WO2024079882A1 - 生産支援装置 - Google Patents

生産支援装置 Download PDF

Info

Publication number
WO2024079882A1
WO2024079882A1 PCT/JP2022/038370 JP2022038370W WO2024079882A1 WO 2024079882 A1 WO2024079882 A1 WO 2024079882A1 JP 2022038370 W JP2022038370 W JP 2022038370W WO 2024079882 A1 WO2024079882 A1 WO 2024079882A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
pair
component mounting
production
support device
Prior art date
Application number
PCT/JP2022/038370
Other languages
English (en)
French (fr)
Inventor
弘健 江嵜
聡希 竹内
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/038370 priority Critical patent/WO2024079882A1/ja
Publication of WO2024079882A1 publication Critical patent/WO2024079882A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • This specification relates to a production support device.
  • Patent Document 1 A conventional method for allocating part feeders for electronic component mounters is disclosed in, for example, Patent Document 1 (hereinafter referred to as the "conventional method").
  • a part feeder row is determined in which all part feeders to be allocated to each electronic component mounter are arranged in an arbitrary order, and a predetermined number of individuals consisting of an identifier sequence are generated by associating the identifiers of each electronic component mounter with each part feeder using random numbers.
  • a genetic algorithm is applied to each of the generated individuals, with the mounting time on each electronic component mounter being used as an evaluation value, and the allocation of part feeders to each electronic component mounter is optimized so as to minimize the evaluation value.
  • a population of multiple individuals in the next generation is generated by considering all combinations of part feeders for all part feeders that form the part feeder row, and the generation of the population is then repeated to finally allocate the part feeder that minimizes the evaluation value.
  • the part feeders to be optimized are not selected in advance, so even if only some of the part feeders are different, the next generation must be generated by considering all combinations of part feeders for all part feeders that make up the part feeder row. This means that optimization takes time even if only some of the parts are different. Therefore, it is desirable to be able to perform optimization efficiently even when the number of optimization targets increases.
  • the purpose of this specification is to provide a production support device that can efficiently optimize the placement of component types.
  • a production support device including: a learning data acquisition unit that acquires, as learning data, arrangement data regarding the arrangement of a plurality of component mounting machines and component type data representing the component types of a plurality of components that each of the component mounting machines mounts on a board; a trained model storage unit that stores a trained model generated by performing machine learning on a replacement pattern in which a reward is obtained by replacing component type pairs representing component types distinguished by the component type data and mounting components by a plurality of component mounting machines; a production information acquisition unit that acquires production information including at least new arrangement data and new component type data, and instructs the component mounting machines to mount new components to produce a board; and an inference unit that uses the new arrangement data and new component type data included in the production information and the trained model to infer and output a component type pair to be replaced among the new component types distinguished by the component type data.
  • the production support device uses a trained model that has learned replacement patterns that will earn rewards when optimizing the placement of component types, making it possible to infer component type pairs that are to be replaced, i.e., effective for optimization. This eliminates the need to sequentially consider all combinations of component types to determine component type pairs that are effective for optimization for multiple component types, and by using the trained model, it is possible to selectively determine component type pairs that are effective for optimization for new component types as well. Therefore, by using the production support device, it is possible to efficiently optimize the placement of component types.
  • FIG. 1 is a diagram showing an overall configuration of a production system.
  • FIG. 2 is a diagram for explaining a plurality of component mounting machines constituting the production system of FIG. 1 .
  • FIG. 3 is a diagram showing a schematic diagram of an overall configuration of the component mounting machine shown in FIG. 2 .
  • FIG. 2 is a side view showing a schematic view of a main part of the feeder shown in FIG. 1 .
  • FIG. 2 is a top view showing a schematic diagram of a carrier tape.
  • FIG. 2 is a functional block diagram showing a configuration of a production support device.
  • 13 is a flowchart showing a learning process executed by the production support device (trained model generation unit).
  • the production support device will be described below with reference to the drawings. In this embodiment, an example will be described in which the production support device is provided in a production system in which a feeder is transported to a component mounting machine by an automatic transport machine.
  • the production system 1 includes a plurality of component mounting machines 10 (four in this embodiment) arranged in the width direction, an automatic conveyor 20, a loader device 30, a feeder 40, and a production support device 100.
  • the component mounting machine 10 is a substrate-related operation machine that performs a mounting operation of mounting a component P (e.g., an electronic component) on a substrate K as a predetermined operation.
  • the board K is transported in sequence into each component mounting machine 10, and a mounting process is performed in which the specified components are mounted in each component mounting machine 10.
  • the X-axis direction is the left-right direction (width direction) of the component mounting machine 10
  • the Y-axis direction is the front-back direction (depth direction) of the component mounting machine 10
  • the Z-axis direction is the up-down direction (vertical direction) of the component mounting machine 10.
  • the production system 1 also includes an automatic conveyor 20 that conveys and detaches (replaces) the feeders 40 for each of the component mounting machines 10.
  • an example of the automatic conveyor 20 is an AGV (Automatic Guided Vehicle), which is an unmanned transport vehicle (unmanned transport robot) that automatically moves back and forth between an automatic warehouse (not shown) and the component mounting machine 10 to convey a specified feeder 40.
  • the automatic conveyor 20 includes a detachment mechanism (e.g., a belt conveyor or an articulated robot) for attaching and detaching the feeder 40 to and from the component supply device 12 of the component mounting machine 10, which will be described later.
  • the production system 1 is equipped with a loader device 30 that replenishes parts P and changes the setup for the next production run in accordance with the production schedule.
  • the loader device 30 is disposed in front of the component mounting machine 10 (more specifically, the component supply device 12 described below) in the Y-axis direction and is movable in the X-axis direction. Note that in this embodiment, the loader device 30 is also movable in the X-axis direction across adjacent component mounting machines 10 (component supply devices 12).
  • the loader device 30 also moves the feeder 40 from the upper level to the lower level or from the lower level to the upper level in the slot 12S of the component supply device 12 described later. Furthermore, the loader device 30 moves and replaces the feeder 40 between two component mounting machines 10, i.e., between the slots 12S of the two component supply devices 12. Specifically, the loader device 30 can temporarily store (recover) the feeder 40 set in the upper level of the slot 12S, move it in the X-axis direction, and then discharge the stored (recovered) feeder 40 to the lower level and set it. The loader device 30 can temporarily store (recover) the feeder 40 set in the lower level of the slot 12S, move it in the X-axis direction, and then discharge the stored (recovered) feeder 40 to the upper level and set it.
  • the loader device 30 temporarily stores (retrieves) the feeder 40 set in the slot 12S of the component supply device 12 of one component mounting machine 10, moves it in the X-axis direction, and then ejects and sets the stored (retrieved) feeder 40 into the slot 12S of the component supply device 12 of the other component mounting machine 10, i.e., it is possible to interchange multiple feeders 40 between component mounting machines 10. This allows the loader device 30 to automatically supply components P and perform setup changes (including the replacement of feeders 40).
  • the production system 1 is provided with a management device H for controlling the entire production.
  • the management device H include a host computer or a buffer connected to each of the above-mentioned devices so that they can communicate with each other.
  • the management device H supplies various information, including production information J related to production, to each of the above-mentioned devices 10, 20, 30, 40, and 100 as necessary, as described below.
  • the component mounting machine 10 mainly comprises a board transport device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
  • the board transport device 11 is composed of a belt conveyor or the like, and transports the board K sequentially in the X-axis direction.
  • the board transport device 11 positions the board K at a predetermined position within the component mounting machine 10. Then, when the mounting operation on the positioned board K is completed, the board transport device 11 transports the board K outside the component mounting machine 10 (for example, to an adjacent component mounting machine 10).
  • the component supply device 12 supplies components P (e.g., electronic components) to be mounted on the board K.
  • the component supply device 12 has a number of slots 12S arranged in the X-axis direction, and a feeder 40 is removably set in each of the slots 12S.
  • the slots 12S are formed by an upper section and a lower section along the Z-axis direction (see FIG. 2).
  • the component supply device 12 feeds and moves a carrier tape 50 that supplies components P (described later) by the feeder 40, and supplies components P to a component supply position Ps (see FIG. 4) provided at the tip side (upper side in FIG. 3) of the feeder 40.
  • the component transfer device 13 holds the component P supplied to the component supply position Ps and mounts the held component P on the positioned board K.
  • the component transfer device 13 mainly comprises a head drive device 13A, a moving table 13B, and a mounting head 13C.
  • the head drive device 13A moves the moving table 13B in the X-axis and Y-axis directions using a linear motion mechanism.
  • the mounting head 13C is a holding device that holds the component P, and is detachably mounted on the moving stage 13B.
  • a plurality of suction nozzles 13E capable of holding the component P are detachably mounted on a nozzle holder 13D provided on the mounting head 13C.
  • the suction nozzles 13E are supported on the mounting head 13C so that they can rotate about an axis parallel to the Z-axis direction (the up and down direction of the component mounting machine 10) and can be raised and lowered.
  • the suction nozzles 13E hold the component P supplied to the component supply position Ps by suction, and mount the held component P on the positioned board K.
  • the component camera 14 and the board camera 15 are digital imaging devices having imaging elements such as CCD or CMOS.
  • the component camera 14 is fixed to the base of the component mounting machine 10 with its optical axis facing the Z-axis direction, and images the component P held by the suction nozzle 13E from below.
  • the board camera 15 is fixed to the moving stage 13B with its optical axis facing the Z-axis direction, and images the board K from above.
  • the control device 16 is a computer device whose main components are a CPU, ROM, RAM, and various interfaces, and it controls the overall operation of the component mounting machine 10. Specifically, the control device 16 operates the component mounting machine 10 by executing a control program (not shown). As a result, the component mounting machine 10 performs the mounting work of the component P, for example, according to a sequence stored in advance.
  • control device 16 causes the board camera 15 to capture an image of the board K that has been positioned by the board transport device 11. The control device 16 then processes the image captured by the board camera 15 to recognize the positioning state of the board K. The control device 16 also causes the suction nozzle 13E to pick up and hold the component P supplied by the component supply device 12, and causes the component camera 14 to capture an image of the held component P. The control device 16 then processes the image captured by the component camera 14 to recognize the posture of the component P.
  • the control device 16 executes a control program and moves the suction nozzle 13E (mounting head 13C) above a designated mounting position that is preset as the position at which the component P is to be mounted on the board K.
  • the control device 16 also corrects the designated mounting position and designated mounting angle based on the positioning state of the board K and the attitude of the component P, and sets the mounting position and mounting angle at which the component P is actually mounted.
  • the control device 16 corrects the target position (X-axis coordinates and Y-axis coordinates) and rotation angle of the suction nozzle 13E according to the mounting position and mounting angle. The control device 16 then lowers the suction nozzle 13E at the corrected rotation angle in the corrected target position, and mounts the component P on the board K. The control device 16 repeats the pick-and-place cycle as described above to perform the mounting process of mounting multiple components P on the board K.
  • Feeder 40 4 the feeder 40 includes a feeder body 41, a drive sprocket 42, a tape pressing unit 43, and a peeling unit 44.
  • the feeder 40 holds a reel R on which a carrier tape 50 containing components P for each component type is wound.
  • the feeder 40 is capable of communicating with the management device H, for example, when the feeder 40 is set in the slot 12S of the component supply device 12 of the component mounting machine 10 or when the feeder 40 is being transported by the automatic transporter 20.
  • the carrier tape 50 wound around the reel R will be described.
  • the carrier tape 50 includes a base tape 51 and a cover tape 52.
  • the base tape 51 is made of a flexible material such as paper or resin.
  • a plurality of cavities 511 capable of accommodating components P are provided at equal intervals along the longitudinal direction of the base tape 51 (the left-right direction in FIG. 5).
  • a plurality of feed holes 512 are provided at equal intervals along the longitudinal direction of the base tape 51.
  • the plurality of feed holes 512 mesh with the drive sprocket 42.
  • the cover tape 52 is formed using a transparent polymer film or the like. As shown by the dashed line in FIG. 5, the cover tape 52 covers the upper surface of the base tape 51 and prevents the component P housed in the cavity 511 from falling out.
  • the base tape 51 and the cover tape 52 are joined to each other at joint areas 501 and 502 provided on both sides (one side and the other side) of the width of the carrier tape 50 that sandwich the cavity 511.
  • the joint areas 501 and 502 are provided on one side of the width of the carrier tape 50 relative to the feed hole 512.
  • the feeder body 41 is a thin box-shaped member formed from a transparent or opaque resin plate or metal plate.
  • the side of the feeder body 41 is openable and closable, and inside the feeder body 41, as shown in FIG. 4, a drive sprocket 42, a tape pressing section 43, and a peeling section 44 are arranged.
  • the drive sprocket 42 is a sprocket that can mesh with the feed hole 512 provided in the base tape 51 of the carrier tape 50, and is rotatably provided on the feeder body 41.
  • a motor e.g., a stepping motor, etc.
  • the drive sprocket 42 is driven by the motor and transports the component P to the component supply position Ps by pitch-feeding the carrier tape 50.
  • the component supply position Ps is located above the position where the drive sprocket 42 is positioned when viewed from the direction of the rotation axis of the drive sprocket 42 (X-axis direction). This allows the feeder 40 to position the meshing position between the carrier tape 50 and the drive sprocket 42 close to the component supply position Ps, so the feeder 40 can improve the positioning accuracy of the component P transported to the component supply position Ps.
  • the tape holding unit 43 guides the carrier tape 50 pulled out from the reel R so that the component P is transported to the component supply position Ps.
  • the peeling unit 44 peels the cover tape 52 from the base tape 51 before the component P reaches the component supply position Ps, making the component P accommodated in the cavity 511 available for suction by the suction nozzle 13E (see Figure 3).
  • each component mounting machine 10 constituting the production system 1 mounts onto a board K a plurality of different types of components P supplied from each of a plurality of feeders 40 set in a plurality of slots 12S of the component supply device 12 by the automatic conveyor 20 or the loader device 30. That is, each component mounting machine 10 constituting the production system 1 performs a mounting process on the board K by picking and placing the different types of components P in order, and supplies the board K after the mounting process to, for example, an adjacent component mounting machine 10.
  • the time required for pick-and-place may differ depending on the type of component P to be mounted on the board K. Therefore, in the production system 1, there may be differences in the cycle time, which represents the time required for each component mounting machine 10 to complete mounting of the component P on the board K. If there is a large difference in cycle time in the production system 1, the component mounting machine 10 requiring a long cycle time may become a so-called bottleneck, and may reduce productivity when producing the board K.
  • optimization of the arrangement of components P (component types) mounted on board K by each of the multiple component mounting machines 10 in the production system 1 is considered, i.e., switching between component types of components P in the production system 1 is considered, in order to optimize the mounting order of components P mounted sequentially on board K by the multiple component mounting machines 10 in the production system 1.
  • a component type pair representing the component types among all the component types used in the production system 1, or a feeder pair representing the feeders 40 that supply the components P of the component types to be replaced to the component mounting machine 10 is provisionally determined. Then, for the provisionally determined component type pair (or feeder pair), the mounting process of the components P when the component types (feeders 40) are replaced is simulated, and the cycle time is measured.
  • the production system 1 is therefore equipped with a production support device 100 that infers component type pairs that represent the above-mentioned component types.
  • the production support device 100 is provided so as to be able to communicate with each of the component mounting machines 10 (feeders 40), the automatic conveyor 20, the loader device 30, and the management device H that constitute the production system 1.
  • the production support device 100 can also be, for example, a device incorporated in the management device H.
  • the production support device 100 provides support for maximizing evaluation for a preset evaluation target. An example of the evaluation target is the cycle time.
  • the production support device 100 infers and outputs component type pairs that represent component types to be replaced among the multiple component types of the components P mounted by the component mounting machine 10 according to the evaluation results of the evaluation target.
  • the production support device 100 stores a trained model generated by reinforcement learning.
  • the production support device 100 uses the trained model and production information J supplied from the management device H to infer and determine a pair of component types to be replaced among a plurality of component types of the components P used in production, specifically, a pair of feeders to be replaced among a plurality of feeders 40 set in the component mounting machine 10.
  • This allows the production system 1 to optimize the arrangement (replacement) of component types, that is, the arrangement (replacement) of the feeders 40.
  • the cycle time of each component mounting machine 10 is equalized, and the impact of bottlenecks on the overall production in the production system 1 can be reduced. It should be noted that, for example, when the leveling degree is equal to or above a certain standard, it can be considered that there is no bottleneck.
  • the production support device 100 is a device whose main components are a computer device having a CPU, ROM, RAM, and various interfaces, and includes a learning data acquisition unit 110, a trained model storage unit 130, a production information acquisition unit 140, and an inference unit 150, as shown in FIG. 6.
  • the production support device 100 also includes a trained model generation unit 120, as shown in FIG. 6.
  • the production support device 100 includes an optimizer 160 that can perform an optimization simulation using the inference result by the inference unit 150, as shown in FIG. 6.
  • the learning data acquisition unit 110 acquires, as optimization information D, which is learning data, arrangement data Da relating to the arrangement of the multiple component mounting machines 10 constituting the production system 1 and component type data Dk representing the component types of the multiple components P that each of the component mounting machines 10 mounts on the board K.
  • the learning data acquisition unit 110 also acquires, as optimization information D, cycle time data Ds representing the cycle time required for mounting processing by each component mounting machine 10 when using the arrangement of the component mounting machines 10 represented by the arrangement data Da and the components P of the component type represented by the component type data Dk (feeders 40 that supply the components P of the corresponding component type), and replacement restriction information Dj representing the mounting order of the components P that must be strictly observed.
  • each of the placement data Da, part type data Dk, cycle time data Ds, and replacement restriction information Dj included in the optimization information D is supplied from the management device H or an external device not shown. In this embodiment, the case where the data is supplied from the management device H is illustrated.
  • the production information J output by the management device H includes the number and arrangement of the component mounting machines 10 constituting the production system 1, which corresponds to the arrangement data Da, the number of feeders 40 set in each component mounting machine 10, the type and number of components P mounted on each component mounting machine 10, which corresponds to the component type data Dk, and the cycle time as an actual result or a simulation result, which corresponds to the cycle time data Ds.
  • the production information J includes control data including the designated mounting position and designated mounting angle of the components P on the board K, component information (shape, dimensions, maximum moving speed, imaging conditions, etc.), the leveling degree of the cycle time (presence or absence of a bottleneck), and equipment information that affects the efficiency of the mounting process (mounting head 13C, suction nozzle 13E, etc.). Therefore, instead of or in addition to acquiring each of the above-mentioned arrangement data Da, component type data Dk, cycle time data Ds, and replacement restriction information Dj as optimization information D, the learning data acquisition unit 110 can also acquire the production information J output by the management device H as learning data.
  • the trained model generation unit 120 generates a trained model M by repeatedly performing machine learning (reinforcement learning) on a replacement pattern in which a reward E, described below, is obtained by replacing component type pairs Cp that represent component types distinguished by the component type data Dk acquired by the training data acquisition unit 110.
  • a reward E described below
  • the component type pair Cp corresponds to the feeder pair Cf representing the feeders 40 loaded with reels R on which carrier tapes 50 containing the components P of the component type that form the component type pair Cp are wound. Therefore, instead of or in addition to machine learning (reinforcement learning) on the replacement pattern of the component type pair Cp, the trained model generation unit 120 can also generate a trained model M by repeatedly performing machine learning (reinforcement learning) on a replacement pattern in which the feeder pairs Cf are replaced and a reward E, which will be described later, is obtained by multiple component mounting machines 10 mounting the components P, instead of or in addition to machine learning (reinforcement learning) on the replacement pattern of the component type pair Cp. The generation of the trained model M by the trained model generation unit 120 will be described in detail later.
  • the trained model storage unit 130 stores the trained model M generated by the trained model generation unit 120. Therefore, the trained model storage unit 130 can store the trained model M that is updated by the trained model generation unit 120 repeatedly performing machine learning (reinforcement learning).
  • the production information acquisition unit 140 acquires production information J that includes at least new placement data Dan and new component type data Dkn, and instructs the component mounting machine 10 to mount new components P to produce a board K. Specifically, the production information acquisition unit 140 acquires production information J from the management device H when the board K is produced, in other words, when optimization of a new component type pair Cp (new feeder pair Cf) is required.
  • the inference unit 150 uses the new arrangement data Dan and new part type data Dkn included in the production information J acquired by the production information acquisition unit 140, and the learned model M stored in the learned model storage unit 130 to infer and output a part type pair Cp (feeder pair Cf) to be replaced among the new part types distinguished by the part type data Dkn.
  • the inference unit 150 can output the inferred part type pair Cp (feeder pair Cf) to the management device H (more specifically, for example, a display device (not shown) provided in the management device H) to inform a worker or the like.
  • the inference of the part type pair Cp (feeder pair Cf) by the inference unit 150 will be described in detail later.
  • the optimizer 160 performs a simulation of the mounting process of the component mounting machine 10 and the cycle time associated with the mounting process when the component types (feeders 40) are swapped based on the component type pair Cp (feeder pair Cf) inferred by the inference unit 150. Then, as described below, the optimizer 160 determines the reward E in the machine learning (reinforcement learning) when the trained model generation unit 120 generates the trained model M based on the simulation results, and updates the optimization information D (more specifically, for example, cycle time data Ds, etc.).
  • trained model generation unit 120 mainly includes state information acquisition unit 121, evaluation result acquisition unit 122, reward calculation unit 123, value function storage unit 124, action decision unit 125, action information output unit 126, and value function update unit 127.
  • the status information acquisition unit 121 acquires at least one of the optimization information D and production information J, which are learning data, as status information. That is, the status information acquisition unit 121 acquires at least the placement data Da and part type data Dk as learning data, and also acquires the cycle time data Ds and replacement restriction information Dj as status information.
  • the status information acquisition unit 121 mainly acquires status information from the optimizer 160, but the learning data acquisition unit 110 can also acquire status information (learning data) from the management device H as necessary.
  • the evaluation result acquisition unit 122 acquires, for a preset evaluation target, evaluation results obtained by the mounting process after replacing component type pairs Cp among the component types represented by the component type data Dk, or replacing feeder pairs Cf among the multiple feeders 40.
  • the evaluation result acquisition unit 122 acquires, as evaluation results in the mounting process after replacing component type pairs Cp or feeder pairs Cf, an increase or decrease in cycle time, whether the components P are mounted on the board K in ascending order of size, or whether the components P are mounted on the board K in ascending order of height from the surface of the board K in the Z-axis direction, and the like.
  • the evaluation result acquisition unit 122 can acquire evaluation results for the evaluation target from the optimizer 160.
  • the reward calculation unit 123 calculates reward E for the replacement of the part type pair Cp (or the replacement of the feeder pair Cf) based on the optimization information D (or production information J) based on the evaluation results of the evaluation target obtained by replacing the part type pair Cp (or the replacement of the feeder pair Cf). If the evaluation results are good, the reward calculation unit 123 gives a positive reward E for the replacement of the part type pair Cp (or the replacement of the feeder pair Cf), but if the evaluation results are not good, it gives a negative reward (penalty) for the replacement of the part type pair Cp (or the replacement of the feeder pair Cf).
  • the reward calculation unit 123 gives a positive reward E if the cycle time is reduced when simulating the mounting process after switching the component type pair Cp (or switching the feeder pair Cf) with respect to the cycle time, which is one of the evaluation results (or when actually performing the mounting process with the component mounting machine 10).
  • the reward calculation unit 123 gives a negative reward E if the cycle time is increased.
  • the reward calculation unit 123 gives a positive reward E if the mounting process after switching the component type pair Cp (or switching the feeder pair Cf) with respect to the order of placement of components P on the board K, which is one of the evaluation results (or when actually performing the mounting process with the component mounting machine 10), if the components P are placed (mounted) in order from smallest to largest, or if the components P are placed (mounted) in order from lowest to largest.
  • the reward calculation unit 123 gives a negative reward E if the components P are placed (mounted) in order from largest to largest, or if the components P are placed (mounted) in order from highest to lowest.
  • the reward calculation unit 123 calculates the reward E for each evaluation target. Furthermore, the reward calculation unit 123 grants a reward E according to the difference between the evaluation result and the standard set for each evaluation target. That is, when the difference between the evaluation result and the standard is large in the positive direction, the reward calculation unit 123 grants a larger reward E than when the difference between the evaluation result and the standard is small in the positive direction. Conversely, when the difference between the evaluation result and the standard is large in the negative direction, a larger penalty is imposed than when the difference between the evaluation result and the standard is small in the negative direction.
  • the cycle time which is one of the evaluation results, will be taken as an example for explanation.
  • the cycle time represented by the cycle time data Ds included in the optimization information D before the replacement of the component type pair Cp (or the replacement of the feeder pair Cf) is performed (a simulation is performed) is set as the reference cycle time.
  • the reward calculation unit 123 gives a larger reward E than if the shortened time is small in the positive direction.
  • the reward calculation unit 123 gives a larger reward E as the shortened time of the cycle time becomes larger (as the cycle time is shortened). Conversely, if the shortened time is large in the negative direction, that is, if the cycle time is longer than the reference cycle time, the reward calculation unit 123 gives a negative reward E or does not give a reward E.
  • the value function memory unit 124 generates a value function in reinforcement learning based on the state information (learning data) acquired by the state information acquisition unit 121 and the reward E calculated by the reward calculation unit 123.
  • the value function is a function generated in order to obtain behavioral information corresponding to the state information so as to optimize the evaluation result of the evaluation target in the learning phase.
  • the value function memory unit 124 then stores the generated value function, i.e., the learned model M, in an updatable manner. Therefore, the value function memory unit 124 also performs the function of the learned model memory unit 130.
  • the value function (trained model M) in this embodiment is an optimal action value function generated by DQN (Deep Q-Network) as a reinforcement learning algorithm.
  • the optimal action value function is found as an approximate function using a neural network, and gives the best action to be taken when a Q value (the value of reward E that can be obtained instantly according to the state) can be estimated for each action in a certain state.
  • the optimal action value function is the trained model M
  • the Q value is estimated using a neural network in which the part type pair Cp (feeder pair Cf) becomes a node in the output layer, and as a result, the part type pair Cp (feeder pair Cf) to be replaced as the "best action” is given.
  • the value function is not limited to finding the optimal action value function using DQN.
  • a "policy" is determined based on the generated value function, and the "best action” is determined based on the "policy.”
  • the behavior decision unit 125 determines a part type pair Cp of part types that can be selected from among a plurality of part types, or a feeder pair Cf of feeders 40 that can be selected from a plurality of feeders 40, based on the state information and the trained model M (optimum action value function). In this case, the behavior decision unit 125 can select the part type pair Cp (or feeder pair Cf) based on the optimal action value function (trained model M), or, if necessary, search for a part type pair Cp (or feeder pair Cf) without based on the optimal action value function (trained model M).
  • the behavior information output unit 126 outputs the contents of the decision made by the behavior decision unit 125, i.e., the component type pair Cp (or feeder pair Cf) to be replaced, to the optimizer 160 as behavior information A.
  • the optimizer 160 acquires the behavior information A and performs a simulation of the mounting process based on the virtual mounting conditions in which the component type pair Cp (or feeder pair Cf) is replaced according to the behavior information A.
  • the optimizer 160 estimates the evaluation result for the evaluation mode as the simulation result in the case where the component type pair Cp (or feeder pair Cf) is replaced according to the behavior information A.
  • the state information acquisition unit 121 acquires the virtual mounting conditions as new optimization information D (or production information J), i.e., new state information
  • the evaluation result acquisition unit 122 acquires the estimated evaluation result of the evaluation target by the optimizer 160.
  • the reward calculation unit 123 calculates the reward E for the new optimization information D (or production information J) based on the estimated evaluation result by the optimizer 160.
  • the reward calculation unit 123 calculates the evaluation of the action information A that has transitioned the state from the state information before the replacement of the component type pair Cp (or feeder pair Cf) to the new state information after the replacement of the component type pair Cp (or feeder pair Cf) as the reward E for the new state information, i.e., the optimization information D (or production information J).
  • the value function update unit 127 updates the optimal action value function stored in the value function update unit 127 based on new state information, i.e., optimization information D (or production information J), updated based on action information A, and the reward E for the new state information (optimization information D reflecting action information A).
  • new state information i.e., optimization information D (or production information J)
  • the reward E for the new state information i.e., optimization information D reflecting action information A.
  • the value function update unit 127 only needs to update the optimal action value function based on a reinforcement learning algorithm (DQN), and it is also possible not to update the optimal action value function if, for example, a negative reward E is given.
  • DQN reinforcement learning algorithm
  • the trained model generating unit 120 executes a first learning step S1 as the first step in the learning process, which is a reinforcement learning step using the estimated evaluation results by the optimizer 160.
  • the trained model generating unit 120 executes a second learning step S2, which is a reinforcement learning step using the actual evaluation results obtained by replacing the actual component type pair Cp (or feeder pair Cf) in the component mounting machine 10.
  • a provisional optimal action value function created by, for example, an operator is stored in the value function storage unit 124.
  • the state information i.e., optimization information D (or production information J)
  • optimization information D or production information J
  • the optimal action value function (value function) stored in the value function storage unit 124 in the early stages of the learning phase has much room for improvement, and the action information A obtained from the initial optimal action value function (value function) is also immature. Therefore, for example, if multiple component mounting machines 10 constituting the production system 1 perform mounting processing by switching component type pairs Cp (or feeder pairs Cf) based on immature action information A, there is a high possibility that the evaluation results of the evaluation target will be poor. As a result, for example, there is a concern that a severe bottleneck will occur in the component mounting machines 10 constituting the production system 1, causing a deterioration in productivity.
  • the trained model generation unit 120 therefore performs reinforcement learning in the early stages of the learning process using estimated evaluation results obtained by a simulation executed by the optimizer 160.
  • the trained model generation unit 120 can perform reinforcement learning using only the simulation results without actually replacing the component type pair Cp (or feeder pair Cf) in the component mounting machine 10, thereby avoiding a deterioration in productivity.
  • evaluation results for the evaluation target can be obtained in a short time compared to when reinforcement learning is performed while actually replacing the component type pair Cp (or feeder pair Cf) in the component mounting machine 10. Therefore, in the first learning process, the optimal action value function (value function) can be updated in a short time.
  • the trained model generation unit 120 performs reinforcement learning using the actual evaluation results obtained by the mounting process after the component type pair Cp (or feeder pair Cf) is actually replaced in the component mounting machine 10. This enables the trained model generation unit 120 to further improve the action information A while suppressing the occurrence of a deterioration in productivity.
  • inference unit 150 mainly includes state information acquisition unit 151, value function storage unit 152, action decision unit 153, and action information output unit 154.
  • state information acquisition unit 151, value function storage unit 152, action decision unit 153, and action information output unit 154 have the same configurations as state information acquisition unit 121, value function storage unit 124, action decision unit 125, and action information output unit 126 of trained model generation unit 120 described above, respectively.
  • step S10 the production information acquisition unit 140 of the production support device 100 acquires production information J that instructs actual production from, for example, the management device H.
  • step S11 the production support device 100 (inference unit 150) sets a component mounting machine pair Cm representing the component mounting machines 10 among the multiple component mounting machines 10 that constitute the production system 1 based on the production information J.
  • the multiple feeders 40 that can be set in each component mounting machine 10 are known, for example, from the optimization information D and production information J.
  • the component type of the component P to be mounted in each component mounting machine 10 is also known, for example, from the optimization information D and production information J.
  • the relationship between each component type of the component P and each component mounting machine 10 is also known.
  • the production support device 100 infers the part type pair Cp (or feeder pair Cf) using the optimal action value function (trained model M) as a "second step.” That is, the inference unit 150 acquires production information J including new placement data Dan and part type data Dkn of new part types as state information from the production information acquisition unit 140 by the state information acquisition unit 151. Then, the action decision unit 153 infers the part type pair Cp (or feeder pair Cf) to be replaced using the state information (production information J) acquired by the state information acquisition unit 151 and the optimal action value function (trained model M) stored in the value function storage unit 152 (trained model storage unit 130).
  • the production support device 100 switches the component type pair Cp (or the feeder pair Cf) in the component mounting machine 10. That is, the behavior information output unit 156 of the production support device 100 outputs the component type pair Cp (or the feeder pair Cf) inferred in step S11 to the management device H as behavior information A.
  • the management device H then outputs a command based on the behavior information A, specifically, a command to switch the feeders 40 that form the feeder pair Cf corresponding to the component type pair Cp, to, for example, multiple component mounting machines 10 and loader devices 30.
  • each component mounting machine 10 and loader device 30 switches the two feeders 40 identified by the component type pair Cp, specifically the feeder pair Cf, identified in the action information A.
  • the switching of the feeders 40 in the component mounting machine 10 includes, for example, changing the identification numbers (numbers corresponding to the order in which the components P are to be mounted) assigned to the slots 12S of the component supply device 12 in accordance with the switching of the feeders 40.
  • the production support device 100 acquires the cycle time required for the mounting process in the component mounting machine 10 after replacing the component type, i.e., the feeder 40. That is, the production support device 100 status information acquisition unit 151 acquires from the management device H the cycle time required for the mounting process in the component mounting machine 10 in which the feeder 40 has been replaced after the feeder 40 has been replaced.
  • step S15 the production support device 100 judges whether the cycle time acquired in step S14 has improved compared to before the feeder 40 was replaced. That is, if the cycle time after the replacement of the component type pair Cp (feeder pair Cf) acquired in step S14 is shorter than the reference cycle time before the replacement of the component type pair Cp (feeder pair Cf) included in the production information J (status information) acquired by the production information acquisition unit 140 in step S11, the cycle time has improved and the production support device 100 judges "Yes". Then, the production support device 100 returns to step S12 again and executes each step process from step S12 onwards.
  • step S12 determines "No" since the cycle time has not been improved. Then, in step S16, the production support device 100 returns the component type replaced in step S13, i.e., the feeder 40, to the state before the replacement, and proceeds to step S17.
  • the behavioral information output unit 154 of the production support device 100 outputs, for example, the feeder pair Cf (component type pair Cp) that returns the corresponding feeder 40 to its state before the swap to the management device H as behavioral information A.
  • the management device H outputs a command based on the behavioral information A, specifically, a command to return the feeders 40 that form the feeder pair Cf corresponding to the component type pair Cp to their state before the swap to, for example, the multiple component mounting machines 10 and the loader device 30.
  • each component mounting machine 10 and loader device 30 returns the component type pair Cp identified in the action information A, specifically the two feeders 40 identified by the feeder pair Cf, to the state before the replacement.
  • the replacement of the feeders 40 in the component mounting machine 10 includes, for example, changing the identification numbers (numbers corresponding to the order in which the components P are mounted) assigned to the slots 12S of the component supply device 12 in response to the replacement of the feeders 40.
  • step S17 the production support device 100 judges whether the above-mentioned component type (feeder 40) replacement, in other words, optimization consideration, has been completed for all target component mounting machine pairs Cm that can be combined with the multiple component mounting machines 10 that make up the production system 1 based on the production information J. That is, if the optimization consideration for all target component mounting machine pairs Cm has not been completed, the production support device 100 judges "No" and returns to step S11. Then, when the production support device 100 sets a new component mounting machine pair Cm in step S11, it executes each step process from step S12 onwards as described above. On the other hand, if the optimization consideration for all target component mounting machine pairs Cm has been completed, the production support device 100 judges "Yes" and proceeds to step S18, and ends the execution of the optimization program in step S16.
  • the optimization consideration for all target component mounting machine pairs Cm has been completed, the production support device 100 judges "Yes" and proceeds to step S18, and ends the execution of the optimization program in step S16.
  • all possible combinations of component mounting machine pairs Cm may include, for example, setting combinations of all component mounting machines 10 constituting the production system 1 as component mounting machine pairs Cm. Also, for example, if there are combinations of component mounting machines 10 that are expected to have effects such as shortening the cycle time, it is possible to set component mounting machine pairs Cm by selecting component mounting machines 10 that are likely to have such effects from among all component mounting machines 10.
  • the production support device 100 includes a learning data acquisition unit 110 that acquires, as learning data (optimization information D or production information J), placement data Da regarding the placement of multiple component mounting machines 10 and component type data Dk representing the component types of multiple components P that each of the component mounting machines 10 mounts on a board K; a trained model storage unit 130 that stores a trained model M generated by performing machine learning on a replacement pattern in which a reward E is obtained by replacing component type pairs Cp representing component types distinguished by the component type data Dk and having the multiple component mounting machines 10 mount the components P; a production information acquisition unit 140 that acquires production information J that includes at least new placement data Dan and new component type data Dkn and instructs the component mounting machine 10 to mount a new component P to produce a board K; and an inference unit that uses the new placement data Dan and new component type data Dkn included in the production information J and the trained model M to infer and output a component type pair Cp to be replaced among the new component types distinguished by the component type data Dk
  • the production support device 100 also includes a trained model generation unit 120 that generates a trained model M by repeatedly performing machine learning on a replacement pattern that obtains a reward E when supplying a component P to the component mounting machine 10 by replacing a component type pair Cp that is distinguished by the component type data Dk.
  • the trained model M that has learned a replacement pattern that will earn reward E can be used to infer part type pairs Cp (feeder pairs Cf) that are to be replaced, i.e., that are effective for optimization.
  • This eliminates the need to sequentially consider all combinations of part types (feeders 40) for multiple part types to determine part type pairs Cp (feeder pairs Cf) that are effective for optimization.
  • the trained model M it is possible to selectively determine part type pairs Cp (feeder pairs Cf) that are effective for optimization for new part types as well. Therefore, by using the production support device 100, the placement of part types (feeders 40) can be optimized efficiently.
  • a component mounting machine pair Cm is set by an operator or the like as the first process, and the production support device 100 is configured to replace, that is, to optimize, the feeders 40 (component types) set in the component mounting machine pair Cm selectively set as the second process. This makes it possible to reduce the number of simulations executed by the optimizer 160 in the above-described embodiment, and efficiently optimize the placement of component types.
  • the production support device 100 can infer the component mounting machine pair Cm in the same manner as inferring the component type pair Cp or feeder pair Cf as shown in Figures 7 and 9. That is, in this case, as a first step, for example, in step S11 of the above-mentioned optimization program, the component mounting machine pair Cm is inferred for the component mounting machine 10 that is likely to mount the feeder 40 (component type) to be replaced based on the trained model M and the optimization information D (or production information J).
  • the production support device 100 can infer the feeder pair Cf, i.e., the component type pair Cp, that is actually set in the component mounting machine pair Cm in the second step, thereby efficiently optimizing the arrangement of component types.
  • the reward calculation unit 123 calculates the reward E according to the evaluation result regardless of the evaluation target.
  • the trained model generation unit 120 may also include a weighting unit 128. The weighting unit 128 will be described below.
  • the weighting unit 128 weights the reward E that the reward calculation unit 123 gives to each of the multiple evaluation targets.
  • the weighting unit 128 gives a larger reward E or penalty to some of the evaluation targets than to the other evaluation targets. Therefore, the second modified example can also achieve the same effect as the above-mentioned embodiment.
  • the weighting of the reward E for each evaluation target can be set, for example, by the worker.
  • the production support device 100 infers the component type pair Cp (feeder pair Cf) based on the trained model M and the optimization information D (production information J).
  • the worker may determine the component type pair Cp and the feeder pair Cf for the limited feeders 40, i.e., the component types, set in the component mounting machines 10 that form the component mounting machine pair Cm.
  • the production support device 100 is provided with the trained model generation unit 120.
  • the trained model generation unit 120 can be provided in a device other than the production support device 100 provided in the production system 1 (for example, the management device H of the production system 1, or a computer device that can communicate with the management device H and is owned by the manufacturer that manufactures the production system 1 and the component mounting machine 10, etc.).
  • the trained model generation unit 120 provided in a device other than the production support device 100 can generate the trained model M using, for example, the optimization information D owned by the manufacturer.
  • the generated trained model M is then supplied, for example, to the management device H of the production system 1, and supplied from the management device H to the trained model storage unit 130 of the production support device 100 and stored therein. In this case, the same effect as in the above-mentioned embodiment can be obtained.
  • 1...production system 10...component mounting machine, 11...substrate conveying device, 12...component supplying device, 12S...slot, 13...component transfer device, 13A...head driving device, 13B...moving table, 13C...mounting head, 13D...nozzle holder, 13E...suction nozzle, 14...component camera, 15...substrate camera, 16...control device, 20...automatic conveying machine, 30...loader device, 40...feeder, 41...feeder main body, 42...driving sprocket, 43...tape holding section, 44...peeling section, 50...carrier tape, 501...joining section, 502...joining section, 51...base tape, 511...cavity, 512...feed hole, 52...cover tape, 100...production support device, 110...learning data acquisition section, 120...learned model generation section, 121...status information acquisition section, 122...evaluation result acquisition section , 123...reward calculation unit, 124...value function memory unit, 125...

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

生産支援装置は、複数の部品装着機の配置に関する配置データ及び部品装着機の各々が基板に装着する複数の部品の部品種を表す部品種データを学習用データとして取得する学習用データ取得部と、部品種データによって区別される部品種同士を表す部品種ペアの入れ替えを行って複数の部品装着機が部品を装着することにより報酬が得られる入れ替えパターンに関する機械学習を行うことによって生成された学習済みモデルを記憶する学習済みモデル記憶部と、新たな配置データ及び新たな部品種データを少なくとも含み、部品装着機を用いて新たな部品を装着して基板を生産することを指示する生産情報を取得する生産情報取得部と、生産情報に含まれる新たな配置データ及び新たな部品種データと学習済みモデルとを用いて、部品種データによって区別される新たな部品種のうちの入れ替え対象となる部品種ペアを推論して出力する推論部と、を備える。

Description

生産支援装置
 本明細書は、生産支援装置に関するものである。
 従来から、例えば、特許文献1に開示された電子部品実装機のパーツフィーダ振り分け方法(以下、「従来の方法」と称呼する。)が知られている。従来の方法では、各電子部品実装機に振り分けるパーツフィーダの全てが任意の順番で並べられたパーツフィーダ列を決定し、パーツフィーダごとに各電子部品実装機の識別子を乱数によって対応させて識別子の配列からなる個体を所定の数だけ生成するようになっている。そして、従来の方法では、生成された各個体に対して各電子部品実装機での実装時間を評価値として遺伝的アルゴリズムを適用し、評価値が最小となるようにパーツフィーダの各電子部品実装機への振り分けを最適化するようになっている。
特開2000-261190号公報
 ところで、上述した従来の方法では、パーツフィーダ列を形成する全てのパーツフィーダについて、パーツフィーダ同士の全ての組み合わせを検討することにより次の世代の複数の個体からなる集団を生成し、そして、集団の生成を繰り返すことによって、最終的に、評価値が最小となるパーツフィーダを振り分ける。この場合、パーツフィーダの数が増える程、最終的にパーツフィーダの振り分けを最適化するまでに時間を要することになる。
 又、従来の方法では、最適化の対象となるパーツフィーダを予め選択しないため、例えば、一部のパーツフィーダが異なるだけであっても、パーツフィーダ列を形成する全てのパーツフィーダについて、パーツフィーダ同士の全ての組み合わせを検討することによって次の世代を生成する必要がある。このため、一部が異なるだけの場合であっても、最適化に時間を要することになる。従って、最適化の対象が増えた場合であっても、効率良く最適化が行えることが望まれている。
 本明細書は、効率良く部品種の配置の最適化を行うことができる生産支援装置を提供することを目的とする。
 本明細書は、複数の部品装着機の配置に関する配置データ及び部品装着機の各々が基板に装着する複数の部品の部品種を表す部品種データを学習用データとして取得する学習用データ取得部と、部品種データによって区別される部品種同士を表す部品種ペアの入れ替えを行って複数の部品装着機が部品を装着することにより報酬が得られる入れ替えパターンに関する機械学習を行うことによって生成された学習済みモデルを記憶する学習済みモデル記憶部と、新たな配置データ及び新たな部品種データを少なくとも含み、部品装着機を用いて新たな部品を装着して基板を生産することを指示する生産情報を取得する生産情報取得部と、生産情報に含まれる新たな配置データ及び新たな部品種データと学習済みモデルとを用いて、部品種データによって区別される新たな部品種のうちの入れ替え対象となる部品種ペアを推論して出力する推論部と、を備えた、生産支援装置を開示する。
 本明細書では、出願当初の請求項5において、「請求項1又は2記載の生産支援装置」を「請求項1-4の何れか一項に記載の生産支援装置」に変更した技術的思想も開示されている。又、本明細書では、出願当初の請求項7において、「請求項1又は2に記載の生産支援装置」を「請求項1-6の何れか一項に記載の生産支援装置」に変更した技術的思想も開示されている。更に、本明細書では、出願当初の請求項9において、「請求項1又は2に記載の生産支援装置」を「請求項1-8の何れか一項に記載の生産支援装置」に変更した技術的思想も開示されている。
 生産支援装置によれば、部品種の配置の最適化について、報酬が得られる入れ替えパターンを学習した学習済みモデルを用いることにより、入れ替えの対象となる即ち最適化に有効な部品種ペアを推論することができる。これにより、複数の部品種について、逐次、部品種同士の全ての組み合わせを検討して最適化に有効な部品種ペアを決定する必要がなく、又、学習済みモデルを用いることによって新たな部品種についても選択的に最適化に有効な部品種ペアを決定することができる。従って、生産支援装置を用いることにより、効率良く部品種の配置の最適化を行うことができる。
生産システムの全体構成を示す図である。 図1の生産システムを構成する複数の部品装着機を説明するための図である。 図2の部品装着機の全体構成を模式的に示す図である。 図1のフィーダの要部を模式的に示した側面図である。 キャリアテープを模式的に示した上面図である。 生産支援装置の構成を示す機能ブロック図である。 生産支援装置(学習済みモデル生成部)による学習フェーズの構成を示す機能ブロック図である。 生産支援装置(学習済みモデル生成部)により実行される学習工程を示すフローチャートである。 生産支援装置(推論部)による推論フェーズの構成を示す機能ブロック図である。 生産支援装置により実行される最適化プログラムを示すフローチャートである。
 以下、生産支援装置について、図面を参照しながら説明する。本実施形態においては、自動搬送機によってフィーダが部品装着機に搬送される生産システムに生産支援装置が設けられる場合を例示して説明する。
1.生産システム1の全体構成
 最初に、図1、図2及び図3を参照して、生産システム1の全体構成を説明する。生産システム1は、幅方向に複数(本実施形態においては、4つ)並べられた部品装着機10と、自動搬送機20と、ローダ装置30と、フィーダ40と、生産支援装置100とを備える。部品装着機10は、所定作業として部品P(例えば、電子部品)を基板Kに装着する装着作業を実施する対基板作業機である。
 そして、複数の部品装着機10によって形成される生産システム1においては、各々の部品装着機10の内部に基板Kが順番に搬送され、それぞれの部品装着機10において所定の部品を装着する装着処理が行われる。尚、以下の説明においては、X軸方向を部品装着機10の左右方向(幅方向)とし、Y軸方向を部品装着機10の前後方向(奥行方向)とし、Z軸方向を部品装着機10の上下方向(鉛直方向)とする。
 又、生産システム1は、部品装着機10の各々に対して、フィーダ40を搬送して脱着する(入れ替える)自動搬送機20を備えている。ここで、自動搬送機20としては、例えば、図示を省略する自動倉庫と部品装着機10との間を自動的に往復移動して、所定のフィーダ40を搬送する無人搬送車(無人搬送ロボット)であるAGV(Automatic Guided Vehicle)等を例示することができる。尚、図示を省略するが、自動搬送機20は、後述する部品装着機10の部品供給装置12に対して、フィーダ40を脱着するための脱着機構(例えば、ベルトコンベアや多関節ロボット等)を備えている。
 更に、生産システム1は、生産スケジュールに合わせて、部品Pの補給や、次生産への段取り替えを行うローダ装置30を備えている。ローダ装置30は、Y軸方向にて部品装着機10(より詳しくは、後述する部品供給装置12)の前方に配置されてX軸方向に移動可能とされる。尚、本実施形態において、ローダ装置30は、隣接する部品装着機10(部品供給装置12)に対しても横断的にX軸方向に移動可能とされている。
 又、ローダ装置30は、後述する部品供給装置12のスロット12Sにおいて、上段から下段へ、又は、下段から上段へフィーダ40を移動させる。更に、ローダ装置30は、2つの部品装着機10の間、即ち、2つの部品供給装置12の各々のスロット12Sの間で、フィーダ40移動させて入れ替える。具体的に、ローダ装置30は、スロット12Sの上段にセットされたフィーダ40を一旦収容(回収)し、X軸方向に移動した後、収容(回収)したフィーダ40を下段に排出してセットすることができる。又、ローダ装置30は、スロット12Sの下段にセットされたフィーダ40を一旦収容(回収)し、X軸方向に移動した後、収容(回収)したフィーダ40を上段に排出してセットすることができる。
 更に、ローダ装置30は、一方の部品装着機10の部品供給装置12のスロット12Sにセットされたフィーダ40を一旦収容(回収)し、X軸方向に移動した後、収容(回収)したフィーダ40を他方の部品装着機10の部品供給装置12のスロット12Sに排出してセットする、即ち、部品装着機10の間で複数のフィーダ40を入れ替えることができる。これにより、ローダ装置30は、部品Pの供給及び段取り替え(フィーダ40の入れ替えを含む)を自動的に行うことができる。
 ここで、生産システム1においては、図1に示すように、上述した各装置10,20,30,40の他に、生産の全体をコントロールするための管理装置Hが設けられる。管理装置Hとしては、例えば、上述した各装置と通信可能に接続されたホストコンピュータやバッファ等を例示することができる。そして、管理装置Hは、後述するように、生産に関する生産情報Jを含む各種情報を、必要に応じて上述した各装置10,20,30,40,100に供給する。
2.部品装着機10
 部品装着機10は、図3にて概略的に示すように、基板搬送装置11と、部品供給装置12と、部品移載装置13と、部品カメラ14と、基板カメラ15と、制御装置16とを主に備える。
 基板搬送装置11は、ベルトコンベア等により構成され、基板KをX軸方向へ順次搬送する。基板搬送装置11は、部品装着機10の機内における所定位置に基板Kを位置決めする。そして、基板搬送装置11は、位置決めされた基板Kに対する装着作業が終了すると、基板Kを部品装着機10の機外(例えば、隣接する部品装着機10)へ搬出する。
 部品供給装置12は、基板Kに装着する部品P(例えば、電子部品)を供給する。部品供給装置12は、X軸方向に配列された複数のスロット12Sを備え、スロット12Sの各々にはフィーダ40が着脱可能にセットされる。ここで、本実施形態のスロット12Sは、Z軸方向に沿った上段と下段とによって形成されている(図2を参照)。部品供給装置12は、フィーダ40によって後述する部品Pを供給するキャリアテープ50を送り移動させ、フィーダ40の先端側(図3において上側)に設けられた部品供給位置Ps(図4を参照)に部品Pを供給する。
 部品移載装置13は、部品供給位置Psに供給された部品Pを保持し、保持した部品Pを位置決めされた基板Kに装着する。部品移載装置13は、ヘッド駆動装置13Aと、移動台13Bと、装着ヘッド13Cとを主に備える。ヘッド駆動装置13Aは、直動機構により移動台13BをX軸方向及びY軸方向へ移動させる。
 装着ヘッド13Cは、部品Pを保持する保持装置であり、移動台13Bに対して着脱可能に設けられる。そして、装着ヘッド13Cに設けられたノズルホルダ13Dには、部品Pを保持可能な複数の吸着ノズル13Eが着脱可能に設けられる。吸着ノズル13Eは、装着ヘッド13Cに対して、Z軸方向(部品装着機10の上下方向)に平行な軸線の回りに回転可能に、且つ、昇降可能に支持される。吸着ノズル13Eは、部品供給位置Psに供給された部品Pを吸着により保持し、その保持した部品Pを位置決めされた基板Kに装着する。
 部品カメラ14及び基板カメラ15は、CCDやCMOS等の撮像素子を有するデジタル式の撮像装置である。部品カメラ14は、光軸をZ軸方向へ向けた状態で部品装着機10の基台に固定され、吸着ノズル13Eに保持された部品Pを下方から撮像する。基板カメラ15は、光軸をZ軸方向へ向けた状態で移動台13Bに固定され、基板Kを上方から撮像する。
 制御装置16は、CPU、ROM、RAM、各種インターフェースを主要構成部品とするコンピュータ装置であり、部品装着機10の作動を統括的に制御する。具体的に、制御装置16は、図示省略の制御プログラムを実行することにより、部品装着機10を作動させる。これにより、部品装着機10は、例えば、予め記憶されたシーケンスに従い、部品Pの装着作業を実施する。
 例えば、制御装置16は、基板搬送装置11によって位置決めされた基板Kを基板カメラ15に撮像させる。そして、制御装置16は、基板カメラ15によって撮像された画像を画像処理し、基板Kの位置決め状態を認識する。又、制御装置16は、部品供給装置12によって供給された部品Pを吸着ノズル13Eに採取させて保持させ、保持されている部品Pを部品カメラ14に撮像させる。そして、制御装置16は、部品カメラ14によって撮像された画像を画像処理し、部品Pの姿勢を認識する。
 制御装置16は、制御プログラムを実行し、基板Kに部品Pを装着する位置として予め設定されている指定装着位置の上方に向かって吸着ノズル13E(装着ヘッド13C)を移動させる。又、制御装置16は、基板Kの位置決め状態や部品Pの姿勢等に基づいて指定装着位置や指定装着角度を補正し、実際に部品Pを装着する装着位置及び装着角度を設定する。
 制御装置16は、装着位置及び装着角度に合わせて、吸着ノズル13Eの目標位置(X軸座標及びY軸座標)と回転角度とを補正する。そして、制御装置16は、補正された目標位置において補正された回転角度で吸着ノズル13Eを降下させ、基板Kに部品Pを装着する。制御装置16は、上述したようにピックアンドプレースサイクルを繰り返すことにより、基板Kに複数の部品Pを装着する装着処理を行う。
3.フィーダ40
 フィーダ40は、図4に示すように、フィーダ本体41と、駆動スプロケット42と、テープ押え部43と、剥離部44とを備える。フィーダ40は、部品種ごとに部品Pを収容したキャリアテープ50が巻回されたリールRを保持する。フィーダ40は、例えば、部品装着機10の部品供給装置12のスロット12Sにセットされた状態で、又は、自動搬送機20によって搬送されている状態で、管理装置Hと通信することが可能である。
 ここで、リールRに巻回されるキャリアテープ50について、説明しておく。キャリアテープ50は、図5に示すように、ベーステープ51と、カバーテープ52とを備える。ベーステープ51は、紙材や樹脂等の柔軟な材料を用いて形成される。ベーステープ51の幅方向の一方側(図5における下側)には、部品Pを収容可能な複数のキャビティ511がベーステープ51の長手方向(図5における左右方向)に沿って等間隔に設けられる。又、ベーステープ51の幅方向の他方側(図5において上側)には、複数の送り孔512がベーステープ51の長手方向に沿って等間隔に設けられる。複数の送り孔512は、駆動スプロケット42に歯合する。
 カバーテープ52は、透明な高分子フィルム等を用いて形成される。カバーテープ52は、図5にて破線により示すように、ベーステープ51の上面を覆い、キャビティ511に収容された部品Pの脱落を防止する。又、ベーステープ51とカバーテープ52とは、キャビティ511を挟んだキャリアテープ50の幅方向の両側(一方側及び他方側)に設けられた接合部位501及び接合部位502において互いに接合されている。ここで、接合部位501及び接合部位502は、送り孔512よりもキャリアテープ50の幅方向の一方側に設けられる。
 フィーダ40の説明に戻り、フィーダ本体41は、透明又は不透明の樹脂板又は金属板等によって形成された薄い箱状の部材である。フィーダ本体41の側面は、図示を省略するが開閉可能に設けられており、フィーダ本体41の内部には、図4に示すように、駆動スプロケット42、テープ押え部43及び剥離部44が配置される。
 駆動スプロケット42は、キャリアテープ50のベーステープ51に設けられた送り孔512に歯合可能なスプロケットであり、フィーダ本体41に回転可能に設けられる。駆動スプロケット42には、図示省略の複数のギヤを介してモータ(例えば、ステッピングモータ等)が接続されている。これにより、駆動スプロケット42は、モータによって駆動され、キャリアテープ50をピッチ送りすることにより、部品Pを部品供給位置Psに搬送する。
 ここで、部品供給位置Psは、駆動スプロケット42の回転軸線方向(X軸方向)から見た場合に、駆動スプロケット42が配置される位置の上方に設けられる。これにより、フィーダ40は、キャリアテープ50と駆動スプロケット42との歯合位置を部品供給位置Psに近い位置に配置することができるため、フィーダ40は、部品供給位置Psに搬送される部品Pの位置決め精度を高めることができる。
 テープ押え部43は、部品供給位置Psに部品Pが搬送されるように、リールRから引き出されたキャリアテープ50を案内する。剥離部44は、部品Pが部品供給位置Psに到達するまでの間に、カバーテープ52をベーステープ51から剥離し、キャビティ511に収容された部品Pを吸着ノズル13E(図3を参照)によって吸着可能な状態にする。
4.生産支援装置100の概要
 上述したように、生産システム1を構成する各々の部品装着機10は、自動搬送機20又はローダ装置30によって部品供給装置12の複数のスロット12Sにセットされた複数のフィーダ40の各々から供給される複数の異なる部品種の部品Pを基板Kに装着する。即ち、生産システム1を構成する各々の部品装着機10は、異なる部品種の部品Pを順番にピックアンドプレースすることにより基板Kに装着処理を施し、装着処理を施した基板Kを、例えば、隣接する部品装着機10に供給する。
 ところで、複数の部品装着機10を配置した生産システム1においては、基板Kに装着する部品Pの部品種に依存してピックアンドプレースに要する時間が異なる場合がある。従って、生産システム1においては、各々の部品装着機10が基板Kへの部品Pの装着が完了するまでに要する時間を表すサイクルタイムに差が生じる場合がある。生産システム1において、サイクルタイムに大きな差が生じる場合には、長いサイクルタイムを要する部品装着機10が、所謂、ボトルネックとなり、基板Kを生産する際の生産性を悪化させる虞がある。
 ここで、生産性を向上させる、換言すれば、ボトルネックを生じさせないようにサイクルタイムを平準化する場合、通常、生産システム1における複数の部品装着機10の各々が基板Kに装着する部品P(部品種)の配置の最適化、即ち、生産システム1における部品Pの部品種の入れ替えが検討される。つまり、生産システム1において複数の部品装着機10が順次基板Kに装着する部品Pの装着順序を最適化するために、部品種同士の入れ替え、即ち、部品種ごとに部品Pを供給するフィーダ40同士の入れ替えが検討される。
 しかしながら、部品種同士の入れ替え(フィーダ40同士の入れ替え)の検討においては、生産システム1において用いられる全ての部品種のうちの部品種同士を表す部品種ペア、又は、入れ替え対象となる部品種の部品Pを部品装着機10に供給するフィーダ40同士を表すフィーダペアを仮に決定する。そして、仮決定した部品種ペア(又はフィーダペア)について、部品種(フィーダ40)を入れ替えた場合の部品Pの装着処理をシミュレーションし、サイクルタイムを計測する。
 通常、配置の最適化の検討においては、このような部品種ペア(又はフィーダペア)の仮決定、仮決定した部品種ペア(フィーダペア)についての装着処理のシミュレーション、及び、シミュレーション結果であるサイクルタイムの評価を、例えば、生産システム1において用いられる全ての部品種(フィーダ40)を組み合わせて行う。このため、部品種、即ち、フィーダ40、或いは、部品装着機10の数が増える程、配置の最適化に関する検討の内容が複雑化すると共に、サイクルタイムの評価、つまり、ボトルネックの解消が可能な部品種の配置(フィーダ40の配置)の最適化を実現する最適解を得るまでに膨大な時間が必要になる。
 そこで、生産システム1は、上述した部品種同士を表す部品種ペアを推論する生産支援装置100を備えている。生産支援装置100は、生産システム1を構成する各部品装着機10(フィーダ40)、自動搬送機20、ローダ装置30、及び、管理装置Hと通信可能に設けられる。尚、生産支援装置100は、例えば、管理装置Hに組み込まれた装置とすることもできる。生産支援装置100は、予め設定された評価対象に関して、評価を最大化するための支援を行う。評価対象としては、例えば、サイクルタイムを例示することができる。生産支援装置100は、評価対象の評価結果に応じて、部品装着機10において装着される部品Pの複数の部品種のうちの入れ替え対象となる部品種同士を表す部品種ペアを推論して出力する。
 具体的に、生産支援装置100は、強化学習によって生成された学習済みモデルが記憶されている。そして、生産支援装置100は、学習済みモデルと管理装置Hから供給される生産情報Jとを用いて、生産に用いられる部品Pの複数の部品種のうちの入れ替え対象となる部品種ペア、具体的には、部品装着機10にセットされる複数のフィーダ40のうちの入れ替え対象となるフィーダペアを推論して決定する。これにより、生産システム1においては、部品種の配置(入れ替え)、即ち、フィーダ40の配置(入れ替え)の最適化を図ることができる。その結果、各々の部品装着機10のサイクルタイムが平準化され、ひいては、生産システム1におけるボトルネックの生産全体に対する影響を低減することができる。尚、ボトルネックについては、例えば、平準化度が一定基準以上の場合に「ボトルネックがない」とみなすことができる。
4-1.生産支援装置100の構成
 次に、本実施形態の生産支援装置100の構成を説明する。生産支援装置100は、CPU、ROM、RAM、各種インターフェースを有するコンピュータ装置を主要構成部品とする装置であり、図6に示すように、学習用データ取得部110と、学習済みモデル記憶部130と、生産情報取得部140と、推論部150とを備えている。又、生産支援装置100は、図6に示すように、学習済みモデル生成部120を備えている。更に、生産支援装置100は、図6に示すように、推論部150による推論結果を用いて最適化のシミュレーションを行うことが可能なオプチマイザ160を備えている。
 学習用データ取得部110は、生産システム1を構成する複数の部品装着機10の配置に関する配置データDa及び部品装着機10の各々が基板Kに装着する複数の部品Pの部品種を表す部品種データDkを学習用データであるオプチマイズ情報Dとして取得する。又、学習用データ取得部110は、配置データDaによって表される部品装着機10の配置及び部品種データDkによって表される部品種の部品P(対応する部品種の部品Pを供給するフィーダ40)を用いた場合に、各々の部品装着機10にて装着処理に要するサイクルタイムを表すサイクルタイムデータDs、及び、厳守すべき部品Pの装着順序を表す入れ替え規制情報Djもオプチマイズ情報Dとして取得する。
 尚、オプチマイズ情報Dに含まれる配置データDa、部品種データDk、サイクルタイムデータDs及び入れ替え規制情報Djの各々については、管理装置H、又は、図示省略の外部装置から供給される。本実施形態においては、管理装置Hから供給される場合を例示する。
 ここで、管理装置Hが出力する生産情報Jは、配置データDaに相当する生産システム1を構成する部品装着機10の数と配置と、各々の部品装着機10にセットされるフィーダ40の数と、部品種データDkに相当する各々の部品装着機10において実装される部品Pの種類と実装数と、サイクルタイムデータDsに相当する実績又はシミュレーション結果としてのサイクルタイムを含んでいる。更に、生産情報Jは、部品Pの基板Kに対する指定装着位置及び指定装着角度を含む制御データ、部品情報(形状、寸法、最大移動速度、撮像条件等)、サイクルタイムの平準化度(ボトルネックの有無)、装着処理の効率に影響を与える機器情報(装着ヘッド13Cや吸着ノズル13E等)を含んでいる。従って、学習用データ取得部110は、上述した配置データDa、部品種データDk、サイクルタイムデータDs及び入れ替え規制情報Djの各々をオプチマイズ情報Dとして取得することに代えて、又は、加えて、管理装置Hから出力される生産情報Jを学習用データとして取得することも可能である。
 学習済みモデル生成部120は、学習用データ取得部110によって取得された部品種データDkによって区別される部品種同士を表す部品種ペアCpの入れ替えを行い、複数(例えば、2つの部品装着機10が部品Pを装着することにより後述する報酬Eが得られる入れ替えパターンに関する機械学習(強化学習)を繰り返し行うことによって、学習済みモデルMを生成する。ここで、上述したように、複数の部品Pは、各々、リールRに巻回されたキャリアテープ50に収容されており、リールRは、各々、キャリアテープ50に収容された部品Pを部品装着機10に供給するフィーダ40に装填される。
 従って、部品種ペアCpは、部品種ペアCpを形成する部品種の部品Pを収容しているキャリアテープ50が巻回されたリールRの装填されたフィーダ40同士を表すフィーダペアCfに対応する。このため、学習済みモデル生成部120は、部品種ペアCpの入れ替えパターンに関する機械学習(強化学習)に代えて、又は、加えて、フィーダペアCfの入れ替えを行い、複数の部品装着機10が部品Pを装着することにより後述する報酬Eが得られる入れ替えパターンに関する機械学習(強化学習)を繰り返し行うことによって、学習済みモデルMを生成することもできる。尚、学習済みモデル生成部120による学習済みモデルMの生成については、後に詳述する。
 学習済みモデル記憶部130は、学習済みモデル生成部120によって生成された学習済みモデルMを記憶する。このため、学習済みモデル記憶部130は、学習済みモデル生成部120が機械学習(強化学習)を繰り返し行うことによって更新される学習済みモデルMを記憶することができる。
 生産情報取得部140は、新たな配置データDan及び新たな部品種データDknを少なくとも含み、部品装着機10を用いて新たな部品Pを装着して基板Kを生産することを指示する生産情報Jを取得する。具体的に、生産情報取得部140は、基板Kの生産に際し、換言すれば、新たな部品種ペアCp(新たなフィーダペアCf)の最適化が必要な際に、管理装置Hから生産情報Jを取得する。
 推論部150は、生産情報取得部140によって取得された生産情報Jに含まれる新たな配置データDan及び新たな部品種データDknと、学習済みモデル記憶部130に記憶されている学習済みモデルMとを用いて、部品種データDknによって区別される新たな部品種のうちの入れ替え対象となる部品種ペアCp(フィーダペアCf)を推論して出力する。ここで、推論部150は、推論した部品種ペアCp(フィーダペアCf)を管理装置H(より詳しくは、例えば、管理装置Hに設けられた図示を省略する表示装置等)に出力し、作業者等に案内することができる。尚、推論部150による部品種ペアCp(フィーダペアCf)の推論については、後に詳述する。
 オプチマイザ160は、推論部150によって推論された部品種ペアCp(フィーダペアCf)に基づいて、部品種(フィーダ40)の入れ替えた場合における部品装着機10の装着処理及び装着処理に伴うサイクルタイムのシミュレーションを行う。そして、後述するように、オプチマイザ160は、シミュレーション結果に基づいて、学習済みモデル生成部120が学習済みモデルMを生成する際の機械学習(強化学習)における報酬Eを確定すると共に、オプチマイズ情報D(より詳しくは、例えば、サイクルタイムデータDs等)を更新する。
4-2.学習フェーズにおいて機能する学習済みモデル生成部120の構成
 次に、図7を参照して、学習フェーズにおいて機能する生産支援装置100の学習済みモデル生成部120の構成を説明する。図7に示すように、学習済みモデル生成部120は、状態情報取得部121と、評価結果取得部122と、報酬算出部123と、価値関数記憶部124と、行動決定部125と、行動情報出力部126と、価値関数更新部127とを主に備える。
 状態情報取得部121は、学習用データであるオプチマイズ情報D及び生産情報Jのうちの少なくとも一つを状態情報として取得する。即ち、状態情報取得部121は、少なくとも学習用データとして配置データDa及び部品種データDkを取得し、又、サイクルタイムデータDs及び入れ替え規制情報Djも状態情報として取得する。ここで、状態情報取得部121は、主として、オプチマイザ160から状態情報を取得するが、必要に応じて学習用データ取得部110が管理装置Hからも状態情報(学習用データ)を取得することができる。
 評価結果取得部122は、予め設定された評価対象に関して、部品種データDkによって表される部品種のうちの部品種ペアCpの入れ替え、或いは、複数のフィーダ40のうちのフィーダペアCfの入れ替えを行った後の装着処理によって得られる評価結果を取得する。評価結果取得部122は、部品種ペアCpの入れ替え、或いは、フィーダペアCfの入れ替えを行った後の装着処理における評価結果として、サイクルタイムの増減や、部品Pが小さい順に基板Kに装着されたか、部品Pの基板Kの表面からのZ軸方向への高さが低い順に基板Kに装着されたか等を取得する。評価結果取得部122は、評価対象に対する評価結果をオプチマイザ160から取得することができる。
 報酬算出部123は、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)によって得られる評価対象の評価結果に基づき、オプチマイズ情報D(又は生産情報J)に基づく部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)に対する報酬Eを算出する。報酬算出部123は、評価結果が良好である場合に、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)に対してプラスの報酬Eを与える一方、評価結果が良好でない場合に部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)に対してマイナスの報酬(罰則)を与える。
 例えば、報酬算出部123は、評価結果の一つであるサイクルタイムに関して、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)を行った後の装着処理をシミュレーションした場合(或いは、実際に部品装着機10にて装着処理を行った場合)に、サイクルタイムが減少していれば、プラスの報酬Eを与える。一方、報酬算出部123は、サイクルタイムが増加していれば、マイナスの報酬Eを与える。又、報酬算出部123は、評価結果の一つである基板Kに対して部品Pの配置する順番に関して、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)を行った後の装着処理をシミュレーションした場合(或いは、実際に部品装着機10にて装着処理を行った場合)に、小さな部品Pから順に配置(装着)されていれば、或いは、低い部品Pから順に配置(装着)されていれば、プラスの報酬Eを与える。一方、報酬算出部123は、大きな部品Pから順に配置(装着)されていれば、或いは、高い部品Pから順に配置(装着)されていれば、マイナスの報酬Eを与える。
 このように、報酬算出部123は、評価対象ごとに報酬Eを算出する。又、報酬算出部123は、評価対象ごとに設定された基準と評価結果との差に応じた報酬Eを付与する。即ち、報酬算出部123は、評価結果と基準との差がプラス方向に大きい場合には、評価結果と基準との差がプラス方向に小さい場合よりも大きな報酬Eを与える。逆に、評価結果と基準との差がマイナス方向に大きい場合には、評価結果と基準との差がマイナス方向に小さい場合よりも大きな罰則を与える。
 具体的に、評価結果の一つであるサイクルタイムを例に挙げて説明する。例えば、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)を行う(シミュレーションを行う)前であって、例えば、オプチマイズ情報Dに含まれるサイクルタイムデータDsによって表されるサイクルタイムを基準サイクルタイムとする。そして、報酬算出部123は、例えば、部品種ペアCpの入れ替え(又はフィーダペアCfの入れ替え)を行った後の装着処理のシミュレーションにおいて、サイクルタイムと基準サイクルタイムとの差である短縮時間がプラス方向に大きい場合は、短縮時間がプラス方向に小さい場合よりも大きな報酬Eを与える。即ち、報酬算出部123は、サイクルタイムの短縮時間が大きくなるにつれて(サイクルタイムが短縮されるにつれて)、大きな報酬Eを与える。逆に、短縮時間がマイナス方向に大きい場合、即ち、サイクルタイムが基準サイクルタイムよりも長い場合には、報酬算出部123は、マイナスの報酬Eを与えるか、或いは、報酬Eを与えない。
 価値関数記憶部124は、状態情報取得部121が取得した状態情報(学習用データ)と報酬算出部123が算出した報酬Eとに基づく強化学習において価値関数を生成する。ここで、価値関数は、学習フェーズにおいて、評価対象の評価結果が最適となるように状態情報に応じた行動情報を得るために生成された関数である。そして、価値関数記憶部124は、生成された価値関数即ち学習済みモデルMを更新可能に記憶する。従って、価値関数記憶部124は、学習済みモデル記憶部130の機能も発揮する。
 特に、本実施形態の価値関数(学習済みモデルM)は、強化学習アルゴリズムとしてDQN(Deep Q-Network)により生成される最適行動価値関数である。この場合、最適行動価値関数は、ニューラルネットワークを用いた近似関数として求められ、ある状態のときの行動ごとにQ値(状態に応じて即時的に得られる報酬Eの価値)が推定できた場合に取るべき最善の行動を与えるものである。即ち、最適行動価値関数を学習済みモデルMとした場合には、状態情報によって表される「状態」を入力とすると、部品種ペアCp(フィーダペアCf)が出力層のノードとなるようなニューラルネットワークを用いてQ値が推定され、その結果、「最善の行動」としての入れ替え対象となる部品種ペアCp(フィーダペアCf)が与えられる。
 尚、価値関数については、DQNを用いて最適行動価値関数を求める場合に限られない。例えば、Q学習、Sarsa、モンテカルロ法等の強化学習アルゴリズムにより、価値関数を生成することも可能である。この場合には、生成された価値関数に基づく「政策」が決定され、「政策」に基づいて「最善の行動」が決定される。
 行動決定部125は、状態情報及び学習済みモデルM(最適行動価値関数)に基づき、複数の部品種のうちから選択可能な部品種同士の部品種ペアCp、或いは、複数のフィーダ40のうちから選択可能なフィーダ40同士のフィーダペアCfを決定する。尚、この場合、行動決定部125は、最適行動価値関数(学習済みモデルM)に基づいて部品種ペアCp(又はフィーダペアCf)を選択したり、必要に応じて、最適行動価値関数(学習済みモデルM)に基づかずに部品種ペアCp(又はフィーダペアCf)を探索したりすることができる。
 行動情報出力部126は、行動決定部125による決定内容、即ち、入れ替え対象となる部品種ペアCp(又はフィーダペアCf)を、行動情報Aとしてオプチマイザ160に出力する。この場合、オプチマイザ160は、行動情報Aを取得し、行動情報Aに従って部品種ペアCp(又はフィーダペアCf)を入れ替えた仮想の装着条件に基づいて装着処理のシミュレーションを行う。そして、オプチマイザ160は、行動情報Aに従って部品種ペアCp(又はフィーダペアCf)の入れ替た場合のシミュレーション結果として、評価態様に対する評価結果を推定する。
 その後、状態情報取得部121は、仮想の装着条件を新たなオプチマイズ情報D(又は生産情報J)即ち新たな状態情報として取得し、評価結果取得部122はオプチマイザ160による評価対象の推定評価結果を取得する。続いて、報酬算出部123は、オプチマイザ160による推定評価結果に基づき、新たなオプチマイズ情報D(又は生産情報J)に対する報酬Eを算出する。つまり、報酬算出部123は、部品種ペアCp(又はフィーダペアCf)の入れ替え前の状態情報から部品種ペアCp(又はフィーダペアCf)の入れ替え後の新たな状態情報へ状態を遷移させた行動情報Aに対する評価を、新たな状態情報即ちオプチマイズ情報D(又は生産情報J)に対する報酬Eとして算出する。
 価値関数更新部127は、行動情報Aに基づいて更新した新たな状態情報即ちオプチマイズ情報D(又は生産情報J)、及び、新たな状態情報(行動情報Aを反映したオプチマイズ情報D)に対する報酬Eに基づき、価値関数更新部127に記憶された最適行動価値関数を更新する。尚、価値関数更新部127は、強化学習アルゴリズム(DQN)に基づいて最適行動価値関数を更新すればよく、例えば、マイナスの報酬Eが与えられた場合には、最適行動価値関数の更新を行わないことも可能である。
4-3.学習済みモデル生成部120の学習工程
 ここで、図8に示すフローチャートを参照して、学習フェーズにおいて学習済みモデル生成部120が行う学習工程を説明する。
 図8に示すように、学習済みモデル生成部120は、学習工程で行う最初の工程として、オプチマイザ160による推定評価結果を用いて強化学習を行う第一学習工程S1を実行する。その後、学習済みモデル生成部120は、部品装着機10における実際の部品種ペアCp(又はフィーダペアCf)の入れ替えによって得られた実際の評価結果を用いて強化学習を行う第二学習工程S2を実行する。
 第一学習工程S1においては、学習済みモデル生成部120が強化学習による機械学習を行う際に、価値関数記憶部124には、例えば、作業者が作成した暫定の最適行動価値関数(価値関数)が記憶される。又、状態情報即ちオプチマイズ情報D(又は生産情報J)は、作業者が暫定的に作成する。
 つまり、学習フェーズの初期段階で価値関数記憶部124に記憶される最適行動価値関数(価値関数)は、改善の余地が多く、初期の最適行動価値関数(価値関数)から得られる行動情報Aも未熟である。従って、例えば、生産システム1を構成する複数の部品装着機10が未熟な行動情報Aに基づいて部品種ペアCp(又はフィーダペアCf)を入れ替えて装着処理を行った場合には、評価対象の評価結果が良好でない可能性も高くなる。その結果、例えば、生産システム1を構成する部品装着機10において酷いボトルネックが生じ、生産性の悪化が生じることが懸念される。
 そこで、学習済みモデル生成部120は、学習工程の初期段階において、オプチマイザ160にて実行されるシミュレーションよって得られる推定評価結果を用いて強化学習を行う。この場合、学習済みモデル生成部120は、実際に部品装着機10において部品種ペアCp(又はフィーダペアCf)の入れ替えを行うことなく、シミュレーション結果のみを用いて強化学習を行うことができるため、生産性の悪化が生じることを回避できる。又、シミュレーション結果を用いる場合は、実際に部品装着機10において部品種ペアCp(又はフィーダペアCf)の入れ替えを行いながら強化学習を行う場合と比べて、評価対象に対する評価結果を短時間で得られる。このため、第一学習工程においては、最適行動価値関数(価値関数)の更新を短時間で行うことができる。
 その後、学習済みモデル生成部120は、最適行動価値関数(価値関数)の更新が進み、行動情報Aの精度が向上した段階で、部品装着機10において実際に部品種ペアCp(又はフィーダペアCf)の入れ替え後の装着処理によって得られる実際の評価結果を用いて強化学習を行う。これにより、学習済みモデル生成部120は、生産性の悪化が発生することを抑制しつつ、行動情報Aの更なる向上を図ることができる。
4-4.推論フェーズにおいて機能する推論部150の構成
 次に、図9を参照して、推論フェーズにおいて機能する生産支援装置100の推論部150の構成を説明する。図9に示すように、推論部150は、状態情報取得部151と、価値関数記憶部152と、行動決定部153と、行動情報出力部154とを主に備える。尚、状態情報取得部151、価値関数記憶部152、行動決定部153、及び、行動情報出力部154は、それぞれ、上述した学習済みモデル生成部120の状態情報取得部121、価値関数記憶部124、行動決定部125、及び、行動情報出力部126と同等の構成である。
4-5.生産支援装置100による部品種ペアCpの配置(入れ替え)の最適化
 次に、図10に示す最適化プログラムのフローチャートを参照して、生産支援装置100のうち主として推論部150による部品種ペアCp(又はフィーダペアCf)の入れ替えの最適化について説明する。最適化プログラムは、ステップS10に開始される。そして、続くステップS11において、生産支援装置100は、生産情報取得部140が、例えば、管理装置Hから実際の生産を指示する生産情報Jを取得する。そして、生産支援装置100(推論部150)は、「第一工程」として、生産情報Jに基づいて生産システム1を構成する複数の部品装着機10のうちの部品装着機10同士を表す部品装着機ペアCmを設定する。
 上述したように、最適化が実行される際、各々の部品装着機10にセットされ得る複数のフィーダ40は、例えば、オプチマイズ情報Dや生産情報Jによって既知である。換言すれば、各々の部品装着機10において装着処理される部品Pの部品種も、例えば、オプチマイズ情報Dや生産情報Jによって既知である。つまり、部品Pの各々の部品種と各々の部品装着機10との関係も既知である。このため、部品種の最適化を図りたい場合、第一工程として、例えば、作業者の指示に従い、推論部150は、生産情報Jに基づいて、生産システム1を構成する複数の部品装着機10のうちの部品装着機10同士を表す部品装着機ペアCmを適宜設定する。
 続く、ステップS12においては、生産支援装置100は、「第二工程」として、最適行動価値関数(学習済みモデルM)を用いて、部品種ペアCp(又はフィーダペアCf)を推論する。即ち、推論部150は、状態情報取得部151が生産情報取得部140から新たな配置データDan及び新たな部品種の部品種データDknを含む生産情報Jを状態情報として取得する。そして、行動決定部153は、状態情報取得部151が取得した状態情報(生産情報J)と、価値関数記憶部152(学習済みモデル記憶部130)に記憶されている最適行動価値関数(学習済みモデルM)とを用いて、入れ替え対象となる部品種ペアCp(又はフィーダペアCf)を推論する。
 続く、ステップS13においては、生産支援装置100は、部品装着機10において、部品種ペアCp(又はフィーダペアCf)の入れ替えを行う。即ち、生産支援装置100の行動情報出力部156は、前記ステップS11にて推論された部品種ペアCp(又はフィーダペアCf)を行動情報Aとして、管理装置Hに出力する。そして、管理装置Hは、行動情報Aに基づく指令、具体的には、部品種ペアCpに対応するフィーダペアCfを形成するフィーダ40同士の入れ替え指令を、例えば、複数の部品装着機10及びローダ装置30に出力する。
 これにより、各々の部品装着機10及びローダ装置30は、行動情報Aにおいて特定された部品種ペアCp、具体的には、フィーダペアCfによって特定される2つのフィーダ40の入れ替えを行う。尚、部品装着機10におけるフィーダ40の入れ替えについては、例えば、部品供給装置12のスロット12Sに付された識別番号(部品Pを装着する順番に対応する番号)を、フィーダ40の入れ替えに対応して変更することが含まれる。
 続く、ステップS14においては、生産支援装置100は、部品装着機10において、部品種、即ち、フィーダ40を入れ替えた後の装着処理に要するサイクルタイムを取得する。即ち、生産支援装置100状態情報取得部151は、管理装置Hから、フィーダ40を入れ替えた後においてフィーダ40を入れ替えた部品装着機10における装着処理に要するサイクルタイムを取得する。
 続く、ステップS15においては、生産支援装置100は、前記ステップS14にて取得したサイクルタイムが、フィーダ40の入れ替え前に比べて改善しているか否かを判定する。即ち、生産支援装置100は、前記ステップS14にて取得した部品種ペアCp(フィーダペアCf)の入れ替え後におけるサイクルタイムが、前記ステップS11にて生産情報取得部140が取得した生産情報J(状態情報)に含まれている部品種ペアCp(フィーダペアCf)の入れ替え前の基準サイクルタイムに比べて短縮されていれば、サイクルタイムが改善されているため、「Yes」と判定する。そして、生産支援装置100は、再び、前記ステップS12に戻り、前記ステップS12以降の各ステップ処理を実行する。
 一方、生産支援装置100は、例えば、複数回の最適化(入れ替え)を行った結果、前記ステップS12にて取得した部品種ペアCp(フィーダペアCf)の入れ替え後におけるサイクルタイムが基準サイクルタイムに比べて短縮されていなければ、サイクルタイムが改善されていないため、「No」と判定する。そして、生産支援装置100は、ステップS16にて、前記ステップS13にて入れ替えた部品種、即ち、フィーダ40を入れ替え前の状態に戻し、ステップS17に進む。
 即ち、生産支援装置100の行動情報出力部154は、例えば、該当するフィーダ40を入れ替え前に戻すフィーダペアCf(部品種ペアCp)を行動情報Aとして、管理装置Hに出力する。これにより、管理装置Hは、行動情報Aに基づく指令、具体的には、部品種ペアCpに対応するフィーダペアCfを形成するフィーダ40同士を入れ替え前に戻す指令を、例えば、複数の部品装着機10及びローダ装置30に出力する。
 これにより、各々の部品装着機10及びローダ装置30は、行動情報Aにおいて特定された部品種ペアCp、具体的には、フィーダペアCfによって特定される2つのフィーダ40を入れ替え前の状態に戻す。尚、部品装着機10におけるフィーダ40の入れ替えについては、例えば、部品供給装置12のスロット12Sに付された識別番号(部品Pを装着する順番に対応する番号)を、フィーダ40の入れ替えに対応して変更することが含まれる。
 ステップS17においては、生産支援装置100は、生産情報Jに基づき、生産システム1を構成する複数の部品装着機10に関して組み合わせ可能な対象全ての部品装着機ペアCmについて、上述した部品種(フィーダ40)の入れ替え、換言すれば、最適化の検討が完了したか否かを判定する。即ち、生産支援装置100は、対象全ての部品装着機ペアCmについての最適化の検討が完了していなければ、「No」と判定して前記ステップS11に戻る。そして、生産支援装置100は、前記ステップS11にて新たな部品装着機ペアCmを設定すると、上述したように、前記ステップS12以降の各ステップ処理を実行する。一方、生産支援装置100は、対象全ての部品装着機ペアCmについての最適化の検討が完了していれば、「Yes」と判定してステップS18に進み、最適化プログラムの実行をステップS16にて終了する。
 ここで、「組み合わせ可能な対象全ての部品装着機ペアCm」については、例えば、生産システム1を構成する全ての部品装着機10同士の組み合わせを部品装着機ペアCmとして設定することを含んでも良い。又、例えば、予めサイクルタイムの短縮等の効果が期待できる部品装着機10同士の組み合わせがあれば、全ての部品装着機10のうちから効果の期待できそうな部品装着機10同士を選択して部品装着機ペアCmを設定することもできる。
 以上の説明からも理解できるように、生産支援装置100は、複数の部品装着機10の配置に関する配置データDa及び部品装着機10の各々が基板Kに装着する複数の部品Pの部品種を表す部品種データDkを学習用データであるオプチマイズ情報D又は生産情報Jとして取得する学習用データ取得部110と、部品種データDkによって区別される部品種同士を表す部品種ペアCpの入れ替えを行って複数の部品装着機10が部品Pを装着することにより報酬Eが得られる入れ替えパターンに関する機械学習を行うことによって生成された学習済みモデルMを記憶する学習済みモデル記憶部130と、新たな配置データDan及び新たな部品種データDknを少なくとも含み、部品装着機10を用いて新たな部品Pを装着して基板Kを生産することを指示する生産情報Jを取得する生産情報取得部140と、生産情報Jに含まれる新たな配置データDan及び新たな部品種データDknと学習済みモデルMとを用いて、部品種データDknによって区別される新たな部品種のうちの入れ替え対象となる部品種ペアCpを推論して出力する推論部と、を備える。又、生産支援装置100は、部品種データDkによって区別される部品種ペアCpの入れ替えを行って部品装着機10に部品Pを供給する際に報酬Eが得られる入れ替えパターンに関する機械学習を繰り返し行うことにより、学習済みモデルMを生成する学習済みモデル生成部120も備える。
 これによれば、部品Pの部品種(フィーダ40の入れ替え)の配置の最適化について、報酬Eが得られる入れ替えパターンを学習した学習済みモデルMを用いることにより、入れ替えの対象となる即ち最適化に有効な部品種ペアCp(フィーダペアCf)を推論することができる。これにより、複数の部品種について、逐次、部品種同士(フィーダ40同士)の全ての組み合わせを検討して最適化に有効な部品種ペアCp(フィーダペアCf)を決定する必要がない。又、学習済みモデルMを用いることにより、新たな部品種についても選択的に最適化に有効な部品種ペアCp(フィーダペアCf)を決定することができる。従って、生産支援装置100を用いることにより、効率良く部品種(フィーダ40)の配置の最適化を行うことができる。
5.第一変形例
 上述した実施形態においては、例えば、第一工程として作業者等によって部品装着機ペアCmが設定され、生産支援装置100は、第二工程として選択的に設定された部品装着機ペアCmにセットされたフィーダ40(部品種)を入れ替え即ち最適化の対象とすることができるようにした。これにより、上述した実施形態においては、例えば、オプチマイザ160が実行するシミュレーションの回数を低減することができ、効率良く部品種の配置の最適化を行うことができる。
 ところで、上述したように、各々の部品装着機10において装着処理される部品Pの部品種は既知である。従って、生産支援装置100は、上述した実施形態のように、入れ替えの対象として部品種ペアCp又はフィーダペアCfを推論することに代えて、又は、加えて、図7及び図9に示すように、部品種ペアCp又はフィーダペアCfの推論と同様にして部品装着機ペアCmを推論することも可能である。即ち、この場合には、第一工程として、例えば、上述した最適化プログラムの前記ステップS11において、学習済みモデルMとオプチマイズ情報D(又は生産情報J)とに基づいて、入れ替えの対象となるフィーダ40(部品種)が装着される可能性の高い部品装着機10について部品装着機ペアCmが推論される。これにより、上述したように、生産支援装置100は、第二工程において、部品装着機ペアCmに実際にセットされるフィーダペアCf即ち部品種ペアCpを推論することができるため、効率良く部品種の配置の最適化を図ることができる。
6.第二変形例
 又、上述した実施形態においては、学習フェーズにおいて、報酬算出部123は、評価対象に関係なく、評価結果に応じた報酬Eを算出するようにした。これに加えて、図7にて破線により示すように、学習済みモデル生成部120が重み付け部128を備えることも可能である。以下、重み付け部128を説明する。
 重み付け部128は、報酬算出部123が複数の評価対象の各々に対して与える報酬Eの重み付けを行う。つまり、重み付け部128は、複数の評価対象のうち一部の評価対象(例えば、サイクルタイム)の重要度が他の評価対象(例えば、部品Pの配置等)の重要度よりも高い場合に、一部の評価対象に対し、他の評価対象よりも与える報酬E又は罰則の程度を大きくする。従って、第二変形例においても、上述した実施形態と同様の効果が得られる。尚、各々の評価対象に対する報酬Eの重み付けは、例えば、作業者による設定が可能である。
7.その他の変形例
 上述した実施形態においては、生産支援装置100が学習済みモデルMとオプチマイズ情報D(生産情報J)とに基づいて、部品種ペアCp(フィーダペアCf)を推論するようにした。これに代えて、例えば、第一変形例のように、生産支援装置100によって部品装着機ペアCmが推論される場合には、部品装着機ペアCmを形成する部品装着機10にセットされる限られたフィーダ40即ち部品種について、作業者が部品種ペアCpやフィーダペアCfを決定するようにしても良い。この場合においても、入れ替えの対象となる部品種(フィーダ40)の数が限られるため、仮に作業者が部品種ペアCpやフィーダペアCfを決定したとしても、上述した従来の方法に比べて、効率良く部品種の配置の最適化を図ることが可能となる。
 更に、上述した実施形態においては、生産支援装置100が学習済みモデル生成部120を備えるようにした。これに代えて、学習済みモデル生成部120を、生産システム1に設けられた生産支援装置100以外の装置(例えば、生産システム1の管理装置Hや、管理装置Hと通信可能で生産システム1及び部品装着機10を製造するメーカが所有するコンピュータ装置等)に設けることも可能である。この場合、生産支援装置100以外の装置に設けられた学習済みモデル生成部120は、例えば、メーカが所有しているオプチマイズ情報Dを用いて学習済みモデルMを生成することができる。そして、生成された学習済みモデルMは、例えば、生産システム1の管理装置Hに供給され、管理装置Hから生産支援装置100の学習済みモデル記憶部130に供給されて記憶される。この場合においても、上述した実施形態と同様の効果が得られる。
 1…生産システム、10…部品装着機、11…基板搬送装置、12…部品供給装置、12S…スロット、13…部品移載装置、13A…ヘッド駆動装置、13B…移動台、13C…装着ヘッド、13D…ノズルホルダ、13E…吸着ノズル、14…部品カメラ、15…基板カメラ、16…制御装置、20…自動搬送機、30…ローダ装置、40…フィーダ、41…フィーダ本体、42…駆動スプロケット、43…テープ押え部、44…剥離部、50…キャリアテープ、501…接合部位、502…接合部位、51…ベーステープ、511…キャビティ、512…送り孔、52…カバーテープ、100…生産支援装置、110…学習用データ取得部、120…学習済みモデル生成部、121…状態情報取得部、122…評価結果取得部、123…報酬算出部、124…価値関数記憶部、125…行動決定部、126…行動情報出力部、127…価値関数更新部、128…重み付け部、130…学習済みモデル記憶部、140…生産情報取得部、150…推論部、151…状態情報取得部、152……価値関数記憶部、153…行動決定部、154…行動情報出力部、160…オプチマイザ、P…部品、Ps…部品供給位置、R…リール、D…オプチマイズ情報、Da…配置データ、Dan…新たな配置データ、Dk…部品種データ、Dkn…新たな部品種データ、Ds…サイクルタイムデータ、Dj…入れ替え規制情報、J…生産情報、M…学習済みモデル、E…報酬、A…行動情報、Cp…部品種ペア、Cf…フィーダペア、Cm…部品装着機ペア、H…管理装置
 

Claims (10)

  1.  複数の部品装着機の配置に関する配置データ及び前記部品装着機の各々が基板に装着する複数の部品の部品種を表す部品種データを学習用データとして取得する学習用データ取得部と、
     前記部品種データによって区別される前記部品種同士を表す部品種ペアの入れ替えを行って複数の前記部品装着機が前記部品を装着することにより報酬が得られる入れ替えパターンに関する機械学習を行うことによって生成された学習済みモデルを記憶する学習済みモデル記憶部と、
     新たな前記配置データ及び新たな前記部品種データを少なくとも含み、前記部品装着機を用いて新たな前記部品を装着して前記基板を生産することを指示する生産情報を取得する生産情報取得部と、
     前記生産情報に含まれる新たな前記配置データ及び新たな前記部品種データと前記学習済みモデルとを用いて、前記部品種データによって区別される新たな前記部品種のうちの入れ替え対象となる前記部品種ペアを推論して出力する推論部と、
     を備えた、生産支援装置。
  2.  前記部品種データによって区別される前記部品種ペアの入れ替えを行って前記部品装着機に前記部品を供給する際に報酬が得られる入れ替えパターンに関する機械学習を繰り返し行うことにより、前記学習済みモデルを生成する学習済みモデル生成部を備えた、請求項1に記載の生産支援装置。
  3.  前記報酬は、
     前記部品種ペアの入れ替えを行った後のシミュレーションにおいて、前記部品の装着に要するサイクルタイムが短縮される場合に与えられる、請求項1又は2に記載の生産支援装置。
  4.  前記報酬は、
     前記部品種ペアの入れ替えを行う前の前記サイクルタイムに比べて、前記部品種ペアの入れ替えを行った後の前記サイクルタイムの短縮時間が大きくなるにつれて大きくなる、請求項3に記載の生産支援装置。
  5.  前記報酬は、
     前記部品種ペアの入れ替えを行った後のシミュレーションにおいて、前記部品が小さい順に前記基板に装着される場合に与えられる、請求項1又は2に記載の生産支援装置。
  6.  前記報酬は、
     前記部品種ペアの入れ替えを行った後のシミュレーションにおいて、前記部品の前記基板の表面からの高さが低い順に前記基板に装着される場合に与えられる、請求項5に記載の生産支援装置。
  7.  複数の前記部品は、各々、リールに巻回されたキャリアテープに収容されており、
     前記リールは、各々、前記キャリアテープに収容された前記部品を前記部品装着機に供給するフィーダに装填される、請求項1又は2に記載の生産支援装置。
  8.  前記推論部は、
     前記部品を前記部品装着機に供給する前記フィーダ同士を表すフィーダペアを前記部品種ペアとして推論して出力する、請求項7に記載の生産支援装置。
  9.  複数の前記部品装着機のうちの前記部品装着機同士を表す部品装着機ペアを設定する第一工程と、
     前記部品装着機ペアにおける前記部品種ペアを推論して出力する第二工程と、を実行する、請求項1又は2に記載の生産支援装置。
  10.  前記推論部は、
     前記生産情報と前記学習済みモデルとを用いて、前記第一工程における前記部品装着機ペアを推論して出力する、請求項9に記載の生産支援装置。
PCT/JP2022/038370 2022-10-14 2022-10-14 生産支援装置 WO2024079882A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038370 WO2024079882A1 (ja) 2022-10-14 2022-10-14 生産支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038370 WO2024079882A1 (ja) 2022-10-14 2022-10-14 生産支援装置

Publications (1)

Publication Number Publication Date
WO2024079882A1 true WO2024079882A1 (ja) 2024-04-18

Family

ID=90669011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038370 WO2024079882A1 (ja) 2022-10-14 2022-10-14 生産支援装置

Country Status (1)

Country Link
WO (1) WO2024079882A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033979A (ja) * 2015-07-29 2017-02-09 ファナック株式会社 実装タクトおよび消費電力を低減する部品マウンタ及び機械学習器
WO2019155593A1 (ja) * 2018-02-09 2019-08-15 株式会社Fuji 部品画像認識用学習済みモデル作成システム及び部品画像認識用学習済みモデル作成方法
JP2020066178A (ja) * 2018-10-25 2020-04-30 ファナック株式会社 状態判定装置及び状態判定方法
WO2021100630A1 (ja) * 2019-11-18 2021-05-27 パナソニックIpマネジメント株式会社 配置支援方法、学習済みモデルの生成方法、プログラム、配置支援システム及び作業システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033979A (ja) * 2015-07-29 2017-02-09 ファナック株式会社 実装タクトおよび消費電力を低減する部品マウンタ及び機械学習器
WO2019155593A1 (ja) * 2018-02-09 2019-08-15 株式会社Fuji 部品画像認識用学習済みモデル作成システム及び部品画像認識用学習済みモデル作成方法
JP2020066178A (ja) * 2018-10-25 2020-04-30 ファナック株式会社 状態判定装置及び状態判定方法
WO2021100630A1 (ja) * 2019-11-18 2021-05-27 パナソニックIpマネジメント株式会社 配置支援方法、学習済みモデルの生成方法、プログラム、配置支援システム及び作業システム

Similar Documents

Publication Publication Date Title
JP6732038B2 (ja) 部品実装ラインの生産管理システム及び生産管理方法
JP6267127B2 (ja) 段取り替え方法および段取り替え装置
JP5144548B2 (ja) 実装条件決定方法
WO2006064680A1 (ja) 動作時間短縮方法、動作時間短縮装置、プログラムおよび部品実装機
WO2016142989A1 (ja) 部品種割り振りの最適化方法および部品種割り振りの最適化装置
JP6572446B2 (ja) 部品実装システムおよび作業者割り当てシステムならびに作業者割り当て方法
JP5721585B2 (ja) 部品実装ライン
JP7220238B2 (ja) 管理装置、移動型作業装置、実装装置、実装システム及び管理方法
JP7203866B2 (ja) 管理装置、移動型作業装置、実装システム及び管理方法
WO2024079882A1 (ja) 生産支援装置
KR20060093118A (ko) 지지 부재 레이아웃 패턴을 결정하기 위한 장치
JP2010016266A (ja) 実装条件決定方法
CN114303450A (zh) 模拟装置以及模拟方法
WO2024079883A1 (ja) 生産支援装置
JP7133021B2 (ja) 移動作業管理装置、実装システム及び管理方法
JP6424236B2 (ja) 対基板作業管理装置
JP5038970B2 (ja) 実装条件決定方法、実装条件決定装置、部品実装方法、部品実装機およびプログラム
JP2019071477A (ja) 部品実装ラインの最適化装置および部品実装ラインの最適化方法
JP4425529B2 (ja) 電子回路部品装着方法および電子回路部品装着システム
JP5697438B2 (ja) 実装システム
JP2017045744A (ja) 基板の生産方法
JP6609893B2 (ja) 部品実装機、基板生産ライン、および部品種の割り振り方法
JP2020074472A (ja) マルチフィーダ装置
JP5885510B2 (ja) 部品実装方法
JP4754956B2 (ja) 部品実装順序決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962100

Country of ref document: EP

Kind code of ref document: A1