WO2024082084A1 - 一种显示续航信息的方法以及相关设备 - Google Patents

一种显示续航信息的方法以及相关设备 Download PDF

Info

Publication number
WO2024082084A1
WO2024082084A1 PCT/CN2022/125602 CN2022125602W WO2024082084A1 WO 2024082084 A1 WO2024082084 A1 WO 2024082084A1 CN 2022125602 W CN2022125602 W CN 2022125602W WO 2024082084 A1 WO2024082084 A1 WO 2024082084A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mode
distance
energy
mounted device
Prior art date
Application number
PCT/CN2022/125602
Other languages
English (en)
French (fr)
Inventor
董文杰
曹中成
周勇有
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/125602 priority Critical patent/WO2024082084A1/zh
Publication of WO2024082084A1 publication Critical patent/WO2024082084A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the embodiments of the present application relate to the field of intelligent vehicles, and in particular to a method for displaying endurance information and related equipment.
  • the driver can only roughly estimate the range that can be extended after turning on the endurance mode, and cannot clearly determine whether it can support the electric vehicle to reach the destination.
  • the present application provides a method for displaying endurance information and related equipment, which are used to provide a basis for the driver to select an endurance mode to be activated, thereby ensuring that the vehicle can reach the destination.
  • the first aspect of the present application provides a method for displaying battery life information:
  • the first vehicle-mounted device acquires target information, the target information including a target gap and a cruising range gain of at least one cruising range mode, the target gap is a first distance minus a second distance, the first distance is a distance between the vehicle and a destination, the second distance is a cruising range of the vehicle, and the cruising range gain is used to indicate the amount by which the target gap can be reduced after the vehicle applies the cruising range mode.
  • the first vehicle-mounted device displays the target information.
  • the first vehicle-mounted device displays target information so that the driver can select the endurance mode to be activated based on the target information, which can not only take into account the driver's personalized needs, but also ensure that the vehicle can reach the destination.
  • the first vehicle-mounted device further instructs the vehicle to apply a target cruising mode in at least one cruising mode in response to an operation instruction of the driver.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the vehicle's route to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the first vehicle-mounted device further updates the target gap according to the range gain of the target range mode.
  • the first vehicle-mounted device updates the target gap in real time, so that the driver can intuitively perceive the change of the target gap.
  • the first vehicle-mounted device further obtains the first distance and the second distance. If the first vehicle-mounted device determines that the first distance is greater than the second distance, the first vehicle-mounted device obtains the target information.
  • the first vehicle-mounted device only obtains target information if the first distance is greater than the second distance, thereby avoiding unnecessary overhead.
  • the target information also includes at least one impact information of an endurance mode, and the impact information is used to indicate the impact produced after the vehicle applies the endurance mode.
  • the second aspect of the present application provides a method for displaying battery life information:
  • the second vehicle-mounted device obtains target information, the target information including a target gap and a cruising range gain of at least one cruising mode, the target gap is a first distance minus a second distance, the first distance is a distance between the vehicle and a destination, the second distance is a cruising range of the vehicle, and the cruising range gain is used to indicate the amount by which the target gap can be reduced after the vehicle applies the cruising range mode.
  • the second vehicle-mounted device sends the target information to the first vehicle-mounted device, so that the first vehicle-mounted device displays the target information.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the route of the vehicle to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the second vehicle-mounted device also obtains the first distance and the second distance. If the second vehicle-mounted device determines that the first distance is greater than the second distance, the second vehicle-mounted device obtains the target information.
  • a third aspect of the present application provides a first vehicle-mounted device:
  • the processing unit is used to obtain target information, the target information includes a target gap and a cruising range gain of at least one cruising mode, the target gap is a first distance minus a second distance, the first distance is the distance between the vehicle and the destination, the second distance is the cruising range of the vehicle, and the cruising range gain is used to indicate the amount by which the target gap can be reduced after the vehicle applies the cruising mode.
  • the display unit is used to display the target information.
  • the processing unit is further configured to instruct the vehicle to apply a target cruising mode in at least one cruising mode in response to an operation instruction of the driver.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the vehicle's route to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the processing unit is further configured to update the target gap according to the endurance gain of the target endurance mode.
  • the processing unit is further configured to obtain the first distance and the second distance.
  • the processing unit is specifically configured to obtain the target information if it is determined that the first distance is greater than the second distance.
  • the target information also includes at least one impact information of an endurance mode, and the impact information is used to indicate the impact produced after the vehicle applies the endurance mode.
  • a fourth aspect of the present application provides a second vehicle-mounted device:
  • the system includes an acquisition unit for acquiring target information, the target information including a target gap and a cruising range gain of at least one cruising mode, the target gap is a first distance minus a second distance, the first distance is the distance between the vehicle and the destination, the second distance is the cruising range of the vehicle, and the cruising range gain is used to indicate the size by which the target gap can be reduced after the vehicle applies the cruising range mode.
  • the sending unit is used to send the target information to the first vehicle-mounted device so that the first vehicle-mounted device displays the target information.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the route of the vehicle to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the acquisition unit is further configured to acquire the first distance and the second distance.
  • the acquisition unit is specifically configured to acquire the target information if it is determined that the first distance is greater than the second distance.
  • the present application provides a first vehicle-mounted device, comprising a processor and a memory, wherein the processor is coupled to the memory, and the memory is used to store instructions.
  • the first vehicle-mounted device executes the method in the aforementioned first aspect.
  • the present application provides a second vehicle-mounted device, including a processor and a memory, wherein the processor is coupled to the memory, and the memory is used to store instructions.
  • the second vehicle-mounted device executes the method in the aforementioned second aspect.
  • the seventh aspect of the present application provides a computer-readable storage medium on which computer instructions or programs are stored.
  • the computer executes the method in the first or second aspect as described above.
  • the fifth aspect of the present application provides a computer program product, including computer instructions or programs, which, when executed, enable the computer to execute the method in the first or second aspect as described above.
  • FIG1 is a schematic diagram of the architecture of the method for displaying battery life information in the present application.
  • FIG2 is a flow chart of a method for displaying battery life information in the present application.
  • FIG3 is a schematic diagram of an interface for displaying target information in this application.
  • FIG4 is a schematic diagram of an interface for displaying target information in this application.
  • FIG5 is a schematic diagram of another interface for displaying target information in the present application.
  • FIG6 is a schematic diagram of another interface for displaying target information in the present application.
  • FIG7 is a schematic diagram of the structure of the first vehicle-mounted device in the present application.
  • FIG8 is a schematic diagram of the structure of the second vehicle-mounted device in the present application.
  • FIG. 9 is a schematic diagram of the structure of the first vehicle-mounted device or the second vehicle-mounted device in the present application.
  • Some electric vehicles currently have the ability to calculate the range of the electric vehicle based on the road conditions on the route after the driver selects the route.
  • the electric vehicle also has various range modes. When the driver turns on the range mode, the range of the electric vehicle can be extended to a certain extent. In a typical scenario, the driver needs to travel from A to B. The total length of the original route between A and B is 200 kilometers. The electric vehicle calculates that the range on the original route is only 190 kilometers. At this time, the driver can choose to charge halfway, but the long charging process will seriously affect the efficiency of travel; or the driver can choose to turn on the range mode to extend the range of the electric vehicle by reducing the cooling capacity of the electric vehicle or reducing the driving speed. However, the driver cannot accurately calculate the range that can be extended after turning on the range mode, which cannot alleviate the driver's psychological anxiety and even disrupts the driver's travel plan.
  • the present application provides a method for displaying endurance information and related equipment, which are used to provide a basis for the driver to select an endurance mode to be activated, thereby ensuring that the vehicle can reach the destination.
  • the present application can be applied to the vehicle architecture shown in Figure 1.
  • the vehicle in the present application is an electric vehicle, including an intelligent cockpit, a thermal management system, a drive system, an intelligent driving system and a vehicle controller.
  • the smart cockpit is a device that aims to integrate multiple Internet technologies and artificial intelligence technologies to create a new integrated digital platform in the car, provide drivers with an intelligent experience, and promote driving safety.
  • the smart cockpit also has a display screen, which is the core component for interaction between the vehicle and the driver.
  • the vehicle controller is the central control unit of the vehicle, which is equivalent to the brain of the vehicle. It is used to ensure that the vehicle can operate normally and stably with better power, higher economy and reliability. It can communicate with the smart cockpit, thermal management system, drive system and intelligent driving system.
  • Thermal management systems are used to regulate the temperature throughout the vehicle, providing the driver with a cool driving experience.
  • the drive system mainly includes a traction motor, a motor controller, a mechanical transmission device and wheels.
  • the energy storage power source of the drive system is a battery pack.
  • the motor controller can receive signals from the accelerator pedal, the brake pedal and the control handle, and then control the rotation of the traction motor, and further drive the rotation of the wheels through the reducer, the drive shaft, the differential, and other mechanical transmission mechanisms.
  • the traction motor can also act as a generator to charge the battery pack based on the principle of electromagnetic induction.
  • the intelligent driving system is a system that achieves unmanned driving through an on-board computer.
  • the intelligent driving system relies on the collaboration of artificial intelligence, visual computing, radar, monitoring devices and global positioning systems to ensure the safe driving of the vehicle without the operation of a driver.
  • the first vehicle-mounted device may be, for example, the smart cockpit shown in FIG. 1
  • the second vehicle-mounted device may be, for example, the vehicle controller shown in FIG. 1 .
  • a first vehicle-mounted device acquires target information, the target information including a target gap and a cruising range gain of at least one cruising range mode, the target gap being a first distance minus a second distance, the first distance being a distance between the vehicle and a destination, the second distance being a cruising range of the vehicle, and the cruising range gain being used to indicate an amount by which the target gap can be reduced after the vehicle applies the cruising range mode;
  • the smart cockpit sends the total length of the original route and the road condition information of the original route to the vehicle controller.
  • the road condition information includes but is not limited to congestion, traffic lights and speed limits.
  • the vehicle controller calculates the vehicle's cruising range on the original route based on the road condition information of the original route and the remaining power of the vehicle, and compares the cruising range with the total length of the original route. If the cruising range is less than the total length of the original route, it means that if the vehicle continues to travel on the original route in its current state, it will not be able to reach the destination in the end. For example, the vehicle controller calculates that the vehicle's cruising range on the above-mentioned original route is 130 kilometers, while the total length of the original route is 140 kilometers.
  • the vehicle controller calculates the target gap and the range gain of at least one range mode.
  • the target gap can be understood as a parameter, specifically the first distance minus the second distance, where the first distance is the distance between the vehicle and the destination, and the second distance is the vehicle's range. Taking the above data as an example, the first distance at this time is the total length of the original route, and the second distance at this time is the vehicle's range on the original route, so the target gap at this time is 10 kilometers.
  • the range mode enables the vehicle to increase the range by sacrificing certain performance.
  • the at least one range mode includes a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power efficiency mode changes the driving mode of the vehicle's drive system, such as changing the torque of the traction motor, thereby increasing the cruising range by sacrificing certain power performance.
  • the air conditioning energy efficiency mode reduces the cooling capacity of the vehicle's thermal management system, thereby reducing the amount of electricity consumed.
  • the kinetic energy recovery mode converts the vehicle's mechanical energy into the vehicle's electrical energy. Specifically, when braking, the traction motor of the drive system will act as a generator to charge the battery pack based on the principle of electromagnetic induction.
  • the energy-saving route mode is a route in which the vehicle travels to the destination from the original route to an energy-saving route.
  • the energy-saving route is, for example, a route with fewer traffic lights or less congestion.
  • the energy-saving speed mode reduces the vehicle speed.
  • the vehicle controller calculates the reduction in target gap after the vehicle applies each endurance mode, which is the endurance gain:
  • the vehicle controller calculates that when the vehicle travels from the original route to the destination, the range can be extended by 4 kilometers by applying only the power efficiency mode, thereby reducing the target gap by 4 kilometers. Therefore, when the vehicle travels from the original route to the destination, the range gain of the power efficiency mode is 4 kilometers.
  • the vehicle controller calculates that when the vehicle travels from the original route to the destination, the cruising range can be extended by 2 kilometers by applying only the air-conditioning energy-efficient mode, thereby reducing the target gap by 2 kilometers. Therefore, when the vehicle travels from the original route to the destination, the cruising range gain of the air-conditioning energy-efficient mode is 2 kilometers.
  • the vehicle controller calculates that when the vehicle travels from the original route to the destination, the cruising range can be extended by 2 kilometers by applying only the kinetic energy recovery mode, thereby reducing the target gap by 2 kilometers. Therefore, when the vehicle travels from the original route to the destination, the cruising range gain of the kinetic energy recovery mode is 2 kilometers.
  • the vehicle controller calculates the vehicle's cruising range on the energy-saving route as 137 kilometers based on the road condition information of the energy-saving route, that is, the first distance at this time is the above-mentioned 145 kilometers, and the second distance at this time is the above-mentioned 137 kilometers, so the target gap at this time is 8 kilometers. 8 kilometers is 2 kilometers smaller than the aforementioned 10 kilometers, so it can be considered that the vehicle can reduce the target gap by 2 kilometers after applying the energy-saving route mode, so the cruising range gain of the energy-saving route mode is 2 kilometers.
  • the vehicle controller calculates that when the vehicle travels from the original route to the destination, the cruising range can be extended by 2 kilometers by only applying the energy-saving speed mode, thereby reducing the target gap by 2 kilometers. Therefore, when the vehicle travels from the original route to the destination, the cruising range gain of the energy-saving speed mode is 2 kilometers.
  • the vehicle controller also performs the following calculations:
  • the vehicle controller calculates that when the vehicle travels from an energy-saving route to the destination, the cruising range can be extended by 4 kilometers by applying only the power efficiency mode. Therefore, when the vehicle travels from an energy-saving route to the destination, the cruising range gain of the power efficiency mode is 4 kilometers.
  • the vehicle controller calculates that when the vehicle travels from an energy-saving route to the destination, the cruising range can be extended by 2 kilometers by applying only the air-conditioning energy efficiency mode. Therefore, when the vehicle travels from an energy-saving route to the destination, the cruising range gain of the air-conditioning energy efficiency mode is 2 kilometers.
  • the vehicle controller calculates that when the vehicle travels from an energy-saving route to the destination, the cruising range can be extended by 1 kilometer by applying only the kinetic energy recovery mode. Therefore, when the vehicle travels from an energy-saving route to the destination, the cruising range gain of the kinetic energy recovery mode is 1 kilometer.
  • the vehicle controller calculates that when the vehicle travels from an energy-saving route to a destination, the cruising range can be extended by 1 kilometer by applying only the energy-saving speed mode. Therefore, when the vehicle travels from an energy-saving route to a destination, the cruising range gain of the energy-saving speed mode is 1 kilometer.
  • the vehicle controller will also determine whether the vehicle can reduce the target gap to less than or equal to 0 by applying the endurance mode based on the endurance gain of each endurance mode. There are two situations, which are introduced below:
  • Case 1 The vehicle controller sums the range gains of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode and energy-saving speed mode when the vehicle travels from the original route to the destination. If the sum is greater than or equal to the aforementioned target gap of 10 kilometers, the vehicle controller determines that the vehicle can reduce the target gap to less than or equal to 0 by applying the range mode.
  • Case 2 The vehicle controller sums the range gains of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode and energy-saving speed mode when the vehicle travels from the energy-saving route to the destination, and adds the range gain of the energy-saving route mode. If the resulting value is greater than or equal to the aforementioned target gap of 10 kilometers, the vehicle controller determines that the vehicle can reduce the target gap to less than or equal to 0 by applying the range mode.
  • the vehicle controller determines that the vehicle can reduce the target gap to less than or equal to 0 by applying the endurance mode, the vehicle controller sends the aforementioned target gap and the endurance gain of each endurance mode to the smart cockpit.
  • the vehicle-mounted device displays target information.
  • the smart cockpit displays the range gain of each endurance mode.
  • the range gains of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode and energy-saving vehicle speed mode shown in Figure 3 all correspond to the situation where the vehicle travels from the original route to the destination.
  • each endurance mode has a switch option, which is used by the driver to control whether the vehicle applies the endurance mode.
  • the content shown in Figure 3 is only a schematic. In actual implementation, it can also be displayed in other arrangements, which will not be shown here one by one.
  • the driver learns from the content shown in Figure 3 that the target gap is 10 kilometers, the range gain of the power efficiency mode is 4 kilometers, the range gain of the air conditioning efficiency mode is 2 kilometers, the range gain of the kinetic energy recovery mode is 2 kilometers, the range gain of the energy-saving route mode is 2 kilometers, and the range gain of the energy-saving speed mode is 2 kilometers.
  • the driver can turn on the switch options of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode, and energy-saving speed mode in the smart cockpit to reduce the target gap to 0.
  • the smart cockpit will update the target gap according to the range gain of the range mode. For example, referring to Figure 4, after the driver turns on the power efficiency mode switch option, the smart cockpit updates the target gap to 6 kilometers because the range gain of the power efficiency mode is 4 kilometers. After the driver turns on the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode, and energy-saving speed mode switch options in turn, the target gap is updated to 0, so that the driver can clearly know that the vehicle can reach the destination.
  • the smart cockpit will also update the range gains of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode and energy-saving speed mode to the situation where the vehicle travels from the energy-saving route to the destination.
  • the smart cockpit will update the target gap to 8 kilometers, and update the range gains of the power efficiency mode, air conditioning efficiency mode, kinetic energy recovery mode and energy-saving speed mode to the situation where the vehicle travels from the energy-saving route to the destination.
  • the smart cockpit can specially display the energy-saving route mode, such as displaying it in bold or in color.
  • the smart cockpit can also display the impact information of each endurance mode, which is used to indicate the impact after the vehicle applies the endurance mode.
  • the impact information of the power efficiency mode is that the vehicle's power performance will be weakened
  • the impact information of the air conditioning efficiency mode is that the temperature in the car will increase
  • the impact information of the kinetic energy recovery mode is that passengers will be more likely to feel motion sickness
  • the impact information of the energy-saving route mode is that there are more toll stations on the energy-saving route
  • the impact information of the energy-saving speed mode is that the vehicle speed will be lower.
  • the smart cockpit can also display an extended logo for each endurance mode. When the driver touches the extended logo of a endurance mode, the smart cockpit will display the impact information of the endurance mode.
  • the smart cockpit can also display the option of "one-button full opening". When the driver touches this option, the switch options of all endurance modes can be directly turned on.
  • the smart cockpit Whenever the driver turns on the switch option of the endurance mode, the smart cockpit sends activation information to the vehicle controller, which is used to indicate the above endurance mode. After receiving the activation information, the vehicle controller controls the intelligent driving system, thermal management system or drive system to perform corresponding functions based on the activation information.
  • the vehicle controller controls the drive system to change the driving mode; if the driver turns on the switch option of the air conditioning efficiency mode, the vehicle controller controls the thermal management system to change the temperature of various parts of the vehicle; if the driver turns on the switch option of the kinetic energy recovery mode, the vehicle controller controls the traction motor of the drive system to act as a generator when the vehicle decelerates, thereby charging the battery pack; if the driver turns on the switch option of the energy-saving route mode, the vehicle controller controls the intelligent driving system to drive from the energy-saving route to the destination; if the driver turns on the switch option of the energy-saving speed mode, the vehicle controller controls the intelligent driving system to reduce the speed of the vehicle.
  • the aforementioned at least one endurance mode may also include one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • a power efficiency mode may also include one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the smart cockpit can also display the speed corresponding to the energy-saving vehicle speed mode, so that the driver can drive at that speed.
  • the vehicle controller can also recalculate the vehicle's endurance distance based on the endurance mode applied by the vehicle, and send the endurance distance to the smart cockpit for display by the smart cockpit.
  • the aforementioned calculations performed by the vehicle controller can also be performed by the smart cockpit.
  • the vehicle controller only needs to control the intelligent driving system, thermal management system or drive system to perform corresponding functions according to the activation information of the smart cockpit.
  • the first vehicle-mounted device displays the target gap and the endurance gain of each endurance mode, so that the driver can choose the endurance mode to be activated based on the above information, which can not only take into account the driver's personalized needs, but also ensure that the vehicle can reach the destination.
  • the method for displaying the battery life information in the present application is introduced above.
  • the embodiment of the present application also provides a device for implementing any of the above methods.
  • a device is provided including a unit (or means) for implementing each step performed by the first vehicle-mounted device in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step performed by the second vehicle-mounted device in any of the above methods.
  • the first vehicle-mounted device and the second vehicle-mounted device in the present application are introduced below:
  • the first vehicle-mounted device 700 in the present application includes a processing unit 701 and a display unit 702.
  • the first vehicle-mounted device 700 is used to execute the operations executed by the first vehicle-mounted device in the embodiment shown in FIG.
  • the processing unit 701 is used to obtain target information, the target information includes a target gap and a cruising range gain of at least one cruising mode, the target gap is a first distance minus a second distance, the first distance is the distance between the vehicle and the destination, the second distance is the cruising range of the vehicle, and the cruising range gain is used to indicate the size by which the target gap can be reduced after the vehicle applies the cruising mode.
  • the display unit is used to display the target information.
  • the processing unit 701 is further configured to instruct the vehicle to apply a target cruising mode in at least one cruising mode in response to an operation instruction of the driver.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the vehicle's route to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the processing unit 701 is further configured to update the target gap according to the endurance gain of the target endurance mode.
  • the processing unit 701 is further configured to obtain the first distance and the second distance.
  • the processing unit 701 is specifically configured to obtain target information if it is determined that the first distance is greater than the second distance.
  • the target information also includes at least one impact information of an endurance mode, and the impact information is used to indicate the impact produced after the vehicle applies the endurance mode.
  • the second vehicle-mounted device 800 in the present application includes an acquisition unit 801 and a sending unit 802.
  • the second vehicle-mounted device 800 is used to execute the operations executed by the second vehicle-mounted device in the embodiment shown in Fig. 2 .
  • the acquisition unit 801 is used to acquire target information, where the target information includes a target gap and a cruising range gain of at least one cruising mode.
  • the target gap is a first distance minus a second distance, where the first distance is the distance between the vehicle and the destination, and the second distance is the cruising range of the vehicle.
  • the cruising range gain is used to indicate the amount by which the target gap can be reduced after the vehicle applies the cruising mode.
  • the sending unit 802 is used to send the target information to the first vehicle-mounted device, so that the first vehicle-mounted device displays the target information.
  • At least one endurance mode includes one or more of a power efficiency mode, an air conditioning efficiency mode, a kinetic energy recovery mode, an energy-saving route mode, and an energy-saving vehicle speed mode.
  • the power energy efficiency mode is to change the driving mode of the vehicle's drive system
  • the air conditioning energy efficiency mode is to reduce the cooling capacity of the vehicle's thermal management system
  • the kinetic energy recovery mode is to convert the vehicle's mechanical energy into the vehicle's electrical energy
  • the energy-saving route mode is to switch the route of the vehicle to the destination to an energy-saving route
  • the energy-saving speed mode is to reduce the vehicle's speed.
  • the acquiring unit 801 is further configured to acquire the first distance and the second distance.
  • the acquisition unit 802 is specifically configured to acquire target information if it is determined that the first distance is greater than the second distance.
  • the division of the units in the above device is only a division of logical functions. In actual implementation, they can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, and instructions are stored in the memory.
  • the processor calls the instructions stored in the memory to implement any of the above methods or realize the functions of the units of the device, wherein the processor is, for example, a general-purpose processor, such as a central processing unit (CPU) or a microprocessor, and the memory is a memory inside the device or a memory outside the device.
  • CPU central processing unit
  • microprocessor a microprocessor
  • the units in the device may be implemented in the form of hardware circuits, and the functions of some or all of the units may be implemented by designing the hardware circuits, and the hardware circuits may be understood as one or more processors; for example, in one implementation, the hardware circuit is an application-specific integrated circuit (ASIC), and the functions of some or all of the above units may be implemented by designing the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit may be implemented by a programmable logic device (PLD), and a field programmable gate array (FPGA) may be used as an example, which may include a large number of logic gate circuits, and the connection relationship between the logic gate circuits may be configured by a configuration file, so as to implement the functions of some or all of the above units. All units of the above devices may be implemented in the form of a processor calling software, or in the form of hardware circuits, or in part by a processor calling software, and the rest by hardware circuits.
  • ASIC application-specific integrated circuit
  • FPGA field programm
  • the processor is a circuit with the ability to process signals.
  • the processor can be a circuit with the ability to read and run instructions, such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which can be understood as a microprocessor), or a digital signal processor (DSP);
  • the processor can implement certain functions through the logical relationship of a hardware circuit, and the logical relationship of the hardware circuit is fixed or reconfigurable, such as a hardware circuit implemented by a processor as an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), such as an FPGA.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading a configuration document to implement the hardware circuit configuration can be understood as the process of the processor loading instructions to implement the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), a tensor processing unit (TPU), a deep learning processing unit (DPU), etc.
  • NPU neural network processing unit
  • TPU tensor processing unit
  • DPU deep learning processing unit
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA, or a combination of at least two of these processor forms.
  • processors or processing circuits
  • the units in the above device can be fully or partially integrated together, or can be implemented independently. In one implementation, these units are integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the type of the at least one processor may be different, for example, including a CPU and an FPGA, a CPU and an artificial intelligence processor, a CPU and a GPU, etc.
  • FIG9 is a schematic diagram of the structure of a device provided by the present application, which is used to implement the methods in the aforementioned embodiments.
  • the device may be a first vehicle-mounted device or a second vehicle-mounted device, and the device 900 may include one or more central processing units (CPU) 901 and a memory 905, in which one or more applications or data are stored.
  • CPU central processing units
  • the memory 905 can be a volatile storage or a persistent storage.
  • the program stored in the memory 905 can include one or more modules, and each module can include a series of instruction operations in the server.
  • the central processor 901 can be configured to communicate with the memory 905 and execute a series of instruction operations in the memory 905 on the device 900.
  • the device 900 may also include one or more power supplies 902, one or more wired or wireless network interfaces 903, one or more input and output interfaces 904, and/or, one or more operating systems.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can essentially or in other words, the part that contributes or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种显示续航信息的方法以及相关设备,用于为驾驶员选择需要开启的续航模式提供依据,保证车辆能够到达目的地。本申请方法包括:获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为所述车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。第一车载设备显示目标信息。

Description

一种显示续航信息的方法以及相关设备 技术领域
本申请实施例涉及智能车辆领域,尤其涉及一种显示续航信息的方法以及相关设备。
背景技术
随着经济的快速发展以及能源安全与节能环保压力的日益增大,电动汽车逐渐得到推广与普及。由于电动汽车的续航距离的限制,常常会发生电动汽车还没到达目的地便耗尽电能的情况,影响驾驶员的体验,降低出行效率。
在现有的技术当中,电动汽车具备各种续航模式,驾驶员能够通过开启续航模式从而延长电动汽车的续航距离。
然而,驾驶员仅能大概估计开启续航模式后所能延长的续航距离,无法明确是否能够支撑电动汽车到达目的地。
发明内容
本申请提供了一种续航信息显示的方法以及相关设备,用于为驾驶员选择需要开启的续航模式提供依据,保证车辆能够到达目的地。
本申请第一方面提供了一种续航信息显示的方法:
第一车载设备获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。第一车载设备显示目标信息。
本申请中,第一车载设备通过显示目标信息,使得驾驶员能够基于目标信息自行选择需要开启的续航模式,既能照顾到驾驶员的个性化需求,也能保证车辆能够到达目的地。
在一种可能的实现方式中,第一车载设备还响应于驾驶员的操作指令,指示车辆应用至少一个续航模式中的目标续航模式。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为车辆将车速降低。
在一种可能的实现方式中,第一车载设备还会根据目标续航模式的续航增益,更新目标差距。
本申请中,当车辆应用续航模式后,第一车载设备实时将目标差距更新,使得驾驶员能够直观地感知目标差距的变化。
在一种可能的实现方式中,第一车载设备还会获取第一距离与第二距离,若第一车载设备确定第一距离大于所述第二距离,则第一车载设备获取目标信息。
本申请中,若第一距离大于第二距离时,第一车载设备才获取目标信息,从而避免不 必要的开销。
在一种可能的实现方式中,目标信息还包括至少一个续航模式的影响信息,影响信息用于指示车辆应用续航模式后产生的影响。
本申请第二方面提供了一种显示续航信息的方法:
第二车载设备获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。第二车载设备向第一车载设备发送目标信息,使得第一车载设备显示目标信息。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为所降低车辆的车速。
在一种可能的实现方式中,第二车载设备还会获取第一距离与第二距离,若第二车载设备确定第一距离大于第二距离,则第二车载设备获取目标信息。
本申请第三方面提供了一种第一车载设备:
包括处理单元,用于获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。显示单元,用于显示目标信息。
在一种可能的实现方式中,处理单元还用于响应于驾驶员的操作指令,指示车辆应用至少一个续航模式中的目标续航模式。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为车辆将车速降低。
在一种可能的实现方式中,处理单元还用于根据目标续航模式的续航增益更新目标差距。
在一种可能的实现方式中,处理单元,还用于获取第一距离与第二距离。处理单元,具体用于若确定第一距离大于第二距离,则获取目标信息。
在一种可能的实现方式中,目标信息还包括至少一个续航模式的影响信息,影响信息用于指示车辆应用续航模式后产生的影响。
本申请第四方面提供了一种第二车载设备:
包括获取单元,用于获取目标信息,目标信息包括目标差距以及至少一个续航模式的 续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。发送单元,用于向第一车载设备发送目标信息,使得第一车载设备显示目标信息。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为所降低车辆的车速。
在一种可能的实现方式中,获取单元,还用于获取第一距离与第二距离。获取单元,具体用于若确定第一距离大于第二距离,则获取目标信息。
本申请第五方面提供了一种第一车载设备,包括处理器以及存储器,处理器与存储器耦合,存储器用于存储指令,当指令被处理器执行时,使得第一车载设备执行前述第一方面中的方法。
本申请第六方面提供了一种第二车载设备,包括处理器以及存储器,处理器与存储器耦合,存储器用于存储指令,当指令被处理器执行时,使得第二车载设备执行前述第二方面中的方法。
本申请第七方面提供了一种计算机可读存储介质,其上存储有计算机指令或程序,当计算机指令或程序被执行时,使得计算机执行如前述第一方面或第二方面中的方法。
本申请第五方面提供了一种计算机程序产品,包括计算机指令或程序,当计算机指令或程序被执行时,使得计算机执行如前述第一方面或第二方面中的方法。
附图说明
图1为本申请中显示续航信息的方法所应用的架构示意图;
图2为本申请中显示续航信息的方法的一个流程示意图;
图3为本申请中显示目标信息的一个界面示意图;
图4为本申请中显示目标信息的一个界面示意图;
图5为本申请中显示目标信息的另一界面示意图;
图6为本申请中显示目标信息的另一界面示意图;
图7为本申请中第一车载设备的结构示意图;
图8为本申请中第二车载设备的结构示意图;
图9为本申请中第一车载设备或第二车载设备的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情 况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着电动汽车的不断发展以及普及,电动汽车的缺点也在不断地暴露出来。与传统的燃油车不同,电动汽车无法通过补给燃油从而快速地补充续航距离,只能在较长的充电过程中逐渐地补充续航距离。因此当驾驶员驾驶电动汽车出行时,不得不格外关注电动汽车的续航距离,避免出现中途电量不足的情况,给驾驶员带来了心理上的焦虑。
目前的一些电动汽车中,能够在驾驶员选择行驶路线后,基于行驶路线上的路况信息计算出电动汽车的续航距离,并且电动汽车还具备各种续航模式,当驾驶员开启续航模式后即可在一定程度上延长电动汽车的续航距离。在一个典型的场景中,驾驶员需要从A地行驶至B地,A地与B地之间的原始路线总长为200公里,电动汽车计算出在原始路线上的续航距离仅为190公里,此时驾驶员可以选择在中途进行充电,然而较长的充电过程这样会严重影响出行的效率;或者驾驶员也可以选择开启续航模式,通过降低电动汽车的制冷能力或者降低行驶速度从而延长电动汽车的续航距离,然而驾驶员并不能精确地计算开启续航模式后所能延长的续航距离,无法缓解驾驶员在心理上的焦虑,甚至打乱驾驶员的出行计划。
本申请提供了一种显示续航信息的方法以及相关设备,用于为驾驶员选择需要开启的续航模式提供依据,保证车辆能够到达目的地。
本申请可以应用如图1所示的车辆架构中,如图1所示,本申请中的车辆为电动汽车,包括智能座舱、热管理系统、驱动系统、智能驾驶系统以及整车控制器。
其中,智能座舱是一种旨在集成多种互联网技术以及人工智能技术,打造全新的车内一体化数字平台,为驾驶员提供智能体验,促进行车安全的设备,智能座舱还具备显示屏幕,是车辆与驾驶员进行交互的核心部件。
整车控制器是车辆的中央控制单元,相当于车辆的大脑,用于保证车辆能够在较好的动力性、较高的经济性以及可靠性下进行正常稳定地工作,其能够与智能座舱、热管理系统、驱动系统以及智能驾驶系统进行通信。
热管理系统用于调节车辆各处的温度,为驾驶员提供凉爽的驾驶体验。
驱动系统主要包括牵引电机、电机控制器、机械传动装置以及车轮,驱动系统的储能动力源是电池组,电机控制器能够接收来自加速踏板、刹车踏板和控制手柄的信号,进而控制牵引电机的旋转,并进一步通过减速器、传动轴、差速器、等等机械传动机构带动车轮的转动,当车辆减速时,牵引电机还能充当发电机的角色,基于电磁感应原理为电池组充电。
智能驾驶系统是一种通过车载电脑实现无人驾驶的系统,智能驾驶系统依靠人工智能、视觉计算、雷达、监控装置以及全球定位系统协作,使得车辆能够在没有驾驶员进行操作的情况下仍然能够保证车辆的安全行驶。
本申请中,第一车载设备例如可以是图1中所示的智能座舱,第二车载设备例如可以是图1中所示的整车控制器。
请参阅图2,下面对本申请中的车辆续航方法的一个流程进行介绍,其中,将整车控制器作为第二车载设备的一个示例进行描述:
201、第一车载设备获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小;
驾驶员在乘上车辆后,能够在智能座舱设定目的地,并选择到达目的地的原始路线。智能座舱将原始路线的总长以及原始路线的路况信息发送至整车控制器,路况信息包括但是不限于拥堵情况、红绿灯情况以及限速情况。整车控制器根据原始路线的路况信息以及车辆的剩余电量,计算得出车辆在原始路线上的续航距离,并将该续航距离和原始路线的总长进行对比,若该续航距离小于原始路线的总长,则说明车辆如果继续按照当前的状态在原始路线上行驶,最后将无法抵达目的地。示例性的,整车控制器计算得出车辆在上述原始路线上的续航距离为130公里,而原始路线的总长却为140公里。
因此,整车控制器计算出目标差距以及至少一个续航模式的续航增益,目标差距可以理解为一项参数,具体为第一距离减去第二距离,其中第一距离为车辆与目的地的距离,第二距离为车辆的续航距离。以前述数据为例,此时的第一距离则为原始路线的总长,此时的第二距离则为车辆在原始路线上的续航距离,因此此时的目标差距为10公里。续航模式能够使得车辆通过牺牲一定的性能从而提高续航距离,示例性的,上述至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式。
其中,动力能效模式为改变车辆的驱动系统的驱动方式,例如改变牵引电机的扭矩,通过牺牲一定的动力性能从而提高续航距离。
空调能效模式为使得车辆的整车热管理系统的制冷能力降低,从而降低所消耗的电量。
动能回收模式为将车辆的机械能转换为车辆的电能,具体体现在刹车时,驱动系统的牵引电机会充当发电机的角色,基于电磁感应原理为电池组充电。
节能路线模式为车辆行驶至目的地的路线从原始路线变更为节能路线,上述节能路线例如为红绿灯数量更少或者拥堵情况更轻的路线。
节能车速模式为车辆将车速降低。
整车控制器计算得出车辆应用每个续航模式后能够将目标差距所缩减的大小,也即续航增益:
例如,整车控制器计算得出在车辆从原始路线行驶至目的地的情况下,仅应用动力能效模式后能够将续航距离延长4公里,从而能够将目标差距缩减4公里,因此在车辆从原始路线行驶至目的地的情况下,动力能效模式的续航增益为4公里。
例如,整车控制器计算得出在车辆从原始路线行驶至目的地的情况下,仅应用空调能 效模式后能够将续航距离延长2公里,从而能够将目标差距缩减2公里,因此在车辆从原始路线行驶至目的地的情况下,空调能效模式的续航增益为2公里。
例如,整车控制器计算得出在车辆从原始路线行驶至目的地的情况下,仅应用动能回收模式后能够将续航距离延长2公里,从而能够将目标差距缩减2公里,因此在车辆从原始路线行驶至目的地的情况下,动能回收模式的续航增益为2公里。
例如,若车辆仅应用节能路线模式,而节能路线的总长为145公里,整车控制器结合节能路线的路况信息计算得出车辆在节能路线上的续航距离为137公里,也即此时的第一距离为上述的145公里,此时的第二距离为上述的137公里,因此此时的目标差距为8公里。8公里相比于前述的10公里小了2公里,因此可以认为车辆应用节能路线模式之后能够将目标差距缩减2公里,因此节能路线模式的续航增益为2公里。
例如,整车控制器计算得出在车辆从原始路线行驶至目的地的情况下,仅应用节能车速模式后能够将续航距离延长2公里,从而能够将目标差距缩减2公里,因此在车辆从原始路线行驶至目的地的情况下,节能车速模式的续航增益为2公里。
此外,针对车辆应用节能路线模式,也即从节能路线行驶至目的地的情况,整车控制器还进行如下计算:
例如,整车控制器计算得出在车辆从节能路线行驶至目的地的情况下,仅应用动力能效模式后能够将续航距离延长4公里,因此在车辆从节能路线行驶至目的地的情况下,动力能效模式的续航增益为4公里。
例如,整车控制器计算得出在车辆从节能路线行驶至目的地的情况下,仅应用空调能效模式后能够将续航距离延长2公里,因此在车辆从节能路线行驶至目的地的情况下,空调能效模式的续航增益为2公里。
例如,整车控制器计算得出在车辆从节能路线行驶至目的地的情况下,仅应用动能回收模式后能够将续航距离延长1公里,因此在车辆从节能路线行驶至目的地的情况下,动能回收模式的续航增益为1公里。
例如,整车控制器计算得出在车辆从节能路线行驶至目的地的情况下,仅应用节能车速模式后能够将续航距离延长1公里,因此在车辆从节能路线行驶至目的地的情况下,节能车速模式的续航增益为1公里。
整车控制器还会根据各个续航模式的续航增益,确定车辆是否能够通过应用续航模式将目标差距缩减至小于或等于0。可以分为两种情况,下面分别进行介绍:
情况一:整车控制器将动力能效模式、空调能效模式、动能回收模式以及节能车速模式在车辆从原始路线行驶至目的地的情况下的续航增益进行求和,若求和值大于或等于前述10公里的目标差距,则整车控制器确定车辆能够通过应用续航模式将目标差距缩减至小于或等于0。
情况二:整车控制器将动力能效模式、空调能效模式、动能回收模式以及节能车速模式在车辆从节能路线行驶至目的地的情况下的续航增益进行求和,且再加上节能路线模式的续航增益,若所得的值大于或等于前述10公里的目标差距,则整车控制器确定车辆能够通过应用续航模式将目标差距缩减至小于或等于0。
若整车控制器确定车辆能够通过应用续航模式将目标差距缩减至小于或等于0,则整车控制器向智能座舱发送前述所提及的目标差距以及各个续航模式的续航增益。
202、车载设备显示目标信息。
请参阅图3,智能座舱将各个续航模式的续航增益进行显示,图3中所示的动力能效模式、空调能效模式、动能回收模式以及节能车速模式的续航增益均对应车辆从原始路线行驶至目的地的情况。可选的,每个续航模式均具备一个开关选项,该开关选项用于驾驶员控制车辆是否应用该续航模式。当然图3所示的内容仅为一个示意,在实际的实现中也可以通过其他排布形式显示,此处不再一一展示。
驾驶员通过图3所示的内容获知目标差距为10公里,动力能效模式的续航增益为4公里,空调能效模式的续航增益为2公里,动能回收模式的续航增益为2公里,节能路线模式的续航增益为2公里,节能车速模式的续航增益为2公里。在一个示例中,驾驶员可以在智能座舱上将动力能效模式、空调能效模式、动能回收模式以及节能车速模式的开关选项开启,从而将目标差距缩减至0。
可选的,驾驶员每将一个续航模式的开关选项开启,智能座舱便会根据该续航模式的续航增益对目标差距进行更新。例如,请参阅图4,驾驶员在将动力能效模式的开关选项开启后,由于动力能效模式的续航增益为4公里,因此智能座舱将目标差距更新为6公里。驾驶员在依次将动力能效模式、空调能效模式、动能回收模式以及节能车速模式的开关选项开启之后,目标差距更新为0,因此使得驾驶员明确车辆能够到达目的地。
若驾驶员将节能路线模式的开关选项开启,则智能座舱还将动力能效模式、空调能效模式、动能回收模式以及节能车速模式的续航增益更新为对应车辆从节能路线行驶至目的地的情况。请参阅图5,例如驾驶员首先将节能路线模式的开关选项开启,则智能座舱将目标差距更新为8公里,且将动力能效模式、空调能效模式、动能回收模式以及节能车速模式的续航增益更新为对应车辆从节能路线行驶至目的地的情况。
在一种特殊的情况中,若驾驶员将动力能效模式、空调能效模式、动能回收模式以及节能车速模式的开关选项均开启还不足以将目标差距缩减至小于或等于0,只有将节能路线模式的开关选项开启的基础上再将动力能效模式、空调能效模式、动能回收模式以及节能车速模式中的一个或多个续航模式的开关选项开启才能将目标差距缩减至小于或等于0,这种情况下智能座舱能够将节能路线模式进行特殊显示,例如加粗显示或者以彩色字体显示。
此外,智能座舱还能显示每个续航模式的影响信息,该影响信息用于指示车辆应用续航模式之后产生的影响。例如,动力能效模式的影响信息为车辆的动力性能会减弱,空调能效模式的影响信息为车内的温度将会提高,动能回收模式的影响信息为乘车人员会更容易感到晕车,节能路线模式的影响信息为节能路线上的收费站点较多,节能车速模式的影响信息为车速将会较低。请参阅图6,智能座舱也能对应每个续航模式显示一处扩展标识,当驾驶员触碰一个续航模式的扩展标识时,智能座舱才显示该续航模式的影响信息。当然,智能座舱还能显示“一键全开”的选项,当驾驶员触碰该选项,可以直接将所有续航模式的开关选项开启。
每当驾驶员将续航模式的开关选项开启,智能座舱便向整车控制器发送激活信息,该激活信息用于指示上述续航模式。整车控制器接收到激活信息后,基于激活信息控制智能驾驶系统、热管理系统或驱动系统执行相应的功能。例如若驾驶员将动力能效模式的开关选项开启,则整车控制器控制驱动系统改变驱动方式;若驾驶员将空调能效模式的开关选项开启,则整车控制器控制热管理系统改变车辆各处的温度;若驾驶员将动能回收模式的开关选项开启,则整车控制器控制驱动系统的牵引电机在车辆减速时充当发电机的角色,从而为电池组充电;若驾驶员将节能路线模式的开关选项开启,则整车控制器控制智能驾驶系统从节能路线行驶至目的地;若驾驶员将节能车速模式的开关选项开启,则整车控制器控制智能驾驶系统将车速降低。
当然,前述的至少一个续航模式也可以包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一个或多个,本领域的技术人员可以结合实际的需求以及前述的介绍,在实际的应用中进行灵活的设置。若车辆未配置智能驾驶系统或者是驾驶员未开启智能驾驶系统,则智能座舱也可以显示节能车速模式所对应的车速,使得驾驶员按照该车速行驶。整车控制器也能基于车辆所应用的续航模式,重新计算车辆的续航距离,并将该续航距离发送至智能座舱,由智能座舱进行显示。当然,前述由整车控制器所执行的各项计算,也可以由智能座舱执行,整车控制器只需要根据智能座舱的激活信息控制智能驾驶系统、热管理系统或驱动系统执行相应的功能。
本申请中,第一车载设备通过显示目标差距以及各项续航模式的续航增益,使得驾驶员能够基于上述信息自行选择需要开启的续航模式,既能照顾到驾驶员的个性化需求,也能保证车辆能够到达目的地。
上面对本申请中的显示续航信息的方法进行了介绍。本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中第一车载设备所执行的各步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中第二车载设备所执行的各步骤的单元(或手段)。示例性地,下面对本申请中的第一车载设备以及第二车载设备进行介绍:
请参阅图7,本申请中的第一车载设备700包括处理单元701以及显示单元702。第一车载设备700用于执行前述图2所示的实施例中第一车载设备所执行的操作。
处理单元701,用于获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。显示单元,用于显示目标信息。
在一种可能的实现方式中,
处理单元701,还用于响应于驾驶员的操作指令,指示车辆应用至少一个续航模式中的目标续航模式。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能 效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为车辆将车速降低。
在一种可能的实现方式中,
处理单元701,还用于根据目标续航模式的续航增益更新目标差距。
在一种可能的实现方式中,
处理单元701,还用于获取第一距离与第二距离。
处理单元701,具体用于若确定第一距离大于第二距离,则获取目标信息。
在一种可能的实现方式中,目标信息还包括至少一个续航模式的影响信息,影响信息用于指示车辆应用续航模式后产生的影响。
请参阅图8,本申请中的第二车载设备800包括获取单元801以及发送单元802。第二车载设备800用于执行前述图2所示的实施例中第二车载设备所执行的操作。
获取单元801,用于获取目标信息,目标信息包括目标差距以及至少一个续航模式的续航增益,目标差距为第一距离减去第二距离,第一距离为车辆与目的地的距离,第二距离为车辆的续航距离,续航增益用于指示车辆应用续航模式后能够将目标差距缩减的大小。
发送单元802,用于向第一车载设备发送目标信息,使得第一车载设备显示目标信息。
在一种可能的实现方式中,至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
在一种可能的实现方式中,动力能效模式为改变车辆的驱动系统的驱动方式,空调能效模式为使得车辆的整车热管理系统的制冷能力降低,动能回收模式为将车辆的机械能转换为车辆的电能,节能路线模式为车辆行驶至目的地的路线切换为节能路线,节能车速模式为所降低车辆的车速。
在一种可能的实现方式中,
获取单元801,还用于获取第一距离与第二距离。
获取单元802,具体用于若确定第一距离大于第二距离,则获取目标信息。
应理解,以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如中央处理单元(Central Processing Unit,CPU)或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为专用集成电路(application-specific integrated circuit,ASIC),通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过可 编程逻辑器件(programmable logic device,PLD)实现,以现场可编程门阵列(Field Programmable Gate Array,FPGA)为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
应理解,在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(Central Processing Unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital singnal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(Neural Network Processing Unit,NPU)张量处理单元(Tensor Processing Unit,TPU)、深度学习处理单元(Deep learning Processing Unit,DPU)等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
图9是本申请提供的一种设备的结构示意图,用于实现前述各个实施例中的方法。该设备可以是第一车载设备或者第二车载设备,设备900可以包括一个或一个以上中央处理器(central processing units,CPU)901和存储器905,该存储器905中存储有一个或一个以上的应用程序或数据。
其中,存储器905可以是易失性存储或持久存储。存储在存储器905的程序可以包括一个或一个以上模块,每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器901可以设置为与存储器905通信,在设备900上执行存储器905中的一系列指令操作。设备900还可以包括一个或一个以上电源902,一个或一个以上有线或无线网络接口903,一个或一个以上输入输出接口904,和/或,一个或一个以上操作系统。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (26)

  1. 一种显示续航信息的方法,其特征在于,包括:
    第一车载设备获取目标信息,所述目标信息包括目标差距以及至少一个续航模式的续航增益,所述目标差距为第一距离减去第二距离,所述第一距离为车辆与目的地的距离,所述第二距离为所述车辆的续航距离,所述续航增益用于指示所述车辆应用所述续航模式后能够将所述目标差距缩减的大小;
    所述第一车载设备显示所述目标信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一车载设备响应于驾驶员的操作指令,指示所述车辆应用所述至少一个续航模式中的目标续航模式。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
  4. 根据权利要求3所述的方法,其特征在于,所述动力能效模式为改变所述车辆的驱动系统的驱动方式,所述空调能效模式为使得所述车辆的整车热管理系统的制冷能力降低,所述动能回收模式为将所述车辆的机械能转换为所述车辆的电能,所述节能路线模式为所述车辆行驶至所述目的地的路线切换为节能路线,所述节能车速模式为所述车辆将车速降低。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一车载设备根据所述目标续航模式的所述续航增益,更新所述目标差距。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一车载设备获取所述第一距离与所述第二距离;
    所述第一车载设备获取目标信息包括:
    若所述第一车载设备确定所述第一距离大于所述第二距离,则所述第一车载设备获取所述目标信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述目标信息还包括所述至少一个续航模式的影响信息,所述影响信息用于指示所述车辆应用所述续航模式后产生的影响。
  8. 一种显示续航信息的方法,其特征在于,包括:
    第二车载设备获取目标信息,所述目标信息包括目标差距以及至少一个续航模式的续航增益,所述目标差距为第一距离减去第二距离,所述第一距离为车辆与目的地的距离,所述第二距离为所述车辆的续航距离,所述续航增益用于指示所述车辆应用所述续航模式后能够将所述目标差距缩减的大小;
    所述第二车载设备向第一车载设备发送所述目标信息,使得所述第一车载设备显示所述目标信息。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
  10. 根据权利要求9所述的方法,其特征在于,所述动力能效模式为改变所述车辆的驱 动系统的驱动方式,所述空调能效模式为使得所述车辆的整车热管理系统的制冷能力降低,所述动能回收模式为将所述车辆的机械能转换为所述车辆的电能,所述节能路线模式为所述车辆行驶至所述目的地的路线切换为节能路线,所述节能车速模式为所降低所述车辆的车速。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二车载设备获取所述第一距离与所述第二距离;
    所述第二车载设备获取目标信息包括:
    若所述第二车载设备确定所述第一距离大于所述第二距离,则所述第二车载设备获取所述目标信息。
  12. 一种第一车载设备,其特征在于,包括:
    处理单元,用于获取目标信息,所述目标信息包括目标差距以及至少一个续航模式的续航增益,所述目标差距为第一距离减去第二距离,所述第一距离为车辆与目的地的距离,所述第二距离为所述车辆的续航距离,所述续航增益用于指示所述车辆应用所述续航模式后能够将所述目标差距缩减的大小;
    显示单元,用于显示所述目标信息。
  13. 根据权利要求12所述的第一车载设备,其特征在于,
    所述处理单元,还用于响应于驾驶员的操作指令,指示所述车辆应用所述至少一个续航模式中的目标续航模式。
  14. 根据权利要求13所述的第一车载设备,其特征在于,所述至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
  15. 根据权利要求14所述的第一车载设备,其特征在于,所述动力能效模式为改变所述车辆的驱动系统的驱动方式,所述空调能效模式为使得所述车辆的整车热管理系统的制冷能力降低,所述动能回收模式为将所述车辆的机械能转换为所述车辆的电能,所述节能路线模式为所述车辆行驶至所述目的地的路线切换为节能路线,所述节能车速模式为所述车辆将车速降低。
  16. 根据权利要求13至15中任一项所述的第一车载设备,其特征在于,
    所述处理单元,还用于根据所述目标续航模式的所述续航增益,更新所述目标差距。
  17. 根据权利要求12至16中任一项所述的第一车载设备,其特征在于,
    所述处理单元,还用于获取所述第一距离与所述第二距离;
    所述处理单元,具体用于若确定所述第一距离大于所述第二距离,则获取所述目标信息。
  18. 根据权利要求12至17中任一项所述的第一车载设备,其特征在于,所述目标信息还包括所述至少一个续航模式的影响信息,所述影响信息用于指示所述车辆应用所述续航模式后产生的影响。
  19. 一种第二车载设备,其特征在于,包括:
    获取单元,用于获取目标信息,所述目标信息包括目标差距以及至少一个续航模式的 续航增益,所述目标差距为第一距离减去第二距离,所述第一距离为车辆与目的地的距离,所述第二距离为所述车辆的续航距离,所述续航增益用于指示所述车辆应用所述续航模式后能够将所述目标差距缩减的大小;
    发送单元,用于向第一车载设备发送所述目标信息,使得所述第一车载设备显示所述目标信息。
  20. 根据权利要求19所述的第二车载设备,其特征在于,所述至少一个续航模式包括动力能效模式、空调能效模式、动能回收模式、节能路线模式以及节能车速模式中的一种或多种。
  21. 根据权利要求20所述的第二车载设备,其特征在于,所述动力能效模式为改变所述车辆的驱动系统的驱动方式,所述空调能效模式为使得所述车辆的整车热管理系统的制冷能力降低,所述动能回收模式为将所述车辆的机械能转换为所述车辆的电能,所述节能路线模式为所述车辆行驶至所述目的地的路线切换为节能路线,所述节能车速模式为所降低所述车辆的车速。
  22. 根据权利要求19至21中任一项所述的第二车载设备,其特征在于,
    所述获取单元,还用于获取所述第一距离与所述第二距离;
    所述获取单元,具体用于若确定所述第一距离大于所述第二距离,则获取所述目标信息。
  23. 一种第一车载设备,其特征在于,包括处理器以及存储器,所述处理器与所述存储器耦合,所述存储器用于存储指令,当指令被所述处理器执行时,使得所述决策系统执行前述权利要求1至7中任一项的方法。
  24. 一种第二车载设备,其特征在于,包括处理器以及存储器,所述处理器与所述存储器耦合,所述存储器用于存储指令,当指令被所述处理器执行时,使得所述决策系统执行前述权利要求8至11中任一项的方法。
  25. 一种计算机可读存储介质,其上存储有计算机指令或程序,其特征在于,所述计算机指令或程序被处理器执行时,使得计算机执行如权利要求1至11中任一项所述的方法。
  26. 一种计算机程序产品,包括计算机指令或程序,其特征在于,所述计算机指令或程序被处理器执行时,使得计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2022/125602 2022-10-17 2022-10-17 一种显示续航信息的方法以及相关设备 WO2024082084A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125602 WO2024082084A1 (zh) 2022-10-17 2022-10-17 一种显示续航信息的方法以及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125602 WO2024082084A1 (zh) 2022-10-17 2022-10-17 一种显示续航信息的方法以及相关设备

Publications (1)

Publication Number Publication Date
WO2024082084A1 true WO2024082084A1 (zh) 2024-04-25

Family

ID=90736552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125602 WO2024082084A1 (zh) 2022-10-17 2022-10-17 一种显示续航信息的方法以及相关设备

Country Status (1)

Country Link
WO (1) WO2024082084A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302504A1 (de) * 2003-01-23 2004-09-02 Zf Friedrichshafen Ag Verfahren zum Ermitteln der Reichweite eines Elektrofahrzeuges
DE102010003760A1 (de) * 2010-04-08 2011-10-13 Robert Bosch Gmbh Verfahren sowie Einrichtung für ein Reichweitenmanagement eines Fahrzeugs mit elektromotorischem Antrieb
CN109649176A (zh) * 2019-01-18 2019-04-19 广州小鹏汽车科技有限公司 一种节能控制方法、装置及新能源汽车
CN110304066A (zh) * 2019-07-22 2019-10-08 爱驰汽车有限公司 自动驾驶模式下的路线选择方法、系统、设备及存储介质
CN113002311A (zh) * 2021-03-30 2021-06-22 安徽江淮汽车集团股份有限公司 剩余续航里程的计算方法、装置、设备以及存储介质
CN113022479A (zh) * 2021-04-21 2021-06-25 前海七剑科技(深圳)有限公司 续航信息确定方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302504A1 (de) * 2003-01-23 2004-09-02 Zf Friedrichshafen Ag Verfahren zum Ermitteln der Reichweite eines Elektrofahrzeuges
DE102010003760A1 (de) * 2010-04-08 2011-10-13 Robert Bosch Gmbh Verfahren sowie Einrichtung für ein Reichweitenmanagement eines Fahrzeugs mit elektromotorischem Antrieb
CN109649176A (zh) * 2019-01-18 2019-04-19 广州小鹏汽车科技有限公司 一种节能控制方法、装置及新能源汽车
CN110304066A (zh) * 2019-07-22 2019-10-08 爱驰汽车有限公司 自动驾驶模式下的路线选择方法、系统、设备及存储介质
CN113002311A (zh) * 2021-03-30 2021-06-22 安徽江淮汽车集团股份有限公司 剩余续航里程的计算方法、装置、设备以及存储介质
CN113022479A (zh) * 2021-04-21 2021-06-25 前海七剑科技(深圳)有限公司 续航信息确定方法与装置

Similar Documents

Publication Publication Date Title
US20220266675A1 (en) Tractor Unit With On-Board Regenerative Braking Energy Storage for Stopover HVAC Operation Without Engine Idle
CN101633355B (zh) 用于混合动力电动车辆的发动机功率需求负荷测量
JP5125293B2 (ja) ハイブリッド車両の制御装置
US11254320B2 (en) Systems and methods for selective driver coaching based on driver efficiency
JP5102101B2 (ja) ハイブリッド車の制御装置
US20220321036A1 (en) Moving object, control method, and computer-readable storage medium
WO2024082084A1 (zh) 一种显示续航信息的方法以及相关设备
CN112092811B (zh) 巡航控制中的预测坡度优化
EP4230456A1 (en) Hybrid electric vehicle and control method of the same
CN111605550A (zh) 生态巡航:燃料-经济性优化的巡航控制
US11760333B2 (en) Method for controlling the longitudinal dynamics of a vehicle
US11718298B2 (en) Methods and systems for coordinating predictive cruise control, engine-off coasting, and hybrid power split
CN112319478B (zh) 车辆驱动模式切换方法、装置及存储介质、电动商用车
US20220111828A1 (en) Method for Operating a Hybrid Electric Motor Vehicle, Control Device and Hybrid Electric Motor Vehicle
JP2598437B2 (ja) ハイブリッド車両
CN110871694B (zh) 驱动桥、电驱动系统及其控制方法
EP4140789A1 (en) Automotive propulsion system and automobile
CN110789363A (zh) 电动车辆的y形-三角形电子驱动系统
CN117681880B (zh) 一种电动越野叉车驱动模式切换的控制方法、装置及介质
Heseding et al. Commercial vehicle trailers with hybrid functions
CN107696913A (zh) 一种双电机双驱轴电动车非驱动永磁电机拖转控制方法
US11230197B2 (en) Methods and systems for integrating a hub motor with a vehicle
JP2023155024A (ja) ハイブリッド電気車両
CN116853220A (zh) 汽车节能控制方法、装置、设备及存储介质
JP2021024461A (ja) 車両の制御装置