WO2023174031A1 - 一种贫矿预富集、焙烧和分选的多段处理工艺 - Google Patents

一种贫矿预富集、焙烧和分选的多段处理工艺 Download PDF

Info

Publication number
WO2023174031A1
WO2023174031A1 PCT/CN2023/078045 CN2023078045W WO2023174031A1 WO 2023174031 A1 WO2023174031 A1 WO 2023174031A1 CN 2023078045 W CN2023078045 W CN 2023078045W WO 2023174031 A1 WO2023174031 A1 WO 2023174031A1
Authority
WO
WIPO (PCT)
Prior art keywords
roasting
magnetic separation
enrichment
ore
magnetic
Prior art date
Application number
PCT/CN2023/078045
Other languages
English (en)
French (fr)
Inventor
韩跃新
李艳军
高占奎
Original Assignee
上海逢石科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海逢石科技有限公司 filed Critical 上海逢石科技有限公司
Publication of WO2023174031A1 publication Critical patent/WO2023174031A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/10Roasting processes in fluidised form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of multi-stage treatment of iron ore, specifically a multi-stage treatment process of pre-enrichment, roasting and sorting of lean ores.
  • Iron ore is a guaranteed resource for my country's steel industry and a major strategic need for the country.
  • my country's "14th Five-Year Plan” will embark on a new journey of comprehensively building a modern ecological country and march towards the second centenary goal, modernization is also a process in which human productivity is rapidly increasing, social wealth is constantly accumulating, and mineral resources are consumed in large quantities.
  • “China "Manufacturing”, “One Belt and One Road” infrastructure development and other macroeconomics continue to be favorable, which will surely drive my country's high steel consumption and create huge market demand for iron ore.
  • the lean ores in the Bayan Obo mine are rich in national strategic mineral resources such as iron, rare earths, fluorite and niobium. Due to the low grade of the ore, complex mineral composition, close symbiotic relationship, fine and uneven mineral embedded particle size, and useful minerals Due to the small difference in value and selectability of gangue minerals and the large number of available valuable components, the mineral processing problem of this mine has always been a world-class problem.
  • magnetization roasting technology is one of the most effective pretreatment technologies for processing poor iron ore.
  • the conventional magnetization roasting treatment process of lean iron ore is as follows: A. Iron ore crushing, classification and sample preparation, B. Magnetization roasting in rotary kiln and shaft furnace, C. Regrinding of roasted products, D. Re-separation by magnetic separation, flotation, etc. Select (patents: CN104164556A, CN104745805A, CN110714117A).
  • Select patents: CN104164556A, CN104745805A, CN110714117A.
  • the rotary kiln magnetizing roasting process and the shaft furnace magnetizing roasting process have a narrow applicable range of ore particle size, unstable production, low operating rate, uneven roasting and high energy consumption, and have gradually ceased industrial application.
  • the present invention provides a multi-stage treatment process of pre-concentration, roasting and sorting of lean ores, which solves the problems raised in the above-mentioned background technology.
  • a multi-stage treatment process of pre-enrichment, roasting and sorting of lean ores including the following steps:
  • step S1, grinding operation specifically includes the following steps:
  • the finely crushed products are ground to less than 0.074mm through a stirring mill, accounting for 40 to 65%.
  • step S2 pre-enrichment operation specifically includes the following steps:
  • the products finely ground by the stirring mill are subjected to weak magnetic separation through a wet magnetic separator.
  • the magnetic separation tailings are subjected to strong magnetic separation.
  • the two-stage magnetic separation concentrates are mixed into mixed magnetic concentrates and mixed dry. Later, it is used as feed ore for suspension magnetization roasting operation;
  • Valuable minerals are enriched in strong magnetic separation tailings through strong magnetic separation operations, and rare earths can be recycled and reused.
  • step S3, suspension magnetization and roasting specifically includes the following steps:
  • the material is first preheated and pre-oxidized in the temperature range of 620 to 680°C;
  • the high-temperature pre-oxidized product enters the reduction furnace.
  • a mixture of nitrogen and reducing gas with a ratio of 2.5:1 to 4:1 is introduced into the furnace.
  • the temperature in the furnace is maintained at 480 to 560°C.
  • the weakly magnetic Fe 2 O 3 is converted into strongly magnetic Fe 2 O 3 ;
  • the reduced product is cooled to 180 ⁇ 220°C under nitrogen protection and then air-cooled.
  • the strongly magnetic Fe 2 O 3 is oxidized into the stronger magnetic ⁇ -Fe 2 O 3 and releases latent heat.
  • the sensible heat can be recovered through the waste heat recovery device. and latent heat recovery.
  • the steps S4, regrinding, and magnetic separation include the following steps:
  • the magnetic separation concentrate still contains a small amount of gangue minerals.
  • step S5, flotation defluorination specifically includes the following steps:
  • the flotation operation feeds magnetic concentrate, and the slurry with a concentration of 35 to 42% by weight is added.
  • the flotation machine performs a closed-circuit operation of "one rough selection, one selection, and one sweep";
  • the invention provides a multi-stage treatment process of lean ore pre-enrichment, roasting and sorting, which has the following features:
  • the present invention provides a new technology that can save energy, reduce consumption and efficiently sort the medium-poor oxidized ores in Bayan Obo, so as to reduce the storage amount of solid waste of medium-poor oxidized ores, activate the resources of poor miscellaneous iron ores, and obtain high-grade iron concentrates.
  • valuable minerals such as rare earths and fluorspar are enriched in the tailings, thereby realizing comprehensive utilization of lean mineral resources in Bayan Obo.
  • the present invention adopts high-efficiency grinding and magnetic separation pre-enrichment operations to prepare roasting feedstock, and discards part of the gangue in advance to improve the iron grade of the ore, which is beneficial to the subsequent process to improve efficiency and reduce energy consumption; the high-pressure roller mill implements multiple methods on the materials.
  • the crushing of the material layer and the increase of micro-cracks in the particles will help improve the internal and external diffusion efficiency of reducing gas and gas products at the gas-solid interface, and increase the reaction rate to achieve the effect of enhanced reduction.
  • the present invention uses suspension magnetization roasting for step roasting to achieve precise control of various iron minerals during the roasting process, and finally generates strong magnetic ⁇ -Fe2O3 with low coercivity, which can significantly reduce the occurrence of magnetic agglomeration and improve the iron ore concentrate.
  • the quality of the system has been significantly improved.
  • the sensible and latent heat of the cooling process and flue gas preheating can be recycled and reused, significantly reducing energy consumption.
  • Figure 1 is a schematic flow diagram of the present invention.
  • Pre-enrichment operation The products after fine grinding by stirring mill are subjected to weak magnetic separation operation (1700Oe) through wet magnetic separator, and the magnetic separation tailings are subjected to strong magnetic separation operation (8500Oe).
  • weak magnetic separation operation 1700Oe
  • strong magnetic separation operation 8500Oe.
  • Two-stage magnetic separation concentrate Mixed into mixed magnetic concentrate, mixed dry and evenly used as feed ore for suspension magnetization roasting operation; at the same time, rare earth, fluorite and other valuable minerals are enriched in strong magnetic separation tailings through strong magnetic separation operation, and rare earth can be processed Recycle and reuse;
  • Suspension magnetization roasting The ore is the product of pre-enrichment operations, which is fluidized at this stage; the material is first preheated and pre-oxidized in the temperature range of 620 to 650°C, and the various iron in the ore Minerals (hematite, goethite, limonite, siderite and magnetite, etc.) are oxidized into Fe 2 O 3 with uniform composition, which solves the problem that multiple iron minerals cannot be magnetized simultaneously in traditional roasting technology.
  • the ore Minerals hematite, goethite, limonite, siderite and magnetite, etc.
  • the high-temperature pre-oxidized product enters the reduction furnace, and a mixed gas of nitrogen and reducing gas (CO, H 2 or coal gas) with a ratio of 3:1 is introduced into the furnace, while the temperature in the furnace is maintained at 520 ⁇ 540°C , at this stage, the weakly magnetic Fe 2 O 3 is converted into the strongly magnetic Fe 3 O 4 ; the specific ratio of the mixed gas is determined according to the Fe 2 O 3 content in the ore; finally, the reduced product is cooled to 190 to 210 under nitrogen protection After air cooling at °C, the strongly magnetic Fe 3 O 4 is oxidized into the stronger magnetic ⁇ -Fe 2 O 3 and releases latent heat. The sensible heat and latent heat can be recovered through the waste heat recovery device;
  • a mixed gas of nitrogen and reducing gas CO, H 2 or coal gas
  • the regrinding ore is roasted products, and the roasted products are finely ground using a stirring mill to a particle size range of less than 0.074mm, accounting for 90%.
  • the specific product fineness needs to be based on the iron mineral dissipation in the specific ore.
  • the particle size is determined, and then weak magnetic separation with a magnetic field strength of 1300Oe is performed to separate the roasted products. Magnetic iron minerals in the product. At this time, the magnetic separation concentrate still contains some gangue minerals (such as fluorite);
  • the ore for the flotation operation is magnetic separation concentrate, and the ore slurry with a weight concentration of 39% is added to the flotation machine to perform a closed-circuit operation of "one rough selection, one selection and one sweep"; rough selection , select sodium oleate (amount 300g/t) as the collector, water glass (amount 1400g/t) as the inhibitor, sodium carbonate and sulfuric acid as the slurry pH adjuster (pH 8), flotation temperature 39°C, flotation temperature
  • the selection time is 5 minutes, the rough selection tailings enter the sweeping operation, and the rough selection concentrate enters the fine selection; the sweeping operation concentrate returns to the rough selection, and the sweeping tailings become the flotation tailings; during the selection, 80g/t oil is added again Sodium sulfate is used as a collector, the selected concentrate is the final iron concentrate, and the selected tailings are returned to roughing for re-selection; the magnetic separation concentrate is defluorinated through
  • Pre-enrichment operation The products after fine grinding by the stirring mill are subjected to weak magnetic separation operation (1800Oe) through wet magnetic separator, the magnetic tailings are subjected to strong magnetic separation operation (8000Oe), and the two-stage magnetic separation concentrate Mixed into mixed magnetic concentrate, mixed dry and evenly used as feed ore for suspension magnetization roasting operation; at the same time, rare earth, fluorite and other valuable minerals are enriched in strong magnetic separation tailings through strong magnetic separation operation, and rare earth can be processed Recycle and reuse.
  • the ore is the product of pre-enrichment operation, which is fluidized at this stage.
  • the material is first preheated and pre-oxidized in the temperature range of 650 to 670°C, and various iron minerals (hematite, goethite, limonite, siderite and magnetite, etc.) in the ore are oxidized.
  • It is Fe 2 O 3 with a uniform composition, which solves the problem in traditional roasting technology that multiple iron minerals cannot be magnetized simultaneously; then, the high-temperature pre-oxidized product enters the reduction furnace, and nitrogen and nitrogen at a ratio of 3.5:1 are introduced into the furnace.
  • Reducing gas (CO, H2 or coal-based gas) mixed gas while the temperature in the furnace is maintained at 530 ⁇ 550°C.
  • the weakly magnetic Fe 2 O 3 is converted into the strongly magnetic Fe 3 O 4 ; the specific proportion of the mixed gas is based on the Fe 2 O 3 content in the ore. Determine; finally, the reduced product is cooled to 180 ⁇ 200°C under nitrogen protection and then air-cooled.
  • the strongly magnetic Fe 3 O 4 is oxidized into the stronger magnetic ⁇ -Fe 2 O 3 and releases latent heat, which can be recovered through the waste heat recovery device. Sensible and latent heat are recovered.
  • the regrinding ore is roasted products, and a stirring mill is used to finely grind the roasted products to a particle size range of less than 0.074mm, accounting for 93%.
  • the specific product fineness needs to be based on the iron mineral dissipation in the specific ore.
  • the particle size is determined, and then weak magnetic separation is carried out with a magnetic field strength of 1250Oe to separate the magnetic iron minerals in the roasted product.
  • the magnetic separation concentrate still contains some gangue minerals (such as fluorite);
  • the feed for flotation operation is magnetic separation concentrate, and the ore slurry with a concentration of 40% by weight is added to the flotation machine to perform a closed-circuit operation of "one rough selection, one selection, and one sweep"; rough selection , select sodium oleate (dosage 350g/t) as the collector, water glass (dosage 1300g/t) as the inhibitor, sodium carbonate and sulfuric acid as the slurry pH adjuster (pH 8), flotation temperature 40°C, flotation temperature
  • the selection time is 5 minutes, the rough selection tailings enter the sweeping operation, and the rough selection concentrate enters the fine selection; the sweeping operation concentrate returns to the rough selection, and the sweeping tailings become the flotation tailings; during the selection, 90g/t oil is added again Sodium sulfate is used as a collector, the selected concentrate is the final iron concentrate, and the selected tailings are returned to roughing for re-selection; the magnetic separation concentrate is defluorination
  • Pre-enrichment operation The products after fine grinding by the stirring mill are subjected to weak magnetic separation operation (1650Oe) through wet magnetic separator, the magnetic separation tailings are subjected to strong magnetic separation operation (6500Oe), and the two-stage magnetic separation concentrate Mixed into mixed magnetic concentrate, mixed dry and evenly used as feed ore for suspension magnetization roasting operation; at the same time, rare earth, fluorite and other valuable minerals are enriched by strong magnetic separation operation into strong magnetic separation tailings, and rare earth can be recovered and recycled use;
  • Suspension magnetization roasting The ore is the product of pre-enrichment operations, which is fluidized at this stage; the material is first preheated and pre-oxidized in the temperature range of 620 to 640°C, and the various iron in the ore Minerals (hematite, goethite, limonite, siderite and magnetite, etc.) are oxidized into Fe 2 O 3 with uniform composition, which solves the problem that multiple iron minerals cannot be magnetized simultaneously in traditional roasting technology.
  • the ore Minerals hematite, goethite, limonite, siderite and magnetite, etc.
  • the high-temperature pre-oxidized product enters the reduction furnace, and a mixed gas of nitrogen and reducing gas (CO, H 2 or coal gas) with a ratio of 3:1 is introduced into the furnace, while the temperature in the furnace is maintained at 500 ⁇ 525°C , at this stage, the weakly magnetic Fe 2 O 3 is converted into the strongly magnetic Fe 3 O 4 ; the specific ratio of the mixed gas is determined according to the Fe 2 O 3 content in the ore; finally, the reduced product is cooled to 190 ⁇ 205 under nitrogen protection After air cooling at °C, the strongly magnetic Fe 3 O 4 is oxidized into the stronger magnetic ⁇ -Fe 2 O 3 and releases latent heat. The sensible heat and latent heat can be recovered through the waste heat recovery device;
  • a mixed gas of nitrogen and reducing gas CO, H 2 or coal gas
  • the regrinding ore is roasted products, and a stirring mill is used to finely grind the roasted products to a particle size range of less than 0.074mm, accounting for 88%.
  • the specific product fineness needs to be based on the iron mineral dissipation in the specific ore.
  • the particle size is determined, and then weak magnetic separation is carried out with a magnetic field strength of 1400Oe to separate the magnetic iron minerals in the roasted product.
  • the magnetic separation concentrate still contains some gangue minerals (such as fluorite);
  • the feed for flotation operation is magnetic separation concentrate, and the ore slurry with a weight concentration of 37% is added to the flotation machine to perform a closed-circuit operation of "one rough selection, one selection, and one sweep"; rough selection , select sodium oleate (200g/t dosage) as the collector, water glass (950g/t dosage) as the inhibitor, sodium carbonate and sulfuric acid as the slurry pH adjuster (pH 8), flotation temperature 40°C, flotation temperature
  • the selection time is 6 minutes, the rough selection tailings enter sweep selection, and the rough selection concentrate enters fine selection; the sweep operation concentrate returns to rough selection, and the sweep tailings become flotation tailings; during the selection process, 60g/t oil is added again Sodium sulfate is used as a collector, the selected concentrate is the final iron concentrate, and the selected tailings are returned to roughing for re-selection; the magnetic separation concentrate is defluorinated through reverse flotation to obtain an iron grade of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种贫矿预富集、焙烧和分选的多段处理工艺,涉及铁矿石多段处理技术领域,具体为一种贫矿预富集、焙烧和分选的多段处理工艺,包括以下步骤:S1、碎磨作业;S2、预富集作业;S3、悬浮磁化焙烧;S4、再磨、磁选作业;S5、浮选脱氟。采用高效碎磨、磁选预富集作业制备焙烧给料,预先抛除一部分脉石以提高矿石的铁品位,有利于后续流程提高效率、降低能耗;高压辊磨机对物料实施多料层粉碎,颗粒内微裂纹增多,有助于提高还原气体及气体产物在气、固界面的内扩散和外扩散效率,提高反应速率以达到强化还原的效果。

Description

一种贫矿预富集、焙烧和分选的多段处理工艺 技术领域
本发明涉及铁矿石多段处理技术领域,具体为一种贫矿预富集、焙烧和分选的多段处理工艺。
背景技术
铁矿石是我国钢铁工业的保障性资源,属国家的重大战略需求。随着我国“十四五”将开启全面建设社会主义现代化国家新征程、向第二个百年目标进军,现代化建设也是人类生产力迅速提高、社会财富不断积聚、大量消耗矿产资源的过程,同时“中国制造”、“一带一路”、基建开发等宏观经济持续利好,这必将驱动我国钢铁的高位消费量,对铁矿石的市场前景需求巨大。
但是我国铁矿石资源品位低、禀赋差、难利用,长期大量依赖进口,进口量连续多年超10亿吨,对外依存度超过85%,这不仅对我国钢铁工业造成严重影响,对国民经济的安全运行也构成了巨大威胁。面对铁矿石“量价齐飞”现状,研发自主创新技术,实现我国贫杂铁矿资源的高效开发利用,提高铁矿石自给率,具有重要的战略意义。
白云鄂博矿中贫矿含有丰富的铁、稀土、萤石及铌等国家战略性矿产资源,由于该部分矿石品位低、矿物成分复杂、共生关系密切、矿物嵌布粒度细而不均、有用矿物价值与脉石矿物可选性差异小、可利用的有价成分多等原因,该矿的选矿问题一直是个世界级的难题。
当前,磁化焙烧技术是处理贫杂铁矿最为有效的预处理技术之一。贫杂铁矿常规的磁化焙烧处理流程如下:A、铁矿石破碎、分级备样,B、回转窑、竖炉磁化焙烧,C、焙烧产品再磨,D、磁选、浮选等再次分选(专利:CN104164556A、CN104745805A、CN110714117A)。早在20世纪50-60年代,铁矿流态化磁化焙烧在国外就引起广泛的关注,英国、美国、加拿大、意大 利等国都有研究,但近年来国外对于复杂难选铁矿石基本不予利用,鲜有磁化焙烧研发的报道。近年来,因流态化焙烧具有产品质量均匀稳定、传热效果好、过程控制及自动化水平高、设备运转部件少等特点,流态化焙烧工艺及装备在氧化铝工业得到了广泛应用。其工业应用结果表明,流态化焙烧比传统的回转窑热耗降低30%以上(专利:CN107606949A、CN104692435A、CN104058435A)。因此,国内许多研究单位针对贫杂铁矿流态化磁化焙烧技术和装备也开展了大量的研究(专利:CN108588404A、CN111057839A、CN108396134A)。
回转窑磁化焙烧工艺和竖炉磁化焙烧工艺对矿石粒度适用范围较窄,生产不稳定、作业率低、焙烧不均匀和能耗高,已逐渐停止工业应用。
现有的流态化焙烧技术及装备中:氧化气氛和还原气氛共存,导致还原气氛弱,焙烧效率低;同时,不同铁矿物之间的还原特性存在差异,导致磁化速率不同步,焙烧产品质量低。
发明内容
针对现有技术的不足,本发明提供了一种贫矿预富集、焙烧和分选的多段处理工艺,解决了上述背景技术中提出的问题。
为实现以上目的,本发明通过以下技术方案予以实现:一种贫矿预富集、焙烧和分选的多段处理工艺,包括以下步骤:
S1、碎磨作业;
S2、预富集作业;
S3、悬浮磁化焙烧;
S4、再磨、磁选作业;
S5、浮选脱氟。
可选的,所述步骤S1、碎磨作业中,具体包括以下步骤:
S11、将中贫矿矿块通过颚式破碎机和振动筛闭路破碎系统进行破碎作 业;
S12、筛下产品通过高压辊磨机和振动筛闭路细碎;
S13、细碎产品通过搅拌磨机细磨至0.074mm以下占40~65%。
可选的,所述步骤S2、预富集作业中,具体包括以下步骤:
S21、通过搅拌磨机细磨后的产品,通过湿式磁选机进行弱磁选作业,磁选尾矿进行强磁选作业,两段磁选精矿混合为混磁精矿,混干混匀后作为悬浮磁化焙烧作业的给矿;
S22、有价矿物经强磁选作业,富集于强磁选尾矿中,可进行稀土回收再利用。
可选的,所述步骤S3、悬浮磁化焙烧中,具体包括以下步骤:
S31、物料首先在620~680℃的温度范围内,进行预热、预氧化;
S32、高温的预氧化产品进入还原炉,炉内通入比例为2.5:1~4:1的氮气和还原气混合气体,同时炉内温度维持在480~560℃,在此阶段弱磁性的Fe2O3转化为强磁性的Fe2O3
S33、混合气体的具体比例根据矿石中的Fe2O3含量确定;
S34、还原产品在氮气保护下冷却至180~220℃后进行空气冷却,强磁性的Fe2O3氧化为较强磁性的γ-Fe2O3并释放潜热,可通过余热回收装置对显热和潜热进行回收。
可选的,所述步骤S4、再磨、磁选作业中,包括以下步骤:
S41、再磨给矿为焙烧产品,采用搅拌磨将焙烧产品细磨至0.074mm以下占85%~95%;
S42、再进行磁场强度为1200~1500Oe的弱磁选选别,分离出焙烧产品中的磁性铁矿物,此时,磁选精矿中仍夹杂少量脉石矿物。
可选的,所述步骤S5、浮选脱氟中,具体包括以下步骤:
S51、浮选作业给矿为磁选精矿,配置重量百分浓度为35~42%的矿浆加入 浮选机中进行“一粗选一精选一扫选”闭路作业;
S52、粗选:选择油酸钠100~400g/t为捕收剂,水玻璃800~1500g/t为抑制剂,碳酸钠和硫酸pH为7.5~8为矿浆pH调整剂,浮选温度35~40℃,浮选时间4-7min,粗选尾矿进入扫选,粗选精矿进入精选;扫选作业精矿返回粗选,扫选尾矿为浮选尾矿;
S53、精选:再次添加50~100g/t的油酸钠为捕收剂,精选精矿为最终铁精矿,精选尾矿返回粗选再选。
本发明提供了一种贫矿预富集、焙烧和分选的多段处理工艺,具备以下
有益效果:
本发明提供一种可节能降耗且高效分选白云鄂博中贫氧化矿的新技术,以降低中贫氧化矿固废的堆存量,盘活贫杂铁矿资源,在获得高品位铁精矿的同时富集稀土、萤石等有价矿物于尾矿中,进而实现白云鄂博中贫矿资源的综合化利用。
本发明采用高效碎磨、磁选预富集作业制备焙烧给料,预先抛除一部分脉石以提高矿石的铁品位,有利于后续流程提高效率、降低能耗;高压辊磨机对物料实施多料层粉碎,颗粒内微裂纹增多,有助于提高还原气体及气体产物在气、固界面的内扩散和外扩散效率,提高反应速率以达到强化还原的效果。
本发明采用悬浮磁化焙烧进行梯级焙烧,实现多种铁矿物在焙烧过程中的精准控制,最终生成矫顽力较低的强磁性γ-Fe2O3,可显著降低磁团聚现象的发生,铁精矿的质量得到了显著提升,同时可对冷却过程的显热和潜热和烟气预热进行回收再利用,显著降低能耗。
附图说明
图1为本发明的流程示意图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
本实施例1所述的,白云鄂博中贫氧化矿矿块平均品位26%,实施方案按照图1示意的以下步骤进行:
S1、碎磨作业:首先将中贫矿矿块通过颚式破碎机、振动筛(15mm)闭路破碎系统进行破碎作业,筛下产品通过高压辊磨机、振动筛(5mm)闭路细碎,细碎产品通过搅拌磨机细磨至0.074mm以下占55%;
S2、预富集作业:通过搅拌磨机细磨后的产品,通过湿式磁选机进行弱磁选作业(1700Oe),磁选尾矿进行强磁选作业(8500Oe),两段磁选精矿混合为混磁精矿,混干混匀后作为悬浮磁化焙烧作业的给矿;同时,稀土,萤石等有价矿物经强磁选作业,富集于强磁选尾矿中,可进行稀土回收再利用;
S3、悬浮磁化焙烧:给矿为预富集作业的产品,其在该阶段呈流态化;物料首先在620~650℃的温度范围内,进行预热、预氧化,矿石中的多种铁矿物(赤铁矿、针铁矿、褐铁矿、菱铁矿和磁铁矿等)氧化为成分均一的Fe2O3,解决了传统焙烧技术存在的多种铁矿物无法同步磁化的问题;而后,高温的预氧化产品进入还原炉,炉内通入比例为3:1的氮气和还原气(CO、H2或煤制气)混合气体,同时炉内温度维持在520~540℃,在此阶段弱磁性的Fe2O3转化为强磁性的Fe3O4;混合气体的具体比例根据矿石中的Fe2O3含量确定;最后,还原产品在氮气保护下冷却至190~210℃后进行空气冷却,强磁性的Fe3O4氧化为较强磁性的γ-Fe2O3并释放潜热,可通过余热回收装置对显热和潜热进行回收;
S4、再磨、磁选作业:再磨给矿为焙烧产品,采用搅拌磨将焙烧产品细磨至0.074mm以下占90%的粒度范围,具体产品细度需根据具体矿石中的铁矿物浸染粒度确定,而后进行磁场强度为1300Oe的弱磁选选别,分离出焙烧产 品中的磁性铁矿物,此时,磁选精矿中仍夹杂部分脉石矿物(如萤石);
5、浮选脱氟:浮选作业给矿为磁选精矿,配置重量百分浓度为39%的矿浆加入浮选机中进行“一粗选一精选一扫选”闭路作业;粗选中,选择油酸钠(用量300g/t)为捕收剂,水玻璃(用量1400g/t)为抑制剂,碳酸钠和硫酸为矿浆pH调整剂(pH为8),浮选温度39℃,浮选时间5min,粗选尾矿进入扫选,粗选精矿进入精选;扫选作业精矿返回粗选,扫选尾矿为浮选尾矿;精选中,再次添加80g/t的油酸钠为捕收剂,精选精矿为最终铁精矿,精选尾矿返回粗选再选;磁选精矿通过反浮选脱氟,获得铁品位65.24%,铁回收率80.41%的最终铁精矿。
实施例2
本实施例2所述的,白云鄂博中贫氧化矿矿块平均品位28%,实施方案按照图1示意的以下步骤进行:
S1、碎磨作业:首先将中贫矿矿块通过颚式破碎机、振动筛(15mm)闭路破碎系统进行破碎作业,筛下产品通过高压辊磨机、振动筛(5mm)闭路细碎,细碎产品通过搅拌磨机细磨至0.074mm以下占60%;
S2、预富集作业:通过搅拌磨机细磨后的产品,通过湿式磁选机进行弱磁选作业(1800Oe),磁选尾矿进行强磁选作业(8000Oe),两段磁选精矿混合为混磁精矿,混干混匀后作为悬浮磁化焙烧作业的给矿;同时,稀土,萤石等有价矿物经强磁选作业,富集于强磁选尾矿中,可进行稀土回收再利用。
S3、悬浮磁化焙烧:给矿为预富集作业的产品,其在该阶段呈流态化。物料首先在650~670℃的温度范围内,进行预热、预氧化,矿石中的多种铁矿物(赤铁矿、针铁矿、褐铁矿、菱铁矿和磁铁矿等)氧化为成分均一的Fe2O3,解决了传统焙烧技术存在的多种铁矿物无法同步磁化的问题;而后,高温的预氧化产品进入还原炉,炉内通入比例为3.5:1的氮气和还原气(CO、H2或煤制 气)混合气体,同时炉内温度维持在530~550℃,在此阶段弱磁性的Fe2O3转化为强磁性的Fe3O4;混合气体的具体比例根据矿石中的Fe2O3含量确定;最后,还原产品在氮气保护下冷却至180~200℃后进行空气冷却,强磁性的Fe3O4氧化为较强磁性的γ-Fe2O3并释放潜热,可通过余热回收装置对显热和潜热进行回收。
S4、再磨、磁选作业:再磨给矿为焙烧产品,采用搅拌磨将焙烧产品细磨至0.074mm以下占93%的粒度范围,具体产品细度需根据具体矿石中的铁矿物浸染粒度确定,而后进行磁场强度为1250Oe的弱磁选选别,分离出焙烧产品中的磁性铁矿物,此时,磁选精矿中仍夹杂部分脉石矿物(如萤石);
S5、浮选脱氟:浮选作业给矿为磁选精矿,配置重量百分浓度为40%的矿浆加入浮选机中进行“一粗选一精选一扫选”闭路作业;粗选中,选择油酸钠(用量350g/t)为捕收剂,水玻璃(用量1300g/t)为抑制剂,碳酸钠和硫酸为矿浆pH调整剂(pH为8),浮选温度40℃,浮选时间5min,粗选尾矿进入扫选,粗选精矿进入精选;扫选作业精矿返回粗选,扫选尾矿为浮选尾矿;精选中,再次添加90g/t的油酸钠为捕收剂,精选精矿为最终铁精矿,精选尾矿返回粗选再选;磁选精矿通过反浮选脱氟,获得铁品位65.51%,铁回收率81.02%的最终铁精矿。
实施例3
本实施例3所述的,白云鄂博中贫氧化矿矿块平均品位30%,实施方案按照图1示意的以下步骤进行:
S1、碎磨作业:首先将中贫矿矿块通过颚式破碎机、振动筛(15mm)闭路破碎系统进行破碎作业,筛下产品通过高压辊磨机、振动筛(5mm)闭路细碎,细碎产品通过搅拌磨机细磨至0.074mm以下占45%;
S2、预富集作业:通过搅拌磨机细磨后的产品,通过湿式磁选机进行弱磁选作业(1650Oe),磁选尾矿进行强磁选作业(6500Oe),两段磁选精矿 混合为混磁精矿,混干混匀后作为悬浮磁化焙烧作业的给矿;同时,稀土,萤石等有价矿物经强磁选作业富集进入强磁选尾矿,可进行稀土回收再利用;
S3、悬浮磁化焙烧:给矿为预富集作业的产品,其在该阶段呈流态化;物料首先在620~640℃的温度范围内,进行预热、预氧化,矿石中的多种铁矿物(赤铁矿、针铁矿、褐铁矿、菱铁矿和磁铁矿等)氧化为成分均一的Fe2O3,解决了传统焙烧技术存在的多种铁矿物无法同步磁化的问题;而后,高温的预氧化产品进入还原炉,炉内通入比例为3:1的氮气和还原气(CO、H2或煤制气)混合气体,同时炉内温度维持在500~525℃,在此阶段弱磁性的Fe2O3转化为强磁性的Fe3O4;混合气体的具体比例根据矿石中的Fe2O3含量确定;最后,还原产品在氮气保护下冷却至190~205℃后进行空气冷却,强磁性的Fe3O4氧化为较强磁性的γ-Fe2O3并释放潜热,可通过余热回收装置对显热和潜热进行回收;
S4、再磨、磁选作业:再磨给矿为焙烧产品,采用搅拌磨将焙烧产品细磨至0.074mm以下占88%的粒度范围,具体产品细度需根据具体矿石中的铁矿物浸染粒度确定,而后进行磁场强度为1400Oe的弱磁选选别,分离出焙烧产品中的磁性铁矿物,此时,磁选精矿中仍夹杂部分脉石矿物(如萤石);
S5、浮选脱氟:浮选作业给矿为磁选精矿,配置重量百分浓度为37%的矿浆加入浮选机中进行“一粗选一精选一扫选”闭路作业;粗选中,选择油酸钠(用量200g/t)为捕收剂,水玻璃(用量950g/t)为抑制剂,碳酸钠和硫酸为矿浆pH调整剂(pH为8),浮选温度40℃,浮选时间6min,粗选尾矿进入扫选,粗选精矿进入精选;扫选作业精矿返回粗选,扫选尾矿为浮选尾矿;精选中,再次添加60g/t的油酸钠为捕收剂,精选精矿为最终铁精矿,精选尾矿返回粗选再选;磁选精矿通过反浮选脱氟,获得铁品位65.24%,铁回收率80.41%的最终铁精矿。
以上,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本 发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种贫矿预富集、焙烧和分选的多段处理工艺,包括以下步骤:
    S1、碎磨作业;
    S2、预富集作业;
    S3、悬浮磁化焙烧;
    S4、再磨、磁选作业;
    S5、浮选脱氟。
  2. 根据权利要求1所述的一种贫矿预富集、焙烧和分选的多段处理工艺,其特征在于,所述步骤S1、碎磨作业中,具体包括以下步骤:
    S11、将中贫矿矿块通过颚式破碎机和振动筛闭路破碎系统进行破碎作业;
    S12、筛下产品通过高压辊磨机和振动筛闭路细碎;
    S13、细碎产品通过搅拌磨机细磨至0.074mm以下占40~65%。
  3. 根据权利要求1所述的一种贫矿预富集、焙烧和分选的多段处理工艺,其特征在于,所述步骤S2、预富集作业中,具体包括以下步骤:
    S21、通过搅拌磨机细磨后的产品,通过湿式磁选机进行弱磁选作业,磁选尾矿进行强磁选作业,两段磁选精矿混合为混磁精矿,混干混匀后作为悬浮磁化焙烧作业的给矿;
    S22、有价矿物经强磁选作业,富集于强磁选尾矿中,可进行稀土回收再利用。
  4. 根据权利要求1所述的一种贫矿预富集、焙烧和分选的多段处理工艺,其特征在于,所述步骤S3、悬浮磁化焙烧中,具体包括以下步骤:
    S31、物料首先在620~680℃的温度范围内,进行预热、预氧化;
    S32、高温的预氧化产品进入还原炉,炉内通入比例为2.5:1~4:1的氮气和还原气混合气体,同时炉内温度维持在480~560℃,在此阶段弱磁性的Fe2O3转化为强磁性的Fe2O3
    S33、混合气体的具体比例根据矿石中的Fe2O3含量确定;
    S34、还原产品在氮气保护下冷却至180~220℃后进行空气冷却,强磁性的Fe2O3氧化为较强磁性的γ-Fe2O3并释放潜热,可通过余热回收装置对显热和潜热进行回收。
  5. 根据权利要求1所述的一种贫矿预富集、焙烧和分选的多段处理工艺,其特征在于,所述步骤S4、再磨、磁选作业中,包括以下步骤:
    S41、再磨给矿为焙烧产品,采用搅拌磨将焙烧产品细磨至0.074mm以下占85%~95%;
    S42、再进行磁场强度为1200~1500Oe的弱磁选选别,分离出焙烧产品中的磁性铁矿物,此时,磁选精矿中仍夹杂少量脉石矿物。
  6. 根据权利要求1所述的一种贫矿预富集、焙烧和分选的多段处理工艺,其特征在于,所述步骤S5、浮选脱氟中,具体包括以下步骤:
    S51、浮选作业给矿为磁选精矿,配置重量百分浓度为35~42%的矿浆加入浮选机中进行“一粗选一精选一扫选”闭路作业;
    S52、粗选:选择油酸钠100~400g/t为捕收剂,水玻璃800~1500g/t为抑制剂,碳酸钠和硫酸pH为7.5~8为矿浆pH调整剂,浮选温度35~40℃,浮选时间4-7min,粗选尾矿进入扫选,粗选精矿进入精选;扫选作业精矿返回粗选,扫选尾矿为浮选尾矿;
    S53、精选:再次添加50~100g/t的油酸钠为捕收剂,精选精矿为最终铁精矿,精选尾矿返回粗选再选。
PCT/CN2023/078045 2022-03-17 2023-02-24 一种贫矿预富集、焙烧和分选的多段处理工艺 WO2023174031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210261584.2A CN114849899A (zh) 2022-03-17 2022-03-17 一种贫矿预富集、焙烧和分选的多段处理工艺
CN202210261584.2 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023174031A1 true WO2023174031A1 (zh) 2023-09-21

Family

ID=82627199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078045 WO2023174031A1 (zh) 2022-03-17 2023-02-24 一种贫矿预富集、焙烧和分选的多段处理工艺

Country Status (2)

Country Link
CN (1) CN114849899A (zh)
WO (1) WO2023174031A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118045697A (zh) * 2024-01-30 2024-05-17 广东粤桥新材料科技有限公司 一种风化型钒钛铁矿选矿工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849899A (zh) * 2022-03-17 2022-08-05 上海逢石科技有限公司 一种贫矿预富集、焙烧和分选的多段处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008105111A (ru) * 2008-02-11 2009-08-20 Научно-производственная фирма "Продэкология" (UA) Способ обогащения гематитовых руд
RU2443474C1 (ru) * 2010-09-27 2012-02-27 Открытое акционерное общество "Михайловский ГОК" Способ повышения эффективности производства железорудных концентратов
CN104818378A (zh) * 2015-03-30 2015-08-05 东北大学 复杂难选铁矿石的预富集-三段悬浮焙烧-磁选处理方法
CN105772216A (zh) * 2016-03-28 2016-07-20 东北大学 一种用复杂难选铁矿石生产铁精矿的新方法
CN108480037A (zh) * 2018-04-19 2018-09-04 东北大学 一种从伴生多金属矿物的铁尾矿中回收铁、稀土、萤石和铌的选矿方法
CN113798054A (zh) * 2021-08-23 2021-12-17 鞍钢集团矿业有限公司 一种处理铁尾矿的预选-流态化焙烧-磨矿磁选工艺
CN114849899A (zh) * 2022-03-17 2022-08-05 上海逢石科技有限公司 一种贫矿预富集、焙烧和分选的多段处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008105111A (ru) * 2008-02-11 2009-08-20 Научно-производственная фирма "Продэкология" (UA) Способ обогащения гематитовых руд
RU2443474C1 (ru) * 2010-09-27 2012-02-27 Открытое акционерное общество "Михайловский ГОК" Способ повышения эффективности производства железорудных концентратов
CN104818378A (zh) * 2015-03-30 2015-08-05 东北大学 复杂难选铁矿石的预富集-三段悬浮焙烧-磁选处理方法
CN105772216A (zh) * 2016-03-28 2016-07-20 东北大学 一种用复杂难选铁矿石生产铁精矿的新方法
CN108480037A (zh) * 2018-04-19 2018-09-04 东北大学 一种从伴生多金属矿物的铁尾矿中回收铁、稀土、萤石和铌的选矿方法
CN113798054A (zh) * 2021-08-23 2021-12-17 鞍钢集团矿业有限公司 一种处理铁尾矿的预选-流态化焙烧-磨矿磁选工艺
CN114849899A (zh) * 2022-03-17 2022-08-05 上海逢石科技有限公司 一种贫矿预富集、焙烧和分选的多段处理工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118045697A (zh) * 2024-01-30 2024-05-17 广东粤桥新材料科技有限公司 一种风化型钒钛铁矿选矿工艺

Also Published As

Publication number Publication date
CN114849899A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023174031A1 (zh) 一种贫矿预富集、焙烧和分选的多段处理工艺
CN101413057B (zh) 低品位及复杂铁矿高效分选方法
CN101293281B (zh) 一种由高铝铁矿石直接制备金属铁粉的方法
CN101862703B (zh) 一种鲕状贫赤铁矿生产铁精矿的选冶联合方法
CN108531717B (zh) 一种基于分级联合磁化焙烧处理难选红铁矿的方法
CN108480037A (zh) 一种从伴生多金属矿物的铁尾矿中回收铁、稀土、萤石和铌的选矿方法
CN108580031B (zh) 一种对多金属伴生选铁尾矿预先焙烧的选矿方法
CN112642575A (zh) 一种含碳酸盐贫磁赤混合铁矿石磁浮联合分选方法
CN103643030A (zh) 以鲕状铁矿为原料制备合格铁精矿的选矿工艺
CN109304256A (zh) 一种炼铜尾渣的综合利用方法
CN108950179B (zh) 一种难选铁矿石低温氢还原磁化焙烧工艺
CN109133141A (zh) 一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法
CN103041913B (zh) 一种人造磁铁矿的选矿方法
WO2024082323A1 (zh) 一种混合铁矿石选矿方法
CN1827800A (zh) 提高赤铁矿褐铁矿回收率的方法
CN102417970B (zh) 铁尾矿的还原磁化精选方法
CN114602651B (zh) 一种从炭浆法提金尾渣中回收强磁性铁矿的选矿方法
CN113798054A (zh) 一种处理铁尾矿的预选-流态化焙烧-磨矿磁选工艺
CN110028254A (zh) 一种利用低品位铅锌氧化矿制备水泥熟料的方法
WO2022188248A1 (zh) 从异性石中回收稀土的方法
CN115555127A (zh) 一种应用分散剂马来酸-丙烯酸共聚物钠盐的低品位碳酸锰矿磁选工艺
CN114622086A (zh) 一种贫氧化矿制粉、焙烧、分选一体化处理的方法
CN110216009A (zh) 一种钢渣的选别方法
CN110714117A (zh) 一种难选铁矿石智能预选抛废-竖炉磁化焙烧方法
CN118950244A (zh) 一种难选褐铁矿干式制粉-悬浮焙烧强化分选的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769539

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009103

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023009103

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230511