WO2024080809A1 - 고분자 고체 전해질 및 이를 포함하는 전고체 전지 - Google Patents

고분자 고체 전해질 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
WO2024080809A1
WO2024080809A1 PCT/KR2023/015792 KR2023015792W WO2024080809A1 WO 2024080809 A1 WO2024080809 A1 WO 2024080809A1 KR 2023015792 W KR2023015792 W KR 2023015792W WO 2024080809 A1 WO2024080809 A1 WO 2024080809A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
solid electrolyte
group
polymer solid
lithium
Prior art date
Application number
PCT/KR2023/015792
Other languages
English (en)
French (fr)
Inventor
남성현
한혜은
김동규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230136064A external-priority patent/KR20240052680A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024080809A1 publication Critical patent/WO2024080809A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type

Definitions

  • the present invention relates to a polymer solid electrolyte and an all-solid-state battery containing the same.
  • Lithium-ion batteries that use a liquid electrolyte have a structure in which the cathode and anode are separated by a separator, so if the separator is damaged by deformation or external impact, a short circuit may occur, which can lead to risks such as overheating or explosion. Therefore, the development of a solid electrolyte that can ensure safety in the field of lithium-ion secondary batteries can be said to be a very important task.
  • Lithium secondary batteries using solid electrolytes have the advantage of increasing the safety of the battery, improving the reliability of the battery by preventing electrolyte leakage, and making it easy to manufacture thin batteries.
  • lithium metal can be used as a negative electrode, which can improve energy density. Accordingly, it is expected to be applied to small secondary batteries as well as high-capacity secondary batteries for electric vehicles, and is attracting attention as a next-generation battery.
  • the composite electrolyte of polyethylene oxide (PEO) and lithium salt has the advantage of having higher ignition stability compared to existing liquid electrolytes, but is a polymer solid electrolyte with improved ionic conductivity due to the high crystallinity of polyethylene oxide (PEO).
  • PEO polyethylene oxide
  • the high crystallinity of the polymer inhibits the chain mobility of the polymer chain, so there are restrictions on the movement of lithium ions within the polymer solid electrolyte, making it difficult to improve the ionic conductivity of the polymer solid electrolyte.
  • the ionic conductivity of the polymer solid electrolyte is improved by modifying the structure of the crystalline polymer or adding a separate plasticizer to the polymer to improve the mobility of the polymer chain.
  • a technology has been developed.
  • solid polymer electrolytes manufactured by modifying the structure of the polymer or adding plasticizers may have difficulty improving ionic conductivity to 0.1 mS/cm or higher.
  • Patent Document 1 Japanese Patent Publication No. 1994-124713
  • the present invention provides a polymer solid electrolyte capable of improving ionic conductivity even when a very small amount of a polar compound (for example, a polar solvent compound) is added to the polymer solid electrolyte in a non-liquid state.
  • a polar compound for example, a polar solvent compound
  • the present invention provides an all-solid-state battery that includes the polymer solid electrolyte and exhibits improved ionic conductivity, etc.
  • a polymer comprising a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group; and a polar compound, wherein at least some of the cross-linkable functional groups form cross-links with each other, so that the polymer forms a three-dimensional network structure, and the polar compound is contained in the three-dimensional network structure in a gaseous state.
  • a polymer solid electrolyte is provided that is bonded to the polymer chain and satisfies the following equation 1:
  • Equation 1 t R is the relaxation time of the polymer chain
  • t D is the diffusion time of the polar compound within the polymer chain, and is defined by Equation 2 below,
  • Equation 2 D is the diffusion coefficient of the polar compound within the polymer chain, which is 10 -9 to 10 -6 cm2/s, and L is the thickness of the polymer solid electrolyte, which is 5 to 500 ⁇ m.
  • the polar compound in the gaseous state may be dispersed between polymer chains forming the three-dimensional network structure, or may be adsorbed or bound to the surface or interior of the polymer chains.
  • the polymer solid electrolyte may further include a cross-linking agent, and in this case, at least some of the cross-linkable functional groups may form cross-links with each other via the cross-linking agent.
  • the PEO-based copolymer may include one or more types of cross-linkable functional groups, and the cross-linkable functional group is an alkylene linker having 0 to 10 carbon atoms in the PEO-based copolymer. Or, it is bound to the polymer chain through an alkylene oxide linker (however, an alkylene linker with 0 carbon atoms represents a single bond), and includes a hydroxyl group, a carboxyl group, an isocyanate group, It can be a functional group selected from the group consisting of nitro group, cyano group, amine group, amide group, epoxy group, and allyl group. there is.
  • the polymer solid electrolyte may further include a lithium salt dispersed on the polymer forming the three-dimensional network structure, and at least a portion of this lithium salt may be contained in a dissociated cation and anion state.
  • the cations and/or anions may exist in a bound state on the polymer and may move during charging/discharging of the battery.
  • the PEO (polyethylene oxide)-based copolymer of the polymer solid electrolyte may be a copolymer containing repeating units of the following formulas 1 to 3:
  • R 1 represents -CH 2 -O-(CH 2 -CH 2 -O) k -R 3
  • k is 0 to 20
  • R 3 represents an alkyl group having 1 to 5 carbon atoms.
  • R 2 is a hydroxyl group, a carboxyl group, an isocyanate group, a nitro group, a cyano group, an amine group, and an amide group.
  • At least one crosslinkable functional group is an alkylene linker or an alkylene oxide linker having 0 to 10 carbon atoms (however, an alkylene linker with 0 carbon atoms is represents a substituent bonded to the polymer chain via (represents a single bond), l, m and n are the number of repeats of the repeating unit, l and n are each independently an integer from 1 to 1000, and m is from 0 to 1000. It is an integer.
  • the content of the polar compound may be 0.1% by weight or more and less than 10% by weight, based on the total weight of the polymer solid electrolyte.
  • the polar compound may include one or more types selected from the group consisting of carbonate-based compounds and sulfonyl-based compounds, and may be a polar compound derived from a carbonate-based solvent and a sulfonyl-based solvent and contained in a gaseous state.
  • the polymer solid electrolyte may further include a ceramic compound dispersed within the three-dimensional network structure of the polymer.
  • These ceramic compounds may include an oxide-based solid electrolyte of lithium metal oxide or lithium metal phosphate, and more specifically, a lithium-lanthanum-zirconium oxide (LLZO) compound, a lithium-silicon titanium phosphate (LSTP) compound, Lithium-lanthanum-titanium oxide (LLTO) compounds, lithium-aluminum-titanium phosphate (LATP) compounds, lithium-aluminum-germanium phosphate (LAGP) compounds, and lithium-lanthanum-zirconium-titanium oxide (LLZTO) compounds. It may include one or more types of oxide-based solid electrolyte selected from the group consisting of
  • an anode a cathode; and an electrolyte layer interposed between the anode and the cathode and containing the polymer solid electrolyte of one embodiment described above.
  • the polymer solid electrolyte according to one embodiment of the invention can improve the ionic conductivity of the polymer solid electrolyte by improving the mobility of the polymer chain while maintaining the original structural characteristics of the polymer without deformation or destruction of the material.
  • the polymer solid electrolyte can improve ionic conductivity and mechanical properties of the polymer solid electrolyte by including a very small amount of a polar compound in a gaseous state through vapor deposition. Furthermore, when a polar solvent and a polar compound derived therefrom are incorporated into the polymer solid electrolyte by vapor deposition, gelation is prevented and the relaxation time of the internal polymer chain is delayed, thereby damaging the polymer chain. By improving mobility, ionic conductivity can be improved without deteriorating mechanical properties.
  • the present inventors confirmed that not only the relaxation time of the polymer chain, but also the time for the polar compound to diffuse within the polymer chain due to vapor deposition is related to ionic conductivity. Accordingly, it was confirmed that the effect of improving ionic conductivity of the polymer solid electrolyte could be maximized by controlling the relaxation time of the polymer chain and the diffusion time of the polar compound contained in the polymer solid electrolyte.
  • the polymer solid electrolyte may further include a uniformly dispersed ceramic compound to further improve its ionic conductivity.
  • a polar solvent is formed by vapor deposition.
  • the "bond” is not limited to a specific type of physical bond, chemical bond, etc., but is fixed by various bonds including physical bond, chemical bond, etc., or simply attached and fixed such as adsorption, Alternatively, it means that it is included in a three-dimensional network structure formed by cross-linking of the polymer and is located adjacent to and fixed to the polymer chain or cross-linking structure.
  • three-dimensional network structure refers to a structure including a three-dimensional frame and an internal space formed by the frame, wherein the frame is a cross-linking structure formed by the cross-linkable functional group. , for example, may include a polymer chain including crosslinking between crosslinkable functional groups and/or crosslinking between crosslinkable functional groups and a crosslinking agent.
  • the three-dimensional network structure may also be referred to as a cross-linked structure.
  • a polar compound (polar solvent) in a polymer solid electrolyte exists or is included in a “gas state” means that the polar compound is in a vapor state, as distinguished from the case where the polar solvent or an electrolyte containing it is injected in a liquid state.
  • the polar compound exists in a state distinct from the liquid injected electrolyte immediately after manufacturing the polymer solid electrolyte or during the charging and discharging of an all-solid secondary battery containing it.
  • the vapor-deposited polar compound may be locally or temporarily liquefied.
  • the vapor-deposited polar compound exhibits a higher mobility compared to the polar solvent injected in the liquid state, and thus represents a state different from the polar solvent in the liquid state, so it also exists or is included in the “gas state.” It can be seen that it is.
  • polymer solid electrolyte includes, as essential components, (i) a polymer containing a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group; and a polar compound; or (ii) a polymer solid electrolyte containing a ceramic compound in (i) above.
  • the polymer solid electrolyte (ii) further comprising a ceramic compound in (i) may be referred to as a “composite solid electrolyte.”
  • the solid electrolyte was immersed or supported in a liquid electrolyte or solvent, or the liquid electrolyte or solvent was directly injected into the solid electrolyte in a liquid state.
  • a liquid electrolyte or solvent is directly added to a solid electrolyte, there is an effect of improving the ionic conductivity of the solid electrolyte, but this is only an effect of increasing the ionic conductivity of the solid electrolyte based on the high ionic conductivity of the liquid itself.
  • the level was also not sufficient, so injection of a significant amount of liquid electrolyte was required.
  • liquid molecules rapidly diffuse into the solid electrolyte, causing rapid relaxation of the polymer chain, promoting gelation on the surface and resulting in a decrease in mechanical properties. phenomenon may appear, and problems such as leakage of liquid electrolyte may not be completely resolved.
  • the present inventor applied a method of vapor deposition of a polar compound derived from a polar solvent onto a polymer solid electrolyte containing a polymer cross-linked with a PEO (polyethylene oxide)-based copolymer modified with a cross-linkable functional group.
  • the polymer solid electrolyte of one embodiment prepared in this way includes a polymer containing a PEO-based copolymer containing a cross-linkable functional group; and a polar compound, wherein at least some of the cross-linkable functional groups form cross-links with each other so that the polymer forms a three-dimensional network structure, and the polar compound is contained in the three-dimensional network structure in a gaseous state, or It may represent a structure bound to the polymer chain.
  • this polymer solid electrolyte contains a trace amount of a polar compound derived from a polar solvent in the gaseous state, while exhibiting improved ionic conductivity.
  • polar compounds in the gaseous state affect the physical properties such as crystallinity of the PEO-based copolymer, increasing the chain mobility of the polymer chain, which can improve the conductivity of lithium ions contained in the polymer solid electrolyte. It is predicted that this is because
  • the polymer solid electrolyte of one embodiment exhibits improved ionic conductivity without substantially containing a liquid polar solvent or electrolyte solution, and can greatly contribute to the development of an all-solid-state battery with excellent physical properties.
  • the polymer solid electrolyte of one embodiment includes a polymer containing a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group; and a polar compound, wherein at least some of the cross-linkable functional groups of the copolymer form cross-links with each other, so that the polymer forms a three-dimensional network structure, and the polar compound is in a gaseous state within the three-dimensional network structure. It is included or has a structure bound to the polymer chain.
  • PEO polyethylene oxide
  • the polar compound in the gaseous state may be dispersed between polymer chains forming the three-dimensional network structure, or may be adsorbed or bound to the surface or interior of the polymer chain.
  • This polymer solid electrolyte contains a trace amount of a polar compound contained or combined in a gaseous state by vapor deposition, which will be described later.
  • This polymer solid electrolyte was confirmed because, for example, when the electrolyte layer containing it was separated from an all-solid-state battery and observed with the naked eye or an electron microscope, no liquid components were observed on the surface of the electrolyte layer. It can be. In contrast, when a liquid polar solvent or electrolyte solution is injected into the polymer solid electrolyte, liquid components or components showing wettability may be observed on the surface of the electrolyte layer.
  • the polymer solid electrolyte of one embodiment in which the polar compound is vapor-deposited and contained in a gaseous state has a significantly higher ionic conductivity compared to the case in which a liquid polar solvent or electrolyte solution is injected, as confirmed through the examples described later. represents. Through such comparison of ionic conductivity, a polymer solid electrolyte in which the polar compound is vapor-deposited and contained in a gaseous state can be confirmed.
  • polymer solid electrolyte of one embodiment satisfies the properties according to the relationship in Equation 1 below:
  • t R is the relaxation time of the polymer chain
  • t D is the diffusion time of the polar compound within the polymer chain, and is defined by Equation 2 below,
  • D is the diffusion coefficient of the polar compound within the polymer chain and is 10 -9 to 10 -6 cm2/s
  • L is the thickness of the polymer solid electrolyte and is 5 to 500 ⁇ m.
  • This equation 1 is derived based on the fact that, in the polymer solid electrolyte of one embodiment, the polar compound and the behavior of the polymer thereby are related to the improvement of ionic conductivity of the polymer solid electrolyte.
  • Equation 1 represents the relaxation time (t R ) of the polymer chain, for example, the PEO-based copolymer. It defines the correlation between the diffusion time (t D ) of the polar compound within the polymer chain. Satisfying the above equation 1 indicates that the relaxation time of the polymer becomes relatively large and the mobility of the polar compound due to the gaseous state increases, thereby shortening the diffusion time. As in the examples described later, the diffusion time of the polymer solid electrolyte is reduced by satisfying the corresponding characteristics It was confirmed that ionic conductivity can be significantly improved.
  • the relaxation time (t R ) of the polymer chain is delayed, the fluidity of the polymer chain increases, meaning that the mobility of the polymer chain improves. Therefore, the relaxation time (t R ) of the polymer chain is delayed, and its value As this increases, it may be advantageous to improve ionic conductivity. Additionally, as the diffusion time (t D ) of the polar compound within the polymer chain becomes shorter, the effect of improving ionic conductivity may appear.
  • the relaxation time (t R ) of the polymer chain and the diffusion time (t D ) of the polar compound within the polymer chain satisfy the ranges specified in Equation 1, the ionic conductivity of the polymer solid electrolyte is further improved. You can do it.
  • the relaxation time may be 12 hours or more and 120 hours or less.
  • Equation 1 when Equation 1 is satisfied, when the polar compound in the gaseous state is adsorbed to the polymer and then diffuses, it exhibits Fickian diffusion behavior. Due to Fickian diffusion behavior, the polar compound forms a uniform concentration profile due to the effect of diffusion within the polymer. Accordingly, it is possible to control the inclusion of a trace amount of a gaseous polar compound on the surface or inside of the polymer chain, thereby improving the fluidity of the polymer chain without deforming the internal structure of the polymer, and thus the ionic conductivity of the polymer solid electrolyte can be improved. there is.
  • the polar solvent can be assumed to be injected in a liquid state and exhibits Non-Fickian Diffusion behavior. Due to non-Fickian diffusion behavior, the polar solvent is rapidly absorbed into the polymer, which may lead to gelation on the polymer surface, and the non-uniform concentration distribution inside the polymer reduces the chain mobility of the polymer chain. The effect of increasing the ionic conductivity of the polymer solid electrolyte may not be significant.
  • a polymer solid electrolyte that satisfies the characteristics of Equation 1 can exhibit improved ionic conductivity, and by satisfying Equation 1, the polymer solid electrolyte indirectly includes a vapor-deposited polar compound in the gaseous state. It can be confirmed.
  • t R refers to the relaxation time of the polymer chain, and after the polymer chain is deformed by vapor deposition of the polar solvent (polar compound), it is in equilibrium or normal. This may refer to the time it takes to return to normal condition.
  • relaxation time may mean the time it takes for a polymer system in equilibrium to reach another equilibrium state after being converted to a non-equilibrium state by external perturbation.
  • Tapabrata Dam et al.
  • the ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO 20 -LiCF 3 SO 3 based ion conducting. polymer clay composites Phys. Chem. Chem. Phys 18, 19955-19965 (2016), etc.
  • vapor deposition of a polar solvent corresponds to an external disturbance
  • the relaxation time may generally vary depending on temperature.
  • the ionic conductivity of the polymer solid electrolyte shows an increase as the temperature increases. Therefore, when the vapor deposition process is performed at a high temperature, the increase in ionic conductivity may be the result of the overlap of temperature and vapor deposition effects.
  • the vapor deposition process may be performed at room temperature.
  • t D is the diffusion time of the polar compound within the polymer chain, and is the time required for the polar compound with a certain diffusion coefficient to diffuse into the polymer having a certain thickness.
  • the polymer may be in the form of a polymer film.
  • D is the diffusion coefficient of the polar compound within the polymer chain and may be 10 -9 to 10 -6 cm2/s. If the D is less than 10 -9 cm2/s, the diffusion of the polar compound inside the polymer chain may be too slow, making the vapor deposition process difficult, and if it is greater than 10 -6 cm2/s, the rate at which the polar compound diffuses and evaporates becomes faster, causing the polymer to Gelation can be promoted.
  • the D may be used as a fitting parameter.
  • the D can be calculated from Equation 3 below.
  • M(t) is the evaporation amount of the polar compound contained in the polymer solid electrolyte over time
  • M ⁇ is the maximum value or saturation value of the polar compound that can be contained in the polymer solid electrolyte, and is 0.005 to 0.5
  • L is, for example, the thickness of the film-state polymer solid electrolyte, and is 5 ⁇ m to 500 ⁇ m
  • t refers to the time at which the liquid phase evaporation rate is measured.
  • L is, for example, the thickness of the polymer solid electrolyte obtained in the form of a film, and may be 5 to 500 ⁇ m. If the L is less than 5 ⁇ m, the mechanical strength of the polymer solid electrolyte may decrease due to swelling caused by the polar compound, making it difficult to handle, or it may be destroyed. If the L exceeds 500 ⁇ m, as the thickness increases, it may act as resistance within the battery, which may lead to a decrease in battery performance.
  • the method or device for measuring L is not particularly limited as long as it is a means that can measure the thickness of an object. For example, the L can be measured using a general micrometer, or by analyzing a cross section with a scanning electron microscope (SEM).
  • the crosslinkable functional group may be directly bonded to the main chain of the PEO-based copolymer, or may be bonded through an alkylene or alkylene oxide linker. Accordingly, the crosslinkable functional group may be bonded via an alkylene linker or an alkylene oxide linker having 0 to 10 carbon atoms (however, an alkylene linker with 0 carbon atoms represents a single bond), and may include a hydroxyl group, a carboxyl group, or an alkylene oxide linker. Carboxyl group, isocyanate group, nitro group, cyano group, amine group, amide group, epoxy group and allyl group ( It may be one or more types selected from the group consisting of allyl group).
  • the crosslinkable functional group may be two or more types.
  • the crosslinkable functional groups may be the same or different from each other, and preferably may be different.
  • multiple types of repeating units each containing these functional groups may be included. Additionally, when multiple types of cross-linkable functional groups are included, it may become easier to control the mobility and ionic conductivity of the polymer chain.
  • the cross-linkable functional group refers to a functional group capable of forming cross-links between cross-linkable functional groups and/or cross-links with each other through a cross-linking agent, and is a side chain on the main chain of the polymer chain. It can be combined in the form of a chain.
  • the PEO-based copolymer containing the cross-linkable functional group may be a copolymer containing repeating units of the following formulas 1 to 3:
  • R 1 represents -CH 2 -O-(CH 2 -CH 2 -O) k -R 3
  • k is 0 to 20
  • R 3 represents an alkyl group having 1 to 5 carbon atoms.
  • R 2 is a hydroxyl group, a carboxyl group, an isocyanate group, a nitro group, a cyano group, an amine group, and an amide group.
  • at least one crosslinkable functional group selected from the group consisting of an epoxy group and an allyl group is an alkylene linker or an alkylene oxide linker having 0 to 10 carbon atoms (however, the alkylene linker with 0 carbon atoms is a single represents a substituent bonded to the polymer chain through (represents a bond),
  • l, m and n are the number of repetitions of the repeating unit, l and n are each independently an integer from 1 to 1000, and m is an integer from 0 to 1000.
  • the cross-linkable functional group of R 2 can form a polymer having a matrix form with a three-dimensional network structure formed by the cross-linking.
  • the mechanical properties of the polymer solid electrolyte can be improved, and the polar compound in the gaseous state is included or combined in this three-dimensional network structure, thereby improving ionic conductivity.
  • Example polymer solid electrolytes may be provided.
  • the PEO-based copolymer may include two or more repeating units of Formula 3 in which R 2 is a different cross-linkable functional group, and may also include one or more types of repeating units of Formula 2. .
  • hydroxy group refers to -OH group.
  • carboxyl group refers to -COOH group.
  • nitro group refers to the -NO 2 group.
  • cyano group refers to a -CN group.
  • amine group refers to a monoalkylamine group; monoarylamine group; Monoheteroarylamine group; dialkylamine group; Diarylamine group; Diheteroarylamine group; Alkylarylamine group; Alkylheteroarylamine group; and an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, diviphenylamine group, anthracenyl amine group, 9 -Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenyl amine group, biphenylflu Examples include orenylamine group, phenyltriphenylenylamine group, and biphenyltriphenylenylamine group, but are not limited to these. Additionally, “amino group” refers to -NH 2 .
  • the weight average molecular weight (Mw) of the copolymer containing Formulas 1 to 3 may be 100,000 g/mol to 2,000,000 g/mol, specifically, 100,000 g/mol or more, 200,000 g/mol or more, or 300,000 g/mol or more. mol or more, and may be 1,600,000 g/mol or less, 1,800,000 g/mol or less, or 2,000,000 g/mol or less. If the weight average molecular weight (Mw) of the copolymer is less than 100,000 g/mol, the mechanical properties of the produced polymer solid electrolyte may not be satisfied.
  • the solubility may decrease when preparing a polymer solution due to an increase in viscosity and molding for producing a polymer solid electrolyte may become difficult. Additionally, the ionic conductivity of the polymer solid electrolyte may decrease due to increased crystallinity and decreased chain mobility inside the polymer solid electrolyte.
  • the degree of crosslinking increases excessively, lowering the mobility of the polymer chain, thereby reducing the ionic conductivity of the polymer solid electrolyte. It can be.
  • the copolymer may be a random copolymer or a block copolymer.
  • the polar compound may be contained or bound to the surface or interior of the polymer chain in a gaseous state.
  • the polar compound in the gaseous state may be diffused or dispersed between polymer chains forming a three-dimensional network structure by cross-linking, or may be adsorbed or bound to the surface or interior of the polymer chains.
  • the polar compound is a gas molecule of a polar solvent used in the vapor deposition process.
  • the gas molecules of the polar solvent are adsorbed to the polymer, then diffuse into the polymer chain, and are bound to the polymer chain, or the polymer It may be contained in a dispersed or diffused form in the internal space between chains.
  • the polar compound can improve the ionic conductivity of the final polymer solid electrolyte.
  • a polar compound bound to the polymer chain or included between the polymer chains can act as a plasticizer and plasticize the polymer.
  • the plasticized polymer may have an increased amorphous region inside, thereby improving the mobility of the polymer chain. As the mobility of the polymer chain improves, the ion hopping effect inside the polymer increases, and the ionic conductivity of the polymer solid electrolyte can be improved.
  • the polar compound can serve as an intermediate for smooth ion transfer through ion hopping. Since the affinity between lithium ions and polar compounds is stronger than the affinity between lithium ions and the ether oxygen of PEO-based copolymers, the transfer of lithium ions within the polymer to which the polar compounds are adsorbed is more likely. It can be quick and easy. That is, as the polar compound is introduced into the polymer, the cation solvation effect of lithium ions is increased, so ion mobility is improved, and thus the ionic conductivity of the polymer solid electrolyte can be improved.
  • the polar compound may include one or more types selected from the group consisting of carbonate-based compounds and sulfonyl-based compounds.
  • the polar compounds include ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), and propylene carbonate (Propylene). It may include one or more selected from the group consisting of carbonate (PC), vinylene carbonate (VC), and sulfolane, or a combination thereof.
  • the content of the polar compound may include 0.1% by weight or more and less than 10% by weight, based on the total weight of the polymer solid electrolyte.
  • the content of the polar compound is 0.1% by weight or more, 1% by weight or more, or 2% by weight or less, or 5% by weight or less, 6% by weight or less, 7% by weight or less, 8% by weight or less, 9% by weight or less. , may be less than 10% by weight.
  • the content of the polar compound is less than 0.1% by weight, it is difficult to cause a change in the chain conformation inside the polymer, so the ionic conductivity of the polymer solid electrolyte is not improved, and when the content of the polar compound is 10% by weight or more.
  • the high content of liquid in the polymer solid electrolyte gives it the characteristics of a semi-solid battery, and in addition, the mechanical strength of the polymer solid electrolyte may decrease due to gelation of the polymer.
  • the polymer solid electrolyte may include crosslinking between crosslinkable functional groups.
  • the polymer solid electrolyte may further include a cross-linking agent to form a cross-linking bond between the cross-linking agent and the cross-linkable functional group.
  • the cross-linkable functional groups may form cross-links with each other via the cross-linking agent, thereby forming the three-dimensional network structure described above.
  • a cross-linking bond may be formed between the cross-linking agent and the cross-linkable functional group, and the cross-linking bond may be formed by hydrogen bonding, bonding by Lewis acid-base interaction, or ionic It may be a bond formed by bonding, coordination bonding, or radical polymerization.
  • the cross-linking agent is not particularly limited as long as it is a multi-functional cross-linking agent capable of forming a cross-linking bond with the cross-linkable functional group.
  • the crosslinking agent is trimethylolpropane trimethacrylate, poly(ethylene glycol) diacrylate, and poly(ethylene glycol) dimethacrylate.
  • ethylene glycol dimethylacrylate hereinafter 'EGDMA'
  • 1,3-diisopropenylbenzene DIP
  • 1,4-diacryloyl piperazine 1,4-diacryloyl piperazine
  • 2-(diethylamino)ethyl methacrylate 2,6-bisacryloylamidopyridine
  • 3-(acryloxy )-2-hydroxypropyl methacrylate (3-(acryloyloxy)-2-hydroxypropyl methacrylate)
  • 3,5-bis(acryloylamido)benzoic acid 3-amino 3aminopropyltriethoxysilane, 3isocyanatopropyltriethoxysilane, 3-methylacryloxypropyl trimethoxysilane, bis-(1-(tert-butylperoxy) )-1-methylethyl)-benzene (bis-(1-(tert-butylperoxy)-1-methylethyl)-benzen
  • the cross-linking agent may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the PEO-based copolymer containing the cross-linkable functional group. If the content of the cross-linking agent is less than 1 part by weight, cross-linking with the cross-linkable functional group may not be sufficiently achieved, and if it exceeds 30 parts by weight, cross-linking is excessive and the mobility of the polymer chain decreases, thereby lowering ionic conductivity. It can be.
  • the polymer solid electrolyte may further include lithium salt.
  • the lithium salt is contained in a dissociated ionic state in the internal space between the polymer chains, and can improve the ionic conductivity of the polymer solid electrolyte. At least a portion of the cations and/or anions dissociated from the lithium salt remain bound to the polymer chain and may exhibit mobility during charging/discharging of the battery.
  • the lithium salt is (CF 3 SO 2 ) 2 NLi(Lithium bis(trifluoromethanesulphonyl)imide, LiTFSI), (FSO 2 ) 2 NLi(Lithium bis(fluorosulfonyl)imide, LiFSI), LiNO 3 , LiOH, LiCl, LiBr, LiI , LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC( CF 3 SO 2 ) 3 , lithium chloroborane, lithium lower aliphatic carboxylate, and lithium tetraphenyl borate may be included.
  • the lithium salt may be included in an amount of 25 to 45 parts by weight based on 100 parts by weight of the PEO-based copolymer containing the crosslinkable functional group, specifically, 25 parts by weight or more, 30 parts by weight or more, or 35 parts by weight or more. It may be included, or may be included in 40 parts by weight or less or 45 parts by weight or less. If the content of the lithium salt is less than 25 parts by weight, the ionic conductivity of the polymer solid electrolyte may decrease, and if the content of the lithium salt exceeds 45 parts by weight, the mechanical strength may decrease.
  • the polymer solid electrolyte of the above-described embodiment may further include a ceramic compound dispersed within the three-dimensional network structure of the polymer.
  • the ceramic compound has a lithium ion transport ability to improve the conductivity of lithium ions, and preferably contains lithium atoms but does not store lithium, and may have the function of moving lithium ions, and is capable of transporting lithium ions in the polymer solid electrolyte. Conductivity can be improved.
  • the ceramic compound may be included in a uniformly dispersed state between cross-linked polymer chains, for example, within the three-dimensional network structure.
  • the ceramic compound is added together in the cross-linking process and can be uniformly dispersed without agglomeration among the polymer chains formed by cross-linking.
  • Such ceramic compounds can be advantageous in improving the mechanical strength and ionic conductivity of polymer solid electrolytes due to their uniform dispersion form.
  • the ceramic compound may be in particle form. Due to the morphological characteristics of particles, they can be contained in a more uniformly dispersed state within the polymer solid electrolyte.
  • the particles of the ceramic compound may be spherical and have a diameter of 100 nm to 1000 nm. If the diameter is less than 100 nm, the non-crystallization effect through reduced crystallinity of the polymer may be minimal, and if it is more than 1000 nm, dispersibility may decrease due to increased aggregation between particles, making it difficult to disperse uniformly.
  • the ceramic chemical may be an oxide-based or phosphate-based compound, for example, an oxide-based solid electrolyte in the form of lithium metal oxide or lithium metal phosphate. More specifically, the ceramic compound is a garnet type lithium-lanthanum-zirconium oxide (LLZO, Li 7 La 3 Zr 2 O 12 ) compound, a perovskite type lithium-lanthanum-titanium oxide type ( LLTO , Li 3 ) 3 ) Compound, lithium-aluminum-germanium phosphate-based (LAGP, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 )-based compound, lithium-silicon-titanium phosphate-based (LSTP, LiSiO 2 TiO 2 (PO 4 ) 3 )
  • One or more types may be selected from the group consisting of compounds and lithium-lanthanum-zirconium-titanium oxide (LLZTO) compounds, more preferably lithium-lanthanum-zirconium oxide (LLZO) and lithium-
  • lithium-lanthanum-titanium oxide (LLTO), lithium-aluminum-titanium phosphate (LATP), lithium-aluminum-germanium phosphate (LAGP), and lithium-lanthanum-zirconium-titanium oxide (LLZTO). More than one type of oxide-based solid electrolyte can be used.
  • the oxide-based or phosphate-based oxide-based solid electrolyte generally has an ionic conductivity value of up to 10 -4 to 10 -3 S/cm at room temperature, is stable in the high voltage region, and is stable in air, making it easy to synthesize and handle. There are. Therefore, the above-described polymer solid electrolyte can supplement the shortcomings of the remaining polymer components by further including the ceramic compound.
  • the ceramic compound has high high temperature stability because it does not easily combust or ignite even under high temperature conditions of 400°C or higher. Therefore, when the polymer solid electrolyte includes the ceramic compound, the mechanical strength of the polymer solid electrolyte as well as high temperature stability and ionic conductivity can be improved.
  • the ceramic compound may be included in an amount of 10 to 100 parts by weight, or 10 to 60 parts by weight, based on 100 parts by weight of the PEO-based copolymer containing the crosslinkable functional group.
  • the ceramic compound is included in an excessively small amount, the effect of lowering the crystallinity of the polymer and making it amorphous due to the ceramic compound is reduced, so that the effect of increasing the ionic conductivity of the polymer solid electrolyte is not significant, and the mechanical properties are also reduced by the formation of a composite. As a result, it may not meet the expected level.
  • the ceramic compound is included in an excessively large amount, the ceramic compound is not uniformly dispersed within the polymer, causing the ceramic compound particles to clump together and aggregate, resulting in the production of a polymer solid electrolyte with reduced ionic conductivity. You can.
  • the method for producing the above-described polymer solid electrolyte includes (S1) preparing a polymer by cross-linking a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group; And (S2) vapor deposition of a polar solvent on the polymer prepared in step (S1).
  • S1 preparing a polymer by cross-linking a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group
  • S2 vapor deposition of a polar solvent on the polymer prepared in step (S1).
  • a polymer in the step (S1), can be prepared by cross-linking a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group.
  • the crosslinking in step (S1) may be carried out in the presence of one or more additional types selected from the group consisting of a crosslinker and an initiator.
  • a lithium salt may be added during or before the crosslinking step (S1), and a ceramic compound may be further added.
  • the crosslinking may be formed during the process of applying a polymer solution containing the PEO-based copolymer to a substrate to form a coating film and then drying it.
  • the polymer solution may be prepared by mixing the PEO-based copolymer with a solvent, and may additionally be prepared by mixing a crosslinking agent, an initiator, and/or a lithium salt.
  • the solvent is not particularly limited as long as it is a solvent that can be mixed with the PEO-based copolymer, crosslinking agent, initiator, and/or lithium salt, and can be easily removed through a drying process.
  • the solvent is acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, and dimethyl sulfoxide (DMSO). ), methylpyrrolidone (NMP, N-Methyl-2-Pyrrolidone), or dimethylformamide (DMF, N,N-Dimethyl formamide).
  • This solvent is a solvent that serves as a reaction medium for cross-linking formation, and is distinguished from polar solvents included in liquid electrolytes, etc., and is completely removed by drying, etc. after cross-linking.
  • the concentration of the polymer solution can be appropriately adjusted taking into account the degree to which the molding process for producing a polymer solid electrolyte can proceed smoothly.
  • the concentration of the polymer solution may mean the concentration (w/w%) of the polymer in the polymer solution.
  • the concentration of the polymer may be the concentration of the PEO-based copolymer.
  • the concentration of the polymer solution may be 5% by weight to 20% by weight, specifically, 5% by weight or more, 7% by weight or more, or 9% by weight or more, and 13% by weight or less, 17% by weight or less. Or it may be 20% by weight or less.
  • the concentration of the polymer solution is less than 5% by weight, the concentration is too diluted and the mechanical strength of the polymer solid electrolyte may decrease or may flow when applied on a substrate, and if it is more than 20% by weight, lithium salt is added to the polymer solution at the desired concentration. It is difficult to dissolve, and due to its high viscosity, solubility may decrease or it may be difficult to apply it in the form of a uniform thin film.
  • the substrate is not particularly limited as long as it can serve as a support for the coating film.
  • the substrate may include SUS (Stainless Use Steel), polyethylene terephthalate film, polytetrafluoroethylene film, polyethylene film, polypropylene film, polybutene film, polybutadiene film, vinyl chloride copolymer film, and polyurethane film. , ethylene-vinylacetate film, ethylene-propylene copolymer film, ethylene-ethyl acrylate copolymer film, ethylene-methyl acrylate copolymer film, or polyimide film.
  • the application method is not particularly limited as long as it can form a coating film by applying the polymer solution onto the substrate.
  • the application method includes bar coating, roll coating, spin coating, slit coating, die coating, blade coating, It may be comma coating, slot die coating, lip coating, spray coating, or solution casting.
  • the coating film formed on the substrate by the above coating method can be molded into a film-type polymer from which the residual solvent is completely removed through a drying process.
  • the drying may be divided into a primary drying process and a secondary drying process to prevent shrinkage of the polymer due to rapid evaporation of the solvent.
  • the first drying process can remove part of the solvent through room temperature drying, and the second drying process can completely remove the solvent through vacuum high temperature drying.
  • the high-temperature drying may be performed at a temperature of 80°C to 130°C. If the high-temperature drying temperature is less than 80°C, the residual solvent cannot be completely removed, and if it exceeds 130°C, the polymer shrinks, making it difficult to form a uniform electrolyte membrane. You can.
  • cross-linking agent may form a bond with the cross-linkable functional group.
  • Descriptions of the type of cross-linking agent, the content of the cross-linking agent, and the type of bond with the cross-linkable functional group are as described above.
  • the initiator may induce a radical polymerization reaction between the cross-linkable functional groups, thereby forming a cross-linked bond between the cross-linkable functional groups.
  • the functional group that enables the radical polymerization reaction may be a functional group containing vinyl at the end, for example, an allyl group.
  • the initiator is not particularly limited as long as it is an initiator that can induce a radical polymerization reaction between the cross-linkable functional groups.
  • the initiator is benzoyl peroxide, azobisisobutyronitrile, lauroyl peroxide, cumene hydroperoxide, and diisopropylphenyl hydroperoxide.
  • -hydroperoxid azobisisobutyronitrile
  • lauroyl peroxide cumene hydroperoxide
  • diisopropylphenyl hydroperoxide diisopropylphenyl hydroperoxide.
  • -hydroperoxid tert-butyl hydroperoxide
  • paramethane hydroperoxide p-methylhydroperoxide
  • 2,2'azobis (2-methylpropionitrile) 2,2' It may include one or more species selected from the group consisting of -azobis (2-methylpropionitrile)).
  • the initiator may be used in an amount of 0.5 to 2 parts by weight based on 100 parts by weight of the PEO-based copolymer containing the cross-linkable functional group, and when used in the above range, it induces a radical polymerization reaction between the cross-linkable functional groups to efficiently cross-link. It is possible to form
  • the ceramic compound the oxide-based solid electrolyte described above can be used, and the content is also the same as described above.
  • a polar solvent can be vapor-deposited on the polymer prepared in the step (S1), thereby producing the polymer solid electrolyte of the above-described embodiment.
  • the gas molecules of the polar solvent may be polar compounds included in one embodiment.
  • the vapor deposition may be performed by contacting the polymer with vapor of the polar solvent generated by heating the polar solvent at room temperature or by allowing it to penetrate into the polymer. In this way, by leaving it at room temperature or through vapor deposition through heating, the polar compound in the gaseous state is spread uniformly on the surface and/or inside the polymer, so that the polar compound gas molecules bind to the polymer chain or form the polymer chain. It may be included in a uniformly dispersed or diffused form in the internal space.
  • the heating temperature is not particularly limited as long as it is a temperature at which the polar solvent can change phase into vapor, and may be, for example, 30°C to 80°C.
  • General PEO melts at 60°C, but the PEO-based copolymer modified with the cross-linkable functional group has improved heat resistance when forming a cross-linked structure and can withstand up to 80°C, making the vapor deposition rate faster.
  • the heating method is not limited to any method that can supply energy to generate steam. For example, a direct heating method using a burner or stove, or an indirect heating method using a heater or a steam pipe, etc. can be used, but the method is not limited to these examples.
  • the solvent may boil above the boiling point of the polar solvent, a structural change in the solvent may occur, or deformation of the polymer may occur, and the polar solvent may be deformed during vapor deposition. Since there is a disadvantage in that it is difficult to control the evaporation rate, it may be desirable to perform vapor deposition at a heating temperature in the appropriate range as specified above in order to vaporize with a trace amount of polar solvent.
  • Another embodiment of the invention also relates to an all-solid-state battery including the polymer solid electrolyte, wherein the all-solid-state battery includes a cathode, an anode, and a polymer solid electrolyte interposed between the cathode and the anode, and the polymer solid electrolyte is according to the above-described embodiment.
  • the polymer solid electrolyte includes a polymer cross-linked with a PEO (polyethylene oxide)-based copolymer containing a cross-linkable functional group, a polar compound in a gaseous state, and optionally a ceramic compound, and the polar compound in the gaseous state is When included or combined, ionic conductivity is improved, so it may be suitable as an electrolyte for an all-solid-state battery.
  • PEO polyethylene oxide
  • the positive electrode included in the all-solid-state battery includes a positive electrode active material layer, and the positive active material layer may be formed on one side of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, a binder, and a conductive material.
  • the positive electrode active material may be included in an amount of 40 to 80% by weight based on the total weight of the positive electrode active material layer.
  • the content of the positive electrode active material may be 40% by weight or more or 50% by weight or more, and may be 70% by weight or less or 80% by weight or less. If the content of the positive electrode active material is less than 40% by weight, connectivity and electrical properties between positive electrode active materials may be insufficient, and if the content of the positive electrode active material is more than 80% by weight, mass transfer resistance may increase.
  • the binder is a component that assists the bonding of the positive electrode active material and the conductive material and the bonding to the current collector, and includes styrene-butadiene rubber, acrylated styrene-butadiene rubber, acrylonitrile copolymer, acrylonitrile-butadiene rubber, and nitrile.
  • the binder may include one or more selected from the group consisting of styrene-butadiene rubber, polytetrafluoroethylene, carboxymethylcellulose, polyacrylic acid, lithium polyacrylate, and polyvinylidene fluoride. .
  • the binder may be included in an amount of 1% to 30% by weight based on the total weight of the positive electrode active material layer.
  • the content of the binder may be 1% by weight or more or 3% by weight or more, and 15% by weight. It may be less than or equal to 30% by weight. If the content of the binder is less than 1% by weight, the adhesion between the positive electrode active material and the positive electrode current collector may be reduced. If it exceeds 30% by weight, the adhesion is improved, but the content of the positive electrode active material may decrease accordingly, lowering battery capacity.
  • the conductive material is not particularly limited as long as it prevents side reactions in the internal environment of the all-solid-state battery and has excellent electrical conductivity without causing chemical changes in the battery.
  • Representative examples include graphite or conductive carbon.
  • graphite such as natural graphite and artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, and thermal black
  • Carbon-based materials with a crystal structure of graphene or graphite Carbon-based materials with a crystal structure of graphene or graphite
  • Conductive fibers such as carbon fiber and metal fiber; fluorinated carbon; Metal powders such as aluminum powder and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate;
  • Conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; may be used alone or in a mixture of two or more types, but are not necessarily limited thereto.
  • the conductive material may typically be included in an amount of 0.5% to 30% by weight based on the total weight of the positive electrode active material layer.
  • the content of the conductive material may be 0.5% by weight or more or 1% by weight or more, and 20% by weight or less. It may be 30% by weight or less. If the content of the conductive material is too small (less than 0.5% by weight), it may be difficult to expect an improvement in electrical conductivity or the electrochemical properties of the battery may deteriorate, and if it is too large (more than 30% by weight), the amount of positive electrode active material is relatively small. Capacity and energy density may decrease.
  • the method of including the conductive material in the positive electrode is not greatly limited, and conventional methods known in the art, such as coating the positive electrode active material, can be used.
  • the positive electrode current collector supports the positive electrode active material layer and serves to transfer electrons between the external conductor and the positive electrode active material layer.
  • the positive electrode current collector is not particularly limited as long as it has high electronic conductivity without causing chemical changes in the all-solid-state battery.
  • the positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. You can.
  • the positive electrode current collector may have a fine uneven structure on the surface of the positive electrode current collector or may adopt a three-dimensional porous structure to strengthen the bonding force with the positive electrode active material layer. Accordingly, the positive electrode current collector may include various forms such as films, sheets, foils, meshes, nets, porous materials, foams, and non-woven fabrics.
  • the above positive electrode can be manufactured according to a conventional method, and specifically, a composition for forming a positive electrode active material layer prepared by mixing a positive electrode active material, a conductive material, and a binder in an organic solvent is applied and dried on the positive electrode current collector, and selectively applied. It can be manufactured by compression molding on a current collector to improve electrode density. At this time, it is preferable to use an organic solvent that can uniformly disperse the positive electrode active material, binder, and conductive material and that evaporates easily.
  • acetonitrile methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, dimethyl sulfoxide (DMSO), methylpyrrolidone (NMP, N-Methyl-2-Pyrrolidone), etc. there is.
  • DMSO dimethyl sulfoxide
  • NMP methylpyrrolidone
  • the negative electrode included in the all-solid-state battery includes a negative electrode active material layer, and the negative electrode active material layer may be formed on one side of the negative electrode current collector.
  • the negative electrode active material includes a material capable of reversibly intercalating or deintercalating lithium (Li+), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, and lithium metal or lithium alloy. can do.
  • the material capable of reversibly inserting or de-inserting lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material that can react with the lithium ion (Li+) to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy includes, for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), and calcium. It may be an alloy of a metal selected from the group consisting of (Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative electrode active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the negative electrode active material may be included in an amount of 40 to 80% by weight based on the total weight of the negative electrode active material layer.
  • the content of the negative electrode active material may be 40% by weight or more or 50% by weight or more, and may be 70% by weight or less or 80% by weight or less. If the content of the negative electrode active material is less than 40% by weight, the electrical properties may not be sufficient, and if the content of the negative electrode active material is more than 80% by weight, mass transfer resistance may increase.
  • the binder is the same as described above for the positive electrode active material layer.
  • the conductive material is the same as described above for the positive electrode active material layer.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and copper. Surface treatment of stainless steel with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector like the positive electrode current collector, may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface.
  • the manufacturing method of the negative electrode is not particularly limited, and it can be manufactured by forming a negative electrode active material layer on a negative electrode current collector using a layer or film forming method commonly used in the art. For example, methods such as compression, coating, and deposition can be used. In addition, the case where a metallic lithium thin film is formed on a metal plate through initial charging after assembling a battery without a lithium thin film on the negative electrode current collector is also included in the negative electrode of the present invention.
  • a battery module including the all-solid-state battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source are provided.
  • the device include a power tool that is powered by an omni-electric motor and moves; Electric vehicles, including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.; Electric two-wheeled vehicles, including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf cart; Examples include, but are not limited to, power storage systems.
  • Electric vehicles including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • electric golf cart Examples include, but are not limited to, power storage systems.
  • a polyethylene oxide (PEO)-based copolymer of the following formula 1a was prepared:
  • R 1 is -CH 2 -O-(CH 2 -CH 2 -O) k -CH 3
  • k is 2
  • the ratio of l:m:n was 85:13:2, and the weight average molecular weight (Mw) of the copolymer was about 2,000,000 g/mol.
  • the copolymer of Formula 1a has an allyl group bonded through a methylene oxide linker as a crosslinkable functional group.
  • a polymer solution was prepared by mixing the polyethylene oxide copolymer with acetonitrile as a solvent, trimethylolpropane trimethacrylate as a crosslinking agent, benzoyl peroxide as an initiator, and LiTFSI as a lithium salt, and then mixed it with 24 It was stirred using a magnetic bar for some time.
  • the composition of the polymer solution is a mixture of 20 parts by weight of trimethylolpropane trimethacrylate as a crosslinking agent, 1 part by weight of benzoyl peroxide as an initiator, and 36.5 parts by weight of lithium salt, based on 100 parts by weight of the polyethylene oxide copolymer.
  • the polymer contained in the polymer solution was Acetonitrile solvent was used so that the concentration of polyethylene oxide copolymer was 10.4% by weight.
  • the prepared polymer solution was solution casted on the coin cell lower substrate, first dried at room temperature for 12 hours, and then secondarily dried at 100°C for 12 hours to induce crosslinking to produce an electrolyte film with a thickness of 200 ⁇ m. did.
  • the polymer was attached to the top of the chamber, the lower part of the chamber was filled with an EMC solvent, and then naturally evaporated at room temperature for 72 hours.
  • the EMC vapor was introduced into the polymer attached to the upper part of the chamber and deposited on the polymer to prepare a polymer solid electrolyte. .
  • step 1) of Example 1 based on 100 parts by weight of polyethylene oxide copolymer, 20 parts by weight of trimethylolpropane trimethacrylate as a crosslinking agent, 1 part by weight of benzoyl peroxide as an initiator, 36 parts by weight of lithium salt, and a ceramic compound.
  • a mixed solution is prepared by mixing 40 parts by weight of phosphorus LSTP, so that the concentration of the polymer polyethylene oxide copolymer contained in the mixed solution is 11.1% by weight, and the concentration of the polymer polyethylene oxide copolymer and the ceramic compound is 14.9% by weight.
  • a composite solid electrolyte was prepared in the same manner as in Example 1, except that an acetonitrile solvent was used to reduce the %.
  • Comparative Example 1 Modified PEO + polymer solid electrolyte containing a large amount of liquid
  • a polymer solid electrolyte was prepared in the same manner as in Example 1, except that the EMC solvent (12% by weight) was directly injected in liquid form into the polymer solid electrolyte prepared in step 1) of Example 1. did.
  • Comparative Example 2 Modified PEO + composite solid electrolyte containing a large amount of liquid
  • a composite solid electrolyte was prepared in the same manner as in Example 2, except that the EMC solvent (12% by weight) was directly injected in liquid form into the composite solid electrolyte prepared in step 1) of Example 2. did.
  • Equation 1 the correlation between the behavior of polar solvents (polar compounds) and polymers and ionic conductivity during vapor deposition was confirmed:
  • t R is the relaxation time of the polymer chain
  • t D is the diffusion time of the polar compound within the polymer chain, and can be calculated by Equation 2 below:
  • D is the diffusion coefficient of the polar compound within the polymer chain, which is 10 -9 to 10 -6 cm2/s, calculated according to the following equation 3, and L is the thickness of the polymer solid electrolyte, which is 5 to 500 ⁇ m:
  • M(t) is the evaporation rate of the polar compound contained in the polymer solid electrolyte
  • M ⁇ is the maximum value or saturation value of the polar compound that can be contained in the polymer solid electrolyte, and is 0.005 to 0.5
  • L is the thickness of the polymer solid electrolyte, which ranges from 5 ⁇ m to 500 ⁇ m
  • t refers to the time at which the evaporation rate of the polar compound is measured.
  • the evaporation rate M(t) which means the amount of evaporation of the polar compound over time, is obtained by measuring the weight of the polar compound contained in the polymer solid electrolyte prepared in the Examples and Comparative Examples before and after evaporation, respectively. Afterwards, it was calculated using the weight change rate. The calculated polar solvent evaporation rate (M(t)) was applied to Equation 1, and the values of the fitting parameters M ⁇ and D were derived. Afterwards, the t D value was obtained by applying the above derived D value to Equation 2. By applying the t D value to Equation 1 above, the t R /t D value was obtained.
  • the ionic conductivity of the polymer solid electrolyte was calculated using Equation 4 below.
  • the polymer solid electrolyte was formed on the lower substrate of a coin cell with a size of 1.7671 cm 2 and then SUS was used as an inactive electrode (blocking electrode). A coin cell for measuring ionic conductivity was manufactured.
  • Table 1 shows the results of calculating the t R /t D value and ionic conductivity value obtained according to Equation 1.
  • Example 1 is a polymer solid electrolyte prepared by solvent vapor deposition, and it was confirmed that t R was relatively increased, resulting in improved ionic conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 고분자 고체 전해질 및 전고체 전지에 관한 것이다. 상기 고분자 고체 전해질은 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 포함하는 고분자; 및 극성 화합물을 포함하며, 상기 가교 결합성 작용기의 적어도 일부는 서로 가교 결합을 형성하여, 상기 고분자가 3차원 네트워크 구조를 형성하고 있고, 상기 극성 화합물은 기체 상태로 상기 3차원 네트워크 구조 내에 포함되거나, 상기 고분자 사슬 상에 결합되어 있는 것으로, 소정의 특성을 충족할 수 있다.

Description

고분자 고체 전해질 및 이를 포함하는 전고체 전지
관련 출원(들)과의 상호 인용
본 출원은 2022년 10월 14일자 한국 특허 출원 제 10-2022-0132781호 및 2023년 10월 12일자 한국 특허 출원 제10-2023-0136064호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고분자 고체 전해질 및 이를 포함하는 전고체 전지에 관한 것이다.
액체 전해질을 사용하는 리튬 이온전지는 분리막에 의해 음극과 양극이 구획되는 구조여서 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 과열 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고체 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고체 전해질을 이용한 리튬 이차전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다. 또한, 음극으로 리튬 금속을 사용할 수 있어 에너지 밀도를 향상시킬 수 있으며 이에 따라 소형 이차 전지와 더불어 전기 자동차용의 고용량 이차 전지 등에 응용이 기대되어 차세대 전지로 각광받고 있다.
고체 전해질 중에서도 폴리에틸렌옥사이드(PEO)와 리튬염의 복합체 전해질은 기존의 액체 전해질에 비해 높은 발화 안정성을 가진다는 장점이 있으나, 상기 폴리에틸렌옥사이드(PEO)가 지닌 높은 결정성으로 인해 이온 전도도가 향상된 고분자 고체 전해질을 제조하기가 어려운 한계가 있었다. 즉, 고분자의 높은 결정화도는 고분자 사슬의 이동도(chain mobility)를 저해하므로, 고분자 고체 전해질 내부에서 리튬 이온 역시 이동하는데 제약이 있어, 고분자 고체 전해질의 이온 전도도를 향상시키기가 어려웠다.
종래 고분자 고체 전해질의 이러한 한계를 극복하기 위하여, 결정성 고분자의 구조 변형 또는 상기 고분자에 별도의 가소제(plasticizer)를 첨가하여 고분자 사슬의 이동도를 개선시킴으로써, 고분자 고체 전해질의 이온 전도도를 향상시키고자 하는 기술이 개발된 바 있다. 그러나, 상기 고분자의 구조 변형 또는 가소제 첨가 방식을 이용하여 제조된 고체 고분자 전해질은 이온 전도도를 0.1 mS/cm 수준 이상으로 향상시키는 데 어려움이 있을 수 있다.
상기 고분자 고체 전해질에 액체 전해질 또는 용매를 직접 추가함으로써 이온 전도도를 개선시키려는 시도가 이루어졌으나, 이는 순수한 전고체 전지용 고체 전해질이 아닌, 고체와 액체가 공존하는 반고체전지용 전해질에 대한 기술로 분류될 수 있고, 이온 전도도의 향상이 충분치 않으며, 여전히 상당량의 액체 전해질 주입이 필요하여 누액 등에 의한 안전성 저하의 문제가 완전히 해결되기 어렵다.
이에, 고분자의 구조 변형, 별도의 가소제 첨가 또는 고체 전해질을 액체 전해질에 침지시켜 제조된 고분자 고체 전해질 외에, 순수한 전고체 전지용 고체 전해질로서, 상기 전해질의 이온 전도도를 향상시킬 수 있는 기술개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개 특허 제1994-124713호
본 발명은 고분자 고체 전해질에 극미량의 극성 화합물(예를 들어, 극성 용매 화합물)이 비액체 상태로 부가되더라도, 이온 전도도의 개선이 가능한 고분자 고체 전해질을 제공하는 것이다.
또, 본 발명은 상기 고분자 고체 전해질을 포함하여, 향상된 이온 전도도 등을 나타내는 전고체 전지를 제공하는 것이다.
발명의 일 구현예에 따르면, 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 포함하는 고분자; 및 극성 화합물을 포함하며, 상기 가교 결합성 작용기의 적어도 일부는 서로 가교 결합을 형성하여, 상기 고분자가 3차원 네트워크 구조를 형성하고 있고, 상기 극성 화합물은 기체 상태로 상기 3차원 네트워크 구조 내에 포함되거나, 상기 고분자 사슬 상에 결합되어 있고, 하기 식 1을 충족하는 고분자 고체 전해질이 제공된다:
<식 1>
Figure PCTKR2023015792-appb-img-000001
상기 식 1에서, tR은 상기 고분자 사슬의 완화 시간(relaxation time)이고,
tD는 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간으로서, 하기 식 2로 정의되며,
<식 2>
Figure PCTKR2023015792-appb-img-000002
상기 식 2에서, D는 상기 고분자 사슬 내에서 극성 화합물의 확산 계수로서 10-9 내지 10-6 ㎠/s이고, L은 상기 고분자 고체 전해질의 두께로서, 5 내지 500 ㎛ 이다.
이러한 고분자 고체 전해질에서, 상기 기체 상태의 극성 화합물은 상기 3차원 네트워크 구조를 형성한 고분자 사슬 사이에 분산되어 있거나, 상기 고분자 사슬의 표면 또는 내부에 흡착 또는 결합될 수 있다.
또, 상기 고분자 고체 전해질은 가교제를 더 포함할 수 있고, 이 경우, 상기 가교 결합성 작용기의 적어도 일부는 상기 가교제를 매개로 서로 가교 결합을 형성할 수 있다.
상기 고분자 고체 전해질에서, 상기 PEO계 코폴리머는 1종 이상, 혹은 2종 이상의 가교 결합성 작용기를 포함할 수 있고, 상기 가교 결합성 작용기는 상기 PEO계 코폴리머에 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 고분자 사슬에 결합되어 있고, 히드록시기(hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기 (cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기(epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택되는 작용기로 될 수 있다.
또한, 상기 고분자 고체 전해질은 상기 3차원 네트워크 구조를 형성한 고분자 상에 분산된 리튬염을 더 포함할 수 있으며, 이러한 리튬염은 이 중 적어도 일부가 해리된 양이온 및 음이온 상태로 포함될 수 있다. 상기 양이온 및/또는 음이온은 상기 고분자 상에 결합된 상태로 존재할 수 있고, 전지의 충/방전시 이동할 수 있다.
구체적인 실시예에서, 상기 고분자 고체 전해질의 PEO(polyethylene oxide)계 코폴리머는 하기 화학식 1 내지 3의 반복 단위를 포함하는 공중합체로 될 수 있다:
[화학식 1]
Figure PCTKR2023015792-appb-img-000003
[화학식 2]
Figure PCTKR2023015792-appb-img-000004
[화학식 3]
Figure PCTKR2023015792-appb-img-000005
상기 화학식 1 내지 3에서, R1은 -CH2-O-(CH2-CH2-O)k-R3 를 나타내며, k는 0 내지 20이고, R3는 탄소수 1 내지 5의 알킬기를 나타내고, R2는 히드록시기(hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기(cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기 (epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택된 1종 이상의 가교 결합성 작용기가 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 고분자 사슬에 결합된 치환기를 나타내며, l, m 및 n은 반복 단위의 반복수로, l 및 n은 각각 독립적으로 1 내지 1000의 정수이고, m은 0 내지 1000의 정수이다.
한편, 이러한 고분자 고체 전해질에서, 상기 극성 화합물의 함량은 고분자 고체 전해질의 총 중량 기준으로, 0.1 중량% 이상 내지 10 중량% 미만으로 될 수 있다.
또, 상기 극성 화합물은 카보네이트계 화합물 및 설포닐계 화합물로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 카보네이트계 용매 및 설포닐계 용매에서 유래하여 기체 상태로 포함된 극성 화합물로 될 수 있다.
한편, 상기 고분자 고체 전해질은 고분자의 3차원 네트워크 구조 내에 분산된 세라믹 화합물을 더 포함할 수 있다. 이러한 세라믹 화합물은 리튬 금속 산화물 또는 리튬 금속 인산화물의 산화물계 고체 전해질을 포함할 수 있고, 보다 구체적으로, 리튬-란타늄-지르코늄 산화물계(LLZO) 화합물, 리튬-실리콘티타늄 인산염계(LSTP) 화합물, 리튬-란타늄-티타늄 산화물계(LLTO) 화합물, 리튬-알루미늄-티타늄 인산염계(LATP) 화합물, 리튬-알루미늄-게르마늄 인산염계(LAGP) 화합물 및 리튬-란타늄-지르코늄-티타늄 산화물계(LLZTO) 화합물로 이루어진 군에서 선택되는 1종 이상의 산화물계 고체 전해질을 포함할 수 있다.
한편, 발명의 다른 구현예에 따르면, 양극; 음극; 및 상기 양극 및 음극 사이에 개재되며, 상술한 일 구현예의 고분자 고체 전해질을 포함한 전해질층을 포함하는 전고체 전지가 제공된다.
발명의 일 구현예에 따른 고분자 고체 전해질은 재료의 변형이나 파괴 없이 고분자 본연의 구조적 특성을 유지하면서, 고분자 사슬의 이동도(mobility) 향상을 통해 고분자 고체 전해질의 이온 전도도를 향상시킬 수 있다.
특히, 상기 고분자 고체 전해질은 극미량의 극성 화합물을 증기 증착에 의해 기체 상태로 포함함으로써, 고분자 고체 전해질의 이온 전도도 및 기계적 물성을 향상시킬 수 있다. 더 나아가, 증기 증착에 의해 극성 용매 및 이로부터 유래한 극성 화합물을 고분자 고체 전해질 내부에 포함되게 할 경우, 겔화(gelation)를 방지하고 내부 고분자 사슬의 완화 시간 (relaxation time)을 지연시켜 고분자 사슬의 이동도를 향상시킴으로써 기계적 물성 저하 없이 이온 전도도를 개선시킬 수 있다.
특히, 본 발명자들은 상기 고분자 사슬의 완화 시간뿐만 아니라, 상기 증기 증착에 의한 극성 화합물이 상기 고분자 사슬 내부에서 확산되는 시간 역시 이온 전도도와 연관성을 가짐을 확인하였다. 이에 상기 고분자 고체 전해질에 포함된 고분자 사슬의 완화 시간 및 극성 화합물의 확산 시간을 제어하여 상기 고분자 고체 전해질의 이온 전도도 개선 효과를 극대화할 수 있음을 확인하였다.
부가하여, 상기 고분자 고체 전해질이 균일하게 분산된 세라믹 화합물을 더 포함하여 이의 이온 전도도를 더욱 향상시킬 수 있다.
이하, 발명에 대한 이해를 돕기 위하여 발명의 구체적인 구현예들을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사 전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서 사용된 용어 "결합", 즉, 극성 화합물이 고분자 사슬, 예를 들어, PEO계 코폴리머의 사슬에 "결합"된 형태와 관련하여, 상기 "결합"은 극성 용매가 증기 증착에 의해, 극성 용매 분자인 기체 상태의 극성 화합물이 고분자 사슬에 고정된 상태로 유지된 형태를 광범위하게 의미하는 것이다. 즉, 상기 "결합"은 특정 종류의 물리적 결합, 화학적 결합 등에 국한되는 의미는 아니며, 이들 물리적 결합, 화학적 결합 등을 비롯한 다양한 결합에 의해 고정된 상태, 또는 흡착 등과 같이 단순히 부착되어 고정된 상태, 또는 상기 고분자의 가교 결합에 의해 형성된 3차원 네트워크 구조 내에 포함되어 상기 고분자 사슬 또는 가교 결합 구조에 인접하게 위치하여 고정된 상태를 포함하는 의미이다.
본 명세서에서 사용된 용어 "3차원 네트워크 구조"란 3차원 입체 형상의 프레임(frame)과, 상기 프레임에 의해 형성된 내부 공간을 포함하는 구조로서, 상기 프레임은 상기 가교 결합성 작용기에 의해 형성된 가교 결합, 예를 들어, 가 교 결합성 작용기 간의 가교 결합 및/또는 가교 결합성 작용기와 가교제 간의 가교 결합을 포함하는 고분자 사슬을 포함하는 것일 수 있다. 상기 3차원 네트워크 구조는 가교 결합 구조로도 지칭될 수 있다.
본 명세서에서 고분자 고체 전해질 내의 극성 화합물(극성 용매)이 “기체 상태”로 존재 또는 포함된다 함은, 상기 극성 용매 또는 이를 포함한 전해질이 액체 상태로 주입되는 경우와 구별되게, 상기 극성 화합물이 증기 상태로 증착되어 상기 고분자 고체 전해질의 제조 직후 내지 이를 포함하는 전고체 이차전지의 충, 방전 과정에서, 상기 극성 화합물이 액상 주입된 전해액과 구별되는 상태로 존재함을 나타내는 것이다. 다만, 상기 고분자 고체 전해질 및/또는 이차전지의 보관 또는 구동 조건 등에 따라, 상기 증기 증착된 극성 화합물이 국부적 또는 한시적으로 액화된 상태를 가질 수 있다. 이러한 경우에도, 상기 증기 증착된 극성 화합물은 상기 액체 상태로 주입된 극성 용매 등에 비해 높은 이동도를 나타내어 액체 상태의 극성 용매와는 상이한 상태를 나타내므로, 이 또한 상기 “기체 상태”로 존재 또는 포함되는 것으로 볼 수 있다.
추가로, 본 명세서에서 사용된 용어, "고분자 고체 전해질"은 필수 구성요소로서 (i) 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 포함하는 고분자; 및 극성 화합물;을 포함하거나, 또는 (ii) 상기 (i)에 세라믹 화합물을 포함하는 고분자 고체 전해질을 의미한다. 상기 (ii) 상기 (i)에 세라믹 화합물을 더 포함하는 고분자 고체 전해질은 "복합 고체 전해질"이라고 지칭할 수도 있다.
한편, 기존에는 고체 전해질의 이온 전도도를 개선하기 위해, 고체 전해질을 액체 전해질 또는 용매에 침지 또는 담지시키거나, 고체 전해질에 액체 전해질 또는 용매를 액체 상태로 직접 주입하였다. 이와 같이 고체 전해질에 액체 전해질 또는 용매를 직접 추가할 경우, 고체 전해질의 이온 전도도가 개선되는 효과는 있으나, 이는 액체 자체가 갖는 높은 이온 전도도에 기반한 고체 전해질의 이온 전도도 상승 효과에 불과하였고, 그 개선의 정도 또한 충분치 않아 상당량의 액체 전해질 등의 주입이 필요하였다. 즉, 리튬이온의 전도는 고체 전해질 고유의 물성보다 상기 고체 전해질에 추가된 액체 전해질에 의해서 이루어지기 때문에, 고체 전해질 자체의 물성 개선과는 거리가 멀다. 또한, 고분자 고체 전해질에 액체 전해질 또는 용매를 액체 상태로 직접 추가 또는 주입할 경우, 고분자와 액상 사이의 원하지 않는 부반응(unexpected side reaction)에 의해 고분자 사슬이 손상되거나 고분자 내 결합이 끊어지는 등 고체 전해질의 구조가 붕괴되거나 이로 인해 이온 전도도가 감소하는 문제점이 있었다.
또한, 고체 전해질에 용매 또는 액체 전해질을 직접 주입할 경우, 상기 고체 전해질 내에 액상 분자가 급격하게 확산됨으로써 고분자 사슬의 완화 현상이 급속하게 일어나, 표면에서 겔화(gelation)가 촉진되고 이로 인한 기계적 물성 저하 현상이 나타날 수 있으며, 액체 전해질의 누액 등의 문제가 완전히 해결되지 못할 수 있다.
또한, 종래기술인 일본 공개특허 제1994-124713호의 경우에는, 일반적인 PEO(polyethylene oxide) 고분자에 용매를 증기 증착시키는 기술로서, 이 경우에는 가교 구조의 결여로 고분자의 내부 구조가 붕괴되어 이온 전도도가 확보되지 않는 문제점이 있었다.
이에 본 발명자는 가교 결합성 작용기로 개질된 PEO(polyethylene oxide)계 코폴리머를 가교 결합한 고분자를 포함하는 고분자 고체 전해질에 극성 용매에서 유래한 극성 화합물을 증기 증착하는 방법을 적용하였다. 이렇게 제조된 일 구현예의 고분자 고체 전해질은 가교 결합성 작용기를 포함하는 PEO계 코폴리머를 포함하는 고분자; 및 극성 화합물을 포함하며, 상기 가교 결합성 작용기의 적어도 일부는 서로 가교 결합을 형성하여 상기 고분자가 3차원 네트워크 구조를 형성하고 있고, 상기 극성 화합물은 기체 상태로 상기 3차원 네트워크 구조 내에 포함되거나, 상기 고분자 사슬 상에 결합된 구조를 나타낼 수 있다.
이러한 고분자 고체 전해질은 미량의 극성 용매에서 유래한 극성 화합물을 기체 상태로 포함하면서도, 향상된 이온 전도도를 나타냄이 확인되었다. 이는 기체 상태의 극성 화합물이 PEO계 코폴리머의 결정성 등 물성에 영향을 미쳐 고분자 사슬의 이동도(chain mobility)를 증가시키고, 이를 통해 고분자 고체 전해질에 포함된 리튬 이온의 전도도를 향상시킬 수 있기 때문으로 예측된다.
따라서, 일 구현예의 고분자 고체 전해질은 액체 상태의 극성 용매 또는 전해액을 실질적으로 포함하지 않으면서도, 향상된 이온 전도도를 나타내어, 우수한 물성을 갖는 전고체 전지의 개발에 크게 기여할 수 있다.
이하에서는, 발명의 일 구현예에 따른 고분자 고체 전해질 등에 대해 구체적으로 설명한다.
고분자 고체 전해질
상술한 바와 같이, 일 구현예의 고분자 고체 전해질은 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 포함하는 고분자; 및 극성 화합물을 포함하며, 상기 코폴리머의 가교 결합성 작용기의 적어도 일부는 서로 가교 결합을 형성하여, 상기 고분자가 3차원 네트워크 구조를 형성하고 있고, 상기 극성 화합물은 기체 상태로 3차원 네트워크 구조 내에 포함되거나, 상기 고분자 사슬 상에 결합된 구조를 갖는 것이다.
구체적인 일 예에서, 상기 기체 상태의 극성 화합물은 상기 3차원 네트워크 구조를 형성한 고분자 사슬 사이에 분산되어 있거나, 상기 고분자 사슬의 표면 또는 내부에 흡착 또는 결합된 형태를 가질 수 있다.
이러한 고분자 고체 전해질은 후술하는 증기 증착에 의해 미량의 기체 상태로 포함 또는 결합된 극성 화합물을 포함한다. 이러한 고분자 고체 전해질은, 예를 들어, 이를 포함하는 전해질층을 전고체 전지 등으로부터 분리한 후, 육안 또는 전자 현미경 등으로 관찰하였을 때, 상기 전해질층 표면에서 액상의 성분이 관찰되지 않는 것으로부터 확인될 수 있다. 이와 달리, 고분자 고체 전해질에 액체 상태의 극성 용매 또는 전해액이 주입된 경우, 전해질층 표면에서 액상의 성분 또는 젖음성을 나타내는 성분이 관찰될 수 있다. 또한, 상기 극성 화합물이 증기 증착되어 기체 상태로 포함된 일 구현예의 고분자 고체 전해질은 후술하는 실시예를 통해서도 확인되는 바와 같이, 액체 상태의 극성 용매 또는 전해액이 주입된 경우에 비해, 크게 높은 이온 전도도를 나타낸다. 이러한 이온 전도도의 비교 등을 통해서도 상기 극성 화합물이 증기 증착되어 기체 상태로 포함되는 고분자 고체 전해질이 확인될 수 있다.
추가로, 일 구현예의 고분자 고체 전해질은 하기 식 1의 관계식에 의한 특성을 충족하는 것이다:
<식 1>
Figure PCTKR2023015792-appb-img-000006
상기 식 1에서,
tR은 상기 고분자 사슬의 완화 시간(relaxation time)이고,
tD는 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간으로서, 하기 식 2로 정의되며,
<식 2>
Figure PCTKR2023015792-appb-img-000007
상기 식 2에서,
D는 상기 고분자 사슬 내에서 극성 화합물의 확산 계수로서 10-9 내지 10-6 ㎠/s이고, L은 상기 고분자 고체 전해질의 두께로서, 5 내지 500 ㎛ 이다.
이러한 식 1은 상기 일 구현예의 고분자 고체 전해질에서, 상기 극성 화합물 및 이에 의한 고분자의 거동이 상기 고분자 고체 전해질의 이온 전도도 개선과 관련이 있다는 점에 기초하여 도출된 것이다.
구체적으로, 상기 식 1은 상기 고분자 사슬, 예를 들어, 상기 PEO계 코폴리머의 완화 시간(tR)과. 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간(tD)의 상관 관계를 규정한 것이다. 상기 식 1을 만족함은 고분자의 완화 시간이 상대적으로 크게 되면서, 극성 화합물의 기체 상태로 인한 이동성이 증가하여 확산 시간이 짧아짐을 나타내며, 후술하는 실시예와 같이 해당 특성의 충족에 의해 고분자 고체 전해질의 이온 전도도가 현저히 개선될 수 있음이 확인되었다.
예를 들어, 상기 고분자 사슬의 완화 시간(tR)이 지연될수록 고분자 사슬의 유동성이 커져 고분자 사슬의 이동도가 향상되는 것을 의미하므로, 상기 고분자 사슬의 완화 시간(tR)이 지연되어 그 값이 커질수록 이온 전도도 개선에 유리할 수 있다. 또한, 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간(tD)이 짧아질수록 이온 전도도 개선 효과가 나타날 수 있다.
따라서, 상기 고분자 사슬의 완화 시간(tR)과 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간(tD)이 상기 식 1에 규정된 바와 같은 범위를 만족할 경우, 고분자 고체 전해질의 이온 전도도 더욱 향상시킬 수 있다. 상기 완화 시간은 12 시간 이상, 120 시간 이하일 수 있다.
이러한 식 1의 특성은 극성 용매(극성 화합물)가 증기 증착되어 제조된 상기 일 구현예의 고분자 고체 전해질에 의해 비로소 달성되는 것으로서, 상기 증기 증착된 극성 화합물이 고분자 사슬의 이동도를 향상시키는 한편, 이러한 극성 화합물이 기체 상태로 포함되어 그 자체의 확산 시간이 짧아짐에 따라 달성되는 것으로 추정될 수 있다.
예를 들어, 상기 식 1을 만족할 경우, 상기 기체 상태의 극성 화합물이 고분자에 흡착된 후 확산될 때, Fickian Diffusion 거동을 나타낸다. Fickian Diffusion 거동에 의하여 상기 극성 화합물은 고분자 내부에서 확산되는 효과로 인해 균일한(uniform)한 농도 프로파일(profile)이 형성된다. 이에 따라, 상기 고분자 사슬의 표면 또는 내부에 미량의 기체 상태 극성 화합물이 포함되도록 조절이 가능하여 고분자 내부 구조의 변형 없이 고분자 사슬의 유동성만을 향상시키게 되므로, 상기 고분자 고체 전해질의 이온 전도도가 개선될 수 있다.
반면, 상기 식 1의 범위를 벗어날 경우, 상기 극성 용매는 액체 상태로 주입되는 것으로 추정될 수 있고, Non-Fickian Diffusion 거동을 나타낸다. Non-Fickian Diffusion 거동에 의하여, 상기 극성 용매는 상기 고분자에 급격히 흡수되어 고분자 표면에서의 겔화가 진행될 수 있고, 고분자 내부에서의 불균일한 농도 분포로 인해 고분자 사슬의 유동성(chain mobility)이 저하되어 상기 고분자 고체 전해질의 이온 전도도의 상승 효과가 크지 않을 수 있다.
상술한 원리로, 식 1의 특성을 충족하는 고분자 고체 전해질은 향상된 이온 전도도를 나타낼 수 있으며, 상기 식 1의 충족에 의해 해당 고분자 고체 전해질이 증기 증착된 기체 상태의 극성 화합물을 포함함이 간접적으로 확인될 수 있다.
한편, 상술한 식 1의 관계식에서, 상기 tR은 고분자 사슬의 완화 시간(relaxation time)을 의미하는 것으로, 상기 극성 용매(극성 화합물)의 증기 증착에 의해 고분자 사슬이 변형된 후, 평형 또는 정상 상태로 회복되는 시점까지 소요되는 시간을 의미할 수 있다. 일반적으로, 완화 시간은 평형 상태에 있는 고분자 시스템이 외부의 교란(perturbation)에 의해 비평형 상태로 전환된 후, 또 다른 평형 상태에 도달하기까지 걸리는 시간을 의미하는 것일 수 있다. 예를 들어, 상기 완화 시간을 측정하는 일 예의 방법 및 조건은 『Tapabrata Dam, et al., “The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO20-LiCF3SO3 based ion conducting polymer clay composites”, Phys. Chem. Chem. Phys 18, 19955-19965 (2016)』 등에 기재되어 있다.
상기 식 1의 tR에서는, 극성 용매의 증기 증착이 외부의 교란에 해당되며, 증기 증착 시간(t)이 tR인 시점(t = tR)부터 관찰되는 이온 전도도는 고분자 시스템이 안정적인 평형 상태에 도달하였음을 나타내는 시그널일 수 있다.
상기 완화 시간은 일반적으로 온도에 따라 변화하는 것일 수 있다. 고분자 고체 전해질의 이온 전도도는 온도가 증가할수록 함께 증가하는 거동을 보인다. 따라서, 상기 증기 증착 공정을 고온에서 실행할 경우, 이온 전도도 증가는 온도 및 증기 증착 효과가 중첩되어 나타나는 결과일 수 있다. 실험 결과의 커플링 현상(coupling effect)을 배제하고, 증기 증착으로 인해 유도되는 고분자 사슬의 완화시간을 정확히 파악하기 위해 증기 증착 공정은 상온에서 실시하는 것일 수 있다.
tD는 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간으로서, 일정한 확산계수를 갖는 상기 극성 화합물이 일정한 두께를 갖는 고분자 내부로 확산하는데 소요되는 시간이다. 상기 고분자는 고분자 필름 형태일 수 있다.
상기 식 2에서, D는 고분자 사슬 내에서 극성 화합물의 확산 계수로서 10-9 내지 10-6 ㎠/s일 수 있다. 상기 D가 10-9 ㎠/s 미만이면 고분자 사슬 내부에서 극성 화합물의 확산이 너무 느려 증기 증착 공정이 어려울 수 있고, 10-6 ㎠/s 초과이면 극성 화합물이 확산 및 증발되는 속도가 빨라져, 고분자의 겔화가 촉진될 수 있다. 상기 D는 피팅 파라미터(fitting parameter)로 사용되는 것일 수 있다.
상기 D는 하기 식 3으로부터 계산될 수 있다.
<식 3>
Figure PCTKR2023015792-appb-img-000008
상기 M(t)는 상기 고분자 고체 전해질 내에 포함된 상기 극성 화합물의 시간에 경과에 따른 증발량이고, 상기 M는 상기 고분자 고체 전해질에 포함될 수 있는 극성 화합물의 최대값 또는 포화값으로서, 0.005 내지 0.5 이고, 상기 L은, 예를 들어, 필름 상태 고분자 고체 전해질의 두께로서, 5㎛ 내지 500 ㎛이고, 상기 t는 상기 액상증발속도가 측정되는 시간을 의미한다.
상기 M(t)를 측정한 후, 상기 식 3으로 피팅시, 피팅 파라미터인 D를 구할 수 있다.
L은, 예를 들어, 필름 상태로 얻어진 고분자 고체 전해질의 두께로서, 5 내지 500 ㎛ 일 수 있다. 상기 L이 5 ㎛ 미만이면 상기 극성 화합물에 의한 스웰링(swelling)으로 인하여 고분자 고체 전해질의 기계적 강도가 저하되어 취급이 어렵거나, 파괴될 수 있다. 상기 L이 500 ㎛ 초과이면 두께가 증가함에 따라 전지 내에서 저항으로 작용할 수도 있어, 전지 성능 저하가 발생할 수 있다. 상기 L은 측정하는 방법 또는 장치는, 물체의 두께를 측정할 수 있는 수단이라면 특별히 제한되는 것은 아니다. 예컨대, 상기 L은 일반적인 마이크로미터(Micrometer)를 이용하여 측정되거나, 또는 단면을 SEM(Scanning Electron Microscope)으로 분석하여 측정될 수 있다.
한편, 상기 일 구현예의 고분자 고체 전해질에서, 상기 가교 결합성 작용기는 상기 PEO계 코폴리머의 주쇄 등에 직접 결합될 수도 있지만, 알킬렌 또는 알킬렌 옥사이드 링커를 매개로 결합될 수 있다. 이에 상기 가교 결합성 작용기는 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 결합될 수 있고, 히드록시기 (hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기(cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기(epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택되는 1종 이상으로 될 수 있다.
발명의 일 실시예에서, 상기 가교 결합성 작용기는 2종 이상일 수 있다. 상기 가교 결합성 작용기는 서로 동일 또는 상이할 수 있으며, 바람직하게는 상이한 것일 수 있다. 상기 가교 결합성 작용기가 상이할 경우, 이들 작용기를 각각 포함하는 복수 종의 반복 단위가 포함될 수 있다. 또한, 복수 종의 가교 결합성 작용기가 포함된 경우, 고분자 사슬의 이동도 및 이온 전도도의 제어가 보다 용이하게 될 수도 있다.
상기 가교 결합성 작용기는 가교 결합성 작용기 간의 가교 결합을 형성하거나, 및/또는 가교제를 매개로 서로 가교 결합을 형성할 수 있는 작용기(functional group)를 의미하는 것으로, 고분자 사슬의 주쇄에 측쇄(side chain) 형태로 결합될 수 있다.
보다 구체적인 일 실시예에서, 상기 가교 결합성 작용기를 포함하는 PEO 계 코폴리머는 하기 화학식 1 내지 3의 반복 단위를 포함하는 공중합체로 될 수 있다:
[화학식 1]
Figure PCTKR2023015792-appb-img-000009
[화학식 2]
Figure PCTKR2023015792-appb-img-000010
[화학식 3]
Figure PCTKR2023015792-appb-img-000011
상기 화학식 1 내지 3에서, R1은 -CH2-O-(CH2-CH2-O)k-R3 를 나타내며, k는 0 내지 20이고, R3는 탄소수 1 내지 5의 알킬기를 나타내고,
R2는 히드록시기(hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기(cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기 (epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택된 1종 이상의 가교 결합성 작용기가 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 고분자 사슬에 결합된 치환기를 나타내며,
l, m 및 n은 반복 단위의 반복수로, l 및 n은 각각 독립적으로 1 내지 1000의 정수이고, m은 0 내지 1000의 정수이다.
예를 들어, 상기 R2의 가교 결합성 작용기는 상기 가교 결합에 의해 형성된 3차원 네트워크 구조의 매트릭스 형태를 가지는 고분자를 형성할 수 있다. 상기 가교 결합에 의한 3차원 네트워크 구조가 형성됨으로써, 상기 고분자 고체 전해질의 기계적 물성이 향상될 수 있으며, 이러한 3차원 네트워크 구조 내에 상기 기체 상태의 극성 화합물이 포함 또는 결합되어 이온 전도도가 보다 향상된 일 구현예의 고분자 고체 전해질이 제공될 수 있다.
또한, 상기 PEO계 코폴리머는 상기 R2가 서로 다른 가교 결합성 작용기로 되는 2종 이상의 화학식 3의 반복 단위를 포함할 수도 있고, 화학식 2의 반복 단위 역시 1종 이상으로 포함될 수 있음은 자명하다.
상기 l, m 및 n이 각각 1 미만인 경우, 고분자를 형성하기에는 분자량이 작아 어려움이 있고, 상기 l, m 및 n이 각각 1000 초과인 경우, 점도 증가로 인해 고분자 용액 제조 시 용해도가 감소되고 고분자 고체 전해질 제조를 위한 성형이 어려워질 수 있다. 특히, l, m 및 n 중 가교 결합성 작용기가 포함된 반복 단위의 반복수가 1000을 초과할 경우, 가교도가 지나치게 증가되어 고분자 사슬의 이 동도가 저하되어 고분자 고체 전해질의 이온 전도도가 감소될 수 있다.
본 명세서에 있어서, “히드록시기”는 -OH기를 지칭한다.
본 명세서에 있어서, "카복실기"는 -COOH기를 지칭한다.
본 명세서에 있어서, "이소시아네이트기"는 -N=C=O기를 지칭한다.
본 명세서에 있어서, "니트로기"는 -NO2기를 지칭한다.
본 명세서에 있어서, "시아노기"는 -CN기를 지칭한다.
본 명세서에 있어서, “아미드기”는 -C(=O)NR’R”을 지칭하며, 여 기서 R’ 및 R”은 각각 독립적으로 수소 또는 C1 내지 C5의 알킬기일 수 있거나, R’ 및 R”은 이들이 부착된 N원자와 함께 고리 구조 내에서 C4 내지 C8의 원자를 갖는 헤테로고리를 형성할 수 있다.
본 명세서에 있어서, "아민기"는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하 다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에 틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐 아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐 아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐 아민기 등이 있으나, 이들에만 한정되는 것은 아니다. 또한, “아미노기”는 -NH2를 지칭한다.
본 명세서에 있어서, "알릴기"는 -CH2-CH=CH2기를 지칭한다.
상기 화학식 1 내지 3을 포함하는 코폴리머의 중량평균분자량(Mw)은 100,000 g/mol 내지 2,000,000 g/mol 일 수 있으며, 구체적으로, 100,000 g/mol 이 상, 200,000 g/mol 이상 또는 300,000 g/mol 이상일 수 있고, 1,600,000 g/mol 이 하, 1,800,000 g/mol 이하 또는 2,000,000 g/mol 이하일 수 있다. 상기 코폴리머의 중량평균분자량(Mw)이 100,000 g/mol 미만이면 제조되는 고분자 고체 전해질의 기계적 물성을 충족시키지 못할 수 있다. 상기 코폴리머의 중량평균분자량(Mw)이 2,000,000 g/mol 초과이면, 점도 증가로 인해 고분자 용액 제조시 용해도가 감소되고 고분자 고체 전해질 제조를 위한 성형이 어려워질 수 있다. 또한, 상기 고분자 고체 전해질 내부의 결정성 증가 및 사슬 이동도의 감소로 인해 고분자 고체 전해질의 이온 전도도가 감소할 수 있다.
특히, l, m 및 n 중 가교 결합성 작용기가 포함된 화학식 3의 반복 단위의 반복수가 1000을 초과할 경우, 가교도가 지나치게 증가하여 고분자 사슬의 이동도가 저하되어 고분자 고체 전해질의 이온 전도도가 감소될 수 있다.
또한, 상기 코폴리머는 랜덤 코폴리머(random copolymer) 또는 블록 코폴리머(block copolymer)일 수 있다.
발명의 구체적인 일 실시예에서, 상기 극성 화합물은 기체 상태로 상기 고분자 사슬의 표면 또는 내부에 포함 또는 결합된 것일 수 있다. 구체적으로, 상기 기체 상태의 극성 화합물은 상기 가교 결합에 의해 3차원 네트워크 구조를 형성한 고분자 사슬 사이에 확산 또는 분산되어 있거나, 상기 고분자 사슬의 표면 또는 내부에 흡착 또는 결합될 수 있다.
상기 극성 화합물은 증기 증착 공정에서 사용된 극성 용매의 기체 분자로서, 증기 증착시 상기 극성 용매의 기체 분자가 고분자에 흡착된 후, 고분자의 사슬 내 부로 확산하여, 상기 고분자 사슬에 결합되거나, 또는 고분자 사슬 사이의 내부 공 간에 분산 또는 확산된 형태로 포함될 수 있다. 상기 극성 화합물이 고분자 사슬에 결합되거나, 또는 고분자 사슬 사이의 내부 공간에 분산된 형태로 포함됨으로써, 최종 제조된 고분자 고체 전해질의 이온 전도도를 향상시킬 수 있다.
구체적으로, 상기 고분자 사슬에 결합되거나, 고분자 사슬 사이에 포함된 극성 화합물은 가소제 역할을 하여, 상기 고분자를 가소화(plasticization)시킬 수 있다. 상기 가소화된 고분자는 내부에 무정형 영역(amorphous region)이 증가하여, 고분자 사슬의 이동도가 향상될 수 있다. 상기 고분자 사슬의 이동도가 향상됨에 따라, 상기 고분자 내부에서 이온 호핑(ion hopping) 효과가 증대되어, 고분자 고체 전해질의 이온 전도도가 향상될 수 있다.
또한, 상기 극성 화합물은 이온 호핑을 통해 원활한 이온 전달을 위한 중간체(intermediate) 역할을 할 수 있다. 리튬 이온과 극성 화합물 간의 친화 도(affinity)는 리튬 이온과 PEO계 코폴리머의 에테르 산소(ether oxygen) 간의 친 화도보다 강하므로, 상기 극성 화합물이 흡착된 고분자의 내부에서 리튬 이온의 전 달이 보다 빠르고 용이할 수 있다. 즉, 상기 고분자 내부에 극성 화합물이 유입됨에 따라 리튬 이온의 양이온 용매화(cation solvation) 효과가 증대되므로, 이온 이동도가 향상되고, 이에 따라 고분자 고체 전해질의 이온 전도도가 개선될 수 있다.
또한, 상기 극성 화합물은 카보네이트계 화합물 및 설포닐계 화합물로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.
구체적으로, 상기 극성 화합물은 에틸메틸카보네이트(Ethyl Methyl carbonate, EMC), 디메틸카보네이트(Dimethyl Carbonate, DMC), 디에틸카보네이트 (Diethyl Carbonate, DEC), 에틸렌카보네이트(Ethylene Carbonate, EC), 프로필렌 카보네이트(Propylene Carbonate, PC), 비닐렌카보네이트(Vinylene Carbonate, VC) 및 술폴레인(Sulfolane)로 이루어진 군에서 선택되는 1종 이상을 포함하거나, 이들의 조합을 포함할 수 있다.
상기 극성 화합물의 함량은 상기 고분자 고체 전해질의 총 중량 기 준으로, 0.1 중량% 이상 내지 10 중량% 미만을 포함할 수 있다. 예를 들어, 상기 극성 화합물의 함량은 0.1 중량% 이상, 1 중량% 이상, 2 중량% 이상이거나, 5 중량% 이하, 6 중량% 이하, 7 중량% 이하, 8 중량% 이하, 9 중량% 이하, 10 중량% 미만일 수 있다. 상기 극성 화합물의 함량이 0.1 중량 % 미만인 경우, 고분자 내부의 사슬의 형태(chain conformation) 변화를 유발하기 힘들어 상기 고분자 고체 전해질의 이온 전도도가 향상되지 않고, 상기 극성 화합물의 함량이 10 중량% 이상인 경우, 상기 고분자 고체 전해질에 액체의 함유량이 많아 반고체전지의 성질을 띠게 되고, 또한, 고분자의 겔화로 인해 고분자 고체 전해질의 기계적 강도가 저하될 수 있다.
발명의 일 실시예에서, 상기 고분자 고체 전해질은 가교 결합성 작용기 간의 가교 결합을 포함할 수 있다. 또한, 상기 고분자 고체 전해질은 가교제를 더 포함하여, 상기 가교제와 가교 결합성 작용기 간의 가교 결합을 더 포함할 수 있다. 예를 들어, 상기 가교 결합성 작용기의 적어도 일부는 상기 가교제를 매개로 서로 가교 결합을 형성하여, 상술한 3차원 네트워크 구조를 형성할 수 있다.
상기 가교 결합은 우레탄 가교 결합(urethane bond), 에스테르 가교 결합(ester bond), 수소 결합(hydrogen bond), 알릴기(allyl group, -CH2-CH=CH2) 말단의 비닐기에 의한 라디칼 중합 반응으로 형성된 결합 등일 수 있으나, 이들의 예로만 한정되는 것은 아니다.
또한, 상기 고분자 고체 전해질의 제조 공정에서 가교제를 첨가할 경우, 상기 가교제와 가교 결합성 작용기 간의 가교 결합이 형성될 수도 있으며, 상기 가교 결합은 수소결합, 루이스 산-염기 상호작용에 의한 결합, 이온결합, 배 위결합 또는 라디칼 중합에 의해 형성된 결합일 수 있다.
상기 가교제는 상기 가교 결합성 작용기와 가교 결합을 형성할 수 있는 다관능성 가교제라면 특별히 제한되는 것은 아니다. 예컨대, 상기 가교제는 트라이메틸올프로페인 트라이메타크릴레이트 (trimethylolpropane trimethacrylate), 폴리에틸렌글라이콜 다이아크릴레이트(poly(ethylene glycol) diacrylate), 폴리에틸렌글라이콜 다이메타크리레이트(poly(ethylene glycol) dimethacrylate), 에틸렌 글리콜 디메틸아클릴레이트(ethylene glycol dimethylacrylate, 이하 'EGDMA'), 1,3-다이아이소프로페닐벤젠(1,3-diisopropenylbenzene(DIP)), 1,4-다이아크릴로일 피페라진(1,4-diacryloyl piperazine), 2-(다이에틸아미노)에틸 메타크릴레이트(2(diethylamino)ethyl methacrylate), 2,6-비스아크릴로일아미도피리딘(2,6bisacryloylamidopyridine), 3-(아크릴록시)-2-하이드록시프로필 메타크릴레이트 (3-(acryloyloxy)-2-hydroxypropyl methacrylate), 3,5-비스(아크릴아마이도)벤조산(3,5-bis(acryloylamido)benzoic acid), 3-아미노프로필트라이에톡시실란(3aminopropyltriethoxysilane), 3-아이소시아나토프로필트라이에톡시실란(3isocyanatopropyltriethoxysilane), 3-메틸아크리록시프로필 트라이메톡시실란(3methylacryloxypropyl trimethoxysilane), 비스-(1-(tert-뷰틸퍼옥시)-1-메틸에틸)-벤젠(bis-(1-(tert-butylperoxy)-1-methylethyl)-benzene), 다이큐밀 퍼옥사이드(dicumyl peroxide), 다이메타크릴레이트(dimethacrylate), 다이비닐벤젠(Divinylbenzene), 에틸렌 글라이콜 말레익 로지네이트 아크릴레이트 (ethylene glycol maleic rosinate acrylate), 글라이시딜메타크릴레이트 (glycidilmethacrylate), 하이드록시 퀴놀린(hydroxyquinoline), 아이페닐다이에톡시실란(iphenyldiethoxysilane), 말레익 로진 글라이콜 아크릴레이트(maleic rosin glycol acrylate), 메틸렌 바이사크릴아마이드(methylene bisacrylamide), N,N'1,4-페닐렌다이아크릴아민(N,N'-1,4-phenylenediacrylamine), N,O-비스아크릴로일페닐알아니놀(N,O-bisacryloyl-phenylalaninol), N,O-비스메타크릴로일 에타놀아민 (N,O-bismethacryloyl ethanolamine), 펜타에리스리톨 트라이아크릴레이트 (pentaerythritol triacrylate), 페닐트라이메톡시 실란(phenyltrimethoxy silane), 테트라메톡시실란(tetramethoxysilane), 테트라메틸렌(tetramethylene), 테트라에톡시실란(tetraethoxysilane), 트라이알릴 아이소시아뉴레이트(triallyl isocyanurate)으로 이루어진 군에서 선택되는 1종 이상의 다관능성 가교제, 예를 들어, 2 관능 이상의 다가 화합물로 될 수 있다.
또한, 상기 가교제는 상기 가교 결합성 작용기를 포함하는 PEO계 코폴리머 100 중량부에 대하여 1 내지 30 중량부로 포함될 수 있다. 상기 가교제의 함량이 1 중량부 미만이면 가교 결합성 작용기와의 가교 결합이 충분히 이루어지지 않을 수 있고, 30 중량부 초과이면 가교 결합이 과도하게 이루어져 오히려 고분자 사슬의 이동도가 감소함으로써 이온 전도도가 저하될 수 있다.
발명의 일 실시예에서, 상기 고분자 고체 전해질은 리튬염을 더 포함할 수 있다. 상기 리튬염은 상기 고분자 사슬 사이의 내부 공간에 해리된 이온 상태로 포함되어, 고분자 고체 전해질의 이온 전도도를 향상시킬 수 있다. 상기 리튬염에서 해리된 양이온 및/또는 음이온의 적어도 일부는 상기 고분자 사슬에 결합된 상태로 존재하여, 전지의 충/방전시에 이동성을 나타낼 수 있다.
상기 리튬염은 (CF3SO2)2NLi(Lithium bis(trifluoromethanesulphonyl)imide, LiTFSI), (FSO2)2NLi(Lithium bis(fluorosulfonyl)imide, LiFSI), LiNO3, LiOH, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, 클로로보란 리튬, 저급 지방족 카르본산 리튬 및 테트라페닐 붕산 리튬으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 리튬염은 상기 가교 결합성 작용기를 포함하는 PEO계 코폴리머 100 중량부에 대하여 25 내지 45 중량부로 포함될 수 있으며, 구체적으로, 25 중량부 이상, 30 중량부 이상 또는 35 중량부 이상으로 포함되거나, 40 중량부 이하 또는 45 중량부 이하로 포함될 수 있다. 상기 리튬염의 함량이 25 중량부 미 만이면 고분자 고체 전해질의 이온 전도도가 저하될 수 있고, 45 중량부 초과이면 기계적 강도가 저하될 수 있다.
한편, 상술한 일 구현예의 고분자 고체전해질은 상기 고분자의 3차원 네트워크 구조 내에 분산된 세라믹 화합물을 더 포함할 수 있다. 상기 세라믹 화합물은 리튬 이온의 전도성을 향상시키기 위한 리튬 이온 전달 능력을 갖는 것으로서, 바람직하게는 리튬 원자를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 가질 수 있는 것으로, 고분자 고체 전해질의 이온 전도도를 향상시킬 수 있다.
또한, 상기 세라믹 화합물은 가교 결합된 고분자 사슬 사이, 예를 들어, 상기 3차원 네트워크 구조 내에 균일하게 분산된 상태로 포함될 수 있다. 상기 세라믹 화합물은 가교 결합 공정에서 함께 첨가되어, 가교 결합에 의해 형성되는 고분자 사슬의 사이에 뭉침없이 균일하게 분산될 수 있다. 이와 같은 세라믹 화합물은 균일한 분산 형태로 인하여 고분자 고체 전해질의 기계적 강도와 이온 전도도 향상에 유리할 수 있다.
또한, 상기 세라믹 화합물은 입자 형태일 수 있다. 입자라는 형태적인 특징으로 인하여, 고분자 고체 전해질 내부에서 더욱 균일하게 분산된 상태로 포함될 수 있다. 상기 세라믹 화합물의 입자는 구형일 수 있으며, 그 직경은 100 nm 내지 1000 nm 일 수 있다. 상기 직경이 100 nm 미만이면 고분자의 결정성 감소를 통한 비결정화 효과가 미미할 수 있고, 1000 nm 초과이면 입자들 간의 응집 (aggregation) 증가로 인해 분산성이 저하되어 균일하게 분산되기 어려울 수 있다.
상기 세라믹 화학물은 산화물계 또는 인산염계 화합물일 수 있으며, 예를 들어, 리튬 금속 산화물 또는 리튬 금속 인산화물 형태의 산화물계 고체 전해질로 될 수 있다. 보다 구체적으로, 상기 세라믹 화합물은 가넷(Garnet)형 리튬-란타늄-지르코늄 산화물계(LLZO, Li7La3Zr2O12) 화합물, 페로브스카이트(perovskite)형 리튬-란타늄-티타늄 산화물계(LLTO, Li3xLa2/3-xTiO3) 화합물, 인산염(phosphate)계의 나시콘(NASICON)형 리튬-알루미늄-티타늄 인산염계(LATP, Li1+xAlxTi2-x(PO4)3) 화합물, 리튬-알루미늄-게르마늄 인산염계(LAGP, Li1.5Al0.5Ge1.5(PO4)3)계 화합물, 리튬-실리콘-티타늄 인산염계(LSTP, LiSiO2TiO2(PO4)3) 화합물 및 리튬-란타늄-지르코늄-티 타늄 산화물계(LLZTO) 화합물로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 더욱 바람직하게는 리튬-란타늄-지르코늄 산화물(LLZO), 리튬-실리콘-티타늄 인산염(LSTP), 리튬-란타늄-티타늄 산화물(LLTO), 리튬-알루미늄-티타늄 인산염 (LATP), 리튬-알루미늄-게르마늄 인산염(LAGP) 및 리튬-란타늄-지르코늄-티타늄 산화물(LLZTO)로 이루어지는 군에서 선택되는 1종 이상의 산화물계 고체 전해질을 사용할 수 있다.
상기 산화물계 또는 인산염계 산화물계 고체 전해질은 일반적으로 상온에서 최대 10-4~10-3 S/cm의 이온전도도 값을 가지며, 고전압 영역에서 안정하고, 공기 중에서 안정해 합성 및 취급이 용이한 장점들이 있다. 따라서, 상술한 고분자 고체 전해질이 상기 세라믹 화합물을 더 포함하여 나머지 고분자 성분 등이 갖는 단점들을 보완할 수 있다.
또한 상기 세라믹 화합물은 400 ℃ 이상의 고온 조건 하에서도 쉽게 연소되거나 발화현상을 일으키지 않으므로 고온 안정성이 높다. 따라서, 상기 고분자 고체 전해질이 상기 세라믹 화합물을 포함하는 경우, 고분자 고체 전해질의 기계적 강도는 물론, 고온 안정성 및 이온 전도도를 향상시킬 수 있다.
상기 세라믹 화합물은 상기 가교 결합성 작용기를 포함하는 PEO계 코폴리머 100 중량부에 대하여 10 중량부 내지 100 중량부, 혹은 10 중량부 내지 60 중량부로 포함될 수 있다.
상기 세라믹 화합물이 지나치게 작은 함량으로 포함되면, 세라믹 화합물에 의한 고분자 결정성 저하 및 무정형(amorphous)화 효과가 감소하여 고분자 고체 전해질의 이온 전도도 증가 효과가 크지 않으며, 기계적 물성 또한 복합체(composite) 형성으로 인해 기대하는 수준에 미치지 못할 수 있다.
상기 세라믹 화합물이 지나치게 큰 함량으로 포함되면, 상기 세라믹 화합물이 상기 고분자 내에 균일하게 분산되지 않아, 세라믹 화합물 입자들이 서로 뭉쳐 응집되는 현상이 발생하고, 결과적으로 이온 전도도가 저하된 고분자 고체 전해질이 제조될 수 있다.
고분자 고체 전해질의 제조방법
상술한 고분자 고체 전해질의 제조방법은 (S1) 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 가교 결합한 고분자를 제조하는 단계; 및 (S2) 상기 (S1) 단계에서 제조된 고분자에 극성 용매를 증기 증착 시키는 단계;를 포함할 수 있다.
상기 가교 결합성 작용기를 포함하는 PEO계 코폴리머를 가교 결합한 고분자에 대한 설명은 상기 기재된 바와 같다.
이하, 각 단계별로 보다 상세히 설명한다.
상기 (S1) 단계에서는, 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 가교 결합한 고분자를 제조할 수 있다.
상기 (S1) 단계의 가교 결합은 가교제 및 개시제로 이루어진 군에서 선택되는 1종 이상의 추가 존재 하에 진행할 수 있다.
또한, 상기 고분자 고체 전해질 형성을 위해, 상기 (S1) 단계의 가교 결합시 또는 그 이전 단계에서, 리튬염을 함께 첨가할 수도 있고, 추가로 세라믹 화합물을 더 첨가할 수도 있다.
상기 가교 결합은 상기 PEO계 코폴리머를 포함하는 고분자 용액을 기재 상에 도포하여 도포막을 형성한 후 건조하는 과정에서 형성될 수 있다.
구체적으로, 상기 고분자 용액은 상기 PEO계 코폴리머를 용매에 혼합하여 제조될 수 있으며, 추가로, 가교제, 개시제 및/또는 리튬염을 함께 혼합하여 제조될 수 있다.
상기 용매는 상기 PEO계 코폴리머, 가교제, 개시제 및/또는 리튬염을 혼합시킬 수 있고, 건조 공정에 의해 쉽게 제거될 수 있는 용매라면 특별히 제 한되는 것은 아니다. 예를 들어, 상기 용매는 아세토나이트릴(acetonitrile), 메탄 올(methanol), 에탄올(ethanol), 테트라히로퓨란(tetrahydrofuran), 물(water), 이 소프로필알코올, 디메틸설폭사이드(DMSO, Dimethyl sulfoxide), 메틸피롤리돈(NMP, N-Methyl-2-Pyrrolidone) 또는 디메틸포름아미드(DMF, N,N-Dimethyl formamide) 등일 수 있다. 이러한 용매는 가교 결합 형성을 위한 반응 매질로서의 용매로서, 액체 전해질 등에 포함되는 극성 용매 등과는 구분되며, 가교 결합 후 건조 등에 의해 완전히 제거되는 것이다.
상기 고분자 용액의 농도는 고분자 고체 전해질 제조를 위한 성형 공정이 원활히 진행될 수 있을 정도를 감안하여 적절히 조절할 수 있다. 구체적으로, 상기 고분자 용액의 농도란, 상기 고분자 용액 내에서 고분자의 농도(w/w%)를 의미하는 것일 수 있다. 상기 고분자의 농도란 PEO계 코폴리머의 농도인 것일 수 있다. 예를 들어, 상기 고분자 용액의 농도는 5중량% 내지 20중량% 일 수 있으며, 구체적으로, 5중량% 이상, 7중량% 이상 또는 9중량% 이상일 수 있고, 13중량% 이하, 17중량% 이하 또는 20중량% 이하 일 수 있다. 상기 고분자 용액의 농도가 5중량% 미만이면, 농도가 지나치게 묽어 고분자 고체 전해질의 기계적 강도가 저하되거나, 기재 상에 도포 시 흘러내릴 수 있고, 20중량% 초과이면 고분자 용액 내에 원하는 농도로 리튬염을 용해시키기 어렵고, 점도가 높아 용해도가 감소하거나 균일한 박막 형태로 도포하기 어려울 수 있다.
상기 기재는 상기 도포막에 대한 지지체 역할을 할 수 있는 것이라 면 특별히 제한되는 것은 아니다. 예를 들어, 상기 기재는 SUS(Stainless Use Steel), 폴리에틸렌테레프탈레이트 필름, 폴리테트라플로오로에틸렌 필름, 폴리에틸렌 필름, 폴리프로필렌 필름, 폴리부텐 필름, 폴리부타디엔 필름, 염화비닐 공중합체 필름, 폴리우레탄 필름, 에틸렌-비닐아세테이트 필름, 에틸렌-프로필렌 공중 합체 필름, 에틸렌-아크릴산 에틸 공중합체 필름, 에틸렌-아크릴산 메틸 공중합체 필름 또는 폴리이미드 필름일 수 있다.
또한, 상기 도포 방법 역시 상기 고분자 용액을 상기 기재 상에 도포하여 도포막을 형성할 수 있는 방법이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 도포 방법은 바코팅(bar coating), 롤코팅(roll coating), 스핀코팅 (spin coating), 슬릿코팅(slit coating), 다이코팅(die coating), 블레이드코팅 (blade coating), 콤마코팅(comma coating), 슬롯다이코팅(slot die coating), 립 코팅(lip coating), 스프레이코팅(spray coating) 또는 솔루션캐스팅(solution casting)일 수 있다.
상기와 같은 도포 방법 의해 기재 상에 형성된 도포막은 건조 공정을 통해 잔류 용매가 완전히 제거된 필름 형태의 고분자로 성형될 수 있다. 상기 건조는 용매의 급격한 증발로 인한 고분자의 수축을 방지하기 위해, 1차 건조 공정 및 2차 건조 공정으로 나누어 실시될 수 있다. 상기 1차 건조 공정은 상온 건조를 통해 용매의 일부를 제거할 수 있고, 상기 2차 건조 공정은 진공 고온 건조를 통해 용매를 완전히 제거할 수 있다. 상기 고온 건조는 80℃ 내지 130℃의 온도에서 실 시될 수 있으며, 고온 건조 온도가 80℃ 미만이면 잔류 용매가 완전히 제거될 수 없고, 130℃ 초과이면 고분자가 수축하여 균일한 전해질 막을 성형하기 어려울 수 있다.
또한, 상기 가교제는 상기 가교 결합성 작용기와 결합을 형성하는 것일 수 있다. 상기 가교제의 종류, 가교제의 함량 및 상기 가교 결합성 작용기와의 결합의 종류에 대한 설명은 상기 기재된 바와 같다.
또한, 상기 개시제는 상기 가교 결합성 작용기 간의 라디칼 중합 반응을 유도하여, 상기 가교 결합성 작용기 간의 가교 결합이 형성되도록 할 수 있다. 상기 라디칼 중합 반응을 가능하게 하는 작용기는 말단부에 비닐이 포함된 작용기일 수 있으며, 예를 들어, 알릴기일 수 있다.
상기 개시제는 상기 가교 결합성 작용기 간의 라디칼 중합 반응을 유도할 수 있는 개시제라면 특별히 제한되는 것은 아니다. 예컨대, 상기 개시제는 벤조일 퍼옥사이드 (benzoyl peroxide), 아조비스이소부티로니트릴 (azobisisobutyronitrile), 라우로일퍼옥사이드(lauroyl peroxide), 큐멘 하이드로 퍼옥사이드(cumene hydroperoxide), 디이소프로필페닐하이드로퍼옥사이드 (diisopropylphenyl-hydroperoxid), 3급 부틸하이드로퍼옥사이드(tert-butyl hydroperoxide), 파라메탄하이드로퍼옥사이드(p-메틸하이드로퍼옥사이드) 및 2,2'아조비스(2-메틸프로피오니트릴)(2,2'-azobis(2-methylpropionitrile))로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 개시제는 상기 가교 결합성 작용기를 포함하는 PEO계 코폴리머 100 중량부에 대하여 0.5 내지 2 중량부로 사용될 수 있으며, 상기 범위로 사용될 경우 가교 결합성 작용기 간의 라디칼 중합 반응을 유도하여 가교 결합을 효율적으로 형성하는 것을 가능하게 할 수 있다.
또한, 상기 리튬염의 함량 및 종류에 대한 설명은 상기 기재된 바와 같다.
또, 상기 세라믹 화합물에 관해서도 앞서 설명한 산화물계 고체 전해질을 사용할 수 있고, 함량 역시 전술한 바와 같다.
상기 (S2) 단계에서는, 상기 (S1) 단계에서 제조된 고분자에 극성 용매를 증기 증착시켜, 상술한 일 구현예의 고분자 고체 전해질을 제조할 수 있다. 이때, 상기 극성 용매의 기체 분자는 일 구현예에 포함된 극성 화합물일 수 있다.
상기 증기 증착은, 상기 극성 용매를 상온에서, 또는 가열하여 발생된 상기 극성 용매의 증기를 상기 고분자에 접촉시키고 내부로 침투시켜 실시될 수 있다. 이와 같이, 상온에 두거나, 또는 가열을 통한 증기 증착을 통하여, 상기 고분자 표면 및/또는 내부에 기체 상태의 극성 화합물이 균일하게 확산되어, 극성 화합물 기체 분자가 상기 고분자 사슬에 결합하거나, 고분자 사슬의 내부 공간에 균일하게 분산 또는 확산된 형태로 포함될 수 있다.
상기 증기 증착시, 극성 용매를 상온에서 두는 경우, 비점이 낮은 미량의 극성 용매를 상온에서 서서히 기화하면서 고분자 내부로 침투시켜, 상기 고분자 내에 가교 결합된 고분자 사슬의 형태(conformation) 변화를 효과적으로 유도할 수 있다.
또한, 상기 증기 증착시, 극성 용매를 가열하는 경우, 증기 증착 속도를 향상시킬 수 있다. 이때, 가열 온도는 극성 용매가 증기로 상 변화할 수 있는 온도라면 특별히 제한되는 것은 아니며, 예컨대 30℃ 내지 80℃ 일 수 있다. 일 반적인 PEO는 60℃에서 멜팅되나, 상기 가교 결합성 작용기로 개질된 PEO계 코폴리 머는 가교 구조를 형성할 경우 내열성이 향상되어 80℃까지 견딜 수 있으므로, 증 기 증착 속도를 더욱 빠르게 할 수 있다. 또한, 상기 가열 방법은 증기를 발생시키는 에너지를 공급할 수 있는 방법이면 어느 것이든 제한이 없다. 예를 들어, 버너 또는 풍로 등으로 직접 가열 방법, 히터 또는 스팀관 등으로 간접 가열 방법 등을 사용할 수 있으나, 이들의 예로만 한정되는 것은 아니다.
상기 가열 시, 온도가 지나치게 높은 고온으로 가열할 경우, 극성 용매의 비점 이상에서 용매가 끓거나, 용매의 구조 변화가 나타날 수 있고, 또는 고분자의 변형이 유발될 수 있고, 증기 증착시 극성 용매의 증발 속도를 제어하기 힘든 단점이 있으므로, 미량의 극성 용매로 증기 증착 시키기 위해서는 상기 규정된 바와 같은 적정 범위의 가열 온도에서 증기 증착을 실시하는 것이 바람직할 수 있다.
전고체 전지
발명의 다른 구현예는 또한, 상기 고분자 고체 전해질을 포함하는 전고체 전지에 관한 것으로, 상기 전고체 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재되는 고분자 고체 전해질을 포함하며, 상기 고분자 고체 전해질은 전술한 일 구현예에 따른 것이다.
구체적으로, 상기 고분자 고체 전해질은 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머가 가교 결합된 고분자, 기체 상태의 극성 화합물 및 선택적으로 세라믹 화합물을 포함하며, 상기 기체 상태의 극성 화합물이 포함 또는 결합되어, 이온 전도도가 향상되므로, 전고체 전지의 전해질로서 적합할 수 있다.
한편, 상기 전고체 전지에 포함된 양극은 양극 활물질 층을 포함하며, 상기 양극 활물질층은 양극 집전체의 일 면에 형성될 것일 수 있다.
상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함한다.
또한, 상기 양극 활물질은, 리튬이온을 가역적으로 흡장 및 방출하 는 것이 가능한 물질이면 특별히 한정되지 않고, 예를 들면, 리튬 코발트 산화물, 리튬 니켈 산화물, Li[NixCoyMnzMv]O2(상기 식에서, M은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고;0.3≤x<1.0, 0≤y, z≤0.5, 0≤v≤0.1, x+y+z+v=1이다), Li(LiaMb-a-b'M'b')O2-cAc(상기 식에서, 0≤a≤0.2, 0.6≤b≤1, 0≤b'≤0.2, 0≤c≤0.2이고; M은 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며; M'는 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이다.) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y 는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물 (Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-yMyO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y=0.01 내지 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산 화물; 화학식 LiMn2-yMyO2 (여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y=0.01 내지 0.1임) 또는 Li2Mn3MO8 (여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디 설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
또한, 상기 양극 활물질은 상기 양극 활물질층 전체 중량을 기준으로 40 내지 80 중량%로 포함될 수 있다. 구체적으로, 상기 양극 활물질의 함량은 40 중량% 이상 또는 50 중량% 이상일 수 있고, 70 중량% 이하 또는 80 중량% 이하일 수 있다. 상기 양극 활물질의 함량이 40 중량% 미만이면 양극 활물질 간의 연결성 및 전기적 특성이 부족해질 수 있고, 80 중량% 초과이면 물질 전달 저항이 커질 수 있다.
또한, 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 스티렌-부타디엔 고무, 아크릴화 스티렌-부타디엔 고무, 아크릴로니트릴 공중합체, 아크릴로니트릴-부타디엔 고무, 니트릴 부타디엔 고무, 아크릴로니트릴-스티렌-부타디엔 공중합체, 아크릴 고무, 부틸 고무, 플 루오린 고무, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌/프로 필렌 공중합체, 폴리부타디엔, 폴리에틸렌 옥사이드, 클로로설폰화 폴리에틸렌, 폴 리비닐피롤리돈, 폴리비닐피리딘, 폴리비닐 알코올, 폴리비닐 아세테이트, 폴리에 피클로로하이드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스티렌, 라텍스, 아크 릴 수지, 페놀수지, 에폭시 수지, 카복시메틸셀룰로오스, 하이드록시프로필 셀룰로 오스, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아 세테이트 프로피오네이트, 시아노에틸셀룰로오스, 시아노에틸수크로스, 폴리에스테 르, 폴리아미드, 폴리에테르, 폴리이미드, 폴리카복실레이트, 폴리카복시산, 폴리 아크릴산, 폴리아크릴레이트, 리튬 폴리아크릴레이트, 폴리메타크릴산, 폴리메타크 릴레이트, 폴리아크릴아미드, 폴리우레탄, 폴리비닐리덴 플루오라이드 및 폴리(비 닐리덴 플루오라이드)-헥사플루오로프로펜으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 바인더는 스티렌-부타디엔 고무, 폴리테트라플루오로에틸렌, 카복시메틸셀룰로오스, 폴리아크릴산, 리튬 폴리아크릴레이 트 및 폴리비닐리덴 플루오라이드로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 바인더는 상기 양극 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있고, 구체적으로는, 상기 바인더의 함량은 1 중량% 이상 또는 3 중량% 이상일 수 있고, 15 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 바인더의 함량이 1 중량% 미만이면 양극 활물질과 양극 집전체와의 접착력이 저하될 수 있고, 30 중량%를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
또한, 상기 도전재는 전고체 전지의 내부 환경에서 부반응을 방지하고, 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄 분말, 니켈 분말 등의 금속 분말;산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용 할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 도전재는 통상적으로 상기 양극 활물질층 전체 중량을 기준으로 0.5 중량% 내지 30 중량%로 포함될 수 있으며, 구체적으로 상기 도전재의 함량은 0.5 중량% 이상 또는 1 중량% 이상일 수 있고, 20 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 도전재의 함량이 0.5 중량% 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 30 중량%를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다.
또한, 상기 양극 집전체는 양극 집전체는 상기 양극 활물질층을 지지하며, 외부 도선과 양극 활물질층 사이에서 전자를 전달하는 역할을 하는 것이다.
상기 양극 집전체는 전고체 전지에 화학적 변화를 유발하지 않으면서 높은 전자 전도성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 양극 집전체로 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 양극 활물질층과의 결합력을 강화시키기 위해 양극 집전체의 표면에 미세한 요철 구조를 가지거나 3차원 다공성 구조를 채용할 수 있다. 이에 따라, 상기 양극 집전체는 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 포함할 수 있다.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을 양극 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때, 상기 유기 용 매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토나이트릴, 메탄올, 에탄올, 테트라히드로퓨란, 물, 이소프로필알코올, 디메틸설폭사이드(DMSO, Dimethyl sulfoxide), 메틸피롤리돈(NMP, N-Methyl-2-Pyrrolidone) 등을 들 수 있다.
한편, 상기 전고체 전지에 포함된 상기 음극은 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 집전체의 일 면에 형성된 것일 수 있다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예 를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베 릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄 (Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질은 상기 음극 활물질층 전체 중량을 기준으로 40 내지 80 중량%로 포함될 수 있다. 구체적으로, 상기 음극 활물질의 함량은 40 중량 % 이상 또는 50 중량% 이상일 수 있고, 70 중량% 이하 또는 80 중량% 이하일 수 있다. 상기 음극 활물질의 함량이 40 중량% 미만이면 전기적 특성이 충분치 않을 수 있고, 80 중량% 초과이면 물질 전달 저항이 커질 수 있다.
또한, 상기 바인더는 상기 양극 활물질층에서 상술한 바와 같다.
또한, 상기 도전재는 상기 양극 활물질층에서 상술한 바와 같다.
또한, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면, 상기 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부 직포체 등 다양한 형태가 사용될 수 있다.
상기 음극의 제조방법은 특별히 제한되지 않으며, 음극 집전체 상에 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용하여 음극 활물질층을 형성하여 제조할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있 다. 또한, 상기 음극 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충 전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
한편, 발명의 추가적인 구현예에 따르면, 상기 전고체 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자 동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거 (E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트 (electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 발명이 이에 한정되는 것은 아니다.
실시예
실시예 1: 고분자 고체 전해질의 제조
1 단계) 코폴리머를 포함하는 고분자 제조
하기 화학식 1a의 폴리에틸렌옥사이드(PEO)계 코폴리머를 제조하였다:
[화학식 1a]
Figure PCTKR2023015792-appb-img-000012
상기 화학식 1a에서, R1은 -CH2-O-(CH2-CH2-O)k-CH3이고, R2는 -CH2-O-CH2-CH= CH2이고, k는 2이고, l : m : n의 비율은 85 : 13 : 2이고, 상기 코폴리머의 중량 평균 분자량(Mw)는 약 2,000,000g/mol인 것이었다. 상기 화학식 1a의 코폴리머는 가교 결합성 작용기로서 메틸렌 옥사이드 링커를 매개로 결합된 알릴기(allyl group)를 갖는 것이다.
상기 폴리에틸렌옥사이드 코폴리머에 아세토나이트릴을 용매로 하여, 가교제로 트라이메틸올프로페인 트라이메타크릴레이트를, 개시제로 벤조일 퍼옥사이드를, 리튬염으로 LiTFSI를 혼합하여 고분자 용액을 제조한 후, 이를 24시간 동안 마그네틱 바를 이용하여 교반하였다. 이때, 상기 고분자 용액의 조성은, 상기 폴리에틸렌옥사이드 코폴리머 100 중량부에 대해서, 가교제인 트라이메틸올프로페인 트라이메타크릴레이트 20 중량부, 개시제인 벤조일퍼옥사이드 1 중량부 및 리튬염 36.5 중량부를 혼합하였으며, 상기 고분자 용액에 포함된 고분자인 폴리에틸렌옥사이드 코폴리머의 농도가 10.4중량%가 되도록 아세토나이트릴 용매를 사용하였다.
상기 제조된 고분자 용액을 코인셀 하부 기판에 용액 캐스팅한 후, 상온에서 12시간 동안 1차 건조한 후, 100℃에서 12시간 동안 2차 건조하여, 가교 결합을 유도함으로써 200㎛ 두께의 전해질 필름을 제조하였다.
2 단계) 고분자 고체 전해질의 제조
상기 고분자를 챔버 상판에 부착시키고, 챔버 하부에 EMC 용매를 채워 놓은 후 상온에서 72시간 동안 자연 증발시켜 챔버 상부에 부착된 고분자의 내부로 EMC 증기를 유입시켜 고분자에 증착시켜 고분자 고체 전해질을 제조하였다.
실시예 2: 복합 고체 전해질의 제조
실시예 1의 1) 단계에서 폴리에틸렌옥사이드 코폴리머 100 중량부에 대해서, 가교제인 트라이메틸올프로페인 트라이메타크릴레이트 20 중량부, 개시제인 벤조일퍼옥사이드 1 중량부 및 리튬염 36 중량부 및 세라믹 화합물인 LSTP 40 중량부를 혼합하여 혼합 용액을 제조하되, 상기 혼합 용액에 포함된 고분자인 폴리에틸렌옥사이드 코폴리머의 농도가 11.1중량%가 되도록 하고, 상기 고분자인 폴리에틸렌옥사이드 코폴리머와 세라믹 화합물의 농도는 14.9중량%가 되도록 아세토나이트릴 용매를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
비교예
비교예 1: 개질된 PEO + 액체 다량 포함하는 고분자 고체 전해질
상기 실시예 1의 1) 단계에서 제조한 고분자 고체 전해질에 EMC 용매(12 중량%)를 액체 상태로 직접 주입하는 것을 제외하고는, 상기 실시예 1에서 제조된 것과 동일한 방법으로 고분자 고체 전해질을 제조하였다.
비교예 2: 개질된 PEO + 액체 다량 포함하는 복합 고체 전해질
상기 실시예 2의 1) 단계에서 제조한 복합 고체 전해질에 EMC 용매(12 중량%)를 액체 상태로 직접 주입하는 것을 제외하고는, 상기 실시예 2에서 제조된 것과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실험예
실험예 1: 증기 증착 시 극성 용매 및 고분자의 거동과 이온 전도도의 상관 관계 확인
하기 식 1 또는 식 2를 이용하여, 증기 증착시 극성 용매(극성 화합물) 및 고분자의 거동과 이온 전도도의 상관 관계를 확인하였다:
<식 1>
Figure PCTKR2023015792-appb-img-000013
상기 식 1에서,
tR은 상기 고분자 사슬의 완화 시간(relaxation time)이고,
tD는 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간으로서, 하기 식 2로 계산될 수 있다:
<식 2>
Figure PCTKR2023015792-appb-img-000014
상기 식 2에서,
D는 상기 고분자 사슬 내에서 극성 화합물의 확산 계수로서 10-9 내지 10-6 ㎠/s이고, 하기 식 3에 따라 산출되었으며, L은 상기 고분자 고체 전해질의 두께로서, 5 내지 500 ㎛ 이다:
<식 3>
Figure PCTKR2023015792-appb-img-000015
상기 M(t)는 상기 고분자 고체 전해질 내에 포함된 상기 극성 화합물의 증발속도이고, 상기 M는 상기 고분자 고체 전해질에 포함될 수 있는 극성 화합물의 최대값 또는 포화값으로서, 0.005 내지 0.5 이고, 상기 L은 고분자 고체 전해질의 두께로서, 5㎛ 내지 500 ㎛이고, 상기 t는 상기 극성 화합물의 증발속도가 측정되는 시간을 의미한다.
(1) tR/tD 값 계산
상기 식 3에서, 시간 경과에 따른 극성 화합물의 증발량을 의미하는 증발속도 M(t)는 실시예 및 비교예에서 제조된 고분자 고체 전해질에 포함된 극성 화합물이 증발되기 전과, 후의 무게를 각각 측정한 후, 무게 변화율을 이용하여 계산하였다. 상기 계산된 극성 용매 증발속도(M(t))를 상기 식 1에 적용하고, 피팅 파라미터인 M및 D의 값을 도출하였다. 그 후, 상기 도출된 D 값을 식 2에 적용하여 tD값을 구하였다. 상기 tD값을 상기 식 1에 적용하여, tR/tD 값을 구하였다.
(2) 이온 전도도 측정
고분자 고체 전해질의 이온 전도도는 하기 식 4로 계산하였다.
실시예 및 비교예에서 제조된 고분자 고체 전해질의 이온 전도도를 측정하기 위하여, 1.7671cm2 크기의 코인셀의 하부 기판에 상기 고분자 고체 전해질을 형성시킨 후, SUS를 비활성 전극(blocking electrode)으로 사용하여 이온 전도도 측정을 위한 코인셀을 제조하였다.
전기화학 임피던스 스펙트로미터(electrochemical impedance spectrometer, EIS, VM3, Bio Logic Science Instrument)를 사용하여 25℃에서 amplitude 10 mV 및 스캔 범위 1Hz에서 0.1 MHz까지의 조건으로 저항을 측정한 후 하기 식 2를 이용하여, 상기 고분자 고체 전해질의 이온 전도도를 계산하였다.
<식 4>
Figure PCTKR2023015792-appb-img-000016
상기 식 4에서 σi는 고분자 고체 전해질의 이온 전도도(S/cm)이고, R은 상기 전기화학 임피던스 스펙트로미터로 측정한 고체 전해질의 저항(Ω)이고, L은 고분자 고체 전해질의 두께(㎛)이고, A는 고분자 고체 전해질의 면적(cm2)을 의미한다. 상기 고분자 고체 전해질 시료의 L=200 ㎛ 이고, A = 1.7671cm2 이다.
하기 표 1은 식 1에 따라 구한 tR/tD 값과 이온 전도도 값을 계산한 결과를 나타낸 것이다.
실시예 1 비교예 1
고체 전해질 종류 고분자 고체 전해질 고분자고체 전해질
제조방법 용매 증기 증착법 용매 함침법
고체 전해질 총 중량 대비
EMC 함유량 (중량%)
1.2 12
tR 2.1 day 0.021 day
tD 0.019 day 0.019 day
tR / tD 110 1.1
σi (mS/cm) 0.51 0.045
상기 표 1에 나타난 바와 같이, 실시예 1의 tR / tD 값과 이온 전도도 값이 비교예 1에 비해 현저히 큰 것을 확인하였다. 실시예 1은 용매 증기 증착법을 실시하여 제조된 고분자 고체 전해질로서, 이는 tR 이 상대적으로 증가하여 향상된 이온 전도도가 발현됨이 확인되었다.

Claims (12)

  1. 가교 결합성 작용기를 포함하는 PEO(polyethylene oxide)계 코폴리머를 포함하는 고분자; 및 극성 화합물을 포함하며,
    상기 가교 결합성 작용기의 적어도 일부는 서로 가교 결합을 형성하여, 상기 고분자가 3차원 네트워크 구조를 형성하고 있고,
    상기 극성 화합물은 기체 상태로 상기 3차원 네트워크 구조 내에 포함되거나, 상기 고분자 사슬 상에 결합되어 있고, 하기 식 1을 충족하는 고분자 고체 전해질:
    <식 1>
    Figure PCTKR2023015792-appb-img-000017
    상기 식 1에서, tR은 상기 고분자 사슬의 완화 시간(relaxation time)이고,
    tD는 상기 고분자 사슬 내에서 상기 극성 화합물의 확산 시간(diffusion time)으로서, 하기 식 2로 정의되며,
    <식 2>
    Figure PCTKR2023015792-appb-img-000018
    상기 식 2에서, D는 상기 고분자 사슬 내에서 극성 화합물의 확산 계수로서 10-9 내지 10-6 ㎠/s이고, L은 상기 고분자 고체 전해질의 두께로서, 5 내지 500 ㎛ 이다.
  2. 제1항에 있어서, 상기 기체 상태의 극성 화합물은 상기 3차원 네트워크 구조를 형성한 고분자 사슬 사이에 분산되어 있거나, 상기 고분자 사슬의 표면 또는 내부에 흡착 또는 결합되어 있는 고분자 고체 전해질.
  3. 제1항에 있어서, 상기 고분자 고체 전해질은 가교제를 더 포함하고, 상기 가교 결합성 작용기의 적어도 일부는 상기 가교제를 매개로 서로 가교 결합을 형성하고 있는 고분자 고체 전해질.
  4. 제1항에 있어서, 상기 가교 결합성 작용기는 상기 PEO계 코폴리머에 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 결합되어 있고,
    히드록시기(hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기 (cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기(epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택되는 고분자 고체 전해질.
  5. 제1항에 있어서, 상기 3차원 네트워크 구조를 형성한 고분자 상에 분산된 리튬염을 더 포함하는 고분자 고체 전해질.
  6. 제1항에 있어서, 상기 PEO(polyethylene oxide)계 코폴리머는 하기 화학식 1 내지 3의 반복 단위를 포함하는 공중합체인 고분자 고체 전해질:
    [화학식 1]
    Figure PCTKR2023015792-appb-img-000019
    [화학식 2]
    Figure PCTKR2023015792-appb-img-000020
    [화학식 3]
    Figure PCTKR2023015792-appb-img-000021
    상기 화학식 1 내지 3에서, R1은 -CH2-O-(CH2-CH2-O)k-R3 를 나타내며, k는 0 내지 20이고, R3는 탄소수 1 내지 5의 알킬기를 나타내고,
    R2는 히드록시기(hydroxyl group), 카복실기(carboxyl group), 이소시아네이트기(isocyanate group), 니트로기(nitro group), 시아노기(cyano group), 아민기(amine group), 아미드기(amide group), 에폭시기 (epoxy group) 및 알릴기(allyl group)로 이루어진 군에서 선택된 1종 이상의 가교 결합성 작용기가 탄소수 0 내지 10의 알킬렌 링커 또는 알킬렌 옥사이드 링커(단, 탄소수 0인 알킬렌 링커는 단일 결합을 나타낸다)를 매개로 고분자 사슬에 결합된 치환기를 나타내며,
    l, m 및 n은 반복 단위의 반복수로, l 및 n은 각각 독립적으로 1 내지 1000의 정수이고, m은 0 내지 1000의 정수이다.
  7. 제1항에 있어서, 상기 극성 화합물의 함량이 고분자 고체 전해질의 총 중량 기준으로, 0.1 중량% 이상 내지 10 중량% 미만인 고분자 고체 전해질.
  8. 제1항에 있어서, 상기 극성 화합물은 카보네이트계 화합물 및 설포닐계 화합물로 이루어진 군에서 선택되는 1종 이상을 포함하는 고분자 고체 전해질.
  9. 제1항에 있어서, 상기 고분자의 3차원 네트워크 구조 내에 분산된 세라믹 화합물을 더 포함하는 고분자 고체 전해질.
  10. 제9항에 있어서, 상기 세라믹 화합물은 리튬 금속 산화물 또는 리튬 금속 인산화물의 산화물계 고체 전해질을 포함하는 고분자 고체 전해질.
  11. 제9항에 있어서, 상기 세라믹 화합물은 리튬-란타늄-지르코늄 산화물계(LLZO) 화합물, 리튬-실리콘티타늄 인산염계(LSTP) 화합물, 리튬-란타늄-티타늄 산화물계(LLTO) 화합물, 리튬-알루미늄-티타늄 인산염계(LATP) 화합물, 리튬-알루미늄-게르마늄 인산염계(LAGP) 화합물 및 리튬-란타늄-지르코늄-티타늄 산화물계(LLZTO) 화합물로 이루어진 군에서 선택되는 1종 이상의 산화물계 고체 전해질을 포함하는 고분자 고체 전해질.
  12. 양극; 음극; 및 상기 양극 및 음극 사이에 개재되며, 제1항 내지 제11항 중 어느 한 항의 고분자 고체 전해질을 포함한 전해질층을 포함하는 전고체 전지.
PCT/KR2023/015792 2022-10-14 2023-10-13 고분자 고체 전해질 및 이를 포함하는 전고체 전지 WO2024080809A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220132781 2022-10-14
KR10-2022-0132781 2022-10-14
KR10-2023-0136064 2023-10-12
KR1020230136064A KR20240052680A (ko) 2022-10-14 2023-10-12 고분자 고체 전해질 및 이를 포함하는 전고체 전지

Publications (1)

Publication Number Publication Date
WO2024080809A1 true WO2024080809A1 (ko) 2024-04-18

Family

ID=90669972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015792 WO2024080809A1 (ko) 2022-10-14 2023-10-13 고분자 고체 전해질 및 이를 포함하는 전고체 전지

Country Status (1)

Country Link
WO (1) WO2024080809A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822701A (en) * 1986-09-19 1989-04-18 Imperial Chemical Industries Plc Solid electrolytes
US5001023A (en) * 1988-03-01 1991-03-19 Imperial Chemical Industries Plc Solid electrolyte devices
JP2003017121A (ja) * 2001-07-02 2003-01-17 Trekion Co Ltd 固体リチウム電池
KR20180084137A (ko) * 2015-12-28 2018-07-24 시오 인코퍼레이티드 리튬 폴리머 배터리용 세라믹-폴리머 복합 전해질

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822701A (en) * 1986-09-19 1989-04-18 Imperial Chemical Industries Plc Solid electrolytes
US5001023A (en) * 1988-03-01 1991-03-19 Imperial Chemical Industries Plc Solid electrolyte devices
JP2003017121A (ja) * 2001-07-02 2003-01-17 Trekion Co Ltd 固体リチウム電池
KR20180084137A (ko) * 2015-12-28 2018-07-24 시오 인코퍼레이티드 리튬 폴리머 배터리용 세라믹-폴리머 복합 전해질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOÃO E. BENEDETTI: "Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 208, 1 June 2012 (2012-06-01), AMSTERDAM, NL, pages 263 - 270, XP093157932, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2012.01.147 *

Similar Documents

Publication Publication Date Title
WO2020067717A1 (ko) 전고체 전지용 음극 및 이의 제조방법
WO2019004699A1 (ko) 리튬 이차전지
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2024029854A1 (ko) 고속 충전 리튬이차전지용 전해액, 이를 포함하는 리튬이차전지 및 리튬이차전지의 제조 방법
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2024080808A1 (ko) 고분자 고체 전해질의 제조방법
WO2024080806A1 (ko) 고분자 고체 전해질 및 복합 고체 전해질의 제조방법
WO2024080809A1 (ko) 고분자 고체 전해질 및 이를 포함하는 전고체 전지
WO2024080807A1 (ko) 복합 고체 전해질의 제조방법 및 이로부터 제조된 복합 고체 전해질
WO2024080805A1 (ko) 복합 고체 전해질 및 이의 제조방법
WO2024080804A1 (ko) 고분자 고체 전해질 및 이의 제조방법
WO2023234717A1 (ko) 복합 고체 전해질 제조방법
WO2019098612A1 (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지
WO2023234710A1 (ko) 고분자 고체 전해질 및 이의 제조방법
WO2023234709A1 (ko) 고분자 고체 전해질 및 이의 제조방법
WO2023027432A1 (ko) 리튬 이차전지
WO2024158214A1 (ko) 고이온전도도 고체 전해질막, 이의 제조방법 및 이를 포함하는 전고체 전지
WO2023234715A1 (ko) 고분자 고체 전해질 제조방법
WO2024136314A1 (ko) 양극, 상기 양극을 포함하는 리튬 이차전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877732

Country of ref document: EP

Kind code of ref document: A1