WO2024080682A1 - 보툴리눔 독소의 경쇄 변이체 - Google Patents

보툴리눔 독소의 경쇄 변이체 Download PDF

Info

Publication number
WO2024080682A1
WO2024080682A1 PCT/KR2023/015475 KR2023015475W WO2024080682A1 WO 2024080682 A1 WO2024080682 A1 WO 2024080682A1 KR 2023015475 W KR2023015475 W KR 2023015475W WO 2024080682 A1 WO2024080682 A1 WO 2024080682A1
Authority
WO
WIPO (PCT)
Prior art keywords
light chain
botulinum toxin
bont
pcs4
3flag
Prior art date
Application number
PCT/KR2023/015475
Other languages
English (en)
French (fr)
Inventor
백광현
최해슬
이명훈
Original Assignee
주식회사 알케미어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알케미어 filed Critical 주식회사 알케미어
Publication of WO2024080682A1 publication Critical patent/WO2024080682A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Definitions

  • the present invention relates to variants of the light chain of botulinum toxin (also referred to as 'botulinum light chain protein'). More specifically, it relates to a light chain variant of botulinum toxin with increased half-life obtained by substituting arginine for a specific lysine in the light chain of botulinum toxin.
  • Protein degradation within eukaryotic cells occurs through two pathways: lysosomes and proteasomes.
  • the lysosomal pathway which degrades 10%-20% of proteins, lacks substrate specificity and precise temporal regulation. In other words, it is a process of decomposing most extracellular or membrane proteins, just as cell surface proteins that have entered the cell by endocytosis are decomposed in lysosomes.
  • ubiquitin is bound to the target protein by a ubiquitin-binding enzyme, then a polyubiquitin chain is formed, and this is recognized and degraded by the proteasome, a process called ubiquitin-pro It must go through the teasome pathway (ubiquitin-proteasome pathway). More than 80% of eukaryotic proteins are decomposed through this process, and the ubiquitin-proteasome pathway regulates the degradation of most proteins present in eukaryotic cells, responsible for protein function conversion and homeostasis.
  • Botulinum toxin has a structure in which a heavy chain of about 100 kDa and a light chain of about 50 kDa are linked by disulfide bonds. Disulfide bonds play an important role in the biological activation and action of toxins, and their binding force is weak, so they are easily cleaved by other surrounding factors.
  • the heavy chain consists of two functional terminals. The N-terminal region is a potential region and is known to form an ion channel in the lipid double layer, and the C-terminal region is a binding region and plays an important role in internalizing toxins by attaching them to the cell membrane.
  • the light chain acts as a zinc-dependent peptide cleavage enzyme. Botulinum toxin is mostly used for facial cosmetic purposes.
  • the present inventors conducted various studies to develop a method that could effectively increase the in vivo half-life of botulinum toxin, thereby enabling long-term procedures or procedures using small doses.
  • the present inventors confirmed that the light chain of botulinum toxin goes through the ubiquitin-proteasome degradation pathway, and produced various mutants and compared the ubiquitylation degradation pathways.
  • a mutant obtained by substituting arginine for a specific lysine (i.e., lysine 335) in the light chain of botulinum toxin was significantly inhibited.
  • the purpose of the present invention is to provide a light chain variant of botulinum toxin obtained by substituting a specific lysine (i.e., lysine no. 335) with arginine.
  • the present invention aims to provide a vector containing a gene encoding a light chain variant of the botulinum toxin.
  • the present invention aims to provide cells transfected with a vector containing a gene encoding a light chain variant of the botulinum toxin.
  • the present invention aims to provide a method for increasing the half-life of the light chain of botulinum toxin, which includes substituting a specific lysine (i.e., lysine 335) with arginine in the light chain of botulinum toxin.
  • a specific lysine i.e., lysine 335
  • a light chain variant of botulinum toxin in which lysine at position 335 is replaced with arginine in the light chain of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 1 or 2.
  • a vector containing a gene encoding a light chain variant of the botulinum toxin is provided.
  • cells transfected with a vector comprising a gene encoding a light chain variant of the botulinum toxin are provided.
  • a method for increasing the half-life of the light chain of botulinum toxin comprising substituting arginine for lysine at position 335 in the light chain of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 1 or 2. .
  • the light chain variant of botulinum toxin according to the present invention has a significantly increased in vivo half-life by inhibiting degradation by the ubiquitin-proteasome. Therefore, the light chain variant of botulinum toxin according to the present invention can be usefully used in the production of botulinum toxin that can enable long-term procedures or procedures using small doses.
  • Figure 1a shows the results of confirming expression after transfection was induced by increasing the amount of light chain of botulinum toxin type A1, a plasmid gene, in the B16F10 cell line.
  • Figure 1b shows the results of confirming expression after transfection was induced by increasing the amount of light chain of botulinum toxin type A2, a plasmid gene, in the HeLa cell line.
  • Figure 2a shows the results of confirming the degradation control pathway of the light chain of botulinum toxin type A1 through ubiquitination analysis experiment.
  • Figure 2b shows the results of confirming the degradation control pathway of the light chain of botulinum toxin type A2 through ubiquitination analysis experiment.
  • Figure 3a shows the results of comparing the degree of ubiquitination of the light chain protein of wild-type botulinum toxin type A1 and the light chain protein variant of botulinum toxin type A1.
  • Figure 3b shows the results of comparing the degree of ubiquitination of the light chain protein of wild-type botulinum toxin type A2 and the light chain protein variant of botulinum toxin type A2.
  • Figure 4a shows the results of comparing the degree of stabilization of the light chain of botulinum toxin type A1 in cells after treatment with cycloheximide.
  • Figure 4b shows the results of comparing the degree of stabilization of the light chain of botulinum toxin type A2 in cells after treatment with cycloheximide.
  • Figure 5a is a graph showing the results of Figure 4a in numbers. (*: 0.01 ⁇ p ⁇ 0.05, ns: p > 0.05).
  • Figure 5b is a graph showing the results of Figure 4b in numbers. (*: 0.01 ⁇ p ⁇ 0.05, ns: p > 0.05).
  • the present inventors confirmed that the light chain of botulinum toxin undergoes a decomposition pathway by the ubiquitin-proteasome.
  • the present inventors through site-directed mutagenesis, created conservative amino acid substitution variants for the light chain protein of botulinum toxin type A1, that is, positions 212, 320, and 212 of the light chain protein of botulinum toxin type A1, respectively.
  • Mutants were created in which lysines at positions 330, 335, 340, or 417 were each replaced with arginine, and the degree of degradation by the ubiquitin-proteasome was confirmed;
  • a conservative amino acid substitution variant for the light chain protein of botulinum toxin type A2 that is, a variant in which lysine at position 335 of the light chain protein of botulinum toxin type A2 was substituted with arginine was created and the degree of degradation by the ubiquitin-proteasome was confirmed.
  • the present inventors found that a variant obtained by substituting lysine at number 335 with arginine (i.e., a light chain variant of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 5 or 6) showed significantly inhibited ubiquitin-proteasome degradation, indicating significance. It was found that it has a significantly increased in vivo half-life. Therefore, the variant can be usefully used in the production of botulinum toxin that can enable long-term procedures or procedures using small doses.
  • arginine i.e., a light chain variant of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 5 or 6
  • the variant can be usefully used in the production of botulinum toxin that can enable long-term procedures or procedures using small doses.
  • the present invention provides variants of the light chain protein of botulinum toxin. That is, the present invention relates to a light chain of botulinum toxin type A1 consisting of the amino acid sequence of SEQ ID NO: 1 or a light chain of botulinum toxin type A2 consisting of the amino acid sequence of SEQ ID NO: 2, a light chain variant of botulinum toxin in which lysine at position 335 is replaced with arginine. provides.
  • the amino acid sequence of the light chain protein of botulinum toxin and the base sequence encoding it are all known.
  • the amino acid sequence of the light chain protein of botulinum toxin type A1 is the same as SEQ ID NO: 1, and the base sequence encoding it is the same as SEQ ID NO: 3.
  • the amino acid sequence of the light chain protein of botulinum toxin type A2 is the same as SEQ ID NO: 2, and the base sequence encoding it is the same as SEQ ID NO: 4.
  • the light chain variant of botulinum toxin according to the present invention may be a variant consisting of the amino acid sequence of SEQ ID NO: 5 or 6.
  • the light chain variant of botulinum toxin according to the present invention can be produced by substituting arginine for lysine at position 335 in the light chain of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 1 or 2 according to a method commonly used in the biotechnology field. .
  • a gene encoding the light chain protein of botulinum toxin type A1 (e.g., a gene with the base sequence of SEQ ID NO: 3) is used as a template to produce a polymerase chain.
  • a gene encoding a mutant in which lysine at position 335 is replaced with arginine can be obtained.
  • the gene encoding a variant in which lysine at position 335 is substituted with arginine may consist of the base sequence of SEQ ID NO: 7.
  • polymerization was performed using a gene encoding the light chain protein of botulinum toxin type A2 (e.g., a gene having the base sequence of SEQ ID NO: 4) as a template using the primer sets of SEQ ID NOs: 21 and 22 below.
  • a gene encoding a mutant in which lysine at position 335 is replaced with arginine can be obtained.
  • the gene encoding a variant in which lysine at position 335 is substituted with arginine may consist of the base sequence of SEQ ID NO: 8.
  • the obtained gene can be obtained by producing an expression vector according to a common method used in the biotechnology field, then transfecting the host cell to obtain the transfected cell, and cultivating it to obtain the mutant.
  • the present invention includes a vector (ie, expression vector) containing a gene encoding the light chain variant of the botulinum toxin.
  • the gene may consist of the base sequence of SEQ ID NO: 7 or 8.
  • Expression vectors can be prepared by using vectors commonly used in the biotechnology field, such as pcDNA3, pCS4, pcDNA3.1, etc., as empty vectors and using appropriate restriction enzymes.
  • the empty vector may be a vector labeled with a marker such as Flag, if necessary.
  • the present invention includes cells transfected with a vector (i.e., expression vector) containing a gene encoding a light chain variant of the botulinum toxin.
  • the gene may consist of the base sequence of SEQ ID NO: 7 or 8.
  • Host cells include, but are not limited to, for example, HEK293T cells, B16F10 cells, A549 cells, A2780 cells, SKOV3 cells, HeLa cells, etc.
  • the present invention also provides a method for increasing the half-life of the light chain of botulinum toxin, comprising substituting arginine for lysine at position 335 in the light chain of botulinum toxin consisting of the amino acid sequence of SEQ ID NO: 1 or 2.
  • the substitution is as described above.
  • PCR polymerase chain reaction
  • expression vectors for a total of 6 light chain variants of botulinum toxin type A1 namely pCS4-3Flag-Bont-LC (K212R), pCS4-3Flag-Bont-LC (K320R), pCS4-3Flag-Bont-LC (K330R), pCS4-3Flag-Bont-LC (K335R), pCS4-3Flag-Bont-LC (K340R), and pCS4-3Flag-Bont-LC (K417R) were constructed.
  • pCS4-3Flag-Bont-LC K212R
  • pCS4-3Flag-Bont-LC K320R
  • pCS4-3Flag-Bont-LC K330R
  • pCS4-3Flag-Bont-LC K335R
  • pCS4-3Flag-Bont-LC K340R
  • pCS4-3Flag-Bont-LC K417R
  • PCR polymerase chain reaction
  • the polymerase chain reaction (PCR) was performed under the following conditions: 10 seconds at 98°C, 5 seconds at 58°C, and 5 minutes and 40 seconds at 72°C, for a total of 18 cycles.
  • pCS4-3Flag-Bont-LC (K212R), pCS4-3Flag-Bont-LC (K320R), pCS4-3Flag-Bont-LC (K330R), pCS4-3Flag-Bont-LC (K335R), pCS4-3Flag-Bont-LC (K335R)
  • Transfection was induced in B16F10 cells (ATCC, CRL-6475) using expression vectors of LC (K340R) and pCS4-3Flag-Bont-LC (K417R), respectively.
  • transfection was induced in HeLa cells (ATCC, CCL-2) using the expression vector of pCS4-3Flag-Bont-A2-LC (K335R).
  • the B16F10 cell line and HeLa cell line were grown in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA) and 1% penicillin and streptomycin (Gibco, Grand Island, NY, USA), respectively. , Gibco, Grand Island, NY, USA) and cultured in a 5% CO 2 incubator.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fetal bovine serum
  • penicillin and streptomycin Gibco, Grand Island, NY, USA
  • Immunoblotting was performed using anti-Flag antibody (MBL), anti-HA antibody (12CA5 hybridoma cell media), and anti- ⁇ -actin antibody (Santa Cruz Biotechnology). After going through the SDS-PAGE process, it was transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore), and then blot detection was performed using an HRP-conjugated secondary antibody.
  • MBL anti-Flag antibody
  • anti-HA antibody (12CA5 hybridoma cell media
  • anti- ⁇ -actin antibody Santa Cruz Biotechnology
  • Transfected cells were lysed in lysis buffer (50mM Tris-HCl [pH 7.5], 1mM EDTA, 10% glycerol, 300mM NaCl, and 1% Triton Centrifuged at rpm for 20 minutes. Take the supernatant, add an antibody (Flag antibody) and react at 4°C overnight, then add A/G PLUS agarose beads (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and react at 4°C in a rotator for 2 hours.
  • lysis buffer 50mM Tris-HCl [pH 7.5], 1mM EDTA, 10% glycerol, 300mM NaCl, and 1% Triton Centrifuged at rpm for 20 minutes. Take the supernatant, add an antibody (Flag antibody) and react at 4°C overnight, then add A/G PLUS agarose beads (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and react at 4°C in a rotator for 2 hours.
  • the separated proteins were transferred to a polyvinyldenedifluoride membrane and incubated with primary antibodies [anti-Flag (MBL), anti-HA (12CA5 hybridoma cell media), and anti- ⁇ -actin (Santa Cruz Biotechnology)]. was mixed with 2% skim milk and reacted at 4°C overnight, and the blot was developed on photosensitive film using an enhanced chemiluminescence (ECL) system using an anti-mouse secondary monoclonal antibody.
  • MBL anti-Flag
  • anti-HA (12CA5 hybridoma cell media
  • anti- ⁇ -actin Santa Cruz Biotechnology
  • Agarose gel electrophoresis was performed on cells transfected with an expression vector for the light chain protein of wild-type botulinum toxin type A1 or type A2. Using antibodies, only Flag-Bont-LC or Flag-Bont-A2-LC was specifically selected, and transfection was performed while increasing the amount of plasmid gene to confirm the exact protein size. Flag-Bont-LC and Flag-Bont-A2-LC were confirmed to have a size of approximately 51-54 kDa, and their expression was confirmed to be induced in cell lines ( Figures 1a and 1b).
  • transfection was induced in B16F10 cells using pCS4-3Flag-Bont-LC WT and pRK5-HA-Ub plasmid genes; Using pCS4-3Flag-Bont-A2-LC WT and pRK5-HA-Ub plasmid genes Transfection was induced in HeLa cells. The degree of ubiquitination was confirmed by precipitating the light chain of the botulinum toxin transfected into the cell line by immunoprecipitation analysis.
  • pCS4-3Flag-Bont-LC WT pCS4-3Flag-Bont-LC WT
  • pCS4-3Flag-Bont-LC K212R
  • pCS4-3Flag-Bont-LC K320R
  • pCS4-3Flag-Bont-LC K330R
  • pCS4-3Flag-Bont-LC Transfection was induced in B16F10 cells using the pCS4-3Flag-Bont-LC (K340R), pCS4-3Flag-Bont-LC (K417R), and pRK5-HA-Ub plasmid genes, as described above. The same degree of ubiquitination was compared.
  • pCS4-3Flag-Bont-LC WT and pCS4-3Flag-Bont-LC (K335R) plasmid genes were transfected into B16F10 cells, and 24 hours later.
  • Each cell medium was treated with cycloheximide (CHX) at a concentration of 100 ⁇ g/ml for 0 hours, 12 hours, and 18 hours, and then immunoblotting was performed. The result is as shown in Figure 4a.
  • CHX cycloheximide
  • pCS4-3Flag-Bont-A2-LC WT and pCS4-3Flag-Bont-A2-LC (K335R) plasmid genes were transfected into HeLa cells in equal amounts, and after 48 hours, each cell medium was incubated with cyclohexylamine. The cells were treated with cycloheximide (CHX) at a concentration of 100 ⁇ g/ml for 0 hours, 12 hours, and 18 hours, and then immunoblotting was performed. The result is as shown in Figure 4b.
  • Figures 5a and 5b are graphs showing numerical results of Figures 4a and 4b, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 보툴리눔 독소의 경쇄에 있어서 특정 라이신을 아르기닌으로 치환하여 얻어진 보툴리눔 독소의 경쇄 변이체를 제공한다. 본 발명에 따른 보툴리눔 독소의 경쇄 변이체는 유비퀴틴-프로테아좀에 의한 분해가 억제됨으로써, 유의성 있게 증가된 생체내 반감기를 갖는다.

Description

보툴리눔 독소의 경쇄 변이체
본 발명은 보툴리눔 독소(Botulinum toxin)의 경쇄('보툴리눔 경쇄 단백질'로도 지칭된다)의 변이체에 관한 것이다. 더욱 상세하게는, 보툴리눔 독소의 경쇄에 있어서 특정 라이신을 아르기닌으로 치환하여 얻어진, 반감기가 증가된 보툴리눔 독소의 경쇄 변이체에 관한 것이다.
진핵세포 내에서 일어나는 단백질의 분해는 리소좀(lysosome)과 프로테아좀(proteasome)에 의한 두 가지 경로를 통해 이루어진다. 단백질의 10%-20%를 분해하는 리소좀 경로는 기질 특이성 및 정교한 시간적 조절성이 없다. 즉 내포운동(endoxytosis)에 의해 세포 내로 함입되어 들어간 세포 표면단백질이 리소좀에서 분해되는 것처럼 대부분 세포 외 또는 막단백질을 분해하는 과정이다. 하지만, 진핵세포에서 단백질들이 선택적으로 분해되기 위해서는 유비퀴틴(ubiquitin) 결합 효소에 의해 목표단백질에 유비퀴틴이 결합한 후 폴리유비퀴틴 사슬이 형성되고, 이것이 프로테아좀에 의해 인지되어 분해되는 과정, 즉 유비퀴틴-프로테아좀 경로 (ubiquitin-proteasome pathway)를 거쳐야 한다. 진핵세포 단백질 중 80% 이상은 이 과정을 거쳐서 분해되며, 유비퀴틴-프로테아좀 경로는 진핵세포 내에 존재하는 대부분의 단백질 분해를 조절함으로써, 단백질의 기능전환과 항상성을 담당한다.
보툴리눔 독소는 약 100 kDa의 중쇄(heavy chain) 및 약 50 kDa의 경쇄가 이황화 결합으로 연결된 구조를 갖는다. 이황화 결합은 독소의 생물학적인 활성화와 작용에 중요한 역할을 하고 결합력이 약하여 다른 주변 요인에 의해 쉽게 절단된다. 중쇄는 2개의 기능적 말단(terminal)으로 구성되어 있다. N-말단 부위는 전위부로 이중 지질층에 이온 통로를 형성하는 것으로 알려져 있으며, C-말단부는 결합부로 독소가 세포막에 부착하여 내재화(internalization)하는데 중요한 역할을 담당한다. 경쇄는 아연 의존성 펩티드 중간 분해 효소의 역할을 한다. 보툴리눔 독소는 대부분 안면 미용 목적으로 많이 사용되고 있다. 미간, 이마 등의 주름개선 용도로 독소를 피부에 주사하는 방식으로 사용된다. 또한, 독소를 통한 신경의 마비 등의 장점으로 인해 질병 치료에도 사용되고 있다. 하지만, 이는 보통 6개월 내외의 효과를 나타내며, 이후에는 피부 및 질병 부위가 원래의 형태를 찾는다. 보툴리눔 독소의 지속적인 주입은 내성을 유도할 수 있으며, 부작용 또한 배제할 수 없기 때문에 가능한 소량의 독소를 주입하면서 효과를 유지할 수 있는 방법이 필요하다.
본 발명자들은 보툴리눔 독소의 생체 내 반감기를 효과적으로 증가시킴으로써, 장기간 지속되는 시술 혹은 적은 용량을 이용한 시술을 가능하게 할 수 있는 방법을 개발하고자 다양한 연구를 수행하였다. 본 발명자들은 보툴리눔 독소의 경쇄가 유비퀴틴-프로테아좀에 의한 분해경로를 거친다는 것을 확인하였으며, 다양한 변이체를 제작하여 유비퀴탄화 분해경로를 비교하였다. 그 결과, 보툴리눔 독소의 경쇄에 있어서 특정 라이신(즉, 335번 라이신)을 아르기닌으로 치환하여 얻어진 변이체가 유비퀴틴화 분해가 유의성 있게 억제된다는 것을 발견하였다.
따라서, 본 발명은 특정 라이신(즉, 335번 라이신)을 아르기닌으로 치환하여 얻어진 보툴리눔 독소의 경쇄 변이체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터로 형질감염된 세포를 제공하는 것을 목적으로 한다.
또한, 본 발명은 보툴리눔 독소의 경쇄에 있어서, 특정 라이신(즉, 335번 라이신)을 아르기닌으로 치환하는 것을 포함하는 보툴리눔 독소의 경쇄의 반감기를 증가시키는 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 태양에 따라, 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서, 335번의 라이신이 아르기닌으로 치환된 보툴리눔 독소의 경쇄 변이체가 제공된다.
본 발명의 다른 태양에 따라, 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터가 제공된다.
본 발명의 또다른 태양에 따라, 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터로 형질감염된 세포가 제공된다.
본 발명의 또다른 태양에 따라, 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서, 335번의 라이신을 아르기닌으로 치환하는 것을 포함하는 보툴리눔 독소의 경쇄의 반감기를 증가시키는 방법이 제공된다.
본 발명에 따른 보툴리눔 독소의 경쇄 변이체는 유비퀴틴-프로테아좀에 의한 분해가 억제됨으로써, 유의성 있게 증가된 생체내 반감기를 갖는다. 따라서, 본 발명에 따른 보툴리눔 독소의 경쇄 변이체는 장기간 지속되는 시술 혹은 적은 용량을 이용한 시술을 가능하게 할 수 있는 보툴리눔 독소의 제조에 유용하게 사용될 수 있다.
도 1a는 B16F10 세포주 내에서 플라스미드 유전자인 보툴리눔 독소 A1형의 경쇄의 양을 증가시키며 형질감염을 유도한 후 발현을 확인한 결과를 나타낸다.
도 1b는 HeLa 세포주 내에서 플라스미드 유전자인 보툴리눔 독소 A2형의 경쇄의 양을 증가시키며 형질감염을 유도한 후 발현을 확인한 결과를 나타낸다.
도 2a는 유비퀴틴화 분석 실험을 통한 보툴리눔 독소 A1형의 경쇄의 분해조절 경로를 확인한 결과를 나타낸다.
도 2b는 유비퀴틴화 분석 실험을 통한 보툴리눔 독소 A2형의 경쇄의 분해조절 경로를 확인한 결과를 나타낸다.
도 3a는 야생형 보툴리눔 독소 A1형의 경쇄 단백질 및 보툴리눔 독소 A1형의 경쇄 단백질 변이체의 유비퀴틴화 정도를 비교한 결과를 나타낸다.
도 3b는 야생형 보툴리눔 독소 A2형의 경쇄 단백질 및 보툴리눔 독소 A2형의 경쇄 단백질 변이체의 유비퀴틴화 정도를 비교한 결과를 나타낸다.
도 4a는 사이클로헥시미드를 처리한 후 세포 내 보툴리눔 독소 A1형의 경쇄의 안정화 정도를 비교한 결과를 나타낸다.
도 4b는 사이클로헥시미드를 처리한 후 세포 내 보툴리눔 독소 A2형의 경쇄의 안정화 정도를 비교한 결과를 나타낸다.
도 5a는 도 4a의 결과를 수치화하여 나타낸 그래프이다. (*: 0.01 < p < 0.05, ns: p > 0.05).
도 5b는 도 4b의 결과를 수치화하여 나타낸 그래프이다. (*: 0.01 < p < 0.05, ns: p > 0.05).
본 발명자들은 보툴리눔 독소의 경쇄가 유비퀴틴-프로테아좀에 의한 분해경로를 거친다는 것을 확인하였다. 또한, 본 발명자들은, 부위 특이적 돌연변이유도(site-directed mutagenesis)를 통하여, 보툴리눔 독소 A1형의 경쇄 단백질에 대한 보존적 아미노산 치환 변이체, 즉 보툴리눔 독소 A1형의 경쇄 단백질의 212번, 320번, 330번, 335번, 340번, 또는 417번째 라이신을 각각 아르기닌으로 치환한 변이체를 제작하여 유비퀴틴-프로테아좀에 의한 분해 정도를 확인하였으며; 또한 보툴리눔 독소 A2형의 경쇄 단백질에 대한 보존적 아미노산 치환 변이체, 즉 보툴리눔 독소 A2형의 경쇄 단백질의 335번 라이신을 아르기닌으로 치환한 변이체를 제작하여 유비퀴틴-프로테아좀에 의한 분해 정도를 확인하였다. 본 발명자들은 335번 라이신을 아르기닌으로 치환하여 얻어진 변이체(즉, 서열번호 5 또는 6의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄 변이체)가 유의성 있게 억제된 유비퀴틴-프로테아좀에 의한 분해를 나타냄으로써, 유의성 있게 증가된 생체내 반감기를 갖는다는 것을 발견하였다. 따라서, 상기 변이체는 장기간 지속되는 시술 혹은 적은 용량을 이용한 시술을 가능하게 할 수 있는 보툴리눔 독소의 제조에 유용하게 사용될 수 있다.
본 발명은 보툴리눔 독소의 경쇄 단백질의 변이체를 제공한다. 즉, 본 발명은 서열번호 1의 아미노산 서열로 구성된 보툴리눔 독소 A1형의 경쇄 또는 서열번호 2의 아미노산 서열로 구성된 보툴리눔 독소 A2형의 경쇄에 있어서, 335번의 라이신이 아르기닌으로 치환된 보툴리눔 독소의 경쇄 변이체를 제공한다.
보툴리눔 독소의 경쇄 단백질의 아미노산 서열 및 이를 코딩하는 염기서열은 모두 공지되어 있다. 보툴리눔 독소 A1형의 경쇄 단백질의 아미노산 서열은 서열번호 1과 같고, 이를 코딩하는 염기서열은 서열번호 3과 같다. 또한, 보툴리눔 독소 A2형의 경쇄 단백질의 아미노산 서열은 서열번호 2와 같고, 이를 코딩하는 염기서열은 서열번호 4와 같다.
일 구현예에서, 본 발명에 따른 보툴리눔 독소의 경쇄 변이체는 서열번호 5 또는 6의 아미노산 서열로 구성된 변이체일 수 있다.
본 발명에 따른 보툴리눔 독소의 경쇄 변이체는, 생명공학 분야에서 통상적으로 사용되는 방법에 따라, 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서 335번의 라이신을 아르기닌으로 치환함으로써 제작할 수 있다.
예를 들어, 하기 서열번호 15 및 16의 프라이머 세트를 사용하여, 보툴리눔 독소 A1형의 경쇄 단백질을 코딩하는 유전자(예를 들어, 서열번호 3의 염기서열을 갖는 유전자)를 주형으로 하여 중합효소연쇄반응을 수행함으로써 335번의 라이신이 아르기닌으로 치환된 변이체를 코딩하는 유전자를 얻을 수 있다. 일 구현예에서, 상기 335번의 라이신이 아르기닌으로 치환된 변이체를 코딩하는 유전자는 서열번호 7의 염기서열로 구성될 수 있다.
또한, 예를 들어, 하기 서열번호 21 및 22의 프라이머 세트를 사용하여, 보툴리눔 독소 A2형의 경쇄 단백질을 코딩하는 유전자(예를 들어, 서열번호 4의 염기서열을 갖는 유전자)를 주형으로 하여 중합효소연쇄반응을 수행함으로써 335번의 라이신이 아르기닌으로 치환된 변이체를 코딩하는 유전자를 얻을 수 있다. 다른 구현예에서, 상기 335번의 라이신이 아르기닌으로 치환된 변이체를 코딩하는 유전자는 서열번호 8의 염기서열로 구성될 수 있다.
얻어진 유전자는 생명공학 분야에서 사용되는 통상의 방법에 따라, 발현 벡터를 제작한 후, 숙주세포를 형질감염시켜 형질감염된 세포를 얻을 수 있으며, 이를 배양함으로써 상기 변이체를 얻을 수 있다.
따라서, 본 발명은 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터(즉, 발현 벡터)를 포함한다. 상기 유전자는 서열번호 7 또는 8의 염기서열로 구성될 수 있다. 발현 벡터는 생명공학 분야에서 통상적으로 사용되는 벡터, 예를 들어, pcDNA3, pCS4, pcDNA3.1 등을 공 벡터(empty vector)로 사용하여 적절한 제한 효소를 사용하여 제조할 수 있다. 상기 공 벡터는 필요에 따라 Flag 등의 표지로 표지된 벡터일 수 있다.
또한, 본 발명은 상기 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터(즉, 발현 벡터)로 형질감염된 세포를 포함한다. 상기 유전자는 서열번호 7 또는 8의 염기서열로 구성될 수 있다. 숙주세포는 예를 들어, HEK293T 세포, B16F10 세포, A549 세포, A2780 세포, SKOV3 세포, HeLa 세포 등을 포함하나, 이에 제한되는 것은 아니다.
본 발명은 또한 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서, 335번의 라이신을 아르기닌으로 치환하는 것을 포함하는 보툴리눔 독소의 경쇄의 반감기를 증가시키는 방법을 제공한다. 본 발명의 방법에 있어서, 상기 치환은 상기에서 설명한 바와 같다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명이 이들 실시예에 의해 제한되는 것은 아니다.
실시예
1. 실험방법
(1) 발현벡터의 제작
제한효소 EcoR I 및 Xho I 을 사용하여 서열번호 3의 염기서열로 구성된 보툴리눔 독소 A1형의 경쇄의 폴리뉴클레오티드를 pCS4-3Flag 벡터(4.3 kb)(E7908, Sigma-Aldrich)에 클로닝하여 야생형 보툴리눔 독소 A1형의 경쇄 단백질의 발현벡터(pCS4-3Flag-Bont-LC WT)를 제작하였다. 또한, 제한효소 EcoR I 및 Xho I 을 사용하여 서열번호 4의 염기서열로 구성된 보툴리눔 독소 A2형의 경쇄의 폴리뉴클레오티드를 pCS4-3Flag 벡터(4.3 kb)(E7908, Sigma-Aldrich)에 클로닝하여 야생형 보툴리눔 독소 A2형의 경쇄 단백질의 발현벡터(pCS4-3Flag-Bont-A2-LC WT)를 제작하였다.
하기 표 1의 프라이머 세트를 사용하여, 부위 특이적 돌연변이유도(site-directed mutagenesis)를 통하여, 보툴리눔 독소 A1형의 경쇄 단백질의 212번, 320번, 330번, 335번, 340번, 또는 417번 라이신을 각각 아르기닌으로 치환한 변이체를 위한 발현벡터를 제작하였으며; 보툴리눔 독소 A2형의 경쇄 단백질의 335번 라이신을 아르기닌으로 치환한 변이체를 위한 발현벡터를 제작하였다. 구체적으로, 위에서 클로닝된 pCS4-3Flag-Bont-LC WT 야생형 보툴리눔 독소 A1형의 경쇄 단백질 유전자를 주형으로 하고, 각각의 프라이머 세트를 이용하여 중합효소연쇄반응(polymerase chain reaction, PCR)을 수행하였다. 상기 중합효소연쇄반응(PCR)은 다음 조건으로 수행하였다: 95℃에서 30초, 60℃에서 30초, 및 68℃에서 5분 40초로 총 12 사이클. 돌연변이 유도를 통해 총 6개의 보툴리눔 독소 A1형의 경쇄의 변이체를 위한 발현벡터, 즉 pCS4-3Flag-Bont-LC (K212R), pCS4-3Flag-Bont-LC (K320R), pCS4-3Flag-Bont-LC (K330R), pCS4-3Flag-Bont-LC (K335R), pCS4-3Flag-Bont-LC (K340R), 및 pCS4-3Flag-Bont-LC (K417R)를 제작하였다. 또한, 위에서 클로닝된 pCS4-3Flag-Bont-A2-LC WT 야생형 보툴리눔 독소 A2형의 경쇄 단백질 유전자를 주형으로 하고, 서열번호 21 및 22의 프라이머 세트를 이용하여 중합효소연쇄반응(PCR)을 수행하였다. 상기 중합효소연쇄반응(PCR)은 다음 조건으로 수행하였다: 98℃에서 10초, 58℃에서 5초, 및 72℃에서 5분 40초로 총 18 사이클. 보툴리눔 독소 A2형의 경쇄의 변이체를 위한 발현벡터, 즉 pCS4-3Flag-Bont-A2-LC (K335R)를 제작하였다.
Figure PCTKR2023015475-appb-img-000001
(2) 형질감염(transfection)
pCS4-3Flag-Bont-LC (K212R), pCS4-3Flag-Bont-LC (K320R), pCS4-3Flag-Bont-LC (K330R), pCS4-3Flag-Bont-LC (K335R), pCS4-3Flag-Bont-LC (K340R), 및 pCS4-3Flag-Bont-LC (K417R)의 발현벡터를 각각 사용하여 B16F10 세포(ATCC, CRL-6475)에 형질감염(Transfection)을 유도하였다. 또한, pCS4-3Flag-Bont-A2-LC (K335R)의 발현벡터를 사용하여 HeLa 세포(ATCC, CCL-2)에 형질감염(Transfection)을 유도하였다.
B16F10 세포주 및 HeLa 세포주는 각각 10% 소태아혈청(FBS, Gibco, Grand Island, NY, USA)과 1% 페니실린 및 스트렙토마이신(Gibco, Grand Island, NY, USA)이 포함된 Dulbecco's Modified Eagle's Medium(DMEM, Gibco, Grand Island, NY, USA)에 5% CO2 인큐베이터에서 배양하였다. 보툴리눔 독소 A1형 경쇄 WT, K212R, K320R, K330R, K335R, K340R, 또는 K417R 및 유비퀴틴 pRK5-HA-Ub의 형질감염; 또는 보툴리눔 독소 A2형의 경쇄 WT, K335R 및 유비퀴틴 pRK5-HA-Ub의 형질감염을 위해, 보툴리눔 독소 A1 또는 A2형의 경쇄의 야생형 또는 변이체 3 μg, 유비퀴틴 3 μg, NaCl 600 μl, 및 폴리에틸렌이민 시약(PEI, Polysciences, Inc., Warrington, PA, USA) 42 μl를 혼합하여 상온에서 15분 반응시키고, B16F10 세포(1 x 106 세포) 또는 HeLa 세포(1 x 106 세포)가 담긴 6 ml의 배양액에 혼합액을 넣어준 후, 37℃에서 48시간 동안 배양하였다.
(3) 면역블롯팅(immunoblotting) 및 항체(antibody)
항-Flag 항체(MBL), 항-HA 항체(12CA5 hybridoma cell media) 및 항 β-actin 항체(Santa Cruz Biotechnology)를 이용하여 면역블롯팅을 수행하였다. SDS-PAGE 과정을 거친 후, 폴리비닐리덴다이플루오라이드(polyvinylidene difluoride, PVDF) 멤브레인(Millipore)으로 옮긴 후, HRP-결합 2차 항체를 이용하여 블롯 검출을 수행하였다.
(4) 면역침강
형질감염된 세포를 용해 완충액(lysis buffer)(50 mM Tris-HCl[pH 7.5], 1 mM EDTA, 10% 글리세롤, 300 mM NaCl 및 1% Triton X-100)에 얼음에서 20분간 용해시킨 후, 13,000 rpm으로 20분 동안 원심분리하였다. 상등액을 취하여 항체(Flag 항체)를 넣고 4℃에서 밤새 반응시킨 다음, A/G PLUS 아가로스 비드(Santa Cruz Biotechnology, Santa Cruz, CA, USA)를 넣고 4℃ 로테이터에서 2시간 동안 반응시켜, B16F10 세포주 또는 HeLa 세포주에서 발현된 단백질 중 Flag로 표지된 보툴리눔 독소 A1형의 경쇄(Flag-Bont-LC) 및 Flag로 표지된 보툴리눔 독소 A2형의 경쇄(Flag-Bont-A2-LC)만을 얻어 내었다. 항체, 비드 및 단백질을 2X SDS(sodium dodecyl sulfate) 완충액과 혼합한 후, 100℃에서 7분간 끓여 결합을 끊고, 보툴리눔 독소의 경쇄의 구조적 풀림(unfolding)을 유도하여 SDS-PAGE를 수행하여 분리하였다. 분리된 단백질은 폴리비닐덴다이플루오라이드 멤브레인으로 이동(transfer)시켜, 1차 항체[항-Flag(MBL), 항-HA(12CA5 hybridoma cell media) 및 항-β-actin(Santa Cruz Biotechnology)]를 2% 스킴밀크(skim milk)와 섞어주어 4℃에서 하룻밤 동안 반응시킨 후, 항-마우스 2차 단일클론항체를 이용하여 ECL (Enhanced chemiluminescence) 시스템으로 블롯을 감광필름에 현상하였다.
(5) 도출된 결과 확인 및 통계 분석
덴시토메터 분석(Densitometric analysis)은 Image J (National Institutes of Health)로 수행하였고, Turkey는 GraphPad Prism version 5 (GraphPad Software)로 수행하였다. ANOVA는 유의성 있는 차이를 나타내기 위한 일원 분석 (one-way analysis)으로 수행하였다.
2. 실험결과
야생형 보툴리눔 독소 A1형 또는 A2형의 경쇄 단백질의 발현벡터로 형질감염된 세포에 대하여 아가로즈 겔 전기영동을 수행하였다. 항체를 이용하여 특이적으로 Flag-Bont-LC 또는 Flag-Bont-A2-LC만을 선별하였고, 정확한 단백질 크기를 확인하기 위하여 플라스미드 유전자의 양을 증가시키며 형질감염을 실시하였다. Flag-Bont-LC 및 Flag-Bont-A2-LC은 약 51-54 kDa 정도의 크기를 갖는 것으로 확인되었고, 세포주 내에서 발현이 유도됨을 확인하였다(도 1a 및 도 1b).
보툴리눔 독소의 경쇄의 유비퀴틴화 분석을 위해 pCS4-3Flag-Bont-LC WT 및 pRK5-HA-Ub 플라스미드 유전자를 이용하여 B16F10 세포에 형질감염(Transfection)을 유도하였으며; pCS4-3Flag-Bont-A2-LC WT 및 pRK5-HA-Ub 플라스미드 유전자를 이용하여 HeLa 세포에 형질감염(Transfection)을 유도하였다. 면역침강분석법에 의해 세포주 내로 형질감염시킨 보툴리눔 독소의 경쇄를 침강시켜 유비퀴틴화 정도를 확인하였으며, MG132 시약을 처리한 결과, 유비퀴틴화 정도가 증가한 것을 통해 보툴리눔 독소 A1형 및 A2형의 경쇄가 유비퀴틴-프로테아좀에 의한 분해경로를 거친다는 것을 확인하였다(도 2a 및 도 2b).
pCS4-3Flag-Bont-LC WT, pCS4-3Flag-Bont-LC (K212R), pCS4-3Flag-Bont-LC (K320R), pCS4-3Flag-Bont-LC (K330R), pCS4-3Flag-Bont-LC (K335R), pCS4-3Flag-Bont-LC (K340R), pCS4-3Flag-Bont-LC (K417R), 및 pRK5-HA-Ub 플라스미드 유전자를 이용하여 B16F10 세포에 형질감염(Transfection)을 유도하였으며, 상기와 동일한 유비퀴틴화 정도를 비교하였다. 또한, pCS4-3Flag-Bont-A2-LC WT, pCS4-3Flag-Bont-A2-LC (K335R), 및 pRK5-HA-Ub 플라스미드 유전자를 이용하여 HeLa 세포에 형질감염(Transfection)을 유도하였으며, 상기와 동일한 유비퀴틴화 정도를 비교하였다. 그 결과, 335번째 라이신을 아르기닌으로 치환한 변이체의 경우, 대조군과 비교하여 유비퀴틴화 정도가 유의성 있게 감소하였다(도 3a 및 도 3b).
pCS4-3Flag-Bont-LC WT 및 pCS4-3Flag-Bont-LC (K335R) 플라스미드 유전자를 B16F10 세포에 동일한 양으로 형질감염을 유도하고, 24시간 후 각 세포배지에 사이클로헥시미드(cycloheximide: CHX)를 100 μg/ml 농도로 0시간, 12시간, 18시간 동안 처리한 다음, 면역블롯팅을 수행하였다. 그 결과는 도 4a와 같다. 또한, pCS4-3Flag-Bont-A2-LC WT 및 pCS4-3Flag-Bont-A2-LC (K335R) 플라스미드 유전자를 HeLa 세포에 동일한 양으로 형질감염을 유도하고, 48시간 후 각 세포배지에 사이클로헥시미드(cycloheximide: CHX)를 100 μg/ml 농도로 0시간, 12시간, 18시간 동안 처리한 다음, 면역블롯팅을 수행하였다. 그 결과는 도 4b와 같다. 도 5a 및 도 5b는 각각 도 4a 및 도 4b의 결과를 수치화하여 나타낸 그래프이다. 도 4a 및 도 5a의 결과로부터, 335번째 라이신 잔기를 치환한 보툴리눔 독소 A1형의 경쇄 변이체는 단백질 안정성이 유의성 있게(즉, 18시간에서 1.69배) 증가하였음을 알 수 있다. 또한, 도 4b 및 도 5b의 결과로부터, 335번째 라이신 잔기를 치환한 보툴리눔 독소 A2형의 경쇄 변이체도 단백질 안정성이 유의성 있게(즉, 18시간에서 1.24배) 증가하였음을 알 수 있다.

Claims (7)

  1. 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서, 335번의 라이신이 아르기닌으로 치환된 보툴리눔 독소의 경쇄 변이체.
  2. 제1항에 있어서, 서열번호 5 또는 6의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄 변이체.
  3. 제1항 또는 제2항에 따른 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터.
  4. 제3항에 있어서, 상기 유전자가 서열번호 7 또는 8의 염기서열로 구성된 것을 특징으로 하는 벡터.
  5. 제1항 또는 제2항에 따른 보툴리눔 독소의 경쇄 변이체를 코딩하는 유전자를 포함하는 벡터로 형질감염된 세포.
  6. 제5항에 있어서, 상기 유전자가 서열번호 7 또는 8의 염기서열로 구성된 것을 특징으로 하는 세포.
  7. 서열번호 1 또는 2의 아미노산 서열로 구성된 보툴리눔 독소의 경쇄에 있어서, 335번의 라이신을 아르기닌으로 치환하는 것을 포함하는 보툴리눔 독소의 경쇄의 반감기를 증가시키는 방법.
PCT/KR2023/015475 2022-10-12 2023-10-10 보툴리눔 독소의 경쇄 변이체 WO2024080682A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0130397 2022-10-12
KR1020220130397A KR20240051355A (ko) 2022-10-12 2022-10-12 보툴리눔 독소의 경쇄 변이체

Publications (1)

Publication Number Publication Date
WO2024080682A1 true WO2024080682A1 (ko) 2024-04-18

Family

ID=90669883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015475 WO2024080682A1 (ko) 2022-10-12 2023-10-10 보툴리눔 독소의 경쇄 변이체

Country Status (2)

Country Link
KR (1) KR20240051355A (ko)
WO (1) WO2024080682A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341843B2 (en) * 2003-04-11 2008-03-11 Allergan, Inc. Botulinum toxin A peptides and methods of predicting and reducing immunoresistance to botulinum toxin therapy
KR20180070563A (ko) * 2015-08-27 2018-06-26 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 통증 치료용 조성물 및 방법
KR20180080205A (ko) * 2015-10-02 2018-07-11 입센 바이오팜 리미티드 클로스트리디움 신경독소를 정제하는 방법
KR20190010720A (ko) * 2010-05-20 2019-01-30 알러간, 인코포레이티드 분해가능한 클로스트리듐 독소
KR20190025906A (ko) * 2016-06-08 2019-03-12 칠드런'즈 메디컬 센터 코포레이션 조작된 보툴리눔 신경독소

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341843B2 (en) * 2003-04-11 2008-03-11 Allergan, Inc. Botulinum toxin A peptides and methods of predicting and reducing immunoresistance to botulinum toxin therapy
KR20190010720A (ko) * 2010-05-20 2019-01-30 알러간, 인코포레이티드 분해가능한 클로스트리듐 독소
KR20180070563A (ko) * 2015-08-27 2018-06-26 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 통증 치료용 조성물 및 방법
KR20180080205A (ko) * 2015-10-02 2018-07-11 입센 바이오팜 리미티드 클로스트리디움 신경독소를 정제하는 방법
KR20190025906A (ko) * 2016-06-08 2019-03-12 칠드런'즈 메디컬 센터 코포레이션 조작된 보툴리눔 신경독소

Also Published As

Publication number Publication date
KR20240051355A (ko) 2024-04-22

Similar Documents

Publication Publication Date Title
Descoteaux et al. A specialized pathway affecting virulence glycoconjugates of Leishmania
Putney et al. Primary structure of a large aminoacyl-tRNA synthetase
Wasserman et al. Use of yeast in the study of anticancer drugs targeting DNA topoisomerases: expression of a functional recombinant human DNA topoisomerase IIα in yeast
Castro et al. Complementary antioxidant defense by cytoplasmic and mitochondrial peroxiredoxins in Leishmania infantum
US8298550B2 (en) PEGylated mutated Clostridium botulinum toxin
US5863782A (en) Synthetic mammalian sulphamidase and genetic sequences encoding same
AU2018208708A1 (en) Delivery system for functional nucleases
AU2006316122A1 (en) Novel highly functional enzyme having modified substrate-specificity
Nakamura et al. Unique biological activity of botulinum D/C mosaic neurotoxin in murine species
JPH10505241A (ja) 改変タンパク質
WO2017209347A1 (ko) 피부 세포 증식 효과가 증가한 열 안정성 인간 상피세포성장인자-거미독 융합단백질 및 이를 유효성분으로 함유하는 피부 주름 개선 및 탄력 유지용 화장료 조성물
Messmer et al. A human pathology-related mutation prevents import of an aminoacyl-tRNA synthetase into mitochondria
KR102378697B1 (ko) 변형된 GlcNAc-1-포스포트랜스퍼라제를 포함하는 조성물 및 이의 사용 방법
WO2024080682A1 (ko) 보툴리눔 독소의 경쇄 변이체
WO2017192761A1 (en) Propionyl-coa carboxylase compositions and uses thereof
CN107530407A (zh) 丙酰辅酶a羧化酶组合物及其用途
US10286038B2 (en) Lysosome membrane protein 2 (LIMP-2) based peptides and related uses
Lechward et al. Interaction of nucleoredoxin with protein phosphatase 2A
US11980671B2 (en) Use of bacterial voltage gated ion channels for human therapies
US20210121544A1 (en) Polypeptide with Asparaginase Activity, Expression Cassette, Expression Vector, Host Cell, Pharmaceutical Composition, Methods for Producing a Polypeptide with Asparaginase Activity and for Preventing or Treating Cancer, and Use of a Polypeptide
Yan et al. A seven-sex species recognizes self and non-self mating-type via a novel protein complex
WO2019031781A2 (ko) 효모 이중 혼성 스크리닝을 위한 벡터 라이브러리 및 이를 이용한 표적 단백질에 결합하는 탈유비퀴틴화 효소의 동정방법
WO2022065725A1 (ko) 5&#39;-뉴클레오티다아제 변형 단백질을 암호화하는 암 치료를 위한 폴리뉴클레오티드
WO1993001830A1 (en) Expression of enzymatically active recombinant human acetylcholinesterase and uses thereof
RU2645458C2 (ru) Способ получения химически полисиалированной рекомбинантной бутирилхолинэстеразы человека