WO2024082755A1 - 一种镀锡板及其制造方法 - Google Patents

一种镀锡板及其制造方法 Download PDF

Info

Publication number
WO2024082755A1
WO2024082755A1 PCT/CN2023/109410 CN2023109410W WO2024082755A1 WO 2024082755 A1 WO2024082755 A1 WO 2024082755A1 CN 2023109410 W CN2023109410 W CN 2023109410W WO 2024082755 A1 WO2024082755 A1 WO 2024082755A1
Authority
WO
WIPO (PCT)
Prior art keywords
leveling
tinplate
manufacturing
rolling
temperature
Prior art date
Application number
PCT/CN2023/109410
Other languages
English (en)
French (fr)
Inventor
宋乙峰
兰昊天
徐晓涵
岳重祥
Original Assignee
江苏省沙钢钢铁研究院有限公司
张家港扬子江冷轧板有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 张家港扬子江冷轧板有限公司, 江苏沙钢集团有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Publication of WO2024082755A1 publication Critical patent/WO2024082755A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application belongs to the technical field of alloy materials, and specifically relates to a tin-plated plate and a method for manufacturing the same.
  • Aerosol cans are metal packaging containers for various reagent products such as air fresheners and insecticides. They are composed of three parts: the top cover, the can body, and the bottom cover. Among them, the deformation of the top cover is the most complicated. It is generally made of tinplate with a thickness of 0.30 to 0.45 mm through multiple stamping deformation processes. The stamping formability of the tinplate is high. When the strength (or hardness) of the tinplate is too high, it is easy to cause stamping wrinkles.
  • the tinplate since the top cover needs to withstand the pressure of the reagent filled in the can after being connected to the can body and the bottom cover, the tinplate must have a certain strength (or hardness), especially for high-pressure aerosol cans, which require higher pressure resistance. Correspondingly, the required tinplate strength is higher.
  • the top cover since the top cover is an appearance part, the surface is coated with transparent paint to maintain the metallic luster, and the consistency of the color and gloss of the appearance of the cover must be maintained. During the processing of the top cover, the tinplate is stretched and deformed, and the surface is prone to darkening. Therefore, it is necessary to develop a tinplate that meets the stamping formability, pressure resistance and surface gloss requirements of the aerosol can top cover.
  • existing tinplate for aerosol can top covers are mainly designed with two types of components, including: (1) low-carbon aluminum-killed steel and a hood annealing process. The annealing time is long, carbon and nitrogen atoms are fully precipitated, and the aging resistance is good, thereby obtaining good stamping formability; (2) interstitial-free atom steel (i.e., IF steel) is used to form an interstitial-free ferrite structure, which is resistant to aging.
  • alloy elements such as Mn, Ti, and B are added to improve the hardness of the steel plate through solid solution strengthening and precipitation strengthening to meet the pressure resistance requirements.
  • the existing technology adopts increasing the amount of tin plating to maintain the surface brightness of the cover after stamping.
  • the prior art discloses an aging-resistant tinplate, which is designed with low-carbon aluminum-killed steel components: C 0.02-0.06%, Al 0.005-0.040%, and is produced using a hood annealing process, which can meet the requirements of top cover processing formability; but the product hardness range is 55 ⁇ 4, and the hardness is low, so it can only be used for ordinary low-pressure tanks, and cannot meet the high pressure resistance requirements of medium-pressure tank and high-pressure tank top covers.
  • the hardness of the head, middle and tail of the steel coil fluctuates greatly, which is not conducive to the production of high-speed cap making lines.
  • the prior art also discloses a tinplate for an aerosol can top cover and a production method thereof, which is designed with interstitial atomic steel (i.e., IF steel) composition: C 0.0015-0.0030%, Mn 0.50-0.60%, Ti 0.045-0.065%, B 0.0002-0.0006%.
  • IF steel interstitial atomic steel
  • it has good aging resistance and low stamping cracking rate, it requires the C content to be controlled at 15-30 ppm, which makes steelmaking production difficult.
  • more alloy elements such as Mn, Ti, and B are added, resulting in high smelting costs.
  • higher hot rolling and annealing process temperatures are used, resulting in high process energy consumption.
  • the hot rolling process is also prone to thickening of oxide scale that is difficult to remove, resulting in surface quality problems in subsequent processes, and making production control difficult.
  • the technical problem to be solved by the present application is to overcome the above-mentioned defects of the tin-plated sheet in the prior art, thereby providing a tin-plated sheet and a method for manufacturing the same.
  • the present application provides a method for manufacturing a tinplate, comprising the following steps: steelmaking and continuous casting, hot rolling, pickling and cold rolling, continuous annealing and leveling, and electro-tinning;
  • the chemical composition of the slab during steelmaking and continuous casting is controlled to be as follows: C 0.020-0.040%, Mn 0.15-0.25%, Si ⁇ 0.03%, P ⁇ 0.015%, S ⁇ 0.010%, Al 0.03 ⁇ 0.06%, N ⁇ 0.0030%, the balance is Fe and other inevitable impurities, and the mass percentage of Al and N elements satisfies the relationship Al ⁇ 0.02%+11.57N;
  • the slab heating temperature is controlled at 1180-1220°C
  • the intermediate slab thickness is 40-42mm
  • the final rolling temperature is 860-890°C
  • the coiling temperature is 640-670°C.
  • the strip temperature in the rapid cooling section is controlled at 360-380°C, and the cooling rate is 100-130°C/s.
  • the strip enters the aging section.
  • the strip temperature in zone 1 of the aging section is 400-420°C, and the aging time is 60-80s.
  • the strip temperature in zone 2 of the aging section is 320-420°C, and the aging time is 120-140s.
  • Leveling adopts a double-stand leveling machine, the leveling rolling force of stand 1 is 4000-4500kN, the leveling rolling force of stand 2 is 3000-3500kN, the strip tension is 40-60kN, and the leveling elongation is 1.4-1.6%.
  • the single-side tinning amount is controlled to be 2.7-2.9 g/m 2
  • the strip speed is 320-380 m/min
  • the reflow temperature is 260-263° C.
  • the height from the reflow equipment to the water quenching tank is 4.2-4.6 m.
  • the steelmaking and continuous casting include: molten steel is smelted in a converter, RH refined, and then continuously cast into slabs.
  • the hot rolling includes: rough rolling, finish rolling, laminar cooling, and coiling to obtain hot-rolled steel coils.
  • the thickness of the hot-rolled steel coil is 2.5 to 3.0 mm.
  • the pickling and cold rolling include: the hot rolled steel coil is uncoiled, pickled, trimmed, cold rolled, and rolled to obtain a chilled coil;
  • the thickness of the cold hardened coil is controlled at 0.30-0.45 mm; the cold rolling reduction rate is 85-88%.
  • the continuous annealing and leveling includes: the cold hard coil is uncoiled, degreased and cleaned, continuously annealed, leveled, trimmed, and rolled to obtain the annealed steel coil.
  • the strip speed is controlled at 400-450 m/min during continuous annealing, and the strip temperature in the soaking section is 740 ⁇ 760°C;
  • the leveling is dry leveling.
  • the electro-tinning comprises: uncoiling the annealed steel coil, degreasing and cleaning, pickling, electroplating, soft melting, passivation, oiling, and coiling to obtain the electro-tinned steel coil;
  • the reflow is induction reflow.
  • Induction reflow has the advantages of rapid temperature rise and low alloy layer controllable.
  • the present application provides a tin plate manufactured by the above manufacturing method.
  • the thickness of the tinplate is 0.30-0.45 mm
  • the hardness (HR30T) is 58 ⁇ 2
  • the yield strength is 300-350 MPa
  • the tensile strength is 360-400 MPa
  • the elongation after fracture is 33-38%
  • the yield elongation is ⁇ 3%.
  • the microstructure of the tinplate is equiaxed ferrite + cementite particles, wherein the ferrite grain size is 10-11 levels, and the cementite is evenly dispersed.
  • the single-sided tin plating amount of the tinplate is 2.7-2.9 g/m 2 , wherein the alloy tin amount is 0.4-0.6 g/m 2 .
  • C is the most economical strengthening element in steel. Retaining a certain C content during the steelmaking process is conducive to obtaining material strength and hardness at a low cost. As the C content increases, the material hardness increases. Too high a C content can easily cause the tinplate to have too high a hardness and low elongation, reducing the stamping formability and aging resistance of the tinplate. At the same time, the C content control range affects the hardness fluctuation of the material, but a too narrow control range will greatly increase the steelmaking cost. Therefore, this application selects a C content of 0.02-0.04%.
  • Mn as a solid solution strengthening element, can improve the strength of the steel plate without significantly reducing the plasticity. At the same time, Mn combines with S to form MnS to reduce the hot brittleness of the steel. However, too high a Mn content will increase the alloy cost. Therefore, the present application selects a Mn content of 0.15-0.25%.
  • Si is easily enriched and oxidized on the steel surface, which is not conducive to the surface quality and coating performance of the steel plate. Therefore, the lower the Si content, the better. This application selects Si ⁇ 0.03%.
  • P has a strong solid solution strengthening effect, but is easy to segregate and form a banded structure, which reduces the plasticity and toughness of the steel plate and is detrimental to the formability. In this application, P ⁇ 0.015% is selected.
  • S For tinplate, S is a harmful impurity element and easily forms sulfide inclusions, which is not conducive to the forming of steel plates. In this application, S ⁇ 0.010% is selected.
  • N is a harmful impurity element.
  • the interstitial solid solution N atoms increase the strength and hardness of the steel plate and reduce its plasticity. At the same time, tensile strain marks are prone to occur when the steel plate is stamped and deformed. Therefore, it is necessary to reduce the N content in the steel. This application selects N ⁇ 0.0030%.
  • Al is added as a deoxidizer during the steelmaking process. At the same time, Al can combine with N to form AlN. Since N in steel cannot be completely removed, adding a certain amount of Al can fix N in steel and improve aging resistance. Al, which plays a nitrogen fixation role, maintains a certain excess ratio, which is conducive to the full fixation of N in low-carbon steel, that is, (Al-0.02%)/27 ⁇ 6 ⁇ (N/14). However, if the Al content is too high, it is easy to increase steelmaking inclusions, deteriorate continuous casting castability, and increase alloy costs. Therefore, this application selects an Al content range of 0.03-0.06% and satisfies the relationship Al ⁇ 0.02%+11.57N.
  • the manufacturing method of the tinplate described in the present application takes into account the stamping formability, pressure resistance and production economy of the tinplate required for the aerosol can top cover.
  • the important steps of each process in the manufacturing method described in the present application are as follows:
  • RH vacuum degassing treatment can accurately control the C content within the range of 0.02-0.04%, making full use of the solid solution strengthening effect of C to obtain the required hardness of the tinplate.
  • the RH process can also effectively remove N, reduce the N content in the steel, which is beneficial to stamping formability, and at the same time reduce the Al content required for solid N.
  • Hot rolling Austenite rolling process is adopted, and relatively low slab heating temperature, rolling temperature and appropriate intermediate billet thickness are controlled at the same time, avoiding high energy consumption, poor surface quality, coarse grains and other problems caused by high temperature rolling production. If the slab heating temperature is too high, a large amount of AlN will dissolve during the heating process, resulting in an increase in the solid solution nitrogen content. A higher aluminum content and long-term high-temperature coiling are required to fully precipitate AlN. If the temperature is too low, rolling will be difficult, which may easily lead to a low final rolling temperature.
  • the slab heating temperature is controlled at 1180-1220°C; if the intermediate billet thickness is too small, the temperature drop during the rolling process is large, the final rolling temperature requirements cannot be guaranteed, and the temperature uniformity of the steel coil is poor.
  • the thickness of the intermediate billet is too large, which makes rolling difficult. Therefore, the thickness of the intermediate billet is selected to be 40-42 mm. Under the condition of ensuring that the temperature is higher than the Ar3 phase transformation point, a lower final rolling temperature is adopted to avoid two-phase rolling.
  • the final rolling temperature is selected to be 860-890 °C. When the coiling temperature is too high, coarse grains are easily formed and the strength is reduced. When the temperature is too low, it is not conducive to the precipitation of solid solution N. Therefore, the coiling temperature is selected to be 640-670 °C.
  • Cold rolling If the cold rolling reduction rate is too large, the recrystallization temperature will increase, and a higher annealing temperature will be required. At the same time, after annealing, the grain size of the steel plate will decrease, the hardness will increase, and the yield platform will be extended, which is not conducive to uniform deformation during the stamping process. If the cold rolling reduction rate is too small, the steel plate grains will be coarse and the hardness will be low, and thinner hot-rolled raw materials will be required, which will increase production costs. Therefore, the cold rolling reduction rate is selected to be 85-88%.
  • Continuous annealing is the key link to control the microstructure and performance of steel plates.
  • the steel plates are heated to above the recrystallization temperature and go through the process of recovery, recrystallization, grain growth and cementite precipitation.
  • a ferrite structure with a certain grain size is obtained by matching the strip speed and the temperature of the soaking section; at the same time, rapid cooling (100-130°C/s) is used to supersaturate the solid solution C atoms in the ferrite to obtain sufficient precipitation energy storage; the first stage of aging adopts an over-aging process.
  • the strip After rapid cooling, the strip is reheated to the aging temperature (400-420°C) and kept warm for a period of time to promote the rapid and large-scale precipitation of cementite; the second stage of aging is inclined aging, which makes full use of the strip temperature (320-420°C) and maintains a long insulation time to further precipitate cementite and reduce the adverse effects of interstitial solid solution C atoms on stamping deformation.
  • the aging temperature 400-420°C
  • the second stage of aging is inclined aging, which makes full use of the strip temperature (320-420°C) and maintains a long insulation time to further precipitate cementite and reduce the adverse effects of interstitial solid solution C atoms on stamping deformation.
  • a reasonable annealing process is matched, namely: the strip speed is 400-450 m/min, the soaking section temperature is 740-760°C, the rapid cooling section temperature is 360-380°C, the cooling rate is 100-130°C/s, the strip temperature in the aging section 1 is 400-420°C, the aging time is 60-80s, the strip temperature in the aging section 2 is 320-420°C, and the aging time is 120-140s.
  • Leveling includes adjusting the mechanical properties of the steel plate after annealing, giving the strip different surface structures and roughness, and improving the quality of the plate shape.
  • the use of a large rolling force and a small tension mode is conducive to obtaining more movable dislocations and reducing the yield elongation, but too large a rolling force and too small a tension are not conducive to the control of the strip shape and surface structure. Therefore, two leveling stands are selected with rolling forces of 4000-4500 kN and 3000-3500 kN, respectively, and a strip tension of 40-60 kN.
  • the yield strength of the steel plate The degree first decreases and then increases.
  • the flattening elongation reaches more than 1.2%, the yield platform of the annealed steel plate with a thickness of 0.30-0.45mm can be eliminated, and the yield strength reaches the lowest point.
  • the flattening elongation reaches more than 1.4%, more movable dislocations can be obtained and the yield strength and hardness of the steel plate can be appropriately increased.
  • too high a flattening elongation will significantly increase the hardness, reduce plasticity, and increase the load of the flattening machine. Therefore, the flattening elongation shall not exceed 1.6%.
  • Soft melting The tinplate is quickly heated to a temperature above the melting point of tin (232°C) through the soft melting equipment, so that the tin layer melts to obtain a smooth surface, and at the same time forms a tin-iron alloy layer to improve the adhesion and corrosion resistance of the tin layer. If the soft melting temperature is too low, the tin layer will not be completely soft melted; if the soft melting temperature is too high, the alloy layer will thicken and the tin layer will be severely oxidized.
  • the soft melting temperature is selected to be 260-263°C, and the soft melting equipment is adjusted to a water quenching tank height of 4.2-4.6m, and the soft melting reaction time is controlled to reduce the thickness of the tin-iron alloy layer. Under the condition of keeping the tin plating amount unchanged, more bright pure tin layer is retained to improve the surface brightness of the tinplate after stamping and capping, avoiding the darkening problem.
  • the manufacturing method of tinplate provided in the present application adopts the design of low-carbon aluminum-killed steel composition. Under the condition of not increasing the alloy content and the difficulty of production control, by designing the content of elements such as C, Mn, Al, and N in the tinplate, and matching the corresponding hot rolling, cold rolling, annealing, and leveling processes, the strengthening effect of conventional elements carbon and manganese is fully utilized, and the precipitation control of aluminum nitride in hot rolling and annealing is combined, and the appropriate cold rolling reduction rate is selected.
  • elements such as C, Mn, Al, and N
  • the ferrite grain size and cementite precipitation in the steel are controlled by continuous annealing and over-aging treatment, and a specific leveling process is matched to produce tinplate with small fluctuations in strength and hardness, high elongation, and short yield platform, which meets the requirements of aerosol can top cover for stamping formability and pressure resistance.
  • the tinplate composition is simple, the process is simple and easy, and the production cost is low.
  • the present application adopts a combination design of steelmaking composition and hot rolling, annealing, and leveling processes to control the precipitation of aluminum nitride and cementite, minimize the interstitial solid solution of C and N atoms in the steel, effectively shorten the yield platform, and is beneficial to stamping formability.
  • the hot rolling of the present application controls a relatively low rolling temperature and an appropriate intermediate billet thickness, avoiding the problems of high energy consumption, poor surface quality, coarse grains, etc. caused by high-temperature rolling production, improving the surface quality and organizational uniformity of the product, and further reducing production costs.
  • the manufacturing method of the tin plate of the present application adopts induction reflow and controls the reflow temperature and reaction time. At the same time, the amount of alloy tin should be reasonably controlled to achieve the effect of accurately controlling the alloy tin layer.
  • the amount of alloy tin in the tinplate is 0.4-0.6g/ m2 , which is beneficial to maintaining the surface brightness of the tinplate after stamping deformation.
  • the tinplate provided in this application has a hardness (HR30T) of 58 ⁇ 2, a yield strength of 300-350MPa, a tensile strength of 360-400MPa, an elongation after fracture of 33-38%, and a yield elongation of ⁇ 3%.
  • the hardness and strength of the steel plate can meet the pressure resistance requirements of the aerosol can top cover.
  • the hardness and strength fluctuation range is small, the elongation is high, and the yield platform is short, which can meet the requirements of the aerosol can top cover not wrinkling during stamping.
  • the microstructure of the steel plate is equiaxed ferrite + cementite particles, and the cementite is evenly dispersed and distributed without banded cementite, which avoids cracking caused by inconsistent local deformation and improves the uniformity of processing deformation.
  • FIG1 is a microstructure photograph of the tinplate obtained in Example 1 of the present application.
  • FIG2 is a microstructure photograph of the tinplate obtained in Comparative Example 1 of the present application.
  • FIG. 3 is an annealing process curve of an embodiment of the present application.
  • the manufacturing method of the tinplate provided in the embodiments and comparative examples of the present application includes: steelmaking and continuous casting, hot rolling, pickling, cold rolling, continuous annealing, leveling and electroplating tin, and the specific steps are:
  • Hot rolling The continuous casting slab is sequentially heated, rough rolled, finished rolled, laminar cooled, and rolled to obtain a hot rolled steel coil with a thickness of 2.5 to 3.0 mm.
  • the specific hot rolling process parameters are shown in Table 2;
  • Electroplating tin The annealed steel coil is uncoiled, degreased, pickled, electroplated, soft melted, passivated, oiled, and coiled to obtain the electroplated tin steel coil (tin plate).
  • the specific process parameters are shown in Table 6;
  • Example 1 The difference between this comparative example and Example 1 is that the chemical composition of the slab is different, and the other process operation steps and parameters are the same as those of Example 1.
  • the specific composition of the slab is shown in the following table.
  • Example 1 The difference between this comparative example and Example 1 is that the operating parameters of the continuous annealing are different, as shown in the following table.
  • Example 1 The difference between this comparative example and Example 1 is that the operating parameters of the continuous hot rolling are different, as shown in the following table.
  • the tin-plated steel coils were prepared according to the above-mentioned embodiments and comparative examples, and the mechanical properties, microstructure and tin plating amount were tested.
  • the specific test methods were carried out in accordance with GB/T 2520-2017 "Cold-rolled tin-plated steel sheets and strips” and GB/T 4335-2013 "Determination of ferrite grain size of cold-rolled low-carbon steel sheets”. The test results are shown in Table 7.
  • the electroplated tinned steel coils provided in the examples and comparative examples of the present application were applied to the production line of aerosol can top covers, and the results of the cap forming property, pressure resistance test and cap appearance inspection are shown in Table 8.
  • the pressure resistance value test method is implemented in accordance with GB/T 13042-2008 "Packaging Container Iron Aerosol Cans".
  • the lids of the present application are well formed, without cracking or wrinkling, and the pressure resistance values are all above 1.8MPa, which can meet the requirements of high-pressure aerosol can products, and the lid surface appearance is bright.
  • Comparative Examples 1 and 3 have qualified pressure resistance values, but there are cracking or wrinkling problems in lid forming.
  • Comparative Example 2 has good formation but insufficient pressure resistance and cannot be used for high-pressure aerosol cans.
  • Comparative Examples 1 to 3 also have the problem of blackening of the surface after lid making.
  • Comparative Examples 4-7 have qualified pressure resistance values, but there are cracking or wrinkling problems in lid forming.
  • Figure 1 is a microstructure photo of the tinplate provided in Example 1 of the present application. It can be seen from the figure that the microstructure is equiaxed ferrite + cementite particles, wherein the ferrite grains are equiaxed and uniform in size, the grain size is level 11, the cementite is evenly dispersed and distributed in small quantities, and the overall organization is uniform.
  • Figure 2 is a microstructure photo of the tinplate provided in Comparative Example 1 of the present application.
  • the microstructure is equiaxed ferrite + cementite particles, but the ferrite grains are relatively small, the grain size is level 11.5, the cementite is large in size, large in quantity, and in bands or clusters, unevenly distributed, and the overall organization is uneven, which is prone to uneven deformation, causing wrinkling or cracking of the cover.

Abstract

属于合金材料技术领域,具体涉及一种镀锡板及其制造方法。提供的镀锡板的制造方法,采用低碳铝镇静钢成分设计,在不增加合金含量和生产控制难度的条件下,通过设计镀锡板中C、Mn、Al、N等元素含量,并匹配相应的热轧、冷轧、退火、平整工艺,充分利用常规元素碳、锰的强化作用,结合热轧氮化铝析出控制,选择合适的冷轧压下率,并通过连续退火、过时效处理控制钢中铁素体晶粒尺寸和渗碳体析出,匹配特定的平整工艺,生产出强度和硬度波动小、延伸率高、屈服平台短的镀锡板,同时合理控制合金锡量,满足气雾罐顶盖对冲压成形性、耐压性和表面光泽度要求,镀锡板成分简单、工艺简便易行、生产成本低。

Description

一种镀锡板及其制造方法
相关申请的交叉引用
本申请要求在2022年10月17日提交中国专利局、申请号为202211264096.3、发明名称为“一种镀锡板及其制造方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于合金材料技术领域,具体涉及一种镀锡板及其制造方法。
背景技术
气雾罐是一种用于盛装空气清新剂、杀虫剂等各类试剂产品的金属包装容器,由顶盖、罐身、底盖三部分组成。其中,顶盖变形最复杂,一般采用厚度0.30~0.45mm的镀锡板经多道次冲压变形加工而成,对镀锡板的冲压成形性要求高,镀锡板强度(或硬度)过高时容易出现冲压起皱问题;同时,由于顶盖与罐身、底盖连接后需要承受罐内充填试剂的压力,镀锡板又必须具备一定强度(或硬度),尤其是高压气雾罐,耐压性能要求更高,相应的,所需镀锡板强度更高。另外,由于顶盖作为外观件,表面涂透明漆以保持金属光泽,还需保持盖子外观颜色光泽度的一致性,而顶盖加工过程中镀锡板拉伸变形,容易出现表面发暗问题。因此,需要开发一种镀锡板,同时满足气雾罐顶盖的冲压成形性、耐压性及表面光泽度要求。
针对气雾罐顶盖冲压成形性和耐压性需求,现有气雾罐顶盖用镀锡板主要采用两大类成分设计,包括:(1)采用低碳铝镇静钢,并选用罩式退火工艺,退火时间长,碳、氮原子充分析出,耐时效性好,从而获得良好的冲压成形性;(2)采用无间隙原子钢(即IF钢),形成无间隙原子的铁素体组织,耐时效性 好,同时添加Mn、Ti、B等合金元素,通过固溶强化和析出强化来提高钢板硬度以满足耐压要求。针对气雾罐顶盖表面光泽度要求,现有技术采用增大镀锡量以保持冲压后盖子的表面亮度。
例如,现有技术公开了一种耐时效镀锡板,采用低碳铝镇静钢成分设计:C 0.02~0.06%、Al 0.005~0.040%,并采用罩式退火工艺生产,能满足顶盖加工成形性要求;但产品硬度范围为55±4,硬度偏低,只能用于普通低压罐,无法满足中压罐和高压罐顶盖高耐压要求,同时因罩式退火钢卷内部温度不均匀,导致钢卷头、中、尾的硬度波动较大,对高速制盖线的生产不利。
现有技术还公开了一种气雾罐顶盖用镀锡板及其生产方法,采用无间隙原子钢(即IF钢)成分设计:C 0.0015~0.0030%、Mn 0.50~0.60%、Ti 0.045~0.065%、B 0.0002~0.0006%,虽然耐时效性能好、冲压开裂率低,但要求C含量控制在15~30ppm,炼钢生产难度大,还添加了较多的Mn、Ti、B等合金元素,冶炼成本高;同时采用较高的热轧和退火工艺温度,过程能耗大,热轧过程还容易出现氧化铁皮增厚不易去除,导致后工序表面质量问题,生产控制难度大。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的镀锡板存在的上述缺陷,从而提供一种镀锡板及其制造方法。
为此,本申请提供如下技术方案:
本申请提供一种镀锡板的制造方法,包括如下步骤:炼钢及连铸、热轧、酸洗及冷轧、连续退火及平整和电镀锡;
其中,炼钢及连铸过程中控制板坯的化学成分质量百分比组成为:C 0.020~0.040%,Mn 0.15~0.25%,Si≤0.03%,P≤0.015%,S≤0.010%,Al  0.03~0.06%,N≤0.0030%,余量为Fe和其他不可避免的杂质,且Al和N元素的质量百分含量满足关系式Al≥0.02%+11.57N;
热轧过程中控制板坯加热温度1180~1220℃,中间坯厚度40~42mm,终轧温度860~890℃,卷取温度640~670℃;
连续退火及平整过程中控制快冷段带钢温度360~380℃,冷却速率100~130℃/s,冷却后带钢进入时效段,时效段1区带钢温度400~420℃,时效时间60~80s,时效段2区带钢温度范围320~420℃,时效时间120~140s;平整采用双机架平整机,1号机架平整轧制力4000~4500kN,2号机架平整轧制力3000~3500kN,带钢张力40~60kN,平整延伸率1.4~1.6%。
可选的,电镀锡过程中控制单面镀锡量为2.7~2.9g/m2,带钢速度320~380m/min,软熔温度260-263℃,软熔设备至水淬槽高度为4.2-4.6m。
可选的,所述炼钢及连铸包括:钢水经转炉冶炼,RH精炼后,连铸成板坯。
可选的,所述热轧包括:粗轧、精轧、层流冷却、卷取得到热轧钢卷。
可选的,所述热轧钢卷的厚度为2.5~3.0mm。
可选的,所述酸洗及冷轧包括:热轧钢卷经过开卷、酸洗、切边、冷轧、卷取得到冷硬卷;
酸洗及冷轧过程中控制冷硬卷的厚度0.30~0.45mm;冷轧压下率为85~88%。
可选的,所述连续退火及平整包括:冷硬卷经过开卷、脱脂清洗、连续退火、平整、切边、卷取得到退火钢卷。
可选的,连续退火过程中控制带钢速度400~450m/min,均热段带钢温度 740~760℃;
所述平整为干式平整。
可选的,所述电镀锡包括:退火钢卷经开卷、脱脂清洗、酸洗、电镀、软熔、钝化、涂油、卷取得到电镀锡钢卷;
所述软熔为感应软熔。感应软熔具有快速升温,合金层能控制较低等优点。本申请提供一种镀锡板,采用上述的制造方法制造得到。
可选的,所述镀锡板的厚度为0.30~0.45mm,硬度(HR30T)58±2,屈服强度300~350MPa,抗拉强度360~400MPa,断后延伸率33~38%,屈服延伸率≤3%。所述镀锡板的微观组织为等轴铁素体+渗碳体颗粒,其中铁素体晶粒度为10~11级,渗碳体呈均匀分散分布。所述镀锡板的单面镀锡量为2.7~2.9g/m2,其中合金锡量为0.4~0.6g/m2
本申请所设计的主要组分作用及其选择说明:
C:C是钢中最经济的强化元素,在炼钢过程中保留一定C含量,有利于低成本获得材料强度、硬度;随着C含量增加,材料硬度升高,C含量过高容易造成镀锡板硬度过高、延伸率偏低,降低镀锡板的冲压成形性和耐时效性,同时C含量控制范围影响了材料硬度波动,但控制范围过窄将大幅增加炼钢成本。因此,本申请选择C含量为0.02~0.04%。
Mn:Mn作为固溶强化元素,可提高钢板强度且塑性降低不明显,同时Mn与S结合形成MnS降低钢的热脆性,但Mn含量过高将增加合金成本。因此,本申请选择Mn含量为0.15~0.25%。
Si:Si容易在钢表面富集氧化,不利于钢板表面质量和涂镀性能,因此Si含量越低越好,本申请选择Si≤0.03%。
P:P固溶强化作用强,但容易偏析,形成带状组织,降低钢板塑性和韧性,对成形性不利,本申请选择P≤0.015%。
S:对于镀锡板,S属于有害杂质元素,容易形成硫化物夹杂,对钢板成形不利,本申请选择S≤0.010%。
N:对于镀锡板,N属于有害杂质元素,其中间隙固溶N原子使钢板强度、硬度增大、塑性降低,同时钢板冲压变形时容易出现拉伸应变痕,因此需要降低钢中N含量,本申请选择N≤0.0030%。
Al:Al作为脱氧剂在炼钢过程中添加,同时Al可以和N结合形成AlN,由于钢中N不能被完全去除,添加一定量Al可以固定钢中的N,改善抗时效性,起到固氮作用的Al保持一定过量比例,有利于低碳钢中N被充分固定,即(Al-0.02%)/27≥6×(N/14),但Al含量过高,还容易带来炼钢夹杂增多、连铸浇注性变差以及合金成本上升。因此,本申请选择Al含量范围为0.03~0.06%且满足关系式Al≥0.02%+11.57N。
本申请所述镀锡板的制造方法,兼顾气雾罐顶盖所需镀锡板的冲压成形性、耐压性以及生产经济性。本申请所述制造方法中各工序重要步骤说明:
炼钢:采用RH真空脱气处理,可以精确控制C含量在0.02~0.04%范围内,充分利用C固溶强化作用获得所需镀锡板的硬度,RH工艺还能有效脱N,降低钢中N含量,有利于冲压成形性,同时降低固N所需Al含量。
热轧:采用奥氏体轧制工艺,同时控制相对低的板坯加热温度、轧制温度和合适的中间坯厚度,避免了高温轧制生产带来的能耗高、表面质量差、晶粒粗大等问题。如果板坯加热温度过高,加热过程大量AlN溶解,导致固溶氮含量增大,需要更高铝含量和长时间高温卷取才能充分析出AlN,而温度过低,轧制困难,容易导致终轧温度低,因此板坯加热温度控制在1180~1220℃;中间坯厚度过小,轧制过程温降大,不能保证终轧温度要求,钢卷温度均匀性差, 中间坯厚度过大导致轧制难度大,因此选择中间坯厚度为40~42mm;在保证温度高于Ar3相变点条件下,采用较低终轧温度,避免两相区轧制,选择终轧温度860~890℃;卷取温度过高时,容易形成粗大晶粒、强度降低,温度过低不利于固溶N的析出,因此选择卷取温度640~670℃。
冷轧:如果冷轧压下率过大,再结晶温度升高,需要采用更高的退火温度,同时退火后钢板晶粒尺寸减小、硬度增大、屈服平台延长,不利于冲压过程均匀变形;如果冷轧压下率过小,钢板晶粒粗大,硬度偏低,还需要更薄的热轧原料,生产成本增加,因此选择冷轧压下率为85~88%。
连续退火:连续退火是控制钢板组织性能的关键环节,钢板经加热至再结晶温度以上,经过回复、再结晶、晶粒长大和渗碳体析出的过程。首先通过匹配带钢速度、均热段温度获得一定晶粒大小的铁素体组织;同时采用快速冷却(100~130℃/s)使铁素体中固溶C原子过饱和,获得充足的析出储能;第1段时效采用过时效工艺,快冷后带钢经再加热升温至时效温度(400~420℃),并保温一段时间,促进渗碳体快速大量析出;第2段时效为倾斜时效,充分利用带钢温度(320~420℃)并维持较长的保温时间,以进一步析出渗碳体,减少间隙固溶C原子对冲压变形的不利影响。因此,结合本申请钢板成分、热轧和冷轧工艺,匹配了合理的退火工艺,即:带钢速度400~450m/min,均热段温度740~760℃,快冷段温度360~380℃,冷却速率100~130℃/s,时效段1区带钢温度400~420℃,时效时间60~80s,时效段2区带钢温度范围320~420℃,时效时间120~140s。
平整:平整作用包括调整退火后钢板的力学性能、赋予带钢不同表面结构和粗糙度、改善板形质量。采用大轧制力、小张力模式有利于获得更多的可移动位错,降低屈服延伸率,但轧制力过大和张力过小不利于带钢板形和表面结构控制,因此选择两个平整机架轧制力分别为4000~4500kN和3000~3500kN,带钢张力40~60kN。对于低碳铝镇静钢,随着平整延伸率增大,钢板的屈服强 度先降低后增高,平整延伸率达到1.2%以上可以消除厚度0.30~0.45mm退火钢板的屈服平台,屈服强度达到最低点,继续提高平整延伸率至1.4%以上,可以获得更多可移动位错并适当增大钢板屈服强度和硬度,但平整延伸率过高会显著提高硬度、降低塑性,同时增加平整机负荷,因此平整延伸率不超过1.6%。
软熔:镀锡板通过软熔设备快速加热至锡熔点(232℃)以上温度,使镀锡层熔融获得光滑表面,同时形成锡铁合金层,改善锡层附着力和耐蚀性。软熔温度过低,锡层软熔不完全;软熔温度过高,合金层增厚、锡层氧化严重,因此选择软熔温度260~263℃,同时调整软熔设备至水淬槽高度为4.2~4.6m,控制软熔反应时间,以降低锡铁合金层厚度,在保持镀锡量不变的条件下,保留更多光亮的纯锡层,以提高镀锡板冲压制盖后表面光亮度,避免了发暗问题。
本申请技术方案,具有如下优点:
本申请提供的镀锡板的制造方法,采用低碳铝镇静钢成分设计,在不增加合金含量和生产控制难度的条件下,通过设计镀锡板中C、Mn、Al、N等元素含量,并匹配相应的热轧、冷轧、退火、平整工艺,充分利用常规元素碳、锰的强化作用,结合热轧和退火中氮化铝析出控制,选择合适的冷轧压下率,并通过连续退火、过时效处理控制钢中铁素体晶粒尺寸和渗碳体析出,匹配特定的平整工艺,生产出强度和硬度波动小、延伸率高、屈服平台短的镀锡板,满足气雾罐顶盖对冲压成形性、耐压性要求,镀锡板成分简单、工艺简便易行、生产成本低。具体地,本申请采用炼钢成分和热轧、退火、平整工艺组合设计,控制氮化铝和渗碳体析出,最大程度降低钢中间隙固溶的C、N原子,有效缩短了屈服平台,有利于冲压成形性。本申请热轧控制相对低的轧制温度和合适的中间坯厚度,避免了高温轧制生产带来的能耗高、表面质量差、晶粒粗大等问题,提高了产品表面质量、组织均匀性,进一步降低了生产成本。
本申请镀锡板的制造方法,采用感应软熔并控制软熔温度和反应时间,同 时合理控制合金锡量,达到精确控制合金锡层效果,镀锡板合金锡量为0.4~0.6g/m2,有利于镀锡板冲压变形后保持表面光亮度。
本申请提供的镀锡板的硬度(HR30T)58±2,屈服强度300~350MPa,抗拉强度360~400MPa,断后延伸率33~38%,屈服延伸率≤3%,其中,钢板的硬度和强度可满足气雾罐顶盖耐压要求,同时硬度和强度波动范围小、延伸率高、屈服平台短,可以满足气雾罐顶盖冲压不起皱,同时钢板微观组织为等轴铁素体+渗碳体颗粒,渗碳体呈均匀分散分布,无带状渗碳体,避免了局部变形不一致引起的开裂,提高了加工变形的均匀性。通过镀锡板硬度、强度、延伸率、屈服延伸率等力学性能以及微观组织控制,有效解决了常规低碳铝镇钢冲压成形性和耐压性难以兼顾的难题,满足了气雾罐顶盖使用需求。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中所得镀锡板的微观组织照片;
图2是本申请对比例1中所得镀锡板的微观组织照片;
图3是本申请实施例的退火工艺曲线。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
本申请实施例和对比例提供的镀锡板的制造方法包括:炼钢及连铸、热轧、酸洗、冷轧、连续退火、平整和电镀锡,具体步骤为:
1)炼钢及连铸:钢水经转炉冶炼,RH精炼后,连铸成板坯,板坯化学成分见表1;
表1
2)热轧:连铸板坯依次经过加热、粗轧、精轧、层流冷却、卷取得到厚度2.5~3.0mm的热轧钢卷,具体热轧工艺参数见表2;
表2

3)酸洗及冷轧:热轧钢卷依次经过开卷、酸洗、切边、冷连轧、卷取得到厚度0.30~0.45mm的冷硬卷,具体热轧工艺参数见表3;
表3
4)连续退火及平整:冷硬卷依次经过开卷、脱脂清洗、退火、平整、切边、卷取得到退火钢卷,本申请实施例的退火工艺曲线如图3所示,具体工艺参数见表4和表5;
表4
表5
5)电镀锡:退火钢卷经开卷、脱脂清洗、酸洗、电镀、软熔、钝化、涂油、卷取得到电镀锡钢卷(镀锡板),具体工艺参数见表6;
表6

对比例4
本对比例与实施例1的区别在于板坯化学组成不同,其它工艺操作步骤和参数与实施例1相同,板坯的具体组成如下表所示。
表7
对比例5
本对比例与实施例1的区别仅在于,连续退火的操作参数不同,具体如下表所示。
表8
对比例6
本对比例与实施例1的区别仅在于,连续热轧的操作参数不同,具体如下表所示。
表9
对比例7
本对比例与实施例1的区别仅在于,平整的操作参数不同,具体如下表所示。
表10
将按上述实施例和对比例制得电镀锡钢卷,进行力学性能、组织和镀锡量检测,具体测试方法参照GB/T 2520-2017《冷轧电镀锡钢板及钢带》以及GB/T 4335-2013《低碳钢冷轧薄板铁素体晶粒度测定法》执行测试结果如表7所示。
表7
将本申请实施例和对比例提供的电镀锡钢卷应用于气雾罐顶盖生产线,制盖成形性、耐压测试和盖子外观检查结果如表8所示。其中,耐压值的测试方法参照GB/T 13042-2008《包装容器铁制气雾罐》执行。
本申请实施例制盖成形良好,无开裂、无起皱,耐压值均达到1.8MPa以上,可以满足高压气雾罐产品要求,同时盖子表面外观光亮。而对比例1和对比例3耐压值合格,但制盖成形存在开裂或起皱问题,对比例2成形良好但耐压不足,不能用于高压气雾罐,同时对比例1~3还存在制盖后表面发黑问题。对比例4-7耐压值合格,但制盖成形存在开裂或起皱问题。
表8
图1是本申请实施例1提供的镀锡板微观组织照片,从图中可以看出,微观组织为等轴铁素体+渗碳体颗粒,其中铁素体晶粒呈等轴状且尺寸均匀,晶粒度为11级,渗碳体呈均匀分散分布且数量较少,整体组织均匀。图2是本申请对比例1提供的镀锡板微观组织照片,从图中可以看出,微观组织为等轴铁素体+渗碳体颗粒,但铁素体晶粒较细小,晶粒度为11.5级,渗碳体尺寸大、数量多,且呈带状或团簇状,分布不均匀,整体组织不均匀,容易产生不均匀变形,造成制盖起皱或开裂。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其 它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种镀锡板的制造方法,其特征在于,包括如下步骤:炼钢及连铸、热轧、酸洗及冷轧、连续退火及平整和电镀锡;
    其中,炼钢及连铸过程中控制板坯的化学成分质量百分比组成为:C 0.020~0.040%,Mn 0.15~0.25%,Si≤0.03%,P≤0.015%,S≤0.010%,Al 0.03~0.06%,N≤0.0030%,余量为Fe和其他不可避免的杂质,且Al和N元素的质量百分含量满足关系式Al≥0.02%+11.57N;
    热轧过程中控制板坯加热温度1180~1220℃,中间坯厚度40~42mm,终轧温度860~890℃,卷取温度640~670℃;
    连续退火及平整过程中控制带钢速度400~450m/min,均热段带钢温度740~760℃;快冷段带钢温度360~380℃,冷却速率100~130℃/s,冷却后带钢进入时效段,时效段1区带钢温度400~420℃,时效时间60~80s,时效段2区带钢温度范围320~420℃,时效时间120~140s;平整采用双机架平整机,1号机架平整轧制力4000~4500kN,2号机架平整轧制力3000~3500kN,带钢张力40~60kN,平整延伸率1.4~1.6%。
  2. 根据权利要求1所述的镀锡板的制造方法,其特征在于,电镀锡过程中控制单面镀锡量为2.7~2.9g/m2,带钢速度320~380m/min,软熔温度260-263℃,软熔设备至水淬槽高度为4.2-4.6m。
  3. 根据权利要求1或2所述的镀锡板的制造方法,其特征在于,所述炼钢及连铸包括:钢水经转炉冶炼,RH精炼后,连铸成板坯。
  4. 根据权利要求1或2所述的镀锡板的制造方法,其特征在于,所述热轧包括:粗轧、精轧、层流冷却、卷取得到热轧钢卷。
  5. 根据权利要求4所述的镀锡板的制造方法,其特征在于,所述热轧钢卷的厚度为2.5~3.0mm。
  6. 根据权利要求1或2所述的镀锡板的制造方法,其特征在于,所述酸洗及冷轧包括:热轧钢卷经过开卷、酸洗、切边、冷轧、卷取得到冷硬卷;
    酸洗及冷轧过程中控制冷硬卷的厚度0.30~0.45mm;冷轧压下率为85~88%。
  7. 根据权利要求1或2所述的镀锡板的制造方法,其特征在于,所述连续退火及平整包括:冷硬卷经过开卷、脱脂清洗、连续退火、平整、切边、卷取得到退火钢卷。
  8. 根据权利要求7所述的镀锡板的制造方法,其特征在于,所述平整为干式平整。
  9. 根据权利要求1或2所述的镀锡板的制造方法,其特征在于,所述电镀锡包括:退火钢卷经开卷、脱脂清洗、酸洗、电镀、软熔、钝化、涂油、卷取得到电镀锡钢卷;
    所述软熔为感应软熔。
  10. 根据权利要求1-9中任一项所述的镀锡板的制造方法,其特征在于,所述镀锡板的厚度为0.30~0.45mm,硬度HR30T为58±2,屈服强度300~350MPa,抗拉强度360~400MPa,断后延伸率33~38%,屈服延伸率≤3%,所述镀锡板的微观组织为等轴铁素体+渗碳体颗粒,其中铁素体晶粒度为10~11级,渗碳体呈均匀分散分布。
  11. 一种镀锡板,其特征在于,采用权利要求1-10中任一项所述的制造方法制造得到。
PCT/CN2023/109410 2022-10-17 2023-07-26 一种镀锡板及其制造方法 WO2024082755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211264096.3A CN115341155B (zh) 2022-10-17 2022-10-17 一种镀锡板及其制造方法
CN202211264096.3 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024082755A1 true WO2024082755A1 (zh) 2024-04-25

Family

ID=83957127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109410 WO2024082755A1 (zh) 2022-10-17 2023-07-26 一种镀锡板及其制造方法

Country Status (2)

Country Link
CN (1) CN115341155B (zh)
WO (1) WO2024082755A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341155B (zh) * 2022-10-17 2023-02-24 江苏省沙钢钢铁研究院有限公司 一种镀锡板及其制造方法
CN117587330A (zh) * 2024-01-19 2024-02-23 江苏省沙钢钢铁研究院有限公司 一种高氮高纯净度镀锡板及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030152A (ja) * 1997-04-04 1998-02-03 Toyo Kohan Co Ltd 薄肉化深絞り缶用途に適した鋼板およびその製造法
CN101906570A (zh) * 2010-09-02 2010-12-08 唐山国丰钢铁有限公司 深冲食品罐用镀锡基板及其生产方法
CN101999009A (zh) * 2008-04-11 2011-03-30 杰富意钢铁株式会社 高强度容器用钢板及其制造方法
KR101715507B1 (ko) * 2015-09-22 2017-03-10 현대제철 주식회사 강판 및 이의 제조방법
US20170306436A1 (en) * 2014-10-28 2017-10-26 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor
CN108796381A (zh) * 2017-04-26 2018-11-13 宝山钢铁股份有限公司 一种罐用高轴向承载力及优良成形性的钢板及其制造方法
CN110629125A (zh) * 2018-06-25 2019-12-31 上海梅山钢铁股份有限公司 一种连续钎焊型双层卷焊管用耐时效性优良的冷轧钢板
CN115341155A (zh) * 2022-10-17 2022-11-15 江苏省沙钢钢铁研究院有限公司 一种镀锡板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643828B (zh) * 2009-08-25 2011-05-25 武汉钢铁(集团)公司 一种耐时效镀锡原板的生产方法
CN103320685A (zh) * 2012-03-22 2013-09-25 上海梅山钢铁股份有限公司 硬质镀锡薄钢板及其生产方法
CN104060159A (zh) * 2014-06-26 2014-09-24 宝山钢铁股份有限公司 二次冷轧镀锡板的基板及其制造方法以及二次冷轧镀锡板
CN107964633A (zh) * 2016-10-18 2018-04-27 上海梅山钢铁股份有限公司 一种耐时效镀锡基板及其制造方法
CN110714170B (zh) * 2019-10-23 2021-03-19 首钢集团有限公司 一种高氮冷轧钢及其制备方法、应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030152A (ja) * 1997-04-04 1998-02-03 Toyo Kohan Co Ltd 薄肉化深絞り缶用途に適した鋼板およびその製造法
CN101999009A (zh) * 2008-04-11 2011-03-30 杰富意钢铁株式会社 高强度容器用钢板及其制造方法
CN101906570A (zh) * 2010-09-02 2010-12-08 唐山国丰钢铁有限公司 深冲食品罐用镀锡基板及其生产方法
US20170306436A1 (en) * 2014-10-28 2017-10-26 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor
KR101715507B1 (ko) * 2015-09-22 2017-03-10 현대제철 주식회사 강판 및 이의 제조방법
CN108796381A (zh) * 2017-04-26 2018-11-13 宝山钢铁股份有限公司 一种罐用高轴向承载力及优良成形性的钢板及其制造方法
CN110629125A (zh) * 2018-06-25 2019-12-31 上海梅山钢铁股份有限公司 一种连续钎焊型双层卷焊管用耐时效性优良的冷轧钢板
CN115341155A (zh) * 2022-10-17 2022-11-15 江苏省沙钢钢铁研究院有限公司 一种镀锡板及其制造方法

Also Published As

Publication number Publication date
CN115341155B (zh) 2023-02-24
CN115341155A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5135868B2 (ja) 缶用鋼板およびその製造方法
JP5549307B2 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
WO2024082755A1 (zh) 一种镀锡板及其制造方法
WO2011162135A1 (ja) 形状凍結性に優れた冷延薄鋼板およびその製造方法
JP5532088B2 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN113774274B (zh) 一种低成本良成型电池壳钢及其生产方法
CN109321839A (zh) 一种240MPa级烘烤硬化钢及其制造方法
CN102639740B (zh) 罐用钢板及其制造方法
JP2017031452A (ja) 自動車の外板パネル用合金化溶融亜鉛めっき鋼板およびその製造方法
JP2001107186A (ja) 高強度缶用鋼板およびその製造方法
JP4284815B2 (ja) 高強度缶用鋼板およびその製造方法
TWI717098B (zh) 罐用鋼板及其製造方法
JP5316036B2 (ja) 高強度極薄冷延鋼板用母板およびその製造方法
JP2012012629A (ja) 冷延鋼板およびその製造方法
JPH08176735A (ja) 缶用鋼板とその製造方法
CN111534757A (zh) 一种包装用钢及其生产方法、包装产品
JPH1060542A (ja) 缶用鋼板の製造方法
JPH0657337A (ja) 成形性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法
JPH11222647A (ja) 耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板およびその製造方法
KR102484992B1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
JP2514298B2 (ja) プレス成形性の優れた合金化溶融亜鉛めっき鋼板の製造方法
US20240026511A1 (en) High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor
JP2549539B2 (ja) 超深絞り用溶融亜鉛めっき鋼板の製造方法
JP3273383B2 (ja) 深絞り性の優れた冷延鋼板およびその製造方法