WO2024082319A1 - 一种基于微液滴的氢气制备方法 - Google Patents

一种基于微液滴的氢气制备方法 Download PDF

Info

Publication number
WO2024082319A1
WO2024082319A1 PCT/CN2022/126964 CN2022126964W WO2024082319A1 WO 2024082319 A1 WO2024082319 A1 WO 2024082319A1 CN 2022126964 W CN2022126964 W CN 2022126964W WO 2024082319 A1 WO2024082319 A1 WO 2024082319A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
micro
aqueous solution
droplet
droplets
Prior art date
Application number
PCT/CN2022/126964
Other languages
English (en)
French (fr)
Inventor
骆凯
南子昂
范凤茹
田中群
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2024082319A1 publication Critical patent/WO2024082319A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to the field of green energy technology, and in particular to a hydrogen production method based on micro-droplets.
  • hydrogen production technology is mainly characterized by photocatalysis, which uses photocatalytic technology to prepare hydrogen.
  • photocatalytic technology In this process, oxalic acid is required as a sacrificial agent, and the preparation cost is high.
  • Some technologies also involve the use of photocatalytic fuel cell technology based on the reverse principle of hydrogen fuel cells to decompose water and directly separate hydrogen. Ion membranes are used to transfer protons or hydroxide ions. Under light conditions, hydrogen is produced at the cathode and oxygen is generated by oxidation reaction at the anode, achieving the purpose of producing hydrogen from water by photolysis.
  • there are disadvantages such as complex separation equipment and cost constraints such as being controlled by catalysts.
  • the present disclosure provides a hydrogen preparation method based on micro-droplets, which solves the problems of high cost and complex equipment in the hydrogen preparation process.
  • the present disclosure provides a method for preparing hydrogen based on micro-droplets, comprising: S1, mixing water and a regulator to obtain an aqueous solution, wherein the regulator is selected from one or more of nanomaterials, conductive polymers and inorganic salts with redox properties; S2, inputting the aqueous solution into a micro-droplet generating device to generate micro-droplets, wherein the size of the micro-droplets is less than or equal to 10 ⁇ m, so as to spontaneously generate hydrogen free radicals at the gas-liquid interface of the micro-droplets; S3, the hydrogen free radicals are recombined to generate hydrogen; S4, collecting the hydrogen or the hydrogen free radicals.
  • the micro-droplet generating device is selected from one of an electrospray device, a pneumatic spray device and an ultrasonic atomization device.
  • the inorganic salt is selected from one or more of chloroauric acid, palladium chloride and chloroauric acid-palladium chloride;
  • the nanomaterial is selected from one or more of gold nanoparticles, palladium-coated gold nanoparticles and gold-palladium nanocomposites;
  • the conductive polymer is selected from one or more of C 60 -(OH)n, alkalized polyaniline-gold nanoparticle complexes and acidified polyaniline-gold nanoparticle complexes.
  • the concentration of the inorganic salt in the aqueous solution is 50-1000 ⁇ g/mL; when the regulator is a nanomaterial or a conductive polymer, the concentration of the nanomaterial or conductive polymer in the aqueous solution is 10 -5 ⁇ 10 -1 mg/mL.
  • the concentration of the inorganic salt in the aqueous solution is ⁇ g/mL.
  • the micro-droplet generating device is an electrospray device
  • the electrospray device has an electrospray probe
  • the flow rate of the aqueous solution injected into the electrospray probe is 5-150 ⁇ L/min
  • the inner diameter of the electrospray probe is 5-150 ⁇ m
  • the magnitude of the applied bias voltage is 3-7 kV.
  • the step of collecting the hydrogen includes: setting a receiving device at the spray end of the micro-droplet generating device, the receiving device having a closed collecting chamber and an outlet pipeline connected to the collecting chamber; the spray end of the micro-droplet generating device extends into the collecting chamber so that the generated hydrogen enters the outlet pipeline through the collecting chamber.
  • a refrigerant is provided outside the collection chamber to cool the moisture formed during the solidification spraying process; the refrigerant is selected from one or more of liquid nitrogen, ice water, ice-containing brine and ethylene glycol.
  • a conductive polymer plate is disposed in the collection chamber, and the conductive polymer plate is grounded or connected to a high voltage with a polarity opposite to that of the micro-droplet generating device.
  • the collecting chamber is connected to an air inlet pipeline, and a carrier gas is input into the collecting chamber through the air inlet pipeline to drive the generated hydrogen to be output from the air outlet pipeline.
  • the step of collecting the hydrogen radicals includes: providing a radical capture device at the spray end of the micro-droplet generating device, the radical capture device outputting large droplets whose components are DMPO aqueous solution; applying a voltage of opposite polarity to that of the micro-droplet generating device at the output end of the radical capture device to make the micro-droplets move toward the large droplets, thereby capturing the hydrogen radicals generated by the micro-droplets.
  • the beneficial effect of the hydrogen preparation method based on micro-droplets of the embodiment of the present disclosure is: by implementing the hydrogen preparation method of the present disclosure, micro-droplets with a diameter less than 10 ⁇ m are obtained by a micro-droplet generation device, and the micro-droplets have a "confinement effect" at the boundary scale, and have special physical and chemical properties, such as high specific surface area, rich charge density, and strong electric field of dielectric double layer.
  • Micro-droplets act as micro-reactors, based on the special gas-liquid interface effect and the strong electric field of dielectric double layer (10 7 V/cm), ionize water molecules (H + ), form hydrogen radicals ( ⁇ H, H + +e - ⁇ H), and further generate a complex reaction between ⁇ H (2 ⁇ H ⁇ H 2 ).
  • H + water molecules
  • ⁇ H hydrogen radicals
  • ⁇ He hydrogen ions
  • e- electrons
  • the electrons ( e- ) generated at the interface can be transferred, allowing the reaction to proceed in the forward direction.
  • Hydrogen radicals ( ⁇ H, H + + e- ⁇ H) accumulate at the gas-liquid interface and recombine to generate hydrogen (H 2 ), achieving efficient and spontaneous generation of hydrogen, and providing a solution for the green, efficient, and economical preparation of green hydrogen.
  • This hydrogen preparation method uses water as raw material and greatly improves the hydrogen generation efficiency through the regulator, and the hydrogen production efficiency can reach 113400 ⁇ mol/g.h. No catalyst needs to be added, and some regulators can be recycled and reused. It is green and environmentally friendly, and is not restricted by regions or integrated devices. The production cost is controllable and can meet the production needs of different processes.
  • FIG1 is a flow chart of a method for producing hydrogen based on micro-droplets according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the structure of a micro-droplet generating device and a free radical capturing device according to an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of the structures of a collection device and a mass spectrometer according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a collecting device according to another embodiment of the present disclosure.
  • FIG. 5 is an EPR graph of DMPO capturing hydrogen radicals in microdroplets formed by different aqueous solutions in Example 1 of the present disclosure.
  • FIG. 6 is a hydrogen mass spectrometer of hydrogen production by micro-droplets formed from different aqueous solutions in Example 2 of the present disclosure.
  • micro-droplet-based hydrogen production method of the embodiment of the present disclosure is described in detail below.
  • the disclosed embodiment provides a method for preparing hydrogen based on micro-droplets, comprising: step S1, mixing water and a regulator to obtain an aqueous solution, wherein the regulator is selected from one or more of a metal conductor, a nanomaterial, a conductive polymer and an inorganic salt with redox properties; step S2, inputting the aqueous solution into a micro-droplet generating device to generate micro-droplets, wherein the size of the micro-droplets is less than or equal to 10 ⁇ m, so as to spontaneously generate hydrogen free radicals at the gas-liquid interface of the micro-droplets; step S3, the hydrogen free radicals are recombined to generate hydrogen; step S4, collecting the hydrogen or the hydrogen free radicals.
  • the hydrogen preparation method introduces an electronic conductor into a microreactor through a specific regulator, selectively adjusts the dielectric double layer thickness or the conductive properties, improves the electron stripping efficiency, promotes the mutual combination of hydrogen radicals, and then converts them into hydrogen.
  • the inorganic salt is selected from one or more of chloroauric acid (HAuCl 4 ), palladium chloride (PdCl 2 ) and chloroauric acid-palladium chloride (HAuCl 4 -PdCl 2 ).
  • HuCl 4 chloroauric acid
  • PdCl 2 palladium chloride
  • Hauric acid-palladium chloride HuCl 4 -PdCl 2
  • the nanomaterial is selected from one or more of (Au NPs), palladium-coated gold nanoparticles (Au@Pd NPs) and gold-palladium alloy nanoparticles (AuPd alloy NPs);
  • the conductive polymer is selected from one or more of C 60 -(OH)n, alkalized polyaniline-gold nanoparticle complex (PANI@AuNPs-NaOH) and acidified polyaniline-gold nanoparticle complex (PANI@AuNPs-HCl).
  • C 60 -(OH)n is a polyhydroxy compound of C 60 , also known as fullerol, which is easily soluble in water because it contains multiple hydroxyl groups in the molecule.
  • C 60 -(OH)n can be synthesized by amine catalysis.
  • ANI@AuNPs-NaOH and PANI@AuNPs-HCl can be obtained according to the preparation method in the prior art.
  • 3.5 mL of 55 nm gold nanoparticles are dispersed in 1.5 mL of 2 mM aniline and 0.25 mL of 40 mM SDS solution, shaken on a vortex mixer for 1 min, and 1.5 mL of 2 mM (NH 4 ) 2 S 2 O 8 -HCl aqueous solution is added, mixed on a vortex oscillator for 10 s, and reacted at room temperature for 12 h.
  • the aniline in the system is polymerized and wrapped on the surface of the gold nanoparticles to form a polymer-wrapped gold nanoparticle aqueous solution with a thickness of about 16 nm.
  • PANIAuNPs-HCl After centrifugation and washing, PANIAuNPs-HCl is obtained. PANI@AuNPs-HCl particles were dispersed in an aqueous solution, 2 M NaOH solution was added, the pH of the solution was adjusted to 11.4, and magnetic stirring was performed for 2 h to obtain PANI@AuNPs-NaOH.
  • the concentration of the inorganic salt in the aqueous solution is 50-1000 ⁇ g/mL; when the regulator is a nanomaterial or a conductive polymer, the concentration of the nanomaterial or the conductive polymer in the aqueous solution is 10 -5 ⁇ 10 -1 mg/mL. With different concentrations of regulators, the reaction system generates different concentrations of hydrogen peroxide.
  • the regulator is HAuCl 4 , PdCl 2 or HAuCl 4 -PdCl 2
  • the concentration of the above regulator in the aqueous solution is 500 ⁇ g/mL. At this concentration, the yield of hydrogen reaches more than 13200 ⁇ mol/gh.
  • the concentration of AuPd alloy NPs in the aqueous solution is 10 -2 mg/mL. At this concentration, the yield of hydrogen reaches more than 113400 ⁇ mol/gh.
  • nano-alloys have excellent electron stripping properties, they can promote the recombination of hydrogen radicals ( ⁇ H) to generate more hydrogen.
  • the inorganic salt acts as a sacrificial agent, there is a redox reaction between the hydrogen radical and the inorganic salt system (3 ⁇ H+HAuCl 4 ⁇ Au+4HCl, 2 ⁇ H+PdCl 2 ⁇ Pd+2HCl), which consumes the hydrogen radical ( ⁇ H).
  • the micro-droplet generating device is selected from one of an electrospray device, a pneumatic spray device and an ultrasonic atomization device.
  • the specific structures of the electrospray device, the pneumatic spray device and the ultrasonic atomization device can refer to the prior art, for example, the specific structure of the electrospray device can refer to the electrospray device in mass spectrometry analysis technology.
  • the electrospray device may include a syringe, a connector, an electrospray probe, and a high-voltage power supply.
  • the connector may be, for example, a two-way connector, the syringe and the electrospray probe are connected via the connector, and the aqueous solution enters the electrospray probe via the syringe.
  • the high-voltage electric field forms an electric field force at the spray end of the electrospray probe, and the aqueous solution is atomized to form microdroplets based on the principle of electrohydrodynamics.
  • the pneumatic spray device may include a syringe, a three-way joint, a capillary tube and a gas cylinder, wherein the syringe and the capillary tube are respectively connected to the two ends of the three-way joint, and the other end of the three-way joint is connected to the gas cylinder, and sheath gas of different pressures is input.
  • the output end of the capillary tube forms a spray probe, and the aqueous solution enters the capillary tube through the syringe, and forms micro droplets at the probe end under the action of pneumatic atomization.
  • the ultrasonic atomization device includes a syringe, an ultrasonic generator and a spray head.
  • the ultrasonic generator generates ultrasonic shock wave energy. Under the action of the ultrasonic shock wave energy, the aqueous solution is atomized into micro droplets.
  • the micro-droplet generating device is an electrospray device
  • the electrospray device has an electrospray probe
  • the flow rate of the aqueous solution injected into the electrospray probe is 5-150 ⁇ L/min
  • the inner diameter of the electrospray probe is 5-150 ⁇ m
  • the magnitude of the applied bias voltage is 3-7 kV.
  • the flow rate of the electrospray probe is 10 ⁇ L/min
  • the inner diameter of the electrospray probe is 50 ⁇ m.
  • step S4 the step of collecting the hydrogen radicals includes: a radical capture device is provided at the spray end of the micro-droplet generating device, the output component of the radical capture device is a large droplet containing a radical capture agent; a voltage with an opposite polarity to that of the micro-droplet generating device is applied to the output end of the radical capture device to make the micro-droplet move toward the large droplet, thereby capturing the hydrogen radicals generated by the micro-droplet.
  • FIG2 shows a schematic diagram of a device for capturing hydrogen radicals in one embodiment of the present disclosure.
  • the micro-droplet generating device is an electrospray device, and a negative high voltage is applied to the electrospray probe 210.
  • the free radical capture device has a quartz capillary 220 with a large inner diameter, and a free radical capture agent is input through a syringe pump (not shown), and a positive high voltage is applied to the quartz capillary 220 to form large droplets.
  • the micro-droplets formed by electrospray fly to the surface of a high-speed rotating large droplet with opposite polarity formed by the soft landing of the droplet, and the hydrogen radicals ( ⁇ H) formed in the system are captured and collected by the free radical capture agent.
  • the free radical scavenger is a type of piperidine derivative light stabilizer with steric hindrance effect, such as salicylates, benzophenones, benzotriazoles, substituted acrylonitriles, triazines, etc.
  • the free radical scavenger in the disclosed embodiment is a DMPO (5,5-dimethyl-1-pyrroline-N-oxide) aqueous solution.
  • the inner diameter of the quartz capillary 220 is 140-300 ⁇ m to form larger droplets to facilitate the collection of hydrogen free radicals.
  • step S4 the step of collecting the hydrogen includes: setting a receiving device at the spray end of the micro-droplet generating device, the receiving device having a closed collecting chamber, and an outlet pipe connected to the collecting chamber; the spray end of the micro-droplet generating device extends into the collecting chamber so that the generated hydrogen enters the outlet pipe through the collecting chamber.
  • a refrigerant is provided outside the collection chamber to cool the water formed during the solidification spraying process; the refrigerant is selected from one or more of liquid nitrogen, ice water, ice-containing brine and ethylene glycol.
  • FIG. 3 schematically shows a schematic diagram of the structure of a receiving device in an embodiment of the present disclosure.
  • the receiving device has a sealed collecting chamber 320, and the electrospray probe 310 of the micro-droplet generating device (electrospray device) extends into the collecting chamber 320.
  • the collecting chamber 320 can be obtained by, for example, constructing a round-bottom flask.
  • the collecting chamber 320 has an air outlet pipeline 321, and the air outlet pipeline 321 is used to guide the hydrogen in the chamber.
  • the collecting chamber 320 is placed in a refrigeration chamber 330, and the refrigeration chamber 330 is filled with a refrigerant (such as liquid nitrogen) to form a cold trap system for cooling the moisture formed during the solidification spraying process.
  • a refrigerant such as liquid nitrogen
  • the hydrogen generated by the electrospray probe 310 in the collection chamber 320 enters the transmission pipeline 340 through the gas outlet pipeline 321.
  • the hydrogen is input into the mass spectrometer 350 through the transmission pipeline 340 for mass spectrometry online detection and analysis.
  • a conductive polymer plate is provided in the collection chamber of the collection device, and the conductive polymer plate is grounded or connected to a high voltage with a polarity opposite to that of the micro-droplet generating device.
  • the conductive polymer plate can be, for example, a dense and porous polyaniline layer plate, and the thickness of the polyaniline layer plate can be 0.5 to 2 cm.
  • the collection chamber of the collection device is also connected to an air inlet pipe, through which a carrier gas is input into the collection chamber to drive the generated hydrogen to be output from the air outlet pipe.
  • the carrier gas may be hydrogen, nitrogen or a mixture of the two.
  • FIG. 4 schematically shows a schematic diagram of the structure of a receiving device in another embodiment of the present disclosure.
  • the receiving device has a sealed collecting chamber 420, and the electrospray probe 410 of the micro-droplet generating device (electrospray device) extends into the collecting chamber 420.
  • the collecting chamber 420 can be obtained by, for example, a sealed box structure.
  • the collecting chamber 420 has an outlet pipeline 421 and an inlet pipeline 422, the outlet pipeline 421 is arranged at the upper right of the collecting chamber 420, and the inlet pipeline 422 is arranged at the lower left of the collecting chamber 420.
  • the carrier gas is input through the inlet pipeline 422, and the gas is driven to be output from the outlet pipeline 321.
  • a polyaniline layer plate 430 is installed in the collecting chamber 420, and the polyaniline layer plate 430 is arranged below the electrospray probe 410, and is connected to a high voltage with a polarity opposite to that of the electrospray probe 410.
  • Example 1 This example provides a method for preparing hydrogen, which collects hydrogen radicals through the micro-droplet generating device and the free radical capturing device shown in FIG. 2 .
  • aqueous solution a is a HAuCl 4 aqueous solution with a concentration of 50 ⁇ g/mL
  • aqueous solution b is a PdCl 2 aqueous solution with a concentration of 50 ⁇ g/mL
  • aqueous solution c is a HAuCl 4 -PdCl 2 aqueous solution with a concentration of 50 ⁇ g/mL
  • aqueous solution d is an AuPd alloy NPs aqueous solution with a concentration of 5 ⁇ g/mL.
  • Reaction solutions a to d are respectively input into a microdroplet generation device to generate microdroplets.
  • the inner diameter of the electrospray probe of the microdroplet generation device is 50 ⁇ m
  • the flow rate of the injection pump is 10 ⁇ L/min
  • the electrospray bias voltage is -6.3 kV.
  • EPR electron paramagnetic resonance
  • Example 2 This embodiment provides a method for preparing hydrogen, and performs mass spectrometry online detection and analysis through a mass spectrometer 350 as shown in FIG3 .
  • aqueous solution a is a HAuCl 4 aqueous solution with a concentration of 500 ⁇ g/mL
  • aqueous solution b is a PdCl 2 aqueous solution with a concentration of 500 ⁇ g/mL
  • aqueous solution c is a HAuCl 4 -PdCl 2 aqueous solution with a concentration of 500 g/mL
  • aqueous solution d is an AuPd alloy NPs aqueous solution with a concentration of 50 ⁇ g/mL.
  • Reaction solutions a to d are respectively input into a microdroplet generation device to generate microdroplets.
  • the inner diameter of the electrospray probe of the microdroplet generation device is 50 ⁇ m
  • the flow rate of the injection pump is 10 ⁇ L/min
  • the electrospray bias voltage is -3 kV.
  • Figure 6 shows the hydrogen mass spectra of hydrogen radicals ( ⁇ H) generated by aqueous solutions a ⁇ d and pure water (H 2 O).
  • ⁇ H hydrogen radicals
  • Example 3 This embodiment provides a method for preparing hydrogen, and collects hydrogen through a collecting device as shown in FIG. 4 .
  • aqueous solution a is a HAuCl 4 aqueous solution with a concentration of 500 ⁇ g/mL
  • aqueous solution b is a PdCl 2 aqueous solution with a concentration of 500 ⁇ g/mL
  • aqueous solution c is a HAuCl 4 -PdCl 2 aqueous solution with a concentration of 500 g/mL
  • aqueous solution d is an AuPd alloy NPs aqueous solution with a concentration of 10 -2 mg/mL.
  • the aqueous solutions a to d are respectively input into the microdroplet generation device to generate microdroplets.
  • the inner diameter of the electrospray probe 410 of the microdroplet generation device is 50 ⁇ m
  • the flow rate of the injection pump is 10 ⁇ L/min
  • the electrospray bias voltage is -3 kV.
  • the distance between the end of the electrospray probe 410 and the polyaniline layer 430 below is 3 cm.
  • Nitrogen gas at a certain flow rate is input into the lower left corner of the collecting chamber 420 as a carrier gas, and the hydrogen in the collecting chamber 420 is carried out through the gas outlet pipe 421 at the upper right corner.
  • Example 2 The hydrogen production capacity of the microdroplets formed by aqueous solutions a to d is shown in Table 1 below.
  • the hydrogen preparation method disclosed in the present invention greatly increases the amount of hydrogen generated by adding different regulators.
  • the hydrogen content in the microdroplets formed by pure water is extremely low and difficult to detect.
  • the inorganic salt chloroauric acid-palladium chloride (500 ⁇ g/mL) system can produce a maximum of 19200 ⁇ mol/gh, while the 10-2 mg/mL AuPd alloy system can produce a maximum of 113400 ⁇ mol/gh, which is 5.9 times that of the chloroauric acid-palladium chloride system. It is highly practical and convenient to provide support for the generation of hydrogen from the perspective of green environmental protection and economic savings, and provide a powerful solution for achieving the "dual carbon" goal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种基于微液滴的氢气制备方法,涉及绿色能源技术领域。该氢气制备方法包括:将水和调节剂混合,得到水溶液,其中,所述调节剂选自纳米材料、导电聚合物和具有氧化还原性的无机盐中的一种或多种;将水溶液输入微液滴生成装置,生成微液滴,所述微液滴的尺寸小于或等于10μm,借助在微液滴气-液界面双电层强电场自发生成氢自由基;所述氢自由基复合生成氢气;收集所述氢气或所述氢自由基。通过微液滴气液界面强电场,使水溶液界面水分子中的H +得到电子形成氢自由基,两个氢自由基复合形成氢气。制备过程简单,绿色环保,加入的调节剂可有效提高氢气的产率,制备过程不受催化剂限制,能够满足不同的生产工艺要求。

Description

一种基于微液滴的氢气制备方法 技术领域
本公开涉及绿色能源技术领域,且特别涉及一种基于微液滴的氢气制备方法。
背景技术
能源问题是当今人类社会面临的重大问题之一。能源短缺伴随着能源危机严重制约着人类社会的发展。寻求可替代的绿色能源成为能源领域的研究热点。作为零碳能源,氢能源一直以来都在全球范围内受到关注。氢能凭借其高效、清洁的特点被认为是未来最具潜力的能源之一。根据预测,要实现2030年碳达峰目标,我国氢气的年需求量将达到3715万吨;在2060年实现碳中和,氢气的年需求量将达到1.3亿吨。利用可再生能源裂解水得到的氢气,燃烧过程只产生水,从源头上实现了二氧化碳零排放,是真正意义上的绿色新能源(绿氢)。探索高效裂解水制氢的方法和相关工艺已经成为能源领域的研究热点。
技术问题
目前,制氢技术主要以以光触媒为特征,利用光催化技术制备氢气。在该过程中,需要以乙二酸作为牺牲剂,制备成本高。也有部分技术涉及利用氢燃料电池逆反原理的光催化燃料电池技术分解水直接分离制氢的方法,将采用离子膜传递质子或氢氧根离子,在光照条件下,阴极产生氢气,阳极发生氧化反应生成氧气,实现光解水制氢气的目的,但存在分离设备复杂,成本受控于催化剂等制约的缺点。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
技术解决方案
本公开提供一种基于微液滴的氢气制备方法,解决了氢气制备过程中成本高、设备复杂的问题。
本公开提供一种基于微液滴的氢气制备方法,包括:S1,将水和调节剂混合,得到水溶液,其中,所述调节剂选自纳米材料、导电聚合物和具有氧化还原性的无机盐中的一种或多种;S2,将水溶液输入微液滴生成装置,生成微液滴,所述微液滴的尺寸小于或等于10 μm,以在所述微液滴的气-液界面自发生成氢自由基;S3,所述氢自由基复合生成氢气;S4,收集所述氢气或所述氢自由基。
在本公开的一个示例性实施例中,所述微液滴生成装置选自电喷雾装置、气动喷雾装置和超声雾化装置中的一种。
在本公开的一个示例性实施例中,所述无机盐选自氯金酸、氯化钯和氯金酸-氯化钯中的一种或多种;所述纳米材料选自金纳米颗粒、钯包金纳米颗粒和金钯纳米复合物中的一种或多种;所述导电聚合物选自C 60-(OH)n、碱化聚苯胺-金纳米粒子复合物和酸化聚苯胺-金纳米粒子复合物中的一种或多种。
在本公开的一个示例性实施例中,所述调节剂为无机盐时,所述无机盐在所述水溶液中的浓度为50~1000μg/mL;所述调节剂为纳米材料或导电聚合物时,所述纳米材料或导电聚合物在所述水溶液中的浓度为10 -5~10 -1mg/mL。
在本公开的一个示例性实施例中,所述调节剂为无机盐时,所述无机盐在所述水溶液中的浓度为μg/mL。
在本公开的一个示例性实施例中,所述微液滴生成装置为电喷雾装置,所述电喷雾装置具有电喷雾探针,所述水溶液注入所述电喷雾探针的流速为5-150 μL/min;所述电喷雾探针的内径为5~150 μm,且施加偏电压的大小为3~7 kV。
在本公开的一个示例性实施例中,收集所述氢气的步骤包括:在所述微液滴生成装置的喷雾端设置接收装置,所述接收装置具有一密闭的收集腔,以及与所述收集腔连通的出气管路;所述微液滴生成装置的喷雾端伸入所述收集腔,以使生成的氢气通过所述收集腔进入所述出气管路。
在本公开的一个示例性实施例中,所述收集腔的外部设有制冷剂,以冷却固化喷雾过程中形成的水分;所述制冷剂选自液氮、冰水、含冰盐水和乙二醇中的一种或多种。
在本公开的一个示例性实施例中,所述收集腔内设置有导电聚合物板,所述导电聚合物板接地或接有与所述微液滴生成装置极性相反的高电压。
在本公开的一个示例性实施例中,所述收集腔连接有进气管道,通过所述进气管道向所述收集腔输入载气,以带动产生的氢气从所述出气管道输出。
在本公开的一个示例性实施例中,收集所述氢自由基的步骤包括:在所述微液滴生成装置的喷雾端设置有自由基捕获装置,所述自由基捕获装置输出成分为DMPO水溶液的大液滴;在所述自由基捕获装置的输出端施加与所述微液滴生成装置相反极性的电压,以使所述微液滴朝向所述大液滴运动,捕获所述微液滴产生的氢自由基。
有益效果
本公开实施例的基于微液滴的氢气制备方法的有益效果是:实施本公开的氢气制备方法,通过微液滴生成装置得到直径小于10 μm的微液滴,微液滴在界观尺度下存在“限域效应”,具有特殊物理化学性质,如高比表面积,丰富的电荷密度以及介电双层的强电场等。微液滴作为微反应器,基于特殊的气-液界面效应,以及介电双层强电场作用(10 7 V/cm),使水分子发生离子化(H +),形成氢自由基(·H, H ++e -→·H),进一步发生·H之间的复合作用(2·H→H 2)。然而由于氢自由基(·H)的半衰期比较小(<10 -9 s),会瞬态逆向形成氢离子(·H-e -→H +)。该过程受控于电子(e -)是否转移,借助金属导电材料、纳米材料、无机盐等调节剂的电子传递性能,可将界面生成的电子(e -)进行转移,使反应正向进行,氢自由基(·H,H ++e -→·H)在气-液界面累积,复合生成氢气(H 2),实现氢气的高效、自发生成,为绿色、高效、经济节约制备绿氢提供解决方案。
该氢气制备方法,以水为原料,通过调节剂极大提高了氢气的生成效率,产氢效率能够达到113400 μmol/g.h。无需添加催化剂,部分调节剂可重复回收利用,绿色环保,且能够不受地域或集成装置的限制,生产成本可控,能够满足不同工艺生产需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例的基于微液滴的氢气制备方法的流程图。
图2为本公开一个中实施例的微液滴生成装置和自由基捕获装置的结构示意图。
图3为本公开另一个实施例的收集装置和质谱检测仪的结构示意图。
图4为本公开又一个实施例的收集装置的结构示意图。
图5为本公开实施例1中的不同水溶液形成的微液滴进行DMPO捕获氢自由基的EPR图。
图6为本公开实施例2中不同水溶液形成的微液滴产氢的氢气质谱图。
本发明的实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本公开实施例的基于微液滴的氢气制备方法进行具体说明。
本公开实施例提供一种基于微液滴的氢气制备方法,包括:步骤S1,将水和调节剂混合,得到水溶液,其中,所述调节剂选自金属导体、纳米材料、导电聚合物和具有氧化还原性的无机盐中的一种或多种;步骤S2,将水溶液输入微液滴生成装置,生成微液滴,所述微液滴的尺寸小于或等于10 μm,以在所述微液滴的气-液界面自发生成氢自由基;步骤S3,所述氢自由基复合生成氢气;步骤S4,收集所述氢气或所述氢自由基。
该氢气制备方法通过特定的调节剂,向微反应器中引入电子导体,选择性地调节介电双层厚度或者导电特性,提高电子剥离效率,促使氢自由基间相互结合,进而转化生成为氢气。
在本公开的一个实施例中,所述无机盐选自氯金酸(HAuCl 4)、氯化钯(PdCl 2)和氯金酸-氯化钯(HAuCl 4-PdCl 2)中的一种或多种。通过上述无机盐的氧化还原作用,改善微液滴的气-液界面性能,提高氢气的生成效率。
在本公开的一个实施例中,所述纳米材料选自(Au NPs)、钯包金纳米颗粒(Au@Pd NPs)和金钯合金纳米颗粒(AuPd alloy NPs)中的一种或多种;所述导电聚合物选自C 60-(OH)n、碱化聚苯胺-金纳米粒子复合物(PANI@AuNPs-NaOH)和酸化聚苯胺-金纳米粒子复合物(PANI@AuNPs-HCl)中的一种或多种。通过加入上述纳米粒子,可以增强界面效应,可以调节介电双层厚度,改变电子剥离效率,促进氢气的生成。
具体地,C 60-(OH)n为C 60的多羟基化合物,又称富勒醇,因分子中含有多个羟基而易溶于水,例如可以通过胺催化法合成C 60-(OH)n。ANI@AuNPs-NaOH和PANI@AuNPs-HCl可以根据现有技术中制备方法得到,例如,在一个实施例中,将3.5 mL 55 nm金纳米颗粒分散在1.5 mL 2 mM苯胺和0.25 mL 40 mM的SDS溶液中,在旋涡混匀器上震荡1 min,加入含有1.5 mL 2 mM的(NH 4) 2S 2O 8-HCl水溶液,旋涡振荡器混匀10 s,常温反应12 h后,体系中的苯胺聚合包裹在金纳米颗粒表面,形成厚度约为16 nm的聚合物包裹的金纳米颗粒水溶液,经过离心分离,冲洗得到PANIAuNPs-HCl。将PANI@AuNPs-HCl颗粒在分散至水溶液中,加入2 M的NaOH溶液,调溶液的pH至11.4,磁力搅拌2 h,即可得PANI@AuNPs-NaOH。
在本公开的一个实施例中,所述调节剂为无机盐时,所述无机盐在所述水溶液中的浓度为50~1000 μg/mL;所述调节剂为纳米材料或导电聚合物时,所述纳米材料或导电聚合物在所述水溶液中的浓度为10 -5~10 -1 mg/mL。不同浓度的调节剂,反应体系生成不同浓度的过氧化氢。
进一步地,在本公开的一个实施例中,调节剂为HAuCl 4、PdCl 2或HAuCl 4-PdCl 2,上述调节剂在水溶液中的浓度为500 μg/mL,在该浓度度下,氢气的产率达到13200 μmol/g.h以上。进一步地,调节剂为AuPd alloy NPs时,AuPd alloy NPs在水溶液中的浓度为10 -2 mg/mL,在该浓度下,氢气的产率达到113400 μmol/g.h以上。无机盐和纳米合金在产氢效率上存在一定区别,纳米合金表现出更佳的产氢能力。一方面由于纳米合金具有优良的剥离电子性能,可促进氢自由基(·H)复合,生成更多的氢气。另一方面由于无机盐作为牺牲剂,存在氢自由基与无机盐体系间的氧化还原反应(3·H+HAuCl 4→Au+4HCl,2·H+PdCl 2→Pd+2HCl),对氢自由基(·H)存在消耗作用。
在本公开的一个实施例中,所述微液滴生成装置选自电喷雾装置、气动喷雾装置和超声雾化装置中的一种。电喷雾装置、气动喷雾装置和超声雾化装置的具体构造可以参见现有技术,例如电喷雾装置的具体构造可以参照质谱分析技术中的电喷雾装置。
在一个具体实施例中,所述电喷雾装置可以包括注射器、连接头、电喷雾探针以及高压电源。连接头例如可以是两通接头,注射器和电喷雾探针通过连接头连接,水溶液通过注射器进入电喷雾探针。高压电场在电喷雾探针的喷雾端形成电场力,水溶液依赖电流体动力学原理雾化形成微液滴。
在一个具体实施例中,所述气动喷雾装置可以包括注射器、三通接头、毛细管和气瓶,注射器和毛细管分别与三通接头的两端连接,三通接头的另一端与气瓶连接,输入不同压力的鞘气。毛细管的输出端形成喷雾探针,水溶液经过注射器进入到毛细管中,在气动雾化作用下,在探针端形成微液滴。
在一个具体实施例中,所述超声雾化装置包括注射器、超声发生装置和喷雾头,超声发生装置产生超声震荡波能,在超声震荡波能作用下,水溶液雾化成微液滴。
在本公开的一个实施例中,所述微液滴生成装置为电喷雾装置,所述电喷雾装置具有电喷雾探针,所述水溶液注入所述电喷雾探针的流速为5-150 μL/min;所述电喷雾探针的内径为5~150 μm,且施加偏电压的大小为3~7 kV。进一步地,电喷雾探针的流速为10 μL/min;所述电喷雾探针的内径为50 μm。在上述制备参数下,能够提高氢气的生成速率。
在本公开的一个实施例中,步骤S4中,收集所述氢自由基的步骤包括:在所述微液滴生成装置的喷雾端设置有自由基捕获装置,所述自由基捕获装置输出成分为含有自由基捕获剂的大液滴;在所述自由基捕获装置的输出端施加与所述微液滴生成装置相反极性的电压,以使所述微液滴朝向所述大液滴运动,捕获所述微液滴产生的氢自由基。
具体地,图2示出本公开一个实施例中捕获氢自由基的装置示意图。请参阅图2,微液滴生成装置为电喷雾装置,对电喷雾探针210施加负极高压。自由基捕获装置具有大内经的石英毛细管220,通过注射泵(图未示)输入自由基捕获剂,并对石英毛细管220施加正极高压,以形成大液滴。在在强电场作用下,电喷雾形成微液滴飞向液滴软着陆形成的高速旋转的带相反极性的大液滴表面,体系中形成的氢自由基(·H)被自由基捕获剂捕获,收集。
具体地,自由基捕获剂是一类具有空间位阻效应的哌啶衍生物类光稳定剂,例如为水杨酸酯类、二苯甲酮类、苯并三唑类、取代丙烯腈类、三嗪类等。本公开实施例中的自由剂捕获剂选用DMPO(5,5-二甲基-1-吡咯啉-N-氧化物)水溶液。进一步地,石英毛细管220的内径为140~300 μm,以形成较大的液滴,便于收集氢自由基。
在本公开的一个实施例中,在步骤S4中,收集所述氢气的步骤包括:在所述微液滴生成装置的喷雾端设置接收装置,所述接收装置具有一密闭的收集腔,以及与所述收集腔连通的出气管路;所述微液滴生成装置的喷雾端伸入所述收集腔,以使生成的氢气通过所述收集腔进入所述出气管路。
进一步地,在本公开的一个实施例中,所述收集腔的外部设有制冷剂,以冷却固化喷雾过程中形成的水分;所述制冷剂选自液氮、冰水、含冰盐水和乙二醇中的一种或多种。通过设置制冷剂,能够有效促进氢气的生成效率。
具体地,图3示意性示出本公开一个实施例中接收装置的结构示意图,请参阅图3,接收装置具有密闭的收集腔320,微液滴生成装置(电喷雾装置)的电喷雾探针310伸入收集腔320中。收集腔320例如可以通过圆底烧瓶构造得到。收集腔320具有一出气管路321,出气管路321用于导出腔室内的氢气。收集腔320置于制冷腔330中,制冷腔330中充填有制冷剂(例如液氮),形成冷阱系统,用以冷却固化喷雾过程中形成的水分。
进一步地,在本公开的一个实施例中,电喷雾探针310在收集腔320内生成的氢气通过出气管路321进入传输传输管路340中。通过传输管路340将氢气输入质谱检测仪350中,进行质谱在线检测分析。
在本公开的一个实施例中,收集装置的收集腔内设有导电聚合物板,所述导电聚合物板接地或接有与所述微液滴生成装置极性相反的高电压。具体地,导电聚合物板例如可以是致密多孔的聚苯胺层板,聚苯胺层板的厚度可以为0.5~2 cm。通过设置导电聚合物板,一方面用以移除过多的电荷,促进氢气的生成,另一方面用以接收微液滴形成液滴软着陆,收集微液滴中的调节剂,实现调节剂的回收利用。
在本公开的一个实施例中,收集装置的收集腔还连接有进气管道,通过所述进气管道向所述收集腔输入载气,以带动产生的氢气从所述出气管道输出。具体地,载气例如可以是氢气、氮气或者二者的混合气体。
具体地,图4示意性示出本公开另一个实施例中接收装置的结构示意图,请参阅图4,接收装置具有密闭的收集腔420,微液滴生成装置(电喷雾装置)的电喷雾探针410伸入收集腔420中。收集腔420例如可以通过密封箱体构造得到。收集腔420具有一出气管路421和进气管路422,出气管路421设置在收集腔420的右上方,进气管路422设置在收集腔420的左下方。通过进气管路422输入载气,带动气体从出气管路321输出。收集腔420内安装有聚苯胺层板430,聚苯胺层板430设置在电喷雾探针410的下方,且接有与电喷雾探针410极性相反的高电压。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1:本实施例提供的一种氢气制备方法,通过图2所示的微液滴生成装置和自由基捕获装置进行氢自由基的收集。
具体如下:(1)配置水溶液,其中,水溶液a为浓度为50 μg/mL的HAuCl 4水溶液;水溶液b为浓度为50 μg/mL的PdCl 2水溶液,水溶液c为浓度为50 μg/mL的HAuCl 4-PdCl 2水溶液,水溶液d为浓度为5 μg/mL的AuPd alloy NPs水溶液。
(2)分别将反应液a~d输入微液滴生成装置,生成微液滴。其中,微液滴生成装置的电喷雾探针的内径为50 μm,注射泵流速为10 μL/min,电喷雾偏电压为-6.3 kV。
(3)将浓度为200μg/mL的DMPO溶液注入自由基捕获装置的石英毛细管220中,生成大液滴。同时,石英毛细管220的内径为150μm,注射泵流速为10 μL/min,施加偏电压为+3 kV。
(4)带负电荷的微液滴飞向高速旋转的带正电荷的大液滴,体系中形成的氢自由基(·H)被DMPO捕获,收集。
如图5所示为水溶液a~d以及纯水(H 2O)生成的氢自由基(·H)被DMPO捕获后的电子顺磁共振(EPR)谱图。从图5可以看出,在3320-3420 范围内,存在羟基自由基(·H)被DMPO捕获形成的DMPO-H加合物的5个特征峰,其特征为g iso=2.0057, a iso( 14N)=1.64 mT(×1) and a iso( 1H)=2.25 mT(×2)。在EPR谱中,同时存在活性氧自由基(·OH和·OOH)被DMPO捕获形成DMPO-H加合物的4个特征峰,其特征为g iso= 2.0057, a iso( 14N)=1.48 mT(×1) and a iso( 1H) =1.48 mT(×1)。对于纯水形成的微液滴而言,相应的特征峰比较弱。
实施例2:本实施提供的一种氢气制备方法,并通过如图3所示的质谱检测仪350进行质谱在线检测分析。
具体如下:(1)配置水溶液,其中,水溶液a为浓度为500 μg/mL的HAuCl 4水溶液;水溶液b为浓度为500 μg/mL的PdCl 2水溶液,水溶液c为浓度为500 g/mL的HAuCl 4-PdCl 2水溶液,水溶液d为浓度为50 μg/mL的AuPd alloy NPs水溶液。
(2)分别将反应液a~d输入微液滴生成装置,生成微液滴。其中,微液滴生成装置的电喷雾探针的内径为50 μm,注射泵流速为10 μL/min,电喷雾偏电压为-3 kV。
(3)在微液滴气-液界面生成的氢气通过传输管道340进入质谱检测仪350进行在线检测分析。
如图6所示为水溶液a~d以及纯水(H 2O)生成的氢自由基(·H)的氢气质谱图。从图6可以看出,以空气作为对照,对于纯水形成的微液滴未检出氢气存在。水溶液a~d形成的微液滴在m/z为2的位置存在氢气特征峰。与氯金酸、氯化钯以及氯金酸-氯化钯水溶液相比,金钯合金水溶液生成的氢气丰度明显增强。
实施例3:本实施提供的一种氢气制备方法,并通过如图4所示的收集装置对氢气进行收集。
具体如下:(1)配置水溶液,其中,水溶液a为浓度为500 μg/mL的HAuCl 4水溶液;水溶液b为浓度为500 μg/mL的PdCl 2水溶液,水溶液c为浓度为500 g/mL的HAuCl 4-PdCl 2水溶液,水溶液d为浓度为10 -2 mg/mL的AuPd alloy NPs水溶液。
(2)分别将水溶液a~d输入微液滴生成装置,生成微液滴。其中,微液滴生成装置的电喷雾探针410的内径为50 μm,注射泵流速为10 μL/min,电喷雾偏电压为-3 kV。电喷雾探针410的端部距离下方的聚苯胺层板430的距离为3cm。
(3)在收集腔420的左下方输入一定流速的氮气作为载气,将收集腔420内的氢气通过右上方的出气管路421载出。
喷雾60min后,对收集到的氢气进行检测,其中,质谱检测的结果与实施例2中的氢气峰强度的结果一致。水溶液a~d形成的微液滴的产氢能力如下表1所示。
从该表可以看出,本公开的氢气制备方法,通过加入不同的调节剂,极大提高了氢气的生成量。纯水形成的微液滴中氢气含量极低,难以检出。无机盐氯金酸-氯化钯(500μg/mL)体系最大可产生19200 μmol/g.h,而10 -2 mg/mL的AuPd alloy体系最大可以产生113400 μmol/g.h,是氯金酸-氯化钯体系的5.9倍,实用性较强,便于从绿色环保、经济节约角度为生成氢气提供支撑,为实现“双碳”目标提供强有力方案。
以上所描述的实施例是本公开一部分实施例,而不是全部的实施例。本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。

Claims (10)

  1. 一种基于微液滴的氢气制备方法,其特征在于,包括:
    S1,将水和调节剂混合,得到水溶液,其中,所述调节剂选自纳米材料、导电聚合物和具有氧化还原性的无机盐中的一种或多种;
    S2,将水溶液输入微液滴生成装置,生成微液滴,所述微液滴的尺寸小于或等于10μm,以在所述微液滴的气-液界面自发生成氢自由基;
    S3,所述氢自由基复合生成氢气;
    S4,收集所述氢气或所述氢自由基。。
  2. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,所述微液滴生成装置选自电喷雾装置、气动喷雾装置和超声雾化装置中的一种。
  3. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,所述无机盐选自氯金酸、氯化钯和氯金酸-氯化钯中的一种或多种;所述纳米材料选自金纳米颗粒、钯包金纳米颗粒和金钯纳米复合物的一种或多种;所述导电聚合物选自C 60-(OH)n、碱化聚苯胺-金纳米粒子复合物和酸化聚苯胺-金纳米粒子复合物中的一种或多种。
  4. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,所述调节剂为无机盐时,所述无机盐在所述水溶液中的浓度为50~1000μg/mL;所述调节剂为纳米材料或导电聚合物时,所述纳米材料或导电聚合物在所述水溶液中的浓度为10 -5~10 -1mg/mL。
  5. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,所述微液滴生成装置为电喷雾装置,所述电喷雾装置具有电喷雾探针, 所述水溶液注入所述电喷雾探针的流速为5-150μL/min;所述电喷雾探针的内径为5~150μm,且施加偏电压的大小为3~7kV。
  6. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,收集所述氢气的步骤包括:
    在所述微液滴生成装置的喷雾端设置接收装置,所述接收装置具有一密闭的收集腔,以及与所述收集腔连通的出气管路;
    所述微液滴生成装置的喷雾端伸入所述收集腔,以使生成的氢气通过所述收集腔进入所述出气管路。
  7. 根据权利要求6所述的基于微液滴的氢气制备方法,其特征在于,所述收集腔的外部设有制冷剂,以冷却固化喷雾过程中形成的水分;所述制冷剂选自液氮、冰水、含冰盐水和乙二醇中的一种或多种。
  8. 根据权利要求6所述的基于微液滴的氢气制备方法,其特征在于,所述收集腔内设置有导电聚合物板,所述导电聚合物板接地或接有与所述微液滴生成装置极性相反的高电压。
  9. 根据权利要求6所述的基于微液滴的氢气制备方法,其特征在于,所述收集腔连接有进气管道,通过所述进气管道向所述收集腔输入载气,以带动产生的氢气从所述出气管道输出。
  10. 根据权利要求1所述的基于微液滴的氢气制备方法,其特征在于,收集所述氢自由基的步骤包括:
    在所述微液滴生成装置的喷雾端设置有自由基捕获装置,所述自由基捕获装置输出成分为DMPO水溶液的大液滴;
    在所述自由基捕获装置的输出端施加与所述微液滴生成装置相反极性的电压,以使所述微液滴朝向所述大液滴运动,捕获所述微液滴产生的氢自由基。
PCT/CN2022/126964 2022-10-18 2022-10-24 一种基于微液滴的氢气制备方法 WO2024082319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211273388.3 2022-10-18
CN202211273388.3A CN115961293A (zh) 2022-10-18 2022-10-18 一种基于微液滴的氢气制备方法

Publications (1)

Publication Number Publication Date
WO2024082319A1 true WO2024082319A1 (zh) 2024-04-25

Family

ID=87357655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126964 WO2024082319A1 (zh) 2022-10-18 2022-10-24 一种基于微液滴的氢气制备方法

Country Status (2)

Country Link
CN (1) CN115961293A (zh)
WO (1) WO2024082319A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100642A (en) * 1989-07-11 1992-03-31 Baycura Orestes M Method of generating a fuel from water and a compound containing free radicals
US20100101934A1 (en) * 2007-03-06 2010-04-29 The Regents Of The University Of California Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets
CN104016301A (zh) * 2014-06-16 2014-09-03 广西大学 电场诱导制备氢气的方法
CN106794490A (zh) * 2014-09-05 2017-05-31 坦南特公司 用于供应具有纳米气泡的处理液体的系统和方法
CN107758612A (zh) * 2016-08-16 2018-03-06 中国科学院化学研究所 光催化分解水制备氢气的方法
CN109876792A (zh) * 2019-03-12 2019-06-14 聊城大学 一种钙钛矿复合氧化物在光催化分解水制氢中的应用方法
CN111001525A (zh) * 2019-12-26 2020-04-14 福建金源泉科技发展有限公司 多功能便携式电解喷雾装置及其工作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100642A (en) * 1989-07-11 1992-03-31 Baycura Orestes M Method of generating a fuel from water and a compound containing free radicals
US20100101934A1 (en) * 2007-03-06 2010-04-29 The Regents Of The University Of California Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets
CN104016301A (zh) * 2014-06-16 2014-09-03 广西大学 电场诱导制备氢气的方法
CN106794490A (zh) * 2014-09-05 2017-05-31 坦南特公司 用于供应具有纳米气泡的处理液体的系统和方法
CN107758612A (zh) * 2016-08-16 2018-03-06 中国科学院化学研究所 光催化分解水制备氢气的方法
CN109876792A (zh) * 2019-03-12 2019-06-14 聊城大学 一种钙钛矿复合氧化物在光催化分解水制氢中的应用方法
CN111001525A (zh) * 2019-12-26 2020-04-14 福建金源泉科技发展有限公司 多功能便携式电解喷雾装置及其工作方法

Also Published As

Publication number Publication date
CN115961293A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential
Huang et al. Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction
JP5286517B2 (ja) 溶液プラズマ反応装置及び該装置を使用したナノ材料の製造方法
Zonarsaghar et al. Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage
Attia et al. Metal clusters: New era of hydrogen production
CN106311295B (zh) 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用
Xu et al. Highly Efficient FeIII‐initiated Self‐cycled Fenton System in Piezo‐catalytic Process for Organic Pollutants Degradation
He et al. Dielectric barrier discharge plasma for nanomaterials: Fabrication, modification and analytical applications
CN109647514B (zh) 高分散的钯催化剂及其制备方法与应用
Khorasanizadeh et al. Ultrasound-accelerated synthesis of uniform DyVO4 nanoparticles as high activity visible-light-driven photocatalyst
Di et al. Gas–liquid cold plasma for synthesizing copper hydroxide nitrate nanosheets with high adsorption capacity
Wang et al. Nanostructured graphene-titanium dioxide composites synthesized by a single-step aerosol process for photoreduction of carbon dioxide
CN102909388A (zh) 利用大气压微等离子体液相辅助制备金银合金纳米粒子
Wang et al. Fabrication of MoS 2@ gC 3 N 4 core-shell nanospheres for visible light photocatalytic degradation of toluene
WO2024082319A1 (zh) 一种基于微液滴的氢气制备方法
Zhu et al. Continuous Production of High-Capacity Iron-Based Prussian Blue Sodium-Ion Cathode Materials Using a Rotor–Stator Spinning Disk Reactor
An et al. Enhancement of Ti 3 C 2 MXene on Au@ Ag/TiO 2 for the visible-light-driven photoreduction of nitroaromatics
CN113087688B (zh) 一种放电等离子体驱动烯烃环氧化反应的方法和装置
CN116924432A (zh) 一种基于水和氮气微液滴气-液界面限域催化反应的绿氨制备方法
Yuan et al. Shape-controlled synthesis of cuprous oxide nanocrystals via the electrochemical route with H2O-polyol mix-solvent and their behaviors of adsorption
CN111155137A (zh) 液体阴极辉光放电等离子体制备纳米四氧化三铁的方法
Manickam Sonochemical synthesis of oxides and sulfides
CN110576177A (zh) 一种改变纳米颗粒形状的方法
CN110314641A (zh) 一种氢氧化镧纳米粒子磷吸附材料的制备方法
Niu et al. Nitrogen-doped carbon dots as photocatalysts for organic synthesis: Effect of nitrogen content on catalytic activity