WO2024078320A1 - 多联式空调系统及其防凝露控制方法和存储介质 - Google Patents

多联式空调系统及其防凝露控制方法和存储介质 Download PDF

Info

Publication number
WO2024078320A1
WO2024078320A1 PCT/CN2023/121321 CN2023121321W WO2024078320A1 WO 2024078320 A1 WO2024078320 A1 WO 2024078320A1 CN 2023121321 W CN2023121321 W CN 2023121321W WO 2024078320 A1 WO2024078320 A1 WO 2024078320A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
temperature
condensation
difference
conditioning system
Prior art date
Application number
PCT/CN2023/121321
Other languages
English (en)
French (fr)
Inventor
侯庆渠
时斌
王�锋
许蒙强
李恒
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2024078320A1 publication Critical patent/WO2024078320A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to the technical field of air conditioning, and specifically provides a multi-connected air conditioning system and an anti-condensation control method and a storage medium thereof.
  • a multi-connected air conditioning system usually includes multiple indoor units, each of which is equipped with an electronic expansion valve, which is used to control the refrigerant flow in each room of the air conditioning system, thereby adjusting the air outlet temperature of the air conditioner in each room.
  • an electronic expansion valve which is used to control the refrigerant flow in each room of the air conditioning system, thereby adjusting the air outlet temperature of the air conditioner in each room.
  • the electronic expansion valve may be in an abnormal state, so that the closing state of the electronic expansion valve is not good when the air conditioner is turned off.
  • refrigerant will flow through the electronic expansion valve of the indoor unit, and the fan in the indoor unit is in a stationary state, which causes the air inside the indoor unit to be in a low temperature environment and form condensation in contact with the surrounding air.
  • the condensed water is serious, it will cause corrosion and damage to the circuit boards in the air-conditioning system, reducing the service life of the multi-split air-conditioning system.
  • the present invention aims to solve the above technical problem, that is, to solve the problem of condensation in indoor units of the existing multi-connected air-conditioning system that is in a non-working state.
  • the present invention provides an anti-condensation control method for a multi-connected air conditioning system, wherein the multi-connected air conditioning system includes a plurality of indoor units.
  • the anti-condensation control method for the multi-connected air conditioning system includes the following steps:
  • Anti-condensation measures are selectively taken for the indoor unit according to the difference.
  • the step of "selectively taking anti-condensation measures for the indoor unit according to the difference" further includes:
  • the internal temperature includes the gas pipe temperature and the liquid pipe temperature of the indoor unit
  • the difference includes a first difference between the gas pipe temperature and the temperature of the space and a second difference between the liquid pipe temperature and the temperature of the space
  • the set threshold includes a first set threshold and a second set threshold
  • the step of “if the difference is greater than the set threshold, taking anti-condensation measures for the indoor unit in the non-working state” further includes:
  • the internal temperature includes the shell temperature of the indoor unit and the surface temperature of the electric control box
  • the difference includes a third difference between the shell temperature and the space temperature and a fourth difference between the surface temperature of the electric control box and the space temperature
  • the set threshold includes a first set threshold and a second set threshold
  • the step of “if the difference is greater than the set threshold, taking anti-condensation measures for the indoor unit in the non-working state” further includes:
  • the non-working state includes a shutdown state and a standby state.
  • the anti-condensation measures include:
  • the electronic expansion valve of the indoor unit is controlled to be closed.
  • the anti-condensation measure when the anti-condensation measure includes controlling the fan of the indoor unit to start running and controlling the electronic expansion valve of the indoor unit to close, the anti-condensation measure also includes:
  • the electronic expansion valve of the indoor unit is controlled to be closed.
  • the operation of "controlling the electronic expansion valve of the indoor unit to close” further includes:
  • the electronic expansion valve of the indoor unit is first controlled to perform an opening action, and then to perform a closing action.
  • the present invention further provides a multi-split air-conditioning system, which includes a controller, and the controller is configured to execute the anti-condensation control method described in the first aspect.
  • the present invention further provides a computer-readable storage medium, in which program instructions are stored, and when the program instructions are executed, the anti-condensation control method described in any one of the first aspects is executed.
  • the anti-condensation control method of the multi-connected air-conditioning system of the present invention obtains the internal temperature of the indoor unit in a non-working state and the temperature of the space in which it is located in the cooling mode, and then calculates the difference between the internal temperature and the temperature of the space in which it is located, and then selectively takes anti-condensation measures for the indoor unit according to the difference.
  • the abnormal state of the indoor unit in a non-working state can be discovered in time, and the condensation risk in any indoor unit in the multi-connected air-conditioning system can be effectively eliminated, thereby ensuring the normal operation of the indoor unit and improving the service life of the indoor unit.
  • FIG1 is a flow chart of an anti-condensation control method for a multi-connected air-conditioning system according to an exemplary embodiment
  • FIG2 is a flow chart of step S300 of a method for preventing condensation in a multi-connected air conditioning system according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram of a multi-connected air-conditioning system according to an exemplary embodiment.
  • an exemplary embodiment of the present invention provides an anti-condensation control method for a multi-connected air conditioning system, wherein the multi-connected air conditioning system 100 includes a plurality of indoor units 10.
  • the anti-condensation control method for the multi-connected air conditioning system includes the following steps:
  • Step S100 In cooling mode, the internal temperature of the indoor unit in a non-operating state and the temperature of the space where the indoor unit is located are obtained.
  • Step S200 Calculate the difference between the internal temperature and the temperature of the space.
  • Step S300 selectively taking anti-condensation measures for the indoor unit according to the difference.
  • the refrigerant e.g., refrigerant
  • a non-operating state e.g., standby state or shutdown state
  • some structures in the indoor unit 10 e.g., evaporator, housing, panel, electrical box, etc. in the indoor unit 10
  • the temperature difference between the temperature of the partial structure and the temperature of the space environment where the indoor unit 10 is located is a preset temperature difference
  • condensed water may be generated on the partial structure, and excessive condensed water may cause corrosion damage to the circuit board, etc. in the indoor unit 10.
  • the internal temperature of the indoor unit 10 in a non-operating state and the temperature of the space where the indoor unit 10 is located are obtained.
  • the internal temperature of the indoor unit 10 may include but is not limited to the temperature of the housing, panel, evaporator or electrical box of the indoor unit 10, and the temperature of the space where the indoor unit 10 is located is the temperature of the room where the indoor unit 10 is located, that is, the temperature of the space where the indoor unit 10 is located is the ambient temperature of the room where the indoor unit 10 is located.
  • a temperature sensor and/or a thermo-hygrometer may be provided at any suitable location in the indoor unit 10 and the room where the indoor unit 10 is located to obtain the internal temperature T of the indoor unit 10 and the temperature Tai of the space where the indoor unit 10 is located.
  • the temperature sensor and/or the thermo-hygrometer obtains the internal temperature T of the indoor unit 10 and the temperature Tai of the space where the indoor unit 10 is located in real time.
  • thermometers and hygrometers there can be multiple temperature sensors and/or thermometers and hygrometers in the indoor unit 10 for obtaining the internal temperature T.
  • a temperature sensor and/or thermometer and hygrometer are set at the casing, panel, evaporator or electrical box of the indoor unit 10 to determine multiple initial internal temperatures. Then, the average value of the multiple initial internal temperatures is calculated, and the average value is used as the internal temperature T of the indoor unit 10, thereby improving the accuracy of the measurement of the internal temperature T.
  • the initial internal temperatures obtained at the shell, panel, evaporator or electrical box of the indoor unit 10 can be defined as the first internal temperature, the second internal temperature, the third internal temperature, the fourth internal temperature, etc., and then, any of the first internal temperature, the second internal temperature, the third internal temperature, the fourth internal temperature, etc. can be compared with the space temperature Tai of the indoor unit 10.
  • the temperature difference between any of the above internal temperatures T and the space temperature Tai exceeds the preset temperature, anti-condensation measures are taken for the indoor unit 10.
  • the temperature Tai of the space where the indoor unit 10 is located can be obtained by a temperature sensor and/or a thermo-hygrometer arranged in the room where the indoor unit 10 is located. Whether it is a temperature sensor and/or a thermo-hygrometer arranged in the indoor unit 10 or a temperature sensor and/or a thermo-hygrometer arranged in the room where the indoor unit 10 is located, they are all electrically connected to the control system (not shown in the figure) of the multi-connected air conditioning system 100.
  • the number of temperature sensors and/or thermo-hygrometers can be set at intervals to determine multiple first initial space temperatures in the room. Then, the average value of the multiple first initial space temperatures is calculated, and the average value is used as the space temperature Tai of the indoor unit 10, thereby improving the accuracy of measuring the space temperature of the indoor unit 10. Or Alternatively, the highest temperature among the multiple first initial space temperatures is used as the space temperature Tai where the indoor unit 10 is located, so as to improve the error tolerance of temperature measurement.
  • the internal temperature T of the indoor unit 10 and the temperature Tai of the space where the indoor unit 10 is located can be obtained through the control system (not shown in the figure) in the multi-connected air-conditioning system 100.
  • the multi-connected air-conditioning system 100 may also include at least one outdoor unit 20.
  • the control system may be set in the outdoor unit 20 or the indoor unit 10.
  • the control system may be a control panel, a programmable logic controller (PLC), a central processing unit, etc. of the multi-connected air-conditioning system 100.
  • PLC programmable logic controller
  • a multi-split air conditioning system 100 including at least one outdoor unit 20 and a plurality of indoor units 10 and a control system disposed in the outdoor unit 20 is taken as an example for description.
  • step S200 the internal temperature T and the space temperature Tai acquired by the temperature sensor and/or the thermo-hygrometer are uploaded to the control system (not shown) of the multi-connected air conditioning system 100. Then, the difference between the internal temperature T and the space temperature Tai is calculated by the control system.
  • step S300 the control system determines whether there is a condensation risk in the indoor unit 10 based on the difference between the internal temperature T and the space temperature Tai, thereby selectively taking anti-condensation measures for the indoor unit 10 .
  • the condensation risk in any indoor unit 10 in the multi-connected air-conditioning system 100 that is in a non-working state can be effectively eliminated, thereby ensuring the normal operation of the indoor unit 10 and improving the service life of the indoor unit 10.
  • the anti-condensation control method of this example is also applicable to the condensation problem of the indoor unit 10 caused by the compressor oil return control in the multi-connected air-conditioning system 100.
  • step S300 further includes the following sub-steps:
  • Step S301 Compare the difference with a set threshold.
  • Step S302 If the difference is greater than the set threshold, anti-condensation measures are taken for the indoor unit 10.
  • step S301 after obtaining the internal temperature T of the indoor unit 10 and the temperature Tai of the space where it is located, the control system determines the difference ⁇ T between the internal temperature T and the temperature Tai of the space where it is located.
  • the control system determines the difference ⁇ T between the internal temperature T and the temperature Tai of the space where it is located.
  • the difference ⁇ T Tai-T.
  • the difference ⁇ T is compared with the set threshold value Tb.
  • the threshold value Tb may include but is not limited to 10° C. In one example, the threshold value Tb may be any value between 10° C. and 20° C.
  • step S302 if the difference ⁇ T is greater than the set threshold value Tb, it can be determined that the indoor unit 10 has a condensation risk, and then the control system controls the indoor unit 10 to take anti-condensation measures.
  • the difference ⁇ T is less than or equal to the set threshold value Tb, it can be determined that there is no condensation risk in the indoor unit 10, or the probability of the condensation risk being present is negligible.
  • control system can autonomously determine the probability of condensation risk in the indoor unit 10 that is not working through the relationship between the difference ⁇ T between the internal temperature T and the temperature Tai of the space in which it is located and the set threshold value Tb, and then selectively control the indoor unit 10 to take anti-condensation measures to eliminate the condensation risk in the indoor unit 10 that is not working, thereby increasing the service life of the indoor unit.
  • the internal temperature T includes the gas pipe temperature Tc1 and the liquid pipe temperature Tc2 of the indoor unit 10.
  • the difference ⁇ T includes a first difference ⁇ T1 between the gas pipe temperature Tc1 and the space temperature Tai, and a second difference ⁇ T2 between the liquid pipe temperature Tc2 and the space temperature Tai.
  • the set threshold Tb includes a first set threshold Tb1 and a second set threshold Tb2. It should be noted that the internal temperature T can also be the surface temperature of other components inside the indoor unit 10, such as an electrical box.
  • step S302 further includes the following operations:
  • the control system controls and takes anti-condensation measures for the indoor unit 10 .
  • the control system controls and takes anti-condensation measures on the indoor unit 10 .
  • the control system controls and takes anti-condensation measures for the indoor unit 10 .
  • the temperature setting range of the first set threshold value Tb1 can be 10°C to 15°C
  • the temperature setting range of the second set threshold value Tb2 can be 10°C to 20°C.
  • the gas pipe temperature Tc1 and the liquid pipe temperature Tc2 of the indoor unit 10 in the non-operating state are different. Therefore, the temperature can be set according to the different non-operating states of the indoor unit 10.
  • the internal temperature T may also include the shell temperature Tc3 and the surface temperature Tc4 of the electric control box of the indoor unit 10.
  • the difference ⁇ T includes a third difference ⁇ T3 between the shell temperature Tc3 and the space temperature Tai, and a fourth difference ⁇ T4 between the surface temperature Tc4 of the electric control box and the space temperature Tai.
  • the set threshold Tb includes a first set threshold Tb1 and a second set threshold Tb2.
  • step S302 further includes the following operations:
  • the control system controls and takes anti-condensation measures for the indoor unit 10 .
  • the control system controls and takes anti-condensation measures on the indoor unit 10 .
  • the control system controls and takes anti-condensation measures for the indoor unit 10.
  • the temperature setting range of the first set threshold value Tb1 can be 10°C to 15°C
  • the temperature setting range of the second set threshold value Tb2 can be 10°C to 20°C.
  • the shell temperature Tc3 of the indoor unit 10 in a non-working state is different from the surface temperature Tc4 of the electric control box. Therefore, the specific temperature values of the first set threshold value Tb1 and the second preset threshold value Tb2 can be set according to the different non-working states of the indoor unit 10.
  • the non-working state of the indoor unit 10 may include a shutdown state and a standby state.
  • the temperature value of the first preset threshold value Tb1 may be set to be the same as the temperature value of the second preset threshold value Tb2, for example, the temperature value of the first preset threshold value Tb1 and the temperature value of the second preset threshold value Tb2 are both 10°C.
  • the temperature value of the first preset threshold value Tb1 may be set to be different from the temperature value of the second preset threshold value Tb2, for example, the temperature value of the first preset threshold value Tb1 is 10°C, and the temperature value of the second preset threshold value Tb2 is 12°C or other temperature values.
  • the first set threshold Tb1, the second preset threshold Tb2, and the first difference ⁇ T1 and the second difference ⁇ T2 or by setting the first set threshold Tb1, the second preset threshold Tb2, and the third difference ⁇ T3 and the fourth difference ⁇ T4, and by determining the magnitude relationship between the first difference ⁇ T1 and the first set threshold Tb1 through the control system, and determining the second difference
  • the size relationship between ⁇ T2 and the second set threshold value Tb2 is used, and whether to take anti-condensation measures for the indoor unit 10 is determined based on the above size relationship.
  • the judgment conditions for the indoor unit 10 to execute anti-condensation measures are increased, so that the indoor unit 10 can take anti-condensation measures according to various judgment situations, thereby improving the applicability of the indoor unit 10.
  • the anti-condensation measure includes controlling a fan of the indoor unit 10 in a non-operating state to start operating.
  • the control system monitors and reads the working mode of each indoor unit 10 in real time. During the reading process, the control system obtains the gas pipe temperature Tc1 and the liquid pipe temperature Tc2 in the indoor unit 10 in the shutdown state or standby state, and the space temperature Tai of the room where the indoor unit 10 is located. Then, the control system automatically calculates and autonomously determines whether the indoor unit 10 has a condensation risk.
  • the control system forces the fan in the indoor unit 10 to start running, so that the leaked refrigerant in the indoor unit 10 is evaporated by heat exchange in the evaporator, thereby eliminating the risk of condensation in the indoor unit 10, and at the same time, it can also prevent the non-evaporated refrigerant flow from flowing into the compressor to cause liquid hammer to damage the compressor.
  • the electronic expansion valve in the indoor unit 10 in a non-working state may not be completely closed due to impurities in the refrigerant.
  • the refrigerant in the pipeline of the indoor unit 10 will not be able to flow for evaporation and heat exchange, resulting in abnormal shutdown, and then causing the indoor unit 10 to have a condensation risk. Therefore, in some embodiments, the anti-condensation measure also includes controlling the electronic expansion valve in the indoor unit 10 to close. It should be noted that during the operation of closing the electronic expansion valve, the control system can first control the electronic expansion valve in the indoor unit 10 to perform an opening action, so that the opening of the electronic expansion valve is opened to the maximum, and then the closing action is performed.
  • the refrigerant is used to flush away the impurities, and then the electronic expansion valve is closed to prevent the refrigerant in the indoor unit 10 from flowing back, thereby eliminating the condensation risk in the indoor unit 10 and avoiding the non-evaporated refrigerant from flowing into the compressor to cause liquid hammer to damage the compressor.
  • the anti-condensation measure when the anti-condensation measure includes controlling the fan of the indoor unit 10 to start running and controlling the electronic expansion valve of the indoor unit 10 to close, the anti-condensation measure also includes controlling the indoor unit At the same time or after the fan of the indoor unit 10 starts to rotate, the electronic expansion valve in the indoor unit 10 is controlled to close.
  • the control system can first control the electronic expansion valve to perform an opening action, and then perform a closing action. That is to say, the refrigerant remaining in the indoor unit 10 is evaporated by heat exchange in the evaporator through the rotation of the fan.
  • the control system first controls the electronic expansion valve in the indoor unit 10 to perform an opening action, so that the opening of the electronic expansion valve is opened to the maximum, and then performs a closing action.
  • the refrigerant is used to flush away impurities, and then the electronic expansion valve is closed to prevent the refrigerant in the indoor unit 10 from flowing back, thereby eliminating the risk of condensation in the indoor unit 10 and avoiding the non-evaporated refrigerant from flowing into the compressor to cause liquid hammer and damage the compressor.
  • a multi-connected air conditioning system 100 is composed of three outdoor units 20 and nine indoor units 10.
  • the No. 4 indoor unit (shown in the dotted box in FIG. 3) is in the shutdown state, and the other indoor units are in the normal startup working state.
  • the host of the outdoor unit 20 monitors the working mode of the nine indoor units 10, the gas pipe temperature Tc1 and the liquid pipe temperature Tc2 of each indoor unit 10, and the space temperature Tai of the room where each indoor unit 10 is located in real time, and uploads the data to the control system of the outdoor unit 20.
  • the control system identifies that the first difference ⁇ T1 between the space temperature Tai of the No.
  • the control system of the outdoor unit 20 determines that the electronic expansion valve of the No. 4 indoor unit is in a refrigerant leakage state. Then, the control system of the outdoor unit 20 forces the fan of the No. 4 indoor unit to rotate, so that the refrigerant leaking in the pipeline of the No. 4 indoor unit is evaporated, thereby avoiding the occurrence of condensation due to the temperature of the evaporator in the No. 4 indoor unit being too low.
  • the multi-split control system 100 of the present invention includes a controller, which is configured to be able to execute the anti-condensation control method of the multi-split control system in any of the above-mentioned embodiments.
  • the controller can be set on the outdoor unit 20 of the multi-split air-conditioning system 100, or the controller can also be set on any indoor unit 10 of the multi-split air-conditioning system 100.
  • the controller can include but is not limited to a programmable logic controller (PLC), a central processing unit, etc.
  • control method of the air conditioner indoor unit can be stored as a program in a computer-readable storage medium.
  • the storage medium includes a number of program instructions for enabling a computer device (which may be a personal computer, The server, or network device, etc.) or processor executes some steps of the methods of each embodiment of the present invention.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调技术领域,具体公开了一种多联式空调系统及其防凝露控制方法和存储介质,旨在解决现有多联式空调系统处于非工作状态的室内机凝露的问题。为此目的,本发明的多联式空调系统包括多个室内机,该防凝露控制方法包括以下步骤:在制冷模式下,获取处于非工作状态的室内机的内部温度和所在空间温度;计算内部温度与所在空间温度之间的差值;根据差值,选择性地对室内机采取防凝露措施。本发明的防凝露控制方法可以有效消除多联式空调系统中的任意室内机中的凝露风险,从而保证室内机的正常运行,提高室内机的使用周期。

Description

多联式空调系统及其防凝露控制方法和存储介质
本申请要求2022年10月09日提交的、申请号为CN 202211225327.X的中国专利申请的优先权,上述中国专利申请的全文内容通过引用的方式并入本申请。
技术领域
本发明涉及空调技术领域,具体提供一种多联式空调系统及其防凝露控制方法和存储介质。
背景技术
多联式空调系统通常包括多个室内机,每个室内机中都带有电子膨胀阀,电子膨胀阀用于控制空调系统内各房间的冷媒流量,从而调节各房间空调的出风温度。当房间空调关机时,该房间内的室内机中的电子膨胀阀处于关闭状态。
其中,在空调运行过后,电子膨胀阀可能会处于异常状态,使得在关闭空调时电子膨胀阀的关闭状态不佳,此时室内机电子膨胀阀会有冷媒流过,且室内机中的风扇处于静止状态,这就导致室内机内部空气处于低温环境,与周围空气接触形成凝露当冷凝水严重时,会导致空调系统中的电路板腐蚀损坏,降低多联式空调系统的使用周期。
发明内容
本发明旨在解决上述技术问题,即,解决现有多联式空调系统处于非工作状态的室内机凝露的问题。
在第一方面,本发明提供了一种多联式空调系统的防凝露控制方法,其中,多联式空调系统包括多个室内机。该多联式空调系统的防凝露控制方法包括以下步骤:
在制冷模式下,获取处于非工作状态的室内机的内部温度和所在空 间温度;
计算所述内部温度与所述所在空间温度之间的差值;
根据所述差值,选择性地对所述室内机采取防凝露措施。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,“根据所述差值,选择性地对所述室内机采取防凝露措施”的步骤进一步包括:
将所述差值与设定阈值进行比较;
如果所述差值大于所述设定阈值,则对所述室内机采取防凝露措施。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,所述内部温度包括所述室内机的气管温度和液管温度,所述差值包括所述气管温度与所述所在空间温度之间的第一差值和所述液管温度与所述所在空间温度之间的第二差值,所述设定阈值包括第一设定阈值和第二设定阈值;
“如果所述差值大于所述设定阈值,则对所述处于非工作状态的室内机采取防凝露措施”的步骤进一步包括:
如果所述第一差值大于所述第一设定阈值和/或所述第二差值大于所述第二设定阈值,则对所述室内机采取防凝露措施。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,所述内部温度包括所述室内机的壳体温度和电控盒表面温度,所述差值包括所述壳体温度与所述空间温度之间的第三差值和所述电控盒表面温度与所述空间温度之间的第四差值,所述设定阈值包括第一设定阈值和第二设定阈值;
“如果所述差值大于所述设定阈值,则对所述处于非工作状态的室内机采取防凝露措施”的步骤进一步包括:
如果所述第三差值大于所述第一设定阈值和/或所述第四差值大于所述第二设定阈值,则对所述室内机采取防凝露措施。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,所述非工作状态包括关机状态和待机状态。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,所述防凝露措施包括:
控制所述室内机的风扇开始运转;
和/或
控制所述室内机的电子膨胀阀关闭。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,当所述防凝露措施包括控制所述室内机的风扇开始运转和控制所述室内机的电子膨胀阀关闭时,所述防凝露措施还包括:
在控制所述室内机的风扇开始运转的同时或之后,控制所述室内机的电子膨胀阀关闭。
在上述多联式空调系统的防凝露控制方法的优选技术方案中,“控制所述室内机的电子膨胀阀关闭”的操作进一步包括:
先控制所述室内机的电子膨胀阀执行打开动作,然后再执行关闭动作。
在第二方面,本发明还提供了一种多联式空调系统,该多联式空调系统包括控制器,所述控制器配置成能够执行第一方面所述的防凝露控制方法。
在第三方面,本发明还提供了一种一种计算机可读存储介质,其中存储有程序指令,所述程序指令在被运行时执行第一方面中任一项所述的防凝露控制方法。
在采用上述技术方案的情况下,本发明的多联式空调系统的防凝露控制方法在制冷模式下获取处于非工作状态的室内机的内部温度和所在空间温度,而后计算内部温度和所在空间温度之间的差值,然后根据差值选择性地对室内机采取防凝露措施。通过上述技术方案的实施,可以及时发现处于非工作状态的室内机的非正常状态,有效消除多联式空调系统中的任意室内机中的凝露风险,从而保证室内机的正常运行,提高室内机的使用周期。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是根据一示例性实施例示出的多联式空调系统的防凝露控制方法的流程示意图;
图2是根据一示例性实施例示出的多联式空调系统的防凝露控制方法的步骤S300的流程示意图;
图3是根据一示例性实施例示出的多联式空调系统的一种结构示意图。
附图标记列表:
10、室内机;20、室外机;100、多联式空调系统。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于所描述的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1和图3所示,本发明一示例性的实施例提供了一种多联式空调系统的防凝露控制方法,其中,多联式空调系统100包括多个室内机10。该多联式空调系统的防凝露控制方法包括以下步骤:
步骤S100:在制冷模式下,获取处于非工作状态的室内机的内部温度和所在空间温度。
步骤S200:计算内部温度与所在空间温度之间的差值。
步骤S300:根据差值,选择性地对室内机采取防凝露措施。
多联式空调系统100在制冷模式下运行过程中,处于非工作状态(比如待机状态或关机状态)下的室内机10中的冷媒(比如制冷剂)可能会部分泄露,导致该室内机10中的部分结构(比如室内机10内的蒸发器、壳体、面板、电器盒等)的表面温度较低。当该部分结构的温度与该室内机10所处的空间环境的温度之间的温差相差预设温度时,则可能会在该部分结构上产生冷凝水,而过多的冷凝水会导致室内机10中的电路板等腐蚀损坏。
为了防止在上述部分结构上出现冷凝水集结,参照图1所示,在步骤S100中,获取处于非工作状态的室内机10的内部温度和所在空间温度。室内机10的内部温度可以包括但不限于室内机10的壳体、面板、蒸发器或电器盒等的温度,所在空间温度为该室内机10所在房间的温度,即所在空间温度为室内机10所在房间的环境温度。
可以在室内机10内和所在房间内任意合适位置设置温度传感器和/或温湿度计来分别获取室内机10的内部温度T和所在空间温度Tai。温度传感器和/或温湿度计实时获取室内机10的内部温度T和所在空间温度Tai。
其中,室内机10内用于获取内部温度T的温度传感器和/或温湿度计可以为多个,比如在室内机10的壳体、面板、蒸发器或电器盒等位置均设置一个温度传感器和/或温湿度计,以确定多个初始内部温度,而后,对多个初始内部温度求取平均值,以该平均值作为室内机10的内部温度T,从而提高内部温度T测量的准确度。
又比如,可以将上述室内机10的壳体、面板、蒸发器或电器盒等位置所获得的初始内部温度分别定义为第一内部温度、第二内部温度、第三内部温度、第四内部温度等,而后,将第一内部温度、第二内部温度、第三内部温度、第四内部温度等中的任意内部温度与室内机10的所在空间温度Tai进行比较,当上述任意内部温度T与所在空间温度Tai之间的温差超出预设温度时,均对该室内机10采取防凝露措施。
类似地,可以通过在该室内机10所在房间设置的温度传感器和/或温湿度计获取室内机10的所在空间温度Tai。无论是设置在室内机10内的温度传感器和/或温湿度计,还是设置在室内机10所在房间中的温度传感器和/或温湿度计,都与多联式空调系统100的控制系统(图中未示出)电连接。
当通过在室内机10所在房间设置的温度传感器和/或温湿度计获取该室内机10的所在空间温度Tai时,温度传感器和/或温湿度计的个数可以为间隔设置的多个,以确定该房间内的多个第一初始空间温度。而后,对多个第一初始空间温度求取平均值,以该平均值作为室内机10的所在空间温度Tai,从而提高室内机10的所在空间温度的测量的准确性。或 者,将上述多个第一初始空间温度中的最高温度作为室内机10的所在空间温度Tai,以提高温度测量的容错率。
继续参照图1和图3,在步骤S200中,可以通过多联式空调系统100中的控制系统(图中未示出)获取上述室内机10的内部温度T和所在空间温度Tai。在一个示例中,多联式空调系统100还可以包括至少一个室外机20。其中,控制系统可以设置在室外机20或室内机10内。控制系统可以是多联式空调系统100的控制面板、可编程逻辑控制器(Programmable Logic Controller,简称PLC)、中央处理器等。
本示例以及下述实施例中,以多联式空调系统100包括至少一个室外机20和多个室内机10、且控制系统设置在室外机20为例进行说明。
在步骤S200中,由温度传感器和/或温湿度计获取的内部温度T和所在空间温度Tai上传至多联式空调系统100的控制系统(图中未示出)。而后,通过该控制系统计算出内部温度T和所在空间温度Tai之间的差值。
如图1所示,在步骤S300中,由控制系统根据内部温度T和所在空间温度Tai之间的差值进行判断,以确定该室内机10内是否存在凝露风险,从而选择性地对室内机10采取防凝露措施。
本示例中,在制冷模式下,通过上述防凝露控制方法的实施,能够有效消除多联式空调系统100中处于非工作状态的任意室内机10中的凝露风险,进而保证室内机10的正常运行,提高室内机10的使用周期。需要说明的是,本示例的防凝露控制方法同样适用于多联式空调系统100中的压缩机回油控制时导致的室内机10的凝露问题。
在一些实施例中,如图2所示,步骤S300进一步还包括以下子步骤:
步骤S301:将差值与设定阈值进行比较。
步骤S302:如果差值大于设定阈值,则对室内机10采取防凝露措施。
在步骤S301中,控制系统在获取室内机10的内部温度T和所在空间温度Tai后,确定内部温度T和所在空间温度Tai之间的差值ΔT。需要说明的是,在制冷模式下,当室内机10中的电子膨胀阀处于异常状态时,比如关闭效果较差,此时室内机10管路内的冷媒存在有无法进行蒸发换热的流动,从而导致室内机10的内部温度T低于所在空间温度Tai。也就是说,该步骤中,差值ΔT=Tai-T。而后,将差值ΔT与设定阈值Tb 进行比较。其中,设定阈值Tb可以包括但不限于10℃。在一个示例中,设定阈值Tb可以是10℃~20℃之间的任意值。
在步骤S302中,如果差值ΔT大于设定阈值Tb时,此时可以判定该室内机10存在凝露风险,而后,由控制系统控制该室内机10采取防凝露措施。
当差值ΔT小于或等于设定阈值Tb时,则可以判定该室内机10内不存在凝露风险,或存在凝露风险的几率可以忽略不计。
本示例中,可以通过控制系统通过内部温度T与所在空间温度Tai之间的差值ΔT与设定阈值Tb的大小关系,从而自主判定处于非工作状态的室内机10发生凝露风险的几率,进而选择性地控制室内机10采取防凝露措施,以消除处于非工作状态的室内机10中的凝露风险,提高室内机的使用周期。
在一些实施例中,内部温度T包括室内机10的气管温度Tc1和液管温度Tc2。差值ΔT包括气管温度Tc1与所在空间温度Tai之间的第一差值ΔT1、以及液管温度Tc2与所在空间温度Tai之间的第二差值ΔT2。设定阈值Tb包括第一设定阈值Tb1和第二设定阈值Tb2。需要说明的是,内部温度T还可以是室内机10内部的其他部件的表面温度,比如电器盒等。
那么,步骤S302进一步包括以下操作:
如果第一差值ΔT1大于第一设定阈值Tb1,则由控制系统控制并对室内机10采取防凝露措施。
或者,如果第二差值ΔT2大于第二设定阈值Tb2,则由控制系统控制并对室内机10采取防凝露措施。
又或者,如果第一差值ΔT1大于第一设定阈值Tb1,并且第二差值ΔT2大于第二设定阈值Tb2,则由控制系统控制并对室内机10采取防凝露措施。
作为示例,第一设定阈值Tb1的温度设定范围可以为10℃~15℃,第二设定阈值Tb2的温度设定范围可以为10℃~20℃。在多联式空调系统100中,处于非工作状态的室内机10的气管温度Tc1与液管温度Tc2的温度有所不同。因此,可以根据室内机10的非工作状态的不同而设定 第一设定阈值Tb1和第二预设阈值Tb2的具体温度值。
在另一些实施例中,内部温度T还可以包括室内机10的壳体温度Tc3和电控盒表面温度Tc4。差值ΔT包括壳体温度Tc3与所在空间温度Tai之间的第三差值ΔT3、以及电控盒表面温度Tc4与所在空间温度Tai之间的第四差值ΔT4。设定阈值Tb包括第一设定阈值Tb1和第二设定阈值Tb2。
那么,步骤S302进一步包括以下操作:
如果第三差值ΔT3大于第一设定阈值Tb1,则由控制系统控制并对室内机10采取防凝露措施。
或者,如果第四差值ΔT2大于第二设定阈值Tb2,则由控制系统控制并对室内机10采取防凝露措施。
又或者,如果第三差值ΔT1大于第一设定阈值Tb1,并且第四差值ΔT2大于第二设定阈值Tb2,则由控制系统控制并对室内机10采取防凝露措施。
作为示例,第一设定阈值Tb1的温度设定范围可以为10℃~15℃,第二设定阈值Tb2的温度设定范围可以为10℃~20℃。在多联式空调系统100中,处于非工作状态的室内机10的壳体温度Tc3与电控盒表面温度Tc4的温度有所不同。因此,可以根据室内机10的非工作状态的不同而设定第一设定阈值Tb1和第二预设阈值Tb2的具体温度值。
其中,室内机10的非工作状态可以包括关机状态和待机状态。当室内机10处于关机状态时,可以设定第一设定阈值Tb1的温度值与第二预设阈值Tb2的温度值相同,比如,第一设定阈值Tb1的温度值与第二预设阈值Tb2的温度值均为10℃。而当室内机10处于待机状态时,可以设定第一设定阈值Tb1的温度值与第二预设阈值Tb2的温度值不同,比如,第一设定阈值Tb1的温度值为10℃,第二预设阈值Tb2的温度值为12℃或其他温度值等。
本示例中,通过第一设定阈值Tb1、第二预设阈值Tb2、以及第一差值ΔT1和第二差值ΔT2的设定,或者通过第一设定阈值Tb1、第二预设阈值Tb2、以及第三差值ΔT3和第四差值ΔT4的设定,并通过控制系统判定第一差值ΔT1与第一设定阈值Tb1的大小关系,以及判定第二差值 ΔT2与第二设定阈值Tb2的大小关系,并依据上述大小关系判定是否对室内机10采取防凝露措施,增加了室内机10执行防凝露措施的判断条件,从而使得室内机10可以根据多种判断情况而采取防凝露措施,提高了室内机10的适用性。
在一些实施例中,防凝露措施包括控制处于非工作状态中的室内机10的风扇开始运转。
多联式空调系统100在制冷模式下或回油工况下,控制系统实时监测并读取各个室内机10的工作模式。在读取过程中,控制系统获取处于关机状态或待机状态的室内机10中的气管温度Tc1和液管温度Tc2、以及室内机10所在房间的所在空间温度Tai。而后,控制系统自动计算并自主判断该室内机10是否存在凝露风险。
其中,当处于非工作状态的室内机10中的电子膨胀阀动作异常(例如无法完全关闭时),导致室内机10管路内的冷媒存在有无法进行蒸发换热的流动,或者,当处于非工作状态的室内机10中的冷媒存在泄露时,在该室内机10中会存在凝露风险,或者已经发生凝露情况。此时,控制系统强制控制室内机10中的风扇开始运转,使得室内机10内泄露的冷媒在蒸发器内得到换热蒸发,从而消除了室内机10内的凝露风险,同时,也可以避免未蒸发制冷器流会压缩机导致液击损坏压缩机。
多联式空调系统在使用过程中,处于非工作状态的室内机10中的电子膨胀阀可能因冷媒中的杂质而导致无法完全关闭,此时,室内机10中管路内的冷媒会存在无法进行蒸发换热的流动,导致关机异常,进而使得室内机10存在有凝露风险。因此,在一些实施例中,防凝露措施还包括控制室内机10中的电子膨胀阀关闭。需要说明的是,在电子膨胀阀关闭的操作过程中,可以先由控制系统控制室内机10中的电子膨胀阀执行打开动作,使得电子膨胀阀的开度打开至最大,而后,再执行关闭动作。其中,电子膨胀阀在打开的过程中,利用冷媒冲走杂质,而后关闭电子膨胀阀,防止室内机10中的冷媒倒流,从而消除室内机10内的凝露风险,避免未蒸发制冷器流会压缩机导致液击损坏压缩机。
在一些实施例中,当防凝露措施包括控制室内机10的风扇开始运转和控制室内机10的电子膨胀阀关闭时,该防凝露措施还包括控制室内机 10的风扇开始转动的同时或之后,控制室内机10中的电子膨胀阀关闭。同样,在控制电子膨胀阀关闭的操作过程中,可以先由控制系统控制电子膨胀阀执行打开动作,然后在执行关闭动作。也就是说,通过风扇转动将室内机10内残留的冷媒在蒸发器内得到换热蒸发。与此同时,先由控制系统控制室内机10中的电子膨胀阀执行打开动作,使得电子膨胀阀的开度打开至最大,而后再执行关闭动作。其中,电子膨胀阀在打开的过程中,利用冷媒冲走杂质,而后关闭电子膨胀阀,防止室内机10中的冷媒倒流,从而消除室内机10内的凝露风险,避免未蒸发制冷器流会压缩机导致液击损坏压缩机。
下面参照图3,在一个示例中,多联式空调系统100由三台室外机20和九台室内机10组成。其中,四号室内机(图3中虚线框所示)为关机状态,其余室内机为正常开机工作状态。此时,室外机20的主机实时监测九台室内机10的工作模式、各个室内机10的气管温度Tc1和液管温度Tc2、以及每个室内机10所在房间的所在空间温度Tai等各项数据,并上传至室外机20的控制系统。当控制系统识别关机状态的四号室内机的所在空间温度Tai与四号室内机的气管温度Tc1的第一差值ΔT1大于第一设定阈值Tb1,或者,所在空间温度Tai与液管温度Tc2的第二差值ΔT2大于第二设定阈值Tb2。此时,室外机20的控制系统判定四号室内机的电子膨胀阀存处于冷媒泄露状态。而后,室外机20的控制系统强制控制四号室内机的风扇转动,使得四号室内机的管路内泄露的冷媒被蒸发,从而避免四号室内机中的蒸发器的温度太低而导致凝露情况的发生。
尽管图中没有显示,本发明的多联式控制系统100包括控制器,该控制器配置成能够执行上述任意实施例中的多联式控制系统的防凝露控制方法。控制器可以设置在多联式空调系统100的室外机20上,或者,控制器还可以设置在多联式空调系统100的任一室内机10上。其中,控制器可以包括但不限于可编程逻辑控制器(Programmable Logic Controller,简称PLC)、中央处理器等。
本领域的技术人员应当理解的是,可以将本实施例提供的空调器室内机的控制方法作为程序存储在一个计算机可读取存储介质中。该存储介质中包括若干程序指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(Processor)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种多联式空调系统的防凝露控制方法,所述多联式空调系统包括多个室内机,其特征在于,所述防凝露控制方法包括以下步骤:
    在制冷模式下,获取处于非工作状态的室内机的内部温度和所在空间温度;
    计算所述内部温度与所述所在空间温度之间的差值;
    根据所述差值,选择性地对所述室内机采取防凝露措施。
  2. 根据权利要求1所述的多联式空调系统的防凝露控制方法,其特征在于,“根据所述差值,选择性地对所述室内机采取防凝露措施”的步骤进一步包括:
    将所述差值与设定阈值进行比较;
    如果所述差值大于所述设定阈值,则对所述室内机采取防凝露措施。
  3. 根据权利要求2所述的多联式空调系统的防凝露控制方法,其特征在于,所述内部温度包括所述室内机的气管温度和液管温度,所述差值包括所述气管温度与所述所在空间温度之间的第一差值和所述液管温度与所述所在空间温度之间的第二差值,所述设定阈值包括第一设定阈值和第二设定阈值;
    “如果所述差值大于所述设定阈值,则对所述处于非工作状态的室内机采取防凝露措施”的步骤进一步包括:
    如果所述第一差值大于所述第一设定阈值和/或所述第二差值大于所述第二设定阈值,则对所述室内机采取防凝露措施。
  4. 根据权利要求2所述的多联式空调系统的防凝露控制方法,其特征在于,所述内部温度包括所述室内机的壳体温度和电控盒表面温度,所述差值包括所述壳体温度与所述空间温度之间的第三差值和所述电控盒表面温度与所述空间温度之间的第四差值,所述设定阈值包括第一设定阈值和第二设定阈值;
    “如果所述差值大于所述设定阈值,则对所述处于非工作状态的室内机采取防凝露措施”的步骤进一步包括:
    如果所述第三差值大于所述第一设定阈值和/或所述第四差值大于所述第二设定阈值,则对所述室内机采取防凝露措施。
  5. 根据权利要求1至4中任一项所述的多联式空调系统的防凝露控制方法,其特征在于,所述非工作状态包括关机状态和待机状态。
  6. 根据权利要求5所述的多联式空调系统的防凝露控制方法,其特征在于,所述防凝露措施包括:
    控制所述室内机的风扇开始运转;
    和/或,
    控制所述室内机的电子膨胀阀关闭。
  7. 根据权利要求6所述的多联式空调系统的防凝露控制方法,其特征在于,当所述防凝露措施包括控制所述室内机的风扇开始运转和控制所述室内机的电子膨胀阀关闭时,所述防凝露措施还包括:
    在控制所述室内机的风扇开始运转的同时或之后,控制所述室内机的电子膨胀阀关闭。
  8. 根据权利要求7所述的多联式空调系统的防凝露控制方法,其特征在于,“控制所述室内机的电子膨胀阀关闭”的操作进一步包括:
    先控制所述室内机的电子膨胀阀执行打开动作,然后再执行关闭动作。
  9. 一种多联式空调系统,包括控制器,其特征在于,所述控制器配置成能够执行权利要求1-8中任一项所述的防凝露控制方法。
  10. 一种计算机可读存储介质,其中存储有程序指令,其特征在于,所述程序指令在被运行时执行权利要求1-8中任一项所述的防凝露控制 方法。
PCT/CN2023/121321 2022-10-09 2023-09-26 多联式空调系统及其防凝露控制方法和存储介质 WO2024078320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211225327.XA CN117889525A (zh) 2022-10-09 2022-10-09 多联式空调系统及其防凝露控制方法和存储介质
CN202211225327.X 2022-10-09

Publications (1)

Publication Number Publication Date
WO2024078320A1 true WO2024078320A1 (zh) 2024-04-18

Family

ID=90639863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121321 WO2024078320A1 (zh) 2022-10-09 2023-09-26 多联式空调系统及其防凝露控制方法和存储介质

Country Status (2)

Country Link
CN (1) CN117889525A (zh)
WO (1) WO2024078320A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940023A (zh) * 2013-01-21 2014-07-23 山东朗进科技股份有限公司 一种一拖多空调膨胀阀智能控制方法
CN105423421A (zh) * 2015-12-02 2016-03-23 珠海格力电器股份有限公司 一种多联机空调的室内机、多联机空调及其控制方法
CN105588261A (zh) * 2015-01-08 2016-05-18 青岛海信日立空调系统有限公司 一种室内机电子膨胀阀的控制方法及装置
CN106403192A (zh) * 2016-10-09 2017-02-15 珠海格力电器股份有限公司 一种防凝露运行控制方法、装置和多联空调系统
CN107575939A (zh) * 2017-09-07 2018-01-12 珠海格力电器股份有限公司 多联机系统及其控制方法
CN110057025A (zh) * 2019-04-11 2019-07-26 海信(山东)空调有限公司 空调电子膨胀阀的控制方法、装置、计算机产品及空调
WO2019244280A1 (ja) * 2018-06-20 2019-12-26 三菱電機株式会社 空気調和装置および運転状態判定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940023A (zh) * 2013-01-21 2014-07-23 山东朗进科技股份有限公司 一种一拖多空调膨胀阀智能控制方法
CN105588261A (zh) * 2015-01-08 2016-05-18 青岛海信日立空调系统有限公司 一种室内机电子膨胀阀的控制方法及装置
CN105423421A (zh) * 2015-12-02 2016-03-23 珠海格力电器股份有限公司 一种多联机空调的室内机、多联机空调及其控制方法
CN106403192A (zh) * 2016-10-09 2017-02-15 珠海格力电器股份有限公司 一种防凝露运行控制方法、装置和多联空调系统
CN107575939A (zh) * 2017-09-07 2018-01-12 珠海格力电器股份有限公司 多联机系统及其控制方法
WO2019244280A1 (ja) * 2018-06-20 2019-12-26 三菱電機株式会社 空気調和装置および運転状態判定方法
CN110057025A (zh) * 2019-04-11 2019-07-26 海信(山东)空调有限公司 空调电子膨胀阀的控制方法、装置、计算机产品及空调

Also Published As

Publication number Publication date
CN117889525A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP6797278B2 (ja) 冷凍サイクル装置及び冷凍サイクルシステム
CN110895023B (zh) 一种空调冷媒泄漏检测方法及空调器
KR102379633B1 (ko) 공기 조화기 및 이의 제어 방법
CN111023424B (zh) 一种控制方法、系统及空调器
JP2016142440A (ja) コンテナ型データセンター、評価方法及びプログラム。
JPWO2020003528A1 (ja) 空調管理システム、空調管理方法、及びプログラム
JP2012122668A (ja) 空気調和機
US11639803B2 (en) System and method for identifying causes of HVAC system faults
CN114754460B (zh) 一种空调的控制方法、装置、空调和存储介质
JP6177218B2 (ja) 空気調和機
JP2018155426A (ja) 空気調和機
JP2012233641A (ja) 空調システム、その屋外空冷熱交換ユニット、制御装置
CN114992776A (zh) 空调系统的冷媒泄漏检测方法、装置、空调器和存储介质
JP6386922B2 (ja) 蒸気弁診断装置および方法
WO2024078320A1 (zh) 多联式空调系统及其防凝露控制方法和存储介质
JP2017207245A (ja) 空気調和装置
CN112361541B (zh) 用于多联机空调系统的膨胀阀控制方法
CN112303825A (zh) 热源塔的除霜控制方法
JP2010145035A (ja) 冷却装置
CN113566384B (zh) 空调器中室内机防止凝露的控制方法及存储介质
JP6556339B2 (ja) 空気調和装置
CN114777284A (zh) 一种空调的缺冷媒保护方法、装置、存储介质及空调
JP4173478B2 (ja) 空調機制御システム及び空調機制御方法
JP6595139B1 (ja) 空調管理システム、空調管理方法、及びプログラム
JP2007218457A (ja) 冷却液循環装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876524

Country of ref document: EP

Kind code of ref document: A1