WO2024080246A1 - 流路状態出力装置 - Google Patents

流路状態出力装置 Download PDF

Info

Publication number
WO2024080246A1
WO2024080246A1 PCT/JP2023/036580 JP2023036580W WO2024080246A1 WO 2024080246 A1 WO2024080246 A1 WO 2024080246A1 JP 2023036580 W JP2023036580 W JP 2023036580W WO 2024080246 A1 WO2024080246 A1 WO 2024080246A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
path state
state output
feature
unit
Prior art date
Application number
PCT/JP2023/036580
Other languages
English (en)
French (fr)
Inventor
悟司 清水
大輔 森田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024080246A1 publication Critical patent/WO2024080246A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • the present invention relates to a device that outputs the flow path state of an analytical device.
  • Liquid chromatographs are equipped with a liquid delivery system that delivers a solvent, which serves as the mobile phase, at a set flow rate.
  • a solvent which serves as the mobile phase
  • the introduction of tiny air bubbles into the liquid delivery system can cause fluctuations in the solvent delivery pressure.
  • the fluctuation range of the solvent delivery pressure is calculated, and if the fluctuation range exceeds a reference value, a liquid delivery failure is detected.
  • the liquid delivery pressure fluctuates suddenly, and by acquiring the range of this fluctuation as described above, it is possible to detect liquid delivery problems.
  • the change in liquid delivery pressure is not that large, some kind of abnormality that affects the analysis results may have occurred in the flow path within the liquid chromatograph. It is difficult to detect such abnormalities using the above method of acquiring the range of fluctuation in liquid delivery pressure.
  • the purpose of this invention is to understand the flow path condition of an analytical device, which is difficult to detect from fluctuations in liquid delivery pressure.
  • a flow path state output device includes a feature acquisition unit that measures a sample containing known components using an analytical device and acquires feature values from the measurement results, and a state output unit that outputs information indicating the flow path state of the analytical device to a display device based on the feature values.
  • the present invention makes it possible to grasp the flow path condition of an analytical device, which is difficult to detect from fluctuations in liquid delivery pressure.
  • FIG. 2 is a configuration diagram of a computer (channel state output device) according to the present embodiment.
  • FIG. 2 is a diagram showing the functional configuration of a computer (channel state output device).
  • FIG. 2 is a diagram showing the configuration of a dedicated flow path for acquiring a flow path state provided in a liquid chromatograph.
  • 10 is a flowchart showing a method for acquiring and outputting a state and a flow path state.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information displayed on a display.
  • FIG. 13 is a diagram showing flow path state information according to a modified example displayed on a display.
  • FIG. 13 is a diagram showing flow path state information according to a modified example displayed on a display.
  • FIG. 13 is a diagram showing flow path state information according to a modified example displayed on a display.
  • FIG. 13 is a diagram showing flow path state information according to a modified example displayed on a display.
  • FIG. 1 is a block diagram of a computer 1 which is a flow path state output device according to the present embodiment.
  • the computer 1 is connected to a liquid chromatograph 3 via a network 4 such as a LAN (Local Area Network).
  • LAN Local Area Network
  • Computer 1 has functions such as setting analysis conditions for liquid chromatograph 3, acquiring measurement results from liquid chromatograph 3, and analyzing the measurement results.
  • a program for controlling liquid chromatograph 3 is installed in computer 1.
  • the liquid chromatograph 3 includes a pump unit, an autosampler unit, a column oven unit (including a column unit), and a detector unit.
  • the liquid chromatograph 3 also includes a system controller.
  • the system controller controls the liquid chromatograph 3 according to control instructions received from the computer 1 via the network 4.
  • the system controller transmits data on the measurement results of the liquid chromatograph 3 to the computer 1 via the network 4.
  • the computer 1 includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, a display 104, an operation unit 105, a storage device 106, a communication interface 107, and a device interface 108.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the CPU 101 controls the computer 1.
  • the RAM 102 is used as a work area when the CPU 101 executes a program.
  • the ROM 103 stores control programs and the like.
  • the display 104 is, for example, a liquid crystal display.
  • the operation unit 105 is a device that accepts user operations and includes a keyboard, a mouse, and the like.
  • the display 104 may be configured as a touch panel display and may have the function of the operation unit 105.
  • the display 104 is an example of a display device of the present invention.
  • the storage device 106 is a device that stores various programs and data.
  • the storage device 106 is, for example, a hard disk.
  • the communication interface 107 is an interface that communicates with other computers and devices.
  • the communication interface 107 is connected to the network 4.
  • the device interface 108 is an interface that accesses various external devices.
  • the CPU 101 can access the storage medium 109 via an external device connected to the device interface 108.
  • the storage device 106 stores an analysis support program P1, analysis condition data AP, dedicated analysis condition data DAP, measurement data MD, normal measurement data CMD, feature values FD, and normal feature values CFD.
  • the analysis support program P1 is a program for controlling the liquid chromatograph 3.
  • the analysis support program P1 has functions such as setting analysis conditions for the liquid chromatograph 3, acquiring measurement results from the liquid chromatograph 3, and analyzing the measurement results.
  • the analysis condition data AP is data describing the analysis method (analysis conditions) to be set in the liquid chromatograph 3, and includes multiple analysis parameters.
  • the dedicated analysis condition data DAP is data describing a dedicated analysis method for acquiring the flow path state of the liquid chromatograph 3.
  • the measurement data MD is data of the measurement results acquired from the liquid chromatograph 3.
  • the normal measurement data CMD is data of the measurement results acquired in the measurement data MD when the liquid chromatograph 3 is operating normally.
  • the feature amount FD is data indicating the characteristics of the measurement results obtained from the measurement data MD.
  • the feature amount FD is data indicating the measurement quality such as the retention time and the tailing amount.
  • the normal feature amount CFD is data indicating the characteristics of the measurement results obtained from the normal measurement data CMD. In other words, the normal feature amount CFD is data indicating the feature amount of the measurement results acquired in the state when the liquid chromatograph 3 is operating normally.
  • FIG. 2 is a functional block diagram of computer 1.
  • Control unit 200 is a functional unit that is realized when CPU 101 uses RAM 102 as a work area and executes analysis support program P1.
  • Control unit 200 includes analysis management unit 201, feature acquisition unit 202, and status output unit 203.
  • the analysis management unit 201 controls the liquid chromatograph 3.
  • the analysis management unit 201 receives an instruction from the user to set analysis condition data AP and to start analysis processing, and issues instructions to the liquid chromatograph 3 for analysis processing.
  • the analysis management unit 201 also acquires measurement data MD from the liquid chromatograph 3.
  • the feature acquisition unit 202 calculates the feature FD based on the measurement data MD indicating the measurement results in the liquid chromatograph 3.
  • the feature acquisition unit 202 calculates the retention time, tailing time, etc. as the feature FD.
  • the feature acquisition unit 202 also calculates the normal feature CFD based on the normal measurement data CMD.
  • the status output unit 203 displays information indicating the flow path status of the liquid chromatograph 3 (hereinafter referred to as flow path status information) on the display 104 based on the feature FD.
  • the "flow path status” refers to the status of the flow paths connecting each unit of the liquid chromatograph 3. For example, it is the status of the flow path connecting the pump unit and the autosampler unit, the status of the flow path within the pump unit or the autosampler unit, the status of the flow path connecting the autosampler unit and the column unit, the status of the flow path connecting the column unit and the detector unit, etc.
  • FIG. 3 is a diagram showing the configuration of a dedicated flow path for acquiring the flow path state provided in liquid chromatograph 3.
  • Liquid chromatograph 3 is provided with a resistance tube 32 that is switchably connected to a column 31 that separates a sample. By controlling the switching of a switching valve 33, a solvent (mobile phase) supplied from an autosampler is sent selectively to either column 31 or resistance tube 32. The solvent that has flowed through column 31 or resistance tube 32 is supplied to a detector provided in liquid chromatograph 3.
  • the switching valve 33 when acquiring the flow path state of the liquid chromatograph 3, the switching valve 33 is switched so that the solvent supplied from the autosampler flows into the resistance tube 32. This prevents the solvent from flowing through the column 31 when acquiring the flow path state, and eliminates the effects of deterioration of the column 31, making it possible to acquire the flow path state.
  • FIG. 4 is a flow chart showing a method of acquiring and outputting a path state according to the present embodiment.
  • the analysis management unit 201 reads out the dedicated analysis condition data DAP from the storage device 106, and sets the dedicated analysis condition data DAP in the liquid chromatograph 3. Specifically, the analysis management unit 201 sets the dedicated analysis condition data DAP in the system controller of the liquid chromatograph 3. As a result, the liquid chromatograph 3 executes an analysis process based on the set dedicated analysis condition data DAP.
  • a standard sample such as caffeine is specified as a sample, and the standard sample is used in the analysis process of acquiring the state.
  • a sample containing a known component is used in the analysis process of acquiring the state.
  • the switching valve 33 shown in FIG. 3 is automatically switched, and a resistance tube 32 is incorporated in the liquid chromatograph 3 instead of the column 31.
  • the analysis management unit 201 acquires the measurement data MD from the liquid chromatograph 3.
  • the analysis management unit 201 stores the acquired measurement data MD in the storage device 106.
  • the measurement data MD is a measurement result obtained based on the dedicated analysis condition data DAP.
  • the measurement data MD is multidimensional data acquired by a multidimensional detector equipped in the liquid chromatograph 3.
  • the measurement data MD is three-dimensional data having elements of the retention time direction, the spectrum direction (frequency direction), and the intensity.
  • the measurement data MD is data acquired in a liquid chromatograph 3 equipped with a PDA detector (photodiode array detector).
  • normal measurement data CMD is acquired. Specifically, under conditions in which the liquid chromatograph 3 is operating normally, steps S1 and S2 are executed, and the normal measurement data CMD is acquired. For example, the normal measurement data CMD is acquired in an initial state, such as immediately after the liquid chromatograph 3 is installed. The normal measurement data CMD is stored in the storage device 106.
  • the feature acquisition unit 202 reads the measurement data MD stored in the storage device 106 and calculates the feature FD from the measurement data MD.
  • the feature acquisition unit 202 stores the calculated feature FD in the storage device 106.
  • the feature FD is, for example, a retention time, a tailing time, or a peak height.
  • the normal feature CFD is calculated by the feature acquisition unit 202 based on the normal measurement data CMD.
  • the normal feature CFD is stored in the storage device 106.
  • the measurement data MD and normal measurement data CMD are each obtained by multiple analysis processes.
  • the dedicated analysis condition data DAP is written so that the analysis process is repeated multiple times based on the same analysis method.
  • multiple feature quantities FD and normal feature quantities CFD are calculated based on the multiple measurement data MD and normal measurement data CMD.
  • step S4 the state output unit 203 creates flow path state information for the liquid chromatograph 3 based on the feature amount FD.
  • the flow path state information is, for example, a graph of the feature amount FD.
  • the flow path state information is the result of determining the flow path state.
  • step S5 the status output unit 203 outputs the flow path status information created in step S4 to the display 104.
  • Figures 5 to 8 are graphs showing the relationship between two feature quantities, retention time and tailing amount, as flow path state information.
  • the horizontal axis represents retention time (seconds) and the vertical axis represents the tailing amount.
  • the tailing amount is a relative value when the peak width when there is no tailing is set to 1.
  • the open square symbols are points on which the normal feature quantity CFD is plotted.
  • the open circle symbols are points on which the feature quantity FD obtained in the state acquisition process is plotted. Note that in Figures 5 to 8, multiple symbols are displayed for both the normal feature quantity CFD and the feature quantity FD, but as mentioned above, these are the results of multiple analysis processes being performed based on the dedicated analysis condition data DAP.
  • area A1 indicates the range of features in a normal state.
  • Area A2 indicates the range of features where dead volume is expected to form.
  • Area A3 indicates the range of features where piping loosening is expected to occur.
  • curved frames indicating areas A1 to A3 are displayed as flow path state information to make it easier for the user to understand the flow path state.
  • the frames indicating areas A1 to A3 do not have to be displayed.
  • captions such as "normal,” “dead volume,” and "loose piping” are displayed near areas A1 to A3 as flow path state information to make it easier for the user to understand the flow path state. However, these captions do not have to be displayed.
  • the feature FD is distributed in region A2.
  • the feature FD is distributed in a region with a large amount of tailing.
  • the open triangular symbols are points on which the feature FD obtained in the state acquisition process is plotted.
  • the feature FD is also distributed in region A2.
  • the feature FD is distributed in a region with a large amount of tailing.
  • the black circle symbols are plots of the feature FD obtained in the status acquisition process.
  • the feature FD is distributed in region A3.
  • the feature FD is distributed in a region with long retention times.
  • the black triangle symbols are plots of the feature FD obtained in the status acquisition process.
  • the feature FD is also distributed in region A3.
  • the feature FD is distributed in a region with long retention times.
  • the computer 1 in this embodiment can grasp the flow path state of the liquid chromatograph 3 that is difficult to detect from fluctuations in the liquid delivery pressure.
  • a small looseness in the piping causes a small pressure drop that is difficult to grasp, but in the example shown in Figures 7 and 8, it can be grasped as a delay in retention time.
  • a dead volume is formed in the piping, it cannot be confirmed as a change in the liquid delivery pressure, but in the example shown in Figures 5 and 6, it can be grasped as an increase in the amount of tailing.
  • FIG. 9 shows a modified example of flow path state information.
  • multiple (e.g., six) analysis processes are performed to obtain multiple measurement data MD.
  • the retention time, peak area, theoretical plate number, tailing value, and pump pressure are calculated, and feature quantities such as their average, variance, and conversion rate are calculated.
  • feature quantities are subjected to principal component analysis.
  • FIG. 9 shows the results of performing principal component analysis on the feature quantities.
  • the horizontal axis indicates the first principal component
  • the vertical axis indicates the second principal component.
  • the open circle symbol indicates the possibility of the feature quantity being an autosampler suction failure.
  • the black circle symbol indicates the possibility of the feature quantity being a light line air bubble contamination.
  • the peak area becomes significantly smaller, so it is difficult to identify the cause just by observing the peak area.
  • the user can determine the cause of the abnormality.
  • FIG. 10 shows another modified example of the flow path state information.
  • the resistance tube 32 when performing the analysis process to acquire the flow path state, the resistance tube 32 is used. This eliminates the influence of the column 31 to acquire the flow path state.
  • a pipe with a sealed flow path may be used to acquire the flow path state.
  • FIG. 10 is a graph showing the progress of the pump pressure when a sealed pipe is used. The horizontal axis of the figure is time (minutes) and the vertical axis is pump pressure (MPa). When the pump deteriorates, the time to reach a specific pressure increases. This allows the user to understand the flow path state.
  • a sealed pipe is used as a dedicated configuration for acquiring the flow path state, but as another example, a drain flow path may be used to acquire the feature amount.
  • FIGS. 11 and 12 show another modified example of the flow path state information.
  • the horizontal axis indicates the retention time
  • the vertical axis indicates the peak area.
  • FIG. 11 shows an example of flow path state information when the sample injection amount varies.
  • FIG. 12 shows an example of flow path state information when a sample dilution defect occurs. This allows the user to grasp the possibility that the sample injection amount has changed or a sample dilution defect has occurred as the flow path state.
  • the flow path state information shown in FIGS. 11 and 12 is effective.
  • a graph comparing the characteristic amount FD with the normal characteristic amount CFD is displayed.
  • displaying the normal characteristic amount CFD is not essential, and only the characteristic amount FD may be displayed as a graph.
  • the flow path state determination result may be included in the flow path state information based on the characteristic amount FD.
  • the state output unit 203 may output the determination result by comparing the characteristic amount FD with a predetermined threshold value.
  • the state output unit 203 may output the determination result by comparing the characteristic amount FD with the normal characteristic amount CFD. For example, in FIG. 5 and FIG.
  • a message such as "Dead volume may be formed” may be displayed as the determination result together with the graph showing the characteristic amount FD.
  • a message such as "Pipe may be loosened” may be displayed as the determination result.
  • a message "normal” may be displayed.
  • a graph may not be displayed and only the determination result may be displayed.
  • the analysis results by the liquid chromatograph 3 may vary from day to day due to differences in the environment, such as temperature and humidity, on the day the analysis is performed. Therefore, two types of dedicated analysis condition data DAP may be prepared, and the flow path state may be presented or determined based on the ratio of two feature amounts FD obtained from the two types of measurement results. Also, two normal feature amounts CFD may be obtained based on the two types of dedicated analysis condition data DAP, and the ratio of the two normal feature amounts CFD may be used as a comparison target. Multiple types of feature amounts FD may be calculated using three or more types of dedicated analysis condition data DAP, and the ratios between them may be used.
  • the liquid chromatograph 3 has been described as an example of the analytical device of the present invention.
  • the present invention can also be applied to a gas chromatograph.
  • the computer 1, which is the flow path state output device of the present embodiment is connected to the liquid chromatograph 3, which is the analytical device, via the network 4.
  • the computer 1 may be configured to be built into the analytical device.
  • the analysis support program P1 is stored in the storage device 106. In another embodiment, the analysis support program P1 may be stored in the storage medium 109 and provided.
  • the CPU 101 may access the storage medium 109 via the device interface 108 and store the analysis support program P1 stored in the storage medium 109 in the storage device 106 or the ROM 103. Alternatively, the CPU 101 may access the storage medium 109 via the device interface 108 and execute the analysis support program P1 stored in the storage medium 109. Alternatively, if the analysis support program P1 is stored in a server on a network, the CPU 101 may download the analysis support program P1 via the communication interface 107.
  • a flow path state output device includes: a feature acquisition unit that measures a sample containing known components using an analytical device and acquires feature amounts from the measurement results; and a status output unit that outputs information indicating a flow path status of the analysis device to a display device based on the feature amount.
  • the analytical device may include a chromatograph, and the features may include retention time and/or tailing amount.
  • the flow path condition of the analytical device can be understood based on the retention time or tailing amount.
  • the chromatograph has a pump unit, an autosampler unit, a column oven unit and a detector unit,
  • the flow path state of the analytical device may be a flow path state for a flow path that fluidly connects two units among the pump unit, the autosampler unit, the column oven unit, the detector unit, and other constituent units of the chromatograph.
  • the state output unit may output a graph indicating the feature amount.
  • the flow path status of the analytical device can be visually displayed.
  • the state output unit may output a result of the determination of the flow path state.
  • the flow path status of the analytical device can be clearly displayed.
  • the characteristic amount acquisition unit acquires a normal characteristic amount obtained by an analysis process using the sample when the flow path state is normal;
  • the status output unit may output a graph comparing the feature amount with the normal feature amount.
  • the characteristic amount acquisition unit acquires a normal characteristic amount obtained by an analysis process using the sample when the flow path state is normal;
  • the status output unit may output the determination result by comparing the feature amount with the normal feature amount.
  • the feature acquisition unit may acquire the feature by utilizing a dedicated flow path for acquiring the flow path state, instead of a column included in the analysis device.
  • the influence of the column can be eliminated and the flow path condition can be obtained.
  • the feature amount acquiring unit may acquire the feature amount by utilizing a dedicated analysis method for acquiring the flow path state.
  • the feature acquisition unit may acquire a plurality of the feature amounts by utilizing a plurality of types of the dedicated analysis methods, and the state output unit may output the flow path state of the analysis device based on a ratio of the plurality of the feature amounts.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

流路状態出力装置の一実施の形態であるコンピュータは、液体クロマトグラフと接続され、液体クロマトグラフにおいて実行された分析処理の結果を取得する。コンピュータは、特徴量取得部および状態出力部を備える。特徴量取得部は、分析装置により既知の成分を含有する試料を測定し、その測定結果から特徴量を取得する。状態出力部は、特徴量に基づいて液体クロマトグラフの流路状態をディスプレイに出力する。

Description

流路状態出力装置
 本発明は、分析装置の流路状態を出力する装置に関する。
 液体クロマトグラフは設定された流量で移動相となる溶媒を送液する送液システムを備える。送液システム内に微細な気泡が混入することにより、溶媒の送液圧力が変動することがある。例えば、下記特許文献1においては、溶媒の送液圧力の変動幅を算出し、変動幅が基準値を超えている場合に、送液不良を検知するようにしている。
国際公開第2020/183774号
 送液システムに気泡が混入するようなケースでは、送液圧力が急激に変動するため、上記のようにその変動幅を取得することで、送液不良を検知可能である。しかし、送液圧力の変化はそれ程大きくないにも関わらず、分析結果に影響を与えるような何等かの異常が液体クロマトグラフ内の流路に生じている場合がある。送液圧力の変動幅を取得する上記の方法では、そのような異常を検知することは難しい。
 本発明の目的は、送液圧力の変動からは検知することの難しい分析装置の流路状態を把握することである。
 本発明の一局面に従う流路状態出力装置は、分析装置により既知の成分を含有する試料を測定し、その測定結果から特徴量を取得する特徴量取得部と、特徴量に基づいて前記分析装置の流路状態を示す情報を表示装置に出力する状態出力部とを備える。
 本発明によれば、送液圧力の変動からは検知することの難しい分析装置の流路状態を把握することができる。
本実施の形態に係るコンピュータ(流路状態出力装置)の構成図である。 コンピュータ(流路状態出力装置)の機能構成を示す図である。 液体クロマトグラフが備える流路状態取得のための専用流路の構成を示す図である。 状態取得および流路状態の取得および出力方法を示すフローチャートである。 ディスプレイに表示される流路状態情報を示す図である。 ディスプレイに表示される流路状態情報を示す図である。 ディスプレイに表示される流路状態情報を示す図である。 ディスプレイに表示される流路状態情報を示す図である。 ディスプレイに表示される変形例に係る流路状態情報を示す図である。 ディスプレイに表示される変形例に係る流路状態情報を示す図である。 ディスプレイに表示される変形例に係る流路状態情報を示す図である。 ディスプレイに表示される変形例に係る流路状態情報を示す図である。
 次に、添付の図面を参照しながら本発明の実施の形態に係る流路状態出力装置について説明する。
 (1)分析システムの全体構成
 図1は、本実施の形態に係る流路状態出力装置であるコンピュータ1の構成図である。コンピュータ1は、例えばLAN(Local Area Network)などのネットワーク4を介して液体クロマトグラフ3に接続される。
 コンピュータ1は、液体クロマトグラフ3に分析条件を設定する機能、液体クロマトグラフ3における測定結果を取得し、測定結果を分析する機能などを備える。コンピュータ1には、液体クロマトグラフ3を制御するためのプログラムがインストールされる。
 液体クロマトグラフ3は、ポンプユニット、オートサンプラユニット、カラムオーブンユニット(カラムユニットを含む)および検出器ユニットなどを備える。液体クロマトグラフ3は、また、システムコントローラを備える。システムコントローラは、コンピュータ1からネットワーク4経由で受信した制御指示に従って、液体クロマトグラフ3を制御する。システムコントローラは、液体クロマトグラフ3の測定結果のデータを、ネットワーク4経由でコンピュータ1に送信する。
 (2)コンピュータ(流路状態出力装置)の構成
 コンピュータ1として、本実施の形態においてはパーソナルコンピュータが利用される。図1に示すように、コンピュータ1は、CPU(Central Proccessing Unit)101、RAM(Random Access Memory)102、ROM(Read Only Memory)103、ディスプレイ104、操作部105、記憶装置106、通信インタフェース107、および、デバイスインタフェース108を備える。
 CPU101は、コンピュータ1の制御を行う。RAM102は、CPU101がプログラムを実行するときにワークエリアとして使用される。ROM103には、制御プログラムなどが記憶される。ディスプレイ104は、例えば液晶ディスプレイである。操作部105は、ユーザの操作を受け付けるデバイスであり、キーボード、マウスなどを含む。ディスプレイ104がタッチパネルディスプレイで構成され、ディスプレイ104が操作部105としての機能を備えていても良い。なお、ディスプレイ104が本発明の表示装置の例である。記憶装置106は、各種プログラムおよびデータを記憶する装置である。記憶装置106は、例えばハードディスクである。通信インタフェース107は、他のコンピュータおよびデバイスと通信を行うインタフェースである。通信インタフェース107は、ネットワーク4に接続される。デバイスインタフェース108は、各種の外部デバイスにアクセスするインタフェースである。CPU101は、デバイスインタフェース108に接続された外部デバイス装置を介して記憶媒体109にアクセスすることができる。
 記憶装置106には、分析支援プログラムP1、分析条件データAP、専用分析条件データDAP、測定データMD、正常測定データCMD、特徴量FDおよび正常特徴量CFDが記憶される。分析支援プログラムP1は、液体クロマトグラフ3を制御するためのプログラムである。分析支援プログラムP1は、液体クロマトグラフ3に対して分析条件を設定する機能、液体クロマトグラフ3から測定結果を取得し、測定結果を分析する機能などを備える。
 分析条件データAPは、液体クロマトグラフ3に設定する分析メソッド(分析条件)を記述したデータであり、複数の分析パラメータを含む。専用分析条件データDAPは、液体クロマトグラフ3の流路状態の取得のための専用分析メソッドが記述されたデータである。測定データMDは、液体クロマトグラフ3から取得した測定結果のデータである。正常測定データCMDは、測定データMDのうち、液体クロマトグラフ3が正常で動作している状態で取得された測定結果のデータである。特徴量FDは、測定データMDから求められる測定結果の特徴を示すデータである。特徴量FDは、例えば、保持時間、テーリング量などの測定品質を示すデータである。正常特徴量CFDは、正常測定データCMDから求められる測定結果の特徴を示すデータである。つまり、正常特徴量CFDは、液体クロマトグラフ3が正常で動作している状態で取得された測定結果の特徴量を示すデータである。
 図2は、コンピュータ1の機能ブロック図である。制御部200は、CPU101が、RAM102をワークエリアとして使用し、分析支援プログラムP1を実行することにより実現される機能部である。制御部200は、分析管理部201、特徴量取得部202および状態出力部203を備える。
 分析管理部201は、液体クロマトグラフ3の制御を行う。分析管理部201は、ユーザによる分析条件データAPの設定および分析処理の開始指示を受けて、液体クロマトグラフ3に対する分析処理の指示を行う。分析管理部201は、また、液体クロマトグラフ3から測定データMDを取得する。
 特徴量取得部202は、液体クロマトグラフ3における測定結果を示す測定データMDに基づいて、特徴量FDを算出する。特徴量取得部202は、特徴量FDとして、保持時間、テーリング時間などを算出する。また、特徴量取得部202は、正常測定データCMDに基づいて、正常特徴量CFDを算出する。
 状態出力部203は特徴量FDに基づいて、ディスプレイ104に液体クロマトグラフ3の流路状態を示す情報(以下、流路状態情報とする。)を表示する。本発明における「流路状態」とは、液体クロマトグラフ3が備える各ユニットの間を接続する流路の状態を示す。例えば、ポンプユニットとオートサンプラユニットとを接続する流路の状態、ポンプユニットまたはオートサンプラユニット内の流路の状態、オートサンプラユニットとカラムユニットとを接続する流路の状態、カラムユニットと検出器ユニットとを接続する流路の状態などである。
 (3)流路状態の取得のための液体クロマトグラフ3の構成
 図3は、液体クロマトグラフ3が備える流路状態の取得のための専用流路の構成を示す図である。液体クロマトグラフ3は、試料の分離を行うカラム31と切り替えて接続される抵抗管32を備える。切替バルブ33の切替制御を行うことにより、オートサンプラから供給される溶媒(移動相)は、カラム31または抵抗管32に択一的に送液される。カラム31または抵抗管32を流れた溶媒は、液体クロマトグラフ3が備える検出器に供給される。
 本実施の形態においては、液体クロマトグラフ3の流路状態の取得を行う場合には、オートサンプラから供給される溶媒が抵抗管32に流れるように切替バルブ33が切り替えられる。これにより、流路状態の取得を行う場合に、溶媒がカラム31を流れないようにし、カラム31の劣化等による影響を排除して、流路状態を取得することができる。
 (4)流路状態の取得方法および流路状態の出力方法
 次に、本実施の形態に係るコンピュータ1において実行される流路状態の取得および出力方法について説明する。図4は、本実施の形態に係る流路状態取得および出力方法を示すフローチャートである。ステップS1において、分析管理部201が、記憶装置106から専用分析条件データDAPを読み出し、専用分析条件データDAPを液体クロマトグラフ3に設定する。具体的には、分析管理部201は、液体クロマトグラフ3のシステムコントローラに対して、専用分析条件データDAPを設定する。これにより、液体クロマトグラフ3において、設定された専用分析条件データDAPに基づいて、分析処理が実行される。なお、本実施の形態の専用分析条件データDAPにおいては、試料としてカフェインなどの標準試料が指定されており、状態取得の分析処理に標準試料が用いられる。つまり、状態取得の分析処理には、既知の成分を含有する試料が用いられる。また、専用分析条件データDAPに基づく分析処理を実行するとき、図3で示した切替バルブ33が自動で切り替えられ、液体クロマトグラフ3にはカラム31に変えて抵抗管32が組み込まれる。
 次に、ステップS2において、分析管理部201は、液体クロマトグラフ3から測定データMDを取得する。分析管理部201は、記憶装置106に、取得した測定データMDを保存する。測定データMDは、専用分析条件データDAPに基づいて得られた測定結果である。測定データMDは、液体クロマトグラフ3が備える多次元検出器によって取得された多次元のデータである。ここでは、測定データMDは、保持時間方向、スペクトル方向(周波数方向)および強度の要素を有する3次元データである。例えば、測定データMDは、PDA検出器(フォトダイオードアレイ検出器)を備える液体クロマトグラフ3において取得されたデータである。
 また、図4のフローチャートに基づく流路状態の取得処理に先立って、正常測定データCMDが取得される。具体的には、液体クロマトグラフ3が正常に動作している状況下において、ステップS1およびステップS2が実行され、正常測定データCMDが取得される。例えば、液体クロマトグラフ3の設置直後など、初期状態において、正常測定データCMDが取得される。正常測定データCMDは記憶装置106に保存される。
 次に、ステップS3において、特徴量取得部202が、記憶装置106に保存された測定データMDを読み出し、測定データMDから特徴量FDを算出する。特徴量取得部202は、算出した特徴量FDを記憶装置106に保存する。特徴量FDは、例えば、保持時間、テーリング時間またはピーク高さなどである。
 また、図4のフローチャートに基づく流路状態の取得処理に先立って、特徴量取得部202により、正常測定データCMDに基づいて正常特徴量CFDが算出される。正常特徴量CFDは記憶装置106に保存される。
 なお、流路状態を正しく把握するために、測定データMDおよび正常測定データCMDは、それぞれ複数の分析処理により取得される。例えば、専用分析条件データDAPには、同一の分析メソッドに基づいて複数回の分析処理が繰り返されるように記述される。そして、複数の測定データMDおよび正常測定データCMDに基づいて、複数の特徴量FDおよび正常特徴量CFDが算出される。
 次に、ステップS4において、状態出力部203は、特徴量FDに基づいて液体クロマトグラフ3の流路状態情報を作成する。流路状態情報は、例えば、特徴量FDのグラフである。あるいは、流路状態情報は、流路状態の判定結果である。
 次に、ステップS5において、状態出力部203は、ステップS4で作成した流路状態情報をディスプレイ104に出力する。
 (5)流路状態情報
 次に、状態出力部203により作成(上記ステップS4)され、ディスプレイ104に表示(上記ステップS5)される流路状態情報について説明する。図5~図8は、流路状態情報の例を示す図である。
 図5~図8は、流路状態情報として、保持時間(リテンションタイム)とテーリング量の2つの特徴量の関係を示したグラフである。図5~図8では、横軸を保持時間(秒)、縦軸をテーリング量としている。テーリング量は、テーリングがないとしたときのピーク幅を1としたときの相対値である。図5~図8において、白抜き四角形のシンボルは、正常特徴量CFDをプロットした点である。図5において、白抜き丸形のシンボルは状態取得処理において得られた特徴量FDをプロットした点である。なお、図5~図8において、正常特徴量CFD、特徴量FDともに複数のシンボルが表示されているが、上述したように、専用分析条件データDAPに基づいて複数回の分析処理を実行した結果である。
 図5~図8においては、領域A1は、正常状態における特徴量の範囲を示す。領域A2は、デッドボリュームが形成されることが想定される特徴量の範囲を示す。領域A3は、配管緩みが生じていることが想定される特徴量の範囲を示す。この例では、流路状態情報として、領域A1~A3を示す曲線の枠を表示することで、ユーザが流路状態を把握し易いようにしている。ただし、領域A1~A3を示す枠は表示させなくてもよい。また、流路状態情報として、領域A1~A3の近傍に、「正常」、「デッドボリューム」、「配管緩み」などのキャプションを表示させることで、ユーザが流路状態を把握し易いようにしている。ただし、これらのキャプションは表示させなくてもよい。
 図5の例では、特徴量FDが領域A2に分布している。つまり、特徴量FDがテーリング量の大きい領域に分布している。この流路状態情報が提示されることで、ユーザは、液体クロマトグラフ3の流路においてデッドボリュームが形成されている可能性を把握することができる。例えば溶媒の送液圧力を測定したとしても、液体クロマトグラフ3を構成するいずれかの配管においてデッドボリュームが形成されている状態を検知することは困難である。しかし、図5で示すように、特徴量FDのグラフを提示することで、デッドボリュームが形成されている可能性をユーザに示唆することが可能である。
 図6において、白抜き三角形のシンボルは状態取得処理において得られた特徴量FDをプロットした点である。図6の例においても、特徴量FDが領域A2に分布している。つまり、特徴量FDがテーリング量の大きい領域に分布している。この流路状態情報が提示されることで、ユーザは、液体クロマトグラフ3の流路においてデッドボリュームが形成されている可能性を把握することができる。ただし、図5と比較すると特徴量FDのテーリング量は小さい。したがって、ユーザは、比較的早い段階で、デッドボリュームの形成の可能性を把握することが可能である。
 図7において、黒丸形のシンボルは状態取得処理において得られた特徴量FDをプロットした点である。図7の例では、特徴量FDが領域A3に分布している。つまり、特徴量FDが保持時間の長い領域に分布している。この流路状態情報が提示されることで、ユーザは、液体クロマトグラフ3の流路において配管の微小な緩みが生じている可能性を把握することができる。
 図8において、黒三角形のシンボルは状態取得処理において得られた特徴量FDをプロットした点である。図8の例においても、特徴量FDが領域A3に分布している。つまり、特徴量FDが保持時間の長い領域に分布している。この流路状態情報が提示されることで、ユーザは、液体クロマトグラフ3の流路において配管の微小な緩みが生じている可能性を把握することができる。さらに、図7と比較すると特徴量FDの保持時間はさらに長くなっている。したがって、ユーザは、配管の緩みの可能性が高いことを把握することが可能である。
 以上説明したように、本実施の形態におけるコンピュータ1(流路状態出力装置)によれば、送液圧力の変動からは検知することの難しい液体クロマトグラフ3の流路状態を把握することができる。例えば、配管の微小な緩みは、把握することが困難な小さな圧力降下を生じさせることとなるが、図7,8で示した例でれば、保持時間の遅れとして把握することが可能である。また、配管中にデッドボリュームが形成されている場合は、送液圧力の変化としては確認することはできないが、図5,図6で示した例であれば、テーリング量の増加として把握することが可能である。本実施の形態によれば、圧力変動では検知することのできない流路状態を把握することができるので、分析結果に大きな影響を与えるような異常に至る前の段階で、液体クロマトグラフ3の状態を管理することが可能である。
 (6)流路状態情報の変形例
 図9は、流路状態情報の変形例を示す。専用分析条件データDAPに基づいて複数回(例えば6回)の分析処理を実行し、複数の測定データMDを得る。そして、この複数回の測定データMDから、保持時間、ピーク面積、理論段数、テーリング値およびポンプ圧力を算出し、それらの平均、分散、変換率などの特徴量を算出する。そして、それら特徴量を主成分分析する。図9は、特徴量に対する主成分分析を実行した結果を示す。図において、横軸は第1主成分、縦軸は第2主成分を示す。図において、白抜き丸形シンボルは、特徴量がオートサンプラの吸引不良の可能性を示している。また、黒丸形シンボルは、特徴量が軽量ライン気泡混入の可能性を示している。軽量ライン気泡混入やオートサンプラ吸引不良は、いずれもピーク面積が顕著に小さくなるため、ピーク面積を観察するだけでは原因の特定が困難である。しかし、図9に示す流路状態情報を提示することで、ユーザは、異常の原因を判断することが可能である。
 図10は、流路状態情報の別の変形例を示す。上記の実施の形態において、流路状態の取得のために分析処理を実行するとき、抵抗管32を利用した。これにより、カラム31の影響を排除して、流路状態を取得するようにした。他の例として、流路状態の取得をするときに、流路を封止した配管を用いてもよい。図10は、封止配管を用いた上で、ポンプの圧力の推移を示したグラフである。図の横軸は時間(分)であり、縦軸はポンプ圧力(MPa)である。ポンプが劣化すると、特定の圧力に到達するまでの時間が長くなる。これにより、ユーザは流路状態を把握可能である。この例では、流路状態の取得のための専用の構成として封止配管を用いたが、他の例として、ドレイン流路を用いて特徴量を取得するようにしてもよい。
 図11および図12は、流路状態情報の別の変形例を示す。図11,12において横軸は保持時間であり、縦軸はピーク面積を示す。例えば、分析処理において試料の注入量が変動した場合は、保持時間とピーク面積は同時に変化する。図11においては、試料の注入量が変動した場合の流路状態情報の例である。これに対して、試料の希釈不良が発生した場合には、ピーク面積だけが変化する。図12は、試料の希釈不良が発生した場合の流路状態情報の例を示す。これにより、ユーザは、流路状態として試料の注入量の変化や試料の希釈不良が発生している可能性を把握することができる。試料としてカフェインなどの標準試料ではなく実試料を用いて流路状態を取得する場合には、図11および図12で示す流路状態情報は有効である。
 (7)他の変形例1
 図5~図8で示した流路状態情報の例では、特徴量FDを正常特徴量CFDと比較するグラフを表示させた。しかし、正常特徴量CFDの表示は必須ではなく、特徴量FDだけをグラフ表示させてもよい。あるいは、特徴量FDに基づいて、流路状態の判定結果を流路状態情報に含めるようにしてもよい。状態出力部203は、特徴量FDを所定の閾値と比較することにより判定結果を出力してもよい。あるいは状態出力部203は、特徴量FDと正常特徴量CFDとを比較することにより判定結果を出力してもよい。例えば、図5,6において、特徴量FD示すグラフと合わせて、判定結果として、「デッドボリュームが形成されている可能性があります。」といったメッセージを表示させてもよい。また、図7,8において、判定結果として、「配管緩みの可能性があります。」といったメッセージを表示させてもよい。特徴量FDが、正常範囲にある場合には、「正常」のメッセージを表示させてもよい。あるいは、グラフは表示させずに、判定結果のみを表示させてもよい。
 (8)他の変形例2
 液体クロマトグラフ3による分析結果は、分析を実施した日の温度、湿度など環境の違いにより、日間差が生じる場合がある。そこで、専用分析条件データDAPを2種類用意しておき、2種類の測定結果から得られた2つの特徴量FDの比に基づいて、流路状態を提示あるいは判定してもよい。また、2種類の専用分析条件データDAPに基づいて2つの正常特徴量CFDを取得しておき、2つの正常特徴量CFDの比を比較対象とすることができる。3種類以上の複数種の専用分析条件データDAPを用いて、複数種の特徴量FDを算出し、それらの比を利用してもよい。
 (9)その他の実施の形態
 上記実施の形態においては、本発明の分析装置として、液体クロマトグラフ3を例に説明した。本発明は、他にも、ガスクロマトグラフにも適用可能である。また、上記の実施の形態において、本実施の形態の流路状態出力装置であるコンピュータ1は、ネットワーク4を介して分析装置である液体クロマトグラフ3に接続される場合を例に説明した。他の実施の形態として、コンピュータ1が、分析装置に内蔵される構成であってもよい。
 上記実施の形態においては、分析支援プログラムP1は、記憶装置106に保存されている場合を例に説明した。他の実施の形態として、分析支援プログラムP1は、記憶媒体109に保存されて提供されてもよい。CPU101は、デバイスインタフェース108を介して記憶媒体109にアクセスし、記憶媒体109に保存された分析支援プログラムP1を、記憶装置106またはROM103に保存するようにしてもよい。あるいは、CPU101は、デバイスインタフェース108を介して記憶媒体109にアクセスし、記憶媒体109に保存された分析支援プログラムP1を実行するようにしてもよい。あるいは、分析支援プログラムP1がネットワーク上のサーバに保存されている場合には、CPU101は、通信インタフェース107を介して分析支援プログラムP1をダウンロードする形態であってもよい。
 (10)態様
 上述した複数の例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)
 一態様に係る流路状態出力装置は、
 分析装置により既知の成分を含有する試料を測定し、その測定結果から特徴量を取得する特徴量取得部と、
 前記特徴量に基づいて前記分析装置の流路状態を示す情報を表示装置に出力する状態出力部と、を備える。
 送液圧力の変動からは検知することの難しい分析装置の流路状態を把握することができる。
 (第2項)
 第1項に記載の流路状態出力装置において、
 前記分析装置はクロマトグラフを含み、前記特徴量は保持時間および/またはテーリング量を含んでもよい。
 保持時間またはテーリング量に基づいて分析装置の流路状態を把握することができる。
 (第3項)
 第2項に記載の流路状態出力装置において、
 前記クロマトグラフは、ポンプユニット、オートサンプラユニット、カラムオーブンユニットおよび検出器ユニットを有し、
 前記分析装置の流路状態は、前記ポンプユニット、前記オートサンプラユニット、前記カラムオーブンユニット、前記検出器ユニットおよび前記クロマトグラフの他の構成ユニットのうち2つのユニットを流体接続する流路についての流路状態であってもよい。
 クロマトグラフが備える各ユニット間における流路状態を把握することができる。
 (第4項)
 第1項に記載の流路状態出力装置において、
 前記状態出力部は、前記特徴量を示すグラフを出力してもよい。
 分析装置の流路状態を視覚的に提示することができる。
 (第5項)
 第1項に記載の流路状態出力装置において、
 前記状態出力部は、前記流路状態の判定結果を出力してもよい。
 分析装置の流路状態を明確に提示することができる。
 (第6項)
 第4項に記載の流路状態出力装置において、
 前記特徴量取得部は、前記流路状態が正常であるときに、前記試料を用いた分析処理により得られた正常特徴量を取得し、
 前記状態出力部は、前記特徴量と前記正常特徴量とを比較したグラフを出力してもよい。
 正常特徴量と特徴量が比較表示されるので、流路状態を把握することが容易である。
 (第7項)
 第5項に記載の流路状態出力装置において、
 前記特徴量取得部は、前記流路状態が正常であるときに、前記試料を用いた分析処理により得られた正常特徴量を取得し、
 前記状態出力部は、前記特徴量と前記正常特徴量とを比較することにより、前記判定結果を出力してもよい。
 信頼性の高い判定結果が出力される。
 (第8項)
 第1項に記載の流路状態出力装置において、
 前記特徴量取得部は、前記分析装置が有するカラムに変えて前記流路状態の取得のための専用流路を利用して、前記特徴量を取得してもよい。
 カラムの影響を排除して流路状態を取得することができる。
 (第9項)
 第1項に記載の流路状態出力装置において、
 前記特徴量取得部は、前記流路状態の取得のための専用分析メソッドを利用して、前記特徴量を取得してもよい。
 流路状態を取得するために適した専用分析メソッドを利用することで、流路状態を把握し易くなる。
 (第10項)
 第9項に記載の流路状態出力装置において、
 前記特徴量取得部は、複数種の前記専用分析メソッドを利用して、複数の前記特徴量を取得し、前記状態出力部は、複数の前記特徴量の比から前記分析装置の前記流路状態を出力してもよい。
 日間差を排除し、流路状態を正しく把握することができる。

Claims (10)

  1.  分析装置により既知の成分を含有する試料を測定し、その測定結果から特徴量を取得する特徴量取得部と、
     前記特徴量に基づいて前記分析装置の流路状態を示す情報を表示装置に出力する状態出力部と、を備える流路状態出力装置。
  2.  前記分析装置はクロマトグラフを含み、前記特徴量は保持時間および/またはテーリング量を含む、請求項1に記載の流路状態出力装置。
  3.  前記クロマトグラフは、ポンプユニット、オートサンプラユニット、カラムオーブンユニットおよび検出器ユニットを有し、
     前記分析装置の流路状態は、前記ポンプユニット、前記オートサンプラユニット、前記カラムオーブンユニット、前記検出器ユニットおよび前記クロマトグラフの他の構成ユニットのうち2つのユニットを流体接続する流路についての流路状態である請求項2に記載の流路状態出力装置。
  4.  前記状態出力部は、前記特徴量を示すグラフを出力する、請求項1に記載の流路状態出力装置。
  5.  前記状態出力部は、前記流路状態の判定結果を出力する、請求項1に記載の流路状態出力装置。
  6.  前記特徴量取得部は、前記流路状態が正常であるときに、前記試料を用いた分析処理により得られた正常特徴量を取得し、
     前記状態出力部は、前記特徴量と前記正常特徴量とを比較したグラフを出力する、請求項4に記載の流路状態出力装置。
  7.  前記特徴量取得部は、前記流路状態が正常であるときに、前記試料を用いた分析処理により得られた正常特徴量を取得し、
     前記状態出力部は、前記特徴量と前記正常特徴量とを比較することにより、前記判定結果を出力する、請求項5に記載の流路状態出力装置。
  8.  前記特徴量取得部は、前記分析装置が有するカラムに変えて前記流路状態の取得のための専用流路を利用して、前記特徴量を取得する、請求項1に記載の流路状態出力装置。
  9.  前記特徴量取得部は、前記流路状態の取得のための専用分析メソッドを利用して、前記特徴量を取得する、請求項1に記載の流路状態出力装置。
  10.  前記特徴量取得部は、複数種の前記専用分析メソッドを利用して、複数の前記特徴量を取得し、前記状態出力部は、複数の前記特徴量の比から前記分析装置の前記流路状態を出力する、請求項9に記載の流路状態出力装置。
     
PCT/JP2023/036580 2022-10-14 2023-10-06 流路状態出力装置 WO2024080246A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165652 2022-10-14
JP2022165652 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080246A1 true WO2024080246A1 (ja) 2024-04-18

Family

ID=90669290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036580 WO2024080246A1 (ja) 2022-10-14 2023-10-06 流路状態出力装置

Country Status (1)

Country Link
WO (1) WO2024080246A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066185A (ja) * 2008-09-12 2010-03-25 Shimadzu Corp ガスクロマトグラフ装置
WO2020175510A1 (ja) * 2019-02-26 2020-09-03 株式会社日立ハイテク 液体クロマトグラフ分析装置、及びその制御方法
US20200300820A1 (en) * 2016-03-07 2020-09-24 Waters Technologies Corporation Systems, methods and devices for reducing band dispersion in chromatography
JP2021032901A (ja) * 2019-08-27 2021-03-01 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 分析装置の状態をチェックする技術
WO2021099301A1 (en) * 2019-11-20 2021-05-27 Cytiva Sweden Ab Method for determining an operating flow rate for a chromatographic column in an hplc system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066185A (ja) * 2008-09-12 2010-03-25 Shimadzu Corp ガスクロマトグラフ装置
US20200300820A1 (en) * 2016-03-07 2020-09-24 Waters Technologies Corporation Systems, methods and devices for reducing band dispersion in chromatography
WO2020175510A1 (ja) * 2019-02-26 2020-09-03 株式会社日立ハイテク 液体クロマトグラフ分析装置、及びその制御方法
JP2021032901A (ja) * 2019-08-27 2021-03-01 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 分析装置の状態をチェックする技術
WO2021099301A1 (en) * 2019-11-20 2021-05-27 Cytiva Sweden Ab Method for determining an operating flow rate for a chromatographic column in an hplc system

Similar Documents

Publication Publication Date Title
US9442098B2 (en) Chromatographic system quality control reference materials
JP5262482B2 (ja) ガスクロマトグラフ装置
EP2338049B1 (en) Methods for evaluating chromatography column performance
US20180128794A1 (en) Method of analysing gas chromatography data
US11400390B2 (en) Mobile phase controller for supercritical fluid chromatography systems
US9417219B2 (en) Sample separation device with valve
JP2011518314A (ja) クロマトグラフィーカラムの性能を監視するための自動化システムおよび方法、ならびにその応用
JPWO2015132861A1 (ja) クロマトグラフ質量分析装置用データ処理装置及びプログラム
WO2024080246A1 (ja) 流路状態出力装置
JP2007064977A (ja) 特徴部の位置合わせを行うシステム及び方法
JP2021032901A (ja) 分析装置の状態をチェックする技術
US20170108479A1 (en) Benchmark for lc-ms systems
Striegel Do column frits contribute to the on-column, flow-induced degradation of macromolecules?
US6357277B1 (en) Method and equipment for the realignment of peaks in gas chromatographic analyses
JP6658906B2 (ja) ガスクロマトグラフ
CN110658277A (zh) 一种快速无损检测仁果类水果中农药残留的方法
JP2022091322A (ja) 液体クロマトグラフのpH管理システムおよびプログラム
JP2015117955A (ja) クロマトグラム表示方法、並びに、クロマトグラム表示装置及びこれを備えたクロマトグラフ
CN116420192A (zh) 具有诊断和预测模块的气相色谱系统和方法
WO2018029847A1 (ja) クロマトグラフ装置、クロマトグラフ分析方法、クロマトグラフ分析用プログラム、及びクロマトグラフ分析用データベース
CN114544795B (zh) 质谱中气体流参数的异常检测
JP2010151518A (ja) 分析装置および信頼精度管理方法
US6671629B2 (en) Method and device for measuring characteristics of a sample
CN118050439A (zh) 质谱中气体流参数的异常检测
JP2007198898A (ja) プレカラム誘導体化によるクロマトグラフ装置