第二压电模块承载于所述环绕部且活动抵接于所述镜头单元的外侧壁,所述第二压电模块用于在通电时驱动所述镜头单元沿光轴方向运动。
  19. 如权利要求18所述的摄像头模组,其特征在于,所述第一压电模块包括预紧件、第二压电体、第二摩擦件,所述第二摩擦件设置于所述第二压电体面向于所述镜头单元的一侧,所述预紧件连接于所述第二压电体且承载于所述环绕部,所述第二压电体在所述预紧件的作用下驱使所述第二摩擦件抵接于所述镜头单元的外侧壁,所述第二压电体用于在通电时驱动所述第二摩擦件驱动所述镜头单元沿所述光轴方向运动。
  20. 如权利要求19所述的摄像头模组,其特征在于,所述预紧件上设有开口,所述开口为通孔或凹槽。
  21. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-20任意一项所述的摄像头模组。
PCT/CN2023/116760 2022-10-19 2023-09-04 摄像头模组及电子设备 WO2024082841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211282515.6 2022-10-19
CN202211282515.6A CN115589520A (zh) 2022-10-19 2022-10-19 摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2024082841A1 true WO2024082841A1 (zh) 2024-04-25

Family

ID=84779413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116760 WO2024082841A1 (zh) 2022-10-19 2023-09-04 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN115589520A (zh)
WO (1) WO2024082841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115589520A (zh) * 2022-10-19 2023-01-10 Oppo广东移动通信有限公司 摄像头模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052147A (ko) * 2007-11-20 2009-05-25 삼성전기주식회사 피에조 액츄에이터를 이용한 렌즈 위치 제어 장치 및 방법
CN202837765U (zh) * 2012-09-17 2013-03-27 硕颖数码科技(中国)有限公司 相机镜头模组
CN110475050A (zh) * 2018-05-09 2019-11-19 三星电子株式会社 提供稳定功能的相机模块和包括该相机模块的电子设备
CN113495339A (zh) * 2021-08-04 2021-10-12 河南皓泽电子股份有限公司 镜头驱动装置
CN114650355A (zh) * 2022-03-16 2022-06-21 Oppo广东移动通信有限公司 移动终端及其摄像头模组
CN115589520A (zh) * 2022-10-19 2023-01-10 Oppo广东移动通信有限公司 摄像头模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052147A (ko) * 2007-11-20 2009-05-25 삼성전기주식회사 피에조 액츄에이터를 이용한 렌즈 위치 제어 장치 및 방법
CN202837765U (zh) * 2012-09-17 2013-03-27 硕颖数码科技(中国)有限公司 相机镜头模组
CN110475050A (zh) * 2018-05-09 2019-11-19 三星电子株式会社 提供稳定功能的相机模块和包括该相机模块的电子设备
CN113495339A (zh) * 2021-08-04 2021-10-12 河南皓泽电子股份有限公司 镜头驱动装置
CN114650355A (zh) * 2022-03-16 2022-06-21 Oppo广东移动通信有限公司 移动终端及其摄像头模组
CN115589520A (zh) * 2022-10-19 2023-01-10 Oppo广东移动通信有限公司 摄像头模组及电子设备

Also Published As

Publication number Publication date
CN115589520A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
US20230056716A1 (en) Lens driving apparatus and camera module including the same
JP7153746B2 (ja) 電子機器
WO2024082841A1 (zh) 摄像头模组及电子设备
US20160246029A1 (en) Actuator and camera module including the same
US9154674B2 (en) Camera module
US8134634B2 (en) Lens driving unit and image photographing module comprising the same
US11487078B2 (en) Lens assembly driving apparatus, photographing module and electronic device
CN108535830A (zh) 成像模组、摄像头组件与电子装置
CN111182193A (zh) 摄像头模组和电子装置
KR102319601B1 (ko) 카메라 모듈
WO2022151806A1 (zh) 摄像头组件及电子设备
CN115484368B (zh) 成像模组以及电子设备
CN111629127B (zh) 摄像设备
KR102313289B1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
CN115079486A (zh) 摄像头模组及电子设备
CN115396580B (zh) 摄像头模组及电子设备
WO2023051132A1 (zh) 摄像头模组及电子设备
TWI447505B (zh) 致動器、採用該致動器之相機模組及便攜式電子裝置
WO2023061479A1 (zh) 压电驱动器、成像模组及电子设备
WO2024061006A1 (zh) 驱动组件和电子设备
WO2024104112A1 (zh) 驱动组件和电子设备
WO2024093316A1 (zh) 摄像马达、摄像模组及电子设备
WO2023197994A1 (zh) 驱动组件和电子设备
WO2022184089A1 (zh) 感光组件、摄像模组、移动电子设备以及光学防抖方法
JP2012068316A (ja) 駆動装置、及び駆動装置の製造方法