WO2022052719A1 - 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 - Google Patents
一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 Download PDFInfo
- Publication number
- WO2022052719A1 WO2022052719A1 PCT/CN2021/111870 CN2021111870W WO2022052719A1 WO 2022052719 A1 WO2022052719 A1 WO 2022052719A1 CN 2021111870 W CN2021111870 W CN 2021111870W WO 2022052719 A1 WO2022052719 A1 WO 2022052719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic separation
- concentrate
- stage
- weak magnetic
- selection
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B7/00—Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/008—Organic compounds containing oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/01—Organic compounds containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
Definitions
- the invention belongs to the technical field of magnetite beneficiation, in particular to a method for preparing ultra-pure iron concentrate from high-quality commercial-grade magnetite concentrate.
- ultra-pure iron concentrate Due to its fine particle size, high quality and wide source, ultra-pure iron concentrate has become the preferred raw material for many permanent ferrite pre-sintered production units.
- Ultra-pure iron concentrate usually requires a TFe grade greater than 71.5%, and the content of impurities (acid-insoluble) such as SiO 2 is less than 0.3%. And clean steel base materials, etc.
- the purpose of the present invention is to aim at the above-mentioned problems existing in the prior art, and provide a method for preparing ultra-pure iron ore by deep processing of commercial-grade magnetite concentrate.
- TFe >72.1%, SiO 2 Content ⁇ 0.20%, acid insoluble matter ⁇ 0.17%.
- the present invention provides a method for preparing ultra-pure iron concentrate by deep processing of commercial - grade magnetite concentrate.
- Iron ore concentrate is used as raw material, and the following processes are used:
- One-stage grinding-classification operation the commercial-grade magnetite concentrate is fed into the ball mill for grinding-spiral classifier classification operation.
- the overflow particle size of the spiral classifier is -0.076mm, accounting for 90% to 95%, and the ball mill grinds the ore.
- the volume concentration is controlled at 25% to 30%;
- step (2) a section of weak magnetic separation operation: pass the spiral classifier overflow obtained in step (1) through weak magnetic separation to obtain a section of weak magnetic separation concentrate, and discharge a section of weak magnetic separation tailings; the weak magnetic separation adopts permanent magnetic separation.
- Magnetic drum type magnetic separator the magnetic field strength is 135.00 ⁇ 165.00kA/m.
- step (3) One-stage weak magnetic separation concentrate concentration and dehydration operation: the first stage of weak magnetic separation concentrate obtained in step (2) is concentrated and dehydrated, and the mass concentration of the concentrated underflow pulp is controlled at 55% to 65%;
- Second-stage grinding-classification operation the concentrated underflow obtained in step (3) is fed into the second-stage grinding-classification operation.
- the second-stage grinding adopts a vertical stirring mill, and the classification adopts a cyclone and a cyclone.
- the grading overflow particle size is controlled at -0.038mm, accounting for 88% to 95%, and the grinding volume concentration of the vertical stirring mill is controlled at 26% to 35%;
- Second-stage weak magnetic separation roughing - demagnetization - second-stage weak magnetic separation and selection operation perform second-stage weak magnetic separation and rough separation on the graded overflow obtained in step (4) to obtain two-stage weak magnetic separation and rough separation Concentrate, discharge the second-stage weak magnetic separation roughing tailings; after the second-stage weak magnetic separation roughing concentrate is demagnetized, it is fed into the second-stage weak magnetic separation and selection to obtain the second-stage weak magnetic separation and selection concentrate, Discharge the selected tailings in the second stage of weak magnetic separation;
- the said second-stage weak magnetic separation rough separation and second-stage weak magnetic separation selection all use permanent magnet drum magnetic separator;
- the selected magnetic field strength is 101.00 ⁇ 130.00kA/m;
- Demagnetization-concentration operation of the second-stage weak magnetic separation and selection concentrate demagnetize the second-stage weak magnetic separation and selection concentrate obtained in step (5), and then concentrate it to control the mass concentration of the concentrated underflow pulp. at 32% to 40%;
- Reverse flotation operation The concentrated underflow obtained in step (6) is supplied to the reverse flotation operation.
- the reverse flotation operation adopts a roughing and two selection open-circuit process, and the collector used in the reverse flotation operation is ten
- the solution of diamine and glacial acetic acid is prepared by heating and modification according to the mass ratio of 4:0.9 ⁇ 4:1.1;
- the dosage of the medicament is: the dosage of the collector for rough selection is 55g/t ⁇ 65g/t, and the dosage of collector I for selection is 23g /t ⁇ 32g/t, the dosage of selected II collectors is 15g/t ⁇ 22g/t;
- the reverse flotation operation finally obtains TFe>72.0% at the bottom of the flotation tank, SiO 2 content ⁇ 0.20%, acid insoluble matter ⁇ 0.17%
- the ultra-pure iron ore concentrate, the flotation foam is TFe70.7% high-purity iron ore concentrate;
- the collector used in the reverse flotation operation in step (7) is made by mixing dodecylamine and glacial acetic acid solution according to a mass ratio of 4:1 and adding 90-100° C. hot water for heating and modification.
- the present invention has the following advantages:
- the combined grinding of ball mill and vertical stirring mill is flexible and variable.
- the grinding particle size of ball mill is close to the grinding particle size of most commercial grade iron ore concentrates. During the process transformation, it can be considered whether it is necessary to increase the ball milling equipment and vertical stirring mill.
- the ore particle size is uniform, easy to control, and at the same time, it occupies a small area and is highly efficient and energy-saving.
- the two-stage magnetic separation is demagnetized before and after the selection to avoid the influence of magnetic agglomeration on the magnetic separation and flotation process, which is beneficial to improve the separation index.
- the flotation reagent system is simple.
- the collector is made of dodecylamine and glacial acetic acid solution by mixing and heating treatment at a mass ratio of 4:1.
- the source of raw materials is wide, the dosage is small, the selectivity is good, and it is very friendly to the environment. .
- the beneficiation process is simple, stable and reliable, and has strong applicability.
- the TFe grade in ultra-pure iron concentrate can be obtained as high as 72.10%-72.19%, SiO 2 content is 0.18%-0.20%, and acid-insoluble matter is 0.15%-0.17%.
- high-purity iron concentrates with a TFe grade of 70.86% to 71.12% can also be obtained.
- Fig. 1 is the principle process flow diagram of the method for preparing ultra-pure iron ore concentrate by deep processing of a kind of commercial grade magnetite concentrate of the present invention
- Fig. 2 is a digital-quality flow chart of a method for preparing ultra-pure iron concentrate by deep processing of commercial-grade magnetite concentrate according to the present invention.
- the TFe grade of a domestic commercial-grade magnetite concentrate is 66.83%, the main impurities SiO 2 , Al 2 O 3 , CaO and MgO are 6.18%, 0.68%, 0.28% and 0.22%, respectively, and other impurity elements are relatively low.
- the method for preparing ultrapure iron ore concentrate adopts the following process steps:
- One-stage grinding-classification operation the commercial-grade magnetite concentrate is fed into the ball mill grinding-spiral classifier classification operation, the overflow particle size of the spiral classifier is -0.076mm, accounting for 95%, and the ball mill grinding volume concentration Control is 28%;
- One-stage weak magnetic separation operation the overflow of the spiral classifier obtained in step (1) is subjected to weak magnetic separation to obtain a first-stage weak magnetic separation concentrate with a TFe grade of 68.95%, and a first-stage weak magnetic separation tail with a TFe grade of 12.44% is discharged
- the said weak magnetic separation adopts a permanent magnetic drum type magnetic separator, and the magnetic field strength is 159.24kA/m;
- Second-stage grinding-classification operation the concentrated underflow obtained in step (3) is fed into the second-stage grinding-classification operation.
- the second-stage grinding adopts a vertical stirring mill, and the classification adopts a cyclone and a cyclone.
- the grading overflow particle size is controlled at -0.038mm, accounting for 90%, and the grinding volume concentration of the vertical stirring mill is controlled at 31%;
- Two-stage weak magnetic separation roughing - demagnetization - two-stage weak magnetic separation selection operation carry out the second-stage weak magnetic separation rough separation of the graded overflow obtained in step (4) to obtain a second-stage weak magnetic separation with a TFe grade of 71.14%.
- the grade 71.41% second stage weak magnetic separation and selection concentrate, and the second stage weak magnetic separation and selection tailings with TFe grade of 28.81% are discharged; Direct incorporation into total tailings is also possible.
- the two-stage weak magnetic separation roughing and the second-stage weak magnetic separation and selection all use permanent magnet drum magnetic separators;
- the selected magnetic field strength is 127.39kA/m;
- Demagnetization-concentration operation of the second-stage weak magnetic separation and selection concentrate demagnetize the second-stage weak magnetic separation and selection concentrate obtained in step (5), and then concentrate it to control the mass concentration of the concentrated underflow pulp. at 36.5%;
- Reverse flotation operation The concentrated underflow obtained in step (6) is supplied to the reverse flotation operation.
- the reverse flotation operation adopts a roughing and two selection open-circuit process, and the collector used in the reverse flotation operation is ten
- the solution of diamine and glacial acetic acid is prepared by heating and modification according to the mass ratio of 4:1; the pharmaceutical system is: the amount of collector for rough selection is 60g/t, the amount of collector for selection I is 30g/t, and the amount of collector for selection II is 30g/t.
- the dosage of the agent is 20g/t; the reverse flotation operation finally obtains the ultra-pure iron concentrate with TFe>72.10% and SiO 2 content of 0.17% at the bottom of the flotation tank, and the flotation foam is TFe70.86% high-purity iron concentrate.
- the collector of the present invention is made by mixing and heating treatment of dodecylamine and glacial acetic acid solution according to a mass ratio of 4:1, and the use effect is remarkable. If only dodecylamine is used as a collector, only quasi-ultra pure iron concentrate with TFe71.5%-71.8%, SiO 2 content 0.22%-0.25%, acid-insoluble matter 0.20%-0.23% can be obtained, but TFe cannot be obtained >72.0%, SiO 2 content ⁇ 0.20%, acid-insoluble matter ⁇ 0.17% ultra-pure iron concentrate.
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法,分别采用一段磨矿-分级-一段弱磁选、一段弱磁选精矿浓缩脱水、二段磨矿—分级、二段弱磁选粗选-脱磁-二段弱磁选精选、二段弱磁选精选精矿脱磁-浓缩作业:将二段弱磁选精选精矿进行脱磁处理,再进行浓缩、反浮选作业,最终获得超纯铁精矿中TFe品位72.10%~72.19%,SiO 2含量0.18%~0.20%,酸不溶物0.15%~0.17%。同时,还可以获得TFe品位70.86%~71.12%的高纯铁精矿。本发明反浮选作业捕收剂为十二胺与冰乙酸溶液按照质量比4∶1经加热改性处理。本发明方法适用性强、高效节能。浮选药剂制度简单,来源广泛、用量小、选择性较好,而且对环境十分友好等优异性能。
Description
本发明属于磁铁矿选矿技术领域,具体涉及一种优质商品级磁铁矿精制备超纯铁精矿的方法。
随着国民经济的不断发展,对永磁材料、还原铁等产品的需求量日益增加,对产品的质量要求也越来越高。目前,制取永磁材料(铁氧体)、还原铁粉的原料主要是氧化铁红、铁鳞,由于氧化铁红、铁鳞的产量较小且价格高、质量不太稳定,因此寻求新的廉价原料代用品,已成为一个亟待解决的重要研究课题。
超纯铁精矿由于粒度细、质量高、来源广,已成为许多永磁铁氧体预烧料生产单位的首选原料。超纯铁精矿通常要求TFe品位大于71.5%,SiO
2等杂质(酸不溶物)含量小于0.3%,是铁基矿物新材料重要的原料来源,可用于生产粉末冶金、磁性材料、超纯铁及洁净钢基料等。
虽然我国铁矿资源丰富,但是适合加工超纯铁精矿的资源非常有限,主要分布在辽宁、安徽、山西、福建、四川、山东等省少数地区。《金属矿山》1997年12期发表的“超纯铁精矿的选矿工艺及其开发利用的有效途径”总结了采用选矿方法制备超纯铁精矿的三种工艺流程:(1)磁-浮联合流程,即给矿-磨矿-旋流器分级-溢流弱磁选-磁精阳离子反浮选;(2)单一磁选流程;(3)阶段磨选、磁重联合流程。《金属矿山》2009年第5期发表的“用某铁精矿粉制取超纯铁精矿的选矿试验研究”,以含TFe67.70%,SiO
24.88%的普通铁精矿为原料,采用磨矿、弱磁选—磁重选—反浮选工艺,可生产出TFe72.02%、SiO
20.27%的超纯铁精矿。《现代矿业》2018年第7期发表的“磁选柱制备超纯铁精矿试验”,以山东某铁品位为66.12% 的普通铁精矿为原料,采用“分级—磨矿—弱磁粗选—磁选柱精选的工艺流程”,获得了全铁品位为71.64%、回收率为81.87%、SiO
2含量为0.23%的超纯铁精矿。但总体来说,上述方法制备的超纯铁精矿中精矿铁品位仍不够理想,特别是SiO
2含量、酸不溶物含量仍然偏高。
发明内容
本发明的目的就是针对现有技术中存在的上述问题,而提供一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法,制备的超纯铁精矿中TFe>72.1%、SiO
2含量≤0.20%、酸不溶物≤0.17%。
为实现本发明的上述目的,本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法,以TFe在66.5%~68.5%、SiO
2含量4.0%~6.8%的商品级磁铁矿精矿为原料,采用以下工艺:
(1)一段磨矿-分级作业:将商品级磁铁矿精矿给入球磨机磨矿-螺旋分级机分级作业,螺旋分级机溢流粒度为-0.076mm占90%~95%,球磨机磨矿体积浓度控制在25%~30%;
(2)一段弱磁选作业:将步骤(1)获得的螺旋分级机溢流经过弱磁选,获得一段弱磁选精矿,排出一段弱磁选尾矿;所述的弱磁选采用永磁筒式磁选机,磁场强度为135.00~165.00kA/m。
(3)一段弱磁选精矿浓缩脱水作业:对步骤(2)获得的一段弱磁选精矿进行浓缩脱水,浓缩底流矿浆的质量浓度控制在55%~65%;
(4)二段磨矿—分级作业:将步骤(3)获得的浓缩底流给入二段磨矿—分级作业,二段磨矿采用立式搅拌磨机,分级采用旋流器,旋流器分级溢流粒度控制在-0.038mm占88%~95%,立式搅拌磨机磨矿体积浓度控制在26%~35%;
(5)二段弱磁选粗选-脱磁-二段弱磁选精选作业:将步骤(4)获得的分级溢流进行二段弱磁选粗选,获得二段弱磁选粗选精矿,排 出二段弱磁选粗选尾矿;对二段弱磁选粗选精矿进行脱磁后,给入二段弱磁选精选,获得二段弱磁选精选精矿,排出二段弱磁选精选尾矿;
所述的二段弱磁选粗选、二段弱磁选精选皆采用永磁筒式磁选机;二段弱磁选粗选的磁场强度为150.00~165.00kA/m,二段弱磁选精选的磁场强度为101.00~130.00kA/m;
通过协同调节(1)、(2)、(3)、(4)、(5)步骤的工艺条件,控制二段弱磁选精选精矿的TFe>71.2%、SiO
2含量≤0.7%;
(6)二段弱磁选精选精矿脱磁-浓缩作业:将步骤(5)获得的二段弱磁选精选精矿进行脱磁处理,再进行浓缩,浓缩底流矿浆的质量浓度控制在32%~40%;
(7)反浮选作业:将步骤(6)获得的浓缩底流给反浮选作业,反浮选作业采用一次粗选、两次精选开路流程,反浮选作业采用的捕收剂为十二胺与冰乙酸溶液按照质量比4∶0.9~4∶1.1经加热改性处理制成;药剂制度为:粗选捕收剂用量55g/t~65g/t,精选Ⅰ捕收剂用量23g/t~32g/t,精选Ⅱ捕收剂用量15g/t~22g/t;反浮选作业最终获得浮选槽底TFe>72.0%、SiO
2含量≤0.20%、酸不溶物≤0.17%的超纯铁精矿,浮选泡沫为TFe70.7%高纯铁精矿;
进一步地,步骤(7)反浮选作业采用的捕收剂为十二胺与冰乙酸溶液按照质量比4∶1混合加90~100℃热水加热处理改性制成。
与现有技术相比,本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法具有如下优点:
(1)采用球磨和立式搅拌磨组合磨矿灵活可变,球磨磨矿粒度接近大多数商品级铁精矿磨矿粒度,工艺改造时可酌情考虑是否需要增加球磨设备,立式搅拌磨磨矿粒度均匀,易于控制,同时占地面积小,高效节能。
(2)二段磁选精选前后分别脱磁处理,避免磁团聚对磁选、浮选过程的影响,有利于提高分选指标。
(3)浮选药剂制度简单,捕收剂采用十二胺与冰乙酸溶液按照质量比4∶1混合加热处理改性制成,原材料来源广泛、用量小、选择性好,而且对环境十分友好。
(4)选矿工艺流程简单,稳定可靠,适用性强。根据商品级磁铁精矿入选品位和分选难易程度,可获得超纯铁精矿中TFe品位高达72.10%~72.19%,SiO
2含量0.18%~0.20%,酸不溶物0.15%~0.17%。同时,还可以获得TFe品位70.86%~71.12%的高纯铁精矿。
图1为本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法的原则工艺流程图;
图2为本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法的数质量流程图。
为描述本发明,下面结合附图和实施例对本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法做进一步详细说明。
国内某商品级磁铁精矿TFe品位为66.83%,主要杂质SiO
2、Al
2O
3、CaO、MgO含量分别为6.18%、0.68%、0.28%、0.22%,其它杂质元素含量较低。
由图1所示的本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法的原则工艺流程图并结合图2看出,本发明一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法采用以下工艺步骤:
(1)一段磨矿-分级作业:将该商品级磁铁矿精矿给入球磨机磨矿-螺旋分级机分级作业,螺旋分级机溢流粒度为-0.076mm占95%,球磨机磨矿体积浓度控制为28%;
(2)一段弱磁选作业:将步骤(1)获得的螺旋分级机溢流经过弱磁选,获得TFe品位68.95%的一段弱磁选精矿,排出TFe品位 12.44%的一段弱磁选尾矿;所述的弱磁选采用永磁筒式磁选机,磁场强度为159.24kA/m;
(3)一段弱磁选精矿浓缩脱水作业:对获得的一段弱磁选精矿进行浓缩脱水,浓缩底流矿浆的质量浓度控制在58%;
(4)二段磨矿—分级作业:将步骤(3)获得的浓缩底流给入二段磨矿—分级作业,二段磨矿采用立式搅拌磨机,分级采用旋流器,旋流器分级溢流粒度控制在-0.038mm占90%,立式搅拌磨机磨矿体积浓度控制在31%;
(5)二段弱磁选粗选-脱磁-二段弱磁选精选作业:将步骤(4)获得的分级溢流进行二段弱磁选粗选,获得TFe品位71.14%的二段弱磁选粗选精矿,排出TFe品位12.92%二段弱磁选粗选尾矿;对二段弱磁选粗选精矿进行脱磁后,给入二段弱磁选精选,获得TFe品位71.41%的二段弱磁选精选精矿,排出TFe品位28.81%的二段弱磁选精选尾矿;该二段弱磁选精选尾矿可以作为选矿厂的铁矿石原料,也可以直接并入到总尾矿。
所述的二段弱磁选粗选、二段弱磁选精选皆采用永磁筒式磁选机;二段弱磁选粗选的磁场强度为159.24kA/m,二段弱磁选精选的磁场强度为127.39kA/m;
(6)二段弱磁选精选精矿脱磁-浓缩作业:将步骤(5)获得的二段弱磁选精选精矿进行脱磁处理,再进行浓缩,浓缩底流矿浆的质量浓度控制在36.5%;
(7)反浮选作业:将步骤(6)获得的浓缩底流给反浮选作业,反浮选作业采用一次粗选、两次精选开路流程,反浮选作业采用的捕收剂为十二胺与冰乙酸溶液按照质量比4∶1经加热改性处理制成;药剂制度为:粗选捕收剂用量60g/t,精选Ⅰ捕收剂用量30g/t,精选Ⅱ捕收剂用量20g/t;反浮选作业最终获得浮选槽底TFe>72.10%、SiO
2含量0.17%的超纯铁精矿,浮选泡沫为TFe70.86%高纯铁精矿。
研究表明,本发明捕收剂采用十二胺与冰乙酸溶液按照质量比4∶1混合加热处理改性制成,使用效果显著。如果仅仅采用十二胺作为捕收剂,仅能够获得TFe71.5%~71.8%、SiO
2含量0.22%~0.25%、酸不溶物0.20%~0.23%的准超纯铁精矿,无法获得TFe>72.0%、SiO
2含量≤0.20%、酸不溶物≤0.17%的超纯铁精矿。
Claims (2)
- 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法,以TFe在66.5%~68.5%、SiO 2含量4.0%~6.8%的商品级磁铁矿精矿为原料,其特征在于采用以下工艺:(1)一段磨矿-分级作业:将商品级磁铁矿精矿给入球磨机磨矿-螺旋分级机分级作业,螺旋分级机溢流粒度为-0.076mm占90%~95%,球磨机磨矿体积浓度控制在25%~30%;(2)一段弱磁选作业:将步骤(1)获得的螺旋分级机溢流经过弱磁选,获得一段弱磁选精矿,排出一段弱磁选尾矿;所述的弱磁选采用永磁筒式磁选机,磁场强度为135.00~165.00kA/m;(3)一段弱磁选精矿浓缩脱水作业:对步骤(2)获得的一段弱磁选精矿进行浓缩脱水,浓缩底流矿浆的质量浓度控制在55%~65%;(4)二段磨矿—分级作业:将步骤(3)获得的浓缩底流给入二段磨矿—分级作业,二段磨矿采用立式搅拌磨机,分级采用旋流器,旋流器分级溢流粒度控制在-0.038mm占88%~95%,立式搅拌磨机磨矿体积浓度控制在26%~35%;(5)二段弱磁选粗选-脱磁-二段弱磁选精选作业:将步骤(4)获得的分级溢流进行二段弱磁选粗选,获得二段弱磁选粗选精矿,排出二段弱磁选粗选尾矿;对二段弱磁选粗选精矿进行脱磁后,给入二段弱磁选精选,获得二段弱磁选精选精矿,排出二段弱磁选精选尾矿;所述的二段弱磁选粗选、二段弱磁选精选皆采用永磁筒式磁选机;二段弱磁选粗选的磁场强度为150.00~165.00kA/m,二段弱磁选精选的磁场强度为101.00~130.00kA/m;通过协同调节(1)、(2)、(3)、(4)、(5)步骤的工艺条件,控制二段弱磁选精选精矿的TFe>71.2%、SiO 2含量≤0.7%;(6)二段弱磁选精选精矿脱磁-浓缩作业:将步骤(5)获得的二段弱磁选精选精矿进行脱磁处理,再进行浓缩,浓缩底流矿浆的质量浓度控制在32%~40%;(7)反浮选作业:将步骤(6)获得的浓缩底流给反浮选作业,反浮选作业采用一次粗选、两次精选开路流程,反浮选作业采用的捕收剂为十二胺与冰乙酸溶液按照质量比4∶0.9~4∶1.1经加热改性处理制成;药剂制度为:粗选捕收剂用量55g/t~65g/t,精选Ⅰ捕收剂用量23g/t~32g/t,精选Ⅱ捕收剂用量15g/t~22g/t;反浮选作业最终获得浮选槽底TFe>72.0%、SiO 2含量≤0.20%、酸不溶物≤0.17%的超纯铁精矿,浮选泡沫为TFe70.7%高纯铁精矿;
- 如权利要求1所述的一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法,其特征在于:步骤(7)反浮选作业采用的捕收剂为十二胺与冰乙酸溶液按照质量比4∶1混合加90~100℃热水加热处理改性制成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010940185.XA CN111905918B (zh) | 2020-09-09 | 2020-09-09 | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 |
CN202010940185.X | 2020-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052719A1 true WO2022052719A1 (zh) | 2022-03-17 |
Family
ID=73266790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/111870 WO2022052719A1 (zh) | 2020-09-09 | 2021-08-10 | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111905918B (zh) |
WO (1) | WO2022052719A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114798159A (zh) * | 2022-04-28 | 2022-07-29 | 包头钢铁(集团)有限责任公司 | 一种矿石选别工艺 |
CN115445759A (zh) * | 2022-09-13 | 2022-12-09 | 鞍钢集团矿业设计研究院有限公司 | 一种磁赤混合矿的分磨合选-重磁联合工艺 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112090578B (zh) * | 2020-09-09 | 2022-03-11 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种采用磁铁矿精矿制备超纯铁精矿的选矿方法 |
CN111905918B (zh) * | 2020-09-09 | 2021-11-12 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 |
CN112495573B (zh) * | 2020-11-11 | 2022-05-10 | 安徽马钢张庄矿业有限责任公司 | 一种普通高硅铁精矿高值化利用的方法 |
CN112808447A (zh) * | 2021-01-27 | 2021-05-18 | 鞍钢集团矿业设计研究院有限公司 | 一种贫赤铁矿预选粗粒精矿的分级磨选工艺 |
CN113617513B (zh) * | 2021-08-13 | 2023-06-16 | 安徽金安矿业有限公司 | 一种用于铁精矿制备超纯铁精粉的方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319988A (en) * | 1980-05-05 | 1982-03-16 | Halomet, Incorporated | Separation of high grade magnetite from fly ash |
CN102527492A (zh) * | 2010-12-07 | 2012-07-04 | 沈阳有色金属研究院 | 一种用低品位磁铁矿石制取超级铁精矿的方法 |
CN104826728A (zh) * | 2015-05-07 | 2015-08-12 | 中钢集团马鞍山矿山研究院有限公司 | 一种适于难选微细粒磁铁矿石分选的选矿新方法 |
CN109127122A (zh) * | 2018-11-14 | 2019-01-04 | 安徽工业大学 | 一种磁铁精矿提铁降硅的选矿方法 |
CN110898958A (zh) * | 2019-11-13 | 2020-03-24 | 鞍钢集团矿业有限公司 | 一种处理高碳酸铁贫磁赤混合铁矿石的选矿工艺 |
WO2020097667A1 (en) * | 2018-11-14 | 2020-05-22 | IB Operations Pty Ltd | Method and apparatus for processing magnetite |
CN111905918A (zh) * | 2020-09-09 | 2020-11-10 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 |
CN112090578A (zh) * | 2020-09-09 | 2020-12-18 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种采用磁铁矿精矿制备超纯铁精矿的选矿方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102553717B (zh) * | 2012-01-13 | 2014-09-03 | 鞍钢集团矿业公司 | 高硫赤铁矿选矿工艺 |
CN106076606B (zh) * | 2016-08-10 | 2018-06-01 | 中钢集团马鞍山矿山研究院有限公司 | 一种磁-赤复合铁矿石的选矿方法 |
CN106694208A (zh) * | 2016-11-17 | 2017-05-24 | 武汉科技大学 | 一种炼铜炉渣浮铜尾渣制备铁精矿的选矿方法 |
CN111068897A (zh) * | 2019-12-20 | 2020-04-28 | 辽宁科技学院 | 一种细颗粒磁铁矿选矿工艺 |
-
2020
- 2020-09-09 CN CN202010940185.XA patent/CN111905918B/zh active Active
-
2021
- 2021-08-10 WO PCT/CN2021/111870 patent/WO2022052719A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319988A (en) * | 1980-05-05 | 1982-03-16 | Halomet, Incorporated | Separation of high grade magnetite from fly ash |
CN102527492A (zh) * | 2010-12-07 | 2012-07-04 | 沈阳有色金属研究院 | 一种用低品位磁铁矿石制取超级铁精矿的方法 |
CN104826728A (zh) * | 2015-05-07 | 2015-08-12 | 中钢集团马鞍山矿山研究院有限公司 | 一种适于难选微细粒磁铁矿石分选的选矿新方法 |
CN109127122A (zh) * | 2018-11-14 | 2019-01-04 | 安徽工业大学 | 一种磁铁精矿提铁降硅的选矿方法 |
WO2020097667A1 (en) * | 2018-11-14 | 2020-05-22 | IB Operations Pty Ltd | Method and apparatus for processing magnetite |
CN110898958A (zh) * | 2019-11-13 | 2020-03-24 | 鞍钢集团矿业有限公司 | 一种处理高碳酸铁贫磁赤混合铁矿石的选矿工艺 |
CN111905918A (zh) * | 2020-09-09 | 2020-11-10 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 |
CN112090578A (zh) * | 2020-09-09 | 2020-12-18 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种采用磁铁矿精矿制备超纯铁精矿的选矿方法 |
Non-Patent Citations (2)
Title |
---|
LI MINGYU;HUANG JINFU;JIANG LIJUN;WANG WENLONG;WAN JIAGUO: "Experiment Study on Producing Super-Grade Iron Concentrate Using an Iron Ore from Fushun", MODERN MINING, 25 July 2020 (2020-07-25), pages 116 - 120+135, XP055911509, ISSN: 1674-6082, DOI: 10.3969/j.issn.1674-6082.2020.07.034 * |
ZOU WENBO XIA LIUYIN ZHONG HONG: "Study on the Flotation Performance of Quartz and Magnetite with Gemini Collector", METAL MINE, 15 June 2011 (2011-06-15), pages 70 - 80+92, XP055911513, ISSN: 1001-1250 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114798159A (zh) * | 2022-04-28 | 2022-07-29 | 包头钢铁(集团)有限责任公司 | 一种矿石选别工艺 |
CN115445759A (zh) * | 2022-09-13 | 2022-12-09 | 鞍钢集团矿业设计研究院有限公司 | 一种磁赤混合矿的分磨合选-重磁联合工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN111905918A (zh) | 2020-11-10 |
CN111905918B (zh) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022052719A1 (zh) | 一种商品级磁铁矿精矿深加工制备超纯铁精矿的方法 | |
WO2022052718A1 (zh) | 一种采用磁铁矿精矿制备超纯铁精矿的选矿方法 | |
WO2022052717A1 (zh) | 一种富铁高硫硫酸渣的重-浮联合选矿方法 | |
CN109622208B (zh) | 一种从白钨尾矿中综合回收有价金属矿物的方法 | |
CN103861733B (zh) | 一种磁选-反浮选制备超级铁精矿的方法 | |
CN108580031B (zh) | 一种对多金属伴生选铁尾矿预先焙烧的选矿方法 | |
WO2023098500A1 (zh) | 锂渣综合回收锂、钽铌、硅铝微粉、铁精矿和石膏的方法 | |
CN109304256A (zh) | 一种炼铜尾渣的综合利用方法 | |
CN106755650A (zh) | 钢渣生产高活性钢渣粉和惰性矿物产品的工艺 | |
CN108380379A (zh) | 一种低品位磁镜铁矿高效环保型选矿方法 | |
CN112024120B (zh) | 一种微细粒级赤褐铁矿的选矿方法 | |
CN104785367A (zh) | 预提精矿的焙烧铁矿石选矿方法 | |
CN105233974A (zh) | 细磨磁选-焙烧-再磨磁选回收尾矿工艺 | |
CN113304874A (zh) | 铌矿浮选预处理方法 | |
WO2023174031A1 (zh) | 一种贫矿预富集、焙烧和分选的多段处理工艺 | |
CN109647616A (zh) | 从铜炉渣浮选尾矿中综合回收磁铁矿和铜矿物的方法 | |
CN107824331A (zh) | 一种低品位钛铁矿石的磁-浮联合选矿方法 | |
CN107649278A (zh) | 一种低品位含钛磁铁矿的分选方法 | |
WO2024212608A1 (zh) | 一种全粒级重介质选矿系统及选矿方法 | |
CN109133141A (zh) | 一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法 | |
CN104722391A (zh) | 回收低浓度、微细粒赤铁矿浮选尾矿的方法 | |
WO2024082323A1 (zh) | 一种混合铁矿石选矿方法 | |
CN109127122B (zh) | 一种磁铁精矿提铁降硅的选矿方法 | |
WO2024040656A1 (zh) | 一种鞍山式磁赤铁矿分段磨矿、重—磁工艺流程 | |
CN115555127A (zh) | 一种应用分散剂马来酸-丙烯酸共聚物钠盐的低品位碳酸锰矿磁选工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21865775 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21865775 Country of ref document: EP Kind code of ref document: A1 |