WO2024080293A1 - 情報処理方法、コンピュータプログラム及び情報処理装置 - Google Patents
情報処理方法、コンピュータプログラム及び情報処理装置 Download PDFInfo
- Publication number
- WO2024080293A1 WO2024080293A1 PCT/JP2023/036834 JP2023036834W WO2024080293A1 WO 2024080293 A1 WO2024080293 A1 WO 2024080293A1 JP 2023036834 W JP2023036834 W JP 2023036834W WO 2024080293 A1 WO2024080293 A1 WO 2024080293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- control input
- sensor
- reference device
- model
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 247
- 238000003672 processing method Methods 0.000 title claims abstract description 14
- 238000004590 computer program Methods 0.000 title claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 116
- 238000012545 processing Methods 0.000 claims description 432
- 238000010801 machine learning Methods 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 25
- 230000005856 abnormality Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 description 371
- 238000003860 storage Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 26
- 238000013500 data storage Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 15
- 238000012544 monitoring process Methods 0.000 description 8
- 230000015654 memory Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Definitions
- This disclosure relates to an information processing method, a computer program, and an information processing device.
- Patent Document 1 proposes a substrate processing method in which, using an estimated model of sensor data generated from sensor data input and output in multiple processing vessels included in a substrate processing apparatus when a test substrate is processed under the same processing conditions in each processing vessel, the equipment parameters of each processing vessel are adjusted so that the deviation of the sensor data from the ideal sensor value falls within an acceptable range.
- the equipment parameters of each processing vessel are adjusted so that the deviation of the sensor data from the ideal sensor value falls within an acceptable range.
- This disclosure provides an information processing method, computer program, and information processing device that can be expected to correct the machine difference with a reference device and control a target device, etc.
- an information processing device acquires a sensor value of a target device, inputs the acquired sensor value of the target device to a sensor value conversion model that has been machine-learned to accept the sensor value of the target device as an input and output a sensor value of a reference device, acquires the sensor value of the reference device output by the sensor value conversion model, inputs the acquired sensor value of the reference device together with a desired target value to a control input value determination model that has been machine-learned to accept the target value and the sensor value of the reference device as input and output a control input value of the reference device, acquires the control input value of the reference device output by the control input value determination model, inputs the acquired control input value of the reference device to a control input value conversion model that has been machine-learned to accept the control input value of the reference device as an input and output a control input value of the target device, acquires the control input value of the target device output by the control input value conversion model, and controls the target device based on the acquired control input value of the target device
- This disclosure is expected to enable control of the target device by correcting the machine difference with the reference device.
- FIG. 1 is a schematic diagram for explaining an example of an information processing system according to a first embodiment.
- 1 is a block diagram showing an example of a configuration of an information processing device according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing an example of a configuration of a characteristic value estimation model.
- FIG. 2 is a schematic diagram showing an example of a configuration of learning data;
- FIG. 2 is a schematic diagram showing an example of a configuration of a control input value determination model.
- FIG. 2 is a schematic diagram showing an example of a configuration of a sensor value/control input value relationship model;
- FIG. 2 is a schematic diagram showing an example of a configuration of a sensor value conversion model;
- FIG. 1 is a schematic diagram for explaining an example of an information processing system according to a first embodiment.
- 1 is a block diagram showing an example of a configuration of an information processing device according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing an example of a configuration of a characteristic value
- FIG. 2 is a schematic diagram showing an example of a configuration of a control input value conversion model
- 10 is a schematic diagram for explaining monitoring of the substrate processing apparatus by the information processing apparatus
- FIG. 5 is a schematic diagram for explaining control of the substrate processing apparatus performed by the information processing apparatus
- FIG. 11 is a flowchart showing an example of a procedure of a learning model generation process performed by the information processing device according to the present embodiment.
- 11 is a flowchart showing an example of a procedure of a learning model generation process performed by the information processing device according to the present embodiment.
- 10 is a flowchart showing an example of a procedure for monitoring and controlling the substrate processing apparatus performed by the information processing apparatus according to the present embodiment.
- FIG. 10 is a flowchart showing an example of a procedure for monitoring and controlling the substrate processing apparatus performed by the information processing apparatus according to the present embodiment.
- FIG. 11 is a schematic diagram showing a configuration example of a control input value determination model according to a second embodiment; 11 is a schematic diagram for explaining control of a reference substrate processing apparatus performed by an information processing apparatus; FIG. 5 is a schematic diagram for explaining control of the target substrate processing apparatus performed by the information processing apparatus; FIG.
- FIG. 1 is a schematic diagram for explaining an example of an information processing system according to the first embodiment.
- the information processing system according to the present embodiment is configured to include a substrate processing apparatus and an information processing apparatus.
- the substrate processing apparatus is an apparatus that performs various processes for substrate processing, such as CVD (Chemical Vapor Deposition), sputtering, or etching, and may be a semiconductor manufacturing apparatus or a flat panel display (FPD) manufacturing apparatus that manufactures display panels.
- the information processing apparatus is an apparatus that monitors and controls the operation of the substrate processing apparatus. For example, the information processing apparatus acquires sensor values obtained from a plurality of sensors equipped in the substrate processing apparatus, and determines a control input value for the substrate processing apparatus based on the acquired sensor value. The information processing apparatus causes the substrate processing apparatus to execute substrate processing by inputting the determined control input value to the substrate processing apparatus.
- FIG. 1 two substrate processing apparatuses, a reference substrate processing apparatus (reference apparatus) 101A and a target substrate processing apparatus (target apparatus) 101B, are shown, and two information processing apparatuses, an information processing apparatus 1A and an information processing apparatus 1B, are shown.
- the information processing apparatus 1A monitors and controls the reference substrate processing apparatus 101A
- the information processing apparatus 1B monitors and controls the target substrate processing apparatus 101B.
- the reference substrate processing apparatus 101A is, for example, a substrate processing apparatus that is already in operation and operating normally.
- the target substrate processing apparatus 101B is an apparatus that is basically configured the same as the reference substrate processing apparatus 101A, but is, for example, an apparatus that has been newly manufactured or purchased and newly added to a substrate processing factory.
- the reference substrate processing apparatus 101A and the target substrate processing apparatus 101B are basically configured the same.
- the information processing apparatuses 1A and 1B perform the same arithmetic processing based on the obtained sensor values to determine control input values, and it is expected that the same processing results will be obtained by inputting the determined control input values to the reference substrate processing apparatus 101A and the target substrate processing apparatus 101B.
- the information processing system of this embodiment is a system that helps to eliminate such machine differences between the reference substrate processing apparatus 101A and the target substrate processing apparatus 101B.
- the reference substrate processing apparatus 101A and the target substrate processing apparatus 101B are separate devices, but this is not limited to the above.
- the operation of the substrate processing apparatus may change before and after the work.
- the substrate processing apparatus before the maintenance work can be regarded as the reference substrate processing apparatus 101A
- the substrate processing apparatus after the work can be regarded as the target substrate processing apparatus 101B.
- the information processing apparatus 1A and 1B may be substantially the same apparatus.
- the information processing apparatus 1A and 1B may be the same apparatus if one information processing apparatus monitors and controls multiple substrate processing apparatuses.
- the information processing device 1A uses a learning model that has been machine-learned in advance to monitor and control the reference substrate processing device 101A.
- the information processing device 1A is equipped with a characteristic value estimation model 201 and a control input value determination model 202.
- the characteristic value estimation model 201 is a learning model that estimates the characteristics of the substrate processed by the reference substrate processing device 101A based on the sensor value obtained from the sensor of the reference substrate processing device 101A and the control input value input to the reference substrate processing device 101A.
- the information processing device 1A uses the characteristic value estimation model 201 to estimate the characteristic values of the substrate processed by the reference substrate processing device 101A, and can, for example, display the estimation result to provide information, or perform processing such as stopping the device if an abnormality is detected from the estimation result.
- the control input value determination model 202 is a learning model that determines the control input value to be input to the reference substrate processing apparatus 101A based on the target characteristic value (target value) of the substrate to be processed by the reference substrate processing apparatus 101A and the sensor value obtained from the sensor of the reference substrate processing apparatus 101A. By inputting the control input value determined by the control input value determination model 202 to the reference substrate processing apparatus 101A, the information processing apparatus 1A can be expected to process substrates that satisfy the target characteristic value.
- the characteristic value is information obtained by measuring the substrate processed by the substrate processing apparatus using the characteristic value measuring device 102.
- the characteristic value may be a measured value such as the depth of a hole formed by etching.
- the characteristic value may be any value.
- the target characteristic value is a characteristic value required for the substrate processed by the substrate processing apparatus, and it is required that the characteristic value obtained by measuring the processed substrate using the characteristic value measuring device 102 is the target characteristic value or a value close to it.
- the information processing device 1A In order to generate the characteristic value estimation model 201 and the control input value determination model 202, the information processing device 1A causes the reference substrate processing device 101A to perform a specified substrate processing. The information processing device 1A then collects data that associates sensor values obtained from the reference substrate processing device 101A, control input values input to the reference substrate processing device 101A, and characteristic values obtained by measuring the processed substrate with the characteristic value measuring device 102. The information processing device 1A can generate the characteristic value estimation model 201 and the control input value determination model 202 by performing machine learning processing using the data that associates the sensor values, control input values, and characteristic values.
- the information processing device 1A when generating the characteristic value estimation model 201 and the control input value determination model 202, the information processing device 1A generates a sensor value-control input value relationship model 203.
- the sensor value-control input value relationship model 203 is a learning model that learns the relationship between multiple sensor values obtained from the reference substrate processing device 101A and multiple control input values input to the reference substrate processing device 101A.
- the sensor value-control input value relationship model 203 is a learning model that estimates a value that complements a missing value, for example, when one of the multiple sensor values and control input values is missing.
- the sensor value-control input value relationship model 203 is not a learning model used when the information processing device 1A monitors and controls the reference substrate processing device 101A, but is a learning model provided from the information processing device 1A to the information processing device 1B in order to fill in the machine difference between the reference substrate processing device 101A and the target substrate processing device 101B as described above.
- the sensor value control input value relationship model 203 is generated by machine learning using the sensor value and control input value data included in the data used to generate the characteristic value estimation model 201 and the control input value determination model 202.
- these learning models generated by the information processing device 1A that monitors and controls the reference substrate processing device 101A are used by the information processing device 1B that monitors and controls the target substrate processing device 101B.
- the characteristic value estimation model 201 and the control input value determination model 202 are generated based on information obtained from the reference substrate processing device 101A.
- the characteristic value estimation model 201 is a learning model that estimates characteristic values from the sensor values and control input values of the reference substrate processing device 101A
- the control input value determination model 202 is a learning model that determines the control input values from the sensor values of the reference substrate processing device 101A. For this reason, it is not possible to directly use these learning models to monitor and control the target substrate processing device 101B, which has a machine difference from the reference substrate processing device 101A, or even if it is done, sufficient accuracy cannot be obtained.
- the information processing device 1B generates and uses a sensor value conversion model 204 and a control input value conversion model 205 to eliminate the machine difference between the target substrate processing device 101B and the reference substrate processing device 101A, and makes it possible to perform monitoring, control, etc. using the characteristic value estimation model 201 and the control input value determination model 202.
- the sensor value conversion model 204 is a learning model that converts the sensor value obtained from the target substrate processing device 101B into a sensor value obtained from the reference substrate processing device 101A.
- the control input value conversion model 205 is a learning model that converts the control input value input to the reference substrate processing device 101A into a control input value input to the target substrate processing device 101B.
- the information processing device 1B In order to generate the sensor value conversion model 204 and the control input value conversion model 205, the information processing device 1B causes the target substrate processing device 101B to perform a specified substrate processing. The information processing device 1B then collects data that associates the sensor values obtained from the target substrate processing device 101B with the control input values input to the target substrate processing device 101B. The information processing device 1B can generate the sensor value conversion model 204 and the control input value conversion model 205 by performing machine learning processing using the data that associates the sensor values and the control input values and the sensor value-control input value relationship model 203 provided by the information processing device 1A.
- the process of generating these learning models is performed by information processing devices 1A and 1B, but this is not limited to the above.
- the machine learning processing may be performed by a device other than information processing devices 1A and 1B, such as a server device with high computing power.
- information processing devices 1A and 1B collect information necessary for machine learning, transmit the collected information to the server device, and obtain the learning model generated based on this information from the server device.
- ⁇ Device Configuration> 2 is a block diagram showing an example of the configuration of an information processing apparatus according to this embodiment.
- each information processing apparatus can be either an information processing apparatus 1A that monitors and controls the reference substrate processing apparatus 101A or an information processing apparatus 1B that monitors and controls the target substrate processing apparatus 101B.
- an apparatus capable of performing both the processing of the information processing apparatus 1A and the processing of the information processing apparatus 1B is called an information processing apparatus 1, and the configuration of this information processing apparatus 1 will be described.
- the reference substrate processing apparatus 101A and the target substrate processing apparatus 101B are apparatuses with approximately the same configuration, and when there is no need to distinguish between them, they will be simply called the substrate processing apparatus 101 and described.
- the information processing device 1 is configured to include a processing unit 11, a memory unit (storage) 12, a communication unit 13, a display unit 14, and an operation unit 15. Note that in this embodiment, the processing is described as being performed by a single information processing device 1, but the processing of the information processing device 1 may be distributed and performed by multiple devices.
- the processing unit 11 is configured using an arithmetic processing device such as a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), a GPU (Graphics Processing Unit) or a quantum processor, a ROM (Read Only Memory), and a RAM (Random Access Memory).
- the processing unit 11 reads out and executes a program 12a stored in the memory unit 12, thereby performing various processes such as monitoring and controlling the substrate processing apparatus 101, and generating a learning model required for these processes.
- the storage unit 12 is configured using a large-capacity storage device such as a hard disk.
- the storage unit 12 stores various programs executed by the processing unit 11 and various data necessary for the processing of the processing unit 11.
- the storage unit 12 stores the program 12a executed by the processing unit 11.
- the storage unit 12 also includes a model information storage unit 12b that stores information about the above-mentioned multiple learning models, and a learning data storage unit 12c that stores learning data used in machine learning to generate these learning models.
- the program (computer program, program product) 12a is provided in a form recorded on a recording medium 99 such as a memory card or an optical disk, and the information processing device 1 reads the program 12a from the recording medium 99 and stores it in the memory unit 12.
- the program 12a may be written to the memory unit 12, for example, during the manufacturing stage of the information processing device 1.
- the program 12a may be distributed by a remote server device or the like and acquired by the information processing device 1 via communication.
- the program 12a may be read from the recording medium 99 by a writing device and written to the memory unit 12 of the information processing device 1.
- the program 12a may be provided in a form distributed via a network, or may be provided in a form recorded on the recording medium 99.
- the model information storage unit 12b of the storage unit 12 stores information about learning models such as the above-mentioned characteristic value estimation model 201, control input value determination model 202, sensor value-control input value relationship model 203, sensor value conversion model 204, and control input value conversion model 205.
- the information about the learning model may include, for example, configuration information indicating the configuration of the learning model, and information such as the values of parameters inside the learning model.
- the model information storage unit 12b stores at least information about the characteristic value estimation model 201, control input value determination model 202, and sensor value-control input value relationship model 203.
- information processing device 1B that monitors and controls the target substrate processing device 101B
- information about the characteristic value estimation model 201, control input value determination model 202, sensor value-control input value relationship model 203, sensor value conversion model 204, and control input value conversion model 205 is stored.
- the learning data storage unit 12c of the storage unit 12 stores learning data required for the machine learning process that generates the above-mentioned learning model.
- data correlating the sensor values from the sensors of the reference substrate processing device 101A, the control input values input to the reference substrate processing device 101A, and the characteristic values measured by the characteristic value measuring device 102 of the substrate processed by the reference substrate processing device 101A are stored as learning data in the learning data storage unit 12c.
- data correlating the sensor values from the sensors of the target substrate processing device 101B and the control input values input to the target substrate processing device 101B are stored as learning data in the learning data storage unit 12c.
- the communication unit 13 communicates with various devices via a wired or wireless network N, which may include a LAN (Local Area Network), the Internet, or a mobile phone network.
- the communication unit 13 may be configured using, for example, a transceiver IC.
- the communication unit 13 communicates with the substrate processing device 101, the characteristic value measuring device 102, and other information processing devices 1, etc.
- the communication unit 13 transmits data provided by the processing unit 11 to other devices, and provides data received from other devices to the processing unit 11.
- the display unit 14 is configured using a liquid crystal display or the like, and displays various images and characters based on the processing of the processing unit 11.
- the display unit 14 displays various information related to the operation of the substrate processing apparatus 101, such as information related to characteristic values estimated by the characteristic value estimation model 201.
- the operation unit 15 accepts user operations and notifies the processing unit 11 of the accepted operations.
- the operation unit 15 accepts user operations through an input device such as a mechanical button or a touch panel provided on the surface of the display unit 14.
- the operation unit 15 may be an input device such as a mouse and keyboard, and these input devices may be configured to be removable from the information processing apparatus 1.
- the storage unit 12 may be an external storage device connected to the information processing device 1.
- the information processing device 1 may be a multi-computer including multiple computers, or may be a virtual machine virtually constructed by software.
- the information processing device 1 is not limited to the above configuration, and may not include, for example, the display unit 14 and the operation unit 15.
- the processing unit 11 reads out and executes the program 12a stored in the memory unit 12, whereby the information acquisition unit 11a, model generation unit 11b, characteristic value estimation unit 11c, control processing unit 11d, display processing unit 11e, etc. are realized in the processing unit 11 as software functional units.
- the information acquisition unit 11a acquires various sensor values, such as temperature or pressure, detected by multiple sensors equipped in the substrate processing apparatus 101 by communicating with the substrate processing apparatus 101 via the communication unit 13.
- the information acquisition unit 11a also acquires multiple control input values to be input to the substrate processing apparatus 101 in response to the acquired sensor values, such as the actuator drive amount or applied voltage value.
- the information acquisition unit 11a acquires the substrate characteristic values measured by the characteristic value measuring apparatus 102 by communicating with the characteristic value measuring apparatus 102 via the communication unit 13.
- the information acquisition unit 11a associates the acquired information to prepare learning data and stores it in the learning data storage unit 12c.
- the model generation unit 11b performs a process of generating each of the above-mentioned learning models by performing a machine learning process using the learning data stored in the learning data storage unit 12c.
- each learning model may be a learning model of various configurations, such as a neural network, SVM (Support Vector Machine), or random forest.
- Each learning model may also handle time-series information, in which case a learning model of a configuration such as RNN (Recurrent Neural Network) or LSTM (Long Short Term Memory) may be used.
- RNN Recurrent Neural Network
- LSTM Long Short Term Memory
- the model generation unit 11b generates a characteristic value estimation model 201, a control input value determination model 202, and a sensor value control input value relationship model 203.
- the model generation unit 11b generates a sensor value conversion model 204 and a control input value conversion model 205.
- the characteristic value estimation unit 11c while the substrate processing apparatus 101 is processing a substrate, performs processing to estimate characteristic values of the substrate being processed by the substrate processing apparatus 101, using the characteristic value estimation model 201 and the control input value determination model 202 stored in the model information storage unit 12b.
- the characteristic value estimation unit 11c inputs the sensor value and target characteristic value acquired from the substrate processing apparatus 101 to the control input value determination model 202, acquires the control input value output by the control input value determination model 202, inputs the sensor value and the control input value to the characteristic value estimation model 201, and acquires the characteristic value output by the characteristic value estimation model 201.
- the characteristic value estimation unit 11c can, for example, compare the characteristic value acquired from the characteristic value estimation model 201 with a predetermined threshold value to determine whether the substrate being processed by the substrate processing apparatus 101 satisfies the target characteristic value.
- the sensor value acquired from target substrate processing device 101B cannot be directly input to characteristic value estimation model 201 and control input value determination model 202.
- the characteristic value estimation unit 11c of information processing device 1B inputs the sensor value acquired from target substrate processing device 101B to sensor value conversion model 204, acquires the sensor value of reference substrate processing device 101A output by sensor value conversion model 204, and inputs this sensor value to characteristic value estimation model 201 and control input value determination model 202.
- the control processing unit 11d determines a control input value using the control input value determination model 202 stored in the model information storage unit 12b based on the sensor value obtained from the substrate processing apparatus 101, and inputs the determined control input value to the substrate processing apparatus 101, thereby controlling the substrate processing performed by the substrate processing apparatus 101.
- the control processing unit 11d inputs the sensor value obtained from the substrate processing apparatus 101 and the target characteristic value of the substrate to be processed by the substrate processing apparatus 101 to the control input value determination model 202, and obtains the control input value output by the control input value determination model 202.
- the control processing unit 11d inputs the obtained control input value to the substrate processing apparatus 101, and causes the substrate processing apparatus 101 to process the substrate satisfying the target characteristic value.
- the sensor value acquired from the target substrate processing device 101B cannot be directly input to the control input value determination model 202.
- the control processing unit 11d of the information processing device 1B inputs the sensor value acquired from the target substrate processing device 101B to the sensor value conversion model 204, acquires the sensor value of the reference substrate processing device 101A output by the sensor value conversion model 204, and inputs this sensor value to the control input value determination model 202.
- the control input value output by the control input value determination model 202 cannot be directly input to the target substrate processing device 101B.
- the control processing unit 11d of the information processing device 1B inputs the control input value acquired from the control input value determination model 202 to the control input value conversion model 205, acquires the control input value output by the control input value conversion model 205, and inputs this control input value to the target substrate processing device 101B.
- the display processing unit 11e performs processing to display various information on the display unit 14.
- the display processing unit 11e displays, for example, the results of estimation of characteristic values by the characteristic value estimation unit 11c. For example, when it is determined that the characteristic values estimated for a substrate being processed by the substrate processing apparatus 101 do not satisfy the target characteristic values, the display processing unit 11e can display a warning message or the like notifying that fact on the display unit 14.
- the display processing unit 11e may display various information other than the results of estimation of characteristic values, such as the progress status of substrate processing being performed by the substrate processing apparatus 101, or information such as a graph showing the change in sensor values obtained from the substrate processing apparatus 101.
- FIG. 3 is a schematic diagram showing an example of the configuration of the characteristic value estimation model 201.
- the characteristic value estimation model 201 accepts as input five sensor values 1 to 5 related to the reference substrate processing apparatus 101A and three control input values 1 to 3 input to the reference substrate processing apparatus 101A, and outputs an estimation result of the characteristic value of the substrate being processed by the reference substrate processing apparatus 101A. Based on the characteristic values output by the characteristic value estimation model 201, the information processing apparatus 1 can determine whether the characteristic values of the substrate being processed by the substrate processing apparatus 101 satisfy the target characteristic values.
- the characteristic value estimation model 201 is generated by the information processing device 1A, which monitors and controls the reference substrate processing device 101A.
- the information processing device 1A collects learning data in advance to perform machine learning processing to generate the characteristic value estimation model 201.
- FIG. 4 is a schematic diagram showing an example of the configuration of learning data.
- the information processing device 1A performs substrate processing in the reference substrate processing device 101A, acquires sensor values 1 to 5 from the sensor of the reference substrate processing device 101A at this time, acquires control input values 1 to 3 input to the reference substrate processing device 101A according to the sensor values 1 to 5, and stores the acquired sensor values 1 to 5 and control input values 1 to 3 in association with each other.
- the information processing device 1A may repeatedly acquire the sensor values 1 to 5 and the control input values 1 to 3 at a predetermined cycle, and the learning data storage unit 12c may store time-series information on the sensor values 1 to 5 and the control input values 1 to 3.
- the information processing apparatus 1A acquires the characteristic values obtained by measuring the processed substrate with the characteristic value measuring apparatus 102, and stores the acquired characteristic values in association with the sensor values 1-5 and control input values 1-3 acquired while processing the substrate. If the information processing apparatus 1A repeatedly acquires the sensor values 1-5 and control input values 1-3, a common characteristic value can be associated with and stored for multiple sets of sensor values 1-5 and control input values 1-3.
- the information processing device 1A performs so-called supervised machine learning processing for a learning model with 8 inputs and 1 output, using the sensor values 1 to 5 and control input values 1 to 3 contained in the learning data stored in the learning data storage unit 12c as input information (explanatory variables) and the characteristic value as output information (objective variable, correct value). This allows the information processing device 1A to determine the internal parameters of the learning model and generate the characteristic value estimation model 201.
- FIG. 5 is a schematic diagram showing an example of the configuration of the control input value determination model 202.
- the control input value determination model 202 receives as input five sensor values 1 to 5 related to the reference substrate processing apparatus 101A and target characteristic values related to the substrate to be processed by the reference substrate processing apparatus 101A, and outputs three control input values 1 to 3 to be input to the reference substrate processing apparatus 101A.
- the target characteristic values are determined in advance before substrate processing by the substrate processing apparatus 101 begins, and are stored in the storage unit 12 of the information processing apparatus 1, etc.
- the control input value determination model 202 is generated by the information processing device 1A, which monitors and controls the reference substrate processing device 101A.
- the information processing device 1A can generate the control input value determination model 202 using the same learning data as that used to generate the characteristic value estimation model 201.
- the information processing device 1A performs so-called supervised machine learning processing using the sensor values 1 to 5 and characteristic values contained in the learning data stored in the learning data storage unit 12c as input information (explanatory variables) and the control input values 1 to 3 as output information (objective variables, correct values). This allows the information processing device 1A to determine the internal parameters of the learning model and generate the control input value determination model 202.
- FIG. 6 is a schematic diagram showing an example of the configuration of a sensor value-control input value relationship model 203.
- FIG. 6 shows examples of two of the eight sensor value-control input value relationship models 203, and the remaining six are not shown.
- the sensor value control input value relationship model 203 is a learning model that infers (complements) one of the sensor values 1-5 and the control input values 1-3 from the other seven values.
- the sensor value control input value relationship model 203 shown in the first position in FIG. 6 accepts the sensor values 2-5 and the control input values 1-3 related to the reference substrate processing apparatus 101A as inputs, and outputs the sensor value 1 related to the reference substrate processing apparatus 101A.
- the sensor value control input value relationship model 203 shown in the second position in FIG. 6 accepts the sensor values 1, 3-5 and the control input values 1-3 related to the reference substrate processing apparatus 101A as inputs, and outputs the sensor value 2 related to the reference substrate processing apparatus 101A.
- sensor value control input value relationship models 203 that output sensor value 4 ...
- the sensor value control input value relationship model 203 is generated by the information processing device 1A that monitors and controls the reference substrate processing device 101A.
- the information processing device 1A can generate the sensor value control input value relationship model 203 using the same learning data as the learning data used to generate the characteristic value estimation model 201. For example, for a learning model with 7 inputs and 1 output, the information processing device 1A performs so-called supervised machine learning processing by using one of the sensor values 1 to 5 and the control input values 1 to 3 contained in the learning data stored in the learning data storage unit 12c as output information (objective variable, correct answer value) and the remaining seven as input information (explanatory variables). In this way, the information processing device 1A can determine the parameters inside the learning model and generate the sensor value control input value relationship model 203.
- the information processing device 1A generates eight types of sensor value control input value relationship models 203 by performing similar machine learning processing while replacing the correspondence between the input information and the output information.
- FIG. 7 is a schematic diagram showing an example of the configuration of the sensor value conversion model 204.
- the sensor value conversion model 204 accepts sensor values 1 to 5 related to the target substrate processing apparatus 101B as inputs, and outputs sensor values 1 to 5 related to the reference substrate processing apparatus 101A.
- FIG. 8 is a schematic diagram showing an example of the configuration of the control input value conversion model 205.
- the control input value conversion model 205 accepts control input values 1 to 3 related to the reference substrate processing apparatus 101A as inputs, and outputs control input values 1 to 3 related to the target substrate processing apparatus 101B.
- the sensor value conversion model 204 and the control input value conversion model 205 are generated by the information processing device 1B, which monitors and controls the target substrate processing apparatus 101B.
- the information processing device 1B collects learning data in advance in order to perform machine learning processing to generate the sensor value conversion model 204 and the control input value conversion model 205.
- the information processing device 1B performs a predetermined substrate processing in the target substrate processing apparatus 101B, such as a test run in which settings or procedures are defined for data collection. At this time, the information processing device 1B acquires sensor values 1 to 5 from the sensor of the target substrate processing apparatus 101B, and acquires control input values 1 to 3 input to the target substrate processing apparatus 101B according to the sensor values 1 to 5.
- the information processing device 1B associates the acquired sensor values 1 to 5 and control input values 1 to 3 and stores them as learning data.
- the learning data used to generate the sensor value conversion model 204 and the control input value conversion model 205 includes the above sensor values 1 to 5 and control input values 1 to 3, and does not need to include characteristic values. Therefore, there is no need to measure the characteristic values of the substrates processed by the target substrate processing apparatus 101B using the characteristic value measuring apparatus 102.
- the information processing apparatus 1B generates a sensor value conversion model 204 and a control input value conversion model 205 using the learning data that associates the collected sensor values 1 to 5 and the control input values 1 to 3, and the sensor value control input value relationship model 203 generated by the information processing apparatus 1A.
- the information processing device 1A reads out sensor values 1 to 5 and control input values 1 to 3 contained in the learning data collected from the target substrate processing device 101B.
- the information processing device 1A inputs sensor values 2 to 5 and control input values 1 to 3 to a sensor value-control input value relationship model 203 having a configuration shown in the upper part of Figure 6, for example, and obtains sensor value 1 output by the sensor value-control input value relationship model 203.
- the information processing device 1A sets the sensor value 1 output by the sensor value-control input value relationship model 203 to the sensor value 1 of the reference substrate processing device 101A corresponding to the sensor value 1 of the target substrate processing device 101B.
- the information processing device 1B obtains sensor values 2 to 5 and control input values 1 to 3 of the reference substrate processing device 101A corresponding to the sensor values 2 to 5 and control input values 1 to 3 of the target substrate processing device 101B from the sensor value-control input value relationship model 203. This allows the information processing device 1A to obtain sensor values 1 to 5 and control input values 1 to 3 of the reference substrate processing device 101A, which correspond respectively to sensor values 1 to 5 and control input values 1 to 3 of the target substrate processing device 101B.
- the information processing device 1A performs so-called supervised machine learning processing for a learning model with a 5-input 5-output configuration, using the sensor values 1 to 5 of the target substrate processing device 101B included in the learning data as input information (explanatory variables) and the sensor values 1 to 5 of the reference substrate processing device 101A acquired from the sensor value control input value relationship model 203 as output information (objective variable, correct answer value). In this way, the information processing device 1A determines the internal parameters of the learning model and generates a sensor value conversion model 204.
- the information processing device 1A performs so-called supervised machine learning processing for a learning model with a 3-input 3-output configuration, using the control input values 1 to 3 of the target substrate processing device 101B included in the learning data as input information (explanatory variables) and the control input values 1 to 3 of the reference substrate processing device 101A acquired from the sensor value control input value relationship model 203 as output information (objective variable, correct answer value). In this way, the information processing device 1A determines the internal parameters of the learning model and generates a control input value conversion model 205.
- Fig. 9 is a schematic diagram for explaining the monitoring of the substrate processing apparatus 101 performed by the information processing apparatus 1.
- the upper part of Fig. 9 shows a case where the information processing apparatus 1A monitors the reference substrate processing apparatus 101A, and the lower part of Fig. 9 shows a case where the information processing apparatus 1B monitors the target substrate processing apparatus 101B.
- the information processing device 1A inputs the sensor value acquired from the reference substrate processing device 101A and the target characteristic value of the substrate to be processed to the control input value determination model 202, and acquires the control input value output by the control input value determination model 202.
- the information processing device 1A inputs the sensor value acquired from the reference substrate processing device 101A and the control input value acquired from the control input value determination model 202 to the characteristic value estimation model 201, and acquires the characteristic value output by the characteristic value estimation model 201.
- the information processing device 1A determines, for example, whether the characteristic value estimated by the characteristic value estimation model 201 is within a specified range, and notifies that an abnormality has occurred if the characteristic value is outside the specified range.
- the information processing device 1B inputs the sensor value acquired from the target substrate processing device 101B to the sensor value conversion model 204, and acquires the sensor value output by the sensor value conversion model 204, i.e., the sensor value converted to that of the reference substrate processing device 101A.
- the information processing device 1B inputs the sensor value acquired from the sensor value conversion model 204 and the target characteristic value of the substrate to be processed to the control input value determination model 202, and acquires the control input value output by the control input value determination model 202.
- the information processing device 1B inputs the sensor value acquired from the sensor value conversion model 204 and the control input value acquired from the control input value determination model 202 to the characteristic value estimation model 201, and acquires the characteristic value output by the characteristic value estimation model 201.
- the information processing device 1B determines whether the characteristic value estimated by the characteristic value estimation model 201 is within a predetermined range, and notifies that an abnormality has occurred if the characteristic value is outside the predetermined range.
- FIG. 10 is a schematic diagram for explaining the control of the substrate processing apparatus 101 performed by the information processing apparatus 1.
- the upper part of FIG. 10 shows a case where the information processing apparatus 1A controls the reference substrate processing apparatus 101A, and the lower part of FIG. 10 shows a case where the information processing apparatus 1B controls the target substrate processing apparatus 101B.
- the information processing device 1A inputs the sensor values acquired from the reference substrate processing device 101A and the target characteristic values of the substrate to be processed to the control input value determination model 202, and acquires the control input values output by the control input value determination model 202.
- the information processing device 1A inputs the control input values acquired from the control input value determination model 202 to the reference substrate processing device 101A, thereby causing the reference substrate processing device 101A to process the substrate according to the target characteristic values.
- the information processing device 1B inputs the sensor value acquired from the target substrate processing device 101B to the sensor value conversion model 204, and acquires the sensor value output by the sensor value conversion model 204, i.e., the sensor value converted to that of the reference substrate processing device 101A.
- the information processing device 1B inputs the sensor value acquired from the sensor value conversion model 204 and the target characteristic value of the substrate to be processed to the control input value determination model 202, and acquires the control input value output by the control input value determination model 202.
- the information processing device 1B inputs the control input value acquired from the control input value determination model 202 to the control input value conversion model 205, and acquires the control input value output by the control input value conversion model 205, i.e., the control input value converted to that of the target substrate processing device 101B.
- the information processing device 1B inputs the control input value acquired from the control input value conversion model 205 to the target substrate processing device 101B, causing the target substrate processing device 101B to process the substrate according to the target characteristic value.
- the information processing device 1B can monitor and control the target substrate processing device 101B by using the characteristic value estimation model 201 and the control input value determination model 202 generated to monitor and control the reference substrate processing device 101A, by using the sensor value conversion model 204 and the control input value conversion model 205.
- ⁇ Flowchart> 11 is a flowchart showing an example of a procedure of a learning model generation process performed by the information processing device 1A according to the present embodiment.
- the information processing device 1A according to the present embodiment performs a predetermined substrate process, such as a test run with a setting or procedure for data collection, in a reference substrate processing device 101A that has been confirmed to operate normally, and collects data for machine learning.
- the information acquisition unit 11a of the processing unit 11 of the information processing device 1A communicates with the reference substrate processing device 101A through the communication unit 13, and acquires a sensor value detected by one or more sensors provided in the reference substrate processing device 101A (step S1).
- the information acquisition unit 11a acquires a control input value input to the reference substrate processing device 101A for the sensor value acquired in step S1 (step S2).
- the information acquisition unit 11a also acquires a characteristic value obtained by the characteristic value measuring device 102 measuring the substrate processed by the reference substrate processing device 101A through communication with the characteristic value measuring device 102 through the communication unit 13 (step S3).
- the information acquisition unit 11a associates the sensor value acquired in step S1, the control input value acquired in step S2, and the characteristic value acquired in step S3, and stores them as learning data in the learning data storage unit 12c (step S4).
- the information acquisition unit 11a determines whether or not to complete the collection of learning data, for example, based on whether sufficient data has been collected to perform machine learning (step S5). If the collection of learning data is not completed (S5: NO), the information acquisition unit 11a returns the process to step S1 and continues to collect learning data. If the collection of learning data is completed (S5: YES), the information acquisition unit 11a proceeds to step S6.
- the model generation unit 11b of the processing unit 11 reads out the learning data stored in the learning data storage unit 12c (step S6).
- the model generation unit 11b performs so-called supervised machine learning processing with the sensor values and the control input values included in the learning data read out in step S6 as input information (explanatory variables) and the corresponding characteristic values as output information (objective variable, correct value) to generate a characteristic value estimation model 201 (step S7).
- the model generation unit 11b performs so-called supervised machine learning processing with the sensor values and the characteristic values included in the learning data as input information (explanatory variables) and the corresponding control input values as output information (objective variable, correct value) to generate a control input value determination model 202 (step S8).
- the model generation unit 11b performs so-called supervised machine learning processing, using one of the multiple sensor values and control input values included in the learning data as output information (objective variable, correct answer value) and the remaining sensor values and control input values as input information (explanatory variables). In this way, the model generation unit 11b generates a sensor value-control input value relationship model 203 for the one sensor value or control input value that is the output information. The model generation unit 11b generates a sensor value-control input value relationship model 203 for each sensor value or control input value by swapping the correspondence between the input information and the output information and performing a similar machine learning processing (step S9).
- the model generation unit 11b stores information about the characteristic value estimation model 201 generated in step S7, the control input value determination model 202 generated in step S8, and the multiple sensor value control input value relationship model 203 generated in step S9, such as information about the configuration of the learning model and information about parameters determined by machine learning, in the model information storage unit 12b (step S10), and ends the process.
- FIG. 12 is a flowchart showing an example of the procedure of the learning model generation process performed by the information processing device 1B according to this embodiment.
- the information processing device 1B performs a predetermined substrate process, such as a test run with settings or procedures defined for data collection, in a target substrate processing device 101B newly installed in a substrate processing factory, for example, and collects data for machine learning.
- the information acquisition unit 11a of the processing unit 11 of the information processing device 1B communicates with the target substrate processing device 101B via the communication unit 13 and acquires sensor values detected by one or more sensors provided in the target substrate processing device 101B (step S21).
- the information acquisition unit 11a acquires a control input value input to the target substrate processing device 101B for the sensor value acquired in step S21 (step S22).
- the information acquisition unit 11a associates the sensor value acquired in step S21 with the control input value acquired in step S22 and stores them as learning data in the learning data storage unit 12c (step S23).
- the information acquisition unit 11a determines whether or not to complete the collection of learning data based on whether sufficient data has been collected to perform machine learning, for example (step S24). If the collection of learning data is not completed (S24: NO), the information acquisition unit 11a returns the process to step S21 and continues to collect learning data. If the collection of learning data is completed (S24: YES), the information acquisition unit 11a proceeds to step S25.
- the model generation unit 11b of the processing unit 11 acquires information on the characteristic value estimation model 201, the control input value determination model 202, and the sensor value-control input value relationship model 203 generated by the information processing device 1A, for example, by communicating with the information processing device 1A via the communication unit 13, or by exchanging information via a recording medium (step S25), and stores the information in the model information storage unit 12b.
- the model generation unit 11b reads out the sensor value-control input value relationship model 203 stored in the model information storage unit 12b (step S26).
- the model generation unit 11b generates the sensor value and control input value of the reference substrate processing device 101A based on the sensor value and control input value of the target substrate processing device 101B included in the learning data stored in the learning data storage unit 12c and the sensor value-control input value relationship model 203 read out in step S26 (step S27).
- the model generation unit 11b performs so-called supervised machine learning processing using the sensor value of the target substrate processing apparatus 101B included in the learning data as input information (explanatory variables) and the sensor value of the reference substrate processing apparatus 101A acquired from the sensor value-control input value relationship model 203 in step S27 as output information (objective variable, correct answer value). As a result, the model generation unit 11b generates a sensor value conversion model 204 (step S28).
- the model generation unit 11b also performs so-called supervised machine learning processing using the control input value of the target substrate processing apparatus 101B included in the learning data as input information (explanatory variables) and the control input value of the reference substrate processing apparatus 101A acquired from the sensor value-control input value relationship model 203 in step S27 as output information (objective variable, correct answer value). As a result, the model generation unit 11b generates a control input value conversion model 205 (step S29).
- the model generation unit 11b stores information about the sensor value conversion model 204 generated in step S28 and the control input value conversion model 205 generated in step S29, such as information about the configuration of the learning model and information about parameters determined by machine learning, in the model information storage unit 12b (step S30), and ends the process.
- the information acquisition unit 11a of the processing unit 11 of the information processing apparatus 1 according to this embodiment communicates with the substrate processing apparatus 101 via the communication unit 13, and acquires sensor values detected by one or more sensors provided in the substrate processing apparatus 101 (step S41).
- the information acquisition unit 11a determines whether or not the sensor values acquired in step S41 need to be converted from the sensor values of the target substrate processing apparatus 101B to the sensor values of the reference substrate processing apparatus 101A (step S42).
- setting information indicating whether the information processing device 1 is the information processing device 1A that monitors and controls the reference substrate processing device 101A or the information processing device 1B that monitors and controls the target substrate processing device 101B is input in advance by a user or the like and stored in the storage unit 12 or the like.
- the information acquisition unit 11a can determine whether or not the sensor value needs to be converted by reading this setting information and determining whether it is the information processing device 1A or the information processing device 1B.
- the information acquisition unit 11a determines that it is the information processing device 1B that monitors and controls the target substrate processing device 101B and that sensor value conversion is necessary (S42: YES), it uses the sensor value conversion model 204 stored in the model information storage unit 12b to convert the sensor value of the target substrate processing device 101B acquired in step S41 into the sensor value of the reference substrate processing device 101A (step S43), and proceeds to step S44. If the information acquisition unit 11a determines that it is the information processing device 1A that monitors and controls the reference substrate processing device 101A and that conversion of the sensor value is not necessary (S42: NO), the process proceeds to step S44.
- the control processing unit 11d of the processing unit 11 inputs the sensor value acquired in step S41 or the sensor value converted in step S43, and the target characteristic value of the substrate to be processed by the substrate processing apparatus 101, to the control input value determination model 202 stored in the model information storage unit 12b. Then, the control processing unit 11d acquires the control input value output by the control input value determination model 202, thereby determining a control input value according to the sensor value and the target characteristic value (step S44).
- the target characteristic value is input in advance by a user or the like, and is stored in the storage unit 12 as setting information.
- the characteristic value estimation unit 11c of the processing unit 11 inputs the sensor value acquired in step S41 or the sensor value converted in step S43, and the control input value determined in step S44, to the characteristic value estimation model 201 stored in the model information storage unit 12b.
- the characteristic value estimation unit 11c estimates the characteristic value of the substrate processed by the substrate processing apparatus 101 by acquiring the characteristic value output by the characteristic value estimation model 201 (step S45). Based on the characteristic value estimated in step S45, the characteristic value estimation unit 11c judges whether or not the characteristic value exceeds a threshold value, for example, to determine whether or not there is an abnormality in the substrate processing performed by the substrate processing apparatus 101 (step S46).
- the display processing unit 11e of the processing unit 11 notifies the user of the abnormality by, for example, displaying a message notifying the occurrence of the abnormality on the display unit 124 (step S47).
- the control processing unit 11d stops the substrate processing in which the abnormality occurred (step S48) and ends the processing.
- the control processing unit 11d determines whether or not the control input value determined in step S44 needs to be converted from the control input value of the reference substrate processing apparatus 101A to the control input value of the target substrate processing apparatus 101B (step S49).
- setting information indicating whether the information processing apparatus 1 is the information processing apparatus 1A that monitors and controls the reference substrate processing apparatus 101A or the information processing apparatus 1B that monitors and controls the target substrate processing apparatus 101B is stored in the storage unit 12, etc.
- the control processing unit 11d can determine whether or not the control input value needs to be converted by reading this setting information and determining whether it is the information processing apparatus 1A or the information processing apparatus 1B.
- control processing unit 11d If the control processing unit 11d is the information processing device 1B that monitors and controls the target substrate processing device 101B and determines that conversion of the control input value is necessary (S49: YES), it converts the control input value of the reference substrate processing device 101A acquired in step S44 into the control input value of the target substrate processing device 101B using the control input value conversion model 205 stored in the model information storage unit 12b (step S50) and proceeds to step S51. If the control processing unit 11d is the information processing device 1A that monitors and controls the reference substrate processing device 101A and determines that conversion of the control input value is not necessary (S49: NO), it proceeds to step S51.
- the control processing unit 11d inputs the control input value determined in step S44 or the control input value converted from this in step S50 to the substrate processing apparatus 101 (step S51). This allows the control processing unit 11d to control the substrate processing by the substrate processing apparatus 101.
- the control processing unit 11d determines whether the substrate processing by the substrate processing apparatus 101 has been completed (step S52). If the substrate processing has not been completed (S52: NO), the control processing unit 11d returns to step S41 and repeats the above-mentioned process. If the substrate processing has been completed (S52: YES), the control processing unit 11d ends the process of monitoring and controlling the substrate processing apparatus 101.
- the information processing device 1 acquires a sensor value of the target substrate processing device 101B.
- the information processing device 1 inputs the acquired sensor value of the target substrate processing device 101B to a sensor value conversion model 204 that has been machine-learned to receive the sensor value of the target substrate processing device 101B as an input and output the sensor value of the reference substrate processing device 101A.
- the information processing device 1 acquires the sensor value of the reference substrate processing device 101A output by the sensor value conversion model 204.
- the information processing device 1 inputs the acquired sensor value of the reference substrate processing device 101A together with a desired target characteristic value (target value) to a control input value determination model 202 that has been machine-learned to receive the target characteristic value and the sensor value of the reference substrate processing device 101A as an input and output the control input value of the reference substrate processing device 101A.
- the information processing device 1 acquires the control input value of the reference substrate processing device 101A output by the control input value determination model 202.
- the information processing apparatus 1 inputs the acquired control input value of the reference substrate processing apparatus 101A to a control input value conversion model 205 that has been machine-learned to accept the control input value of the reference substrate processing apparatus 101A as an input and output a control input value of the target substrate processing apparatus 101B.
- the information processing apparatus 1 acquires the control input value of the target substrate processing apparatus 101B output by the control input value conversion model 205.
- the information processing apparatus 1 controls the target substrate processing apparatus 101B based on the acquired control input value.
- the information processing device 1 that controls the target substrate processing device 101B can control the target substrate processing device 101B using the control input value determination model 202 generated for the reference substrate processing device 101A. Therefore, the information processing system according to this embodiment is expected to correct the machine difference with the reference substrate processing device 101A using the sensor value conversion model 204 and the control input value conversion model 205, and control the target substrate processing device 101B.
- the information processing device 1 acquires learning data that associates the sensor value and control input value of the target substrate processing device 101B. Based on the sensor value control input value relationship model 203 generated in advance for the reference substrate processing device 101A and the acquired learning data, the information processing device 1 acquires the sensor value and control input value of the reference substrate processing device 101A that correspond to the sensor value and control input value of the target substrate processing device 101B.
- the sensor value control input value relationship model 203 is a learning model that has been machine-learned to accept a part of the multiple sensor values and control input values as input and output the sensor value or control input value of the reference substrate processing device 101A that is not included in this part.
- the information processing device 1 generates a sensor value conversion model 204 by machine learning based on the sensor value of the target substrate processing device 101B and the sensor value of the reference substrate processing device 101A.
- the information processing device 1 also generates a control input value conversion model 205 by machine learning based on the control input value of the target substrate processing device 101B and the control input value of the reference substrate processing device 101A.
- the information processing device 1 which monitors and controls the reference substrate processing device 101A, acquires learning data that associates the sensor values and control input values of the reference substrate processing device 101A.
- the information processing device 1 generates a sensor value-control input value relationship model 203 by machine learning using the learning data.
- the information processing system uses the sensor value control input value relationship model 203 for the reference substrate processing apparatus 101A to enable the information processing apparatus 1, which monitors and controls the target substrate processing apparatus 101B, to generate and use the sensor value conversion model 204 and the control input value conversion model 205.
- the information processing device 1 acquires learning data that associates sensor values, control input values, and characteristic values related to the reference substrate processing device 101A, and generates a control input value determination model 202 by machine learning using this learning data.
- the information processing device 1 also uses this learning data to generate a characteristic value estimation model that accepts the sensor values and control input values of the reference substrate processing device 101A as inputs and outputs characteristic values of the reference substrate processing device 101A.
- the information processing device 1 can monitor and control the reference substrate processing device 101A.
- the information processing device 1 can monitor and control the target substrate processing device 101B.
- the information processing device 1 acquires the sensor value of the target substrate processing device 101B, inputs the acquired sensor value to the sensor value conversion model 204, and acquires the sensor value of the reference substrate processing device 101A output by the sensor value conversion model 204.
- the information processing device 1 inputs the acquired sensor value of the reference substrate processing device 101A together with a desired target characteristic value to the control input value determination model 202, and acquires the control input value of the reference substrate processing device 101A output by the control input value determination model 202.
- the information processing device 1 inputs the sensor value and control input value of the reference substrate processing device 101A to the characteristic value estimation model 201, and acquires the characteristic value of the reference substrate processing device 101A output by the characteristic value estimation model 201.
- the information processing device 1 outputs information related to the acquired characteristic value, such as a determination result of the presence or absence of an abnormality based on the characteristic value.
- the information processing device 1 that controls the target substrate processing device 101B can monitor the presence or absence of abnormalities in the target substrate processing device 101B using the characteristic value estimation model 201 generated for the reference substrate processing device 101A. Therefore, the information processing system according to this embodiment is expected to monitor the target substrate processing device 101B by correcting the machine difference with the reference substrate processing device 101A using the sensor value conversion model 204 and the control input value conversion model 205.
- ⁇ Embodiment 2> 15 is a schematic diagram showing an example of a configuration of the control input value determination model 222 according to the second embodiment.
- the above-mentioned control input value determination model 202 is configured to receive the sensor values 1 to 5 and the target characteristic value related to the reference substrate processing apparatus 101A as inputs, and output the control input values 1 to 3 to be input to the reference substrate processing apparatus 101A (see FIG. 5).
- the target values received by the control input value determination model as inputs are not limited to these target characteristic values.
- the control input value determination model 222 is configured to receive the sensor values 1 to 5 related to the reference substrate processing apparatus 101A and the target sensor values 1 to 5 which are the target values of these sensor values 1 to 5, as inputs, and output the control input values 1 to 3 to be input to the reference substrate processing apparatus 101A.
- the information processing device 1 includes a control input value determination model 222 having the configuration shown in FIG. 15 instead of or in addition to the control input value determination model 202.
- the information processing device 1A according to the second embodiment performs feedback control using the control input value determination model 222, thereby allowing substrate processing to be performed so that the sensor value output by the reference substrate processing device 101A becomes the target sensor value.
- the control input value determination model 222 is generated, for example, by an information processing device 1A that monitors and controls the reference substrate processing device 101A.
- the information processing device 1A performs substrate processing, for example, in the reference substrate processing device 101A, and stores and accumulates learning data in the learning data storage unit 12c that associates the target sensor value at this time, the control input value input to the reference substrate processing device 101A, and the sensor value acquired from the sensor of the reference substrate processing device 101A.
- the information processing device 1A can generate the control input value determination model 222 by performing so-called supervised machine learning processing using the sensor value and target sensor value included in the learning data as input information (explanatory variables) and the control input value as output information (objective variable, correct value).
- FIG. 16 is a schematic diagram for explaining the control of the reference substrate processing apparatus 101A performed by the information processing apparatus 1A.
- the information processing apparatus 1A inputs the sensor value acquired from the reference substrate processing apparatus 101A and the target sensor value serving as the target value of the sensor to the control input value determination model 222, and acquires the control input value output by the control input value determination model 222.
- the information processing apparatus 1A inputs the control input value acquired from the control input value determination model 222 to the reference substrate processing apparatus 101A, thereby causing the reference substrate processing apparatus 101A to perform substrate processing according to the target sensor value, and acquires the sensor value of the reference substrate processing apparatus 101A at this time.
- the information processing device 1A feeds back the acquired sensor value and inputs it to the control input value determination model 222. At this time, the information processing device 1A inputs the same target sensor value as before to the control input value determination model 222.
- the information processing device 1A acquires the control input value output by the control input value determination model 222 and inputs it to the reference substrate processing device 101A, and acquires the sensor value output by the reference substrate processing device 101A. By the information processing device 1A repeating this processing cycle, the sensor value output by the reference substrate processing device 101A can be brought closer to the target sensor value.
- the information processing apparatus 1B inputs the sensor value acquired from the target substrate processing apparatus 101B to the sensor value conversion model 204, and acquires the sensor value of the reference substrate processing apparatus 101A output by the sensor value conversion model 204.
- the information processing apparatus 1B inputs the sensor value of the reference substrate processing apparatus 101A acquired from the sensor value conversion model 204 and the target sensor value which is the target value of the sensor to the control input value determination model 222, and acquires the control input value for the reference substrate processing apparatus 101A output by the control input value determination model 222.
- the information processing apparatus 1B inputs the acquired control input value for the reference substrate processing apparatus 101A to the control input value conversion model 205, and acquires the control input value for the target substrate processing apparatus 101B output by the control input value conversion model 205.
- the information processing device 1B inputs the control input value obtained from the control input value conversion model 205 to the target substrate processing device 101B, thereby causing the target substrate processing device 101B to perform substrate processing according to the target sensor value, and obtains the sensor value of the target substrate processing device 101B at this time.
- the information processing device 1B can bring the sensor value output by the target substrate processing device 101B closer to the target sensor value. Furthermore, by using the sensor value conversion model 204 and the control input value conversion model 205, the information processing device 1B can control the target substrate processing device 101B using the control input value determination model 222 generated to control the reference substrate processing device 101A.
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
基準装置との機差を補正して対象装置の制御等を行うことが期待できる情報処理方法、コンピュータプログラム及び情報処理装置を提供する。 情報処理装置が、対象装置のセンサ値を取得し、取得した前記対象装置のセンサ値をセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、取得した前記基準装置のセンサ値を所望の目標値と共に制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、取得した前記基準装置の制御入力値を制御入力値変換モデルへ入力して、前記制御入力値変換モデルが出力する前記対象装置の制御入力値を取得し、取得した前記対象装置の制御入力値を基に前記対象装置を制御する。
Description
本開示は、情報処理方法、コンピュータプログラム及び情報処理装置に関する。
特許文献1においては、基板処理装置に含まれる複数の処理容器にて同一の処理条件でテスト用基板を処理したときに各処理容器において入出力したセンサデータから生成したセンサデータの推定モデルを用いて、センサデータのセンサ理想値からのずれが許容範囲になるように各処理容器の装置パラメータを調整する基盤処理方法が提案されている。この基盤処理方法では、製品基板がいずれかの処理容器に搬送された場合、調整された装置パラメータに基づいて、製品基板が搬送された処理容器において入出力するセンサデータを調整しながら製品基板を処理する。
本開示は、基準装置との機差を補正して対象装置の制御等を行うことが期待できる情報処理方法、コンピュータプログラム及び情報処理装置を提供する。
一実施形態に係る情報処理方法は、情報処理装置が、対象装置のセンサ値を取得し、取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、取得した前記基準装置の制御入力値を、前記基準装置の制御入力値を入力として受け付けて前記対象装置の制御入力値を出力するよう機械学習がなされた制御入力値変換モデルへ入力して、前記制御入力値変換モデルが出力する前記対象装置の制御入力値を取得し、取得した前記対象装置の制御入力値を基に前記対象装置を制御する。
本開示によれば、基準装置との機差を補正して対象装置の制御等を行うことが期待できる。
本開示の実施形態に係る情報処理システムの具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
<システム概要>
図1は、実施の形態1に係る情報処理システムの一例を説明するための模式図である。本実施の形態に係る情報処理システムは、基板処理装置及び情報処理装置を備えて構成されている。基板処理装置は、例えばCVD(Chemical Vapor Deposition)、スパッタリング又はエッチング等の基盤処理のための種々の処理を行う装置であって、半導体製造装置又はディスプレイパネルを製造するフラットパネルディスプレイ(FPD)製造装置等であってよい。情報処理装置は、基板処理装置の動作の監視及び制御等を行う装置である。情報処理装置は、例えば基板処理装置が備える複数のセンサから得られるセンサ値を取得し、取得したセンサ値に基づいて基板処理装置に対する制御入力値を決定する。情報処理装置は、決定した制御入力値を情報処理装置が基板処理装置へ入力することで、基板処理装置に基板処理を実行させる。
図1は、実施の形態1に係る情報処理システムの一例を説明するための模式図である。本実施の形態に係る情報処理システムは、基板処理装置及び情報処理装置を備えて構成されている。基板処理装置は、例えばCVD(Chemical Vapor Deposition)、スパッタリング又はエッチング等の基盤処理のための種々の処理を行う装置であって、半導体製造装置又はディスプレイパネルを製造するフラットパネルディスプレイ(FPD)製造装置等であってよい。情報処理装置は、基板処理装置の動作の監視及び制御等を行う装置である。情報処理装置は、例えば基板処理装置が備える複数のセンサから得られるセンサ値を取得し、取得したセンサ値に基づいて基板処理装置に対する制御入力値を決定する。情報処理装置は、決定した制御入力値を情報処理装置が基板処理装置へ入力することで、基板処理装置に基板処理を実行させる。
図1においては、基板処理装置として基準基板処理装置(基準装置)101A及び対象基板処理装置(対象装置)101Bの2つが示され、情報処理装置として情報処理装置1A及び情報処理装置1Bの2つが示されている。基準基板処理装置101Aの監視及び制御等を情報処理装置1Aが行い、対象基板処理装置101Bの監視及び制御等を情報処理装置1Bが行う。基準基板処理装置101Aは、例えば既に稼働して正常に動作している基板処理装置である。これに対して対象基板処理装置101Bは、基本的には基準基板処理装置101Aと同じ構成の装置であるが、例えば新規に制作又は購入等がなされて基板処理工場等に新たに追加された装置である。基準基板処理装置101A及び対象基板処理装置101Bは基本的に同じ構成の装置である。情報処理装置1A及び1Bは、得られたセンサ値を基に同じ演算処理を行って制御入力値を決定し、決定した制御入力値を基準基板処理装置101A及び対象基板処理装置101Bへ入力することで、同じ処理結果が得られることが期待される。
しかしながら、同じ構成の装置であっても、例えばセンサ値を出力する各センサの個体差又は制御入力値に応じて基板処理を実施する処理機構の個体差等が存在し得る。このため同じセンサ値に対して同じ制御入力値を入力したとしても、基準基板処理装置101Aと対象基板処理装置101Bとで同じ処理結果が得られるとは限らない。本実施の形態に係る情報処理システムは、このような基準基板処理装置101Aと対象基板処理装置101Bとの機差を埋めることを支援するシステムである。
なお本例では、基準基板処理装置101A及び対象基板処理装置101Bを別の装置としているが、これに限るものではない。例えば基板処理装置に対してセンサの交換、処理機構の交換、又は、装置のメンテナンス等の作業が行われることにより、これらの作業の前後で基板処理装置の動作等に変化が生じる場合があり得る。このような場合、メンテナンス等の作業前の基板処理装置を基準基板処理装置101Aとみなし、作業後の基板処理装置を対象基板処理装置101Bとみなすことができる。この場合には、情報処理装置1A及び1Bは実質的に同じ装置であってよい。また、基準基板処理装置101A及び対象基板処理装置101Bが別の装置であっても、1つの情報処理装置が複数の基板処理装置の監視及び制御等を行う場合には、情報処理装置1A及び1Bは同じ装置であってよい。
本実施の形態に係る情報処理装置1Aは、予め機械学習がなされた学習モデルを用いて、基準基板処理装置101Aの監視及び制御等を行う。このため情報処理装置1Aは、特性値推定モデル201及び制御入力値決定モデル202を備えている。特性値推定モデル201は、基準基板処理装置101Aのセンサから得られるセンサ値及び基準基板処理装置101Aに対して入力した制御入力値に基づいて、基準基板処理装置101Aが処理した基板の特性を推定する学習モデルである。情報処理装置1Aは、特性値推定モデル201を利用して基準基板処理装置101Aが処理する基板の特性値を推定し、例えば推定結果を表示して情報を提供し、又は、推定結果から異常が検出された場合に装置を停止するなどの処理を行うことができる。
制御入力値決定モデル202は、基準基板処理装置101Aが処理する基板の目標特性値(目標値)と、基準基板処理装置101Aのセンサから得られるセンサ値とに基づいて、基準基板処理装置101Aに対して入力すべき制御入力値を決定する学習モデルである。情報処理装置1Aは、制御入力値決定モデル202が決定した制御入力値を基準基板処理装置101Aへ入力することで、目標特性値を満たす基板の処理を行うことが期待できる。
なお特性値は、基板処理装置が処理した基板を特性値測定装置102にて測定することで得られる情報である。例えば基板処理装置がエッチングを行う場合、エッチングによって形成された穴の深さなどの測定値が特性値となり得る。特性値は、どのような値であってもよい。また目標特性値は、基板処理装置が処理する基板に関して要求される特性値であり、処理された基板を特性値測定装置102にて測定して得られた特性値が目標特性値又はそれに近い値となることが求められる。
特性値推定モデル201及び制御入力値決定モデル202を生成するために、情報処理装置1Aは、基準基板処理装置101Aに所定の基板処理を実施させる。情報処理装置1Aは、その際に基準基板処理装置101Aから得られるセンサ値と、基準基板処理装置101Aに対して入力した制御入力値と、処理された基板を特性値測定装置102にて測定して得られる特性値とを対応付けたデータを収集する。情報処理装置1Aは、センサ値、制御入力値及び特性値を対応付けたデータを用いて機械学習の処理を行うことにより、特性値推定モデル201及び制御入力値決定モデル202を生成することができる。
また情報処理装置1Aは、特性値推定モデル201及び制御入力値決定モデル202を生成する際に、センサ値制御入力値関係モデル203を生成する。センサ値制御入力値関係モデル203は、基準基板処理装置101Aから得られる複数のセンサ値と基準基板処理装置101Aへ入力する複数の制御入力値との関係を学習した学習モデルである。即ちセンサ値制御入力値関係モデル203は、例えば複数のセンサ値及び制御入力値のうちのいずれか1つ値が欠損した場合に、この欠損値を補完する値を推定する学習モデルである。センサ値制御入力値関係モデル203は、情報処理装置1Aが基準基板処理装置101Aの監視及び制御等を行う際に用いられる学習モデルではなく、上述のように基準基板処理装置101Aと対象基板処理装置101Bとの機差を埋めるために、情報処理装置1Aから情報処理装置1Bへ提供される学習モデルである。センサ値制御入力値関係モデル203は、特性値推定モデル201及び制御入力値決定モデル202を生成する際に用いられるデータに含まれるセンサ値及び制御入力値のデータを用いて機械学習により生成される。
本実施の形態に係る情報処理システムでは、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aにて生成されたこれらの学習モデルを、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bが利用する。上述のように特性値推定モデル201及び制御入力値決定モデル202は、基準基板処理装置101Aから得られた情報を基に生成されている。特性値推定モデル201は基準基板処理装置101Aのセンサ値及び制御入力値から特性値を推定する学習モデルであり、制御入力値決定モデル202は基準基板処理装置101Aのセンサ値から制御入力値を決定する学習モデルである。このため、基準基板処理装置101Aとは機差がある対象基板処理装置101Bにてこれらの学習モデルをそのまま用いて監視及び制御等を行うことはできない、又は、行っても十分な精度等が得られない。
そこで本実施の形態に係る情報処理システムでは、情報処理装置1Bが、センサ値変換モデル204及び制御入力値変換モデル205を生成して利用することで、対象基板処理装置101Bと基準基板処理装置101Aとの機差を埋め、特性値推定モデル201及び制御入力値決定モデル202を用いた監視及び制御等を行うことを可能としている。センサ値変換モデル204は、対象基板処理装置101Bから得られたセンサ値を、基準基板処理装置101Aから得られるセンサ値へ変換する学習モデルである。制御入力値変換モデル205は、基準基板処理装置101Aへ入力する制御入力値を、対象基板処理装置101Bへ入力する制御入力値へ変換する学習モデルである。
センサ値変換モデル204及び制御入力値変換モデル205を生成するために、情報処理装置1Bは、対象基板処理装置101Bに所定の基板処理を実施させる。情報処理装置1Bは、その際に対象基板処理装置101Bから得られるセンサ値と、対象基板処理装置101Bに対して入力した制御入力値とを対応付けたデータを収集する。情報処理装置1Bは、センサ値及び制御入力値を対応付けたデータと、情報処理装置1Aから与えられたセンサ値制御入力値関係モデル203とを用いて機械学習の処理を行うことにより、センサ値変換モデル204及び制御入力値変換モデル205を生成することができる。
なお本実施の形態においては、これらの学習モデルを生成する処理、いわゆる機械学習の処理を情報処理装置1A及び1Bが行うものとするが、これに限るものではない。機械学習の処理は情報処理装置1A及び1B以外の装置、例えば演算処理能力の高いサーバ装置等にて行われてもよい。この場合に情報処理装置1A及び1Bは、機械学習に必要な情報の収集を行い、収集した情報をサーバ装置等へ送信し、この情報を基に生成された学習モデルをサーバ装置等から取得する。
<装置構成>
図2は、本実施の形態に係る情報処理装置の一構成例を示すブロック図である。本実施の形態に係る情報処理システムにおいて、各情報処理装置は、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1A又は対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bのいずれにもなり得る。以下においては、情報処理装置1Aとしての処理及び情報処理装置1Bの処理を共に行うことが可能な装置を情報処理装置1と呼び、この情報処理装置1の構成を説明する。また基準基板処理装置101A及び対象基板処理装置101Bは略同じ構成の装置であり、区別する必要がない場合には、単に基板処理装置101と呼んで説明を行う。
図2は、本実施の形態に係る情報処理装置の一構成例を示すブロック図である。本実施の形態に係る情報処理システムにおいて、各情報処理装置は、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1A又は対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bのいずれにもなり得る。以下においては、情報処理装置1Aとしての処理及び情報処理装置1Bの処理を共に行うことが可能な装置を情報処理装置1と呼び、この情報処理装置1の構成を説明する。また基準基板処理装置101A及び対象基板処理装置101Bは略同じ構成の装置であり、区別する必要がない場合には、単に基板処理装置101と呼んで説明を行う。
本実施の形態に係る情報処理装置1は、処理部11、記憶部(ストレージ)12、通信部13、表示部14及び操作部15等を備えて構成されている。なお本実施の形態においては、1つの情報処理装置1にて処理が行われるものとして説明を行うが、情報処理装置1の処理を複数の装置が分散して行ってもよい。
処理部11は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)又は量子プロセッサ等の演算処理装置、ROM(Read Only Memory)及びRAM(Random Access Memory)等を用いて構成されている。処理部11は、記憶部12に記憶されたプログラム12aを読み出して実行することにより、基板処理装置101の監視及び制御等の処理、並びに、これらの処理に必要な学習モデルを生成する処理等の種々の処理を行う。
記憶部12は、例えばハードディスク等の大容量の記憶装置を用いて構成されている。記憶部12は、処理部11が実行する各種のプログラム、及び、処理部11の処理に必要な各種のデータを記憶する。本実施の形態において記憶部12は、処理部11が実行するプログラム12aを記憶する。また記憶部12には、上述の複数の学習モデルに関する情報を記憶するモデル情報記憶部12bと、これらの学習モデルを生成する機械学習に用いる学習用データを記憶する学習用データ記憶部12cとが設けられている。
本実施の形態においてプログラム(コンピュータプログラム、プログラム製品)12aは、メモリカード又は光ディスク等の記録媒体99に記録された態様で提供され、情報処理装置1は記録媒体99からプログラム12aを読み出して記憶部12に記憶する。ただし、プログラム12aは、例えば情報処理装置1の製造段階において記憶部12に書き込まれてもよい。また例えばプログラム12aは、遠隔のサーバ装置等が配信するものを情報処理装置1が通信にて取得してもよい。例えばプログラム12aは、記録媒体99に記録されたものを書込装置が読み出して情報処理装置1の記憶部12に書き込んでもよい。プログラム12aは、ネットワークを介した配信の態様で提供されてもよく、記録媒体99に記録された態様で提供されてもよい。
記憶部12のモデル情報記憶部12bは、上述の特性値推定モデル201、制御入力値決定モデル202、センサ値制御入力値関係モデル203、センサ値変換モデル204及び制御入力値変換モデル205等の学習モデルに関する情報を記憶する。学習モデルに関する情報には、例えば学習モデルがどのような構成であるかを示す構成情報、及び、学習モデルの内部のパラメータの値等の情報が含まれ得る。基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aの場合、モデル情報記憶部12bには、少なくとも特性値推定モデル201、制御入力値決定モデル202及びセンサ値制御入力値関係モデル203の情報が記憶される。対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、特性値推定モデル201、制御入力値決定モデル202、センサ値制御入力値関係モデル203、センサ値変換モデル204及び制御入力値変換モデル205の情報が記憶される。
記憶部12の学習用データ記憶部12cは、上述の学習モデルを生成する機械学習の処理に必要な学習用データを記憶する。基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aの場合、基準基板処理装置101Aのセンサによるセンサ値、基準基板処理装置101Aへ入力した制御入力値、及び、基準基板処理装置101Aが処理した基板を特性値測定装置102にて測定した特性値を対応付けたデータが、学習用データ記憶部12cに学習用データとして記憶される。対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、対象基板処理装置101Bのセンサによるセンサ値、及び、対象基板処理装置101Bへ入力した制御入力値を対応付けたデータが、学習用データ記憶部12cに学習用データとして記憶される。
通信部13は、LAN(Local Area Network)、インターネット又は携帯電話通信網等を含む有線又は無線のネットワークNを介して、種々の装置との間で通信を行う。通信部13は、例えばトランシーバのIC等を用いて構成され得る。本実施の形態において通信部13は、基板処理装置101、特性値測定装置102及び他の情報処理装置1等との間で通信を行う。通信部13は、処理部11から与えられたデータを他の装置へ送信すると共に、他の装置から受信したデータを処理部11へ与える。
表示部14は、液晶ディスプレイ等を用いて構成されており、処理部11の処理に基づいて種々の画像及び文字等を表示する。表示部14は、基板処理装置101の動作に関する各種の情報、例えば特性値推定モデル201が推定した特性値に関する情報等を表示する。操作部15は、ユーザの操作を受け付け、受け付けた操作を処理部11へ通知する。例えば操作部15は、機械式のボタン又は表示部14の表面に設けられたタッチパネル等の入力デバイスによりユーザの操作を受け付ける。また例えば操作部15は、マウス及びキーボード等の入力デバイスであってよく、これらの入力デバイスは情報処理装置1に対して取り外すことが可能な構成であってもよい。
なお記憶部12は、情報処理装置1に接続された外部記憶装置であってよい。また情報処理装置1は、複数のコンピュータを含んで構成されるマルチコンピュータであってよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。また情報処理装置1は、上記の構成に限定されず、例えば表示部14及び操作部15等を備えていなくてもよい。
また本実施の形態に係る情報処理装置1には、記憶部12に記憶されたプログラム12aを処理部11が読み出して実行することにより、情報取得部11a、モデル生成部11b、特性値推定部11c、制御処理部11d及び表示処理部11e等が、ソフトウェア的な機能部として処理部11に実現される。
情報取得部11aは、通信部13にて基板処理装置101との通信を行うことにより、基板処理装置101が備える複数のセンサが検知した各種のセンサ値、例えば温度又は圧力等の値を取得する。また情報取得部11aは、取得したセンサ値に対して基板処理装置101へ入力する複数の制御入力値、例えばアクチュエータの駆動量又は印加する電圧値等の値を取得する。また基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aの場合、情報取得部11aは、通信部13にて特性値測定装置102との通信を行うことにより、特性値測定装置102が測定した基板の特性値を取得する。情報取得部11aは、取得したこれらの情報を対応付けて学習用データとし、学習用データ記憶部12cに記憶する。
モデル生成部11bは、学習用データ記憶部12cに記憶された学習用データを用いた機械学習の処理を行うことにより、上述の各学習モデルを生成する処理を行う。本実施の形態において各学習モデルは、例えばニューラルネットワーク、SVM(Support Vector Machine)又はランダムフォレスト等の種々の構成の学習モデルが採用され得る。また各学習モデルは時系列的な情報を扱うものであってよく、この場合にはRNN(Recurrent Neural Network)又はLSTM(Long Short Term Memory)等の構成の学習モデルが採用されてもよい。なおこれらの学習モデルの構造及び機械学習による学習モデルの生成方法等は、既存の技術であるため、本実施の形態においては詳細な説明を省略する。なお基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aの場合、モデル生成部11bは、特性値推定モデル201、制御入力値決定モデル202及びセンサ値制御入力値関係モデル203を生成する。また対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、モデル生成部11bは、センサ値変換モデル204及び制御入力値変換モデル205を生成する。
特性値推定部11cは、基板処理装置101が基板処理を行っている際に、モデル情報記憶部12bに記憶された特性値推定モデル201及び制御入力値決定モデル202を用いて、基板処理装置101が処理する基板の特性値を推定する処理を行う。特性値推定部11cは、基板処理装置101から取得したセンサ値と目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得し、センサ値及び制御入力値を特性値推定モデル201へ入力し、特性値推定モデル201が出力する特性値を取得する。特性値推定部11cは、例えば特性値推定モデル201から取得した特性値と所定の閾値との比較を行って、基板処理装置101が処理している基板が目標特性値を満たすか否かを判定することができる。
ただし、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、対象基板処理装置101Bから取得したセンサ値を直接的に特性値推定モデル201及び制御入力値決定モデル202へ入力することはできない。情報処理装置1Bの特性値推定部11cは、対象基板処理装置101Bから取得したセンサ値をセンサ値変換モデル204へ入力し、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得し、このセンサ値を特性値推定モデル201及び制御入力値決定モデル202へ入力する。
制御処理部11dは、基板処理装置101から得られるセンサ値を基に、モデル情報記憶部12bに記憶された制御入力値決定モデル202を用いて制御入力値を決定し、決定した制御入力値を基板処理装置101へ入力することで、基板処理装置101が行う基板処理を制御する。制御処理部11dは、基板処理装置101から取得したセンサ値と、基板処理装置101が処理する基板の目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得する。制御処理部11dは、取得した制御入力値を基板処理装置101へ入力し、基板処理装置101に目標特性値を満たす基板の処理を行わせる。
ただし、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、対象基板処理装置101Bから取得したセンサ値を直接的に制御入力値決定モデル202へ入力することはできない。情報処理装置1Bの制御処理部11dは、対象基板処理装置101Bから取得したセンサ値をセンサ値変換モデル204へ入力し、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得し、このセンサ値を制御入力値決定モデル202へ入力する。また同様に、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bの場合、制御入力値決定モデル202が出力した制御入力値を対象基板処理装置101Bへ直接的に入力することはできない。情報処理装置1Bの制御処理部11dは、制御入力値決定モデル202から取得した制御入力値を制御入力値変換モデル205へ入力し、制御入力値変換モデル205が出力する制御入力値を取得し、この制御入力値を対象基板処理装置101Bへ入力する。
表示処理部11eは、種々の情報を表示部14に表示する処理を行う。表示処理部11eは、例えば特性値推定部11cによる特性値の推定結果を表示する。表示処理部11eは、例えば基板処理装置101が処理する基板について推定された特性値が目標特性値を満たさないと判定された場合に、その旨を通知する警告メッセージ等を表示部14に表示することができる。なお表示処理部11eは、特性値の推定結果以外の種々の情報、例えば基板処理装置101が実施している基板処理の進捗状況、又は、基板処理装置101から取得したセンサ値の変化を示すグラフ等の情報を表示してよい。
<学習モデルの構成及び生成方法>
本実施の形態に係る情報システムにおいて生成及び利用される5つの学習モデルについて説明する。なお以下に示す例では、基板処理装置101から取得するセンサ値を5個、基板処理装置101へ入力する制御入力値を3個、特性値測定装置102にて測定される特性値を1個としている。これは説明を簡略化することを目的としたものであり、センサ値、制御入力値及び特性値の個数は、上記の個数に限定されず、任意の個数であってよい。
本実施の形態に係る情報システムにおいて生成及び利用される5つの学習モデルについて説明する。なお以下に示す例では、基板処理装置101から取得するセンサ値を5個、基板処理装置101へ入力する制御入力値を3個、特性値測定装置102にて測定される特性値を1個としている。これは説明を簡略化することを目的としたものであり、センサ値、制御入力値及び特性値の個数は、上記の個数に限定されず、任意の個数であってよい。
図3は、特性値推定モデル201の一構成例を示す模式図である。本実施の形態に係る特性値推定モデル201は、基準基板処理装置101Aに関する5個のセンサ値1~5と、基準基板処理装置101Aへ入力する3個の制御入力値1~3とを入力として受け付けて、基準基板処理装置101Aが処理する基板の特性値の推定結果を出力する。情報処理装置1は、特性値推定モデル201が出力する特性値を基に、基板処理装置101が処理している基板の特性値が目標特性値を満たすものであるか否かを判断することができる。
特性値推定モデル201の生成は、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aにて行われる。情報処理装置1Aは、特性値推定モデル201を生成する機械学習の処理を行うために、予め学習用データの収集を行う。図4は、学習用データの一構成例を示す模式図である。情報処理装置1Aは、基準基板処理装置101Aにて基板処理を行い、このときに基準基板処理装置101Aのセンサからセンサ値1~5を取得し、このセンサ値1~5に応じて基準基板処理装置101Aへ入力した制御入力値1~3を取得し、取得したセンサ値1~5及び制御入力値1~3を対応付けて記憶する。なお情報処理装置1Aは、センサ値1~5及び制御入力値1~3の取得を所定周期で繰り返し行ってよく、学習用データ記憶部12cにはセンサ値1~5及び制御入力値1~3の時系列の情報が記憶されてよい。
また基準基板処理装置101Aによる処理の終了後、処理された基板を特性値測定装置102が測定して得られた特性値を情報処理装置1Aが取得し、取得した特性値をこの基盤を処理している際に取得したセンサ値1~5及び制御入力値1~3に対応付けて記憶する。情報処理装置1Aがセンサ値1~5及び制御入力値1~3の取得を繰り返し行っている場合、複数組のセンサ値1~5及び制御入力値1~3に対して共通の特性値が対応付けて記憶され得る。
情報処理装置1Aは、例えば8入力1出力の構成の学習モデルに対して、学習用データ記憶部12cに記憶された学習用データに含まれるセンサ値1~5及び制御入力値1~3を入力情報(説明変数)とし、特性値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これにより情報処理装置1Aは、学習モデルの内部のパラメータを決定し、特性値推定モデル201を生成することができる。
図5は、制御入力値決定モデル202の一構成例を示す模式図である。本実施の形態に係る制御入力値決定モデル202は、基準基板処理装置101Aに関する5個のセンサ値1~5と、基準基板処理装置101Aが処理する基板に関する目標特性値とを入力として受け付けて、基準基板処理装置101Aへ入力すべき3個の制御入力値1~3を出力する。目標特性値は、基板処理装置101による基板処理の開始前に予め決定され、情報処理装置1の記憶部12等に記憶される。
制御入力値決定モデル202の生成は、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aにて行われる。情報処理装置1Aは、特性値推定モデル201の生成に用いた学習用データと同じデータを利用して、制御入力値決定モデル202の生成を行うことができる。情報処理装置1Aは、例えば6入力3出力の構成の学習モデルに対して、学習用データ記憶部12cに記憶された学習用データに含まれるセンサ値1~5及び特性値を入力情報(説明変数)とし、制御入力値1~3を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これにより情報処理装置1Aは、学習モデルの内部のパラメータを決定し、制御入力値決定モデル202を生成することができる。
図6は、センサ値制御入力値関係モデル203の一構成例を示す模式図である。本実施の形態に係る情報処理システムでは、センサ値及び制御入力値の合計個数(本例では5+3=8個)のセンサ値制御入力値関係モデル203が生成される。図6にはこれら8個のセンサ値制御入力値関係モデル203のうちの2個の構成例が示されており、残りの6個については図示を省略している。
本実施の形態に係るセンサ値制御入力値関係モデル203は、センサ値1~5及び制御入力値1~3のうちの1個の値を他の7個の値から推測する(補完する)学習モデルである。図6の1番目に示されたセンサ値制御入力値関係モデル203は、基準基板処理装置101Aに関するセンサ値2~5及び制御入力値1~3を入力として受け付けて、基準基板処理装置101Aに関するセンサ値1を出力する。また図6の2番目に示されたセンサ値制御入力値関係モデル203は、基準基板処理装置101Aに関するセンサ値1,3~5及び制御入力値1~3を入力として受け付けて、基準基板処理装置101Aに関するセンサ値2を出力する。同様にして、センサ値3を出力するセンサ値制御入力値関係モデル203、センサ値4を出力するセンサ値制御入力値関係モデル203、…、制御入力値3を出力するセンサ値制御入力値関係モデル203が存在する。
各センサ値制御入力値関係モデル203の生成は、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aにて行われる。情報処理装置1Aは、特性値推定モデル201の生成に用いた学習用データと同じデータを利用して、センサ値制御入力値関係モデル203の生成を行うことができる。情報処理装置1Aは、例えば7入力1出力の構成の学習モデルに対して、学習用データ記憶部12cに記憶された学習用データに含まれるセンサ値1~5及び制御入力値1~3のいずれか1つを出力情報(目的変数、正解値)とし、残りの7つを入力情報(説明変数)として、いわゆる教師ありの機械学習の処理を行う。これにより情報処理装置1Aは、学習モデルの内部のパラメータを決定し、センサ値制御入力値関係モデル203を生成することができる。情報処理装置1Aは、入力情報及び出力情報の対応を入れ替えて同様の機械学習の処理を行うことにより、8種類のセンサ値制御入力値関係モデル203を生成する。
図7は、センサ値変換モデル204の一構成例を示す模式図である。本実施の形態に係るセンサ値変換モデル204は、対象基板処理装置101Bに関するセンサ値1~5を入力として受け付けて、基準基板処理装置101Aに関するセンサ値1~5を出力する。また図8は、制御入力値変換モデル205の一構成例を示す模式図である。本実施の形態に係る制御入力値変換モデル205は、基準基板処理装置101Aに関する制御入力値1~3を入力として受け付けて、対象基板処理装置101Bに関する制御入力値1~3を出力する。
本実施の形態に係るセンサ値変換モデル204及び制御入力値変換モデル205の生成は、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bにて行われる。情報処理装置1Bは、センサ値変換モデル204及び制御入力値変換モデル205を生成する機械学習の処理を行うために、予め学習用データの収集を行う。情報処理装置1Bは、対象基板処理装置101Bにて所定の基板処理、例えばデータ収集用に設定又は手順等が定められた試運転などの基板処理を実施する。情報処理装置1Bは、このときに対象基板処理装置101Bのセンサからセンサ値1~5を取得し、このセンサ値1~5に応じて対象基板処理装置101Bへ入力した制御入力値1~3を取得する。情報処理装置1Bは、取得したセンサ値1~5及び制御入力値1~3を対応付けて学習用データとして記憶する。なおセンサ値変換モデル204及び制御入力値変換モデル205の生成に用いられる学習用データには、上記のセンサ値1~5及び制御入力値1~3を含み、特性値は含まなくてよい。このため対象基板処理装置101Bが処理した基板に対する特性値測定装置102を用いた特性値の測定は行われなくてよい。情報処理装置1Bは、収集したセンサ値1~5及び制御入力値1~3を対応付けた学習用データと、情報処理装置1Aが生成したセンサ値制御入力値関係モデル203とを用いて、センサ値変換モデル204及び制御入力値変換モデル205を生成する。
情報処理装置1Aは、対象基板処理装置101Bから収集した学習用データに含まれるセンサ値1~5及び制御入力値1~3を読み出す。情報処理装置1Aは、例えば図6の上段に示した構成のセンサ値制御入力値関係モデル203に対してセンサ値2~5及び制御入力値1~3を入力し、センサ値制御入力値関係モデル203が出力するセンサ値1を取得する。情報処理装置1Aは、センサ値制御入力値関係モデル203が出力するセンサ値1を、対象基板処理装置101Bのセンサ値1に対応する基準基板処理装置101Aのセンサ値1とする。同様にして、情報処理装置1Bは、対象基板処理装置101Bのセンサ値2~5及び制御入力値1~3に対応する基準基板処理装置101Aのセンサ値2~5及び制御入力値1~3をセンサ値制御入力値関係モデル203から取得する。これにより情報処理装置1Aは、対象基板処理装置101Bのセンサ値1~5及び制御入力値1~3にそれぞれ対応する基準基板処理装置101Aのセンサ値1~5及び制御入力値1~3を取得することができる。
情報処理装置1Aは、例えば5入力5出力の構成の学習モデルに対して、学習用データに含まれる対象基板処理装置101Bのセンサ値1~5を入力情報(説明変数)とし、センサ値制御入力値関係モデル203から取得した基準基板処理装置101Aのセンサ値1~5を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これにより情報処理装置1Aは、学習モデルの内部のパラメータを決定し、センサ値変換モデル204を生成する。また情報処理装置1Aは、例えば3入力3出力の構成の学習モデルに対して、学習用データに含まれる対象基板処理装置101Bの制御入力値1~3を入力情報(説明変数)とし、センサ値制御入力値関係モデル203から取得した基準基板処理装置101Aの制御入力値1~3を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これにより情報処理装置1Aは、学習モデルの内部のパラメータを決定し、制御入力値変換モデル205を生成する。
<学習モデルの利用>
情報処理装置1は、上述の方法で生成された特性値推定モデル201、制御入力値決定モデル202、センサ値変換モデル204及び制御入力値変換モデル205を利用して、基板処理装置101の監視及び制御等を行う。図9は、情報処理装置1が行う基板処理装置101の監視を説明するための模式図である。図9の上段には情報処理装置1Aが基準基板処理装置101Aの監視を行う場合を示し、図9の下段には情報処理装置1Bが対象基板処理装置101Bの監視を行う場合を示している。
情報処理装置1は、上述の方法で生成された特性値推定モデル201、制御入力値決定モデル202、センサ値変換モデル204及び制御入力値変換モデル205を利用して、基板処理装置101の監視及び制御等を行う。図9は、情報処理装置1が行う基板処理装置101の監視を説明するための模式図である。図9の上段には情報処理装置1Aが基準基板処理装置101Aの監視を行う場合を示し、図9の下段には情報処理装置1Bが対象基板処理装置101Bの監視を行う場合を示している。
図9上段に示すように、情報処理装置1Aは、基準基板処理装置101Aから取得したセンサ値と、処理する基板の目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得する。情報処理装置1Aは、基準基板処理装置101Aから取得したセンサ値と、制御入力値決定モデル202から取得した制御入力値とを特性値推定モデル201へ入力し、特性値推定モデル201が出力する特性値を取得する。情報処理装置1Aは、例えば特性値推定モデル201により推定された特性値が所定範囲内であるか否かを判定し、特性値が所定範囲外である場合に異常が生じた旨を通知する。
図9下段に示すように、情報処理装置1Bは、対象基板処理装置101Bから取得したセンサ値をセンサ値変換モデル204へ入力し、センサ値変換モデル204が出力するセンサ値、即ち基準基板処理装置101Aのものへ変換されたセンサ値を取得する。情報処理装置1Bは、センサ値変換モデル204から取得したセンサ値と、処理する基板の目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得する。情報処理装置1Bは、センサ値変換モデル204から取得したセンサ値と、制御入力値決定モデル202から取得した制御入力値とを特性値推定モデル201へ入力し、特性値推定モデル201が出力する特性値を取得する。情報処理装置1Bは、例えば特性値推定モデル201により推定された特性値が所定範囲内であるか否かを判定し、特性値が所定範囲外である場合に異常が生じた旨を通知する。
図10は、情報処理装置1が行う基板処理装置101の制御を説明するための模式図である。図10の上段には情報処理装置1Aが基準基板処理装置101Aの制御を行う場合を示し、図10の下段には情報処理装置1Bが対象基板処理装置101Bの制御を行う場合を示している。
図10上段に示すように、情報処理装置1Aは、基準基板処理装置101Aから取得したセンサ値と、処理する基板の目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得する。情報処理装置1Aは、制御入力値決定モデル202から取得した制御入力値を基準基板処理装置101Aへ入力することによって、目標特性値に応じた基板の処理を基準基板処理装置101Aに実施させる。
図10下段に示すように、情報処理装置1Bは、対象基板処理装置101Bから取得したセンサ値をセンサ値変換モデル204へ入力し、センサ値変換モデル204が出力するセンサ値、即ち基準基板処理装置101Aのものへ変換されたセンサ値を取得する。情報処理装置1Bは、センサ値変換モデル204から取得したセンサ値と、処理する基板の目標特性値とを制御入力値決定モデル202へ入力し、制御入力値決定モデル202が出力する制御入力値を取得する。情報処理装置1Bは、制御入力値決定モデル202から取得した制御入力値を制御入力値変換モデル205へ入力し、制御入力値変換モデル205が出力する制御入力値、即ち対象基板処理装置101Bのものに変換された制御入力値を取得する。情報処理装置1Bは、制御入力値変換モデル205から取得した制御入力値を対象基板処理装置101Bへ入力することによって、目標特性値に応じた基板の処理を対象基板処理装置101Bに実施させる。
このように情報処理装置1Bは、センサ値変換モデル204及び制御入力値変換モデル205を介在させることによって、基準基板処理装置101Aの監視及び制御等を行うために生成された特性値推定モデル201及び制御入力値決定モデル202を利用して、対象基板処理装置101Bの監視及び制御等を行うことができる。
<フローチャート>
図11は、本実施の形態に係る情報処理装置1Aが行う学習モデル生成処理の手順の一例を示すフローチャートである。本実施の形態に係る情報処理装置1Aは、例えば正常に動作することが確認されている基準基板処理装置101Aにて所定の基板処理、例えばデータ収集用に設定又は手順等が定められた試運転などの基板処理を実施し、機械学習のためのデータ収集を行う。情報処理装置1Aの処理部11の情報取得部11aは、通信部13にて基準基板処理装置101Aとの通信を行い、基準基板処理装置101Aに設けられた一又は複数のセンサが検出したセンサ値を取得する(ステップS1)。情報取得部11aは、ステップS1にて取得したセンサ値に対して基準基板処理装置101Aへ入力した制御入力値を取得する(ステップS2)。また情報取得部11aは、基準基板処理装置101Aが処理した基板を特性値測定装置102が測定して得られる特性値を、通信部13にて特性値測定装置102との通信を行うことで取得する(ステップS3)。
図11は、本実施の形態に係る情報処理装置1Aが行う学習モデル生成処理の手順の一例を示すフローチャートである。本実施の形態に係る情報処理装置1Aは、例えば正常に動作することが確認されている基準基板処理装置101Aにて所定の基板処理、例えばデータ収集用に設定又は手順等が定められた試運転などの基板処理を実施し、機械学習のためのデータ収集を行う。情報処理装置1Aの処理部11の情報取得部11aは、通信部13にて基準基板処理装置101Aとの通信を行い、基準基板処理装置101Aに設けられた一又は複数のセンサが検出したセンサ値を取得する(ステップS1)。情報取得部11aは、ステップS1にて取得したセンサ値に対して基準基板処理装置101Aへ入力した制御入力値を取得する(ステップS2)。また情報取得部11aは、基準基板処理装置101Aが処理した基板を特性値測定装置102が測定して得られる特性値を、通信部13にて特性値測定装置102との通信を行うことで取得する(ステップS3)。
情報取得部11aは、ステップS1にて取得したセンサ値、ステップS2にて取得した制御入力値及びステップS3にて取得した特性値を対応付けて学習用データとして学習用データ記憶部12cに記憶する(ステップS4)。情報取得部11aは、例えば機械学習の実施に十分なデータが収集できたか否かに基づき、学習用データの収集を完了するか否かを判定する(ステップS5)。学習用データの収集を完了しない場合(S5:NO)、情報取得部11aは、ステップS1へ処理を戻し、学習用データの収集を継続して行う。学習用データの収集を完了する場合(S5:YES)、情報取得部11aは、ステップS6へ処理を進める。
処理部11のモデル生成部11bは、学習用データ記憶部12cに記憶された学習用データを読み出す(ステップS6)。モデル生成部11bは、ステップS6にて読み出した学習用データに含まれるセンサ値及び制御入力値を入力情報(説明変数)とし、対応する特性値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行うことで、特性値推定モデル201を生成する(ステップS7)。モデル生成部11bは、学習用データに含まれるセンサ値及び特性値を入力情報(説明変数)とし、対応する制御入力値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行うことで、制御入力値決定モデル202を生成する(ステップS8)。
モデル生成部11bは、学習用データに含まれる複数のセンサ値及び制御入力値のいずれか1つを出力情報(目的変数、正解値)とし、残りのセンサ値及び制御入力値を入力情報(説明変数)として、いわゆる教師ありの機械学習の処理を行う。これによりモデル生成部11bは、出力情報とした1つのセンサ値又は制御入力値についてのセンサ値制御入力値関係モデル203を生成する。モデル生成部11bは、入力情報及び出力情報の対応を入れ替えて同様の機械学習の処理を行うことにより、センサ値又は制御入力値の各値についてセンサ値制御入力値関係モデル203を生成する(ステップS9)。
モデル生成部11bは、ステップS7にて生成した特性値推定モデル201、ステップS8にて生成した制御入力値決定モデル202、及び、ステップS9にて生成した複数のセンサ値制御入力値関係モデル203に関する情報、例えば学習モデルの構成に関する情報及び機械学習により決定されたパラメータ等の情報をモデル情報記憶部12bに記憶して(ステップS10)、処理を終了する。
図12は、本実施の形態に係る情報処理装置1Bが行う学習モデル生成処理の手順の一例を示すフローチャートである。本実施の形態に係る情報処理装置1Bは、例えば基板処理工場に新たに導入された対象基板処理装置101Bにて所定の基板処理、例えばデータ収集用に設定又は手順等が定められた試運転などの基板処理を実施し、機械学習のためのデータ収集を行う。情報処理装置1Bの処理部11の情報取得部11aは、通信部13にて対象基板処理装置101Bとの通信を行い、対象基板処理装置101Bに設けられた一又は複数のセンサが検出したセンサ値を取得する(ステップS21)。情報取得部11aは、ステップS21にて取得したセンサ値に対して対象基板処理装置101Bへ入力した制御入力値を取得する(ステップS22)。
情報取得部11aは、ステップS21にて取得したセンサ値及びステップS22にて取得した制御入力値を対応付けて学習用データとして学習用データ記憶部12cに記憶する(ステップS23)。情報取得部11aは、例えば機械学習の実施に十分なデータが収集できたか否かに基づき、学習用データの収集を完了するか否かを判定する(ステップS24)。学習用データの収集を完了しない場合(S24:NO)、情報取得部11aは、ステップS21へ処理を戻し、学習用データの収集を継続して行う。学習用データの収集を完了する場合(S24:YES)、情報取得部11aは、ステップS25へ処理を進める。
処理部11のモデル生成部11bは、例えば通信部13にて情報処理装置1Aとの通信を行うことにより、又は、例えば記録媒体を介した情報の授受を行うことにより、情報処理装置1Aが生成した特性値推定モデル201、制御入力値決定モデル202及びセンサ値制御入力値関係モデル203に関する情報を取得して(ステップS25)、モデル情報記憶部12bに記憶する。モデル生成部11bは、モデル情報記憶部12bに記憶されたセンサ値制御入力値関係モデル203を読み出す(ステップS26)。モデル生成部11bは、学習用データ記憶部12cに記憶された学習用データに含まれる対象基板処理装置101Bのセンサ値及び制御入力値と、ステップS26にて読み出したセンサ値制御入力値関係モデル203とを基に、基準基板処理装置101Aのセンサ値及び制御入力値を生成する(ステップS27)。
モデル生成部11bは、学習用データに含まれる対象基板処理装置101Bのセンサ値を入力情報(説明変数)とし、ステップS27にてセンサ値制御入力値関係モデル203から取得した基準基板処理装置101Aのセンサ値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これによりモデル生成部11bは、センサ値変換モデル204を生成する(ステップS28)。またモデル生成部11bは、学習用データに含まれる対象基板処理装置101Bの制御入力値を入力情報(説明変数)とし、ステップS27にてセンサ値制御入力値関係モデル203から取得した基準基板処理装置101Aの制御入力値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行う。これによりモデル生成部11bは、制御入力値変換モデル205を生成する(ステップS29)。
モデル生成部11bは、ステップS28にて生成したセンサ値変換モデル204、及び、ステップS29にて生成した制御入力値変換モデル205に関する情報、例えば学習モデルの構成に関する情報及び機械学習により決定されたパラメータ等の情報をモデル情報記憶部12bに記憶して(ステップS30)、処理を終了する。
図13及び図14は、本実施の形態に係る情報処理装置1が行う基板処理装置101の監視及び制御処理の手順の一例を示すフローチャートである。本実施の形態に係る情報処理装置1の処理部11の情報取得部11aは、通信部13にて基板処理装置101との通信を行い、基板処理装置101に設けられた一又は複数のセンサが検出したセンサ値を取得する(ステップS41)。情報取得部11aは、ステップS41にて取得したセンサ値について、対象基板処理装置101Bのセンサ値から基準基板処理装置101Aのセンサ値への変換が必要であるか否かを判定する(ステップS42)。
例えば、本実施の形態に係る情報処理システムにおいては、情報処理装置1が基準基板処理装置101Aの監視及び制御を行う情報処理装置1A又は対象基板処理装置101Bの監視及び制御を行う情報処理装置1Bのいずれであるかを示す設定情報が予めユーザ等により入力され記憶部12等に記憶されている。情報取得部11aは、この設定情報を読み出して自身が情報処理装置1A又は情報処理装置1Bのいずれであるかを判定することにより、センサ値の変換の要否を判定することができる。情報取得部11aは、自身が対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bであり、センサ値の変換が必要であると判定した場合(S42:YES)、モデル情報記憶部12bに記憶されたセンサ値変換モデル204を用いて、ステップS41にて取得した対象基板処理装置101Bのセンサ値を基準基板処理装置101Aのセンサ値へ変換し(ステップS43)、ステップS44へ処理を進める。情報取得部11aは、自身が基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aであり、センサ値の変換が必要ではないと判定した場合(S42:NO)、ステップS44へ処理を進める。
処理部11の制御処理部11dは、ステップS41にて取得したセンサ値又はこれをステップS43にて変換したセンサ値と、基板処理装置101が処理する基板の目標特性値とを、モデル情報記憶部12bに記憶された制御入力値決定モデル202へ入力する。そして制御処理部11dは、制御入力値決定モデル202が出力する制御入力値を取得することで、センサ値及び目標特性値に応じた制御入力値を決定する(ステップS44)。なお目標特性値は、予めユーザ等により入力され、設定情報として記憶部12に記憶されている。
処理部11の特性値推定部11cは、ステップS41にて取得したセンサ値又はこれをステップS43にて変換したセンサ値と、ステップS44にて決定した制御入力値とを、モデル情報記憶部12bに記憶された特性値推定モデル201へ入力する。特性値推定部11cは、特性値推定モデル201が出力する特性値を取得することにより、基板処理装置101が処理する基板の特性値を推定する(ステップS45)。特性値推定部11cは、ステップS45にて推定した特性値に基づき、例えばこの特性値が閾値を超えるか否か等を判断することにより、基板処理装置101が実施する基板処理に関する異常の有無を判定する(ステップS46)。異常ありと判定した場合(S46:YES)、処理部11の表示処理部11eは、例えば異常の発生を通知するメッセージ等を表示部124に表示することにより、ユーザへ異常を通知する(ステップS47)。制御処理部11dは、異常が生じた基板処理を停止して(ステップS48)、処理を終了する。
推定した特性値に基づいて異常なしと判定した場合(S46:NO)、制御処理部11dは、ステップS44にて決定した制御入力値について、基準基板処理装置101Aの制御入力値から対象基板処理装置101Bの制御入力値への変換が必要であるか否かを判定する(ステップS49)。上述のように本実施の形態に係る情報処理システムにおいては、情報処理装置1が基準基板処理装置101Aの監視及び制御を行う情報処理装置1A又は対象基板処理装置101Bの監視及び制御を行う情報処理装置1Bのいずれであるかを示す設定情報が記憶部12等に記憶されている。制御処理部11dは、この設定情報を読み出して自身が情報処理装置1A又は情報処理装置1Bのいずれであるかを判定することにより、制御入力値の変換の要否を判定することができる。
制御処理部11dは、自身が対象基板処理装置101Bの監視及び制御等を行う情報処理装置1Bであり、制御入力値の変換が必要であると判定した場合(S49:YES)、モデル情報記憶部12bに記憶された制御入力値変換モデル205を用いて、ステップS44にて取得した基準基板処理装置101Aの制御入力値を対象基板処理装置101Bの制御入力値へ変換し(ステップS50)、ステップS51へ処理を進める。制御処理部11dは、自身が基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aであり、制御入力値の変換が必要ではないと判定した場合(S49:NO)、ステップS51へ処理を進める。
制御処理部11dは、ステップS44にて決定した制御入力値又はこれをステップS50にて変換した制御入力値を、基板処理装置101へ入力する(ステップS51)。これにより制御処理部11dは、基板処理装置101による基板処理を制御することができる。制御処理部11dは、基板処理装置101による基板の処理が完了したか否かを判定する(ステップS52)。基板の処理を完了していない場合(S52:NO)、制御処理部11dは、ステップS41へ処理を戻し、上述の処理を繰り返し行う。基板の処理を完了した場合(S52:YES)、制御処理部11dは、基板処理装置101の監視及び制御等の処理を終了する。
<まとめ>
以上の構成の本実施の形態に係る情報処理システムでは、情報処理装置1が対象基板処理装置101Bのセンサ値を取得する。情報処理装置1は、取得した対象基板処理装置101Bのセンサ値を、対象基板処理装置101Bのセンサ値を入力として受け付けて基準基板処理装置101Aのセンサ値を出力するよう機械学習がなされたセンサ値変換モデル204へ入力する。情報処理装置1は、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得する。情報処理装置1は、取得した基準基板処理装置101Aのセンサ値を所望の目標特性値(目標値)と共に、目標特性値及び基準基板処理装置101Aのセンサ値を入力として受け付けて基準基板処理装置101Aの制御入力値を出力するよう機械学習がなされた制御入力値決定モデル202へ入力する。情報処理装置1は、制御入力値決定モデル202が出力する基準基板処理装置101Aの制御入力値を取得する。情報処理装置1は、取得した基準基板処理装置101Aの制御入力値を、基準基板処理装置101Aの制御入力値を入力として受け付けて対象基板処理装置101Bの制御入力値を出力するよう機械学習がなされた制御入力値変換モデル205へ入力する。情報処理装置1は、制御入力値変換モデル205が出力する対象基板処理装置101Bの制御入力値を取得する。情報処理装置1は、取得した制御入力値を基に対象基板処理装置101Bを制御する。
以上の構成の本実施の形態に係る情報処理システムでは、情報処理装置1が対象基板処理装置101Bのセンサ値を取得する。情報処理装置1は、取得した対象基板処理装置101Bのセンサ値を、対象基板処理装置101Bのセンサ値を入力として受け付けて基準基板処理装置101Aのセンサ値を出力するよう機械学習がなされたセンサ値変換モデル204へ入力する。情報処理装置1は、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得する。情報処理装置1は、取得した基準基板処理装置101Aのセンサ値を所望の目標特性値(目標値)と共に、目標特性値及び基準基板処理装置101Aのセンサ値を入力として受け付けて基準基板処理装置101Aの制御入力値を出力するよう機械学習がなされた制御入力値決定モデル202へ入力する。情報処理装置1は、制御入力値決定モデル202が出力する基準基板処理装置101Aの制御入力値を取得する。情報処理装置1は、取得した基準基板処理装置101Aの制御入力値を、基準基板処理装置101Aの制御入力値を入力として受け付けて対象基板処理装置101Bの制御入力値を出力するよう機械学習がなされた制御入力値変換モデル205へ入力する。情報処理装置1は、制御入力値変換モデル205が出力する対象基板処理装置101Bの制御入力値を取得する。情報処理装置1は、取得した制御入力値を基に対象基板処理装置101Bを制御する。
これにより本実施の形態に係る情報処理システムでは、対象基板処理装置101Bを制御する情報処理装置1が、基準基板処理装置101Aのために生成された制御入力値決定モデル202を用いて、対象基板処理装置101Bを制御することができる。よって本実施の形態に係る情報処理システムは、基準基板処理装置101Aとの機差をセンサ値変換モデル204及び制御入力値変換モデル205を利用して補正し、対象基板処理装置101Bを制御することが期待できる。
また本実施の形態に係る情報処理システムでは、情報処理装置1が対象基板処理装置101Bのセンサ値及び制御入力値を対応付けた学習用データを取得する。情報処理装置1は、基準基板処理装置101Aに関して予め生成されたセンサ値制御入力値関係モデル203と取得した学習用データとを基に、対象基板処理装置101Bのセンサ値及び制御入力値に対応する基準基板処理装置101Aのセンサ値及び制御入力値を取得する。センサ値制御入力値関係モデル203は、複数のセンサ値及び制御入力値のうちの一部を入力として受け付けて、この一部に含まれない基準基板処理装置101Aのセンサ値又は制御入力値を出力するよう機械学習がなされた学習モデルである。情報処理装置1は、対象基板処理装置101Bのセンサ値及び基準基板処理装置101Aのセンサ値に基づく機械学習によりセンサ値変換モデル204を生成する。また情報処理装置1は、対象基板処理装置101Bの制御入力値及び基準基板処理装置101Aの制御入力値に基づく機械学習により制御入力値変換モデル205を生成する。
また本実施の形態に係る情報処理システムでは、基準基板処理装置101Aの監視及び制御等を行う情報処理装置1が、基準基板処理装置101Aのセンサ値及び制御入力値を対応付けた学習用データを取得する。情報処理装置1は、学習用データを用いた機械学習によりセンサ値制御入力値関係モデル203を生成する。
これらにより本実施の形態に係る情報処理システムは、基準基板処理装置101Aに関するセンサ値制御入力値関係モデル203を用いて、対象基板処理装置101Bの監視及び制御等を行う情報処理装置1がセンサ値変換モデル204及び制御入力値変換モデル205を生成して利用することが可能となる。
また本実施の形態に係る情報処理システムでは、基準基板処理装置101Aに関するセンサ値、制御入力値及び特性値を対応付けた学習用データを情報処理装置1が取得し、この学習用データを用いた機械学習により制御入力値決定モデル202を生成する。また情報処理装置1は、この学習用データを用いて、基準基板処理装置101Aのセンサ値及び制御入力値を入力として受け付けて基準基板処理装置101Aの特性値を出力する特性値推定モデルを生成する。これらの学習モデルを利用することにより、情報処理装置1は、基準基板処理装置101Aの監視及び制御等を行うことができる。またこれらの学習モデルと上述のセンサ値変換モデル204及び制御入力値変換モデル205を組み合わせることにより、情報処理装置1は、対象基板処理装置101Bの監視及び制御等を行うことができる。
また本実施の形態に係る情報処理システムでは、情報処理装置1が、対象基板処理装置101Bのセンサ値を取得し、取得したセンサ値をセンサ値変換モデル204へ入力して、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得する。情報処理装置1は、取得した基準基板処理装置101Aのセンサ値を所望の目標特性値と共に制御入力値決定モデル202へ入力して、制御入力値決定モデル202が出力する基準基板処理装置101Aの制御入力値を取得する。情報処理装置1は、基準基板処理装置101Aのセンサ値及び制御入力値を特性値推定モデル201へ入力して、特性値推定モデル201が出力する基準基板処理装置101Aの特性値を取得する。情報処理装置1は、取得した特性値に関する情報、例えば特性値に基づく異常有無の判定結果などを出力する。
これにより本実施の形態に係る情報処理システムでは、対象基板処理装置101Bを制御する情報処理装置1が、基準基板処理装置101Aのために生成された特性値推定モデル201を用いて、対象基板処理装置101Bの異常有無等を監視することができる。よって本実施の形態に係る情報処理システムは、基準基板処理装置101Aとの機差をセンサ値変換モデル204及び制御入力値変換モデル205を利用して補正し、対象基板処理装置101Bを監視することが期待できる。
<実施の形態2>
図15は、実施の形態2に係る制御入力値決定モデル222の一構成例を示す模式図である。上述の制御入力値決定モデル202は、基準基板処理装置101Aに関するセンサ値1~5及び目標特性値を入力として受け付けて、基準基板処理装置101Aへ入力すべき制御入力値1~3を出力する構成であった(図5参照)。制御入力値決定モデルが入力として受け付ける目標値は、この目標特性値に限らない。実施の形態2に係る制御入力値決定モデル222は、基準基板処理装置101Aに関するセンサ値1~5と、これらセンサ値1~5の目標値である目標センサ値1~5とを入力として受け付けて、基準基板処理装置101Aへ入力すべき制御入力値1~3を出力する構成である。
図15は、実施の形態2に係る制御入力値決定モデル222の一構成例を示す模式図である。上述の制御入力値決定モデル202は、基準基板処理装置101Aに関するセンサ値1~5及び目標特性値を入力として受け付けて、基準基板処理装置101Aへ入力すべき制御入力値1~3を出力する構成であった(図5参照)。制御入力値決定モデルが入力として受け付ける目標値は、この目標特性値に限らない。実施の形態2に係る制御入力値決定モデル222は、基準基板処理装置101Aに関するセンサ値1~5と、これらセンサ値1~5の目標値である目標センサ値1~5とを入力として受け付けて、基準基板処理装置101Aへ入力すべき制御入力値1~3を出力する構成である。
実施の形態2に係る情報処理装置1は、制御入力値決定モデル202に代えて又は制御入力値決定モデル202と共に、図15に示した構成の制御入力値決定モデル222を備える。実施の形態2に係る情報処理装置1Aは、制御入力値決定モデル222を用いたフィードバック制御を行うことにより、基準基板処理装置101Aが出力するセンサ値が目標センサ値となるように、基板処理を行わせることができる。
実施の形態2に係る制御入力値決定モデル222の生成は、例えば基準基板処理装置101Aの監視及び制御等を行う情報処理装置1Aにて行われる。情報処理装置1Aは、例えば基準基板処理装置101Aにて基板処理を行い、このときの目標センサ値と、基準基板処理装置101Aへ入力した制御入力値と、基準基板処理装置101Aのセンサから取得したセンサ値とを対応付けた学習用データを学習用データ記憶部12cに記憶して蓄積する。情報処理装置1Aは、学習用データに含まれるセンサ値及び目標センサ値を入力情報(説明変数)とし、制御入力値を出力情報(目的変数、正解値)として、いわゆる教師ありの機械学習の処理を行うことにより、制御入力値決定モデル222を生成することができる。
図16は、情報処理装置1Aが行う基準基板処理装置101Aの制御を説明するための模式図である。情報処理装置1Aは、基準基板処理装置101Aから取得したセンサ値と、センサの目標値となる目標センサ値とを制御入力値決定モデル222へ入力し、制御入力値決定モデル222が出力する制御入力値を取得する。情報処理装置1Aは、制御入力値決定モデル222から取得した制御入力値を基準基板処理装置101Aへ入力することによって、目標センサ値に応じた基板処理を基準基板処理装置101Aに実施させ、このときの基準基板処理装置101Aのセンサ値を取得する。
情報処理装置1Aは、取得したセンサ値をフィードバックして制御入力値決定モデル222へ入力する。このときに情報処理装置1Aは、以前と同じ目標センサ値を制御入力値決定モデル222へ入力する。情報処理装置1Aは、制御入力値決定モデル222が出力する制御入力値を取得して基準基板処理装置101Aへ入力し、基準基板処理装置101Aが出力するセンサ値を取得する。情報処理装置1Aがこの処理サイクルを繰り返し行うことによって、基準基板処理装置101Aが出力するセンサ値を目標センサ値に近づけることができる。
図17は、情報処理装置1Bが行う対象基板処理装置101Bの制御を説明するための模式図である。情報処理装置1Bは、対象基板処理装置101Bから取得したセンサ値をセンサ値変換モデル204へ入力し、センサ値変換モデル204が出力する基準基板処理装置101Aのセンサ値を取得する。情報処理装置1Bは、センサ値変換モデル204から取得した基準基板処理装置101Aのセンサ値と、センサの目標値となる目標センサ値とを制御入力値決定モデル222へ入力し、制御入力値決定モデル222が出力する基準基板処理装置101Aのための制御入力値を取得する。情報処理装置1Bは、取得した基準基板処理装置101Aのための制御入力値を制御入力値変換モデル205へ入力し、制御入力値変換モデル205が出力する対象基板処理装置101Bのための制御入力値を取得する。情報処理装置1Bは、制御入力値変換モデル205から取得した制御入力値を対象基板処理装置101Bへ入力することによって、目標センサ値に応じた基板処理を対象基板処理装置101Bに実施させ、このときの対象基板処理装置101Bのセンサ値を取得する。
情報処理装置1Bがこの処理サイクルを繰り返し行うことによって、対象基板処理装置101Bが出力するセンサ値を目標センサ値に近づけることができる。また情報処理装置1Bは、センサ値変換モデル204及び制御入力値変換モデル205を用いることによって、基準基板処理装置101Aを制御するために生成された制御入力値決定モデル222を用いて、対象基板処理装置101Bの制御を行うことができる。
なお、実施の形態2に係る情報処理システムのその他の構成は、実施の形態1に係る情報処理システムと同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
各実施形態に記載した事項は相互に組み合わせることが可能である。また、請求の範囲に記載した独立請求項及び従属請求項は、引用形式に関わらず全てのあらゆる組み合わせにおいて、相互に組み合わせることが可能である。さらに、請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも1つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載してもよい。
1,1A,1B 情報処理装置(コンピュータ)
11 処理部
11a 情報取得部
11b モデル生成部
11c 特性値推定部
11d 制御処理部
11e 表示処理部
12 記憶部
12a プログラム(コンピュータプログラム)
12b モデル情報記憶部
12c 学習用データ記憶部
13 通信部
14 表示部
15 操作部
101 基板処理装置
101A 基準基板処理装置(基準装置)
101B 対象基板処理装置(対象装置)
201 特性値推定モデル
202 制御入力値決定モデル
203 センサ値制御入力値関係モデル
204 センサ値変換モデル
205 制御入力値変換モデル
11 処理部
11a 情報取得部
11b モデル生成部
11c 特性値推定部
11d 制御処理部
11e 表示処理部
12 記憶部
12a プログラム(コンピュータプログラム)
12b モデル情報記憶部
12c 学習用データ記憶部
13 通信部
14 表示部
15 操作部
101 基板処理装置
101A 基準基板処理装置(基準装置)
101B 対象基板処理装置(対象装置)
201 特性値推定モデル
202 制御入力値決定モデル
203 センサ値制御入力値関係モデル
204 センサ値変換モデル
205 制御入力値変換モデル
Claims (12)
- 情報処理装置が、
対象装置のセンサ値を取得し、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、
取得した前記基準装置の制御入力値を、前記基準装置の制御入力値を入力として受け付けて前記対象装置の制御入力値を出力するよう機械学習がなされた制御入力値変換モデルへ入力して、前記制御入力値変換モデルが出力する前記対象装置の制御入力値を取得し、
取得した前記対象装置の制御入力値を基に前記対象装置を制御する
情報処理方法。 - 前記対象装置についてセンサ値及び制御入力値を対応付けた学習用データを取得し、
複数のセンサ値及び制御入力値のうちの一部を入力として受け付けて前記一部に含まれない前記基準装置のセンサ値又は制御入力値を出力するよう機械学習がなされたセンサ値制御入力値関係モデルと、取得した前記学習用データとを基に、前記学習用データに含まれる前記対象装置のセンサ値及び制御入力値に対応する前記基準装置のセンサ値及び制御入力値を取得し、
前記学習用データに含まれるセンサ値及び取得した前記基準装置のセンサ値に基づく機械学習により前記センサ値変換モデルを生成し、
前記学習用データに含まれる制御入力値及び取得した前記基準装置の制御入力値に基づく機械学習により前記制御入力値変換モデルを生成する、
請求項1に記載の情報処理方法。 - 前記基準装置についてセンサ値及び制御入力値を対応付けた学習用データを取得し、
取得した前記学習用データを用いた機械学習により前記センサ値制御入力値関係モデルを生成する、
請求項2に記載の情報処理方法。 - 前記基準装置についてセンサ値、制御入力値及び特性値を対応付けた学習用データを取得し、
取得した前記学習用データに基づいて前記制御入力値決定モデルを生成する、
請求項1に記載の情報処理方法。 - 取得した前記学習用データに基づいて、前記基準装置のセンサ値及び制御入力値を入力として受け付けて前記基準装置の特性値を出力する特性値推定モデルを生成する、
請求項4に記載の情報処理方法。 - 対象装置のセンサ値を取得し、
取得した前記対象装置のセンサ値を前記センサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、
取得した前記基準装置のセンサ値を所望の目標値と共に前記制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、
取得した前記基準装置のセンサ値及び制御入力値を前記特性値推定モデルへ入力して、前記特性値推定モデルが出力する前記基準装置の特性値を取得し、
取得した前記特性値に関する情報を出力する、
請求項5に記載の情報処理方法。 - 取得した前記特性値を基に異常の有無を判定し、
判定した異常の有無に関する情報を出力する、
請求項6に記載の情報処理方法。 - 情報処理装置が、
対象装置のセンサ値を取得し、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、
取得した前記基準装置のセンサ値及び制御入力値を、前記基準装置のセンサ値及び制御入力値を入力として受け付けて前記基準装置の特性値を出力するよう機械学習がなされた特性値推定モデルへ入力して、前記特性値推定モデルが出力する前記基準装置の特性値を取得し、
取得した前記基準装置の特性値に関する情報を出力する、
情報処理方法。 - コンピュータに、
対象装置のセンサ値を取得し、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、
取得した前記基準装置の制御入力値を、前記基準装置の制御入力値を入力として受け付けて前記対象装置の制御入力値を出力するよう機械学習がなされた制御入力値変換モデルへ入力して、前記制御入力値変換モデルが出力する前記対象装置の制御入力値を取得し、
取得した前記対象装置の制御入力値を基に前記対象装置を制御する
処理を実行させる、コンピュータプログラム。 - コンピュータに、
対象装置のセンサ値を取得し、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得し、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得し、
取得した前記基準装置のセンサ値及び制御入力値を、前記基準装置のセンサ値及び制御入力値を入力として受け付けて前記基準装置の特性値を出力するよう機械学習がなされた特性値推定モデルへ入力して、前記特性値推定モデルが出力する前記基準装置の特性値を取得し、
取得した前記基準装置の特性値に関する情報を出力する
処理を実行させる、コンピュータプログラム。 - 処理部を備える情報処理装置であって、
対象装置のセンサ値を取得する第1の取得部と、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得する第2の取得部と、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得する第3の取得部と、
取得した前記基準装置の制御入力値を、前記基準装置の制御入力値を入力として受け付けて前記対象装置の制御入力値を出力するよう機械学習がなされた制御入力値変換モデルへ入力して、前記制御入力値変換モデルが出力する前記対象装置の制御入力値を取得する第4の取得部と、
取得した前記対象装置の制御入力値を基に前記対象装置を制御する制御処理部と
を備える、情報処理装置。 - 処理部を備える情報処理装置であって、
前記処理部は、
対象装置のセンサ値を取得する第1の取得部と、
取得した前記対象装置のセンサ値を、前記対象装置のセンサ値を入力として受け付けて基準装置のセンサ値を出力するよう機械学習がなされたセンサ値変換モデルへ入力して、前記センサ値変換モデルが出力する前記基準装置のセンサ値を取得する第2の取得部と、
取得した前記基準装置のセンサ値を所望の目標値と共に、目標値及び前記基準装置のセンサ値を入力として受け付けて前記基準装置の制御入力値を出力するよう機械学習がなされた制御入力値決定モデルへ入力して、前記制御入力値決定モデルが出力する前記基準装置の制御入力値を取得する第3の取得部と、
取得した前記基準装置のセンサ値及び制御入力値を、前記基準装置のセンサ値及び制御入力値を入力として受け付けて前記基準装置の特性値を出力するよう機械学習がなされた特性値推定モデルへ入力して、前記特性値推定モデルが出力する前記基準装置の特性値を取得する第4の取得部と、
取得した前記基準装置の特性値に関する情報を出力する出力部と
を備える、情報処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022165617 | 2022-10-14 | ||
JP2022-165617 | 2022-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024080293A1 true WO2024080293A1 (ja) | 2024-04-18 |
Family
ID=90669638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/036834 WO2024080293A1 (ja) | 2022-10-14 | 2023-10-11 | 情報処理方法、コンピュータプログラム及び情報処理装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024080293A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161086A (ja) * | 2019-03-28 | 2020-10-01 | 株式会社デンソーテン | 制御装置および補正方法 |
WO2022185969A1 (ja) * | 2021-03-02 | 2022-09-09 | 東京エレクトロン株式会社 | データ収集システム、データ収集装置、データ収集方法及びデータ収集プログラム |
-
2023
- 2023-10-11 WO PCT/JP2023/036834 patent/WO2024080293A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161086A (ja) * | 2019-03-28 | 2020-10-01 | 株式会社デンソーテン | 制御装置および補正方法 |
WO2022185969A1 (ja) * | 2021-03-02 | 2022-09-09 | 東京エレクトロン株式会社 | データ収集システム、データ収集装置、データ収集方法及びデータ収集プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3553613B1 (en) | Learning processing and diagnostics method for a plurality of machine tools | |
JP6451662B2 (ja) | 異常判定装置、異常判定プログラム、異常判定システム、及びモータ制御装置 | |
JP4046309B2 (ja) | プラント監視装置 | |
Piovoso et al. | Process data chemometrics | |
JP2017194341A (ja) | 異常診断方法、異常診断装置、及び異常診断プログラム | |
Cohen et al. | A smart process controller framework for Industry 4.0 settings | |
JP2010506256A (ja) | 多変量データの監視および解析のための単変量方法 | |
JP6647473B1 (ja) | 異常検知装置および異常検知方法 | |
JP2016164772A (ja) | プロセス監視装置、プロセス監視方法及びプログラム | |
JP2007249997A (ja) | 工業プロセスの監視方法及び監視システム | |
Goulding et al. | Fault detection in continuous processes using multivariate statistical methods | |
JP2016137526A (ja) | ロボット、ロボットシステムおよびサーバー | |
WO2024080293A1 (ja) | 情報処理方法、コンピュータプログラム及び情報処理装置 | |
JP2024061754A (ja) | 支援装置、表示装置、支援方法及び支援プログラム | |
JP2010276339A (ja) | センサ診断方法およびセンサ診断装置 | |
WO2023204183A1 (ja) | 状態検出装置、状態検出方法、学習モデルの生成方法及びコンピュータプログラム | |
WO2020189585A1 (ja) | 監視装置、表示装置、監視方法及び監視プログラム | |
JP7085140B2 (ja) | 制御装置、制御方法及び制御プログラム | |
TW202433205A (zh) | 資訊處理方法、電腦程式及資訊處理裝置 | |
JP2010092173A (ja) | プロセス診断方法およびそのシステム | |
WO2024090433A1 (ja) | 情報処理方法、コンピュータプログラム及び情報処理装置 | |
Thompson et al. | Real-time expert system implementation at Monsanto-Krummrich | |
JP2002324109A (ja) | 装置稼働率向上システム、モニタ装置、部品供給装置、装置稼働率向上方法、記録媒体およびプログラム | |
JP5363089B2 (ja) | 推定用多項式生成装置、入力パラメータ極性通知装置、推定装置および方法 | |
JP2021043483A (ja) | 表示制御装置及び表示制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23877296 Country of ref document: EP Kind code of ref document: A1 |