WO2024080618A1 - 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법 - Google Patents

음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법 Download PDF

Info

Publication number
WO2024080618A1
WO2024080618A1 PCT/KR2023/014432 KR2023014432W WO2024080618A1 WO 2024080618 A1 WO2024080618 A1 WO 2024080618A1 KR 2023014432 W KR2023014432 W KR 2023014432W WO 2024080618 A1 WO2024080618 A1 WO 2024080618A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon
electrode active
active material
magnet portion
Prior art date
Application number
PCT/KR2023/014432
Other languages
English (en)
French (fr)
Inventor
윤종수
김영곤
이택수
조진호
전신욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380014633.5A priority Critical patent/CN118284994A/zh
Priority to EP23877546.4A priority patent/EP4421901A1/en
Publication of WO2024080618A1 publication Critical patent/WO2024080618A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0247Orientating, locating, transporting arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a magnetic alignment device that can align the carbon-based negative electrode active material contained in the negative electrode active layer to a high level when manufacturing a negative electrode, and a method of manufacturing a negative electrode using the same.
  • secondary batteries have been widely applied not only to small devices such as portable electronic devices, but also to medium-to-large devices such as battery packs of hybrid vehicles or electric vehicles or power storage devices.
  • These secondary batteries are power generation devices capable of charging and discharging with a stacked structure of anode/separator/cathode.
  • the positive electrode contains lithium metal oxide as a positive electrode active material
  • the negative electrode contains a carbon-based negative electrode active material such as graphite, so when charging, Lithium ions released from the positive electrode are inserted into the carbon-based negative electrode active material of the negative electrode, and during discharging, lithium ions contained within the carbon-based negative electrode active material are inserted into the lithium metal oxide of the positive electrode, and charging and discharging are repeated.
  • the negative electrode active material used in the negative electrode includes graphite materials such as natural graphite.
  • This kind of graphite has a layered structure and is formed by stacking multiple layers in which carbon atoms form a network structure and spread out in a planar shape.
  • lithium ions invade the edge surface of these graphite layers (the surface where the layers overlap) and diffuse between layers. Additionally, during discharge, lithium ions may desorb and be released from the edge of the layer.
  • the electrical resistivity of graphite in the plane direction of the layer is lower than that in the stacking direction of the layers, a conduction path for electrons bypassed along the plane direction of the layer is formed.
  • a technology has been proposed to orient the graphite contained in the negative electrode by a magnetic field in order to improve the charging performance of the negative electrode.
  • the [0,0,2] crystal plane of graphite is oriented in a magnetic field so that it is almost horizontal with respect to the cathode current collector, and this is fixed.
  • the edge surface of the graphite layer faces the positive electrode active layer, the insertion and desorption of lithium ions is performed smoothly, and the electronic conduction path is shortened, thereby improving the electronic conductivity of the negative electrode, thereby improving the charging performance of the battery. can do.
  • a method of aligning graphite by applying a magnetic field to a negative electrode slurry containing graphite as a carbon-based negative electrode active material using a magnetic device is used when manufacturing a negative electrode.
  • this method requires placing permanent magnets on the top and bottom of the thin metal plate on which the cathode slurry is applied to apply a magnetic field, it is difficult to maintain a constant magnetic force.
  • this method not only has low ease of operation, but also an attraction phenomenon due to magnetic force occurs at the end of the permanent magnet, that is, at the end of the magnetic field, causing the graphite aligned vertically on the metal sheet to collapse, so that the negative electrode active layer that is finally manufactured is Graphite has a limitation of low alignment.
  • the purpose of the present invention is to provide a magnetic alignment device for manufacturing a negative electrode with excellent vertical alignment characteristics with respect to the negative electrode current collector of the carbon-based negative electrode active material contained in the negative electrode active layer and a negative electrode manufacturing method using the same.
  • the present invention in one embodiment, the present invention
  • a magnetic alignment device for manufacturing a negative electrode for aligning a carbon-based negative electrode active material
  • a first magnet unit and a second magnet unit located at the upper and lower portions, respectively, along the transport direction of the negative electrode current collector onto which the negative electrode slurry containing a carbon-based negative electrode active material is applied and apply magnetic force;
  • It includes a drying unit that dries the cathode slurry to which magnetic force is applied by the first magnet unit and the second magnet unit,
  • the first magnet unit and the second magnet unit are each divided into a first area located upstream and a second area located downstream based on the transfer direction of the negative electrode current collector,
  • the second region provides a magnetic alignment device characterized in that a magnetic field having a stronger magnetic force than the first region is applied.
  • the drying unit may be disposed adjacent to the ends of the second area of the first magnet unit and the second magnet unit.
  • first magnet portion and the second magnet portion each include a plurality of unit magnets disposed in the transfer direction (x-axis direction) and the width direction (y-axis direction) of the negative electrode current collector, and the plurality of unit magnets
  • the unit magnets disposed in the first area of the first magnet portion and the second magnet portion may be arranged in a Halbach arrangement.
  • first magnet portion and the second magnet portion may have a length of 0.5 m to 10 m in the transport direction of the negative electrode current collector, and the length occupied by the first region may be shorter than the length of the second region in the length. there is. Specifically, the first area may occupy 5% to 50% of the total length of the first magnet portion and the second magnet portion.
  • the separation distance between the first magnet portion and the second magnet portion may be 10 mm to 50 mm, and the first magnet portion and the second magnet portion may include magnets having opposite poles.
  • a method of manufacturing a negative electrode including the step of drying a negative electrode slurry in which carbon-based negative electrode active materials are aligned to form a negative electrode active layer.
  • the carbon-based negative active material may include one or more types of natural graphite and artificial graphite.
  • the negative electrode active layer may have self-alignment of the carbon-based negative electrode active material contained therein, so that the degree of alignment of the carbon-based negative electrode active material represented by the following equation 1 may be 0.1 to 5.0:
  • I 004 represents the area of the peak representing the [0,0,4] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer
  • I 110 represents the area of the peak representing the [1,1,0] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer.
  • XRD X-ray diffraction spectroscopy
  • the magnetic alignment device has the advantage of being able to produce a negative electrode with a significantly high degree of alignment of the carbon-based negative electrode active material contained in the negative electrode slurry.
  • FIG. 1 is a structural diagram schematically showing a magnetic alignment device for a cathode according to the present invention.
  • Figure 2 is a perspective view showing the arrangement of unit magnets included in the first magnet portion and the second magnet portion.
  • Figure 3 is an image showing the alignment of the a-b axis crystal planes of graphite depending on whether a magnetic field is applied to the cathode slurry when forming the cathode active layer.
  • (a) is a case where the magnetic field is not applied and the crystal planes of graphite are not aligned
  • (b) represents a case where a magnetic field is applied and the crystal planes of graphite are aligned.
  • “included as a main ingredient” means 50% by weight or more (or 50% by volume or more), 60% by weight or more (or 60% by volume or more) of the defined ingredient relative to the total weight (or total volume), Containing at least 70% by weight (or at least 70% by volume), at least 80% by weight (or at least 80% by volume), at least 90% by weight (or at least 90% by volume), or at least 95% by weight (or at least 95% by volume) It can mean.
  • “containing graphite as a main component as a negative electrode active material” means 50% by weight or more, 60% by weight, 70% by weight, 80% by weight, 90% by weight or more, or 95% by weight of graphite relative to the total weight of the negative electrode active material. This may mean containing more than % by weight, and in some cases, it may mean containing 100% by weight of graphite because the entire negative electrode active material is made of graphite.
  • the carbon-based negative electrode active material is oriented” or “the carbon-based negative electrode active material is aligned” refers to the two-dimensional planar structure of the carbon-based negative electrode active material constituting the negative electrode active material particles, as shown in (b) of FIG. 3. This may mean that a specific crystal plane (for example, an a-b axis crystal plane of graphite) is arranged to have a predetermined inclination based on the surface of the negative electrode current collector. This may be different from the case in which the carbon-based negative electrode active material particles themselves are aligned in a predetermined direction only inside the negative electrode active layer and have no directionality with respect to the negative electrode current collector, as shown in (a) of FIG. 3.
  • a specific crystal plane for example, an a-b axis crystal plane of graphite
  • “high orientation of the carbon-based negative electrode active material” means that a specific crystal plane (e.g., a-b-axis crystal plane of graphite) representing the two-dimensional planar structure of the carbon-based negative electrode active material contained in the negative electrode active layer is predetermined based on the surface of the negative electrode current collector. This may mean that the frequency of having a slope of is high. In addition, in some cases, this means that the crystal plane of the carbon-based negative electrode active material contained in the negative electrode active layer is arranged at a high angle (e.g., an angle close to the vertical, exceeding 45°; specifically, more than 60°) with respect to the surface of the negative electrode current collector. can do.
  • a high angle e.g., an angle close to the vertical, exceeding 45°; specifically, more than 60°
  • the degree of alignment of the carbon-based negative electrode active material is high means that the "degree of alignment (S 60/0 and/or OI)" mentioned in this specification has a large value, and the carbon-based negative electrode active material contained in the negative electrode active layer This may mean that a specific crystal plane (e.g., ab-axis crystal plane of graphite) representing a two-dimensional planar structure is arranged at a low angle (e.g., less than 45°) with respect to the surface of the negative electrode current collector.
  • a specific crystal plane e.g., ab-axis crystal plane of graphite
  • the degree of alignment of the carbon-based negative electrode active material is low means that the “degree of alignment (S 60/0 and/or OI)" has a small value, meaning that the crystal plane of the carbon-based negative electrode active material contained in the negative electrode active layer is This may mean that it is arranged at a high angle (e.g., an angle close to vertical, 45° or more; specifically, 60° or more) relative to the surface of the negative electrode current collector.
  • a high angle e.g., an angle close to vertical, 45° or more; specifically, 60° or more
  • the "crystal plane of the carbon-based negative electrode active material” refers to the surface where the atoms of the carbon-based negative electrode active material form the outer shape of the crystal, and in the present invention, the crystal plane including the plane of the carbon-based negative electrode active material, or the crystal plane of the carbon-based negative electrode active material It may refer to a crystal plane including the a-axis/a-b axis.
  • average particle diameter (D 50 ) refers to the particle size at which the integrated value is 50% in the particle size distribution, and is also called the median diameter.
  • the present invention in one embodiment, the present invention
  • a magnetic alignment device for manufacturing a negative electrode for aligning a carbon-based negative electrode active material
  • a first magnet unit and a second magnet unit located at the upper and lower portions, respectively, along the transport direction of the negative electrode current collector onto which the negative electrode slurry containing a carbon-based negative electrode active material is applied and apply magnetic force;
  • It includes a drying unit that dries the cathode slurry to which magnetic force is applied by the first magnet unit and the second magnet unit,
  • the first magnet unit and the second magnet unit are each divided into a first area located upstream and a second area located downstream based on the transfer direction of the negative electrode current collector,
  • the second region provides a magnetic alignment device characterized in that a magnetic field having a stronger magnetic force than the first region is applied.
  • the magnetic alignment device for a negative electrode is a device applied when manufacturing a negative electrode used in a secondary battery, by applying a magnetic field to the surface of the negative electrode current collector on which the negative electrode slurry containing a carbon-based negative electrode active material is applied, that is, the surface of the negative electrode slurry.
  • the carbon-based negative electrode active material contained in the negative electrode slurry can be aligned in a vertical direction with respect to the negative electrode current collector. Accordingly, the magnetic alignment device can implement uniform alignment of the carbon-based negative electrode active material contained in the negative electrode slurry, and the negative electrode manufactured in this way increases the mobility of lithium ions and reduces resistance during charging and discharging of the battery, thereby improving charging and discharging. This can result in improved performance.
  • alignment in the direction perpendicular to the negative electrode current collector means that the crystal planes of the carbon-based negative electrode active material are aligned.
  • the carbon-based negative electrode active material is vertically aligned with respect to the negative electrode current collector refers to the crystal plane of the carbon-based negative electrode active material constituting spherical particles, specifically, the crystal plane that represents the planar direction of graphite with a two-dimensional structure among the crystal planes of graphite. This may mean that it is arranged vertically with respect to the surface of the negative electrode current collector.
  • the plane direction of the graphite may have an average inclination of 60 to 120° with respect to the negative electrode current collector, and is preferably 70 to 110°; Alternatively, it may have an average tilt of 80 to 100°.
  • the magnetic alignment device 10 is positioned at the upper and lower portions of the negative electrode current collector on which the negative electrode slurry containing the carbon-based negative active material is applied, respectively, and applies magnetic force.
  • the first magnet portion 110a and the second magnet portion 110b are respectively disposed on the upper and lower portions of the electrode sheet being transported, that is, the negative electrode current collector on which the negative electrode slurry is applied, and the negative electrode slurry (S) It performs the role of applying a magnetic field to the surface of.
  • the magnetic field when a magnetic field is applied to the negative electrode slurry (S) applied and transported on a current collector, the magnetic field is uniformly applied to the surface (i.e., upper surface) where the negative electrode slurry (S) is exposed and the surface in contact with the current collector (i.e., lower surface).
  • the alignment of the carbon-based negative electrode active material specifically the slope of the carbon-based negative electrode active material with respect to the negative electrode current collector, can be increased, and thus vertical alignment of the carbon-based negative electrode active material can be realized.
  • the first magnet portion 110a and the second magnet portion 110b each include magnets 111a and 111b to apply a magnetic field to the surface of the cathode slurry S, and support portions 112a and 112b for fixing the magnets. may include.
  • the first magnet portion 110a and the second magnet portion 110b may include a plurality of unit magnets in the x-axis direction and the y-axis direction, respectively.
  • the unit magnets can form a magnet row by including m (where m is an integer of 2 or more) and n (where n is an integer of 2 or more) in the x-axis direction and y-axis direction, respectively, thereby forming one magnet array.
  • the magnet portion may include m ⁇ n unit magnets.
  • first magnet portion 110a and the second magnet portion 110b have first regions 1111a and 1111b located upstream in the transport direction of the negative electrode current collector, that is, the x-axis direction, and second regions 1111b located downstream. It can be divided into areas 1112a and 1112b.
  • a magnetic field may be applied to the first areas 1111a and 1111b with a stronger magnetic force (or magnetic field strength) than the second areas 1112a and 1112b.
  • the unit magnets disposed in the first areas (1111a and 1111b) have the magnetic force of the N or S pole (i.e. , single pole) is exposed so that a uniform magnetic field can be applied, and the unit magnets disposed in the second areas 1112a and 1112b can be arranged in a Halbach array.
  • the Halbach arrangement refers to an arrangement method that improves electric field strength by controlling the arrangement of unit magnets.
  • the Halbach array can implement a magnetic force more than 1.5 times stronger than when unit magnets are arranged at the same pole.
  • the present invention disposes a plurality of unit magnets having a Halbach arrangement in the second regions 1112a and 1112b of the first magnet portion and the second magnet portion, thereby forming a second region 1112a located downstream based on the transport direction when the cathode slurry is transported. and 1112b), and then a relatively low magnetic field may be applied to the first areas 1111a and 1111b located upstream, compared to the second areas 1112a and 1112b.
  • the present invention can align the carbon-based negative electrode active material close to the vertical with respect to the negative electrode current collector, and through this, the electrical performance of the negative electrode can be further improved, and a plurality of unit magnets with a Halbach arrangement in the entire area can be used. It is possible to prevent the transfer efficiency of the negative electrode current collector from being reduced.
  • the first areas (1111a and 1111b) and the second areas (1112a and 1112b) are the magnetic force applied from the surfaces of the first magnet unit (110a) and the second magnet unit (110b) and/or the first magnet unit (110a).
  • the magnetic force applied to the space between the second magnet portion 110b may have a certain ratio.
  • the second areas 1112a and 1112b are 10,000 G or more, 11,000 G or more, 10,000 to 15,000 G, 10,000 to 12,000 G or 11,000 to 12,000 G, and the first magnet portion 110a and the second magnet portion ( A magnetic force may be applied to the surface of 110b), and the magnetic force ratio of the second areas 1112a and 1112b to the first areas 1111a and 1111b is 1.4 or more, 1.5 or more, 1.6 or more, 1.4 to 5.0, or 1.4 to 3.0. , may be 1.4 to 2.5 or 1.5 to 2.0.
  • the second areas 1112a and 1112b are 8,000 G or more, 9,000 G or more, 10,000 G or more, 8,000 to 12,000 G, or 8,500 to 11,000 G, and the first magnet portion 110a and the second magnet portion 110b )
  • a magnetic force may be applied to the space between, and the magnetic force ratio of the second areas (1112a and 1112b) to the first areas (1111a and 1111b) is 1.4 or more, 1.5 or more, 1.6 or more, 1.4 to 2.5, 1.4 to 2.2. , may be 1.5 to 1.8 or 1.6 to 2.0.
  • the size ratio of the first areas 1111a and 1111b and the second areas 1112a and 1112b may be adjusted to be constant. Specifically, the length of the second regions 1112a and 1112b in the direction in which the negative electrode current collector is transported may be shorter than that of the first regions 1111a and 1111b. Specifically, the second areas 1112a and 1112b may occupy 5 to 50% of the total length of the first magnet portion 110a and the second magnet portion 110b, and more specifically, 5 to 40%. , may occupy 10 to 30% or 10 to 20%, and the remaining portion may be occupied by the first regions (1111a and 1111b).
  • the length of the first regions 1111a and 1111b located upstream accounts for 85%, and located downstream
  • the length of the second regions 1112a and 1112b may occupy 15%. If the magnetic field applied from the magnet unit is strong, the effect of aligning the carbon-based negative electrode active material in the negative electrode slurry nearly vertically with respect to the negative electrode current collector can be significant. However, an excessively strong magnetic field may interfere with the transfer of the negative electrode current collector, thereby reducing the manufacturing efficiency of the negative electrode, and the slow transfer speed may increase the time that the negative electrode current collector is exposed to the high-temperature negative electrode slurry.
  • the present invention adjusts the ratio of the second areas 1112a and 1112b to which a strong magnetic field is applied in the first magnet portion 110a and the second magnet portion 110b to 50% or less based on the total length of the magnet portion, Problems were prevented in advance.
  • the present invention can effectively achieve high alignment of the carbon-based negative electrode active material without significantly increasing the size of the entire magnet portion or the magnitude of the applied magnetic force.
  • the unit magnets 1120a and 1120b may include electromagnets and/or permanent magnets.
  • the electromagnet may include both a direct current electromagnet and an alternating current electromagnet.
  • the permanent magnets include NdFeB-based magnets, SmCo-based magnets, Ferrite magnets, Alnico magnets, FeCrCo-based magnets, and Bond magnets (Nd-Fe-B-based, Sm-Fe-N-based, Sm-Co-based, Ferrite-based). It may include both magnets with ferromagnetic properties and magnets with soft magnetic properties, including the like.
  • first magnet portion 110a and the second magnet portion 110b may be positioned along the transport direction of the cathode slurry S to face each other and have opposite poles.
  • the N pole of the first magnets 1120a of the first magnet portion 110a and the S pole of the second magnets 1120b of the second magnet portion 110b face each other, or
  • the S poles of the first magnets 1120a of 110a may be arranged so that the N poles of the second magnets 1120b of the second magnet portion 110b face each other.
  • the carbon-based negative electrode active material is perpendicular to the negative electrode current collector (C) between the first magnet portion (110a) and the second magnet portion (110b). Sorting can be done more effectively.
  • the separation distance between the first magnet portion 110a and the second magnet portion 110b may be 10 mm to 50 mm, specifically 10 mm to 40 mm; 20 mm to 50 mm; Or it may be 15 mm to 45 mm.
  • the present invention can more efficiently align the carbon-based negative electrode active material contained in the negative electrode slurry (S) by adjusting the separation distance between the first magnet portion 110a and the second magnet portion 110b within the above range.
  • first magnet portion 110a and the second magnet portion 110b may have a length of 0.5 m to 10 m in the transport direction (i.e., x-axis direction) of the negative electrode current collector, and the first magnet portion ( The lengths of 110a) and the second magnet portion 110b may be appropriately adjusted depending on the transfer speed of the negative electrode current collector to which the negative electrode slurry is applied and/or the time for which the magnetic force is applied to the negative electrode slurry when manufacturing the negative electrode.
  • the transfer speed of the negative electrode current collector to which the negative electrode slurry is applied is 3 ⁇ 0.2 m/min
  • the length of the first magnet unit 110a and the second magnet unit 110b may be 3 ⁇ 0.5 m
  • the transfer speed When is 6 ⁇ 0.2m/min the length of the first magnet portion 110a and the second magnet portion 110b may be 6 ⁇ 0.5m.
  • the carbon-based negative electrode active material contained in the negative electrode slurry can be aligned nearly vertically.
  • the magnetic alignment device 10 is combined with the transfer unit 20 to transport the negative electrode current collector on which the negative electrode slurry containing the carbon-based negative electrode active material is applied in one direction, specifically, in the process direction.
  • the transfer unit 20 can be applied without particular limitation as long as it is a method commonly applied in the art to transfer the electrode sheet (C) coated with the electrode slurry (S) during electrode manufacturing.
  • the transfer unit 20 may use a roll-to-roll transfer method or a conveyor belt transfer method capable of applying a magnetic field.
  • the drying unit 120 dries the negative electrode slurry (S) in which the carbon-based negative electrode active material is aligned by the first magnet unit (110a) and the second magnet unit (110b). It serves to fix the aligned carbon-based negative electrode active material.
  • the drying unit 120 is a wall (not shown) that blocks the surrounding area except for the inlet and outlet through which the electrode sheet coated with the slurry (S) is inputted and output, and the electrode sheet (C) coated with the electrode slurry (S) is pulled out. It is formed to include a dryer (not shown) for drying the electrode sheet on the side wall.
  • the electrode sheet (C) coated with the electrode slurry (S) enters through the inlet of the drying unit (120), it receives energy such as light, wavelength, and heat supplied from the opposite wall. Therefore, it is preferable that the wall is made of an insulating material to prevent heat loss due to internal energy being transferred to the outside.
  • the drying unit 120 prevents the carbon-based negative electrode active material aligned by the first magnet unit 110a and the second magnet unit 110b from being tilted toward the negative electrode current collector C and damaging the vertical alignment.
  • it may be disposed adjacent to the ends of the second areas 1112a and 1112b of each magnet unit.
  • “the end of the second region and the drying section are disposed adjacent to each other” means the inlet and outlet of the drying section 120 and the second areas 1112a and 1112b through which the electrode sheet C coated with the cathode slurry S is introduced and unloaded. ) may mean that the ends are placed in contact or arranged to have a predetermined separation distance.
  • This arrangement allows the cathode slurry (S) outside the end of the second region to be directly introduced into the drying unit 120 and dried continuously without being affected by the magnetic field caused by the second regions (1112a and 1112b) having strong magnetic force. Accordingly, the carbon-based negative electrode active material in the dried negative electrode slurry (i.e., negative electrode active layer) can maintain and achieve vertical or near-vertical alignment with respect to the negative electrode current collector.
  • the ends of the second areas 1112a and 1112b and the drying unit 120 are arranged to contact each other as shown in FIG. 2 when observed from the side, so that the separation distance is 0 mm. It may be close, and in some cases, the separation distance between the ends of the second areas 1112a and 1112b and the drying section 120 is 10 mm or less, 8 mm or less, 5 mm or less, 3 mm or less, 0.5 to 5 mm, 5 to 10 mm. , or 1 to 3 mm.
  • the present invention by adjusting the separation distance between the end of the second region and the drying section as described above, it is possible to prevent damage to the alignment of the carbon-based negative electrode active material aligned perpendicular or close to vertical with respect to the negative electrode current collector due to excessive separation distance, and drying.
  • the magnet portions 110a and 110b are introduced into the portion 120, it is possible to prevent a decrease in economic efficiency caused by purchasing expensive heat-resistant magnets.
  • the drying unit 120 is not limited in its method, but may be configured to perform a two-step drying process to maintain the alignment of the carbon-based negative electrode active material contained in the negative electrode active layer.
  • the drying unit 120 may include a first dryer that dries the cathode slurry using light and a second dryer that dries the cathode slurry using heat, and the first dryer and the second dryer are It can be operated continuously to dry the cathode slurry.
  • the first dryer is a device for temporarily drying the cathode slurry, and can irradiate light or wavelength to the surface of the cathode slurry as described above.
  • drying a negative electrode slurry is performed by applying hot air at a high temperature.
  • the drying time of the negative electrode slurry takes a long time, which may disrupt the alignment of the carbon-based negative electrode active material in the negative electrode slurry.
  • the temperature of the hot air is increased to solve this problem, the tendency of drying on the surface of the slurry increases, so the binder migrates to the surface of the slurry along with the volatilized solvent, causing adhesion of the active material layer and the negative electrode current collector. There is a problem of low intensity.
  • the present invention can have a configuration in which the electrode slurry is temporarily dried by irradiating energy in the form of light or wavelength using a first dryer so that the negative electrode slurry can be dried while maintaining the high degree of alignment of the carbon-based negative electrode active material without such problems.
  • a first dryer may include, for example, ultraviolet ray dryers, near-infrared rays dryers, far-infrared rays dryers, etc.
  • a uniform drying speed of the electrode slurry 1 ⁇ m or more, more specifically 5 ⁇ m or more, It may include a far-infrared dryer that emits energy with a wavelength of 10 ⁇ m or more or 20 ⁇ m or more.
  • the far-infrared dryer has good energy efficiency due to its long light or wavelength and can apply energy uniformly not only to the surface of the cathode slurry but also to the inside, so that the cathode slurry and the cathode current collector can be used in a short time. It has the advantage of increasing the adhesion between livers.
  • the first dryer may emit energy at a power density of 50 kW/m 2 to 1,000 kW/m 2 , specifically 50 kW/m 2 to 500 kW/m 2 ; of 50 kW/m 2 to 250 kW/m 2 ; Alternatively, energy can be released at power densities of 50 kW/m 2 and 200 kW/m 2 .
  • the present invention can prevent uneven drying of the active material layer from being induced due to excessive power density by controlling the power density of the first dryer within the above range.
  • the second dryer may apply heat to uniformly and completely dry the cathode slurry temporarily dried by light or wavelength.
  • a second dryer may be included without particular limitation as long as it is commonly applied in the industry, but specifically may include a hot air dryer, a vacuum oven, etc. used alone or in combination.
  • the magnetic alignment device can reduce the attraction phenomenon of the carbon-based negative electrode active material due to the magnetic force generated at the end of the magnet portion, thereby significantly increasing the degree of alignment of the carbon-based negative electrode active material contained in the negative electrode slurry. Therefore, there is an advantage in producing a cathode with excellent electrical performance.
  • a method of manufacturing a negative electrode including the step of drying a negative electrode slurry in which carbon-based negative electrode active materials are aligned to form a negative electrode active layer.
  • the method for manufacturing a negative electrode according to the present invention is to apply a negative electrode slurry containing a carbon-based negative electrode active material on a negative electrode current collector and apply a magnetic field to the surface of the applied negative electrode slurry using the magnetic alignment device of the present invention described above to form a negative electrode.
  • the carbon-based negative electrode active material in the slurry can be aligned perpendicular or close to perpendicular to the surface of the negative electrode current collector (or relative to the transfer direction of the electrode sheet).
  • the steps of applying the negative electrode slurry to the negative electrode current collector and drying the negative electrode slurry may be performed in a manner commonly applied in the art.
  • magnetic fields with different magnetic forces may be sequentially applied to the negative electrode slurry applied to the surface of the negative electrode current collector using a magnetic alignment device according to the present invention.
  • the magnetic alignment device has a first magnet portion and a second magnet portion respectively disposed on the upper and lower portions of the negative electrode current collector along the transport direction (i.e., x-axis direction) of the negative electrode current collector.
  • the first magnet unit and the second magnet unit are divided into first areas (1111a and 1111b) located upstream and second areas (1112a and 1112b) located downstream in the transport direction of the negative electrode current collector, that is, in the x-axis direction. They can be distinguished, and a magnetic field with a stronger magnetic force can be applied to the second areas 1112a and 1112b than to the first areas 1111a and 1111b.
  • the first areas (1111a and 1111b) and the second areas (1112a and 1112b) are the magnetic force applied from the surfaces of the first magnet unit and the second magnet unit and/or the space between the first magnet unit and the second magnet unit.
  • the magnetic force applied may have a certain ratio.
  • the second areas 1112a and 1112b are 10,000 G or more, 11,000 G or more, 10,000 to 15,000 G, 10,000 to 12,000 G or 11,000 to 12,000 G, and the first magnet portion 110a and the second magnet portion ( A magnetic force may be applied to the surface of 110b), and the magnetic force ratio of the second areas 1112a and 1112b to the first areas 1111a and 1111b is 1.4 or more, 1.5 or more, 1.6 or more, 1.4 to 5.0, or 1.4 to 3.0. , may be 1.4 to 2.5 or 1.5 to 2.0.
  • the second areas 1112a and 1112b are 8,000 G or more, 9,000 G or more, 10,000 G or more, 8,000 to 12,000 G, or 8,500 to 11,000 G, and the first magnet portion 110a and the second magnet portion 110b )
  • a magnetic force may be applied to the space between, and the magnetic force ratio of the second areas (1112a and 1112b) to the first areas (1111a and 1111b) is 1.4 or more, 1.5 or more, 1.6 or more, 1.4 to 2.5, 1.4 to 2.2. , may be 1.5 to 1.8 or 1.6 to 2.0.
  • the present invention can align and maintain the carbon-based negative electrode active material more closely to the vertical with respect to the negative electrode current collector by aligning the carbon-based negative electrode active material contained in the negative electrode slurry using a magnetic alignment device having the above-described configuration.
  • the magnetic field may be applied for a time of 0.1 to 20 seconds, more specifically 0.5 to 15 seconds; 0.5 to 12 seconds; 1 to 10 seconds; Alternatively, it may be applied for a period of 2 to 8 seconds.
  • the carbon-based negative electrode active material contained in the negative electrode slurry may include those commonly applied as carbon-based negative electrode active materials for lithium secondary batteries.
  • the carbon-based negative electrode active material refers to a material containing carbon atoms as a main component, and such carbon-based negative electrode active material may include graphite.
  • the graphite may include one or more of natural graphite and artificial graphite, but preferably includes natural graphite or a mixture of natural graphite and artificial graphite.
  • the negative electrode slurry may further include a conductive material, binder, thickener, etc. in addition to the carbon-based negative electrode active material, and these may be those commonly used in the art.
  • a negative electrode for a lithium secondary battery manufactured using the magnetic alignment device according to the present invention described above.
  • the negative electrode for a lithium secondary battery includes a negative electrode active layer containing a carbon-based negative electrode active material on at least one surface of the negative electrode current collector.
  • the negative electrode active layer is a layer that realizes the electrical activity of the negative electrode, and is manufactured by applying an electrode slurry containing a negative electrode active material that implements an electrochemical redox reaction during charging and discharging of the battery to both sides of the electrode current collector, then drying and rolling it. do.
  • the negative electrode active layer includes a carbon-based negative electrode active material to realize electrical activity through a reversible redox reaction when charging and discharging the battery.
  • the carbon-based negative electrode active material refers to a material containing carbon atoms as a main component, and such carbon-based negative electrode active material may include graphite.
  • the graphite may include one or more of natural graphite and artificial graphite, but preferably includes natural graphite or a mixture of natural graphite and artificial graphite.
  • the carbon-based negative active material may contain natural graphite or artificial graphite alone, and in some cases, it may contain a mixture of natural graphite and artificial graphite.
  • the mixing ratio of natural graphite and artificial graphite may be 5 to 40:60 to 95, or 10 to 30:70 to 90, based on weight.
  • the carbon-based negative electrode active material includes natural graphite and artificial graphite in the above mixing ratio, thereby strengthening the adhesion between the negative electrode current collector and the negative electrode active layer and achieving high orientation of the carbon-based negative electrode active material with respect to the surface of the negative electrode current collector.
  • the carbon-based negative electrode active material is preferably a spherical graphite granule formed by gathering a plurality of flake-shaped graphite.
  • flaky graphite in addition to natural graphite and artificial graphite, mesophase calcined carbon (bulk mesophase) made from tar and pitch, cokes (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.) are used as graphite. and those granulated using a plurality of natural graphites with high crystallinity are particularly preferable.
  • one graphite granulated product may be formed by gathering 2 to 100 pieces of scale-shaped graphite, preferably 3 to 20 pieces.
  • This carbon-based negative electrode active material may have a spherical particle shape.
  • the sphericity of the graphite particles may be 0.75 or more, for example, 0.75 to 1.0; 0.75 to 0.95; 0.8 to 0.95; Or it may be 0.90 to 0.99.
  • degree of sphericity may mean the ratio of the shortest diameter (minor diameter) and the longest diameter (major axis) among any diameters passing through the center of the particle. If the degree of sphericity is 1, the shape of the particle means that it is spherical. The degree of sphericity can be measured using a particle shape analyzer.
  • the present invention can improve the capacity of the battery by realizing a high electrical conductivity of the negative electrode active layer by implementing the shape of the carbon-based negative electrode active material close to a spherical shape, and can increase the specific surface area of the negative electrode active material, thereby improving the gap between the negative electrode active layer and the current collector. It has the advantage of improving adhesion.
  • the carbon-based negative active material may have an average particle diameter (D 50 ) of 0.5 ⁇ m to 10 ⁇ m, specifically 2 ⁇ m to 7 ⁇ m; 0.5 ⁇ m to 5 ⁇ m; Alternatively, it may have an average particle diameter (D 50 ) of 1 ⁇ m to 3 ⁇ m.
  • the average particle size of spherical natural graphite may be advantageous to make the average particle size of spherical natural graphite smaller in order to maximize the degree of disorder in the direction of expansion for each particle to prevent expansion of the particles due to charging of lithium ions.
  • the particle size of natural graphite is less than 0.5 ⁇ m, a large amount of binder is required due to an increase in the number of particles per unit volume, and the degree of sphericity and spheronization yield may be low.
  • the maximum particle diameter exceeds 10 ⁇ m, expansion becomes severe and as charging and discharging are repeated, the bonding between particles and the bonding between particles and the current collector deteriorates, which can greatly reduce cycle characteristics.
  • the negative electrode active layer containing such a carbon-based negative electrode active material alignment of the carbon-based negative electrode active material can be realized in a direction perpendicular to the negative electrode current collector by the magnetic alignment device according to the present invention described above.
  • the present invention can lower the electrode resistance by aligning the crystal planes of the carbon-based negative electrode active material contained in the negative electrode active layer in a certain direction, and through this, the charging performance of the negative electrode active layer can be further improved.
  • the degree of alignment (i.e., orientation) of the carbon-based negative active material eg, graphite
  • the carbon-based negative active material eg, graphite
  • the carbon-based negative electrode active material is vertically aligned with respect to the negative electrode current collector, and when measuring to 5.0 can be satisfied:
  • I 004 represents the area of the peak representing the [0,0,4] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer
  • I 110 represents the area of the peak representing the [1,1,0] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer.
  • XRD X-ray diffraction spectroscopy
  • the crystal plane orientation of the carbon-based negative electrode active material can be determined through crystal plane analysis of the carbon-based negative electrode active material, such as X-ray diffraction spectroscopy.
  • the degree of alignment (O.I) of the carbon-based negative electrode active material shown in Equation 1 is the direction in which the crystal structure of the carbon-based negative electrode active material is aligned during X-ray diffraction measurement, specifically, the a-b axis crystal plane representing the two-dimensional planar structure of the carbon-based negative electrode active material. This can be an indicator of the degree of alignment with the surface of the negative electrode current collector.
  • the cathode active layer is a carbon-based anode active material and includes graphite
  • This is the [0,0,2] plane, [1,0,0] plane, [1,0,1]R plane, [1,0,1]H plane, [0,0,1] plane among the crystal planes of graphite contained in the cathode active layer. ,0,4] plane and [1,1,0] plane.
  • the crystal plane peak is a peak that represents the plane characteristics of this crystal structure.
  • the degree of alignment (O.I) of graphite can be measured through the area ratio obtained by integrating the intensity of the peak.
  • the [1,1,0] plane appearing in represents the planar characteristics (a-b axis direction characteristics) of the stacked graphite layer. Therefore, the smaller the [0,0,4] plane peak, which represents the thickness direction characteristics of the graphite layer plane, and the larger the [1,1,0] plane peak, which represents the planar characteristics of the graphite layer, the more the graphite plane becomes the negative electrode current collector. Indicates alignment at a high angle with respect to the surface.
  • the carbon-based negative electrode active material is vertically aligned with respect to the negative electrode current collector, so the degree of alignment (O.I.) of the graphite may be low compared to the case where the carbon-based negative electrode active material is not vertically aligned.
  • the alignment degree of the carbon-based negative electrode active material contained in the negative electrode active layer may be 0.1 to 5.0, and more specifically, 0.1 to 4.5; 0.1 to 4.0; 0.1 to 3.5; 0.1 to 3.0; 0.1 to 2.5; 0.1 to 2.0; 0.1 to 1.0; 0.5 to 2.9; 1.0 to 4.5; 1.1 to 4.1; 1.5 to 4.0; 1.1 to 3.5; 1.5 to 3.0; 0.9 to 2.9; 0.1 to 2.4; 0.1 to 2.1; 0.1 to 1.9; 2.0 to 5.0; 2.0 to 4.0; 2.1 to 3.9; 2.5 to 3.9; 3.1 to 4.5; 0.1 to 0.6; 0.15 to 0.6; 0.15 to 0.5; 0.2 to 0.5; 0.2 to 0.4; 0.25 to 0.45; Or it may be 0.3 to 0.5.
  • the degree of alignment of the carbon-based negative electrode active material contained in the negative electrode active layer satisfies the above range, thereby improving lithium ion mobility and thereby further improving the safety of the battery.
  • the negative electrode active layer induces uniform vertical alignment of the carbon-based negative electrode active material with respect to the negative electrode current collector, so that the alignment deviation of the carbon-based negative electrode active material arbitrarily measured in a unit area may be low.
  • the negative electrode active layer has an alignment deviation of the carbon-based negative active material expressed by Equation 1 when measuring X-ray diffraction spectroscopy (XRD) at any three points present in a unit area (10 cm may be less than 5% based on the average value, and may specifically be less than 4%, less than 3%, less than 2%, or less than 1%.
  • XRD X-ray diffraction spectroscopy
  • the negative electrode active layer according to the present invention may optionally further include a conductive material, binder, and other additives, if necessary, along with the negative electrode active material.
  • the conductive material may include one or more types of carbon black, acetylene black, Ketjen black, carbon nanotubes, and carbon fiber, but is not limited thereto.
  • the anode active layer may contain carbon black, carbon nanotubes, carbon fiber, etc. as a conductive material alone or in combination.
  • the content of the conductive material may be 0.1 to 10 parts by weight based on 100 parts by weight of the total negative electrode active layer, and specifically, 0.1 to 8 parts by weight, 0.1 to 5 parts by weight, 0.1 to 3 parts by weight, 2 to 6 parts by weight, or It may be 0.5 to 2 parts by weight.
  • the present invention can prevent the charge capacity from decreasing due to an increase in the resistance of the negative electrode due to a low content of the conductive material, and the content of the negative electrode active material decreases due to an excessive amount of the conductive material. This can prevent problems such as a decrease in charging capacity or rapid charging characteristics due to an increase in the loading of the cathode active layer.
  • the binder is a component that assists in the bonding of the active material and the conductive material and the bonding to the current collector, and can be appropriately applied as long as it does not deteriorate the electrical properties of the electrode.
  • the binder is vinylidene fluoride-hexafluoropropylene.
  • PVDF-co-HFP polyvinylidenefluoride
  • PVdF polyacrylonitrile
  • polymethylmethacrylate polyvinyl alcohol
  • CMC carboxymethylcellulose
  • starch hydroxypropylcellulose, regenerated cellulose
  • polyvinylpyrrolidone tetrafluoroethylene
  • polyethylene polypropylene
  • polyacrylic acid ethylene-propylene-diene monomer
  • sulfonated ethylene-propylene-diene monomer styrene butadiene rubber and fluorine. It may include any one or more of rubber.
  • the content of the binder may be 0.1 to 10 parts by weight, specifically 0.1 to 8 parts by weight, 0.1 to 5 parts by weight, 0.1 to 3 parts by weight, or 2 to 6 parts by weight, based on 100 parts by weight of the total negative electrode active layer.
  • the present invention can prevent the adhesion of the active layer from being reduced due to a low content of the binder or the electrical properties of the electrode from being reduced due to an excessive amount of binder by controlling the content of the binder contained in the negative electrode active layer within the above range.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, nickel, titanium, calcined carbon, etc. can be used, copper In the case of stainless steel, surface treatment with carbon, nickel, titanium, silver, etc. may be used.
  • the average thickness of the negative electrode current collector may be appropriately applied in the range of 1 to 500 ⁇ m considering the conductivity and total thickness of the negative electrode being manufactured.
  • a negative electrode for a lithium secondary battery in which the carbon-based negative electrode active material was vertically aligned with respect to the negative electrode current collector was manufactured using the magnetic alignment device of the present invention having the structure shown in Figure 1.
  • natural graphite was prepared as a negative electrode active material, and 97 parts by weight of the negative electrode active material and 3 parts by weight of styrene-butadiene rubber (SBR) were mixed with water to form a negative electrode slurry, and then roll-to-roll transfer (transfer speed: 5 m/min) )
  • SBR styrene-butadiene rubber
  • the cathode slurry was cast using a die coater on the copper thin plate being formed. At this time, the cathode slurry was cast to have an average thickness of 165 ⁇ m along the transfer direction of the copper thin plate.
  • the separation distance between the first magnet unit and the second magnet unit was adjusted to be 20 mm (half of the separation distance: 10 mm).
  • first magnet unit and the second magnet unit are divided into a first area located upstream and a second area located downstream based on the transfer direction of the negative electrode current collector, and are included in 1 the first area and the second area, respectively.
  • the following experiment was performed to evaluate the degree of alignment of the carbon-based negative electrode active material.
  • the spectra were measured by performing X-ray diffraction (XRD) spectroscopy on the cathode active layer for the cathodes prepared in Examples 1 to 3 and Comparative Example 1.
  • XRD X-ray diffraction
  • I 004 represents the area of the peak representing the [0,0,4] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer
  • I 110 represents the area of the peak representing the [1,1,0] crystal plane when measuring X-ray diffraction spectroscopy (XRD) for the cathode active layer.
  • XRD X-ray diffraction spectroscopy
  • the magnetic alignment device according to the present invention can produce a negative electrode for a lithium secondary battery with a high degree of alignment of the carbon-based negative electrode active material and excellent surface properties. Specifically, it was confirmed that the alignment degree (I 004 /I 110 ) of the carbon-based negative electrode active material of the negative electrode of the example manufactured using the magnetic alignment device according to the present invention was significantly low at 0.4 or less.
  • the magnetic alignment device has a magnet part that applies a strong magnetic force in a second region located downstream along the transfer direction of the negative electrode current collector, and at the same time has a drying part adjacent to the end of the magnet part, thereby forming a negative electrode slurry.
  • This means that the degree of alignment of the carbon-based negative active material contained in can be achieved at a high level.
  • the magnetic alignment device has the advantage of producing a negative electrode in which the carbon-based negative electrode active material contained in the negative electrode slurry is aligned close to vertical with respect to the negative electrode current collector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법에 관한 것으로, 상기 자성 정렬 장치는 음극 슬러리가 도포된 음극 집전체의 상부 및 하부에 각각 자석부를 도입하여 음극 슬러리에 자기장을 인가하되, 음극 집전체의 이송 방향을 따라 하류에 위치하는 자석부의 제2 영역에서 상류에 위치하는 자석부의 제1 영역 보다 강한 자기장을 인가하고 강한 자기장이 인가된 제2 영역 말단에 건조부를 인접하게 배치함으로써, 음극 슬러리에 함유된 탄소계 음극활물질의 정렬도가 현저히 높은 음극을 제조할 수 있는 이점이 있다.

Description

음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
본 출원은 2022. 10. 13일자 대한민국 특허출원 제10-2022-0131352호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 음극 제조 시 음극 활성층에 함유된 탄소계 음극활물질을 높은 수준으로 정렬시킬 수 있는 자성 정렬 장치 및 이를 이용한 음극의 제조방법에 관한 것이다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 하이브리드 자동차나 전기 자동차의 배터리 팩 또는 전력저장장치와 같은 중대형 장치에도 이차전지가 널리 적용되고 있다.
이러한 이차전지는 양극/분리막/음극의 적층 구조로 이루어진 충방전이 가능한 발전소자로서, 일반적으로 양극은 리튬 금속 산화물을 양극활물질로 포함하고, 음극은 흑연 등의 탄소계 음극활물질을 포함하여 충전 시 양극에서 방출된 리튬 이온이 음극의 탄소계 음극활물질 내부로 흡장되고, 방전 시 탄소계 음극활물질 내부에 함유된 리튬 이온이 양극의 리튬 금속 산화물로 흡장되어 충방전이 반복되는 구성을 갖는다.
이때, 음극에 이용되는 음극 활물질로서는 천연 흑연 등의 흑연 재료를 들 수 있다. 이러한 흑연은 층형 구조를 가지고 있고 탄소 원자가 망목 구조를 형성해 평면형에 퍼진 층이 다수 적층함으로써 형성되어 있다. 충전 시에는 이러한 흑연 층의 엣지면(층이 겹쳐져 있는 면)에서 리튬 이온이 침입하고 층간에 확산한다. 또한 방전 시에는 리튬 이온이 탈리해 층의 엣지면에서 방출될 수 있다. 또한, 흑연은 층의 면 방향의 전기 저항률이 층의 적층 방향보다 낮기 때문에 층의 면 방향을 따라 우회한 전자의 전도 경로가 형성된다.
이와 관련하여, 종래 흑연을 이용한 리튬 이차전지에 있어서, 음극의 충전 성능을 개선하기 위하여 음극에 함유된 흑연을 자기장 배향시키는 기술이 제안된 바 있다. 구체적으로, 음극 형성 시에 자기장 중에서 흑연의 [0,0,2] 결정면이 음극 집전체에 대하여 거의 수평이 되도록 배향시키고, 이를 고정시키는 구성을 갖는다. 이 경우, 흑연층의 엣지면이 양극 활성층을 향하므로 리튬 이온의 삽입 탈리가 원활하게 수행됨과 동시에 전자의 전도 경로가 단축되어 음극의 전자 전도성이 향상될 수 있으며, 이를 통해 전지의 충전 성능을 개선할 수 있다.
이를 위하여, 음극의 제조 시 자성 장치를 이용하여 탄소계 음극활물질로서 흑연을 포함하는 음극 슬러리에 자기장을 인가함으로써 흑연을 정렬시키는 방식이 적용되고 있다. 그러나, 상기 방식은 음극 슬러리가 도포된 금속 박판의 상부와 하부에 영구 자석을 배치하여 자기장을 인가하여야 하므로, 일정한 자기력을 유지하기 어렵다. 또한, 상기 방식은 작업 용이성이 낮을 뿐만 아니라 영구 자석의 말단, 즉 자기장의 끝부분에서 자기력에 의한 끌림 현상이 발생하여 금속 박판에 수직으로 정렬된 흑연이 무너지므로, 최종적으로 제조되는 음극 활성층에서의 흑연은 정렬도가 낮은 한계가 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2018-0048131호
대한민국 공개특허공보 제10-2022-0060017호
본 발명의 목적은 음극 활성층 내에 함유된 탄소계 음극활물질의 음극 집전체에 대한 수직 정렬 특성이 우수한 음극을 제조하기 위한 자성 정렬 장치 및 이를 이용한 음극 제조방법을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
탄소계 음극활물질을 정렬시키기 위한 음극 제조용 자성 정렬 장치로서,
탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체의 이송 방향을 따라 상부 및 하부에 각각 위치하여 자기력을 인가하는 제1 자석부 및 제2 자석부; 및
상기 제1 자석부 및 제2 자석부에 의해 자기력이 인가된 음극 슬러리를 건조시키는 건조부를 포함하고,
상기 제1 자석부 및 제2 자석부는 각각 음극 집전체의 이송 방향을 기준으로 상류에 위치하는 제1 영역과 하류에 위치하는 제2 영역으로 구분되며,
상기 제2 영역은 제1 영역 보다 자기력의 세기가 강한 자기장이 인가되는 것을 특징으로 하는 자성 정렬 장치를 제공한다.
이때, 상기 건조부는 제1 자석부 및 제2 자석부의 제2 영역 말단과 인접하게 배치될 수 있다.
또한, 상기 제1 자석부 및 제2 자석부는 각각 음극 집전체의 이송 방향(x축 방향) 및 폭 방향(y축 방향)으로 각각 배치되는 복수의 단위 자석들을 포함하고, 상기 복수의 단위 자석들 중 제1 자석부와 제2 자석부의 제1 영역에 배치된 단위 자석들은 할바흐 배열로 배치될 수 있다.
아울러, 상기 제1 자석부와 제2 자석부는 음극 집전체의 이송 방향으로 0.5 m 내지 10 m의 길이를 가질 수 있으며, 상기 길이에 있어서 제1 영역이 차지하는 길이는 제2 영역의 길이보다 짧을 수 있다. 구체적으로, 제1 영역은 제1 자석부 및 제2 자석부의 전체 길이를 기준으로 5% 내지 50%의 길이를 차지할 수 있다.
또한, 상기 제1 자석부 및 제2 자석부의 이격 거리는 10㎜ 내지 50㎜일 수 있으며, 상기 제1 자석부 및 제2 자석부는 서로 반대되는 극을 갖는 자석을 포함할 수 있다.
나아가, 본 발명은 일실시예에서,
음극 집전체 상에 탄소계 음극활물질을 포함하는 음극 슬러리를 도포하는 단계;
상술된 본 발명에 따른 자성 정렬 장치를 이용하여 음극 슬러리에 함유된 탄소계 음극활물질을 정렬하는 단계; 및
탄소계 음극활물질이 정렬된 음극 슬러리를 건조하여 음극 활성층을 형성하는 단계를 포함하는 음극의 제조방법을 제공한다.
여기서, 상기 탄소계 음극활물질은 천연 흑연 및 인조 흑연 중 1종 이상을 포함할 수 있다.
또한, 상기 음극 활성층은 내부에 함유된 탄소계 음극활물질의 자기 정렬이 수행되어 하기 식 1로 나타내는 탄소계 음극활물질의 정렬도가 0.1 내지 5.0일 수 있다:
[식 1]
O.I = I004/I110
식 1에서,
I004는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [0,0,4] 결정면을 나타내는 피크의 면적을 나타내고,
I110는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [1,1,0] 결정면을 나타내는 피크의 면적을 나타낸다.
본 발명에 따른 자성 정렬 장치는 음극 슬러리에 함유된 탄소계 음극활물질의 정렬도가 현저히 높은 음극을 제조할 수 있는 이점이 있다.
도 1은 본 발명에 따른 음극용 자성 정렬 장치를 개략적으로 나타낸 구조도이다.
도 2는 제1 자석부 및 제2 자석부에 포함된 단위 자석의 배열을 나타낸 사시도이다.
도 3은 음극 활성층 형성 시 음극 슬러리에 대한 자기장 인가 여부에 따른 흑연의 a-b축 결정면의 정렬을 나타낸 이미지로서, (a)는 자기장이 인가되지 않아 흑연의 결정면이 정렬 되지 않은 경우이고, (b)는 자기장이 인가되어 흑연의 결정면이 정렬된 경우를 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
또한, 본 발명에서, "주성분으로 포함하다"란 전체 중량(또는 전체 부피)에 대하여 정의된 성분을 50 중량% 이상(또는 50 부피% 이상), 60 중량% 이상(또는 60 부피% 이상), 70 중량% 이상(또는 70 부피% 이상), 80 중량% 이상(또는 80 부피% 이상), 90 중량% 이상(또는 90 부피% 이상) 또는 95 중량% 이상(또는 95 부피% 이상) 포함하는 것을 의미할 수 있다. 예를 들어, "음극활물질로서 흑연을 주성분으로 포함하다"란 음극활물질 전체 중량에 대하여 흑연을 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90 중량% 이상 또는 95 중량% 이상 포함하는 것을 의미할 수 있으며, 경우에 따라서는 음극활물질 전체가 흑연으로 이루어져 흑연이 100 중량%로 포함하는 것을 의미할 수도 있다.
아울러, 본 명세서에서, "탄소계 음극활물질이 배향되다" 또는 "탄소계 음극활물질이 정렬되다"란 도 3의 (b)와 같이 음극활물질 입자를 구성하는 탄소계 음극활물질의 2차원 평면 구조를 나타내는 특정 결정면(예컨대, 흑연의 a-b축 결정면)이 음극 집전체 표면을 기준으로 소정의 기울기를 갖도록 배열됨을 의미할 수 있다. 이는 도 3의 (a)와 같이 탄소계 음극활물질 입자 자체가 음극 활성층 내부에서만 소정의 방향으로 정렬되면서 음극 집전체에 대해서는 방향성을 갖지 않는 것과는 상이할 수 있다.
이와 더불어, "탄소계 음극활물질의 배향성이 높다"란 음극 활성층에 함유된 탄소계 음극활물질의 2차원 평면 구조를 나타내는 특정 결정면(예컨대, 흑연의 a-b축 결정면)이 음극 집전체 표면을 기준으로 소정의 기울기를 갖는 빈도가 높음을 의미할 수 있다. 또한, 경우에 따라서는 음극 활성층에 함유된 탄소계 음극활물질의 상기 결정면이 음극 집전체 표면을 기준으로 높은 각도(예컨대, 수직에 가까운 각도, 45° 초과; 구체적으로 60° 이상)로 배열되었음을 의미할 수 있다.
또한, "탄소계 음극활물질의 정렬도가 높다"란 본 명세서에서 언급된 "정렬도(S60/0 및/또는 O.I)"가 큰 값을 갖는다는 것으로서, 음극 활성층에 함유된 탄소계 음극활물질의 2차원 평면 구조를 나타내는 특정 결정면(예컨대, 흑연의 a-b축 결정면)이 음극 집전체 표면을 기준으로 낮은 각도(예컨대, 45° 미만)로 배열되었음을 의미할 수 있다. 이와 반대로, "탄소계 음극활물질의 정렬도가 낮다"란 "정렬도(S60/0 및/또는 O.I)"가 작은 값을 갖는다는 것으로서, 음극 활성층에 함유된 탄소계 음극활물질의 상기 결정면이 음극 집전체 표면을 기준으로 높은 각도(예컨대, 수직에 가까운 각도, 45° 이상; 구체적으로 60° 이상)로 배열되었음을 의미할 수 있다.
아울러, 본 명세서에서 "탄소계 음극활물질의 결정면"이란, 탄소계 음극활물질의 원자가 결정의 외형을 이루는 면으로서, 본 발명에서는 탄소계 음극활물질의 평면을 포함하는 결정면, 또는 탄소계 음극활물질 결정의 a축/a-b축을 포함하는 결정면을 의미할 수 있다.
나아가, 본 명세서에서 "평균 입경(D50)"이란 입자의 입경 분포에 있어서 적산값이 50%이 되는 입경을 의미하고, 이를 메디안 직경(median diameter)이라고도 한다.
이하, 본 발명을 보다 상세하게 설명한다.
음극용 자성 정렬 장치
본 발명은 일실시예에서,
탄소계 음극활물질을 정렬시키기 위한 음극 제조용 자성 정렬 장치로서,
탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체의 이송 방향을 따라 상부 및 하부에 각각 위치하여 자기력을 인가하는 제1 자석부 및 제2 자석부; 및
상기 제1 자석부 및 제2 자석부에 의해 자기력이 인가된 음극 슬러리를 건조시키는 건조부를 포함하고,
상기 제1 자석부 및 제2 자석부는 각각 음극 집전체의 이송 방향을 기준으로 상류에 위치하는 제1 영역과 하류에 위치하는 제2 영역으로 구분되며,
상기 제2 영역은 제1 영역 보다 자기력의 세기가 강한 자기장이 인가되는 것을 특징으로 하는 자성 정렬 장치를 제공한다.
본 발명에 따른 음극의 자성 정렬 장치는 이차전지에 사용되는 음극 제조 시 적용되는 장치로서, 탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체의 표면, 즉 음극 슬러리 표면에 자기장을 인가함으로써 음극 슬러리에 함유된 탄소계 음극활물질을 음극 집전체에 대하여 수직 방향으로 정렬시킬 수 있다. 이에 따라, 상기 자성 정렬 장치는 음극 슬러리 내에 함유된 탄소계 음극활물질의 균일한 정렬을 구현할 수 있으며, 이렇게 제조된 음극은 전지의 충방전 시 리튬 이온의 이동도가 증가하고 저항이 감소하여 충방전 성능이 향상되는 효과를 나타낼 수 있다.
여기서, 음극 집전체에 대하여 수직 방향으로 정렬되는 것은 탄소계 음극활물질의 결정면이 정렬되는 것을 의미한다. 구체적으로, "탄소계 음극활물질이 음극 집전체에 대하여 수직 정렬되다"란 구형 입자를 구성하는 탄소계 음극활물질의 결정면, 구체적으로는 흑연의 결정면 중 2차원 구조를 갖는 흑연의 평면 방향을 나타내는 결정면이 음극 집전체 표면에 대하여 수직으로 정렬되어 배치된 것을 의미할 수 있다. 이때, 흑연의 평면 방향은 음극 집전체에 대하여 60~120°의 평균 기울기를 가질 수 있으며, 바람직하게는 70~110°; 또는 80~100°의 평균 기울기를 가질 수 있다.
이를 위하여, 본 발명에 따른 자성 정렬 장치(10)는 도 1에 나타낸 바와 같이 탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체의 이송 방향을 따라 상부 및 하부에 각각 위치하여 자기력을 인가하는 제1 자석부(110a)와 제2 자석부(110b); 및 상기 제1 자석부(110a)와 제2 자석부(110b)에 의해 자기력이 인가된 음극 슬러리를 건조시키는 건조부(120)를 포함하는 구성을 갖는다.
상기 자성 정렬 장치에 있어서, 제1 자석부(110a)와 제2 자석부(110b)는 이송 중인 전극 시트, 즉 음극 슬러리가 도포된 음극 집전체의 상부와 하부에 각각 배치되어 음극 슬러리(S)의 표면에 자기장을 인가하는 역할을 수행한다. 본 발명은 집전체 상에 도포되어 이송되는 음극 슬러리(S)에 자기장 인가 시 음극 슬러리(S)가 노출되는 면(즉, 상면)과 집전체와 접하는 면(즉, 하면)에 자기장이 균일하게 인가되도록 음극 집전체의 상부와 하부에 제1 자석부(110a) 와 제2 자석부(110b)를 배치함으로써 음극 집전체의 상면에만 자석부를 배치한 경우(탄소계 음극활물질 기울기: 약 60~65°)와 대비하여 탄소계 음극활물질의 정렬, 구체적으로는 음극 집전체에 대한 탄소계 음극활물질의 기울기를 증가시킬 수 있으며, 이에 따라 탄소계 음극활물질의 수직 정렬을 구현할 수 있다.
이때, 상기 제1 자석부(110a)와 제2 자석부(110b)는 각각 음극 슬러리(S) 표면에 자기장을 인가하기 위하여 자석(111a 및 111b)과 상기 자석들을 고정하는 지지부(112a 및 112b)를 포함할 수 있다.
구체적으로, 도 2에 나타낸 바와 같이 음극 슬러리(S)가 도포된 음극 집전체(C)가 이송되는 방향을 x축 방향이라 하고, 이송되는 음극 집전체의 폭 방향을 y축 이라 정의하는 경우, 상기 제1 자석부(110a)와 제2 자석부(110b)는 x축 방향 및 y축 방향으로 각각 복수의 단위 자석을 포함할 수 있다. 상기 단위 자석들은 x축 방향과 y축 방향으로 각각 m개 (단, m은 2 이상의 정수) 및 n개 (단, n은 2 이상의 정수)씩 포함하여 자석렬을 이룰 수 있으며, 이에 따라 하나의 자석부는 m×n개의 단위 자석을 포함할 수 있다.
또한, 상기 제1 자석부(110a)와 제2 자석부(110b)는 음극 집전체의 이송 방향, 즉 x축 방향으로 상류에 위치하는 제1 영역(1111a 및 1111b)과 하류에 위치하는 제2 영역(1112a 및 1112b)으로 구분할 수 있다. 여기서, 상기 제1 영역(1111a 및 1111b)은 제2 영역(1112a 및 1112b)보다 자기력의 세기(또는 자기장의 세기)가 강하게 자기장을 인가할 수 있다.
이러한 자기력의 세기 차이는 당업계에서 통상적으로 적용되는 방식으로 구현될 수 있으나, 바람직하게는 제1 영역(1111a 및 1111b)에 배치된 단위 자석은 자석부 표면으로 N극 또는 S극의 자기력(즉, 단일 극)이 노출되어 균일 자기장을 인가할 수 있도록 배치하고, 제2 영역(1112a 및 1112b)에 배치된 단위 자석은 할바흐 배열로 배치하여 구현할 수 있다. 여기서, 할바흐 배열은 단위 자석의 배치를 제어하여 전계 강도를 향상시킨 배열 방식을 말한다. 할바흐 배열은 단위 자석을 동일한 극으로 배치하는 경우와 비교하여 1.5배 이상의 강한 자기력을 구현할 수 있다. 본 발명은 제1 자석부와 제2 자석부의 제2 영역(1112a 및 1112b)에 할바흐 배열을 갖는 복수의 단위 자석을 배치함으로써 음극 슬러리의 이송 시 이송 방향 기준 하류에 위치하는 제2 영역(1112a 및 1112b)에서 높은 자기장이 인가되고, 이후 상류에 위치하는 제1 영역(1111a 및 1111b)에서는 제2 영역(1112a 및 1112b)에 비하여 상대적으로 낮은 자기장을 인가할 수 있다. 이를 통하여, 본 발명은 음극 집전체에 대하여 수직에 가깝게 탄소계 음극활물질을 정렬시킬 수 있으며, 이를 통해 음극의 전기적 성능을 보다 향상시킬 수 있으며, 전 영역에 할바흐 배열을 갖는 복수의 단위 자석을 포함하여 음극 집전체의 이송 효율이 저하되는 것을 방지할 수 있다.
이때, 상기 제1 영역(1111a 및 1111b)과 제2 영역(1112a 및 1112b)은 제1 자석부(110a)와 제2 자석부(110b) 표면에서 인가되는 자기력 및/또는 제1 자석부(110a)와 제2 자석부(110b) 사이의 공간에 인가되는 자기력이 일정 비율을 가질 수 있다.
하나의 예로서, 제2 영역(1112a 및 1112b)은 10,000 G 이상, 11,000 G 이상, 10,000~15,000 G, 10,000~12,000 G 또는 11,000~12,000 G로 제1 자석부(110a)와 제2 자석부(110b)의 표면에 자기력이 인가될 수 있으며, 제1 영역(1111a 및 1111b)에 대한 제2 영역(1112a 및 1112b)의 자기력 비율은 1.4 이상, 1.5 이상, 1.6 이상, 1.4 내지 5.0, 1.4 내지 3.0, 1.4 내지 2.5 또는 1.5 내지 2.0일 수 있다.
다른 하나의 예로서, 제2 영역(1112a 및 1112b)은 8,000 G 이상, 9,000 G 이상 10,000 G 이상, 8,000~12,000 G 또는 8,500~11,000 G로 제1 자석부(110a)와 제2 자석부(110b) 사이의 공간에 자기력이 인가될 수 있으며, 제1 영역(1111a 및 1111b)에 대한 제2 영역(1112a 및 1112b)의 자기력 비율은 1.4 이상, 1.5 이상, 1.6 이상, 1.4 내지 2.5, 1.4 내지 2.2, 1.5 내지 1.8 또는 1.6 내지 2.0일 수 있다.
또한, 상기 제1 영역(1111a 및 1111b)과 제2 영역(1112a 및 1112b)은 그 영역의 크기 비율이 일정하게 조절될 수 있다. 구체적으로, 제2 영역(1112a 및 1112b)은 음극 집전체의 이송 방향으로의 길이가 제1 영역(1111a 및 1111b)보다 짧을 수 있다. 구체적으로, 제2 영역(1112a 및 1112b)은 제1 자석부(110a)와 제2 자석부(110b)의 전체 길이를 기준으로 5~50%를 차지할 수 있고, 보다 구체적으로는 5~40%, 10~30% 또는 10~20%를 차지할 수 있으며, 나머지 잔류부는 제1 영역(1111a 및 1111b)이 차지하는 구조를 가질 수 있다. 하나의 예로서, 제1 자석부(110a)와 제2 자석부(110b)의 전체 길이를 기준으로, 상류에 위치하는 제1 영역(1111a 및 1111b)의 길이는 85%를 차지하고, 하류에 위치하는 제2 영역(1112a 및 1112b)의 길이는 15%를 차지할 수 있다. 자석부에서 인가되는 자기장이 강하면 음극 슬러리 내 탄소계 음극활물질이 음극 집전체에 대하여 수직에 가깝게 정렬되는 효과가 클 수 있다. 그러나, 과도하게 강한 자기장은 음극 집전체의 이송을 방해하여 음극의 제조 효율을 저감시킬 수 있고, 늦어진 이송 속도로 인해 음극 집전체가 고온의 음극 슬러리에 노출되는 시간이 증가될 수 있다. 음극 슬러리가 도포된 음극 집전체가 장시간 고온에 노출되면, 음극 슬러리가 도포된 음극 집전체의 유지부와 음극 슬러리가 도포되지 않은 음극 집전체의 무지부간 응력 편차가 발생될 수 있다. 유지부와 무지부의 응력 편차는 이들 경계에 주름 및/또는 단선 등을 발생시킬 수 있으므로 전극의 구조 안전성이 저하될 수 있다. 그러나, 본 발명은 제1 자석부(110a)와 제2 자석부(110b)에서 강한 자기장이 인가되는 제2 영역(1112a 및 1112b)의 비율을 자석부의 전체 길이 기준 50% 이하로 조절하여, 이러한 문제를 사전에 방지하였다. 동시에, 본 발명은 자석부 전체의 크기나 인가되는 자기력의 크기를 현저히 증가시키지 않고 효과적으로 탄소계 음극활물질의 높은 정렬도를 구현할 수 있다.
한편, 상기 단위 자석(1120a 및 1120b)은 전자석 및/또는 영구 자석을 포함할 수 있다. 상기 전자석은 직류 전자석과 교류 전자석을 모두 포함할 수 있다. 또한, 상기 영구 자석으로는 NdFeB계 자석, SmCo계 자석, Ferrite 자석, Alnico 자석, FeCrCo계 자석, Bond 자석(Nd-Fe-B계, Sm-Fe-N계, Sm-Co계, Ferrite계) 등을 포함하는 강자성 성질의 자석과 연자성 성질의 자석을 모두 포함할 수 있다.
아울러, 상기 제1 자석부(110a)와 제2 자석부(110b)는 서로 마주보도록 음극 슬러리(S)의 이송 방향을 따라 위치하고, 서로 반대 극을 갖도록 배치될 수 있다. 예를 들어, 제1 자석부(110a)의 제1 자석(1120a)들이 갖는 N극과 제2 자석부(110b)의 제2 자석(1120b)들이 갖는 S극이 마주보고 있거나, 제1 자석부(110a)의 제1 자석(1120a)들이 갖는 S극과 제2 자석부(110b)의 제2 자석(1120b)들이 갖는 N극이 마주보도록 배치될 수 있다. 이와 같이 N극과 S극이 마주보고 있는 공간 사이로 전극 시트가 지나가는 경우, 제1 자석부(110a)와 제2 자석부(110b) 사이에서 음극 집전체(C)에 대한 탄소계 음극활물질의 수직 정렬이 보다 효과적으로 이뤄질 수 있다.
이와 더불어, 상기 제1 자석부(110a)와 제2 자석부(110b)의 이격 거리는 10㎜ 내지 50㎜일 수 있으며, 구체적으로는 10㎜ 내지 40㎜; 20㎜ 내지 50㎜; 또는 15㎜ 내지 45㎜일 수 있다. 본 발명은 제1 자석부(110a)와 제2 자석부(110b)의 이격 거리를 상기 범위로 조절함으로써 음극 슬러리(S)에 함유된 탄소계 음극활물질의 정렬을 보다 효율적으로 수행할 수 있다.
나아가, 제1 자석부(110a)와 제2 자석부(110b)는 음극 집전체의 이송 방향(즉, x축 방향)으로 0.5 m 내지 10 m의 길이를 가질 수 있으며, 상기 제1 자석부(110a)와 제2 자석부(110b)의 길이는 음극 제조 시 음극 슬러리가 도포된 음극 집전체의 이송 속도 및/또는 음극 슬러리에 자기력이 인가되는 시간에 따라 적절하게 조절될 수 있다. 예컨대, 음극 슬러리가 도포된 음극 집전체의 이송 속도가 3±0.2m/min인 경우 제1 자석부(110a)와 제2 자석부(110b)의 길이는 3±0.5m일 수 있으며, 이송 속도가 6±0.2m/min인 경우 제1 자석부(110a)와 제2 자석부(110b)의 길이는 6±0.5m 일 수 있다. 본 발명은 제1 자석부(110a)와 제2 자석부(110b)의 전체 길이를 상기와 같이 조절함으로써 음극 슬러리 내에 함유된 탄소계 음극활물질의 정렬을 수직에 가깝게 구현할 수 있다.
아울러, 상기 자성 정렬 장치(10)는 이송부(20)와 결합되어 탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체를 일방향으로, 구체적으로는 공정 방향으로 이송시킬 수 있다. 이를 위하여, 상기 이송부(20)는 당업계에서 전극 제조 시 전극 슬러리(S)가 도포된 전극 시트(C)를 이송하는데 통상적으로 적용하는 방식이라면 특별히 제한하지 않고 적용할 수 있다. 예를 들어, 상기 이송부(20)는 롤투롤(roll-to-roll) 방식이나, 자기장 인가가 가능한 컨베이어 벨트 이송 방식 등이 적용될 수 있다.
나아가, 상기 자성 정렬 장치(10)에 있어서, 건조부(120)는 제1 자석부(110a)와 제2 자석부(110b)에 의해 탄소계 음극활물질이 정렬된 음극 슬러리(S)를 건조시켜 정렬된 탄소계 음극활물질을 고정시키는 역할을 수행한다.
상기 건조부(120)는 슬러리(S)가 도포된 전극 시트를 인입하고 반출하는 입출구를 제외한 주변을 차단하는 벽체(미도시)와 전극 슬러리(S)가 도포된 전극 시트(C)가 인출되는 측의 벽체에 전극 시트를 건조시키기 위한 건조기(미도시)를 포함하여 형성된다.
전극 슬러리(S)가 도포된 전극 시트(C)가 건조부(120)의 인입구를 통해 들어오면 반대편 벽체에서 공급되는 광, 파장, 열 등의 에너지를 전달받게 된다. 따라서, 상기 벽체는 외부로 내부의 에너지가 전달되어 열 손실이 발생하는 것을 방지할 수 있도록 단열재로 이루어지는 것이 바람직하다.
또한, 상기 건조부(120)는 제1 자석부(110a)와 제2 자석부(110b)에 의해 정렬된 탄소계 음극활물질이 음극 집전체(C) 측으로 기울어져 수직 정렬이 손상되는 것을 방지하기 위하여 각 자석부의 제2 영역(1112a 및 1112b)의 말단과 인접하도록 배치될 수 있다. 여기서, "제2 영역의 말단과 건조부가 인접하게 배치되다"란 음극 슬러리(S)가 도포된 전극 시트(C)를 인입하고 반출하는 건조부(120)의 입출구와 제2 영역(1112a 및 1112b)의 말단이 맞닿도록 배치되거나 소정의 이격거리를 갖도록 배치됨을 의미할 수 있다. 이러한 배치는 제2 영역의 말단을 벗어난 음극 슬러리(S)가 건조부(120) 내부로 바로 인입되어 강한 자기력을 갖는 제2 영역(1112a 및 1112b)으로 인한 자기장의 영향을 받지 않고 연속적으로 건조되도록 할 수 있으며, 이에 따라 건조된 음극 슬러리(즉, 음극 활성층) 내의 탄소계 음극활물질은 음극 집전체에 대하여 수직 또는 수직에 가까운 정렬을 유지 및 구현할 수 있다.
여기서, 제2 영역(1112a 및 1112b)의 말단과 건조부(120, 구체적으로는 건조부의 입출구)는 이들의 측면에서 관찰했을 경우 도 2에 나타낸 바와 같이 서로 맞닿도록 배치되어 이격 거리가 0 mm에 가까울 수 있으며, 경우에 따라서는 제2 영역(1112a 및 1112b)의 말단과 건조부(120)의 이격 거리는 10 mm 이하, 8 mm 이하, 5 mm 이하, 3 mm 이하, 0.5 내지 5mm, 5 내지 10mm, 또는 1 내지 3 mm일 수 있다. 본 발명은 제2 영역의 말단과 건조부의 이격 거리를 상기와 같이 조절함으로써 과도한 이격 거리로 인해 음극 집전체에 대하여 수직 또는 수직에 가깝게 정렬된 탄소계 음극활물질의 정렬도 손상을 예방할 수 있으며, 건조부(120) 내에 자석부(110a 및 110b)가 도입되는 경우 고가의 내열 자석 구입으로 인해 발생되는 경제성 저하를 방지할 수 있다.
또한, 상기 건조부(120)는 그 방식이 제한되는 것은 아니나, 음극 활성층 내에 함유된 탄소계 음극활물질의 정렬을 유지하기 위하여 2단계의 건조 과정을 수행하는 구성을 가질 수 있다. 구체적으로, 상기 건조부(120)는 광을 이용하여 음극 슬러리를 건조시키는 제1 건조기와 열을 이용하여 음극 슬러리를 건조시키는 제2 건조기를 포함할 수 있으며, 상기 제1 건조기와 제2 건조기는 연속적으로 작동하여 음극 슬러리를 건조시킬 수 있다.
상기 제1 건조기는 음극 슬러리를 가건조하는 장치로서, 상술된 바와 같이 음극 슬러리 표면에 광 또는 파장을 조사할 수 있다. 일반적으로 음극 슬러리를 건조하는 경우 높은 온도의 열풍을 가함으로써 수행되는데, 이 경우 음극 슬러리의 건조 시간이 오래 걸려 음극 슬러리 내 탄소계 음극활물질의 정렬이 흐트러질 수 있다. 또한, 이러한 문제를 해결하기 위하여 열풍의 온도를 높이는 경우 슬러리 표면에서 건조되는 경향이 커지므로 바인더가 휘발되는 용매를 따라 슬러리 표면으로 집중되는 현상(migration)이 발생되어 활물질층과 음극 집전체의 부착 강도가 떨어지는 문제가 있다. 본 발명은 이러한 문제없이 탄소계 음극활물질의 높은 정렬도를 유지하면서 음극 슬러리를 건조시킬 수 있도록 제1 건조기를 이용하여 에너지를 광 또는 파장의 형태로 조사함으로써 전극 슬러리를 가건조시키는 구성을 가질 수 있다. 이러한 제1 건조기로는 예를 들어 자외선 건조기, 근적외선 건조기, 원적외선 건조기 등을 포함할 수 있으며, 구체적으로는 전극 슬러리의 균일한 건조속도를 구현하기 위하여 1㎛ 이상, 보다 구체적으로는 5㎛ 이상, 10㎛ 이상 또는 20㎛ 이상의 파장의 에너지를 방출하는 원적외선 건조기를 포함할 수 있다. 상기 원적외선 건조기는 통상적으로 당업계에서 적용되는 근적외선 건조기나 적외선과는 달리 광 또는 파장이 길어 에너지 효율이 좋고 음극 슬러리의 표면 뿐만 아니라 내부까지 균일하게 에너지를 가할 수 있으므로 단시간에 음극 슬러리와 음극 집전체 간의 접착력을 높일 수 있는 이점이 있다.
이때, 상기 제1 건조기는 50kW/m2 내지 1,000kW/m2의 출력 밀도로 에너지를 방출할 수 있으며, 구체적으로는 50kW/m2 내지 500kW/m2; 50kW/m2 내지 250kW/m2의; 또는 50kW/m2 및 200kW/m2의 출력 밀도로 에너지를 방출할 수 있다. 본 발명은 제1 건조기의 출력 밀도를 상기 범위로 제어함으로써 과한 출력 밀도로 인해 활물질층의 불균일 건조가 유도되는 것을 방지할 수 있다.
또한, 제2 건조기는 광 또는 파장에 의해 가건조된 음극 슬러리를 균일하게 완전 건조시키기 위하여 열을 가할 수 있다. 이러한 제2 건조기로는 당업계에서 통상적으로 적용되는 것이라면 특별히 제한되지 않고 포함할 수 있으나, 구체적으로는 열풍 건조기, 진공 오븐기 등을 단독으로 또는 병용하도록 포함할 수 있다.
본 발명에 따른 자성 정렬 장치는 상술된 구성을 가짐으로써 자석부 말단에서 발생되는 자기력에 의한 탄소계 음극활물질의 끌림 현상을 저감시킬 수 있으므로 음극 슬러리에 함유된 탄소계 음극활물질의 정렬도를 현저히 높일 수 있으므로 전기적 성능이 우수한 음극을 제조할 수 있는 이점이 있다.
음극의 제조방법
또한, 본 발명은 일실시예에서,
음극 집전체 상에 탄소계 음극활물질을 포함하는 음극 슬러리를 도포하는 단계;
상술된 본 발명에 따른 자성 정렬 장치를 이용하여 음극 슬러리에 함유된 탄소계 음극활물질을 정렬하는 단계; 및
탄소계 음극활물질이 정렬된 음극 슬러리를 건조하여 음극 활성층을 형성하는 단계를 포함하는 음극의 제조방법을 제공한다.
본 발명에 따른 음극의 제조방법은 음극 집전체 상에 탄소계 음극활물질을 포함하는 음극 슬러리를 도포하고, 도포된 음극 슬러리의 표면에 상술된 본 발명의 자성 정렬 장치를 이용하여 자기장을 인가함으로써 음극 슬러리 내 탄소계 음극활물질을 음극 집전체의 표면에 대하여(또는 전극 시트의 이송 방향에 대하여) 수직 또는 수직에 가깝도록 정렬시킬 수 있다.
상기 음극 제조방법에 있어서, 음극 슬러리를 음극 집전체에 도포하는 단계와 음극 슬러리를 건조시키는 단계는 당업계에서 통상적으로 적용되는 방식으로 수행될 수 있다.
또한, 상기 음극 슬러리에 함유된 탄소계 음극활물질을 정렬하는 단계는 본 발명에 따른 자성 정렬 장치를 이용하여 음극 집전체 표면에 도포된 음극 슬러리에 자기력이 상이한 자기장이 순차적으로 인가될 수 있다.
상기 자성 정렬 장치는 음극 집전체의 이송 방향(즉, x축 방향)을 따라 음극 집전체의 상부와 하부에 제1 자석부와 제2 자석부가 각각 배치된다. 이때, 상기 제1 자석부와 제2 자석부는 음극 집전체의 이송 방향, 즉 x축 방향으로 상류에 위치하는 제1 영역(1111a 및 1111b)과 하류에 위치하는 제2 영역(1112a 및 1112b)으로 구분할 수 있으며, 상기 제2 영역(1112a 및 1112b)은 제1 영역(1111a 및 1111b) 보다 자기력의 세기가 강한 자기장을 인가할 수 있다.
이때, 상기 제1 영역(1111a 및 1111b)과 제2 영역(1112a 및 1112b)은 제1 자석부 및 제2 자석부 표면에서 인가되는 자기력 및/또는 제1 자석부와 제2 자석부 사이의 공간에 인가되는 자기력이 일정 비율을 가질 수 있다.
하나의 예로서, 제2 영역(1112a 및 1112b)은 10,000 G 이상, 11,000 G 이상, 10,000~15,000 G, 10,000~12,000 G 또는 11,000~12,000 G로 제1 자석부(110a)와 제2 자석부(110b)의 표면에 자기력이 인가될 수 있으며, 제1 영역(1111a 및 1111b)에 대한 제2 영역(1112a 및 1112b)의 자기력 비율은 1.4 이상, 1.5 이상, 1.6 이상, 1.4 내지 5.0, 1.4 내지 3.0, 1.4 내지 2.5 또는 1.5 내지 2.0일 수 있다.
다른 하나의 예로서, 제2 영역(1112a 및 1112b)은 8,000 G 이상, 9,000 G 이상 10,000 G 이상, 8,000~12,000 G 또는 8,500~11,000 G로 제1 자석부(110a)와 제2 자석부(110b) 사이의 공간에 자기력이 인가될 수 있으며, 제1 영역(1111a 및 1111b)에 대한 제2 영역(1112a 및 1112b)의 자기력 비율은 1.4 이상, 1.5 이상, 1.6 이상, 1.4 내지 2.5, 1.4 내지 2.2, 1.5 내지 1.8 또는 1.6 내지 2.0일 수 있다.
본 발명은 상술된 구성을 갖는 자성 정렬 장치를 이용하여 음극 슬러리에 함유된 탄소계 음극활물질을 정렬시킴으로써 음극 집전체에 대하여 탄소계 음극활물질을 보다 수직에 가깝게 정렬 및 유지시킬 수 있다.
또한, 상기 자기장은 0.1 내지 20초의 시간 동안 인가될 수 있으며, 보다 구체적으로는 0.5 내지 15초; 0.5 내지 12초; 1 내지 10초; 또는 2 내지 8초의 시간 동안 인가될 수 있다.
한편, 상기 음극 슬러리에 함유된 탄소계 음극활물질은 리튬 이차전지의 탄소계 음극활물질로서 통상적으로 적용된 것을 포함할 수 있다. 구체적으로, 상기 탄소계 음극활물질은 탄소 원자를 주성분으로 하는 소재를 의미하며, 이러한 탄소계 음극활물질로는 흑연을 포함할 수 있다. 상기 흑연은 천연 흑연, 인조 흑연 중 어느 하나 이상을 포함할 수 있으나, 바람직하게는 천연 흑연을 포함하거나, 천연 흑연과 인조 흑연의 혼합물을 포함할 수 있다.
또한, 상기 음극 슬러리는 탄소계 음극활물질 이외에 도전재, 바인더, 증점제 등을 더 포함할 수 있으며, 이들은 당업계에서 통상적으로 사용되는 것들로 적용될 수 있다.
리튬 이차전지용 음극
나아가, 본 발명은 일실시예에서,
상술된 본 발명에 따른 자성 정렬 장치를 이용하여 제조되는 리튬 이차전지용 음극을 제공한다.
본 발명에 따른 리튬 이차전지용 음극은 음극 집전체의 적어도 일면에 탄소계 음극활물질을 포함하는 음극 활성층을 포함한다. 상기 음극 활성층은 음극의 전기적 활성을 구현하는 층으로서, 전지의 충방전 시 전기화학적 산화환원 반응을 구현하는 음극활물질을 포함하는 전극 슬러리를 전극 집전체의 양면에 도포한 후 이를 건조 및 압연함으로써 제조된다. 상기 음극 활성층은 전지의 충방전 시 가역적 산화환원 반응을 통해 전기적 활성을 구현하기 위하여 음극활물질로서 탄소계 음극활물질을 포함한다. 구체적으로, 상기 탄소계 음극활물질은 탄소 원자를 주성분으로 하는 소재를 의미하며, 이러한 탄소계 음극활물질로는 흑연을 포함할 수 있다. 상기 흑연은 천연 흑연, 인조 흑연 중 어느 하나 이상을 포함할 수 있으나, 바람직하게는 천연 흑연을 포함하거나, 천연 흑연과 인조 흑연의 혼합물을 포함할 수 있다. 예를 들어, 상기 탄소계 음극활물질은 천연 흑연 또는 인조 흑연을 단독으로 포함할 수 있으며, 경우에 따라서는 천연 흑연과 인조 흑연을 혼합한 형태로 포함할 수 있다. 이 경우, 천연 흑연과 인조 흑연의 혼합 비율은 중량을 기준으로 5~40:60~95, 또는 10~30:70~90일 수 있다. 탄소계 음극활물질은 천연 흑연과 인조 흑연을 상기와 같은 혼합 비율로 포함함으로써 음극 집전체와 음극 활성층의 접착을 공고히 하면서 음극 집전체 표면에 대한 탄소계 음극활물질의 배향성을 높게 구현할 수 있다.
상기 탄소계 음극활물질은 복수의 인편상의 흑연이 집합하여 형성된 구형의 흑연 조립물인 것이 바람직하다. 인편상의 흑연으로서는 천연 흑연, 인조 흑연 이외, 타르·피치를 원료로 한 메소페이즈 소성 탄소(벌크 메소페이즈), 코크스류(생 코크스, 그린 코크스, 피치 코크스, 니들 코크스, 석유 코크스 등) 등을 흑연화한 것 등을 들 수 있으며, 특히, 결정성이 높은 천연 흑연을 복수 이용하여 조립된 것이 바람직하다. 또한, 1개의 흑연 조립물은 인편 형상의 흑연이 2~100개, 바람직하게는 3~20개 집합하여 형성될 수 있다.
이러한 탄소계 음극활물질, 구체적으로 흑연은 구형의 입자 형태를 가질 수 있으며, 이때, 흑연 입자의 구형도는 0.75 이상일 수 있으며, 예를 들어 0.75 내지 1.0; 0.75 내지 0.95; 0.8 내지 0.95; 또는 0.90 내지 0.99일 수 있다. 여기서, "구형화도"란 입자의 중심을 지나는 임의의 직경 중 가장 길이가 짧은 직경(단경)과 가장 길이가 긴 직경(장경)의 비율을 의미할 수 있으며, 구형화도가 1인 경우 입자의 형태는 구형임을 의미한다. 상기 구형화도는 입자형상 분석기를 통해 측정될 수 있다. 본 발명은 탄소계 음극활물질의 형상을 구형에 가깝게 구현함으로써 음극 활성층의 전기 전도도를 높게 구현할 수 있으므로 전지의 용량을 개선할 수 있으며, 음극활물질의 비표면적을 증가시킬 수 있으므로 음극 활성층과 집전체간의 접착력을 향상시킬 수 있는 이점이 있다.
또한, 상기 탄소계 음극활물질은 0.5㎛ 내지 10㎛의 평균 입경(D50)을 나타낼 수 있으며, 구체적으로는 2㎛ 내지 7㎛; 0.5㎛ 내지 5㎛; 또는 1㎛ 내지 3㎛의 평균 입경(D50)을 나타낼 수 있다.
구형 천연 흑연의 평균 입경은 리튬 이온의 충전에 의한 입자의 팽창을 막아줄 수 있도록 입자들 각각에 대한 팽창 방향의 무질서도를 최대화시키기 위해 입경을 작게 만들수록 유리할 수 있다. 그러나 천연 흑연의 입경이 0.5 ㎛ 미만인 경우 단위 부피당 입자의 수의 증가로 인하여 많은 양의 바인더가 필요하고, 구형화도 및 구형화 수율이 낮아질 수 있다. 반면, 최대 입경이 10 ㎛를 초과하면 팽창이 심해져서 충방전이 반복됨에 따라 입자간 결착성과 입자와 집전체와의 결착성이 떨어지게 되어 사이클 특성이 크게 감소될 수 있다.
이러한 탄소계 음극활물질을 포함하는 음극 활성층은 상술된 본 발명에 따른 자성 정렬 장치에 의해 음극 집전체에 대하여 수직인 방향으로 탄소계 음극활물질의 정렬도가 구현될 수 있다. 본 발명은 음극 활성층에 함유된 탄소계 음극활물질의 결정면을 일정 방향으로 정렬시킴으로써 전극 저항보다 낮출 수 있으며, 이를 통해 음극 활성층의 충전 성능을 보다 향상시킬 수 있다.
여기서, 상기 탄소계 음극활물질(예컨대, 흑연)의 정렬 정도(즉, 배향성)는 흑연에 대한 결정면 분석을 통해 판단될 수 있다.
하나의 예로서, 상기 음극 활성층은 탄소계 음극활물질이 음극 집전체에 대하여 수직 정렬되어, 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 하기 식 1로 나타내는 탄소계 음극활물질의 정렬도가 0.1 내지 5.0을 만족할 수 있다:
[식 1]
O.I = I004/I110
식 1에서,
I004는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [0,0,4] 결정면을 나타내는 피크의 면적을 나타내고,
I110는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [1,1,0] 결정면을 나타내는 피크의 면적을 나타낸다.
상기 탄소계 음극활물질의 결정면 배향은 X선 회절 분광 분석과 같은 탄소계 음극활물질에 대한 결정면 분석을 통해 판단될 수 있다. 상기 식 1로 나타낸 탄소계 음극활물질의 정렬도(O.I)는 X선 회절 측정 시 탄소계 음극활물질의 결정 구조가 정렬된 방향, 구체적으로는 탄소계 음극활물질의 2차원 평면 구조를 나타내는 a-b축 결정면이 음극 집전체 표면에 대하여 정렬된 정도를 나타내는 지표가 될 수 있다. 예를 들어, 음극 활성층은 탄소계 음극활물질로서 흑연을 포함하는 경우, 음극 활성층에 대한 X선 회절 분광 분석 시 흑연에 대한 피크인 2θ=26.5±0.2°, 42.4±0.2°, 43.4±0.2°, 44.6±0.2°, 54.7±0.2° 및 77.5±0.2°를 나타낸다. 이는 음극 활성층에 함유된 흑연의 결정면 중 [0,0,2]면, [1,0,0]면, [1,0,1]R면, [1,0,1]H면, [0,0,4]면, [1,1,0]면을 나타낸다. 일반적으로 흑연의 경우 a축 및 b축 면에 그래핀층이 놓이고, 이러한 그래핀층이 c축을 따라 적층되어 헥사고날(hexagonal) 또는 롬보헤드랄(rhombohedral)의 결정 구조를 갖게 된다. 여기서, 상기 결정면 피크는 이러한 결정 구조의 면 특성을 나타내는 피크이다. 또한, 2θ=43.4±0.2°에서 나타나는 피크는 탄소계 물질의 [1,0,1]R면과 전류 집전체, 예를 들어 Cu의 [1,1,1]면에 해당하는 피크가 중복(overlap)되어 나타난 것으로 볼 수도 있다.
본 발명은 [1,1,0]면을 나타내는 2θ=77.5±0.2°에서의 피크와 [0,0,4]면을 나타내는 2θ=54.7±0.2°에서의 피크의 면적 비율, 구체적으로는 상기 피크의 강도를 적분하여 얻어지는 면적의 비율을 통해 흑연의 정렬도(O.I)를 측정할 수 있다. 또한, X선 회절은 타겟 선으로 CuK α선을 사용하여 측정한 것이며, 피크 강도 해상도(Peak intensity resolution) 향상을 위하여, 모노크로메이터(monochromator) 장치로 타겟 선을 추출하여 측정하였다. 이때, 측정 조건은 2θ=10° 내지 90° 및 스캔 스피드(°/s)가 0.044 내지 0.089, 스텝 사이즈(step size)는 0.026°/스텝의 조건으로 측정하였다. 또한, 2θ=54.7±0.2°에서 나타내는 [0,0,4]면은 흑연층의 2차원 평면 구조가 적층된 층상 구조의 두께 방향 특성(c축 방향 특성)을 나타내고, 2θ=77.5±0.2°에서 나타나는 [1,1,0]면은 적층된 흑연층의 평면 특성(a-b축 방향 특성)을 나타낸다. 따라서, 흑연층 평면의 두께 방향 특성을 나타내는 [0,0,4]면 피크가 작을수록, 또한 흑연층의 평면 특성을 나타내는 [1,1,0]면 피크가 클수록 흑연의 평면이 음극 집전체 표면에 대하여 높은 각도로 정렬됨을 나타낸다. 즉, 상기 정렬도(O.I)는 그 값이 0에 가까울수록 음극 집전체 표면에 대한 흑연층 표면의 각도 또는 기울기가 90°에 가깝고, 그 값이 커질수록 음극 집전체 표면에 대한 기울기가 0° 또는 180°에 가까움을 의미할 수 있다.
이러한 측면에서, 본 발명에 따른 음극 활성층은 탄소계 음극활물질이 음극 집전체에 대하여 수직 정렬되므로, 탄소계 음극활물질이 수직 정렬되지 않은 경우와 비교하여 흑연의 정렬도(O.I)가 낮을 수 있다. 구체적으로, 음극 활성층에 함유된 탄소계 음극활물질의 정렬도는 0.1 내지 5.0일 수 있으며, 보다 구체적으로는 0.1 내지 4.5; 0.1 내지 4.0; 0.1 내지 3.5; 0.1 내지 3.0; 0.1 내지 2.5; 0.1 내지 2.0; 0.1 내지 1.0; 0.5 내지 2.9; 1.0 내지 4.5; 1.1 내지 4.1; 1.5 내지 4.0; 1.1 내지 3.5; 1.5 내지 3.0; 0.9 내지 2.9; 0.1 내지 2.4; 0.1 내지 2.1; 0.1 내지 1.9; 2.0 내지 5.0; 2.0 내지 4.0; 2.1 내지 3.9; 2.5 내지 3.9; 3.1 내지 4.5; 0.1 내지 0.6; 0.15 내지 0.6; 0.15 내지 0.5; 0.2 내지 0.5; 0.2 내지 0.4; 0.25 내지 0.45; 또는 0.3 내지 0.5일 수 있다. 음극 활성층에 함유된 탄소계 음극활물질의 정렬도는 상기 범위를 만족함으로써 리튬 이온 이동도를 향상시킬 수 있으며 이를 통해 전지의 안전성을 보다 향상시킬 수 있다.
또한, 상기 음극 활성층은 음극 집전체에 대한 탄소계 음극활물질의 수직 정렬이 균일하게 유도되어 단위 면적에서 임의적으로 측정된 탄소계 음극활물질의 정렬도 편차가 낮을 수 있다.
하나의 예로서, 상기 음극 활성층은 음극 활성층의 단위 면적(10㎝×10㎝)에 존재하는 임의의 3지점에 대한 X선 회절 분광(XRD) 측정 시 식 1로 나타내는 탄소계 음극활물질 정렬도 편차는 평균값 기준 5% 미만일 수 있으며, 구체적으로는 4% 이하, 3% 이하, 2% 이하, 또는 1% 이하일 수 있다.
한편, 본 발명에 따른 음극 활성층은 음극활물질과 함께, 필요에 따라 도전재, 바인더, 기타 첨가제 등을 선택적으로 더 포함할 수 있다.
상기 도전재는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소나노튜브, 탄소섬유 등을 1종 이상 포함할 수 있으나, 이에 제한되는 것은 아니다.
하나의 예로서, 상기 음극 활성층은 도전재로서 카본 블랙, 탄소나노튜브, 탄소섬유 등을 단독으로 함유하거나 병용할 수 있다.
이때, 상기 도전재의 함량은 음극 활성층 전체 100 중량부에 대하여 0.1 내지 10 중량부일 수 있으며, 구체적으로는 0.1 내지 8 중량부, 0.1 내지 5 중량부, 0.1 내지 3 중량부, 2 내지 6 중량부 또는 0.5 내지 2 중량부일 수 있다. 본 발명은 도전재의 함량을 상기와 같은 범위로 제어함으로써 낮은 함량의 도전재로 인해 음극의 저항이 증가하여 충전 용량이 저하되는 것을 방지할 수 있으며, 과량의 도전재로 인해 음극활물질의 함량이 저하되어 충전 용량이 저하되거나 음극활성층의 로딩량 증가로 인해 급속 충전 특성이 떨어지는 문제를 예방할 수 있다.
아울러, 상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서 전극의 전기적 물성을 저하시키지 않는 범위에서 적절히 적용될 수 있으나, 구체적으로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머, 술폰화된 에틸렌-프로필렌-디엔 모노머, 스티렌 부타디엔 고무 및 불소 고무 중에서 어느 하나 이상을 포함할 수 있다.
상기 바인더의 함량은 음극 활성층 전체 100 중량부에 대하여 0.1 내지 10 중량부일 수 있고, 구체적으로는 0.1 내지 8 중량부, 0.1 내지 5 중량부, 0.1 내지 3 중량부 또는 2 내지 6 중량부일 수 있다. 본 발명은 음극 활성층에 함유된 바인더의 함량을 상기 범위로 제어함으로써 낮은 함량의 바인더로 인해 활성층의 접착력이 저하되거나 과량의 바인더로 인해 전극의 전기적 물성이 저하되는 것을 방지할 수 있다.
또한, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 구리나 스테인리스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면처리된 것을 사용할 수도 있다. 이와 더불어, 상기 음극 집전체의 평균 두께는 제조되는 음극의 도전성과 총 두께를 고려하여 1~500 ㎛에서 적절하게 적용될 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 및 비교예. 리튬 이차전지용 음극의 제조
도 1에 나타낸 바와 같은 구조를 갖는 본 발명의 자성 정렬 장치를 이용하여 탄소계 음극활물질이 음극 집전체에 대하여 수직으로 정렬된 리튬 이차전지용 음극을 제조하였다.
구체적으로, 먼저 천연 흑연을 음극활물질을 준비하고, 음극활물질 97 중량부와 스티렌부타디엔 고무(SBR) 3 중량부를 물과 혼합하여 음극 슬러리를 형성한 후, 롤투롤 이송(이송 속도: 5 m/min)되고 있는 구리 박판 상에 다이코터를 이용하여 음극 슬러리를 캐스팅하였다. 이때, 구리 박판의 이송 방향을 따라 평균 두께 165 ㎛가 되도록 음극 슬러리를 캐스팅하였다.
그런 다음, 도포된 음극 슬러리가 자성 정렬 장치의 제1 자석부와 제2 자석부의 사이를 통과하도록 구리 박판을 이동시킴으로써 음극 슬러리에 자기장을 인가하였다. 여기서, 상기 제1 자석부와 제2 자석부는 이격 거리가 20㎜(이격 거리의 1/2 값: 10㎜)가 되도록 조절되었다.
또한, 제1 자석부와 제2 자석부는 음극 집전체의 이송 방향을 기준으로 상류에 위치하는 제1 영역과 하류에 위치하는 제2 영역을 구분되며, ① 제1 영역과 제2 영역에 각각 포함된 단위 자석들의 배열, ② 각 영역에 포함된 자석 표면의 자기장 세기 및 ③ 음극 집전체의 이송 방향으로 제1 영역 길이(L1)와 제2 영역 길이(L2)의 비율(L1:L2)은 하기 표 1에 나타낸 바와 같이 조절하였다.
아울러, 자기장이 인가된 음극 슬러리를 건조시키기 위하여, 음극 슬러리에 자기장이 인가된 구리 박판을 건조부로 이동시켜 음극 슬러리를 건조시켜 리튬 이차전지용 음극을 제조하였으며, ④ 제2 영역의 말단과 건조부의 이격 거리는 표 1에 나타낸 바와 같이 조절하였다.
제1 영역 제2 영역 ③ L1:L2 ④ 이격 거리
① 단위자석 배열 ② 표면 자기장 세기 ① 단위자석 배열 ② 표면 자기장 세기
비교예 1 단일극 배열 6,000±500 G 단일극 배열 6,000±500 G 7:3 0 mm
실시예 1 단일극 배열 6,000±500 G 할바흐 배열 10,000±1,000 G 7:3 0 mm
실시예 2 단일극 배열 6,000±500 G 할바흐 배열 10,000±1,000 G 7:3 20 mm
실시예 3 단일극 배열 6,000±500 G 할바흐 배열 10,000±1,000 G 5:5 0 mm
실험예.
본 발명에 따른 자성 정렬 장치의 성능으로서, 탄소계 음극활물질의 정렬도를 평가하기 위하여 하기와 같은 실험을 수행하였다.
구체적으로 실시예 1~3과 비교예 1에서 제조된 음극을 대상으로 음극 활성층에 대한 X선 회절 분광(XRD)을 수행하여 스펙트럼을 측정하였다. 이때, 상기 X선 회절(XRD)의 측정 조건은 다음과 같다:
- 타겟: Cu(Kα-선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1㎜, 산란 슬릿 = 1도
- 측정 구역: [1,1,0] 면: 76.5 도 < 2θ < 78.5도 / [0,0,4] 면: 53.5 도 < 2θ < 56.0도.
상기 조건으로 측정된 스펙트럼으로부터 식 1에 따른 각 탄소계 음극활물질의 평균 정렬도를 산출하였다. 그 결과는 표 2에 나타내었다.
[식 1]
O.I = I004/I110
식 1에서,
I004는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [0,0,4] 결정면을 나타내는 피크의 면적을 나타내고,
I110는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [1,1,0] 결정면을 나타내는 피크의 면적을 나타낸다.
I004/I110
비교예 1 0.75
실시예 1 0.41
실시예 2 0.60
실시예 3 0.33
상기 표 2에 나타낸 바와 같이 본 발명에 따른 자성 정렬 장치는 탄소계 음극활물질의 정렬도가 높고, 표면 특성이 우수한 리튬 이차전지용 음극을 제조할 수 있음을 알 수 있다. 구체적으로, 본 발명에 따른 자성 정렬 장치를 이용하여 제조된 실시예의 음극은 탄소계 음극활물질의 정렬도(I004/I110)가 0.4 이하로 현저히 낮은 것을 확인되었다.
이는 본 발명에 따른 자성 정렬 장치가 음극 집전체의 이송 방향을 따라 하류에 위치하는 제2 영역에서 강한 자기력을 인가하는 자석부를 구비하고, 동시에 상기 자석부의 말단에 인접하게 건조부를 구비함으로써, 음극 슬러리에 함유된 탄소계 음극활물질의 정렬도를 높게 구현할 수 있음을 의미하는 것이다.
이러한 결과로부터, 본 발명에 따른 자성 정렬 장치는 음극 슬러리에 함유된 탄소계 음극활물질이 음극 집전체에 대하여 수직에 가깝게 정렬된 음극을 제조할 수 있는 이점이 있음을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
[부호의 설명]
10: 자성 정렬 장치
20: 이송부
30: 코팅부
110a 및 110b: 제1 자석부 및 제2 자석부
111a 및 111b: 복수의 단위 자석
112a 및 112b: 지지부
1111a 및 1111b: 제1 영역
1112a 및 1112b: 제2 영역
120: 건조부
S: 음극 슬러리
C: 음극 집전체 또는 전극 시트

Claims (11)

  1. 탄소계 음극활물질을 정렬시키기 위한 음극 제조용 자성 정렬 장치로서,
    탄소계 음극활물질을 포함하는 음극 슬러리가 도포된 음극 집전체의 이송 방향을 따라 상부 및 하부에 각각 위치하여 자기력을 인가하는 제1 자석부 및 제2 자석부; 및
    상기 제1 자석부 및 제2 자석부에 의해 자기력이 인가된 음극 슬러리를 건조시키는 건조부를 포함하고,
    상기 제1 자석부 및 제2 자석부는 각각 음극 집전체의 이송 방향을 기준으로 상류에 위치하는 제1 영역과 하류에 위치하는 제2 영역으로 구분되며,
    상기 제2 영역은 제1 영역 보다 자기력의 세기가 강한 자기장이 인가되는 것을 특징으로 하는 자성 정렬 장치.
  2. 제1항에 있어서,
    건조부는 제1 자석부 및 제2 자석부의 제2 영역 말단과 인접하게 배치되는 자성 정렬 장치.
  3. 제1항에 있어서,
    제1 자석부 및 제2 자석부는 각각 음극 집전체의 이송 방향(x축 방향) 및 폭 방향(y축 방향)으로 각각 배치되는 복수의 단위 자석들을 포함하고,
    상기 복수의 단위 자석들 중 제1 자석부와 제2 자석부의 제2 영역에 배치된 단위 자석들은 할바흐 배열로 배치된 자성 정렬 장치.
  4. 제1항에 있어서,
    제1 자석부와 제2 자석부는 음극 집전체의 이송 방향으로 제2 영역의 길이가 제1 영역의 길이보다 짧은 것을 특징으로 하는 자성 정렬 장치.
  5. 제4항에 있어서,
    제2 영역은 제1 자석부 및 제2 자석부의 전체 길이를 기준으로 5% 내지 50%의 길이를 차지하는 자성 정렬 장치.
  6. 제1항에 있어서,
    제1 자석부와 제2 자석부는 음극 집전체의 이송 방향으로 0.5 m 내지 10 m의 길이를 갖는 자성 정렬 장치.
  7. 제1항에 있어서,
    제1 자석부 및 제2 자석부의 이격 거리는 10㎜ 내지 50㎜인 음극의 장성 정렬 장치.
  8. 제1항에 있어서,
    제1 자석부 및 제2 자석부는 서로 반대되는 극을 갖는 자석을 포함하는 음극의 자성 정렬 장치.
  9. 음극 집전체 상에 탄소계 음극활물질을 포함하는 음극 슬러리를 도포하는 단계;
    제1항에 따른 자성 정렬 장치를 이용하여 음극 슬러리에 함유된 탄소계 음극활물질을 정렬하는 단계; 및
    탄소계 음극활물질이 정렬된 음극 슬러리를 건조하여 음극 활성층을 형성하는 단계를 포함하는 음극의 제조방법.
  10. 제9항에 있어서,
    탄소계 음극활물질은 천연 흑연 및 인조 흑연 중 1종 이상을 포함하는 음극의 제조방법.
  11. 제9항에 있어서,
    음극 활성층은 하기 식 1로 나타내는 탄소계 음극활물질의 정렬도가 0.1 내지 5.0인 음극의 제조방법:
    [식 1]
    O.I = I004/I110
    식 1에서,
    I004는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [0,0,4] 결정면을 나타내는 피크의 면적을 나타내고,
    I110는 음극 활성층에 대한 X선 회절 분광(XRD) 측정 시 [1,1,0] 결정면을 나타내는 피크의 면적을 나타낸다.
PCT/KR2023/014432 2022-10-13 2023-09-21 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법 WO2024080618A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380014633.5A CN118284994A (zh) 2022-10-13 2023-09-21 负极用磁力排列装置及使用该装置的负极制造方法
EP23877546.4A EP4421901A1 (en) 2022-10-13 2023-09-21 Magnetic alignment device for anode, and anode manufacturing method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0131352 2022-10-13
KR1020220131352A KR20240051549A (ko) 2022-10-13 2022-10-13 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법

Publications (1)

Publication Number Publication Date
WO2024080618A1 true WO2024080618A1 (ko) 2024-04-18

Family

ID=90669534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014432 WO2024080618A1 (ko) 2022-10-13 2023-09-21 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법

Country Status (4)

Country Link
EP (1) EP4421901A1 (ko)
KR (1) KR20240051549A (ko)
CN (1) CN118284994A (ko)
WO (1) WO2024080618A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067280A1 (en) * 2011-11-04 2013-05-10 Carben Semicon Limited Carbon film and method of production thereof
KR101556049B1 (ko) * 2011-03-11 2015-09-25 도요타지도샤가부시키가이샤 비수전해질 2차 전지와 그 제조 방법
KR20180048131A (ko) 2016-11-02 2018-05-10 삼성에스디아이 주식회사 리튬 이차 전지
KR20190049803A (ko) * 2016-09-06 2019-05-09 바트리온 아게 물품에 자기장을 인가하는 방법 및 장치
KR102069990B1 (ko) * 2016-03-02 2020-01-23 가부시키가이샤 니혼 마이크로닉스 시트 분리 장치, 시트 분리 방법, 및 시트 형상 2차 전지의 제조 방법
KR20220060017A (ko) 2020-11-02 2022-05-11 에스케이온 주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102432049B1 (ko) * 2016-09-30 2022-08-16 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR20220131352A (ko) 2016-10-03 2022-09-27 젠비다 테크놀로지 컴퍼니 리미티드 분자의 식별 및 분석을 위한 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556049B1 (ko) * 2011-03-11 2015-09-25 도요타지도샤가부시키가이샤 비수전해질 2차 전지와 그 제조 방법
WO2013067280A1 (en) * 2011-11-04 2013-05-10 Carben Semicon Limited Carbon film and method of production thereof
KR102069990B1 (ko) * 2016-03-02 2020-01-23 가부시키가이샤 니혼 마이크로닉스 시트 분리 장치, 시트 분리 방법, 및 시트 형상 2차 전지의 제조 방법
KR20190049803A (ko) * 2016-09-06 2019-05-09 바트리온 아게 물품에 자기장을 인가하는 방법 및 장치
KR102432049B1 (ko) * 2016-09-30 2022-08-16 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR20220131352A (ko) 2016-10-03 2022-09-27 젠비다 테크놀로지 컴퍼니 리미티드 분자의 식별 및 분석을 위한 장치
KR20180048131A (ko) 2016-11-02 2018-05-10 삼성에스디아이 주식회사 리튬 이차 전지
KR20220060017A (ko) 2020-11-02 2022-05-11 에스케이온 주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
KR20240051549A (ko) 2024-04-22
EP4421901A1 (en) 2024-08-28
CN118284994A (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2024080617A1 (ko) 리튬 이차전지용 음극 및 이를 위한 음극용 자성 정렬 장치
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2021125827A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022191645A1 (ko) 전극 및 이의 제조방법
WO2017095151A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2024136079A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2024111906A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2024080618A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2024128692A1 (ko) 이차전지용 음극 제조장치
WO2024128689A1 (ko) 이차전지용 음극 제조장치
WO2024128694A1 (ko) 이차전지용 음극 제조장치
WO2024128691A1 (ko) 이차전지용 음극 제조장치
WO2024191146A1 (ko) 리튬 이차전지용 음극 및 이를 위한 음극 제조장치
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2023282722A1 (en) Assembly manufacturing equipment and method for electrode assembly
WO2024058534A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2024058536A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2024058539A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2024058538A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2024058537A1 (ko) 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법
WO2022119408A1 (ko) 음극의 제조방법
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2024136186A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024529669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380014633.5

Country of ref document: CN

Ref document number: 2023877546

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18714927

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023877546

Country of ref document: EP

Effective date: 20240521