WO2024078242A1 - 一种光功率可调光合分器、相关设备以及系统 - Google Patents

一种光功率可调光合分器、相关设备以及系统 Download PDF

Info

Publication number
WO2024078242A1
WO2024078242A1 PCT/CN2023/118449 CN2023118449W WO2024078242A1 WO 2024078242 A1 WO2024078242 A1 WO 2024078242A1 CN 2023118449 W CN2023118449 W CN 2023118449W WO 2024078242 A1 WO2024078242 A1 WO 2024078242A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical power
photosplitter
output port
power adjustable
Prior art date
Application number
PCT/CN2023/118449
Other languages
English (en)
French (fr)
Inventor
孙文惠
吴金华
陈冲
李心白
高士民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078242A1 publication Critical patent/WO2024078242A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/02Selecting arrangements for multiplex systems for frequency-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Definitions

  • the present application relates to the field of optical communication technology, and in particular to an optical power adjustable photosplitter, related equipment and system.
  • the networking type of the optical network can be chain networking, ring networking or tree networking, etc.
  • the optical network includes a core node (central point, CP) and multiple splitters connected to the CP in sequence, and each splitter is connected to at least one access point (access point, AP).
  • the splitter includes a first output port and a second output port, the first output port can be connected to another splitter, and the second output port can be connected to the AP.
  • the splitting ratio corresponding to the output port of the existing splitter is fixed. If more APs are connected in series in a chain-shaped network, the optical power obtained by the AP from the splitter will decrease as the number of newly added APs increases, thus limiting the number of APs that can be connected to the chain-shaped network. It can be seen that the splitting ratio corresponding to each output port of the existing splitter is fixed, which makes the splitter unable to meet the needs of flexible optical network networking.
  • the embodiments of the present application provide an optical power adjustable photosynthesizer, related equipment and system, wherein the optical power adjustable photosynthesizer can realize flexible tuning of the optical power of the output port to meet the needs of flexible networking of the optical communication system.
  • a first aspect of an embodiment of the present application provides an optical power adjustable photosynthesizer, which includes an electrode and an optical waveguide component connected to the electrode; the optical waveguide component includes an input port, a first output port, and a second output port, the input port is used to receive optical power, the electrode is used to send a target voltage to the optical waveguide component, and the target voltage is used to tune the optical power of the first output port and the optical power of the second output port.
  • the use of the optical power adjustable photosplitter shown in the present invention can ensure that the access node connected to the second output port can successfully receive the optical power, thereby increasing the number of access nodes included in the optical communication system.
  • the optical power of the first output port and the optical power of the second output port are tuned by means of a target voltage, thereby effectively improving the efficiency of tuning the optical power.
  • the optical power of the first output port and the optical power of the second output port can be flexibly tuned to meet the needs of flexible networking.
  • the optical waveguide component includes a first optical waveguide arm and a second optical waveguide arm, the first optical waveguide arm connects the input port and the first output port, the second optical waveguide arm connects the second output port, the target voltage is used to change the arm length difference between the first optical waveguide arm and the second optical waveguide arm, and the arm length difference is used to tune the optical power of the first output port and the optical power of the second output port.
  • the optical power of each output port can be flexibly tuned.
  • the optical power adjustable photosplitter further includes a first controller connected to the electrode, and the first controller is used to send the target voltage to the electrode.
  • the optical power adjustable photosplitter includes a first controller, and the optical power adjustable photosplitter can be independent of the access node device, thereby improving the flexibility of the optical communication system networking. Moreover, in the case of a ring or chain networking, even if the access node fails, the independent operation of the optical power adjustable photosplitter ensures the normal operation of the ring networking or the chain networking.
  • the first controller is used to send the target voltage to the electrode, and the first controller is specifically used to send the target voltage to the electrode according to a configuration list, and the configuration list includes the correspondence between the optical power of the first output port and the optical power of the second output port and the voltage value of the target voltage.
  • the target voltage is obtained by configuring the list, so that the accuracy of tuning the optical power of the first output port and the optical power of the second output port can be guaranteed and the efficiency of optical power tuning can be improved.
  • the electrode is used to tune the optical power of the first output port to zero.
  • the first output port in an abnormal state can be shut down in time to avoid the receiving end of the first output port being in an abnormal state.
  • the state of the received optical signal may interfere with the light emission of other access nodes.
  • the first optical waveguide arm and the second optical waveguide arm are respectively made of phase change materials, and the first optical waveguide arm and the second optical waveguide arm are used to store heat from the electrode, and the heat is used to maintain the arm length difference between the first optical waveguide arm and the second optical waveguide arm.
  • the first optical waveguide arm and the second optical waveguide arm are made of phase material, even if the target voltage is powered off, the first optical waveguide arm and the second optical waveguide arm will maintain the arm length difference unchanged, so that the optical power adjustable photosplitter can continue to tune the optical power of the first output port and the optical power of the second output port according to the arm length difference, thereby realizing power-off protection for the optical power adjustable photosplitter.
  • the optical power adjustable photosplitter further includes a first power supply connected to the first controller, and the first controller is used to send the target voltage from the first power supply to the electrode.
  • the optical power adjustable photosplitter includes a first power supply, and the optical power adjustable photosplitter can be independent of the access node device, thereby improving the flexibility of the optical communication system networking. Moreover, in the case of a ring or chain networking, even if the access node fails, the independent operation of the optical power adjustable photosplitter ensures the normal operation of the ring networking or the chain networking.
  • the optical power adjustable photosplitter is inserted into an access node, and the access node includes a second controller and a second power supply connected to the second controller, and the second controller is also connected to the electrode, and the second controller is used to send the target voltage from the second power supply to the electrode.
  • the optical power adjustable photosynthesizer can reuse the second power supply and the second controller of the access node, and there is no need to configure an independent second power supply and a second controller for the optical power adjustable photosynthesizer, thereby reducing the cost of the optical power adjustable photosynthesizer.
  • the second aspect of the present application provides an optical module, which includes a laser, a diode and an optical power adjustable photosynthetic splitter as described in any one of the first aspects above; the laser is used to input optical power to the optical power adjustable photosynthetic splitter, and the diode is used to perform photoelectric conversion on the optical power from the optical power adjustable photosynthetic splitter to obtain an electrical signal.
  • a third aspect of the present application provides an access node, the access node comprising an optical module and a controller connected to the optical module, the optical module being as described in the second aspect.
  • an access node comprising an optical power adjustable photosplitter, an optical module and a controller, the optical module being connected to the controller and the optical power adjustable photosplitter respectively, the optical power adjustable photosplitter being as described in any one of the first aspects.
  • the optical module is used to perform photoelectric conversion on a first optical signal from the optical power adjustable photosplitter to obtain a first electrical signal, and to send the first electrical signal to the controller, or the optical module is used to perform electrical-optical conversion on a second electrical signal from the controller to obtain a second optical signal, and to send the second optical signal to the optical power adjustable photosplitter
  • the present application provides a phased array radar, which includes a laser, an optical power adjustable photosynthesizer and multiple transmission paths, and the optical power adjustable photosynthesizer is as described in any one of the first aspects above; the laser is used to send a detection light signal to the optical power adjustable photosynthesizer, and the optical power adjustable photosynthesizer is used to split the detection light signal to obtain a multi-path detection beam, each detection beam in the multi-path detection beam is output after being phase modulated via one of the transmission paths, and the optical power emitted from different transmission paths is the same.
  • a sixth aspect of the present application provides an autonomous driving system, which includes the phased array radar as described in the fifth aspect above.
  • the seventh aspect of the present application provides a vehicle, which includes the automatic driving system as described in the sixth aspect.
  • An eighth aspect of the present application provides a robot, comprising the phased array radar as described in the fifth aspect above.
  • a ninth aspect of the present application provides an unmanned aerial vehicle, comprising the phased array radar as described in the fifth aspect above.
  • the tenth aspect of the present application provides a smart home appliance, which includes the phased array radar as described in the fifth aspect above.
  • an optical communication system which comprises a first optical module, at least one optical power adjustable photosplitter and a second optical module, wherein the at least one optical power adjustable photosplitter is used to connect the first optical module and the second optical module, and the optical power adjustable photosplitter is as described in any one of the above-mentioned first aspect.
  • the optical communication system includes at least a first optical power adjustable photosplitter and a second optical power adjustable photosplitter, the second output port of the first optical power adjustable photosplitter is used to connect one of the second optical modules, and the second output port of the second optical power adjustable photosplitter is used to connect another of the second optical modules; in the first optical power adjustable photosplitter When the distance between the photosplitter and the first optical module is smaller than the distance between the second optical power adjustable photosplitter and the first optical module, the splitting ratio corresponding to the second output port of the first optical power adjustable photosplitter is smaller than the splitting ratio corresponding to the second output port of the second optical power adjustable photosplitter.
  • FIG1 is a diagram showing an example structure of an existing optical communication system
  • FIG2 is a diagram showing an example structure of an embodiment of an optical communication system provided by the present application.
  • FIG3 is a diagram showing another exemplary structure of an optical communication system provided by the present application.
  • FIG4 is a diagram showing an overall structure of an embodiment of an optical power adjustable photosplitter provided by the present application.
  • FIG5 is a top view of the structure of the optical power adjustable photosplitter shown in FIG4;
  • FIG6 is a cross-sectional structural example diagram of the optical power adjustable photosplitter shown in FIG4;
  • FIG7 is a structural diagram of another embodiment of the optical power adjustable photosplitter provided by the present application.
  • FIG8 is a structural diagram of another embodiment of the optical power adjustable photosplitter provided in the present application.
  • FIG9 is a structural diagram of another embodiment of an optical communication system provided by the present application.
  • FIG10 is a diagram showing another exemplary structure of an optical communication system provided by the present application.
  • FIG11 is a structural diagram of another embodiment of the optical power adjustable photosplitter provided in the present application.
  • FIG12 is a diagram showing an exemplary structure of an embodiment of an AP provided in the present application.
  • FIG. 13 is a diagram showing an exemplary structure of a phased array radar according to an embodiment of the present application.
  • FIG1 is a structural example diagram of an existing optical communication system.
  • the optical communication system 100 includes a plurality of fixed optical power splitters. Taking the fixed optical power splitter 102 as an example, the input port of the fixed optical power splitter 102 is connected to the CP101, and the first output port and the second output port of the fixed optical power splitter 102 are respectively connected to the fixed optical power splitter 103 and the AP104, and so on. It can be understood that each AP transmits signals to and from the CP101 through one or more fixed optical power splitters.
  • Each fixed optical power splitter shown in FIG1 means that the splitting ratio corresponding to each output port of the splitter is fixed.
  • the optical power splitter 102 is an equal-ratio splitter, then the splitting ratio of each output port of the optical power splitter 102 is 50%, indicating that the optical powers of the two output ports of the fixed optical power splitter 102 are the same.
  • the optical power sent by CP101 to the input port of the fixed optical power splitter 102 is P milliwatts (mw), then the optical powers output by the first output port and the second output port of the fixed optical power splitter 102 are both P/2.
  • the fixed optical power splitter 103 is also an equal-ratio splitter, then the optical powers output by the first output port and the second output port of the fixed optical power splitter 103 are both P/4.
  • the optical power received by the AP close to CP101 will be greater than the optical power received by the AP far away from CP101.
  • a new fixed optical power splitter 105 will be connected to the optical communication system, and a new AP107 will be connected to the second output port of the new fixed optical power splitter 105, so that as the number of added APs increases, the optical power received by the new AP becomes lower and lower.
  • the optical power received by AP104 is P/2
  • the optical power received by AP106 is P/4
  • the optical power received by the newly added AP107 is P/8.
  • the optical power received by AP cannot be too low. Too low optical power will cause the laser included in the AP to fail to detect successfully, and then fail to successfully perform photoelectric conversion, thereby limiting the number of APs included in the optical communication system 100.
  • the present application provides an optical power adjustable photosplitter, which can realize dynamic and flexible adjustment of the optical power of the output port of the optical power adjustable photosplitter.
  • the number of APs can be effectively increased, thereby enabling the optical power adjustable photosplitter provided by the present application to adapt to the needs of flexible networking of the optical communication system.
  • FIG. 2 is a schematic diagram of the present application.
  • An example structure diagram of an embodiment of an optical communication system is provided.
  • the networking type of the optical communication system shown in FIG2 is a chain networking as an example.
  • the optical communication system 200 includes CP201 and a plurality of APs connected to CP201 in sequence. This embodiment does not limit the number of APs connected to CP201.
  • AP202 and AP203 are connected to CP201 in sequence.
  • CP201 includes a CP side device 211 and a first optical module 212 connected to the CP side device 211.
  • the CP side device 211 may be a switch (for example, a core layer switch, a layer 2 switch) or a router, etc.
  • the first optical module 212 may be directly inserted into the CP side device 211, or it may be integrated with the CP side device 211.
  • the AP202 directly connected to CP201 includes an optical power adjustable optical combiner 213, and the input port of the optical power adjustable optical combiner 213 is connected to the first optical module 212.
  • the first output port of the optical power adjustable photosplitter 213 is connected to AP203, and the second output port of the optical power adjustable photosplitter 213 is connected to the AP side device 215.
  • the second optical module 214 can be directly inserted into the AP side device 215, and can also be integrated with the AP side device 215.
  • the optical power adjustable photosplitter and the second optical module 214 shown in this embodiment can be two separate optical devices in AP202.
  • the optical power adjustable photosplitter 213 can also be located in the second optical module 214, and the specific details are not limited.
  • the first output port of the adjustable splitter 213 is connected to the input port of the optical power adjustable photosplitter 216 included in AP203.
  • the CP side device 211 and/or the first optical module 212 in CP201 shown in Figure 2 can establish a channel for communication between CP201 and AP202 with the second optical module 214 and/or the AP side device 215 in AP202, without requiring multiple access devices such as optical line terminals (OLT) to participate in the process of establishing the channel.
  • OLT optical line terminals
  • This embodiment does not limit the network to which the optical communication system 200 is applied.
  • the CP may be an optical line terminal OLT
  • the AP may be an optical network unit (ONU) or an optical network terminal (ONT).
  • OTN optical transport network
  • the CP and AP may both be OTN devices.
  • FIG3 is a structural example diagram of another embodiment of the optical communication system provided in the present application.
  • the optical communication system 300 shown in FIG3 includes a CP303 and a plurality of APs connected in sequence to the CP303, and the CP303 and the plurality of APs are in a state of series connection.
  • This embodiment does not limit the number of APs connected in sequence included in the optical communication system 300, and the plurality of APs connected in sequence include a first AP301 and a last AP302.
  • the first AP301 and the last AP302 are both connected to CP303.
  • the structure of the CP and AP shown in FIG3 can be found in FIG2, and will not be described in detail.
  • the above description of the networking type of the optical communication system is an optional example and is not limited.
  • the optical communication system provided in the present application can also be a tree-shaped network or any type of network.
  • FIG4 is an overall structural example diagram of an embodiment of the optical power adjustable photosynthesizer provided in the present application.
  • the optical power adjustable photosynthesizer 400 includes a substrate 401 and an optical waveguide layer 402 grown on the surface of the substrate 401.
  • the material constituting the optical waveguide layer 402 is lithium niobate as an example.
  • the optical waveguide layer 402 can also be constituted by silicon (Si), silicon nitride ( Si3N4 ), diammonium phosphate ( NH4H2PO4 ) or niobate crystals.
  • An electrode 403 is grown on the surface of the optical waveguide layer 402.
  • the electrode 403 shown in this embodiment is made of any conductive metal.
  • the electrode 403 is made of metal copper (Au) or metal aluminum (Al).
  • the substrate 401 shown in this embodiment may also be referred to as a substrate or a dielectric layer, etc., without specific limitation.
  • the optical waveguide layer 402 is formed into an optical waveguide component by an etching process, etc., and the electrode 403 is connected to the optical waveguide component.
  • the optical waveguide component specifically includes an input port 411, a first output port 412, and a second output port 413.
  • the input port 411 is used to receive optical power
  • the electrode 403 is used to send a target voltage to the optical waveguide component, and the target voltage is used to tune the optical power of the first output port 412 and the optical power of the second output port 413.
  • the optical power adjustable photosplitter shown in this embodiment is an active photosplitter, and the electrode 403 can achieve the purpose of tuning the optical power of the first output port 412 and the optical power of the second output port 413 by changing the voltage value of the target voltage sent to the optical waveguide component.
  • the optical power of the output port of the optical power adjustable photosplitter can be adjusted according to the number of APs included in the optical communication system. For example, as shown in Figure 2, if the optical communication system only includes CP201 and AP202 connected to CP201, the splitting ratio corresponding to the first output port of the optical power adjustable photosplitter 213 is K1%.
  • the splitting ratio corresponding to the first output port of the optical power adjustable photosplitter 213 is adjusted to K2%, and K1% ⁇ K2%. It can be understood that if a new AP203 is added, by increasing the splitting ratio corresponding to the first output port of the optical power adjustable optical combiner 213, a sufficiently large optical power can be sent to the newly added AP203, so as to ensure that the newly added AP203 can receive a sufficiently large optical power from the first output port of the optical power adjustable optical combiner 213, so as to ensure that the newly added AP203 can receive a sufficiently large optical power from the first output port of the optical power adjustable optical combiner 213. Normal communication between the AP203 and CP201 is provided.
  • the optical power of the output port of the optical power adjustable photosplitter shown in this embodiment is adjustable, the number of APs that can be included in the optical communication system is increased, avoiding the disadvantage that the number of APs included in the optical communication system is limited.
  • the optical power of the second output port of each optical power adjustable photosplitter is independently tuned by the target voltage to ensure that different second optical modules can receive equal or approximately equal optical powers, thereby maximizing the number of APs connected to the optical communication system.
  • the electrode 403 shown in this embodiment tunes the optical power of each output port through a target voltage to achieve the purpose of tuning the optical power by electrical control.
  • the optical communication system includes multiple optical power adjustable photosplitters, the difficulty of tuning the optical power of each output port of each optical power adjustable photosplitter is effectively reduced, and the efficiency of tuning the optical power of each output port is improved.
  • the specific structure of the optical power adjustable photosplitter is described in conjunction with Figures 4 to 6, wherein Figure 5 is an example diagram of the top view structure of the optical power adjustable photosplitter shown in Figure 4, and Figure 6 is an example diagram of the cross-sectional structure of the optical power adjustable photosplitter shown in Figure 4.
  • the optical waveguide assembly shown in this embodiment specifically includes a first optical waveguide arm 501 and a second optical waveguide arm 502, and the first optical waveguide arm 501 and the second optical waveguide arm 502 constitute a Mach-Zehnder interferometer (MZI) structure.
  • MZI Mach-Zehnder interferometer
  • the cross-sectional view shown in Figure 6 is a cross-sectional image obtained by cutting the optical power adjustable photosplitter 400 shown in Figure 4 through the section 500.
  • the optical signal transmitted by the first optical waveguide arm 501 and the optical signal transmitted by the second optical waveguide arm 502 are both perpendicular to the section 500.
  • the first optical waveguide arm 501 is connected to the input port 411 and the first output port 412
  • the second optical waveguide arm 502 is connected to the second output port 413.
  • the first optical waveguide arm 501 has a first slab area 503 on both sides
  • the second optical waveguide arm 502 has a second slab area 504 on both sides.
  • the first optical waveguide arm 501 and the first slab area 503 on both sides of the first optical waveguide arm 501 form a PN junction
  • the second optical waveguide arm 502 and the second slab area 504 on both sides of the second optical waveguide arm 502 form a PN junction.
  • the areas where the first optical waveguide arm 501 and the second optical waveguide arm 502 are close to each other form a first optical coupler 521 and a second optical coupler 522, respectively.
  • the first optical coupler 521 is close to the input port 411
  • the second optical coupler 522 is close to the first output port 412 and the second output port 413.
  • the electrodes shown in this embodiment specifically include a pair of electrodes 403 and electrodes 404, the electrode 403 is connected to the first optical waveguide arm 501, the electrode 404 is connected to the second optical waveguide arm 502, and the first voltage sent by the electrode 403 to the first optical waveguide arm 501 and the second voltage sent by the electrode 404 to the second optical waveguide arm 502 constitute a target voltage, which is a differential voltage.
  • a target voltage which is a differential voltage.
  • the first optical coupler 521 is used to split the optical power from the input port 521 to obtain the first optical power and the second optical power, and the first optical power and the second optical power are respectively input into the first optical waveguide arm 501 and the second optical waveguide arm 502.
  • the target voltage is used to change the arm length difference between the first optical waveguide arm 501 and the second optical waveguide arm 502
  • the second optical coupler 522 is used to interfere with the first optical power and the second optical power according to the arm length difference to tune the optical power of the first output port 412 and the optical power of the second output port 413.
  • the change of the arm length difference can enable the second optical coupler 522 to redistribute the first optical power and the second optical power to achieve the purpose of tuning the optical power of the first output port and the optical power of the second output port.
  • the description of the electrodes shown in FIG. 4 to FIG. 6 is an optional example and is not limited, as long as the target voltage sent by the electrode to the optical waveguide component can change the arm length difference between the first optical waveguide arm 501 and the second optical waveguide arm 502, thereby tuning the optical power of the first output port 412 and the optical power of the second output port 413.
  • the electrode connected to the first optical waveguide arm 501 shown in this embodiment can be a ground-signal-ground (GSG) electrode structure, and the two G electrodes in the GSG electrode are respectively connected to the first flat plate area located on both sides of the first optical waveguide arm 501, and the S electrode is connected to the first optical waveguide arm 501.
  • GSG ground-signal-ground
  • the electrode can be a GS electrode, and the S electrode and the G electrode are connected to two different flat plate areas, such as the S electrode is connected to a first flat plate area, and the G electrode is connected to a second flat plate area.
  • the optical power adjustable photosynthesizer provided in the present application can also detect and shut down abnormal APs, as shown in FIG. 7 , for example.
  • FIG. 7 is a structural example diagram of another embodiment of the optical power adjustable photosynthesizer provided in the present application.
  • AP701 is connected between CP700 and AP702. This example takes the direct connection between AP701 and CP700 as an example. In other examples, one or more APs can be connected between AP701 and CP700. The specific example is not limited.
  • AP701 includes an optical power adjustable optical combiner 710. The input port of the optical power adjustable optical combiner 710 is connected to CP700, the first output port is connected to AP702, and the second output port is connected to the second optical module. connection.
  • the optical power adjustable photosplitter 710 includes a first optical waveguide arm 711, a second optical waveguide arm 712, and an electrode. In this embodiment, the electrode is a pair of differential electrodes 713 as an example.
  • the electrode 713 is connected to the AP side device and is used to receive the target voltage from the AP side device.
  • the first output port of the optical power adjustable photosplitter 710 obtains the first uplink optical power from AP702.
  • the target voltage sent by the electrode 713 to the optical waveguide component 710 can change the arm length difference between the first optical waveguide arm 711 and the second optical waveguide arm 712, and then split the first uplink optical power into the second uplink optical power and the detection optical power, wherein the detection optical power may be less than the second uplink optical power.
  • the second optical waveguide arm 712 is connected to the detection port 714, the second uplink optical power is output via the input port of the first optical waveguide arm 711, and the detection optical power is output via the detection port 714.
  • the AP 701 further includes a photodetector 715, which can receive the detection optical power from the detection port 714.
  • the photodetector 715 is mounted on the detection port 714, so that the detection optical power from the detection port 714 can be coupled into the photodetector 715 by evanescent wave.
  • the evanescent wave can also be called an evanescent wave, an evanescent wave or an invisible wave, which refers to an electromagnetic wave generated on one side of the optically sparse medium by total reflection when the detection optical power is incident from an optically dense medium (i.e., the detection port) to an optically sparse medium (i.e., the space between the detection port and the photodetector 715).
  • the photodetector 715 can perform photoelectric conversion on the detection optical power to obtain a detection electrical signal, and the photodetector 715 sends the detection electrical signal to the AP side device to detect whether the receiving end of the first output port is in an abnormal state.
  • the receiving end of the first output port is in an abnormal state, it means that AP702 is in an abnormal light-emitting state. If the AP side device determines that the receiving end of the first output port is in an abnormal state, the AP side device tunes the optical power of the first output port to zero by changing the target voltage sent to the electrode 713, so that AP702 in the abnormal light-emitting state cannot send an abnormal uplink optical signal to AP701.
  • This embodiment takes the detection optical power as an example of splitting the uplink optical power (emitted by the AP and transmitted to the CP) via the optical power adjustable photosplitter 710.
  • the detection optical power can also be split by the downlink optical power (emitted by the CP and transmitted to the AP) via the optical power adjustable photosplitter 710.
  • any output port can be connected to the detection port.
  • the specific detection process please refer to the detection process shown in Figure 7, and the details will not be repeated.
  • CP700 sends a time slot indication message to AP702 via AP701, and the time slot indication message is used to indicate the target time slot assigned to AP702, and the AP side device stores the time slot indication message.
  • the first uplink optical power sent by AP702 to the optical power adjustable photosplitter 710 carries the identification of AP702.
  • the AP side device determines whether the time slot used by AP702 to send the first uplink optical power is the target time slot allocated by CP700 based on the pre-stored time slot indication message and the identification of AP702 carried by the detection electrical signal.
  • the AP side device tunes the optical power of the first output port to zero by sending a target voltage to electrode 713, so that AP702 in the abnormal light-emitting state cannot send an abnormal uplink optical signal to AP701, thereby ensuring that AP702 in the abnormal light-emitting state will not interfere with the normal light-emitting of other APs.
  • the AP-side device included in the AP sends a target voltage to the electrode.
  • the AP-side device includes a second controller and a second power supply, and the second controller is used to send the target voltage from the second power supply to the electrode of the optical power adjustable photosplitter.
  • the functions of the second controller can be partially or completely implemented by hardware.
  • the second controller shown in this embodiment can be one or more chips, or one or more integrated circuits.
  • the second controller can be one or more optical digital signal processing (oDSP) chips, field-programmable gate arrays (FPGA), application specific integrated circuits (ASIC), system on chip (SoC), central processor unit (CPU), network processor (NP), digital signal processing circuit (DSP), microcontroller unit (MCU), programmable logic device (PLD) or other integrated chips, or any combination of the above chips or controllers.
  • oDSP optical digital signal processing
  • FPGA field-programmable gate arrays
  • ASIC application specific integrated circuits
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • the second controller shown in this embodiment has pre-stored a configuration list as shown in Table 1:
  • the configuration list includes the correspondence between different splitting ratios corresponding to the output ports and the voltage values of the target voltage.
  • the second controller obtains the voltage value of the corresponding target voltage as V2 by querying the configuration list shown in Table 1. The second controller then sends a target voltage with a voltage value of V2 to the electrode, so that the first output port corresponds to a first splitting ratio of 40%, and the second output port corresponds to a second splitting ratio of 60%.
  • the configuration list shown in this embodiment can create a correspondence between the optical power and the voltage value of each output port of the optical power adjustable photosplitter, so as to ensure that the second controller can flexibly adjust the optical power of each output port according to the configuration list.
  • the number of APs connected to the CP can be increased.
  • AP202 is closest to CP201.
  • AP202 adjusts the second splitting ratio corresponding to the second output port of the second optical module used to connect to AP202 as small as possible, so that more optical power can be transmitted to the downstream AP (such as AP203) via the first output port.
  • the second controller can adjust the second splitting ratio corresponding to the second output port to 20%, and adjust the first splitting ratio corresponding to the first output port to 80%.
  • the second controller obtains the corresponding voltage value VN by querying the configuration list shown in Table 1, and the second controller can send the target voltage with VN to the electrode.
  • the second splitting ratio corresponding to the second output port of the AP can be adjusted to 70%, so that even if the AP is far from CP201, the second output port of the AP can send a sufficiently large optical power to the second optical module of the AP, ensuring that the AP far from CP201 can communicate normally with CP201.
  • it can be ensured that the output optical powers of the second output ports of different APs are equal or approximately equal.
  • the second splitting ratio corresponding to the second output port of the optical power adjustable photosplitter included in the AP is positively correlated with the distance between the AP and the CP. That is, if the AP is closer to the CP, the second splitting ratio corresponding to the second output port of the optical power adjustable photosplitter is smaller, so as to ensure that the AP closer to the CP can obtain less optical power from the CP.
  • the second splitting ratio corresponding to the second output port of the optical power adjustable photosplitter of the AP is larger, so as to ensure that the AP farther away from the CP can obtain sufficiently large optical power from the CP, so as to ensure that the AP can communicate normally with the main CP.
  • the existing solution shown in FIG1 also has a drawback, that is, if the fixed optical power splitter included in the optical communication system 100 is an unequal-ratio splitter, the unequal-ratio splitter will cause the optical power received by the CP to fluctuate greatly in different time periods. For example, in the first time period, the uplink optical power from AP106 is transmitted to CP101 via the fixed optical power splitter 103 and the fixed optical power splitter 102 in turn, and in the second time period, the uplink optical power from AP104 is transmitted to CP101 via the fixed optical power splitter 102.
  • the fixed optical power splitter 103 and the fixed optical power splitter 102 are both unequal-ratio splitters, the uplink optical power received by CP101 in the first time period and the uplink optical power received in the second time period fluctuate greatly, and the optical module of CP101 needs to improve the sensitivity of processing the uplink optical power, which will cause the gain of the optical module to be very large.
  • the configuration of the configuration list (e.g., Table 1) shown in this embodiment can dynamically adjust the splitting ratio corresponding to each output port of the optical power adjustable optical combiner as needed. That is, by tuning the first splitting ratio corresponding to the first output port of each optical power adjustable optical combiner and the second splitting ratio corresponding to the second output port, the uplink optical power received by the CP is in a balanced state in different time periods. Then, the optical module included in the CP for receiving the uplink optical power does not need to have a strong sensitivity, which effectively reduces the gain of the CP's optical module in processing the uplink optical power from each AP.
  • the optical communication system shown in this embodiment may also include a network management device, which is connected to each AP so that the network management device can configure or dynamically adjust the configuration list of each AP, so as to remotely tune the optical power of the output port of the optical power adjustable optical combiner/splitter.
  • the network management device can store the splitting ratios of different optical power adjustable optical combiners/splitters to facilitate the operation and maintenance of the optical communication system.
  • the optical power adjustable photosynthesizer shown in this embodiment can also achieve power-off protection.
  • the structure of the adjustable photosynthesizer can be seen in Figures 2 to 7, and the details are not repeated here.
  • the first optical waveguide arm and the second optical waveguide arm of the optical power adjustable photosynthesizer shown in this embodiment are respectively made of phase change material (PCM phase change material).
  • Phase change material is a material that can keep the temperature constant and thus keep the material state constant. That is, when the target voltage from the electrode is applied to the first optical waveguide arm and the second optical waveguide arm, there is an arm length difference between the first optical waveguide arm and the second optical waveguide arm.
  • the first optical waveguide arm and the second optical waveguide arm are made of phase material, even if the target voltage is powered off, the first optical waveguide arm and the second optical waveguide arm will maintain the arm length difference unchanged, so that the optical power adjustable photosynthesizer can continue to tune the optical power of the first output port and the optical power of the second output port according to the arm length difference, thereby achieving power-off protection for the optical power adjustable photosynthesizer.
  • the above embodiment takes the optical power adjustable photosplitter having two output ports as an example, and the optical power adjustable photosplitter provided in this embodiment may have any number of output ports more than two. See Figure 8, where Figure 8 is another embodiment structure example diagram of the optical power adjustable photosplitter provided in this application.
  • the optical power adjustable photosplitter 800 shown in this embodiment includes a first optical waveguide component 810 and a first electrode connected to the first optical waveguide component 810.
  • the optical power adjustable photosplitter 800 also includes a second optical waveguide component 820 and a second electrode connected to the second optical waveguide component 820.
  • first optical waveguide component 810, the second optical waveguide component 820, the first electrode and the second electrode please refer to the description of the optical power adjustable photosplitter structure shown in Figures 2 to 7, and the specific details are not repeated.
  • the input port 813 of the first optical waveguide component 810 shown in this embodiment is used to receive optical power, and the first optical waveguide arm 811 and the second optical waveguide arm 812 of the first optical waveguide component 810 are used to split the optical power to obtain a first target optical power and a second target optical power.
  • the second target optical power is output from the second output port 831 of the first optical waveguide component 810 , and the second output port 831 serves as an output port of the optical power adjustable optical combiner 800 .
  • the first output port 814 included in the first optical waveguide component 810 is connected to the input port 821 of the second optical waveguide component 820. It can be understood that the first target optical power output from the first output port 814 is used as the input of the second optical waveguide component 820 for splitting. That is, the first target optical power is input to the second optical waveguide component 820 via the input port 821.
  • the first optical waveguide arm 822 and the second optical waveguide arm 823 of the second optical waveguide component 820 are used to split the first target optical power to obtain the third target optical power and the fourth target optical power.
  • the splitting of the second optical waveguide component 820 please refer to the description of the splitting of the optical waveguide component described in the above embodiment, and the details will not be repeated.
  • the third target optical power is output from the first output port 832 of the second optical waveguide component 820
  • the fourth target optical power is output from the second output port 833 of the second optical waveguide component 820.
  • the first output port 832 and the second output port 833 serve as two output ports of the optical power adjustable photosplitter 800. It can be understood that the optical power adjustable photosplitter 800 shown in this embodiment has one input port 813 and three output ports (ie, the second output port 831 , the first output port 832 , and the second output port 833 ).
  • This embodiment does not limit the number of output ports included in the optical power adjustable photosplitter.
  • multiple output ports can be connected in sequence to achieve this.
  • the specific implementation method please refer to the description of Figure 8, and the details will not be repeated here.
  • one or more output ports of the optical power adjustable photosplitter can be reserved and not used for networking.
  • the newly added AP can be connected to the reserved output port of the optical power adjustable photosplitter, and the optical power of the reserved output port can be tuned by the target voltage to ensure that the newly added AP can receive a sufficiently large optical power from the reserved output port, so that the newly added AP can perform normal optical signal transmission in the optical communication system. It can be seen that the use of the optical power adjustable photosplitter shown in this embodiment can improve the flexibility of networking of the optical communication system.
  • the above embodiment takes the example that the AP includes an optical power adjustable photosplitter.
  • the optical power adjustable photosplitter and the AP can be separately set, as shown in Figure 9, wherein Figure 9 is another embodiment structure example diagram of the optical communication system provided by the present application.
  • the example shown in Figure 9 takes the networking type of the optical communication system as a chain networking as an example.
  • the optical communication system 900 includes CP901 and a plurality of optical power adjustable photosplitters connected to CP901 in sequence. This embodiment does not limit the number of optical power adjustable splitters included in the optical communication system 900.
  • Each optical power adjustable photosplitter includes an input port, a first output port, and a second output port.
  • each optical power adjustable photosplitter For the description of the structure of each optical power adjustable photosplitter, please refer to the above embodiment, and the details will not be repeated.
  • This embodiment takes the example that CP901, an optical power adjustable photosplitter 902, an optical power adjustable photosplitter 903, and an optical power adjustable photosplitter 904 are connected in sequence.
  • the optical power adjustable optical combiner 902 includes an input port, a first output port and a second output port, wherein the input port is connected to CP901, the first output port is connected to the optical power adjustable optical combiner 903, and the second output port is connected to AP911.
  • the connection between other optical power adjustable optical combiners and APs included in the optical communication system please refer to the description of the connection between the optical power adjustable optical combiner 902 and AP911. The details are clear and will not be elaborated on here.
  • the optical communication system can also be a ring network, as shown in FIG10, wherein FIG10 is another embodiment of the optical communication system provided in the present application.
  • the optical communication system shown in this embodiment is a ring network
  • the optical communication system 1000 shown in FIG10 includes a plurality of optical power adjustable photosplitters connected in sequence by CP1001, and CP1001 and the plurality of optical power adjustable photosplitters are connected in series to form a ring network.
  • the plurality of optical power adjustable photosplitters connected in sequence include a first optical power adjustable photosplitter 1002 and a last optical power adjustable photosplitter 1003, wherein the first optical power adjustable photosplitter 1002 and the last optical power adjustable photosplitter 1003 are both connected to the core node 1001.
  • the optical power adjustable photosplitter 1002 has an input port, a first output port and a second output port, wherein the input port is connected to CP1001, the second output port is connected to AP1011, and the first output port is connected to the optical power adjustable photosplitter 1004.
  • connection of other optical power adjustable photosplitters and APs included in the optical communication system please refer to the description of the connection of the optical power adjustable photosplitter 1002 and AP1011, and the details are not repeated here.
  • This embodiment does not limit the networking type of the optical communication system in the scenario where the optical power adjustable photosplitter and AP are separately set.
  • the optical communication system can also be a tree-shaped network or any type of network.
  • FIG11 is a structural example diagram of another embodiment of the optical power adjustable photosynthesizer provided in the present application.
  • the optical power adjustable photosplitter 1100 shown in this embodiment includes a first power supply 1101, a first controller 1102, an electrode 1103 and an optical waveguide component 1104.
  • the first power supply 1101, the first controller 1102 and the electrode 1103 are connected in sequence, and the electrode 1103 is connected to the optical waveguide component 1104.
  • the structure of the electrode 1103 and the optical waveguide component 1104 please refer to the above embodiment, and the specific details will not be repeated.
  • the optical power adjustable photosplitter 1100 is independently provided with a first power supply 1101 and a first controller 1102.
  • the first controller 1102 can obtain a target voltage from the first power supply 1101 and send the target voltage to the electrode 1103, so that the optical waveguide component 1104 can perform light splitting according to the target voltage.
  • the target voltage and the light splitting process according to the target voltage please refer to the above embodiment, and the details will not be repeated.
  • the first controller 1102 please refer to the above description of the second controller, and the details will not be repeated.
  • the optical power adjustable optical combiner 1100 can be provided on an optical distribution frame (ODF).
  • ODF optical distribution frame
  • the ODF can be provided with multiple optical power adjustable optical combiners, and the ODF can also be provided with a first power supply and a first controller, and the multiple optical power adjustable optical combiners provided on the ODF share the first power supply and the first controller of the ODF.
  • the present application also provides an AP, the structure of which can be seen in the description shown in FIG2 , and the details are not repeated here.
  • the present application provides another AP, which includes an optical module and an AP side device, wherein the optical module includes an optical power adjustable optical combiner, so that the optical module has the functions of splitting and combining light. See FIG12, where FIG12 is an example diagram of the structure of an embodiment of the AP provided by the present application.
  • the AP1200 shown in this embodiment includes an optical module 1201 and an AP side device 1202 connected to the optical module 1201.
  • the optical module 1201 includes an optical power adjustable optical combiner 1211, and the optical power adjustable optical combiner 1211 has an input port, a first output port, and a second output port, wherein the input port can be connected to a CP or an AP, the first output port is connected to an AP or a CP, and the input port and the first output port can be connected according to the networking type, and the second output port is connected to a laser 1212 and a diode 1213.
  • the AP side device 1202 is connected to the optical power adjustable photosynthesizer 1211 to send a target voltage to the electrode of the optical power adjustable photosynthesizer 1211.
  • the optical module 1201 may also include a control chip, which is connected to the electrode of the optical power adjustable photosynthesizer 1200 and is used to send a target voltage to the electrode.
  • a control chip type please refer to the description of the second controller type shown in FIG. 7, which will not be described in detail.
  • the laser 1212 is connected to the AP side device 1202, and an amplifier 1214 may also be connected between the diode 1213 and the AP side device 1202.
  • the optical power adjustable photosplitter 1211 splits the optical power to obtain optical power output from the first output port and optical power output from the third output port.
  • the optical power of the first output port of the optical power adjustable photosplitter 1211 is sent to the connected AP or CP.
  • the optical power of the third output port of the optical power adjustable photosplitter 1211 is input to the diode 1213, and the diode 1213 is used to perform photoelectric conversion on the optical power from the third output port to obtain a service electrical signal, and send it to the amplifier 1214.
  • the diode 1213 can be an avalanche photodiode (APD) and the like for performing
  • the amplifier 1214 may be a trans-impedance amplifier (TIA).
  • the amplifier 1214 is used to amplify the power of the service electrical signal to obtain an amplified service electrical signal, and send the amplified service electrical signal to the AP side device 1202 so that the AP side device 1202 processes the amplified service electrical signal.
  • the AP side device 1202 sends a service electrical signal to the laser 1212
  • the laser 1212 is used to perform electrical-optical conversion on the service electrical signal from the AP side device 1202 to obtain service optical power
  • the laser 1212 sends the service optical power to the second output port of the optical power adjustable optical combiner/splitter 1211.
  • the optical power adjustable optical combiner/splitter 1211 combines the optical power from the first output port and the service optical power from the laser 1212 to obtain output optical power, and outputs it from the input port of the optical power adjustable optical combiner/splitter 1211.
  • the present application also provides a phased array radar, as shown in FIG13, wherein FIG13 is an example diagram of the structure of an embodiment of the phased array radar provided by the present application.
  • the phased array radar 1300 shown in this embodiment includes a laser 1301, an optical power adjustable photosplitter 1302 connected to the laser 1301, and multiple transmission paths 1303 connected to the optical power adjustable photosplitter 1302.
  • the input port of the optical power adjustable photosplitter 1302 is connected to the laser 1301, and each output port of the optical power adjustable photosplitter 1302 is connected to a transmission path 1303, and the transmission path 1303 can be a section of optical fiber.
  • the structure of the optical power adjustable photosplitter 1302 please refer to the above embodiment, and the specific details will not be repeated.
  • the laser 1301 is used to send a detection optical signal to the optical power adjustable photosynthesizer 1302, and the optical power adjustable photosynthesizer 1302 is used to split the detection optical signal to obtain multiple detection beams, and the multiple detection beams are emitted through multiple transmission paths 1303.
  • each transmission path 1303 is used to phase modulate a detection beam to change the phase of the detection beam, thereby changing the directional angle of each detection beam, and each detection beam is emitted from the transmission path 1303 according to the directional angle to achieve spatial scanning.
  • the optical power of each detection beam can be adjusted by adjusting the target voltage loaded on the electrode of the optical power adjustable photosynthesizer 1302, thereby achieving the same optical power after delay of different detection beams through different transmission paths 1303. It can be understood that this embodiment ensures that the optical power emitted from different transmission paths 1303 is the same, so as to reduce the distortion of the detection beam scanning and improve the scanning accuracy of the phased array radar 1300.
  • the present application also provides a vehicle, which includes a phased array radar as shown in FIG13.
  • the vehicle shown in this embodiment can be an unmanned car, a car, a truck, a motorcycle, a bus, a ship, an airplane, a helicopter, a lawn mower, an amusement vehicle, an amusement park vehicle, construction equipment, a tram and a train, etc., which are not limited in the present application.
  • the present application does not limit the object including the optical power adjustable photosplitter 1302, for example, a drone, a robot or a smart home appliance.
  • the vehicle provided in the present application includes an automatic driving system.
  • the automatic driving system may be an advanced driving assistance system (ADAS), etc.
  • ADAS advanced driving assistance system
  • the automatic driving system includes a phased array radar 1300 as shown in FIG. 13 for scanning an object to be measured, and the object to be measured may be other vehicles, road conditions, pedestrians, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例公开了一种光功率可调光合分器、相关设备以及系统,其能够实现对光功率可调光合分器的各输出端口的光功率的灵活调谐,适应光通信系统灵活组网的需求。所述光功率可调光合分器包括电极以及与所述电极连接的光波导组件;所述光波导组件包括输入端口、第一输出端口和第二输出端口,所述输入端口用于接收光功率,所述电极用于向所述光波导组件发送目标电压,所述目标电压用于对所述第一输出端口的光功率和所述第二输出端口的光功率进行调谐。

Description

一种光功率可调光合分器、相关设备以及系统
本申请要求于2022年10月09日提交中国国家知识产权局、申请号为202211226927.8、申请名称为“基于F-TDMA的IP和光深度融合的P2MP网络系统”的中国专利申请的优先权,以及要求于2022年12月31日提交中国国家知识产权局、申请号为CN202211739314.4、申请名称为“一种光功率可调光合分器、相关设备以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光功率可调光合分器、相关设备以及系统。
背景技术
光网络的组网类型可为链形组网、环形组网或树形组网等。以链形组网为例,光网络包括核心节点(central point,CP)以及与CP依次连接的多个分光器,每个分光器连接至少一个接入节点(access point,AP)。分光器包括第一输出端口和第二输出端口,第一输出端口可与另一分光器连接,第二输出端口可与AP连接。
已有的分光器输出端口对应的分光比例是固定的,若链形组网串联更多数量的AP,则导致随着新增加AP数量的提升,AP从分光器获得的光功率越低,从而使得链形组网所能接入的AP数量受限。可见,已有分光器每个输出端口对应的分光比例固定,导致分光器无法适用光网络灵活组网的需求。
发明内容
本申请实施例提供了一种光功率可调光合分器、相关设备以及系统,其光功率可调光合分器能够实现对输出端口的光功率的灵活调谐,适应光通信系统灵活组网的需求。
本申请实施例第一方面提供了一种光功率可调光合分器,所述光功率可调光合分器包括电极以及与所述电极连接的光波导组件;所述光波导组件包括输入端口、第一输出端口和第二输出端口,所述输入端口用于接收光功率,所述电极用于向所述光波导组件发送目标电压,所述目标电压用于对所述第一输出端口的光功率和所述第二输出端口的光功率进行调谐。
采用本方面所示的光功率可调光合分器,能够保证与第二输出端口连接的接入节点能够成功接收到光功率,提升了光通信系统所包括的接入节点的数量,而且通过目标电压的方式调谐第一输出端口的光功率和第二输出端口的光功率,有效的提升了调谐光功率的效率,而且通过目标电压调谐光功率可调光合分器,能够灵活的调谐第一输出端口的光功率和第二输出端口的光功率,适应灵活组网的需求。
基于第一方面,一种可选的实现方式中,所述光波导组件包括第一光波导臂和第二光波导臂,所述第一光波导臂连接所述输入端口和所述第一输出端口,所述第二光波导臂连接所述第二输出端口,所述目标电压用于改变所述第一光波导臂和所述第二光波导臂之间的臂长差,所述臂长差用于调谐所述第一输出端口的光功率和所述第二输出端口的光功率。
采用本实现方式,能够实现对各输出端口的光功率的灵活调谐。
基于第一方面,一种可选的实现方式中,所述光功率可调光合分器还包括与所述电极连接的第一控制器,所述第一控制器用于向所述电极发送所述目标电压。
采用本实现方式,光功率可调光合分器包括第一控制器,则光功率可调光合分器可独立于接入节点设备,提高了光通信系统组网的灵活性。而且在环形或链形组网的情况下,即便接入节点出现故障,因光功率可调光合分器的独立工作,保证了环形组网或链形组网的正常工作。
基于第一方面,一种可选的实现方式中,所述第一控制器用于向所述电极发送所述目标电压的过程中,所述第一控制器具体用于根据配置列表向所述电极发送所述目标电压,所述配置列表包括所述第一输出端口的光功率和所述第二输出端口的光功率分别与所述目标电压的电压值的对应关系。
采用本实现方式,通过配置列表获得目标电压,能够保证对第一输出端口的光功率和第二输出端口的光功率调谐的准确性以及提高光功率调谐的效率。
基于第一方面,一种可选的实现方式中,若所述第一输出端口的接收端处于异常状态,则所述电极用于将所述第一输出端口的光功率调谐为零。
采用本实现方式,能够及时关断处于异常状态的第一输出端口,避免第一输出端口的接收端处于接 收光信号的状态而对其他接入节点的发光造成干扰。
基于第一方面,一种可选的实现方式中,所述第一光波导臂和所述第二光波导臂分别由相变材料制成,所述第一光波导臂和所述第二光波导臂用于存储来自所述电极的热量,所述热量用于保持所述第一光波导臂和所述第二光波导臂之间的臂长差。
采用本实现方式,因第一光波导臂和第二光波导臂由相位材料制成,则导致即便目标电压出现掉电的情况,第一光波导臂和第二光波导臂会维持臂长差不变,进而使得光功率可调光合分器还能够继续按照该臂长差调谐第一输出端口的光功率以及第二输出端口的光功率,实现了对光功率可调光合分器的掉电保护。
基于第一方面,一种可选的实现方式中,所述光功率可调光合分器还包括与所述第一控制器连接的第一供电电源,所述第一控制器用于将来自所述第一供电电源的所述目标电压发送至所述电极。
采用本实现方式,光功率可调光合分器包括第一供电电源,则光功率可调光合分器可独立于接入节点设备,提高了光通信系统组网的灵活性。而且在环形或链形组网的情况下,即便接入节点出现故障,因光功率可调光合分器的独立工作,保证了环形组网或链形组网的正常工作。
基于第一方面,一种可选的实现方式中,所述光功率可调光合分器插设于接入节点,所述接入节点包括第二控制器以及与所述第二控制器连接的第二供电电源,所述第二控制器还与所述电极连接,所述第二控制器用于将来自所述第二供电电源的所述目标电压发送至所述电极。
采用本实现方式,光功率可调光合分器可复用接入节点的第二供电电源和第二控制器,无需为光功率可调光合分器配置独立的第二供电电源和第二控制器,降低了光功率可调光合分器的成本。
本申请第二方面提供了一种光模块,所述光模块包括激光器、二极管以及如上述第一方面任一项所述的光功率可调光合分器;所述激光器用于向所述光功率可调光合分器输入光功率,所述二极管用于对来自所述光功率可调光合分器的光功率进行光电转换以获得电信号。
本申请第三方面提供了一种接入节点,所述接入节点包括光模块以及与所述光模块连接的控制器,所述光模块如第二方面所述。
本申请第四方面提供了一种接入节点,所述接入节点包括光功率可调光合分器、光模块以及控制器,所述光模块分别与所述控制器和所述光功率可调光合分器连接,所述光功率可调光合分器如第一方面任一项所述。所述光模块用于对来自所述光功率可调光合分器的第一光信号进行光电转换以获得第一电信号,并用于向所述控制器发送所述第一电信号,或,所述光模块用于对来自所述控制器的第二电信号进行电光转换以获得第二光信号,并用于向所述光功率可调光合分器发送所述第二光信号
本申请第五方面提供了一种相控阵雷达,所述相控阵雷达包括激光器、光功率可调光合分器以及多个发射路径,所述光功率可调光合分器如上述第一方面任一项所述;所述激光器用于向所述光功率可调光合分器发送探测光信号,所述光功率可调光合分器用于对所述探测光信号进行分光以获得多路探测波束,所述多路探测波束中的每路探测波束,经由一个所述发射路径进行相位调制后输出,从不同的所述发射路径出射的光功率相同。
本申请第六方面提供了一种自动驾驶系统,所述自动驾驶系统包括如上述第五方面所述的相控阵雷达。
本申请第七方面提供了一种车辆,所述车辆包括如第六方面所述的自动驾驶系统。
本申请第八方面提供了一种机器人,所述机器人包括如上述第五方面所述的相控阵雷达。
本申请第九方面提供了一种无人机,所述无人机包括如上述第五方面所述的相控阵雷达。
本申请第十方面提供了一种智能家电,所述智能家电包括如上述第五方面所述的相控阵雷达。
本申请第十一方面提供了一种光通信系统,所述光通信系统包括第一光模块、至少一个光功率可调光合分器以及第二光模块,所述至少一个光功率可调光合分器用于连接所述第一光模块和所述第二光模块,所述光功率可调光合分器如上述第一方面任一项所述。
基于第十一方面,一种可选的实现方式中,所述光通信系统至少包括第一光功率可调光合分器和第二光功率可调光合分器,所述第一光功率可调光合分器的第二输出端口用于连接一个所述第二光模块,所述第二光功率可调光合分器的第二输出端口用于连接另一个所述第二光模块;在所述第一光功率可调 光合分器与所述第一光模块之间的距离,小于所述第二光功率可调光合分器与所述第一光模块之间的距离的情况下,所述第一光功率可调光合分器的第二输出端口对应的分光比例小于所述第二光功率可调光合分器的第二输出端口对应的分光比例。
附图说明
图1为已有光通信系统的结构示例图;
图2为本申请提供的光通信系统的一种实施例结构示例图;
图3为本申请提供的光通信系统的另一种实施例结构示例图;
图4为本申请提供的光功率可调光合分器的一种实施例整体结构示例图;
图5为图4所示的光功率可调光合分器的俯视结构示例图;
图6为图4所示的光功率可调光合分器的剖面结构示例图;
图7为本申请提供的光功率可调光合分器的另一种实施例结构示例图;
图8为本申请提供的光功率可调光合分器的又一种实施例结构示例图;
图9为本申请提供的光通信系统的又一种实施例结构示例图;
图10为本申请提供的光通信系统的又一种实施例结构示例图;
图11为本申请提供的光功率可调光合分器的又一种实施例结构示例图;
图12为本申请提供的AP的一种实施例结构示例图;
图13为本申请提供的相控阵雷达的一种实施例结构示例图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
已有的光通信系统的组网类型可为链形组网、环形组网或树形组网等。图1为已有光通信系统的结构示例图。光通信系统100包括多个固定光功率分光器。以固定光功率分光器102为例,固定光功率分光器102的输入端口与CP101连接,固定光功率分光器102的第一输出端口和第二输出端口分别与固定光功率分光器103以及AP104连接,依次类推。可以理解,每个AP通过一个或多个固定光功率分光器,与CP101之间进行信号传输。
图1所示的每个固定光功率分光器是指该分光器的每个输出端口对应的分光比例是固定的,例如,若光功率分光器102是等比分光器,那么,光功率分光器102的每个输出端口的分光比例是50%,说明固定光功率分光器102的两个输出端口的光功率是相同的。具体示例为:CP101发送给固定光功率分光器102的输入端口的光功率为P毫瓦(mw),那么,固定光功率分光器102的第一输出端口以及第二输出端口输出的光功率均为P/2。若固定光功率分光器103也为等比分光器,那么,固定光功率分光器103的第一输出端口以及第二输出端口输出的光功率均为P/4,依次类推,可以理解,当光通信系统应用至园区等场景下,那么,靠近CP101的AP接收到的光功率会大于远离CP101的AP接收到的光功率。若需要在光通信系统100中增设新的AP,则会在光通信系统中连接新的固定光功率分光器105,并在新的固定光功率分光器105的第二输出端口上连接新的AP107,从而使得随着增设的AP数量的提升,导致新AP接收的光功率越来越低。如图1所示的示例,AP104接收到的光功率为P/2,AP106接收到的光功率为P/4,新增加的AP107接收到的光功率为P/8。为保证CP和AP之间信号的正常传输,则AP所接收到的光功率不能过低,过低的光功率会导致AP所包括的激光器无法成功检测到,进而无法成功进行光电转换,从而使得光通信系统100所包括的AP数量受限。
而本申请提供了一种光功率可调光合分器,能够实现动态灵活调节光功率可调光合分器的输出端口的光功率,相对于图1所示的光通信系统,能够有效的增加AP的数量,进而使得本申请提供的光功率可调光合分器能够适应光通信系统灵活组网的需求。
首先参见图2所示对包括光功率可调光合分器的光通信系统的结构进行说明,其中,图2为本申请 提供的光通信系统的一种实施例结构示例图。图2所示的光通信系统的组网类型为链式组网为例。光通信系统200包括CP201以及与CP201依次连接的多个AP。本实施例对于CP201所连接的AP的数量不做限定,例如图2所示与CP201依次连接AP202以及AP203等。CP201包括CP侧设备211以及与CP侧设备211连接的第一光模块212。其中,CP侧设备211可为交换机(例如,核心层交换机、层2交换机)或路由器等。第一光模块212可以直接插设在CP侧设备211上,也可以与CP侧设备211集成于一体。与CP201直接连接的AP202包括光功率可调光合分器213,光功率可调光合分器213的输入端口与第一光模块212连接。光功率可调光合分器213的第一输出端口与AP203连接,光功率可调光合分器213的第二输出端口与AP侧设备215连接。其中,第二光模块214可以直接插设在AP侧设备215上,也可与AP侧设备215集成于一体。本实施例所示的光功率可调光合分器和第二光模块214在AP202中可为分立的两个光器件,在其他示例中,光功率可调光合分器213也可位于第二光模块214之内,具体不做限定。对AP203的结构的说明,请参见对AP202结构的说明,具体不做赘述,可以理解,可调分光器213的第一输出端口与AP203所包括的光功率可调光合分器216的输入端口连接。图2所示的CP201中的CP侧设备211和/或第一光模块212能够和AP202中的第二光模块214和/或AP侧设备215建立用于CP201与AP202通信的信道,不需要光线路终端(optical line terminal,OLT)等多址设备参与建立信道的过程。
本实施例对光通信系统200所应用的网络不做限定,例如,若本实施例所示的光通信系统200应用至无源光网络(passive optical network,PON),则CP可为光线路终端OLT,AP可为光网络单元(optical network unit,ONU)或光网络终端(optical network terminal,ONT)。若光通信系统200应用至光传送网(optical transport network,OTN),则CP和AP可均为OTN设备。
图2所示的光通信系统200为链形组网为例,本申请提供的光功率可调光合分器也可应用至环形组网。图3为本申请提供的光通信系统的另一种实施例结构示例图。图3所示的光通信系统300包括CP303以及与CP303依次连接的多个AP,且CP303和多个AP处于串联连接的状态。本实施例对光通信系统300包括的依次连接的AP的数量不做限定,依次连接的多个AP中包括第一个AP301以及最后一个AP302。第一个AP301以及最后一个AP302均与CP303连接。图3所示的CP以及AP的结构可请参见图2所示,具体不做赘述。上述对光通信系统的组网类型的说明为可选的示例,不做限定,例如,本申请提供的光通信系统还可为树形组网或任意类型的组网。
结合图4所示对光功率可调光合分器的结构进行说明,其中,图4为本申请提供的光功率可调光合分器的一种实施例整体结构示例图。光功率可调光合分器400包括衬底401以及生长于衬底401表面的光波导层402。本实施例以构成光波导层402的材料为铌酸锂为例,在其他示例,还可通过硅(Si)、氮化硅(Si3N4)、磷酸二氢胺(NH4H2PO4)或钮酸锉晶体等构成光波导层402。光波导层402的表面生长有电极403。本实施例所示的电极403由任意导电金属制成,例如,电极403由金属铜(Au)或金属铝(Al)等制成。本实施例所示的衬底401也可称为基板或介质层等,具体不做限定。光波导层402通过刻蚀工艺等形成光波导组件,电极403与光波导组件连接。其中,所述光波导组件具体包括输入端口411、第一输出端口412和第二输出端口413。所述输入端口411用于接收光功率,所述电极403用于向所述光波导组件发送目标电压,所述目标电压用于对所述第一输出端口412的光功率和所述第二输出端口413的光功率进行调谐(tuning)。
本实施例所示的光功率可调光合分器为有源的光合分器,电极403能够通过改变发送至光波导组件的目标电压的电压值大小的方式,实现对所述第一输出端口412的光功率和所述第二输出端口413的光功率进行调谐的目的。例如,通过调谐光功率可调光合分器的输出端口的光功率的方式,能够根据光通信系统所包括的AP的数量对应的调节光功率可调光合分器输出端口的光功率大小。例如图2所示,若光通信系统仅包括CP201以及与CP201连接的AP202,此时光功率可调光合分器213的第一输出端口对应的分光比例是K1%。若需要增设新的AP203,则将光功率可调光合分器213的第一输出端口对应的分光比例调节为K2%,且K1%<K2%。可以理解,若增设新的AP203,则通过增加光功率可调光合分器213的第一输出端口对应的分光比例的情况下,能够使得足够大的光功率能够发送至新增加的AP203,以保证新增设的AP203能够从光功率可调光合分器213的第一输出端口接收到足够大的光功率,以保证新增 设的AP203与CP201的正常通信。可以理解,因本实施例所示的光功率可调光合分器的输出端口的光功率可调,则提升了光通信系统能够包括的AP的数量,避免光通信系统包括的AP数量受限的弊端。在光通信系统包括多个AP的情况下,通过目标电压对每个光功率可调光合分器的第二输出端口的光功率进行独立的调谐,以保证不同的第二光模块能够接收到相等或近似相等的光功率,从而尽可能的提升的光通信系统所接入的AP的数量。
而且,本实施例所示电极403通过目标电压调谐各输出端口的光功率,以实现通过电控的方式调谐光功率的目的,在光通信系统包括多个光功率可调光合分器的情况下,有效的降低了对每个光功率可调光合分器的各输出端口光功率调谐的难度,提高了调谐各输出端口光功率的效率。
结合图4至图6对光功率可调光合分器的具体结构进行说明,其中,图5为图4所示的光功率可调光合分器的俯视结构示例图,图6为图4所示的光功率可调光合分器的剖面结构示例图。本实施例所示的光波导组件具体包括第一光波导臂501和第二光波导臂502,且第一光波导臂501和第二光波导臂502构成马赫-曾德干涉仪(mach-zehnder interferometer,MZI)结构。其中,图6所示的剖面图为通过切面500切割图4所示的光功率可调光合分器400所获取的剖面图像。且第一光波导臂501所传输的光信号和第二光波导臂502所传输的光信号均垂直于切面500。
具体的,第一光波导臂501连接输入端口411以及第一输出端口412,第二光波导臂502连接第二输出端口413。在光波导层402的表面,第一光波导臂501的两侧具有第一平板区503,第二光波导臂502的两侧具有第二平板区504。其中,第一光波导臂501和位于第一光波导臂501两侧的第一平板区503构成PN结(PN junction),第二光波导臂502和位于第二光波导臂502两侧的第二平板区504构成PN结。第一光波导臂501和第二光波导臂502彼此靠近的区域分别形成第一光耦合器521和第二光耦合器522。其中,第一光耦合器521靠近输入端口411,而第二光耦合器522靠近第一输出端口412以及第二输出端口413。
本实施例所示的电极具体包括成对的电极403以及电极404,电极403与第一光波导臂501连接,电极404与第二光波导臂502连接,电极403向第一光波导臂501发送的第一电压和电极404向第二光波导臂502发送的第二电压构成目标电压,该目标电压为差分电压。通过在光波导组件上加载差分电压的方式,能够保证调谐同样大小的第一输出端口412的光功率和第二输出端口413的光功率的情况下,有效的降低目标电压的电压值,提高了调谐输出端口光功率的效率。
对调谐第一输出端口412的光功率和第二输出端口413的光功率的过程进行说明:第一光耦合器521用于对来自输入端口521的光功率进行分光以获得第一光功率和第二光功率,所述第一光功率和所述第二光功率分别输入至所述第一光波导臂501和所述第二光波导臂502。所述目标电压用于改变所述第一光波导臂501和所述第二光波导臂502之间的臂长差,第二光耦合器522用于根据该臂长差干涉第一光功率和第二光功率以调谐第一输出端口412的光功率和第二输出端口413的光功率。具体的,臂长差的改变,能够使得第二光耦合器522对第一光功率和第二光功率重新分配,以实现调谐第一输出端口的光功率和第二输出端口的光功率的目的。
图4至图6所示电极的说明为可选的示例,不做限定,只要电极向光波导组件发送的目标电压能够改变第一光波导臂501和第二光波导臂502之间的臂长差,进而调谐第一输出端口412的光功率和第二输出端口413的光功率即可。例如,本实施例所示的与第一光波导臂501连接的电极可为地-信号-地(ground-signal-ground,GSG)电极结构,GSG电极中的两个G电极分别与位于第一光波导臂501两侧的第一平板区连接,S电极与第一光波导臂501连接。与第二光波导臂502连接的GSG电极的说明,请参见与第一光波导臂501连接的GSG电极的说明,具体不做赘述。又如,电极可为GS电极,S电极和G电极连接不同的两个平板区,如S电极与一个第一平板区连接,G电极与一个第二平板区连接。
本申请提供的光功率可调光合分器还能够实现对异常AP的检测和关断,例如图7所示,图7为本申请提供的光功率可调光合分器的另一种实施例结构示例图。
AP701连接在CP700和AP702之间,本示例以AP701与CP700直接连接为例,在其他示例中,AP701和CP700之间还可连接一个或多个AP,具体不做限定。AP701包括光功率可调光合分器710,该光功率可调光合分器710的输入端口与CP700连接,第一输出端口与AP702连接,第二输出端口与第二光模块 连接。光功率可调光合分器710包括第一光波导臂711、第二光波导臂712以及电极,本实施例所示以电极为成对的差分电极713为例,该电极713与AP侧设备连接,用于接收来自AP侧设备的目标电压,具体说明请参见图4至图6所示的说明,具体不做赘述。光功率可调光合分器710的第一输出端口获得来自AP702的第一上行光功率,电极713向光波导组件710发送的目标电压能够改变第一光波导臂711和第二光波导臂712之间的臂长差,进而将第一上行光功率分光成第二上行光功率和检测光功率,其中,检测光功率可小于第二上行光功率。目标电压改变臂长差进而实现分光的说明,请参见图4至图6所示的说明,具体不做赘述。第二光波导臂712连接检测端口714,第二上行光功率经由第一光波导臂711的输入端口输出,检测光功率经由检测端口714输出。AP701还包括光电探测器715,该光电探测器715能够接收来自检测端口714的检测光功率。例如,光电探测器715扣设在检测端口714之上,从而使得来自检测端口714的检测光功率能够倏逝波耦合进入光电探测器715。其中,倏逝波也可称之为渐逝波、消逝波或隐失波,是指当检测光功率从光密介质(即检测端口)入射到光疏介质(即检测端口和光电探测器715之间的空间)时,发生全反射而在光疏介质一侧所产生的一种电磁波。光电探测器715能够将检测光功率进行光电转换以获得检测电信号,光电探测器715向AP侧设备发送该检测电信号以检测第一输出端口的接收端是否处于异常状态。可以理解,若第一输出端口的接收端处于异常状态,那么说明AP702处于异常发光状态。若AP侧设备确定所述第一输出端口的接收端处于异常状态,则AP侧设备通过改变向电极713发送的目标电压的方式,将第一输出端口的光功率调谐为零,从而使得处于异常发光状态的AP702无法向AP701发送异常的上行光信号。
本实施例以检测光功率经由光功率可调光合分器710对上行光功率(由AP发出,向CP传输)分光而成为例,在其他示例中,检测光功率也可经由光功率可调光合分器710对下行光功率(由CP发出,向AP传输)分光而成,那么,此示例下可由任一输出端口连接检测端口,具体检测过程的说明请参见图7所示的检测过程,具体不做赘述。
例如,CP700经由AP701向AP702发送时隙指示消息,所述时隙指示消息用于指示分配给AP702的目标时隙,AP侧设备存储该时隙指示消息。AP702向光功率可调光合分器710发送的第一上行光功率携带AP702的标识。AP侧设备接收到来自光电探测器715的检测电信号后,AP侧设备根据预先存储的时隙指示消息,以及检测电信号所携带的AP702的标识,判断AP702用于发送第一上行光功率的时隙,是否为CP700已分配的目标时隙。若是,则说明AP702处于正常发光的状态,若否,则说明AP702处于异常发光的状态。若AP702处于异常发光的状态,会对其他AP的发光造成干扰。因此,AP侧设备通过向电极713发送目标电压的方式,将第一输出端口的光功率调谐为零,从而使得处于异常发光状态的AP702无法向AP701发送异常的上行光信号,进而保证了处于异常发光状态的AP702不会干扰其他AP的正常发光。
在图2至图7所示的实施例中,由AP包括的AP侧设备向电极发送目标电压。具体的,AP侧设备包括第二控制器以及第二供电电源,该第二控制器用于将来自第二供电电源的目标电压发送至光功率可调光合分器的电极。其中,第二控制器的功能可以部分或全部通过硬件实现。本实施例所示的第二控制器可以是一个或多个芯片,或一个或多个集成电路。例如,第二控制器可以是一个或多个光数字信号处理(optical digital signal process,oDSP)芯片、现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU)、可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者控制器的任意组合等。
本实施例所示的第二控制器已预先存储如表1所示的配置列表:
表1
由表1所示的配置列表可知,配置列表包括输出端口对应的不同分光比例与目标电压的电压值之间的对应关系。例如,若光功率可调光合分器用于下行分光,且所需要的分光情况为,第一输出端口对应的第一分光比例为40%,且第二输出端口对应的第二分光比例为60%,则第二控制器通过查询如表1所示的配置列表获得对应的目标电压的电压值为V2。第二控制器进而向电极发送具有电压值为V2的目标电压,从而使得第一输出端口对应40%的第一分光比例,第二输出端口对应60%的第二分光比例。可以理解,本实施例所示的配置列表,能够创建光功率可调光合分器的各输出端口的光功率和电压值的对应关系,以保证第二控制器能够根据配置列表,对各输出端口的光功率进行灵活的调节。
在光通信系统的光合分器采用本申请提供的光功率可调光合分器的情况下,能够提升CP所连接的AP的数量,例如图2所示的示例,AP202最靠近CP201,为使得光通信系统尽可能的连接更多的AP,则AP202将用于连接AP202的第二光模块的第二输出端口对应的第二分光比例尽可能的调节比较小,从而使得更多的光功率能够经由第一输出端口传输至下游的AP(例如AP203),那么,第二控制器可将第二输出端口对应的第二分光比例调节为20%,将第一输出端口对应的第一分光比例调节为80%,第二控制器通过查询表1所示的配置列表获得对应的电压值为VN,第二控制器即可向电极发送具有VN的目标电压。依次类推,若对距离CP201比较远的AP,则可将该AP的第二输出端口对应的第二分光比例调节为70%,从而使得即便AP距离CP201比较远,该AP的第二输出端口也能够向该AP的第二光模块发送足够大的光功率,保证距离CP201比较远的AP能够正常与CP201通信。为尽可能的提升光通信系统所连接的AP的数量,则可保证不同AP的第二输出端口输出光功率相等或近似相等。
可以理解,为保证光通信系统所连接的AP的数量尽可能的多,则AP包括的光功率可调光合分器的第二输出端口对应的第二分光比例,与AP和CP之间的距离,呈正相关关系。即,若AP距离CP越近,则光功率可调光合分器的第二输出端口对应的第二分光比例越小,以保证距离CP较近的AP能够从CP分得较少的光功率。同样的,若AP距离CP越远,则AP的光功率可调光合分器的第二输出端口对应的第二分光比例越大,以保证距离CP较远的AP能够从CP分得足够大的光功率,以保证该AP能够与主CP正常通信。
图1所示的已有方案,还存在一个弊端,即,若光通信系统100所包括的固定光功率分光器为不等比分光器,不等比分光器会导致CP在不同时间段接收到的光功率的波动较大。如在第一时间段,来自AP106的上行光功率依次经由固定光功率分光器103以及固定光功率分光器102传输至CP101,在第二时间段,来自AP104的上行光功率经由固定光功率分光器102传输至CP101,因固定光功率分光器103以及固定光功率分光器102均为不等比分光器,导致CP101在第一时间段接收到的上行光功率和在第二时间段接收到的上行光功率的波动较大,则CP101的光模块需要提高处理上行光功率的灵敏度,会导致光模块的增益非常大。
本实施例所示的配置列表(例如表1)的配置,能够根据需要动态的调节光功率可调光合分器的各输出端口对应的分光比例。即可通过调谐各光功率可调光合分器的第一输出端口对应的第一分光比例以及第二输出端口对应的第二分光比例的方式,使得CP接收到的上行光功率在不同的时间段处于均衡的状态,则CP包括的用于接收上行光功率的光模块无需具有很强的灵敏度,有效的降低了CP的光模块处理来自各AP的上行光功率的增益。
本实施例所示的光通信系统还可包括网管设备,网管设备与每个AP连接,以使网管设备能够对各AP的配置列表进行配置或动态调节等,以实现远程对光功率可调光合分器的输出端口的光功率的调谐。而且网管设备能够存储不同的光功率可调光合分器的分光比例,以便于对光通信系统进行运维。
本实施例所示的光功率可调光合分器还能够实现掉电保护,该可调光合分器的结构可参见图2至图7所示,具体不做赘述。本实施例所示的光功率可调光合分器的第一光波导臂和第二光波导臂分别由相变材料(PCM phase change material)制成。相变材料能够保持温度不变进而保持物质状态不变的物质。即,来自电极的目标电压施加在第一光波导臂和第二光波导臂的情况下,第一光波导臂和第二光波导臂之间具有臂长差。因第一光波导臂和第二光波导臂由相位材料制成,则导致即便目标电压出现掉电的情况,第一光波导臂和第二光波导臂会维持臂长差不变,进而使得光功率可调光合分器还能够继续按照该臂长差调谐第一输出端口的光功率以及第二输出端口的光功率,实现了对光功率可调光合分器的掉电保护。
上述实施例以光功率可调光合分器具有两个输出端口为例,本实施例提供的光功率可调光合分器可具有两个以上的任意数量的输出端口。参见图8所示,其中,图8为本申请提供的光功率可调光合分器的另一种实施例结构示例图。
本实施例所示的光功率可调光合分器800包括第一光波导组件810以及与第一光波导组件810连接的第一电极。光功率可调光合分器800还包括第二光波导组件820以及与第二光波导组件820连接的第二电极。其中,对第一光波导组件810、第二光波导组件820、第一电极以及第二电极的说明,请参见图2至图7所示的光功率可调光合分器结构的说明,具体不做赘述。本实施例所示的第一光波导组件810的输入端口813用于接收光功率,第一光波导组件810的第一光波导臂811和第二光波导臂812用于该光功率进行分光以获得第一目标光功率和第二目标光功率。第一光波导组件810分光的说明,请参见上述实施例说明的光波导组件分光的说明,具体不做赘述。该第二目标光功率从第一光波导组件810的第二输出端口831输出,而且第二输出端口831作为光功率可调光合分器800的一个输出端口。
第一光波导组件810所包括的第一输出端口814与第二光波导组件820的输入端口821连接。可以理解,从第一输出端口814输出的第一目标光功率,作为第二光波导组件820的输入以进行分光。即,该第一目标光功率经由输入端口821输入至第二光波导组件820。第二光波导组件820的第一光波导臂822和第二光波导臂823用于对该第一目标光功率进行分光以获得第三目标光功率和第四目标光功率。第二光波导组件820分光的说明,请参见上述实施例说明的光波导组件分光的说明,具体不做赘述。该第三目标光功率从第二光波导组件820的第一输出端口832输出,第四目标光功率从第二光波导组件820的第二输出端口833输出。而且第一输出端口832和第二输出端口833作为光功率可调光合分器800的二个输出端口。可以理解,本实施例所示的光功率可调光合分器800具有一个输入端口813,具有三个输出端口(即第二输出端口831、第一输出端口832和第二输出端口833)。
本实施例对光功率可调光合分器包括的输出端口的数量不做限定,在需要多个输出端口的情况下,可依次连接多个光波导组件以实现,具体实现方式请参见图8的说明,具体不做赘述。采用本实施例所示的光功率可调光合分器,在组网的过程中,可预留光功率可调光合分器的一个或多个输出端口未用于进行组网。若在后续使用过程中,需要在光通信系统中增加新的AP,则可将新增加的AP连接在光功率可调光合分器预留的输出端口上,并通过目标电压调谐该预留的输出端口的光功率,以保证新增加的AP能够从预留的输出端口接收到足够大的光功率,进而使得新增加的AP能够在光通信系统中进行正常的光信号传输,可见,采用本实施例所示的光功率可调光合分器,能够提高光通信系统组网的灵活性。
上述实施例以AP包括光功率可调光合分器为例,在本实施例中,光功率可调光合分器和AP可分立设置,参见图9所示,其中,图9为本申请提供的光通信系统的又一种实施例结构示例图。图9所示的示例以光通信系统的组网类型为链形组网为例。光通信系统900包括CP901以及与CP901依次连接的多个光功率可调光合分器。本实施例对光通信系统900所包括的光功率可调分光器的数量不做限定。每个光功率可调光合分器包括输入端口、第一输出端口以及第二输出端口,对每个光功率可调光合分器结构的说明,请参见上述实施例所示,具体不做赘述。本实施例以CP901、光功率可调光合分器902、光功率可调光合分器903以及光功率可调光合分器904依次连接为例。以光功率可调光合分器902为例,光功率可调光合分器902包括输入端口、第一输出端口以及第二输出端口,其中的输入端口与CP901连接,该第一输出端口与光功率可调光合分器903连接,该第二输出端口与AP911连接,对光通信系统所包括的其他光功率可调光合分器以及AP连接的说明,请参见光功率可调光合分器902以及AP911连接的说 明,具体不做赘述。
光功率可调光合分器和AP分立设置的情况下,光通信系统还可为环形组网,如图10所示,其中,图10为本申请提供的光通信系统的又一种实施例结构示例图。本实施例所示的光通信系统为环形组网,图10所示的光通信系统1000包括CP1001依次连接的多个光功率可调光合分器,且CP1001以及多个光功率可调光合分器串联连接以形成环形组网。依次连接的多个光功率可调光合分器包括第一个光功率可调光合分器1002以及最后一个光功率可调光合分器1003,其中,第一个光功率可调光合分器1002以及最后一个光功率可调光合分器1003均与核心节点1001连接。以光功率可调光合分器1002为例,光功率可调光合分器1002具有输入端口、第一输出端口以及第二输出端口,其中,输入端口与CP1001连接,第二输出端口与AP1011连接,第一输出端口与光功率可调光合分器1004连接,对光通信系统所包括的其他光功率可调光合分器以及AP连接的说明,请参见光功率可调光合分器1002以及AP1011连接的说明,具体不做赘述。本实施例对光功率可调光合分器和AP分立设置的场景下的光通信系统的组网类型不做限定,例如,光通信系统还可为树形组网或任意类型的组网。
结合图11所示对支持与AP分立设置的光功率可调的光合分器的结构进行说明,其中,图11为本申请提供的光功率可调光合分器的又一种实施例结构示例图。
本实施例所示的光功率可调光合分器1100包括第一供电电源1101、第一控制器1102、电极1103以及光波导组件1104。其中,第一供电电源1101、第一控制器1102以及电极1103依次连接,电极1103与光波导组件1104连接,对电极1103以及光波导组件1104结构的说明,请参见上述实施例所示,具体不做赘述。
本实施例中,光功率可调光合分器1100独立设置有第一供电电源1101和第一控制器1102,第一控制器1102能够从第一供电电源1101获得目标电压,并向电极1103发送该目标电压,以使光波导组件1104能够根据目标电压进行分光,目标电压以及根据目标电压分光过程的说明,请参见上述实施例所示,具体不做赘述。第一控制器1102的说明,请参见上述对第二控制器的说明,具体不做赘述。
在本实施例所示的光功率可调光合分器1100和AP独立设置的情况下,该光功率可调光合分器1100可设置在光纤配线架(optical distribution frame,ODF)上。可选的,ODF可设置多个光功率可调光合分器,则该ODF还可设置第一供电电源和第一控制器,ODF上设置的多个光功率可调光合分器共用ODF的第一供电电源和第一控制器。
本申请还提供了一种AP,该AP的结构可参见图2所示的说明,具体不做赘述。
本申请提供了另一种AP,该AP包括光模块和AP侧设备,该光模块包括光功率可调光合分器,以使该光模块具有分光与合光的功能。参见图12所示,其中,图12为本申请提供的AP的一种实施例结构示例图。
本实施例所示的AP1200包括光模块1201以及与光模块1201连接的AP侧设备1202,对AP侧设备1202的说明,请参见图7对应的说明,具体不做赘述。光模块1201包括光功率可调光合分器1211,该光功率可调光合分器1211具有输入端口、第一输出端口以及第二输出端口,其中,输入端口可连接CP或连接AP,第一输出端口连接AP或CP,具体可根据组网类型连接输入端口和第一输出端口,第二输出端口连接激光器1212以及二极管1213。该AP侧设备1202与光功率可调光合分器1211连接,以向光功率可调光合分器1211的电极发送目标电压,可选的,光模块1201也可包括控制芯片,该控制芯片与光功率可调光合分器1200的电极连接,并用于向电极发送目标电压,对控制芯片类型的说明,请参见图7所示对第二控制器类型的说明,具体不做赘述。激光器1212与AP侧设备1202连接,二极管1213和AP侧设备1202之间还可连接放大器1214。
例如,若光功率可调光合分器1211的输入端口接收到光功率,光功率可调光合分器1211对该光功率进行分光以获得从第一输出端口输出的光功率以及从第三输出端口输出的光功率,对光功率可调光合分器1211分光的说明,请参见图4至图7的说明,具体不做赘述。光功率可调光合分器1211的第一输出端口的光功率向所连接的AP或CP发送。光功率可调光合分器1211的第三输出端口的光功率输入至二极管1213,该二极管1213用于对来自第三输出端口的光功率进行光电转换以获得业务电信号,并发送至放大器1214。其中,二极管1213可为雪崩光电二极管(avalanche photon diode,APD)等用于进 行光电转换的二极管。放大器1214可为跨阻放大器(trans-impedance amplifier,TIA)。该放大器1214用于对业务电信号的功率进行放大以获得放大后业务电信号,并将放大后业务电信号发送至AP侧设备1202,以使AP侧设备1202处理该放大后业务电信号。
又如,若光功率可调光合分器1211的第一输出端口接收到光功率。AP侧设备1202向激光器1212发送业务电信号,激光器1212用于对来自AP侧设备1202的业务电信号进行电光转换以获得业务光功率,激光器1212向光功率可调光合分器1211的第二输出端口发送该业务光功率。光功率可调光合分器1211合束来自第一输出端口的光功率和来自激光器1212的业务光功率以获得输出光功率,并从光功率可调光合分器1211的输入端口输出。
本申请还提供了一种相控阵雷达,请参见图13所示,其中,图13为本申请提供的相控阵雷达的一种实施例结构示例图。本实施例所示的相控阵雷达1300包括激光器1301、与激光器1301连接的光功率可调光合分器1302以及与光功率可调光合分器1302连接的多个发射路径1303。具体的,该光功率可调光合分器1302的输入端口与激光器1301连接,该光功率可调光合分器1302的每个输出端口连接一个发射路径1303,该发射路径1303可为一段光纤。该光功率可调光合分器1302结构的说明,请参见上述实施例所示,具体不做赘述。所述激光器1301用于向光功率可调光合分器1302发送探测光信号,所述光功率可调光合分器1302用于分光探测光信号以获得多路探测波束,多路探测波束分别经由多个发射路径1303以出射。具体的,每个发射路径1303用于对一路探测波束进行相位调制,以改变该探测波束的相位,进而改变每路探测波束的指向角,每路探测波束按照指向角从发射路径1303出射以实现空间扫描。本实施例所示可通过调节加载在光功率可调光合分器1302的电极上的目标电压的方式,以对每路探测波束的光功率进行调节,进而实现不同的探测波束经由不同的发射路径1303的延时后的光功率相同,可以理解,本实施例保证从不同的发射路径1303出射的光功率大小相同,以降低探测波束扫描的失真,提高相控阵雷达1300扫描的准确性。
本申请还提供一种车辆,该车辆包括如图13所示的相控阵雷达,本实施例所示的车辆可以为无人驾驶汽车,轿车,卡车,摩托车,公共汽车,船,飞机,直升飞机,割草机,娱乐车,游乐场车辆,施工设备,电车和火车等,本申请不做限定。本申请对包括光功率可调光合分器1302的对象不做限定,例如,无人机、机器人或智能家电等。
本申请提供的车辆包括自动驾驶系统,例如,该自动驾驶系统可为高级驾驶辅助系统(advanced driving assistance system,ADAS)等,该自动驾驶系统包括如图13所示的相控阵雷达1300以用于扫描待测对象,待测对象可为其他车辆、路况、行人等。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种光功率可调光合分器,其特征在于,所述光功率可调光合分器包括电极以及与所述电极连接的光波导组件;
    所述光波导组件包括输入端口、第一输出端口和第二输出端口,所述输入端口用于接收光功率,所述电极用于向所述光波导组件发送目标电压,所述目标电压用于对所述第一输出端口的光功率和所述第二输出端口的光功率进行调谐。
  2. 根据权利要求1所述的光功率可调光合分器,其特征在于,所述光波导组件包括第一光波导臂和第二光波导臂,所述第一光波导臂连接所述输入端口和所述第一输出端口,所述第二光波导臂连接所述第二输出端口,所述目标电压用于改变所述第一光波导臂和所述第二光波导臂之间的臂长差,所述臂长差用于调谐所述第一输出端口的光功率和所述第二输出端口的光功率。
  3. 根据权利要求1或2所述的光功率可调光合分器,其特征在于,所述光功率可调光合分器还包括与所述电极连接的第一控制器,所述第一控制器用于向所述电极发送所述目标电压。
  4. 根据权利要求3所述的光功率可调光合分器,其特征在于,所述第一控制器用于向所述电极发送所述目标电压的过程中,所述第一控制器具体用于根据配置列表向所述电极发送所述目标电压,所述配置列表包括所述第一输出端口的光功率和所述第二输出端口的光功率分别与所述目标电压的电压值的对应关系。
  5. 根据权利要求1至4任一项所述的光功率可调光合分器,其特征在于,若所述第一输出端口的接收端处于异常状态,则所述电极用于将所述第一输出端口的光功率调谐为零。
  6. 根据权利要求1至5任一项所述的光功率可调光合分器,其特征在于,所述第一光波导臂和所述第二光波导臂分别由相变材料制成,所述第一光波导臂和所述第二光波导臂用于存储来自所述电极的热量,所述热量用于保持所述第一光波导臂和所述第二光波导臂之间的臂长差。
  7. 根据权利要求3或4所述的光功率可调光合分器,其特征在于,所述光功率可调光合分器还包括与所述第一控制器连接的第一供电电源,所述第一控制器用于将来自所述第一供电电源的所述目标电压发送至所述电极。
  8. 根据权利要求1或2所述的光功率可调光合分器,其特征在于,所述光功率可调光合分器插设于接入节点,所述接入节点包括第二控制器以及与所述第二控制器连接的第二供电电源,所述第二控制器还与所述电极连接,所述第二控制器用于将来自所述第二供电电源的所述目标电压发送至所述电极。
  9. 一种光模块,其特征在于,所述光模块包括激光器、二极管以及如权利要求1至8任一项所述的光功率可调光合分器;
    所述激光器用于向所述光功率可调光合分器输入光功率,所述二极管用于对来自所述光功率可调光合分器的光功率进行光电转换以获得电信号。
  10. 一种接入节点,其特征在于,所述接入节点包括光模块以及与所述光模块连接的控制器,所述光模块如权利要求9所述。
  11. 一种接入节点,其特征在于,所述接入节点包括光功率可调光合分器、光模块以及控制器,所述光模块分别与所述控制器和所述光功率可调光合分器连接,所述光功率可调光合分器如权利要求1至 8任一项所述;
    所述光模块用于对来自所述光功率可调光合分器的第一光信号进行光电转换以获得第一电信号,并用于向所述控制器发送所述第一电信号,或,所述光模块用于对来自所述控制器的第二电信号进行电光转换以获得第二光信号,并用于向所述光功率可调光合分器发送所述第二光信号。
  12. 一种相控阵雷达,其特征在于,所述相控阵雷达包括激光器、光功率可调光合分器以及多个发射路径,所述光功率可调光合分器如权利要求1至8任一项所述;
    所述激光器用于向所述光功率可调光合分器发送探测光信号,所述光功率可调光合分器用于对所述探测光信号进行分光以获得多路探测波束,所述多路探测波束中的每路探测波束,经由一个所述发射路径进行相位调制后输出,从不同的所述发射路径出射的光功率相同。
  13. 一种自动驾驶系统,其特征在于,所述自动驾驶系统包括如权利要求12所述的相控阵雷达。
  14. 一种车辆,其特征在于,所述车辆包括如权利要求13所述的自动驾驶系统。
  15. 一种机器人,其特征在于,所述机器人包括如权利要求12所述的相控阵雷达。
  16. 一种光通信系统,其特征在于,所述光通信系统包括第一光模块、至少一个光功率可调光合分器以及第二光模块,所述至少一个光功率可调光合分器用于连接所述第一光模块和所述第二光模块,所述光功率可调光合分器如权利要求1至8任一项所述。
  17. 根据权利要求16所述的光通信系统,其特征在于,所述光通信系统至少包括第一光功率可调光合分器和第二光功率可调光合分器,所述第一光功率可调光合分器的第二输出端口用于连接一个所述第二光模块,所述第二光功率可调光合分器的第二输出端口用于连接另一个所述第二光模块;
    在所述第一光功率可调光合分器与所述第一光模块之间的距离,小于所述第二光功率可调光合分器与所述第一光模块之间的距离的情况下,所述第一光功率可调光合分器的第二输出端口对应的分光比例小于所述第二光功率可调光合分器的第二输出端口对应的分光比例。
PCT/CN2023/118449 2022-10-09 2023-09-13 一种光功率可调光合分器、相关设备以及系统 WO2024078242A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211226927.8 2022-10-09
CN202211226927 2022-10-09
CN202211739314.4 2022-12-31
CN202211739314.4A CN117856962A (zh) 2022-10-09 2022-12-31 一种光功率可调光合分器、相关设备以及系统

Publications (1)

Publication Number Publication Date
WO2024078242A1 true WO2024078242A1 (zh) 2024-04-18

Family

ID=90534928

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/110983 WO2024078104A1 (zh) 2022-10-09 2023-08-03 一种通信系统以及相关设备
PCT/CN2023/118449 WO2024078242A1 (zh) 2022-10-09 2023-09-13 一种光功率可调光合分器、相关设备以及系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110983 WO2024078104A1 (zh) 2022-10-09 2023-08-03 一种通信系统以及相关设备

Country Status (2)

Country Link
CN (7) CN117856884A (zh)
WO (2) WO2024078104A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694504A (en) * 1995-06-28 1997-12-02 Northern Telecom Limited Semiconductor modulator with a π shift
CN102401666A (zh) * 2010-09-10 2012-04-04 北京邮电大学 一种光纤光栅反射波长的解调方法和装置
CN103217820A (zh) * 2013-04-22 2013-07-24 华为技术有限公司 一种功率可调的光分路器
CN111610596A (zh) * 2020-07-13 2020-09-01 中国电子科技集团公司第四十四研究所 高边带抑制比的双驱m-z光学单边带调制器
CN114966990A (zh) * 2021-02-23 2022-08-30 中国移动通信集团广东有限公司 可调分光器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150361B (zh) * 2006-09-20 2011-06-22 北京格林威尔科技发展有限公司 一种在无源光网络中实现全保护倒换的方法和系统
CN113382318B (zh) * 2020-03-09 2023-03-10 华为技术有限公司 光通信的方法和装置
CN113573176A (zh) * 2020-04-29 2021-10-29 华为技术有限公司 一种onu、olt、光通信系统及数据传输方法
CN113747272B (zh) * 2020-05-28 2022-12-06 华为技术有限公司 检测光分配网络故障的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694504A (en) * 1995-06-28 1997-12-02 Northern Telecom Limited Semiconductor modulator with a π shift
CN102401666A (zh) * 2010-09-10 2012-04-04 北京邮电大学 一种光纤光栅反射波长的解调方法和装置
CN103217820A (zh) * 2013-04-22 2013-07-24 华为技术有限公司 一种功率可调的光分路器
CN111610596A (zh) * 2020-07-13 2020-09-01 中国电子科技集团公司第四十四研究所 高边带抑制比的双驱m-z光学单边带调制器
CN114966990A (zh) * 2021-02-23 2022-08-30 中国移动通信集团广东有限公司 可调分光器

Also Published As

Publication number Publication date
WO2024078104A1 (zh) 2024-04-18
CN117856884A (zh) 2024-04-09
CN117857069A (zh) 2024-04-09
CN117857949A (zh) 2024-04-09
CN117856962A (zh) 2024-04-09
CN117856885A (zh) 2024-04-09
CN117856969A (zh) 2024-04-09
CN117857948A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
EP3289407B1 (en) Polarization independent reflective modulator
US8515278B2 (en) Passive optical networks with mode coupling receivers
US11689291B2 (en) Systems and methods for optical full-field transmission using photonic integration
US8326154B2 (en) Multiwavelength transmitter
JP7192255B2 (ja) 光デバイス、これを用いた光モジュール、及び光デバイスの試験方法
WO2020186842A1 (zh) 一种波长锁定光模块、装置和波长锁定方法
US9551838B2 (en) Optical bridge
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
CN109743113B (zh) 光模块与光线路终端
TW202208968A (zh) 使用光頻梳產生器的積體cmos光電wdm通訊系統
Takechi et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid
Zhang et al. Compact low-power-consumption 28-Gbaud QPSK/16-QAM integrated silicon photonic/electronic coherent receiver
Visscher et al. Broadband true time delay microwave photonic beamformer for phased array antennas
Itakura et al. High-current backside-illuminated photodiode array module for optical analog links
Kurokawa et al. High optical output power and high-responsivity IC-TROSA for 800 Gbps applications
WO2024078242A1 (zh) 一种光功率可调光合分器、相关设备以及系统
US20230253760A1 (en) 6.4 tbps silicon-based photonics engine transceiver chip module for high-speed optical communication
JP5532354B2 (ja) Pon光伝送システム、局側装置及び光通信方法
CN207382318U (zh) 一种毫米波光纤步进延时组件
Buchali et al. Amplifier less 400 Gb/s coherent transmission at short reach
WO2021179978A1 (zh) 光模块、数据中心系统以及数据传输方法
WO2022127201A1 (zh) 一种光通信装置和光通信方法
Chuenchom et al. Hybrid fiber wireless (HFW) extension for GPON toward 5G
JP2626215B2 (ja) 半導体光増幅器の利得安定化制御方式
WO2022166861A1 (zh) 激光装置、光网络终端的功率调节方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876447

Country of ref document: EP

Kind code of ref document: A1