WO2024082323A1 - 一种混合铁矿石选矿方法 - Google Patents
一种混合铁矿石选矿方法 Download PDFInfo
- Publication number
- WO2024082323A1 WO2024082323A1 PCT/CN2022/127558 CN2022127558W WO2024082323A1 WO 2024082323 A1 WO2024082323 A1 WO 2024082323A1 CN 2022127558 W CN2022127558 W CN 2022127558W WO 2024082323 A1 WO2024082323 A1 WO 2024082323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flotation
- magnetic
- tailings
- concentrate
- iron ore
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 142
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000005456 ore beneficiation Methods 0.000 title claims abstract description 15
- 238000005188 flotation Methods 0.000 claims abstract description 146
- 239000012141 concentrate Substances 0.000 claims abstract description 102
- 238000007885 magnetic separation Methods 0.000 claims abstract description 60
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims description 23
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical group [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 claims description 14
- 239000006148 magnetic separator Substances 0.000 claims description 13
- 229920002261 Corn starch Polymers 0.000 claims description 7
- 239000004115 Sodium Silicate Substances 0.000 claims description 7
- 239000012190 activator Substances 0.000 claims description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical group [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 7
- 239000008120 corn starch Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 7
- 238000010408 sweeping Methods 0.000 claims description 7
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- ZGIYTLGBDAOYFL-UHFFFAOYSA-M sodium;2,4-dihydroxybenzoate Chemical compound [Na+].OC1=CC=C(C([O-])=O)C(O)=C1 ZGIYTLGBDAOYFL-UHFFFAOYSA-M 0.000 claims description 5
- 229920000881 Modified starch Polymers 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 229910052595 hematite Inorganic materials 0.000 abstract description 12
- 239000011019 hematite Substances 0.000 abstract description 12
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 7
- 230000005389 magnetism Effects 0.000 abstract description 2
- 239000013043 chemical agent Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 239000010453 quartz Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- UIAFKZKHHVMJGS-UHFFFAOYSA-M 2-carboxy-5-hydroxyphenolate Chemical compound OC1=CC=C(C([O-])=O)C(O)=C1 UIAFKZKHHVMJGS-UHFFFAOYSA-M 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B7/00—Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/30—Combinations with other devices, not otherwise provided for
Definitions
- the invention relates to the technical field of mineral processing, and in particular to a mixed iron ore beneficiation method.
- iron ore selection mainly relies on the reverse flotation process of maghemitic mixed ore to obtain high-grade iron concentrate.
- grade of iron ore is getting lower and lower, and the content of magnetite is gradually increasing.
- a large amount of magnetite enters the flotation operation, and the energy consumption and cost of flotation operation are much higher than those of magnetic separation.
- the original maghemitic mixed ore selection process is no longer able to adapt to the current changes in ore properties.
- the currently developed magnetic hematite separation technology is to prioritize magnetite through a low-cost and simple magnetic separation process to obtain high-grade magnetite concentrate. Hematite is first enriched to a certain grade as a flotation feed ore through a strong magnetic separation operation, and then a qualified iron concentrate is obtained through a reverse flotation process. For hematite, the strong magnetic separation operation can only pre-enrich its grade to 32% to 42%. If the reverse flotation process is directly used, the tailings yield will be as high as 55% or more, which will consume a large amount of flotation reagents and increase the cost of mineral processing.
- the purpose of the present invention is to provide a mixed iron ore beneficiation method, which is mainly aimed at the current situation that the grade of mixed iron ore is getting lower and lower and the magnetic iron content is greatly increased.
- a mixed iron ore high-pressure roller mill pre-selection-magnetic hematite separation technology beneficiation method is provided, which aims to preferentially select magnetite through simple and low-cost magnetic separation through the difference in magnetism and floatability between magnetite and hematite. For hematite with good floatability, after strong magnetic pre-enrichment, the hematite is further enriched through a positive flotation process, and a large amount of tailings are discarded. Then, qualified iron concentrate is obtained through reverse flotation, thereby reducing the dosage of reagents and reducing the flotation pressure, which is of great significance for the efficient utilization of such iron ore.
- the present invention adopts the following technical solutions:
- a mixed iron ore beneficiation method wherein the mixed iron ore is subjected to a high-pressure roller mill pre-selection-weak magnetic, strong magnetic-positive and negative flotation process to obtain qualified iron concentrate; the method specifically comprises the following steps:
- High pressure roller mill can obtain the appropriate particle size of coarse particles and tailings, and the preselection process can greatly reduce the amount of ore entering the mill and reduce the cost of mineral processing;
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed, they are fed into a ball mill and combined with a spiral classifier to form a closed-circuit grinding system.
- the overflow particle size of the first stage is -200 mesh 50% to 60%.
- High-pressure roller mill-ball mill replaces fine crushing-ball mill, which meets the requirements of more crushing and less grinding, energy saving and consumption reduction;
- the overflow product from the first stage is fed into the hydrocyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 70% to 95%.
- the sand settling product is fed into the second stage grinding to form a closed circuit grinding system with the secondary classification.
- This stage of operation preferentially separates magnetic iron through simple weak magnetic separation, which can not only obtain high-grade magnetic concentrate, but also greatly reduce the amount of flotation feed and reduce the cost of mineral processing;
- step 6) The feed ore for flotation obtained in step 6) is first sorted by direct flotation process to obtain direct flotation concentrate with a grade of 55% to 60%, and the direct flotation tailings with a grade of 18% to 22% are directly discharged as tailings.
- the feed ore for flotation has a low grade. If reverse flotation is directly used, the tailings yield will be high, a large amount of flotation reagents will be consumed, and the flotation efficiency will be reduced.
- This section adopts direct flotation process to further enrich the feed ore for flotation, and discard a large amount of tailings to improve the flotation efficiency. At the same time, direct flotation can discard a large amount of low-grade ore mud, eliminating the selective flocculation process;
- the positive flotation concentrate obtained in step 7) is fed into the reverse flotation operation.
- the reverse flotation process adopts 1 roughing 3 sweeping.
- the obtained flotation concentrate is combined with the weak magnetic separation concentrate obtained in step 5) into a comprehensive concentrate with a grade of more than 65%.
- the flotation tailings and the strong magnetic tailings are combined into a comprehensive tailings with a grade between 10% and 12%.
- the feed ore obtained by further enrichment of the positive flotation is used to obtain iron concentrate through the reverse flotation process to reduce the flotation load.
- the flotation collector of this operation is the same as that of the positive flotation, which can reduce the dosage of the entire process reagent.
- the content of magnetite in the mixed iron ore is above 50%.
- the weak magnetic machine used for weak magnetic pre-selection is a permanent magnetic drum magnetic separator with a magnetic field strength of 250mT to 350mT
- the strong magnetic machine used for strong magnetic pre-selection is a vertical ring high gradient magnetic separator with a magnetic field strength of 900mT to 1200mT.
- the concentration of the first grinding is 75% to 82%; in the above step 4), the concentration of the second grinding is 65% to 72%, and the feed concentration of the secondary classification cyclone is controlled at 30% to 40%.
- the weak magnetic separation operation adopts a permanent magnetic drum magnetic separator or a ceramic washing machine or a magnetic separation column or a magnetic vibration machine.
- the number of magnetic separation stages is generally 3 to 5, and the magnetic field strength is 80mT to 350mT.
- Demagnetization is performed by a demagnetizer between each weak magnetic separation stage.
- a section of weak magnetic tailings is concentrated so that the concentration of the strong magnetic operation feed is controlled at 35% to 45%, the magnetic field strength of the strong magnetic machine is 900mT to 1200mT, and the strong magnetic concentrate is mixed with multiple sections of weak magnetic tailings to form the flotation feed, which is then concentrated so that the concentration of the flotation feed is controlled at 36% to 40%.
- the pH value of the positive flotation is between 7 and 9
- the flotation depressant is a mixture of sodium 2,4-dihydroxybenzoate and sodium silicate
- the collector is sodium oleate.
- the positive flotation reagent system should be determined according to the properties of the specific ore raw materials and the requirements for the flotation concentrate grade.
- the reverse flotation inhibitor is corn starch or modified corn starch
- the activator is calcium oxide
- the flotation pH value is 10.5-12
- the reverse flotation collector is sodium oleate
- the final flotation concentrate grade is 63%-65%.
- the reverse flotation reagent system should be determined according to the properties of the specific ore raw materials and the requirements for the flotation concentrate grade.
- the present invention has the following beneficial effects:
- the current mixed magnetic concentrate is continued to be used for flotation, and qualified iron concentrate is obtained through reverse flotation, which greatly increases the beneficiation cost and has low beneficiation efficiency.
- the existing process is obviously not suitable for changes in ore properties.
- the method provided by the present invention first reduces the amount of ore entering the mill by high-pressure roller mill-pre-selection and tailings discarding, while achieving more crushing and less grinding, energy saving and consumption reduction. Then, simple magnetic separation is used to preferentially select the magnetite, and the magnetite concentrate is obtained while reducing the amount of flotation ore, reducing the beneficiation cost.
- the remaining hematite is pre-enriched by strong magnetic, it is further enriched by positive flotation, and then qualified iron concentrate is obtained by reverse flotation.
- the flotation grade of the reverse flotation operation is required to be more than 45%, while the strong magnetic separation operation can only pre-enrich the hematite grade to about 32% to 42%. If the reverse flotation process is directly used, the tailings yield will be as high as more than 55%, the flotation efficiency is low, and the reagent consumption is large. Therefore, the forward flotation process is first used to further enrich the flotation feed ore and discard a large amount of tailings. At the same time, direct flotation can discard a large amount of low-grade ore mud, eliminating the selective flocculation process.
- the iron concentrate is obtained through reverse flotation, which can reduce the flotation load and improve the flotation efficiency. Therefore, the use of high-pressure roller mill pre-selection-magnetic separation-direct and reverse flotation separation separation process is of great significance for achieving mixed iron ore with high magnetic iron content and fine embedded particle size.
- Fig. 1 is a process flow chart of the present invention.
- the weak magnetic machine used for weak magnetic pre-selection is a permanent magnetic drum magnetic separator with a magnetic field strength of 250mT to 350mT.
- the strong magnetic machine used for strong magnetic pre-selection is a vertical ring high gradient magnetic separator with a magnetic field strength of 900mT to 1200mT.
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed and fed into a first-stage ball mill, and a closed-circuit grinding system is formed with a spiral classifier.
- the overflow particle size of the first stage is -200 mesh 50% to 60%.
- the concentration of the first grinding stage is 75% to 82%; in the above step 4), the concentration of the second grinding stage is 65% to 72%, and the feed concentration of the secondary classification cyclone is controlled at 30% to 40%.
- the overflow product from the first stage is fed into the cyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 70% to 95%.
- the sand settling product is fed into the second stage grinding to form a closed-circuit grinding system with the secondary classification.
- the overflow product of the second stage is fed into the first stage weak magnetic operation, and the first stage weak magnetic separation concentrate is further subjected to multiple stages of weak magnetic separation to obtain a weak magnetic concentrate product with a total iron grade of 67% to 69.5%.
- the weak magnetic separation operation adopts permanent magnetic drum magnetic separator or ceramic washing machine or magnetic separation column or magnetic vibration machine.
- the number of magnetic separation sections is generally 3 to 5, and the magnetic field strength is 80mT to 350mT. Demagnetization is required by a demagnetizer between each weak magnetic separation.
- the first stage of weak magnetic tailings is concentrated so that the concentration of the strong magnetic operation feed is controlled at 35% to 45%.
- the magnetic field strength of the strong magnetic machine is 900mT to 1200mT.
- the strong magnetic concentrate is mixed with multiple stages of weak magnetic tailings to form the flotation feed, which is then concentrated so that the concentration of the flotation feed is controlled at 36% to 40%.
- step 6) The flotation feed ore obtained in step 6) is first separated by direct flotation process to obtain a direct flotation concentrate with a grade of 55% to 60%, and the direct flotation tailings with a grade of 18% to 22% are directly discharged as tailings.
- the pH value of positive flotation is between 7 and 9
- the flotation depressant is a mixture of sodium 2,4-dihydroxybenzoate and sodium silicate
- the collector is sodium oleate.
- the positive flotation reagent system should be determined according to the properties of the specific ore raw materials and the requirements for the flotation concentrate grade.
- the forward flotation concentrate obtained in step 7) is fed into reverse flotation operation.
- the reverse flotation process adopts 1 roughing 3 sweeping.
- the obtained flotation concentrate and weak magnetic separation concentrate are combined into a comprehensive concentrate with a grade of more than 65%.
- the flotation tailings and strong magnetic tailings are combined into a comprehensive tailings with a grade between 10% and 12%.
- the reverse flotation inhibitor is corn starch or modified corn starch
- the activator is calcium oxide
- the flotation pH value is 10.5-12
- the reverse flotation collector is sodium oleate
- the final flotation concentrate grade is 63%-65%.
- the reverse flotation reagent system should be determined according to the properties of the specific ore raw materials and the requirements for the flotation concentrate grade.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the mixed iron ore selected in this implementation case has a total iron grade of 34.50%, the gangue minerals are mainly quartz, and the magnetite content is 60%, and is separated by the process of the present invention.
- Finely crushed mixed iron ore crushed to 0-12 mm is fed into a high pressure roller mill as raw ore, and a closed-circuit crushing system is formed with a sieve with a mesh size of 3 mm, in which the particle size above the sieve is returned to the high pressure roller mill.
- the undersize product after crushing by the high pressure roller mill is first subjected to weak magnetic preselection with a magnetic field strength of 350 mT.
- the tailings of the weak magnetic preselection are fed to strong magnetic preselection with a magnetic field strength of 1000 mT.
- the tailings of the strong magnetic preselection are discharged as tailings.
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed, they are fed into a first-stage ball mill and combined with a spiral classifier to form a closed-circuit grinding system.
- the overflow particle size of the first stage is -200 mesh 55%.
- the overflow product from the first stage is fed into a cyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 80%.
- the sand settling product is fed into the second stage grinding to form a closed circuit grinding system with the secondary classification.
- the overflow product of the second stage is fed into the first stage weak magnetic operation, and the first stage weak magnetic separation concentrate is further subjected to three stages of weak magnetic separation to obtain a weak magnetic concentrate product with a total iron grade of 67%.
- the weak magnetic separation operation is all carried out using a permanent magnetic drum magnetic separator, and the magnetic field strength is 350mT, 270mT, 250mT, and 200mT respectively.
- the weak magnetic tailings of the first stage are fed into the strong magnetic separation operation, with a magnetic field strength of 1100mT.
- the strong magnetic concentrate is mixed with the products of the three weak magnetic tailings and used as flotation feed, with a grade of 39.5%.
- the strong magnetic tailings are directly discharged as tailings.
- step (6) The feed ore obtained in step (6) is first separated by direct flotation process, the pH value of the ore pulp is 8, 400 g/t of a mixture of 2,4-dihydroxybenzoate sodium and sodium silicate as an inhibitor and 450 g/t of sodium oleate as a collector are added in sequence to obtain a direct flotation concentrate with a grade of 56%, and the direct flotation tailings with a grade of 19% are directly discharged as tailings.
- the forward flotation concentrate obtained in step (7) is fed into a reverse flotation operation.
- the reverse flotation process adopts 1 roughing and 3 sweeping.
- the pH value of the ore pulp is 11.5.
- 400 g/t of corn starch as an inhibitor, 450 g/t of calcium oxide as an activator and 320 g/t of sodium oleate as a collector are added in sequence to obtain a flotation concentrate with a grade of 63%.
- the concentrate is combined with the weak magnetic separation concentrate obtained in step (5) to form a comprehensive concentrate with a grade of 66%.
- the flotation tailings and the strong magnetic tailings are combined to form a comprehensive tailings with a grade of 11.5%.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the mixed iron ore selected in this implementation case has a total iron grade of 35%, the gangue minerals are mainly quartz, and the magnetite content is 65%, and is separated by the process of the present invention.
- Finely crushed mixed iron ore crushed to 0-12 mm is fed into a high pressure roller mill as raw ore, and a closed-circuit crushing system is formed with a sieve with a mesh size of 3 mm, in which the particle size above the sieve is returned to the high pressure roller mill.
- the undersize product after crushing by the high pressure roller mill is first subjected to weak magnetic preselection with a magnetic field strength of 350 mT.
- the tailings of the weak magnetic preselection are fed to strong magnetic preselection with a magnetic field strength of 1000 mT.
- the tailings of the strong magnetic preselection are discharged as tailings.
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed, they are fed into a first-stage ball mill and combined with a spiral classifier to form a closed-circuit grinding system.
- the overflow particle size of the first stage is -200 mesh 58%.
- the overflow product from the first stage is fed into a hydrocyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 82%.
- the sand settling product is fed into the second stage grinding to form a closed circuit grinding system with the secondary classification.
- the overflow product of the second stage is fed into the first stage of weak magnetic separation, and the first stage of weak magnetic separation concentrate is further subjected to three stages of weak magnetic separation to obtain a weak magnetic concentrate product with a total iron grade of 68%.
- the first three stages of weak magnetic separation operations use a permanent magnetic drum magnetic separator, and the fourth stage uses an elutriator.
- the magnetic field strengths are 350mT, 270mT, 250mT, and 95mT, respectively.
- the weak magnetic tailings of the first stage are fed into the strong magnetic separation operation, with a magnetic field strength of 1100mT.
- the strong magnetic concentrate is mixed with the products of the three weak magnetic tailings as flotation feed, with a grade of 39%.
- the strong magnetic tailings are directly discharged as tailings.
- step (6) The feed ore obtained in step (6) is first separated by direct flotation process, and the pH value of the ore pulp is 8. 420 g/t of a mixture of 2,4-dihydroxybenzoate sodium and sodium silicate as an inhibitor and 440 g/t of sodium oleate as a collector are added in sequence to obtain a direct flotation concentrate with a grade of 55.3%. The direct flotation tailings with a grade of 18.5% are directly discharged as tailings.
- the forward flotation concentrate obtained in step (7) is fed into a reverse flotation operation.
- the reverse flotation process adopts 1 roughing and 3 sweeping.
- the pH value of the ore pulp is 11.5.
- 400 g/t of corn starch as an inhibitor, 450 g/t of calcium oxide as an activator and 310 g/t of sodium oleate as a collector are added in sequence to obtain a flotation concentrate with a grade of 64%.
- the concentrate is combined with the weak magnetic separation concentrate in step (5) to form a comprehensive concentrate with a grade of 67%.
- the flotation tailings and the strong magnetic tailings are combined to form a comprehensive tailings with a grade of 11.2%.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the mixed iron ore selected in this implementation case has a total iron grade of 34%, the gangue minerals are mainly quartz, and the magnetite content is 68%, and is separated by the process of the present invention.
- Finely crushed mixed iron ore crushed to 0-12 mm is fed into a high pressure roller mill as raw ore, and a closed-circuit crushing system is formed with a sieve with a mesh size of 3 mm, in which the particle size above the sieve is returned to the high pressure roller mill.
- the undersize product after crushing by the high pressure roller mill is first subjected to weak magnetic preselection with a magnetic field strength of 350 mT.
- the tailings of the weak magnetic preselection are fed to strong magnetic preselection with a magnetic field strength of 1000 mT.
- the tailings of the strong magnetic preselection are discharged as tailings.
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed, they are fed into a first-stage ball mill and combined with a spiral classifier to form a closed-circuit grinding system.
- the overflow particle size of the first stage is -200 mesh 58%.
- the overflow product from the first stage is fed into a cyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 85%.
- the sand settling product is fed into the second stage grinding to form a closed circuit grinding system with the secondary classification.
- the overflow product of the second stage is fed into the first stage of weak magnetic separation, and the first stage of weak magnetic separation concentrate is further subjected to three stages of weak magnetic separation to obtain a weak magnetic concentrate product with a total iron grade of 68.5%.
- the first three stages of weak magnetic separation operations use a permanent magnetic drum magnetic separator, and the fourth stage uses an elutriator.
- the magnetic field strengths are 350mT, 250mT, 200mT, and 90mT, respectively.
- the weak magnetic tailings of the first stage are fed into the strong magnetic separation operation with a magnetic field strength of 1000mT.
- the strong magnetic concentrate is mixed with the products of the three weak magnetic tailings as flotation feed with a grade of 37%.
- the strong magnetic tailings are directly discharged as tailings.
- step (6) The feed ore obtained in step (6) is first separated by direct flotation process, and the pH value of the ore pulp is 8. 420 g/t of a mixture of a depressant 2,4-dihydroxybenzoate and sodium silicate and 440 g/t of a collector sodium oleate are added in sequence to obtain a direct flotation concentrate with a grade of 55%. The direct flotation tailings with a grade of 19% are directly discharged as tailings.
- the forward flotation concentrate obtained in step (7) is fed into a reverse flotation operation.
- the reverse flotation process adopts 1 roughing and 3 sweeping.
- the pH value of the ore pulp is 11.5.
- 400 g/t of corn starch as an inhibitor, 450 g/t of calcium oxide as an activator and 320 g/t of sodium oleate as a collector are added in sequence to obtain a flotation concentrate with a grade of 64%.
- the concentrate is combined with the weak magnetic separation concentrate in step (5) to form a comprehensive concentrate with a grade of 67.5%.
- the flotation tailings and the strong magnetic tailings are combined to form a comprehensive tailings with a grade of 11%.
- Embodiment 4 is a diagrammatic representation of Embodiment 4:
- the mixed iron ore selected in this implementation case has a total iron grade of 35%, the gangue minerals are mainly quartz, and the magnetite content is 70%, and is separated by the process of the present invention.
- Finely crushed mixed iron ore crushed to 0-12 mm is fed into a high pressure roller mill as raw ore, and a closed-circuit crushing system is formed with a sieve with a mesh size of 3 mm, in which the particle size above the sieve is returned to the high pressure roller mill.
- the undersize product after crushing by the high pressure roller mill is first subjected to weak magnetic preselection with a magnetic field strength of 350 mT.
- the tailings of the weak magnetic preselection are fed to strong magnetic preselection with a magnetic field strength of 1000 mT.
- the tailings of the strong magnetic preselection are discharged as tailings.
- the weak magnetic pre-selected concentrate and the strong magnetic pre-selected concentrate are mixed, they are fed into a first-stage ball mill and combined with a spiral classifier to form a closed-circuit grinding system.
- the overflow particle size of the first stage is -200 mesh 58%.
- the overflow product from the first stage is fed into a cyclone for secondary classification.
- the particle size of the overflow product is -200 mesh 85%.
- the sand settling product is fed into the second stage grinding to form a closed circuit grinding system with the secondary classification.
- the overflow product of the second stage is fed into the first stage of weak magnetic separation, and the first stage of weak magnetic separation concentrate is further subjected to three stages of weak magnetic separation to obtain a weak magnetic concentrate product with a total iron grade of 69%.
- the first three stages of weak magnetic separation operations use a permanent magnetic drum magnetic separator, and the fourth stage uses an elutriator.
- the magnetic field strengths are 350mT, 250mT, 200mT, and 90mT, respectively.
- the weak magnetic tailings of the first stage are fed into the strong magnetic separation operation, with a magnetic field strength of 1100mT.
- the strong magnetic concentrate is mixed with the products of the three weak magnetic tailings and used as flotation feed, with a grade of 37.5%.
- the strong magnetic tailings are directly discharged as tailings.
- step (6) The feed ore obtained in step (6) is first separated by direct flotation process, and the pH value of the ore pulp is 8. 420 g/t of a mixture of a depressant 2,4-dihydroxybenzoate and sodium silicate and 440 g/t of a collector sodium oleate are added in sequence to obtain a direct flotation concentrate with a grade of 55.6%. The direct flotation tailings with a grade of 19.7% are directly discharged as tailings.
- the forward flotation concentrate obtained in step (7) is fed into a reverse flotation operation.
- the reverse flotation process adopts 1 roughing and 3 sweeping.
- the pH value of the ore pulp is 11.5.
- 400 g/t of inhibitor corn starch, 450 g/t of activator calcium oxide and 330 g/t of collector sodium oleate are added in sequence to obtain a flotation concentrate with a grade of 63.5%.
- the concentrate is combined with the weak magnetic separation concentrate in step (5) to form a comprehensive concentrate with a grade of 67.8%.
- the flotation tailings and the strong magnetic tailings are combined to form a comprehensive tailings with a grade of 11.5%.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种混合铁矿石选矿方法,将混合铁矿石通过高压辊磨预选-弱磁、强磁-正反浮选工艺过程,获得合格铁精矿;所述的混合铁矿石品味低,磁铁矿含量在50%以上。本发明主要是针对混合铁矿品位越来越低、磁性铁含量大幅增加的矿石现状,提供了一种混合铁矿高压辊磨预选-磁赤分选技术的选矿方法,旨在通过磁铁矿与赤铁矿的磁性和可浮性差异,优先通过简单且成本较低的磁选将磁铁矿选出,对于可浮性较好的赤铁矿,经强磁预富集后先通过正浮选工艺使赤铁矿进一步富集,同时抛弃大量尾矿,然后再通过反浮选获得合格铁精矿,减少药剂用量和减小浮选压力,对高效利用此类铁矿石具有重要意义。
Description
本发明涉及矿物加工技术领域,具体涉及一种混合铁矿石选矿方法。
我国是铁矿资源大国,目前铁矿石选别主要以磁赤混合矿反浮选工艺得到高品位铁精矿,但随着铁矿资源的不断往深处开采,铁矿品位越来越低,且磁铁矿含量逐渐升高,大量的磁铁矿进入浮选作业,而浮选作业的能耗和成本远高于磁选,这导致原有的磁赤混合选矿的选别工艺已不在适应当前矿石性质的变化。
对于当前发展的磁赤分质分选技术,是将磁铁矿通过成本较低流程简单的磁选工艺优先选别出来,获得高品位磁铁精矿。赤铁矿则先经过强磁选作业富集到一定品位作为入浮给矿,再经过反浮选工艺获得合格铁精矿。而对于赤铁矿,强磁选作业仅可以将其品位预富集至32%~42%,直接采用反浮选工艺,尾矿产率将高达55%以上,将消耗大量浮选药剂,增加选矿成本。
发明内容
本发明的目的是提供一种混合铁矿石选矿方法,主要是针对混合铁矿品位越来越低、磁性铁含量大幅增加的矿石现状,提供了一种混合铁矿高压辊磨预选-磁赤分选技术的选矿方法,旨在通过磁铁矿与赤铁矿的磁性和可浮性差异,优先通过简单且成本较低的磁选将磁铁矿选出,对于可浮性较好的赤铁矿,经强磁预富集后先通过正浮选工艺使赤铁矿进一步富集,同时抛弃大量尾矿,然后再通过反浮选获得合格铁精矿,减少药剂用量和减小浮选压力,对高效利用此类铁矿石具有重要意义。
为实现上述目的,本发明采用以下技术方案实现:
一种混合铁矿石选矿方法,将混合铁矿石通过高压辊磨预选-弱磁、强磁-正反浮选工艺过程,获得合格铁精矿;具体包括如下方法步骤:
1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为2mm~3.5mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机;
2)经高压辊磨机破碎后的筛下产品先经弱磁预选,弱磁预选尾矿给入强磁预选,强磁预选尾矿作为尾矿排出。高压辊磨可以获得粗粒抛尾的合适粒度,预选工艺可以大幅度降低入磨矿量,降低选矿成本;
3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目50%~60%。高压辊磨-球磨代替细碎-球磨,符合多碎少磨,节能降耗;
4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目70%~95%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统;
5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行多段弱磁精选,得到精矿品位为67%~69.5%的弱磁精矿产品。该段作业通过简单弱磁选将磁性铁优先分离,既可获得高品位磁铁精矿,又能大幅降低入浮给矿量,降低选矿成本;
6)一段弱磁尾矿给入一段强磁选作业,强磁精矿与多段弱磁尾矿产品混合后作为入浮给矿,强磁尾矿作为尾矿直接排出;
7)将步骤6)所得的入浮给矿,首先采用正浮选工艺进行选别,得到品位55%~60%的正浮选精矿,品位18%~22%的正浮选尾矿作为尾矿直接排出。入浮给矿品位低,若直接采用反浮选,尾矿产率高,将消耗大量的浮选药剂,且降低浮选效率。该段采用正浮选工艺,使入浮给矿进一步富集,并抛弃大量尾矿,提高浮选效率。同时正浮选能抛弃大量的低品位矿泥,省去选择性絮凝过程;
8)将步骤7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,将得到的浮选精矿与步骤5)所得弱磁选精矿合并为综合精矿,品位在65%以上,浮选尾矿与强磁尾矿合并为综合尾矿,品位在10%~12%之间。对正浮选进一步富集得到的入浮给矿,通过反浮选工艺获得铁精矿,减小浮选负荷。同时此作业浮选捕收剂与正浮选相同,可以减少整个流程药剂用量。
所述的混合铁矿石中磁铁矿含量在50%以上。
上述步骤2)中,弱磁预选采用的弱磁机为永磁筒式磁选机,磁场强度为250mT~350mT,强磁预选采用的强磁机采用立环高梯度磁选机,磁场强度为900mT~1200mT。
上述步骤3)中,一段磨矿浓度为75%~82%;上述步骤4)中,二段磨矿浓度为65%~72%,二次分级旋流器给矿浓度控制在30%-40%。
上述步骤5)中,弱磁选作业采用永磁筒式磁选机或陶洗机或磁选柱或磁振机,磁选 段数一般为3~5段,磁场强度为80mT~350mT,每段弱磁选之间要经脱磁器脱磁。
上述步骤6)中,一段弱磁尾矿进行浓缩,使得强磁作业给矿浓度控制在35%~45%,强磁机磁场强度为900mT~1200mT,强磁精矿与多段弱磁尾矿混合后组成入浮给矿,再进行浓缩,使得入浮给矿浓度控制在36%~40%。
上述步骤7)中,正浮选pH值在7~9之间,浮选抑制剂为2,4-二羟基苯甲酸钠与硅酸钠的混合物,捕收剂为油酸钠。正浮选药剂制度应根据具体矿石原料的性质和浮选精矿品位的要求而定。
上述步骤8)中,反浮选抑制剂为玉米淀粉或改性玉米淀粉,活化剂为氧化钙,浮选pH值在10.5~12,反浮选捕收剂采用油酸钠,最后所得浮选精矿品位63%~65%。反浮选药剂制度应根据具体矿石原料的性质和浮选精矿品位的要求而定。
与现有的技术相比,本发明的有益效果是:
对于磁性铁含量高达50%以上的混合铁矿石,继续使用当前的混磁精矿入浮,通过反浮选作业获得合格铁精矿,使得选矿成本大幅增加,选矿效率低下,现有工艺已明显不适应矿石性质的变化。本发明提供的方法首先通过高压辊磨-预选抛尾,降低入磨矿量,同时实现多碎少磨,节能降耗。然后采用简单磁选将磁铁矿优先选别出来,获得磁铁精矿的同时降低入浮矿量,减少选矿成本。剩余赤铁矿经强磁预富集后,先通过正浮选进一步富集,然后再通过反浮选获得合格铁精矿。反浮选作业的入浮品位要求45%以上,而强磁选作业仅能将赤铁矿品位预富集至32%~42%左右,如果直接采用反浮选工艺,尾矿产率将高达55%以上,浮选效率低、药剂消耗大。因此,先通过正浮选工艺,使入浮给矿进一步富集,并抛弃大量尾矿。同时正浮选能抛弃大量的低品位矿泥,省去选择性絮凝过程。然后,再经反浮选工艺获得铁精矿,可以减小浮选负荷,提高浮选效率。因此,使用高压辊磨预选-磁选-正反浮选分质选别工艺,对于实现磁性铁含量高、嵌布粒度细的混合铁矿石具有重要意义。
图1是本发明的工艺流程图。
下面结合附图对本发明的具体实施方式进一步说明:
见图1,一种混合铁矿石选矿方法,将混合铁矿石通过高压辊磨预选-弱磁、强磁-正反 浮选工艺过程,获得合格铁精矿;所述的混合铁矿石中磁铁矿含量在50%以上。具体包括如下方法步骤:
1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为2mm~3.5mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机。
2)经高压辊磨机破碎后的筛下产品先经弱磁预选,弱磁预选尾矿给入强磁预选,强磁预选尾矿作为尾矿排出。
弱磁预选采用的弱磁机为永磁筒式磁选机,磁场强度为250mT~350mT,强磁预选采用的强磁机采用立环高梯度磁选机,磁场强度为900mT~1200mT。
3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目50%~60%。
一段磨矿浓度为75%~82%;上述步骤4)中,二段磨矿浓度为65%~72%,二次分级旋流器给矿浓度控制在30%-40%。
4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目70%~95%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统。
5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行多段弱磁精选,得到全铁品位为67%~69.5%的弱磁精矿产品。
弱磁选作业采用永磁筒式磁选机或陶洗机或磁选柱或磁振机,磁选段数一般为3~5段,磁场强度为80mT~350mT,每段弱磁选之间要经脱磁器脱磁。
6)一段弱磁尾矿给入一段强磁选作业,强磁精矿与多段弱磁尾矿产品混合后作为入浮给矿,强磁尾矿作为尾矿直接排出。
一段弱磁尾矿进行浓缩,使得强磁作业给矿浓度控制在35%~45%,强磁机磁场强度为900mT~1200mT,强磁精矿与多段弱磁尾矿混合后组成入浮给矿,再进行浓缩,使得入浮给矿浓度控制在36%~40%。
7)将步骤6)所得的入浮给矿,首先采用正浮选工艺进行选别,得到品位55%~60%的正浮选精矿,品位18%~22%的正浮选尾矿作为尾矿直接排出。
正浮选pH值在7~9之间,浮选抑制剂为2,4-二羟基苯甲酸钠与硅酸钠的混合物,捕收剂为油酸钠。正浮选药剂制度应根据具体矿石原料的性质和浮选精矿品位的要求而定。
8)将步骤7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,将得到的浮选精矿与弱磁选精矿合并为综合精矿,品位在65%以上,浮选尾矿与强磁尾矿合并为综合尾矿,品位在10%~12%之间。
反浮选抑制剂为玉米淀粉或改性玉米淀粉,活化剂为氧化钙,浮选pH值在10.5~12,反浮选捕收剂采用油酸钠,最后所得浮选精矿品位63%~65%。反浮选药剂制度应根据具体矿石原料的性质和浮选精矿品位的要求而定。
实施例1:
本实施案例选用的混合铁矿全铁品位34.50%,脉石矿物主要为石英,磁铁矿含量60%,通过本发明工艺流程进行选别。
(1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为3mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机。
(2)经高压辊磨机破碎后的筛下产品先经弱磁预选,磁场强度为350mT,弱磁预选尾矿给入强磁预选,磁场强度为1000mT,强磁预选尾矿作为尾矿排出。
(3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目55%。
(4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目80%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统。
(5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行3段弱磁精选,得到全铁品位67%的弱磁精矿产品,弱磁选作业全部采用永磁筒式磁选机,磁场强度依次为350mT、270mT、250mT、200mT。
(6)一段弱磁尾矿给入一段强磁选作业,磁场强度1100mT,强磁精矿与3段弱磁尾矿产品混合后作为入浮给矿,品位39.5%,强磁尾矿作为尾矿直接排出。
(7)将步骤(6)所得的入浮给矿,首先采用正浮选工艺进行选别,矿浆pH值为8,依次加入400g/t的抑制剂2,4-二羟基苯甲酸钠与硅酸钠的混合物和450g/t的捕收剂油酸钠,得到品位56%的正浮选精矿,品位19%的正浮选尾矿作为尾矿直接排出。
(8)将步骤(7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,矿浆pH值为11.5,依次加入400g/t的抑制剂玉米淀粉、450g/t的活化剂氧化钙和320g/t的捕收剂油酸钠,得到品位63%的浮选精矿,与步骤(5)得到的弱磁选精矿合并为综合精矿,品位66%,浮选尾矿与强磁尾矿合并为综合尾矿,品位11.5%。
实施例2:
本实施案例选用的混合铁矿全铁品位35%,脉石矿物主要为石英,磁铁矿含量65%,通过本发明工艺流程进行选别。
(1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸 为3mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机。
(2)经高压辊磨机破碎后的筛下产品先经弱磁预选,磁场强度为350mT,弱磁预选尾矿给入强磁预选,磁场强度为1000mT,强磁预选尾矿作为尾矿排出。
(3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目58%。
(4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目82%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统。
(5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行3段弱磁精选,得到全铁品位68%的弱磁精矿产品。前3段弱磁选作业采用永磁筒式磁选机,第4段采用淘洗机,磁场强度依次为350mT、270mT、250mT、95mT。
(6)一段弱磁尾矿给入一段强磁选作业,磁场强度1100mT,强磁精矿与3段弱磁尾矿产品混合后作为入浮给矿,品位39%,强磁尾矿作为尾矿直接排出。
(7)将步骤(6)所得的入浮给矿,首先采用正浮选工艺进行选别,矿浆pH值为8,依次加入420g/t的抑制剂2,4-二羟基苯甲酸钠与硅酸钠的混合物和440g/t的捕收剂油酸钠,得到品位55.3%的正浮选精矿,品位18.5%的正浮选尾矿作为尾矿直接排出。
(8)将步骤(7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,矿浆pH值为11.5,依次加入400g/t的抑制剂玉米淀粉、450g/t的活化剂氧化钙和310g/t的捕收剂油酸钠,得到品位64%的浮选精矿,与步骤(5)弱磁选精矿合并为综合精矿,品位67%,浮选尾矿与强磁尾矿合并为综合尾矿,品位11.2%。
实施例3:
本实施案例选用的混合铁矿全铁品位34%,脉石矿物主要为石英,磁铁矿含量68%,通过本发明工艺流程进行选别。
(1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为3mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机。
(2)经高压辊磨机破碎后的筛下产品先经弱磁预选,磁场强度为350mT,弱磁预选尾矿给入强磁预选,磁场强度为1000mT,强磁预选尾矿作为尾矿排出。
(3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目58%。
(4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目85%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统。
(5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行3段弱磁精选,得到全铁品位68.5%的弱磁精矿产品。前3段弱磁选作业采用永磁筒式磁选机,第4段采用淘洗机,磁场强度依次为350mT、250mT、200mT、90mT。
(6)一段弱磁尾矿给入一段强磁选作业,磁场强度1000mT,强磁精矿与3段弱磁尾矿产品混合后作为入浮给矿,品位37%,强磁尾矿作为尾矿直接排出。
(7)将步骤(6)所得的入浮给矿,首先采用正浮选工艺进行选别,矿浆pH值为8,依次加入420g/t的抑制剂2,4-二羟基苯甲酸钠与硅酸钠的混合物和440g/t的捕收剂油酸钠,得到品位55%的正浮选精矿,品位19%的正浮选尾矿作为尾矿直接排出。
(8)将步骤(7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,矿浆pH值为11.5,依次加入400g/t的抑制剂玉米淀粉、450g/t的活化剂氧化钙和320g/t的捕收剂油酸钠,得到品位64%的浮选精矿,与步骤(5)弱磁选精矿合并为综合精矿,品位67.5%,浮选尾矿与强磁尾矿合并为综合尾矿,品位11%。
实施例4:
本实施案例选用的混合铁矿全铁品位35%,脉石矿物主要为石英,磁铁矿含量70%,通过本发明工艺流程进行选别。
(1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为3mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机。
(2)经高压辊磨机破碎后的筛下产品先经弱磁预选,磁场强度为350mT,弱磁预选尾矿给入强磁预选,磁场强度为1000mT,强磁预选尾矿作为尾矿排出。
(3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目58%。
(4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目85%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统。
(5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行3段弱磁精选,得到全铁品位69%的弱磁精矿产品。前3段弱磁选作业采用永磁筒式磁选机,第4段采用淘洗机,磁场强度依次为350mT、250mT、200mT、90mT。
(6)一段弱磁尾矿给入一段强磁选作业,磁场强度1100mT,强磁精矿与3段弱磁尾矿产品混合后作为入浮给矿,品位37.5%,强磁尾矿作为尾矿直接排出。
(7)将步骤(6)所得的入浮给矿,首先采用正浮选工艺进行选别,矿浆pH值为8,依次加入420g/t的抑制剂2,4-二羟基苯甲酸钠与硅酸钠的混合物和440g/t的捕收剂油酸 钠,得到品位55.6%的正浮选精矿,品位19.7%的正浮选尾矿作为尾矿直接排出。
(8)将步骤(7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,矿浆pH值为11.5,依次加入400g/t的抑制剂玉米淀粉、450g/t的活化剂氧化钙和330g/t的捕收剂油酸钠,得到品位63.5%的浮选精矿,与步骤(5)弱磁选精矿合并为综合精矿,品位67.8%,浮选尾矿与强磁尾矿合并为综合尾矿,品位11.5%。
Claims (8)
- 一种混合铁矿石选矿方法,其特征在于,将混合铁矿石通过高压辊磨预选-弱磁、强磁-正反浮选工艺过程,获得合格铁精矿;具体包括如下方法步骤:1)将破碎至0~12mm的细碎混合铁矿石作为原矿给入高压辊磨机,并与筛孔尺寸为2mm~3.5mm的筛子组成闭路破碎系统,其中筛上粒级返回高压辊磨机;2)经高压辊磨机破碎后的筛下产品先经弱磁预选,弱磁预选尾矿给入强磁预选,强磁预选尾矿作为尾矿排出;3)弱磁预选精矿和强磁预选精矿混合后给入一段球磨机,并与螺旋分级机组成闭路磨矿系统,一段溢流粒度为-200目50%~60%;4)将一段溢流产品给入旋流器进行二次分级,溢流产品粒度为-200目70%~95%,沉砂产品给入二段磨矿,与二次分级组成闭路磨矿系统;5)将二段溢流产品给入一段弱磁作业,一段弱磁选精矿再进行多段弱磁精选,得到精矿品位为67%~69.5%的弱磁精矿产品;6)一段弱磁尾矿给入一段强磁选作业,强磁精矿与多段弱磁尾矿产品混合后作为入浮给矿,强磁尾矿作为尾矿直接排出;7)将步骤6)所得的入浮给矿,首先采用正浮选工艺进行选别,得到品位55%~60%的正浮选精矿,品位18%~22%的正浮选尾矿作为尾矿直接排出;8)将步骤7)所得正浮选精矿给入反浮选作业,反浮选工艺采用1粗3扫,将得到的浮选精矿与弱磁选精矿合并为综合精矿,品位在65%以上,浮选尾矿与强磁尾矿合并为综合尾矿,品位在10%~12%之间。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,所述的混合铁矿石中磁铁矿含量在50%以上。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤2)中,弱磁预选采用的弱磁机为永磁筒式磁选机,磁场强度为250mT~350mT,强磁预选采用的强磁机采用立环高梯度磁选机,磁场强度为900~1200mT。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤3)中,一段磨矿浓度为75%~82%;上述步骤4)中,二段磨矿浓度为65%~72%,二次分级旋流器给矿浓度控制在30%-40%。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤5)中, 弱磁选作业采用永磁筒式磁选机或陶洗机或磁选柱或磁振机,磁选段数为3~5段,磁场强度为80mT~350mT,每段弱磁选之间要经脱磁器脱磁。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤6)中,一段弱磁尾矿进行浓缩,使得强磁作业给矿浓度控制在35%~45%,强磁机磁场强度为900~1200mT,强磁精矿与多段弱磁尾矿混合后组成入浮给矿,再进行浓缩,使得入浮给矿浓度控制在36%~40%。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤7)中,正浮选pH值在7~9之间,浮选抑制剂为2,4-二羟基苯甲酸钠与硅酸钠的混合物,捕收剂为油酸钠。
- 根据权利要求1所述的一种混合铁矿石选矿方法,其特征在于,上述步骤8)中,反浮选抑制剂为玉米淀粉或改性玉米淀粉,活化剂为氧化钙,浮选pH值在10.5~12,反浮选捕收剂采用油酸钠,最后所得浮选精矿品位63%~65%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022482771A AU2022482771A1 (en) | 2022-10-21 | 2022-10-26 | Mixed iron ore beneficiation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211292646.2A CN115518766A (zh) | 2022-10-21 | 2022-10-21 | 一种混合铁矿石选矿方法 |
CN202211292646.2 | 2022-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082323A1 true WO2024082323A1 (zh) | 2024-04-25 |
Family
ID=84702921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/127558 WO2024082323A1 (zh) | 2022-10-21 | 2022-10-26 | 一种混合铁矿石选矿方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115518766A (zh) |
AU (1) | AU2022482771A1 (zh) |
WO (1) | WO2024082323A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113953080B (zh) * | 2021-09-01 | 2024-04-19 | 鞍钢集团北京研究院有限公司 | 一种混合铁矿石的选矿方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2432207C1 (ru) * | 2010-04-08 | 2011-10-27 | Открытое акционерное общество "Михайловский ГОК" | Способ обогащения железных руд сложного вещественного состава |
CN103386361A (zh) * | 2013-08-02 | 2013-11-13 | 长沙矿冶研究院有限责任公司 | 一种磁赤混合铁矿的选矿方法 |
CN104874462A (zh) * | 2015-06-12 | 2015-09-02 | 鞍钢集团矿业公司 | 微细粒嵌布混合矿粗粒预选、磁—浮分选工艺 |
CN106076606A (zh) * | 2016-08-10 | 2016-11-09 | 中钢集团马鞍山矿山研究院有限公司 | 一种磁‑赤复合铁矿石的选矿方法 |
CN107029868A (zh) * | 2017-06-16 | 2017-08-11 | 鞍钢集团矿业有限公司 | 一种混合矿高压辊磨、双介质,磁‑赤矿分选工艺 |
CN109046753A (zh) * | 2018-08-31 | 2018-12-21 | 中冶北方(大连)工程技术有限公司 | 一种高泥粘性地表赤、磁混合铁矿选矿工艺 |
CN109985723A (zh) * | 2019-03-20 | 2019-07-09 | 中钢集团马鞍山矿山研究院有限公司 | 一种微细粒磁-赤混合铁矿石的选矿方法 |
-
2022
- 2022-10-21 CN CN202211292646.2A patent/CN115518766A/zh active Pending
- 2022-10-26 WO PCT/CN2022/127558 patent/WO2024082323A1/zh active Application Filing
- 2022-10-26 AU AU2022482771A patent/AU2022482771A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2432207C1 (ru) * | 2010-04-08 | 2011-10-27 | Открытое акционерное общество "Михайловский ГОК" | Способ обогащения железных руд сложного вещественного состава |
CN103386361A (zh) * | 2013-08-02 | 2013-11-13 | 长沙矿冶研究院有限责任公司 | 一种磁赤混合铁矿的选矿方法 |
CN104874462A (zh) * | 2015-06-12 | 2015-09-02 | 鞍钢集团矿业公司 | 微细粒嵌布混合矿粗粒预选、磁—浮分选工艺 |
CN106076606A (zh) * | 2016-08-10 | 2016-11-09 | 中钢集团马鞍山矿山研究院有限公司 | 一种磁‑赤复合铁矿石的选矿方法 |
CN107029868A (zh) * | 2017-06-16 | 2017-08-11 | 鞍钢集团矿业有限公司 | 一种混合矿高压辊磨、双介质,磁‑赤矿分选工艺 |
CN109046753A (zh) * | 2018-08-31 | 2018-12-21 | 中冶北方(大连)工程技术有限公司 | 一种高泥粘性地表赤、磁混合铁矿选矿工艺 |
CN109985723A (zh) * | 2019-03-20 | 2019-07-09 | 中钢集团马鞍山矿山研究院有限公司 | 一种微细粒磁-赤混合铁矿石的选矿方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2022482771A1 (en) | 2024-07-18 |
CN115518766A (zh) | 2022-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109351467B (zh) | 一种基于铁矿物嵌布粒度处理磁赤混合矿石的分选工艺 | |
WO2022032922A1 (zh) | 一种极难选磁铁矿串联淘洗深度精选工艺 | |
WO2022052718A1 (zh) | 一种采用磁铁矿精矿制备超纯铁精矿的选矿方法 | |
CN108405173B (zh) | 一种磁赤菱混合铁矿石的精细选矿新工艺 | |
WO2022052719A1 (zh) | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 | |
CN108380379B (zh) | 一种低品位磁镜铁矿高效环保型选矿方法 | |
CN106755650A (zh) | 钢渣生产高活性钢渣粉和惰性矿物产品的工艺 | |
CN112024120B (zh) | 一种微细粒级赤褐铁矿的选矿方法 | |
WO2024082323A1 (zh) | 一种混合铁矿石选矿方法 | |
WO2023174031A1 (zh) | 一种贫矿预富集、焙烧和分选的多段处理工艺 | |
CN113304874A (zh) | 铌矿浮选预处理方法 | |
CN107649278A (zh) | 一种低品位含钛磁铁矿的分选方法 | |
WO2024212608A1 (zh) | 一种全粒级重介质选矿系统及选矿方法 | |
CN109550587B (zh) | 磁赤混合矿选矿工艺 | |
WO2024040656A1 (zh) | 一种鞍山式磁赤铁矿分段磨矿、重—磁工艺流程 | |
CN113333157B (zh) | 一种提高混合铁矿尾矿粗砂含量和磨机处理能力的选矿工艺 | |
WO2022188248A1 (zh) | 从异性石中回收稀土的方法 | |
CN110216009B (zh) | 一种钢渣的选别方法 | |
CN115970839A (zh) | 一种表外矿的高效抛尾及选矿方法 | |
CN114669395A (zh) | 一种低品位细粒浸染状磁赤铁矿的选矿工艺 | |
CN114643126B (zh) | 一种磁重浮联合选铁的工艺 | |
CN115463741B (zh) | 一种磁赤混合矿的分磨合选-悬浮焙烧-磁选工艺 | |
CN111570082B (zh) | 一种高倍半中低品位硅钙质磷块岩联合分选工艺 | |
WO2024216872A1 (zh) | 一种复杂难选铁矿石磁选-电选选别工艺 | |
CN115921128A (zh) | 一种磨矿-弱磁强磁-粗粒重选再磨、细粒反浮选工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22962504 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022482771 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2022482771 Country of ref document: AU Date of ref document: 20221026 Kind code of ref document: A |