WO2024078104A1 - 一种通信系统以及相关设备 - Google Patents

一种通信系统以及相关设备 Download PDF

Info

Publication number
WO2024078104A1
WO2024078104A1 PCT/CN2023/110983 CN2023110983W WO2024078104A1 WO 2024078104 A1 WO2024078104 A1 WO 2024078104A1 CN 2023110983 W CN2023110983 W CN 2023110983W WO 2024078104 A1 WO2024078104 A1 WO 2024078104A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
band
downlink
optical
uplink
Prior art date
Application number
PCT/CN2023/110983
Other languages
English (en)
French (fr)
Inventor
孙晓斌
高士民
郑建宇
张乐伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078104A1 publication Critical patent/WO2024078104A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/02Selecting arrangements for multiplex systems for frequency-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication system and related equipment.
  • the passive aggregation point to multi-point (P2MP) optical network architecture generally includes a center point (CP), a splitter, and an access point (AP).
  • the core node aggregates the access node traffic through the splitter, and couples the point-to-multipoint optical network with the upper-layer metropolitan area network or backbone network through a switch. Since the core node needs to be responsible for the uplink and downlink management of multiple access nodes, the core node generally includes a multi-access management device (for example, OLT) in addition to the core switch.
  • OLT multi-access management device
  • the core node switch realizes point-to-multipoint communication based on time division multiplexing-time division multiple access TDMA with multiple access nodes through the multi-access management device, that is, the downlink adopts time division multiplexing (TDM) and the uplink adopts time division multiple access (TDMA).
  • TDM time division multiplexing
  • TDMA time division multiple access
  • the core node equipment in traditional technology needs to establish a TDMA-based point-to-multipoint optical channel through multiple access nodes through multiple access devices such as OLT.
  • Multiple access devices such as OLT lead to complex system architecture and large network delay, which is not conducive to system maintenance.
  • the time division multiplexing downlink transmission means that the core node can only send a message to one access node in the same time slot, which has low data transmission efficiency.
  • the present application provides a communication system and related equipment for improving the communication efficiency of point-to-multipoint optical communication.
  • the present application provides a communication system, which is used for point-to-multipoint communication.
  • the communication system includes a first device, a first optical module, an optical combiner/splitter, at least one second device, and at least one second optical module.
  • the first device is connected to the optical combiner/splitter via the first optical module
  • at least one second device is connected to the optical combiner/splitter via the at least one second optical module.
  • the first optical module and the at least one second optical module are used to establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA; the first device communicates with at least one second device via a point-to-multipoint optical channel based on F-TDMA.
  • the first optical module and the second optical module in the communication system can establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA (i.e., the downlink adopts frequency division multiplexing FDM and the uplink adopts time division multiple access TDMA) for the first device to communicate with at least one second device, there is no need for multi-address devices such as OLT to participate in establishing the point-to-multipoint optical channel.
  • F-TDMA frequency division multiplexing-time division multiple access
  • OLT time division multiple access
  • the solution of this embodiment can omit the multi-address management device (for example, OLT), realize the direct connection between the first device and the first optical module, and simplify the system architecture.
  • the first device can transmit messages through the aforementioned point-to-multipoint optical channel based on F-TDMA using frequency division multiplexing FDM, it is beneficial to improve communication efficiency.
  • the F-TDMA-based point-to-multipoint optical channel includes a downlink optical channel based on frequency division multiplexing FDM and an uplink optical channel based on time division multiple access TDMA, that is, the downlink transmission of the F-TDMA-based point-to-multipoint optical channel adopts the FDM method, and the uplink transmission adopts the TDMA method.
  • the system spectrum of the point-to-multipoint optical channel based on F-TDMA includes a downlink system spectrum and an uplink system spectrum.
  • the frequency range of the downlink system spectrum is different from the frequency range of the uplink system spectrum, and the intersection of the frequency range of the downlink system spectrum and the frequency range of the uplink system spectrum is empty.
  • the center frequency of the downlink system spectrum is less than the center frequency of the uplink system spectrum; or, the center frequency of the downlink system spectrum is greater than the center frequency of the uplink system spectrum, which is not limited in this application.
  • the system spectrum includes a data sub-band, which is used to exchange data between the first optical module and the second optical module.
  • the downlink system spectrum includes a plurality of downlink data sub-bands, each of which is used to transmit a downlink message of a second device, and different downlink data sub-bands are used to transmit downlink messages of different second devices.
  • the uplink system spectrum includes at least An uplink data sub-frequency band, the at least one uplink data sub-frequency band is used to transmit an uplink message of a second device, and different second optical modules send uplink messages through the at least one uplink data sub-frequency band in different time slots.
  • the first device can transmit downlink messages through the aforementioned F-TDMA-based point-to-multipoint optical channel using frequency division multiplexing FDM, that is, sending downlink messages of different second devices 04 at the same time through different sub-bands, the communication efficiency can be improved.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a control sub-band and a data sub-band, the control sub-band is used to exchange control information between the first optical module and the second optical module, and the data sub-band is used to exchange data between the first optical module and the second optical module.
  • control sub-band is divided into a downlink control sub-band and an uplink control sub-band.
  • the downlink control sub-band is located in the downlink system spectrum and is used for the first optical module to transmit control information to the second optical module.
  • the uplink control sub-band is located in the uplink system spectrum and is used for the second optical module to transmit control information to the first optical module. Since the frequency range of the downlink system spectrum is different from the frequency range of the uplink system spectrum, and the frequency range of the downlink system spectrum and the frequency range of the uplink system spectrum intersect each other, the frequency range of the downlink control sub-band is also different from the frequency range of the uplink control sub-band.
  • the downlink control sub-band is used to send control information of at least one second optical module in the same time slot
  • the uplink control sub-band is used to send control information of different second optical modules in different time slots.
  • control sub-bands for example, downlink control sub-bands and uplink control sub-bands
  • control sub-bands for example, downlink control sub-bands and uplink control sub-bands
  • the frequency of the control sub-band is smaller than the frequency of the data sub-band.
  • the frequency of the downlink control sub-band is smaller than the frequency of the downlink data sub-band
  • the frequency of the uplink control sub-band is smaller than the frequency of the uplink data sub-band.
  • control sub-band is configured at the low frequency of the system spectrum, which is beneficial to enhancing the anti-interference capability of the control sub-band, ensuring the signal-to-noise ratio of the control sub-band, and improving the reliability of control information transmission.
  • control information carried by the downlink control sub-band includes time synchronization information and ranging information.
  • the first optical module and the second optical module perform the following steps during the process of registering the second device:
  • the first optical module is specifically used to send time synchronization information and ranging information through a downlink control sub-band; each second optical module is specifically used to execute a time synchronization process and a ranging process based on the time synchronization information and the ranging information; the first optical module is also used to send, through a downlink control sub-band, a management identifier assigned by the first optical module to a second device corresponding to each second optical module that completes the time synchronization process and the ranging process; each second optical module is also used to send, through an uplink control sub-band, a management identifier, a physical address, and an electrical port rate of the second device; the first optical module is also used to store the management identifier, physical address, and electrical port rate of each second device in a device management table, wherein the device management table includes a management identifier of at least one second device and a physical address and an electrical port rate of the second device corresponding to the management identifier of each second device, wherein different second devices have different physical addresses and
  • the point-to-multipoint module assigns a management identifier to the successfully registered second device to identify that the second device has been registered with the point-to-multipoint module, which is helpful to distinguish between successfully registered second devices and unregistered second devices and improve management efficiency.
  • the first optical module is also used to send a device management table to the first device.
  • the first device is also used to determine the downlink bandwidth allocation information and/or the uplink bandwidth allocation information based on the electrical port rate in the device management table, the downlink bandwidth allocation information is used to indicate the downlink data sub-band allocated to each second device in at least one second device, and the frequency range of the downlink data sub-band allocated to different second devices is different, and the uplink bandwidth allocation information is used to indicate the time slot allocated to each second device in at least one second device for sending the uplink data sub-band, and the time slots allocated to different second devices are different.
  • the first optical module is also used to obtain the downlink bandwidth allocation information and/or the uplink bandwidth allocation information from the first device, and to send the downlink bandwidth allocation information and/or the uplink bandwidth allocation information to each second optical module in at least one second optical module.
  • the first device can obtain the device management table from the first optical module. Therefore, the first device can obtain the second devices connected to the first device based on the device management table, and then the first device can communicate with at least one second device through a point-to-multipoint optical channel based on F-TDMA based on the information of at least one second device in the device management table.
  • the first device in this embodiment can obtain the aforementioned at least one second device based on the device management table.
  • the information of each second device in the device management table is helpful for realizing the management of at least one second device (for example, access node device) by the first device (for example, core switch).
  • the first device can allocate bandwidth resources based on the device management table, it is helpful for the first device to allocate more appropriate bandwidth resources to each second device based on the electrical port rate of each second device, which is helpful for improving the utilization rate of bandwidth resources and thus improving the system management efficiency.
  • the downlink bandwidth allocation information includes a management identifier of each second device in at least one second device and a band identifier of a downlink data sub-band corresponding to each management identifier;
  • the first optical module is specifically used to modulate the downlink message of each second device to the downlink data sub-band corresponding to each second device according to the downlink bandwidth allocation information, and send the downlink message of at least one second device through an FDM-based downlink optical channel;
  • each second optical module is specifically used to receive the downlink message of the second device on the downlink data sub-band corresponding to the second device connected to the second optical module according to the downlink bandwidth allocation information.
  • the uplink bandwidth allocation information includes a management identifier of each second device in at least one second device and a time slot identifier of a time slot corresponding to each management identifier; each second optical module is specifically used to modulate an uplink message of a second device connected to the second optical module into an uplink data sub-band, and send an uplink message of the second device through a TDMA-based uplink optical channel in a time slot corresponding to the second device according to the uplink bandwidth allocation information; and the first optical module is specifically used to receive an uplink message of the corresponding second device in a time slot corresponding to each second device according to the uplink bandwidth allocation information.
  • the first device is also used to: receive at least one downlink message; determine the management identifier of the second device corresponding to the destination address of each received downlink message based on the physical address of the second device in the device management table, and add the management identifier of the second device corresponding to the destination address to each downlink message; and send at least one downlink message carrying the management identifier to the first optical module.
  • the first device can perform traffic directional processing based on the device management table, which is beneficial to hard isolation of downlink messages.
  • each second optical module stores a management identifier of a second device connected to the second optical module; each second optical module is also used to: obtain at least one uplink message of the second device corresponding to the second optical module; and add the management identifier of the second device to each uplink message.
  • the first device is also used to determine encryption information based on the device management table and send the encryption information to the first optical module, where the encryption information is used to indicate different keys used for different second devices; the first optical module is also used to send the encryption information through a downlink control sub-band; each second optical module is also used to receive the encryption information through a downlink control sub-band.
  • the first device can configure encryption information for each second device, which is conducive to improving the security of data exchanged between each second device and the first device.
  • configuring encryption information by the first device can improve the flexibility of key configuration.
  • the present application provides a first optical module, which is applied to a point-to-multipoint communication system.
  • the point-to-multipoint communication system includes a first device, a first optical module, an optical combiner, at least one second device, and at least one second optical module, wherein the first device is connected to the optical combiner through the first optical module, and the at least one second device is connected to the optical combiner through the at least one second optical module.
  • the first optical module includes:
  • the point-to-multipoint module is used to establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA with the second optical module.
  • the point-to-multipoint optical channel based on F-TDMA is used for the first device to communicate with at least one second device.
  • the first optical module and the second optical module in the communication system can establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA (i.e., the downlink adopts frequency division multiplexing FDM and the uplink adopts time division multiple access TDMA) for the first device to communicate with at least one second device, there is no need for multi-address devices such as OLT to participate in establishing the point-to-multipoint optical channel.
  • F-TDMA frequency division multiplexing-time division multiple access
  • OLT time division multiple access
  • the solution of this embodiment can omit the multi-address management device (e.g., OLT), realize the direct connection between the first device and the first optical module, and simplify the system architecture.
  • OLT multi-address management device
  • the F-TDMA-based point-to-multipoint optical channel includes a frequency division multiplexing FDM-based downlink optical channel and a time division multiple access TDMA-based uplink optical channel.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a control sub-band and a data sub-band, the control sub-band is used to exchange control information between the first optical module and the second optical module, and the data sub-band is used to exchange data between the first optical module and the second optical module.
  • the frequency of the control sub-frequency band is smaller than the frequency of the data sub-frequency band.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a downlink system spectrum and an uplink system spectrum
  • the control subband includes a downlink control subband located in the downlink system spectrum and an uplink control subband located in the uplink system spectrum
  • the frequency range of the downlink control subband is different from the frequency range of the uplink control subband
  • the downlink control subband is used to send control information of at least one second optical module in the same time slot
  • the uplink control subband is used to send control information of different second optical modules in different time slots.
  • control information carried by the downlink control sub-band includes time synchronization information and ranging information.
  • the point-to-multipoint module is specifically configured to:
  • Time synchronization information and ranging information are sent through a downlink control sub-band, and the time synchronization information and ranging information are used by the second optical module to execute the time synchronization process and the ranging process; the management identifier assigned by the first optical module to the second device corresponding to each second optical module that completes the time synchronization process and the ranging process is sent through the downlink control sub-band; the management identifier, the physical address and the electrical port rate of the second device are received through an uplink control sub-band; the management identifier, the physical address and the electrical port rate of each second device are correspondingly stored in a device management table, and the device management table includes the management identifier of at least one second device and the physical address and the electrical port rate of the second device corresponding to the management identifier of each second device, different second devices have different physical addresses, and different second devices have different management identifiers.
  • the first optical module further includes: an interface module, configured to send the device management table to the first device.
  • the interface module is further used to receive downlink bandwidth allocation information and/or uplink bandwidth allocation information from the first device, the downlink bandwidth allocation information is used to indicate a downlink data sub-band allocated to each second device in at least one second device, and different second devices have different frequency ranges of downlink data sub-bands, and the uplink bandwidth allocation information is used to indicate a time slot allocated to each second device in at least one second device for sending an uplink data sub-band, and different second devices have different time slots; the point-to-multipoint module is further used to send the downlink bandwidth allocation information and/or uplink bandwidth allocation information through a downlink control sub-band.
  • the downlink bandwidth allocation information includes a management identifier of each second device in at least one second device and a frequency band identifier of a downlink data sub-band corresponding to each management identifier; the point-to-multipoint module is specifically used to modulate the downlink message of each second device to the downlink data sub-band corresponding to each second device according to the downlink bandwidth allocation information, and send the downlink message of at least one second device through a downlink optical channel based on FDM.
  • the uplink bandwidth allocation information includes a management identifier of each second device in at least one second device and a time slot identifier of a time slot corresponding to each management identifier; the point-to-multipoint module is specifically used to receive an uplink message of the corresponding second device in the time slot corresponding to each second device according to the uplink bandwidth allocation information.
  • the interface module is further used to obtain encryption information from the first device, where the encryption information is used to indicate different keys used for different second devices; the point-to-multipoint module is further used to send the encryption information via a downlink control sub-band.
  • the present application provides a second optical module, which is applied to a point-to-multipoint communication system.
  • the point-to-multipoint communication system includes a first device, a first optical module, an optical combiner, at least one second device, and at least one second optical module, wherein the first device is connected to the optical combiner through the first optical module, and the at least one second device is connected to the optical combiner through the at least one second optical module.
  • the second optical module includes:
  • the point-to-multipoint response module is used to establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA with the first optical module.
  • the point-to-multipoint optical channel based on F-TDMA is used for the first device to communicate with multiple second devices.
  • the first optical module and the second optical module in the communication system can establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA (i.e., the downlink adopts frequency division multiplexing FDM and the uplink adopts time division multiple access TDMA) for the first device to communicate with at least one second device, there is no need for multi-address devices such as OLT to participate in establishing the point-to-multipoint optical channel.
  • F-TDMA frequency division multiplexing-time division multiple access
  • OLT time division multiple access
  • the solution of this embodiment can omit the multi-address management device (e.g., OLT), realize the direct connection between the first device and the first optical module, and simplify the system architecture.
  • OLT multi-address management device
  • the F-TDMA-based point-to-multipoint optical channel includes a frequency division multiplexing FDM-based downlink optical channel and a time division multiple access TDMA-based uplink optical channel.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a control sub-band and a data sub-band, the control sub-band is used to exchange control information between the first optical module and the second optical module, and the data sub-band is used to exchange data between the first optical module and the second optical module.
  • the frequency of the control sub-frequency band is smaller than the frequency of the data sub-frequency band.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a downlink system spectrum and an uplink system spectrum
  • the control subband includes a downlink control subband located in the downlink system spectrum and an uplink control subband located in the uplink system spectrum
  • the frequency range of the downlink control subband is different from the frequency range of the uplink control subband
  • the downlink control subband is used to send control information of at least one second optical module in the same time slot
  • the uplink control subband is used to send control information of different second optical modules in different time slots.
  • control information carried by the downlink control sub-band includes time synchronization information and ranging information.
  • Point-to-multipoint response module specifically used for:
  • the time synchronization information and the ranging information are received on the downlink control sub-band; the time synchronization process and the ranging process are executed based on the time synchronization information and the ranging information; after completing the time synchronization process and the ranging process, the management identifier assigned by the first optical module to the second device corresponding to each second optical module is received through the downlink control sub-band; the management identifier, the physical address and the electrical port rate of the second device are sent through the uplink control sub-band, and the management identifier, the physical address and the electrical port rate of the second device are used to generate a device management table, the device management table includes the management identifier of at least one second device and the physical address and the electrical port rate of the second device corresponding to the management identifier of each second device, different second devices have different physical addresses, and different second devices have different management identifiers.
  • the point-to-multipoint response module is further used to receive downlink bandwidth allocation information and/or uplink bandwidth allocation information through a downlink control sub-band, the downlink bandwidth allocation information is used to indicate a downlink data sub-band allocated to each second device in at least one second device, and different second devices have different frequency ranges of downlink data sub-bands, and the uplink bandwidth allocation information is used to indicate a time slot allocated to each second device in at least one second device for sending an uplink data sub-band, and different second devices have different time slots.
  • the downlink bandwidth allocation information includes a management identifier of each second device in at least one second device and a band identifier of a downlink data sub-band corresponding to each management identifier; the point-to-multipoint response module is specifically used to receive a downlink message from the second device on the downlink data sub-band corresponding to the second device connected to the second optical module according to the downlink bandwidth allocation information.
  • the uplink bandwidth allocation information includes a management identifier of each second device in at least one second device and a time slot identifier of a time slot corresponding to each management identifier; a point-to-multipoint response module is specifically used to modulate an uplink message of a second device connected to the second optical module into an uplink data sub-band, and send an uplink message of the second device through an uplink optical channel based on TDMA in a time slot corresponding to the second device according to the uplink bandwidth allocation information.
  • each second optical module stores a management identifier of a second device connected to the second optical module.
  • the second optical module also includes an interface module; the interface module is used to obtain at least one uplink message of the second device corresponding to the second optical module; and the point-to-multipoint response module is also used to add the management identifier of the second device to each uplink message.
  • the point-to-multipoint response module is further configured to receive encryption information via a downlink control sub-band, where the encryption information is used to indicate different keys used for different second devices.
  • the present application provides a first device, which is applied to a point-to-multipoint communication system.
  • the point-to-multipoint communication system includes a first device, a first optical module, an optical combiner/splitter, at least one second device, and at least one second optical module, wherein the first device is connected to the optical combiner/splitter via the first optical module, and the at least one second device is connected to the optical combiner/splitter via the at least one second optical module.
  • the first device includes:
  • An interface module is used to obtain a device management table, where the device management table indicates information of at least one second device, and the device management table is generated in the process of establishing a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA between a first optical module and at least one second optical module; a processing module is used to communicate with at least one second device through a point-to-multipoint optical channel based on F-TDMA based on the device management table.
  • the first device can learn about each second device connected to the first device based on the device management table, and then the first device can communicate with at least one second device through a point-to-multipoint optical channel based on F-TDMA based on the information of at least one second device in the device management table. Therefore, compared with the solution in the traditional technology that the core node device (for example, the core switch) does not perceive the access node device, the first device in this embodiment can perceive the aforementioned at least one second device based on the device management table, which is conducive to the management of at least one second device (for example, the access node device) by the first device (for example, the core switch).
  • the core node device for example, the core switch
  • the F-TDMA-based point-to-multipoint optical channel includes a frequency division multiplexing FDM-based downlink optical channel and a time division multiple access TDMA-based uplink optical channel.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a control sub-band and a data sub-band, the control sub-band is used to exchange control information between the first optical module and the second optical module, and the data sub-band is used to exchange data between the first optical module and the second optical module.
  • the frequency of the control sub-frequency band is smaller than the frequency of the data sub-frequency band.
  • the device management table includes the physical address of at least one second device and the management identifier of the second device corresponding to the physical address of each second device, and different second devices have different physical addresses and different management identifiers.
  • the device management table also includes an electrical port rate of each second device in at least one second device, and the electrical port rate is used to indicate an upper limit of the bandwidth allowed to be used by the second device; the first device is further used to determine downlink bandwidth allocation information and/or uplink bandwidth allocation information based on the electrical port rate in the device management table, and the downlink bandwidth allocation information is used to indicate a downlink data sub-band allocated to each second device in at least one second device, and different second devices have different frequency ranges of downlink data sub-bands, and the uplink bandwidth allocation information is used to indicate a time slot allocated to each second device in at least one second device for sending an uplink data sub-band, and different second devices have different time slots.
  • the downlink bandwidth allocation information includes a management identifier of each second device in at least one second device and a frequency band identifier of a downlink data sub-band corresponding to each management identifier, and different second devices occupy different frequency ranges of the downlink data sub-band; and/or, the uplink bandwidth allocation information includes a management identifier of each second device in at least one second device and a time slot identifier of a time slot corresponding to each management identifier, and different second devices occupy different time slots.
  • the interface module is also used to receive at least one downlink message; the processing module is also used to determine the management identifier of the second device corresponding to the destination address of each received downlink message based on the physical address of the second device in the device management table, and to add the management identifier of the second device corresponding to the destination address to each downlink message; and to send at least one downlink message carrying the management identifier.
  • the interface module is further used to receive at least one uplink message carrying a management identifier; the processing module is further used to perform table lookup and forwarding processing on the uplink message based on the management identifier of each uplink message.
  • the first device is further configured to determine encryption information based on the device management table, and send the encryption information to the first optical module, where the encryption information is used to indicate different keys used for different second devices.
  • the present application provides an optical module, which includes a processor and a transceiver; the transceiver is used to receive optical signals and send optical signals; the processor is used to implement part or all of the functions of any one of the first optical modules in the second aspect above; or, implement part or all of the functions of any one of the first optical modules in the third aspect above.
  • the present application provides a chip comprising at least one logic circuit and an input/output interface; the input/output interface is used to input and output electrical signals; the logic circuit is used to implement part or all of the functions of the point-to-multipoint module in the above-mentioned first aspect, or to implement part or all of the functions of the point-to-multipoint response module in the above-mentioned first aspect.
  • the present application provides a core node device, which includes a processor; the processor is used to implement part or all of the functions of any point-to-multipoint module in the first aspect above.
  • the core node device is a core switch or a router.
  • the core node device includes the chip as described in the sixth aspect.
  • the present application provides an access node device, which includes a processor; the processor is used to implement part or all of the functions of any point-to-multipoint response module in the first aspect above.
  • the access node device is an ONT or an ONU.
  • the access node device includes the chip as described in the sixth aspect.
  • FIG1 is a network architecture diagram of a communication system in conventional technology
  • FIG2 is a network architecture diagram of a point-to-multipoint communication system provided by the present application.
  • FIG3A is an example diagram of a downlink system spectrum of a point-to-multipoint communication system provided by the present application.
  • FIG3B is another example diagram of a downlink system spectrum of a point-to-multipoint communication system provided by the present application.
  • FIG4 is an example diagram of a process for establishing a point-to-multipoint optical channel provided by the present application
  • FIG5 is an exemplary diagram of a processing module in a first device provided in the present application.
  • FIG6A is a schematic diagram of an embodiment of a first device provided in the present application.
  • FIG6B is a schematic diagram of another embodiment of the first device provided by the present application.
  • FIG7 is a schematic diagram of an embodiment of a first optical module and a second optical module provided by the present application.
  • FIG8 is a schematic diagram of an embodiment of a network device involved in the communication system provided by the present application.
  • FIG9 is a schematic diagram of an embodiment of an optical module involved in the communication system provided by the present application.
  • FIG. 10 is a schematic diagram of an embodiment of a chip provided in the present application.
  • the P2MP communication system mainly includes a passive optical network (PON) composed of an OLT, an ONU/ONT, and passive devices between the OLT and the ONU/ONT, and a core switch on the upper layer of the OLT.
  • PON includes an OLT, an OLT side optical module, an optical splitter, an ONU/ONT side optical module, and an ONU/ONT.
  • the OLT side optical module is directly plugged into the OLT or integrated with the OLT
  • the ONU/ONT side optical module is directly plugged into the ONU/ONT or integrated with the ONU/ONT
  • the OLT side optical module is connected to the optical splitter through a trunk optical fiber
  • the optical splitter is connected to multiple ONU/ONT side optical modules through multiple branch optical fibers, thereby realizing the connection between the OLT and multiple ONU/ONTs.
  • the OLT is connected to the upper core switch through a network cable, thereby realizing the connection between the core switch and the PON.
  • ONU/ONT can also be connected to terminal devices (for example, tablets, mobile phones and other smart terminals) through network cables or mobile hotspot Wi-Fi. Since OLT and core switches are closer to the core layer, core switches, OLT and OLT side light modules can be called core points (CP); since ONU/ONT is closer to the terminal devices in the access layer, ONU/ONT side light modules and ONU/ONT can be called access points (AP).
  • terminal devices for example, tablets, mobile phones and other smart terminals
  • Wi-Fi Wi-Fi
  • OLT side optical modules and ONU/ONT side optical modules are mainly used for photoelectric conversion.
  • OLT establishes a point-to-multipoint optical channel between the OLT and multiple ONU/ONTs through signaling related to processes such as window opening, ranging, and registration and online between multiple ONU/ONTs, so that the OLT can communicate with multiple downstream ONU/ONTs based on the PON protocol.
  • the OLT can also communicate with the upstream core switch through the Ethernet protocol, and can perform traffic control on the downstream messages from the core switch and forward the upstream messages from the ONU/ONT. It can be seen that the traditional communication system relies on the OLT, resulting in a complex system architecture and large network delay.
  • the OLT needs to convert the PON protocol into the Ethernet protocol before communicating with the core switch, and the OLT to ONU/ONT is a relatively independent and closed system built according to the PON protocol.
  • the entire PON system is a black box for the core switch, that is, the core switch cannot directly control the ONU/ONT in the PON system, which is not conducive to system maintenance.
  • the downlink uses TDM and the uplink uses TDMA.
  • the time division multiplexing downlink transmission results in that the core node can only send a message to one access node in the same time slot, resulting in low data transmission efficiency.
  • the present application provides a communication system that can establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access (F-TDMA) between a core node and multiple access nodes without relying on multiple access devices such as OLT, thereby simplifying the system architecture and improving data transmission efficiency.
  • F-TDMA frequency division multiplexing-time division multiple access
  • the communication system provided by the present application includes a first device 03, a first optical module 01, an optical combiner/splitter 05, at least one second device 04 and at least one second optical module 02.
  • the first device 03 is connected to the optical combiner/splitter 05 through the first optical module 01
  • at least one second device 04 is connected to the optical combiner/splitter 05 through at least one second optical module 02.
  • the first device 03 can be a switch (for example, a core layer switch, a layer 2 switch) or a router
  • the second device 04 can be an ONU or an ONT.
  • the first optical module 01 can be directly plugged into the first device 03, or it can be integrated with the first device 03; the second optical module 02 can be directly plugged into the second device 04, or it can be integrated with the second device 04.
  • the optical combiner/splitter 05 can be a splitter, etc.
  • the first device 03 is closer to the core layer, and the second device 04 is closer to the access layer, therefore, the first device 03 can also be called a core node device (i.e., a CP device), and the second device 04 can also be called an access node device (i.e., an AP device).
  • the first optical module 01 can be called a core node optical module (i.e., a CP optical module), and the second optical module 02 can be called an access node optical module (i.e., an AP optical module).
  • the first optical module 01 and at least one second optical module 02 are used to establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA; the first device 03 communicates with at least one second device 04 through the point-to-multipoint optical channel based on F-TDMA.
  • the first optical module 01 and the second optical module 02 in the communication system can establish a point-to-multipoint optical channel based on frequency division multiplexing-time division multiple access F-TDMA (i.e., the downlink adopts frequency division multiplexing FDM and the uplink adopts time division multiple access TDMA) for the first device 03 to communicate with at least one second device 04, there is no need for multi-address devices such as OLT to participate in establishing the point-to-multipoint optical channel.
  • F-TDMA frequency division multiplexing-time division multiple access
  • OLT time division multiple access
  • the solution of this embodiment can omit the multi-address management device (for example, OLT), realize the direct connection between the first device 03 and the first optical module 01, and simplify the system architecture.
  • the first device 03 can transmit messages through the aforementioned point-to-multipoint optical channel based on F-TDMA using frequency division multiplexing FDM, it is beneficial to reduce communication delay, improve bandwidth utilization, and thus help improve communication efficiency.
  • the point-to-multipoint optical channel based on F-TDMA includes a downlink optical channel based on frequency division multiplexing FDM and an uplink optical channel based on time division multiple access TDMA, that is, the downlink transmission of the point-to-multipoint optical channel provided in the present application adopts the FDM method, and the uplink transmission adopts the TDMA method.
  • the system spectrum of the point-to-multipoint optical channel based on F-TDMA includes a downlink system spectrum and an uplink system spectrum.
  • the frequency range of the downlink system spectrum is different from the frequency range of the uplink system spectrum, and the intersection of the frequency range of the downlink system spectrum and the frequency range of the uplink system spectrum is empty.
  • the center frequency of the downlink system spectrum is less than the center frequency of the uplink system spectrum; or, the center frequency of the downlink system spectrum is greater than the center frequency of the uplink system spectrum, which is not limited in this application.
  • the system spectrum includes a data sub-band, which is used to exchange data between the first optical module 01 and the second optical module 02.
  • the downlink system spectrum includes multiple downlink data sub-bands, each downlink data sub-band is used to transmit a downlink message of a second device 04, and different downlink data sub-bands are used to transmit downlink messages of different second devices 04.
  • the downlink system spectrum includes downlink data sub-band D1, downlink data sub-band D2 and downlink data sub-band D3, wherein D1, D2 and D3 correspond to the second device #1, the second device #2 and the second device #3 respectively, and the first optical module 01 sends the downlink messages of the second device #1, the second device #2 and the second device #3 through D1, D2 and D3 at the same time.
  • the uplink system spectrum includes at least one uplink data sub-band, and the at least one uplink data sub-band is used to transmit an uplink message of a second device 04.
  • Different second optical modules 02 send uplink messages through the aforementioned at least one uplink data sub-band in different time slots.
  • the downlink system spectrum includes an uplink data sub-band U, and time slot 1, time slot 2, and time slot 3 correspond to three different second devices 04, namely, second device #1, second device #2, and second device #3, respectively.
  • the second optical module 02 sends an uplink message of the second device #1 in time slot 1 through the uplink data sub-band U1, sends an uplink message of the second device #2 in time slot 2 through the uplink data sub-band U1, and sends an uplink message of the second device #3 in time slot 3 through the uplink data sub-band U1.
  • the first device 03 can transmit downlink messages through the aforementioned F-TDMA-based point-to-multipoint optical channel using frequency division multiplexing FDM, that is, sending downlink messages of different second devices 04 at the same time through different sub-bands, the communication efficiency can be improved.
  • the system spectrum of the F-TDMA-based point-to-multipoint optical channel includes a control sub-band in addition to the data sub-band, and the control sub-band is used to exchange control information between the first optical module 01 and the second optical module 02 .
  • the control sub-band is divided into a downlink control sub-band and an uplink control sub-band.
  • the downlink control sub-band is located in the downlink system spectrum, and is used for the first optical module 01 to transmit control information to the second optical module 02.
  • the uplink control sub-band is located in the uplink system spectrum, and is used for the second optical module 02 to transmit control information to the first optical module 01. Since the frequency range of the downlink system spectrum is different from the frequency range of the uplink system spectrum, and the intersection of the frequency range of the downlink system spectrum and the frequency range of the uplink system spectrum is empty, the frequency range of the downlink control sub-band is different from the frequency range of the uplink control sub-band.
  • the downlink system spectrum includes a downlink control sub-band
  • the uplink system spectrum includes an uplink control sub-band.
  • the downlink system spectrum includes a downlink control sub-band D0
  • the first optical module 01 modulates the control information to be sent to multiple second optical modules 02 onto the aforementioned downlink control sub-band D0, and broadcasts the control information of the aforementioned multiple second optical modules 02 through the downlink control sub-band D0 at the same time.
  • the uplink system spectrum includes an uplink control sub-band U0, and the uplink control sub-band U0 is used by different second optical modules 02 to send control information in different time slots.
  • control information is a general term.
  • This application refers to the information related to operation and maintenance management processes such as time synchronization, ranging, registration, key distribution, and bandwidth configuration as control information.
  • the frequency of the control sub-band is less than the frequency of the data sub-band.
  • the frequency of the downlink control sub-band is less than the frequency of the downlink data sub-band
  • the frequency of the uplink control sub-band is less than the frequency of the uplink data sub-band.
  • the frequency D0 of the downlink control sub-band is less than the frequency of the downlink data sub-band D1/D2/D3.
  • the frequency U1 of the uplink control sub-band is less than the frequency of the uplink data sub-band U1.
  • the downlink control sub-band and the uplink control sub-band are sub-bands pre-configured by the system, for example, the downlink control sub-band is located in a fixed frequency band of the downlink system spectrum, and the uplink control sub-band is located in a fixed frequency band of the uplink system spectrum. Therefore, in the process of establishing a point-to-multipoint optical channel based on F-TDMA between the first optical module 01 and the second optical module 02, the first optical module 01 and the second optical module 02 can directly use the downlink control sub-band and the uplink control sub-band to exchange control information.
  • control sub-bands i.e., the downlink control sub-band and the uplink control sub-band
  • the control sub-bands are configured in the system spectrum of the F-TDMA-based point-to-multipoint optical channel, compared with the solution of loading the control information in the header of the message for transmission in the traditional technology, the data information transmission and the control information transmission can be separated from each other, which is conducive to improving the transmission efficiency of the control information, and further to improving the transmission efficiency of the entire communication system.
  • configuring the control sub-band at the low frequency of the system spectrum is conducive to enhancing the anti-interference ability of the control sub-band, ensuring the signal-to-noise ratio of the control sub-band, and improving the reliability of the control information transmission.
  • the F-TDMA-based point-to-multipoint optical channel there are only downlink control sub-bands and uplink control sub-bands in the system spectrum.
  • the downlink system spectrum only has the downlink control sub-band D0 shown in FIG. 3A
  • the uplink system spectrum only has the uplink control sub-band U0 shown in FIG. 3B.
  • the first optical module 01 and the second optical module 02 establish the F-TDMA-based point-to-multipoint optical channel through the downlink control sub-band and the uplink control sub-band exchange control information
  • the first optical module 01 can send a device management table to the first device 03, and the device management table includes information of each second device 04 registered with the first optical module 01.
  • the first device 03 allocates a downlink data sub-band for downlink transmission and a time slot for uplink transmission to each second device 04, so that multiple downlink data sub-bands capable of transmitting downlink messages of different second devices 04 as shown in FIG. 3A and multiple time slots capable of transmitting uplink messages of different second devices 04 as shown in FIG. 3B can be obtained.
  • the second optical module 02 corresponding to the second device 04 will obtain the information of the second device 04 (for example, physical address, electrical port rate, etc.), and exchange control information with the first optical module 01 through the uplink control sub-band and the downlink control sub-band to apply for registration of the second device 04.
  • the information of the second device 04 for example, physical address, electrical port rate, etc.
  • the first optical module 01 will assign a management identifier to each of the at least one second device 04 that has been successfully registered, and will send the information of each of the at least one second device 04 that has been successfully registered (for example, physical address, electrical port rate, etc.)
  • the information of the second device 04 e.g., physical address, electrical port rate, etc.
  • the management identifier are stored in a storage medium (e.g., memory, register, or cache) in correspondence with each other.
  • a storage medium e.g., memory, register, or cache
  • the data structure storing the information of the second device 04 (e.g., physical address, electrical port rate, etc.) and the management identifier is referred to as a device management table.
  • the device management table may be an array, a mapping table, or other data structures, which are not limited here.
  • the device management table includes the physical address of at least one second device 04 and the management identifier of the second device 04 corresponding to the physical address of each second device 04, and different second devices 04 have different physical addresses and different second devices 04 have different management identifiers.
  • the management identifier of the second device 04 can indicate that the second device 04 has been registered with the first device 03, that is, the first device 03 can manage the second device 04.
  • the management identifier of the second device 04 can be an access point identity (AP-ID) generated by the first optical module 01.
  • AP-ID access point identity
  • the physical address of the second device 04 is used to uniquely identify a second device 04, and the physical address of the second device 04 is fixed regardless of whether the second device 04 has been registered with the first optical module 01.
  • the physical address of the second device 04 may be a media access control (MAC) address of the second device 04, or a unique identifier of an interface of a second optical module 02 connected to the second device 04, or other information that can uniquely identify the second device 04 or the second optical module 02 connected to the second device 04, which is not limited here.
  • MAC media access control
  • the device management table may be as shown in the following Table 1-1:
  • the device management table further includes the electrical port rate of each second device 04 in at least one second device 04, and the electrical port rate indicates the upper limit of the bandwidth allowed to be used by the second device 04.
  • the electrical port rate indicating a second device 04 may be different or the same, which is not limited here.
  • the device management table may be as shown in the following Table 1-2:
  • the first optical module 01 assigns a management identifier to at least one second device 04, and the first optical module 01 stores the management identifier and the information of the second device 04 in the device management table, it means that the F-TDMA-based point-to-multipoint optical channel between the first optical module 01 and the second optical module 02 corresponding to the second device 04 is successfully established.
  • FIG. 4 is taken as an example, and the process of establishing a point-to-multipoint optical channel based on F-TDMA between the first optical module 01 and at least one second optical module 02 provided in the present application is introduced in combination with a specific example:
  • each second device 04 in at least one second device 04 sends the physical address and electrical port rate of the second device 04 to the second optical module 02 ; accordingly, each second optical module 02 in at least one second optical module 02 receives the physical address and electrical port rate of the second device 04 from the corresponding second device 04 .
  • Step 402 the first optical module 01 sends time synchronization information and ranging information via a downlink control sub-band; correspondingly, each second optical module 02 in at least one second optical module 02 receives time synchronization information and ranging information via a downlink control sub-band.
  • the first optical module 01 broadcasts the time synchronization information and the ranging information via a downlink control sub-band.
  • Each of the at least one second optical module 02 receives the time synchronization information and the ranging information via the downlink control sub-band.
  • Information and ranging information Exemplarily, taking FIG. 3A as an example, the first optical module 01 can periodically broadcast time synchronization information and ranging information through the downlink control sub-band D0.
  • Each unregistered second optical module 02 can obtain the time synchronization information and ranging information through the downlink control sub-band D0, thereby triggering the second optical module 02 to execute the time synchronization process and the ranging process.
  • Step 403 Each second optical module 02 in the at least one second optical module 02 performs a time synchronization process and a ranging process based on the time synchronization information and the ranging information.
  • the time synchronization information is the local time of the first optical module 01.
  • the ranging information is used to indicate a ranging time window, which is a time slot used when the second optical module 02 sends ranging-related control information to the first optical module 01.
  • each second optical module 02 After receiving the time information, each second optical module 02 will adjust the local time of the second optical module 02 based on the time information. Then, each second optical module 02 sends a ranging request message through the uplink control sub-band within the ranging time window, and the ranging request message includes the physical address of the second device 04 corresponding to the second optical module 02. In order to avoid conflicts, each second optical module 02 adds a random delay within the ranging time window and sends the ranging request message through the uplink control sub-band. For example, three second optical modules 02 send their respective ranging request messages at time T0+t1, time T0+t2 and time T0+t3, respectively.
  • T0 represents the starting time of the ranging time window
  • t1, t2, and t3 respectively represent the random delays added by each second optical module 02.
  • the first optical module 01 sends a ranging response message to the second optical module 02 corresponding to the ranging request message through the downlink control sub-band
  • the ranging response message includes the physical address of the second device 04 corresponding to the second optical module 02, the first time difference, and the temporary identifier assigned by the first optical module 01 to the second device 04 corresponding to the second optical module 02
  • the first time difference is the difference between the start time of the ranging time window and the time when the first optical module 01 receives the ranging request message.
  • each second optical module 02 determines the round-trip delay based on the first time difference and the initial timing offset, and adjusts the local time of the second optical module 02 based on the round-trip delay, thereby achieving absolute time synchronization of each second optical module 02. Then, each second optical module 02 sends a ranging completion confirmation message carrying a temporary identifier through the uplink control sub-band to indicate that the second optical module 02 has completed the time synchronization process and the ranging process.
  • Step 404 the first optical module 01 sends a management identifier via a downlink control sub-band; correspondingly, each second optical module 02 in the at least one second optical module 02 receives a management identifier via a downlink control sub-band.
  • the first optical module 01 sends the management identifier assigned by the first optical module 01 to the second device 04 corresponding to each second optical module 02 that completes the time synchronization process and the ranging process through the downlink control sub-band, and different management identifiers of different second devices 04 are different.
  • each second optical module 02 after receiving the aforementioned management identifier, each second optical module 02 will also store the management identifier of the second device 04 corresponding to the second optical module 02.
  • each second optical module 02 in at least one second optical module 02 sends a management identifier, a physical address of a second device, and an electrical port rate through an uplink control sub-band; correspondingly, the first optical module 01 receives the management identifier, the physical address of a second device, and an electrical port rate sent by each second optical module 02 through an uplink control sub-band.
  • Step 406 The first optical module stores the management identification, physical address and electrical port rate of each second device 04 in the device management table.
  • the device management table includes at least one management identifier of a second device and the physical address and electrical port rate of the second device corresponding to the management identifier of each second device.
  • Different second devices have different physical addresses and different management identifiers.
  • For the specific content of the device management table please refer to the relevant introduction in the previous text, which will not be repeated here.
  • Step 407 The first optical module 01 sends the device management table to the first device 03 ; correspondingly, the first device 03 receives the device management table from the first optical module 01 .
  • the first device 03 can obtain the device management table from the first optical module 01, the first device 03 can learn each second device 04 connected to the first device 03 based on the device management table, and then the first device 03 can communicate with at least one second device 04 through a point-to-multipoint optical channel based on F-TDMA based on the information of at least one second device 04 in the device management table.
  • the first device 03 in this embodiment can perceive the aforementioned at least one second device 04 based on the device management table, which is conducive to the management of at least one second device 04 (for example, access node device) by the first device 03 (for example, core switch).
  • the first device 03 can allocate bandwidth resources to the second devices 04 corresponding to each management identifier recorded in the device management table based on the device management table.
  • the first device 03 allocates a downlink data sub-band for downlink transmission and a time slot for uplink transmission to each second device 04, thereby obtaining multiple downlink data sub-bands capable of transmitting downlink messages of different second devices 04 as shown in FIG. 3A and multiple time slots capable of transmitting uplink messages of different second devices 04 as shown in FIG. 3B.
  • the first device 03 determines bandwidth allocation information based on the device management table, and the bandwidth allocation information is used to indicate the bandwidth resources allocated to each second device 04.
  • the bandwidth allocation information includes downlink bandwidth allocation information and/or uplink bandwidth allocation information.
  • the downlink bandwidth allocation information is used to indicate the downlink data sub-band allocated to each second device 04 in at least one second device 04, and the frequency ranges of the downlink data sub-bands allocated to different second devices 04 are different.
  • the intersection of the frequency ranges of different downlink data sub-bands is empty.
  • the frequency ranges of the three downlink data sub-bands allocated by the first device 03 to the three second devices 04 are 200MHz ⁇ 250MHz, 280MHz ⁇ 330MHz and 350MHz ⁇ 400MHz respectively, the intersection of any two of the above three frequency ranges is empty, and the center frequencies of the three frequency ranges are different.
  • the intersection of the center frequencies of different downlink data sub-bands is empty.
  • the frequency ranges of the three downlink data sub-bands allocated by the first device 03 to the three second devices 04 are 200MHz to 250MHz, 240MHz to 290MHz and 280MHz to 330MHz respectively.
  • the center frequencies of the aforementioned three frequency ranges are different from each other, but the frequency ranges of two adjacent sub-bands may have an intersection.
  • the widths of different downlink data sub-bands may be the same or different.
  • the widths of the downlink data sub-bands allocated by the first device 03 to different second devices 04 are related to the electrical port rate.
  • the width of the downlink data sub-band allocated to each second device 04 is positively correlated with the electrical port rate, that is, the greater the electrical port rate of the second device 04, the wider the width of the downlink data sub-band allocated to the second device 04.
  • the first device 03 allocates downlink data sub-bands of the same width to different second devices 04.
  • the uplink bandwidth allocation information is used to indicate the time slot for sending the uplink data sub-band allocated to each second device 04 in at least one second device 04, and different second devices are allocated different time slots, and the intersection of different time slots is empty.
  • the time slot can be understood as a time range.
  • the three time slots allocated by the first device 03 to the three second devices 04 are nms, (n+ ⁇ )ms, and (n+2 ⁇ )ms, respectively, where n is a real number greater than 0, and ⁇ is a real number greater than 0.
  • the duration of the time slots allocated by the first device 03 to different second devices 04 can be the same or different.
  • the duration of the time slots allocated by the first device 03 to different second devices 04 is related to the electrical port rate.
  • the duration of the time slot allocated to each second device 04 is positively correlated with the electrical port rate, that is, the larger the electrical port rate of the second device 04, the longer the duration of the time slot allocated to the second device 04.
  • the first device 03 allocates time slots of the same length to different second devices 04.
  • the downlink bandwidth allocation information includes the management identifier of each second device 04 in at least one second device 04 and the band identifier of the downlink data sub-band corresponding to each management identifier; the uplink bandwidth allocation information includes the management identifier of each second device 04 in at least one second device 04 and the time slot identifier of the time slot corresponding to each management identifier.
  • the bandwidth allocation information including downlink bandwidth allocation information and uplink bandwidth allocation information
  • the bandwidth allocation information may be as shown in the following Table 2-1:
  • the first device 03 may store the bandwidth allocation information in the aforementioned device management table, or may store the bandwidth allocation information separately, which is not limited here.
  • the first device 03 After the first device 03 determines the bandwidth allocation information, the first device 03 sends the bandwidth allocation information to at least one second optical module 02 through the first optical module 01.
  • the first device 03 can transmit the bandwidth allocation information to the first optical module 01, and then the first optical module 01 broadcasts the bandwidth allocation information to each second optical module 02 through the downlink control sub-band.
  • both the first optical module 01 and the second optical module 02 can obtain the aforementioned bandwidth allocation information.
  • the first device 03 can allocate bandwidth resources based on the device management table, it is beneficial for the first device 03 to allocate more appropriate bandwidth resources to each second device 04 based on the electrical port rate of each second device 04, which is beneficial to improving the utilization of bandwidth resources and improving system management efficiency.
  • the first device 03 can also determine encryption information based on the device management table and send the encryption information to the first optical module 01, where the encryption information is used to indicate different keys used for different second devices 04. Then, the first optical module 01 sends the encryption information through the downlink control sub-band; correspondingly, each second optical module 02 receives the encryption information through the downlink control sub-band.
  • the first device 03 may first generate and distribute bandwidth allocation information, and then generate and distribute encryption information; or may first generate and distribute encryption information, and then generate and distribute bandwidth allocation information, which is not limited here.
  • the first device 03 can start to receive the downlink messages of each second device 04, and perform traffic directional processing on each downlink message based on the device management table inside the first device 03, so that the first optical module 01 can use the bandwidth resources allocated by the first device 03 based on the bandwidth allocation information to send downlink messages and receive uplink messages.
  • the first device 03 can mark the received downlink message based on the device management table, so that the first optical module 01 can accurately transmit each downlink message to the second optical module 02 corresponding to each second device 04 based on the aforementioned mark.
  • the first device 03 can also forward the uplink message based on the device management table and the mark of the received uplink message.
  • the mark is used to indicate the second device 04 or the second optical module 02 corresponding to the second device 04.
  • the mark can be the management identifier introduced above, for example, AP-ID.
  • the first device 03 adds a mark to each downlink message.
  • the first device 03 can receive at least one downlink message, and the aforementioned at least one downlink message can be a downlink message of a second device 04, or a downlink message of multiple second devices 04, which is not limited here.
  • the first device 03 determines the management identifier of the second device 04 corresponding to the destination address of each received downlink message based on the physical address of each second device 04 in the device management table, and adds the management identifier of the second device 04 corresponding to the destination address to each downlink message.
  • the destination address carried by each downlink message is the physical address of the terminal device that accesses the network through the second device 04 (for example, the MAC address of the terminal device).
  • the first device 03 stores the correspondence between the physical address of the second device 04 and the physical address of the terminal device (i.e., the terminal device that accesses the network through the second device 04).
  • the first device 03 can determine the physical address of the second device 04 based on the destination address of the downlink message and the aforementioned correspondence.
  • the data structure that stores the physical address of the second device 04 and the physical address of the terminal device i.e., the terminal device that accesses the network through the second device 04
  • the physical address management table may be an array, a mapping table, or other data structures, which are not limited here.
  • the physical address management table may be as shown in Table 3-1 below:
  • the second device with the physical address "MAC address 1" is connected to the above three terminal devices.
  • the physical addresses of the terminal devices are “MAC11", “MAC12” and “MAC13”respectively;
  • the second device with the physical address of "MAC address 2" is connected to two terminal devices, and the physical addresses of the above two terminal devices are “MAC21” and "MAC22”respectively;
  • the second device with the physical address of "MAC address 3" is connected to three terminal devices, and the physical addresses of the above three terminal devices are "MAC31", "MAC32” and "MAC33" respectively.
  • the device management table shown in Table 1-1 and the physical address management table shown in Table 3-1 are used as examples. If the destination address of the downlink message received by the first device 03 is MAC address 11, the first device 03 determines that the physical address of the second device 04 corresponding to the destination address is MAC address 1 based on the physical address management table shown in Table 3-1, and then, the first device 03 determines that the management identifier of the second device 04 corresponding to MAC address 1 is AP-ID1 based on the device management table shown in Table 1-1.
  • the first device 03 determines that the management identifier of the second device 04 corresponding to the destination address carried by the downlink message is AP-ID1 based on the destination address carried by the downlink message, the physical address management table, and the device management table. Then, the first device 03 adds AP-ID1 to the downlink message.
  • the first device 03 After the first device 03 adds a management identifier to each downlink message, the first device 03 transmits the aforementioned downlink message carrying the management identifier to the first optical module 01, so that the first optical module 01 modulates the downlink message of each second device 04 to the downlink data sub-band corresponding to each second device 04 according to the downlink bandwidth allocation information, and broadcasts the aforementioned downlink message of at least one second device 04 to at least one second optical module 02 through a point-to-multipoint optical channel; and then each second optical module 02 receives the downlink message of the second device on the downlink data sub-band of the second device 04 corresponding to the second optical module 02 according to the downlink bandwidth allocation information.
  • each downlink message transmitted from the first device 03 to the first optical module 01 carries a management identifier.
  • the downlink message transmitted from the first optical module 01 to the second optical module 02 may carry a management identifier or may not carry a management identifier.
  • the downlink message transmitted from the first optical module 01 to the second optical module 02 carries a management identifier.
  • the first optical module 01 modulates each downlink message carrying the management identifier to the downlink data sub-band corresponding to the management identifier according to the downlink bandwidth allocation information, and sends the aforementioned downlink message carrying the management identifier to at least one second optical module 02 through an FDM-based downlink optical channel.
  • each second optical module 02 receives a downlink message carrying the management identifier of the second device 04 on the downlink data sub-band of the second device 04 corresponding to the second optical module 02 according to the downlink bandwidth allocation information.
  • the downlink messages sent by the first optical module 01 to the second optical module 02 all carry the management identifier of the second device 04 corresponding to the downlink message, which is beneficial for each second optical module 02 to determine the downlink message corresponding to the second optical module 02 from the downlink optical signal broadcast by the first optical module 01 based on the management identifier.
  • the downlink message transmitted from the first optical module 01 to the second optical module 02 does not carry a management identifier.
  • the first optical module 01 determines the downlink data sub-band used to send the downlink message according to the downlink bandwidth allocation information and the management identifier carried in the downlink message, then deletes the management identifier carried by the downlink message, modulates the downlink message not carrying the management identifier to the downlink data sub-band corresponding to the management identifier, and sends the aforementioned downlink message not carrying the management identifier to at least one second optical module 02 through a point-to-multipoint optical channel.
  • each second optical module 02 Since each second optical module 02 stores the downlink bandwidth allocation information obtained from the first device 03, the second optical module 02 can determine the downlink data sub-band of the second device 04 corresponding to the second optical module 02 based on the downlink bandwidth allocation information and the management identifier stored in the second optical module 02, and then receives the downlink message not carrying the management identifier on the downlink data sub-band.
  • the second optical module 02 can receive the downlink message on the corresponding downlink data sub-band, saving the overhead for carrying the management identifier in the downlink transmission, which is beneficial to improving the downlink data transmission efficiency.
  • the first device 03 can perform table lookup forwarding processing on the uplink message based on the tag carried by each uplink message (for example, the management identifier of the second device).
  • the management identifier carried by each uplink message can be added by the second optical module 02 for each uplink message, or by the first optical module 01 for each uplink message. The following are introduced respectively:
  • the second optical module 02 adds a management identifier to each uplink message.
  • Each second optical module 02 can obtain at least one uplink message of the second device 04 corresponding to the second optical module 02. Since each second optical module 02 stores the management identifier of the corresponding second device 04, each second optical module 02 can add a management identifier to each uplink message after obtaining the uplink message. The management identifier of the second device 04 corresponding to the second optical module 02 is added to the uplink message. Then, the second optical module 02 sends the uplink message carrying the management identifier in the time slot corresponding to the second device 04 according to the uplink bandwidth allocation information, and sends the uplink message to the first optical module 01 through the TDMA-based uplink optical channel.
  • the first optical module 01 receives the aforementioned uplink message carrying the management identifier in the time slot corresponding to each second device 04 according to the uplink bandwidth allocation information. Then, the first optical module 01 transmits the uplink message carrying the management identifier to the first device 03, and the first device 03 performs table lookup and forwarding processing on the uplink message based on the management identifier of each uplink message. It should be noted that when this embodiment is adopted, the downlink message transmitted from the first optical module 01 to the second optical module 02 also carries the management identifier.
  • the first optical module 01 adds a management identifier to each uplink message. After acquiring the uplink message without the management identifier, each second optical module 02 directly modulates the uplink message without the management identifier to the time slot corresponding to the second device 04 according to the uplink bandwidth allocation information, and sends the uplink message to the first optical module 01 through the TDMA-based uplink optical channel. Correspondingly, the first optical module 01 receives the aforementioned uplink message without the management identifier in the time slot corresponding to each second device 04 according to the uplink bandwidth allocation information.
  • the first optical module 01 adds the management identifier of the second device 04 corresponding to the second optical module 02 to the uplink message from each second optical module 02 based on the device management table, and then, the first optical module 01 transmits the uplink message carrying the management identifier to the first device 03, and the first device 03 performs table lookup and forwarding processing on the uplink message based on the management identifier of each uplink message. It should be noted that when this implementation is adopted, the downlink message transmitted from the first optical module 01 to the second optical module 02 also does not carry the management identifier.
  • the first device 03 can perform traffic directional processing based on the device management table, which is beneficial to hard isolation of downlink messages.
  • the first device 03 when the first device 03 transmits the downlink message to the first optical module 01, the first device 03 can also perform flow control processing on each downlink message based on the device management table.
  • the first device 03 can determine multiple flow control queues based on the electrical port rates of each second device 04 in the second device management, and different flow control queues correspond to different management identifiers. Then, the first device 03 transmits each downlink message to the flow control queue corresponding to the management identifier in the downlink message, and transmits the downlink messages in the multiple flow control queues to the first optical module 01 through at least one physical interface.
  • the physical interface can be a serializing/deserializing circuit (SerDes).
  • the first device 03 can perform traffic control processing based on the device management table, which is beneficial for the first device 03 to control the number of downlink messages sent to each second device 04 based on the electrical port rate of each second device 04, reduce the probability of congestion, and improve data transmission efficiency.
  • the communication system provided uses the first optical module 01 to replace the OLT in the traditional technology to establish a point-to-multipoint optical signal, and uses the first device 03 to replace the OLT in the traditional technology to implement bandwidth resource allocation, traffic orientation, and traffic control and other processing, thereby realizing an OLT-free point-to-multipoint communication system, integrating the originally separated Ethernet and PON, and simplifying the network architecture.
  • the first device 03 includes an interface module 031 and a processing module 032.
  • the interface module 031 is used to obtain a device management table, and the device management table indicates information of at least one second device 04.
  • the processing module 032 is used to communicate with at least one second device 04 through a point-to-multipoint optical channel based on F-TDMA based on the device management table.
  • the device management table please refer to the relevant description in the previous text, which will not be repeated here.
  • the processing module 032 is specifically used to allocate bandwidth resources based on the device management table.
  • the processing module 032 determines the bandwidth allocation information based on the electrical port rate in the device management table.
  • the relevant introduction in the implementation method of the first device 03 allocating bandwidth resources based on the device management table please refer to the relevant introduction in the implementation method of the first device 03 allocating bandwidth resources based on the device management table, which will not be repeated here.
  • the processing module 032 is specifically used to perform traffic directional processing and traffic control processing based on the device management table.
  • the processing module 032 includes a switch (SW) module.
  • the SW module is used to determine the management identifier of the second device corresponding to the destination address of each received downlink message based on the physical address of the second device in the device management table, and to add the management identifier of the second device corresponding to the destination address to each downlink message.
  • the SW module can obtain the device management table (for example, the device management table shown in Table 1-1) and the physical address management table (for example, the physical address management table shown in Table 3-1), and then the SW module determines the physical address of the second device corresponding to the destination address carried by the downlink message based on the physical address management table, and then the SW module determines the management identifier of the second device based on the device management table and the physical address of the second device.
  • the device management table for example, the device management table shown in Table 1-1
  • the physical address management table for example, the physical address management table shown in Table 3-1
  • the processing module 032 further includes a traffic management (TM) module and a MAC aggregation subsystem (MAG) module.
  • TM traffic management
  • MAG MAC aggregation subsystem
  • the TM module is used to configure multiple flow control queues, different flow control queues correspond to different management identifiers; and transmit each downlink message to the flow control queue corresponding to the management identifier in the downlink message.
  • the MAG module is used to transmit the downlink messages in the multiple flow control queues to the first optical module 01 through at least one physical interface.
  • the SW module in the processing module 032 stores a device management table and a physical address management table, or the SW module can obtain the device management table and the physical address management table from the storage medium of the first device 03.
  • the SW module After the SW module receives the downlink message 1 with a source MAC address of "0-0-0-0" and a destination MAC address of "0-1-2-3", the SW module queries the physical address management table to determine that the terminal device corresponding to the destination MAC address accesses the network through the second device with a MAC address of "1-2-3-4". Then, based on the device management table, the SW module determines that the management identifier of the second device corresponding to the MAC address "1-2-3-4" is "AP-ID1".
  • the SW module adds "AP-ID1" to the downlink message 1 to obtain the downlink message 1', and transmits the downlink message 1' to the TM module.
  • the TM module stores the device management table or the TM module can obtain the device management table from the storage medium of the first device 03.
  • the TM module transmits the downlink message 1' to the flow control queue corresponding to "AP-ID1" (for example, queue 1 in Figure 6B) for transmission based on the management identifier "AP-ID1" carried by the downlink message 1'.
  • the number of flow control queues in the TM module is not necessarily the same as the number of physical interfaces (for example, the serializing/deserializing circuitry (SerDes) between the first device 03 and the first optical module 01).
  • SerDes serializing/deserializing circuitry
  • This example takes the case where there are 8 flow control queues and only 1 SerDes in the TM module as an example.
  • the MAG module is used to perform parallel-to-serial conversion on the 8 flow control queues into 1 output queue, and the 1 output queue is transmitted to the first optical module 01 via 1 SerDes.
  • the processing module 032 further includes a network processor (NP) module.
  • the MAG module receives an uplink message carrying a management identifier from at least one second device 04 from the first optical module 01 through at least one physical interface.
  • the NP module is used to perform table lookup forwarding processing on the uplink message based on the management identifier of each uplink message.
  • the first optical module 01 includes a point-to-multipoint module 011
  • the second optical module 02 includes a point-to-multipoint response module 021.
  • the point-to-multipoint module 011 is used to establish a point-to-multipoint optical channel between the first optical module 01 and at least one second optical module 02 with the point-to-multipoint response module 021, and the point-to-multipoint optical channel is used for the first device 03 to communicate with at least one second device 04.
  • the point-to-multipoint module 011 is specifically used to receive the physical address of at least one second device to be registered from the point-to-multipoint response module 021, where different second devices 04 have different physical addresses; assign a management identifier to each second device 04 in at least one second device 04 that has been successfully registered, where different second devices 04 have different management identifiers; and store the physical address of each second device 04 in at least one second device 04 that has been successfully registered in correspondence with the management identifier in the device management table.
  • the point-to-multipoint module 011 sends time synchronization information and ranging information through a downlink control sub-band; sends a management identifier assigned to each second device 04 corresponding to the point-to-multipoint response module 021 that completes the time synchronization process and the ranging process through a downlink control sub-band; receives the management identifier, the physical address of the second device, and the electrical port rate through an uplink control sub-band; stores the management identifier, physical address, and electrical port rate of each second device 04 in a device management table, which includes at least one management identifier of a second device 04 and the physical address and electrical port rate of the second device 04 corresponding to the management identifier of each second device 04, different second devices 04 have different physical addresses, and different second devices 04 have different management identifiers.
  • a device management table which includes at least one management identifier of a second device 04 and the physical address and electrical port rate of the second device 04 corresponding to the management identifier of each second device 04, different second
  • the point-to-multipoint module 011 is also used to send bandwidth allocation information generated by the first device 03 to each point-to-multipoint response module.
  • the point-to-multipoint module 011 transmitting bandwidth allocation information please refer to the above description, which will not be repeated here.
  • the point-to-multipoint module 011 is also used to modulate the downlink message of each second device to the downlink data sub-band corresponding to each second device according to the downlink bandwidth allocation information, and send the downlink message of at least one second device through each downlink data sub-band.
  • the point-to-multipoint module 011 is also used to receive the uplink message of the second device in the time slot corresponding to each second device according to the uplink bandwidth allocation information.
  • the first optical module 01 further includes an interface module 012.
  • the interface module 012 is used to receive information from the first device 03 and/or send information to the first device 03.
  • the interface module 012 is used to send a device management table to the first device 03.
  • the interface module 012 is used to receive bandwidth allocation information from the first device 03, so that the point-to-multipoint module 011 can obtain the bandwidth allocation information through the interface module 012.
  • the interface module 012 is used to receive at least one downlink message from the first device 03, and to send an uplink message to the first device 03.
  • the point-to-multipoint response module 021 is specifically used to obtain the physical address of the second device 04 connected to the second optical module 02, and apply for registration of the second device 04 in the point-to-multipoint module 01 based on the physical address of the second device 04; and, receive the management identifier assigned to the second device 04 by the point-to-multipoint module 011.
  • the point-to-multipoint response module 021 receives time synchronization information and ranging information on the downlink control sub-band; executes the time synchronization process and ranging process based on the time synchronization information and ranging information; after completing the time synchronization process and ranging process, receives the management identifier of the second device 04 corresponding to each second optical module through the downlink control sub-band; sends the management identifier, the physical address and the electrical port rate of the second device 04 through the uplink control sub-band, and the management identifier, the physical address and the electrical port rate of the second device 04 are used to generate a device management table, which includes the management identifier of at least one second device 04 and the physical address and the electrical port rate of the second device 04 corresponding to the management identifier of each second device 04, and different second devices 04 have different physical addresses and different second devices 04 have different management identifiers.
  • the point-to-multipoint response module 021 generating the device management table in response to the point-
  • the point-to-multipoint response module 021 is also used to receive bandwidth allocation information through a point-to-multipoint optical channel.
  • the point-to-multipoint response module 021 is also used to receive at least one downlink message on the downlink data sub-band of the bandwidth resource corresponding to the second device 04 connected to the second optical module 02 according to the downlink bandwidth allocation information, and to send the uplink message of the second device 04 through the time slot corresponding to the second device 04 according to the uplink bandwidth allocation information.
  • the point-to-multipoint response module 021 receiving the bandwidth allocation information and transmitting the uplink and downlink messages, please refer to the relevant description in the previous text, which will not be repeated here.
  • the point-to-multipoint response module 021 is further configured to add a management identifier of the second device 04 to each uplink message.
  • the second optical module 02 further includes an interface module 022.
  • the interface module 022 is used to send at least one downlink message to the second device 04, and to receive at least one uplink message from the second device 04 connected to the second optical module 02.
  • the interface module 022 is used to send at least one downlink message to the second device 04, and to receive at least one uplink message from the second device 04 connected to the second optical module 02.
  • the network device 80 may be a device such as a switch or a router. It should be understood that the specific implementation of the first device 03 in the communication system shown in Figure 2 can refer to the internal structure of the network device 80 shown in Figure 8.
  • the network device 80 may include a processor 801 and a transceiver 802, and the processor 801 is coupled and connected to the transceiver 802.
  • the network device 80 supports a PON interface and can be directly connected to an optical module.
  • the aforementioned first optical module 01 can be directly plugged into the network device 80 board.
  • the processor 801 may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the processor 801 may refer to one processor or may include multiple processors, which are not specifically limited here.
  • the processor 801 is used to implement the function of the processing module 032 in the first device 03.
  • the transceiver 802 may also be referred to as a transceiver unit, a transceiver, a transceiver device, etc.
  • a device for implementing a receiving function in a transceiver unit may be regarded as a receiving unit
  • a device for implementing a sending function in a transceiver unit may be regarded as a sending unit, that is, a transceiver unit includes a receiving unit and a sending unit
  • a receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • a sending unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver 802 is used to implement the function of the interface module 031 in the first device 03.
  • the network device 80 also includes a memory 803.
  • the processor 801 is coupled to the memory 803.
  • the memory 803 is mainly used to store software programs and data.
  • the memory 803 can exist independently and be connected to the processor 801.
  • the memory 803 can be integrated with the processor 801, for example, integrated into one or more chips.
  • the memory 803 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 801.
  • the various types of computer program codes executed can also be regarded as drivers for the processor 801.
  • the memory 803 may include a volatile memory (volatile memory), such as a random-access memory (RAM); the memory may also include a non-volatile memory (non-volatile memory), such as a read-only memory (ROM), a flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 803 may also include a combination of the above-mentioned types of memories.
  • the memory 803 may refer to one memory or may include multiple memories. Exemplarily, the memory 803 is used to store various data. For example, the device management table and bandwidth allocation information introduced above.
  • the memory 803 stores computer-readable instructions, which include multiple software modules.
  • the processor 801 calls the aforementioned computer-readable instructions to execute the functions of the processing module 032 in the first device 03.
  • the processor 801 calls the aforementioned computer-readable instructions to execute the functions of the SW module, TM module, NP module, and MAG module in the processing module 032.
  • FIG9 it is a schematic diagram of the structure of an optical module 90 provided in this embodiment.
  • the optical module 90 may be the aforementioned first optical module 01 or the second optical module 02. It should be understood that the specific implementation of the first optical module 01 in the communication system shown in FIG2 may refer to the internal structure of the optical module 90 shown in FIG9 .
  • the optical module 90 When the optical module 90 is implemented as the first optical module 01, the optical module 90 may be directly plugged into the first device 03, or the optical module 90 may be integrated in the first device 03.
  • the optical module 90 is implemented as the second optical module 02, the optical module 90 may be directly plugged into the second device 04, or the optical module 90 may be integrated in the second device 04.
  • the optical module 90 may include a processor 901 , an electro-optical modulator 902 , and a transceiver 903 .
  • the processor 901 is coupled to the electro-optical modulator 902 and the transceiver 903 , respectively.
  • the processor 901 may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the processor 901 may refer to one processor or may include multiple processors, which are not specifically limited here.
  • the processor 901 is used to implement the function of the point-to-multipoint module 011 in the first optical module 01 shown in FIG. 2.
  • the processor 901 is used to implement the function of the point-to-multipoint response module 021 in the second optical module 02 shown in FIG. 2. Please refer to the description related to FIG. 2 above for details, which will not be repeated here.
  • the aforementioned optoelectronic modulator 902 is used to perform optoelectronic conversion under the control of the processor 901, and modulate the optical carrier to generate an optical signal to be sent.
  • the transceiver 903 is used to transmit and receive optical signals.
  • the transceiver 903 includes a burst optical receiver and a burst optical transmitter; when the optical module 90 is a second optical module, the transceiver 903 includes a continuous optical receiver and a continuous optical transmitter.
  • the optical module 90 also includes a memory 904.
  • the processor 901 is coupled to the memory 904.
  • the memory 904 is mainly used to store software programs and data.
  • the memory 904 can exist independently and be connected to the processor 901.
  • the memory 904 can be integrated with the processor 901, for example, integrated into one or more chips.
  • the memory 904 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 901.
  • the various types of computer program codes executed can also be regarded as drivers for the processor 901.
  • the memory 904 may include volatile Memory (volatile memory), such as random-access memory (RAM); memory may also include non-volatile memory (non-volatile memory), such as read-only memory (ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); memory 904 may also include a combination of the above-mentioned types of memory.
  • volatile Memory volatile memory
  • RAM random-access memory
  • non-volatile memory such as read-only memory (ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD)
  • ROM read-only memory
  • HDD hard disk drive
  • SSD solid-state drive
  • memory 904 may also include a combination of the above-mentioned types of memory.
  • Memory 904 may refer to one memory or may include multiple memories.
  • memory 904 is used to store various data. For example, the device management table and bandwidth allocation information introduced above.
  • the memory 904 stores computer-readable instructions, which include multiple software modules.
  • the processor 901 calls the aforementioned computer-readable instructions to execute the function of the processing module 032 in the first device 03.
  • the processor 901 calls the aforementioned computer-readable instructions to execute the function of the point-to-multipoint module 011 in the first optical module 01 shown in FIG2, or executes the function of the point-to-multipoint response module 021 in the second optical module 02 shown in FIG2.
  • FIG10 it is a schematic diagram of the structure of a chip 100 provided in this embodiment.
  • the chip 100 includes at least one logic circuit 1001 and an input/output interface 1002.
  • the input/output interface 1002 is used to input the electrical signal to be processed and the processed electrical signal.
  • the logic circuit 1001 is used to perform part or all of the functions of the point-to-multipoint module 011 or the point-to-multipoint response module 021 shown in FIG2 above.
  • the chip 100 also includes a storage medium 1003.
  • the storage medium 1003 is used to store information such as a device management table.
  • the chip 100 may be integrated into the first optical module 01 shown in FIG. 2 , or may be integrated into the second optical module 02 shown in FIG. 2 .
  • the chip 100 may be integrated into the first device 03 shown in FIG. 2 .
  • the chip 100 may be a system on chip (SOC), which is not specifically limited herein.
  • SOC system on chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请公开了一种通信系统以及相关设备,该通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,第一设备通过第一光模块连接光合分器,至少一个第二设备通过至少一个第二光模块连接光合分器。由于通信系统中的第一光模块与第二光模块能够建立基于频分复用-时分多址F-TDMA的点到多点的光信道(即下行采用频分复用FDM的方式且上行采用时分多址TDMA的方式)用于第一设备与至少一个第二设备通信,因此,不需要OLT等多址设备参与建立点到多点光信道。相比于传统技术中依赖于OLT建立点到多点光信道的方案,本申请的方案能够省去多址管理设备(例如,OLT),实现第一设备与第一光模块直连,简化了系统架构。

Description

一种通信系统以及相关设备
本申请要求于2022年10月09日提交中国国家知识产权局、申请号为202211226927.8、申请名称为“基于F-TDMA的IP和光深度融合的P2MP网络系统”的中国专利申请的优先权,以及,于2022年12月31日提交中国国家知识产权局、申请号为202211736375.5、申请名称为“一种通信系统以及相关设备”的中国专利申请的优先权,要求其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信系统以及相关设备。
背景技术
无源汇聚点到多点(point to multi point,P2MP)光网络架构,一般包括核心节点(center point,CP)、分光器以及接入节点(access point,AP)。其中,核心节点通过分光器将接入节点进行流量汇聚,并将该点到多点光网络通过交换机与上层城域网或骨干网耦合。由于,核心节点需要负责多个接入节点的上下行管理,因此,一般核心节点除了包含核心交换机之外,还包含多址管理设备(例如,OLT)。核心节点交换机通过多址管理设备在与多个接入节点之间实现基于时分复用-时分多址TDMA的点到多点通信,即下行采用时分复用(time division multiplexing,TDM)方式,上行采用时分多址(time division multiple access,TDMA)方式。
然而,传统技术中的核心节点设备需要通过OLT等多址设备才能建立基于TDMA的点到多点光信道来与多个接入节点进行通道。OLT等多址设备导致系统架构复杂,网络延迟较大,不利于系统维护。此外,时分复用的下行传输导致同一时隙核心节点仅可以发送一个接入节点的报文,数据传输效率低。
发明内容
本申请提供了一种通信系统以及相关设备,用于提高点到多点光通信的通信效率。
第一方面,本申请提供了一种通信系统,通信系统用于点对多点通信。该通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块。其中,第一设备通过第一光模块连接光合分器,至少一个第二设备通过至少一个第二光模块连接光合分器。在该通信系统中,第一光模块和至少一个第二光模块用于建立基于频分复用-时分多址F-TDMA的点到多点的光信道;第一设备通过基于F-TDMA的点到多点光信道与至少一个第二设备进行通信。
本申请中,由于,该通信系统中的第一光模块与第二光模块能够建立基于频分复用-时分多址F-TDMA的点到多点的光信道(即下行采用频分复用FDM的方式且上行采用时分多址TDMA的方式)用于第一设备与至少一个第二设备通信,因此,不需要OLT等多址设备参与建立点到多点光信道。相比于传统技术中依赖于OLT建立点到多点光信道的方案,本实施例的方案能够省去多址管理设备(例如,OLT),实现第一设备与第一光模块直连,简化了系统架构。此外,由于,该第一设备能够通过前述基于F-TDMA的点到多点的光信道采用频分复用FDM的方式传输报文,有利于提高通信效率。
在一种可能的实施方式中,基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道,即基于F-TDMA的点到多点光信道的下行传输采用FDM的方式,上行传输采用TDMA的方式。
其中,该基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱。下行系统频谱的频率范围与上行系统频谱的频率范围不同,并且,下行系统频谱的频率范围与上行系统频谱的频率范围交集为空。可选的,下行系统频谱的中心频率小于上行系统频谱的中心频率;或者,下行系统频谱的中心频率大于上行系统频谱的中心频率,本申请不做限定。该系统频谱包括数据子频带,该数据子频带用于在第一光模块和第二光模块之间交互数据。
其中,该下行系统频谱包括多个下行数据子频带,每个下行数据子频带用于传输一个第二设备的下行报文,不同的下行数据子频带用于传输不同的第二设备的下行报文。此外,该上行系统频谱包括至少 一个上行数据子频带,该至少一个上行数据子频带用于传输一个第二设备的上行报文,不同的第二光模块在不同的时隙通过前述至少一个上行数据子频带发送上行报文。
本实施方式中,由于,该第一设备能够通过前述基于F-TDMA的点到多点的光信道采用频分复用FDM的方式传输下行报文,即通过不同的子频带在同一时刻发送不同的第二设备04的下行报文,因此,能够提高通信效率。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,控制子频带用于在第一光模块和第二光模块之间交互控制信息,数据子频带用于在第一光模块和第二光模块之间交互数据。
可选的,控制子频带分为下行控制子频带和上行控制子频带。该下行控制子频带位于下行系统频谱中,用于第一光模块向第二光模块传输控制信息。该上行控制子频带位于上行系统频谱中,用于第二光模块向第一光模块传输控制信息。由于,下行系统频谱的频率范围与上行系统频谱的频率范围不同,并且,下行系统频谱的频率范围与上行系统频谱的频率范围交集为空,因此,下行控制子频带的频率范围与上行控制子频带的频率范围也不同。
可选的,下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
本实施方式中,由于在基于F-TDMA的点到多点光信道的系统频谱配置了用于交互控制信息的控制子频带(例如,下行控制子频带和上行控制子频带),相比于传统技术中将控制信息加载在报文的头部进行传输的方案,能够实现数据信息传输与控制信息传输相互分离,有利于提高控制信息的传输效率,进而有利于提高整个通信系统的传输效率。
在一种可能的实施方式中,控制子频带的频率小于数据子频带的频率。示例性的,下行控制子频带的频率小于下行数据子频带的频率,上行控制子频带的频率小于上行数据子频带的频率。
本实施方式中,将控制子频带配置在系统频谱的低频处,有利于增强控制子频带的抗干扰能力,保证控制子频带的信噪比,提高控制信息传输的可靠性。
在一种可能的实施方式中,下行控制子频带携带的控制信息包括时间同步信息和测距信息。该第一光模块和第二光模块在注册第二设备的过程中执行如下步骤:
第一光模块,具体用于通过下行控制子频带发送时间同步信息和测距信息;每个第二光模块,具体用于基于时间同步信息和测距信息执行时间同步流程和测距流程;第一光模块,还用于通过下行控制子频带发送第一光模块为每个完成时间同步流程和测距流程的第二光模块对应的第二设备分配的管理标识;每个第二光模块,还用于通过上行控制子频带发送管理标识、第二设备的物理地址和电口速率;第一光模块,还用于将每个第二设备的管理标识、物理地址和电口速率对应存储至设备管理表中,设备管理表包括至少一个第二设备的管理标识和每个第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
本实施方式中,点到多点模块为成功注册的第二设备分配管理标识,以标识该第二设备已在点到多点模块注册,有利于提高区分已成功注册的第二设备和未注册的第二设备,提高管理效率。
在一种可能的实施方式中,第一光模块,还用于向第一设备发送设备管理表。第一设备,还用于基于设备管理表中的电口速率确定下行带宽分配信息和/或上行带宽分配信息,下行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,上行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同。第一光模块,还用于从第一设备获取下行带宽分配信息和/或上行带宽分配信息,以及,向至少一个第二光模块中的每个第二光模块发送下行带宽分配信息和/或上行带宽分配信息。
本实施方式中,第一设备能够从第一光模块获取设备管理表,因此,第一设备能够基于设备管理表获知与该第一设备连接的各个第二设备,进而该第一设备能够基于设备管理表中至少一个第二设备的信息通过基于F-TDMA的点到多点光信道与至少一个第二设备进行通信。相比于传统技术中核心节点交换机不感知接入节点设备的方案,本实施例中的第一设备能够基于设备管理表获知前述至少一个第二设备 中每个第二设备的信息,有利于实现第一设备(例如,核心交换机)对至少一个第二设备(例如,接入节点设备)的管理。此外,由于第一设备能够基于设备管理表进行带宽资源分配,有利于第一设备基于各个第二设备的电口速率为各个第二设备分配更合适的带宽资源,有利于提高带宽资源的利用率,进而提高系统管理效率。
在一种可能的实施方式中,下行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的下行数据子频带的频带标识;第一光模块,具体用于根据下行带宽分配信息将每个第二设备的下行报文调制到每个第二设备对应的下行数据子频带上,通过基于FDM的下行光信道发送至少一个第二设备的下行报文;每个第二光模块,具体用于根据下行带宽分配信息在与第二光模块连接的第二设备对应的下行数据子频带上接收第二设备的下行报文。
在一种可能的实施方式中,上行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的时隙的时隙标识;每个第二光模块,具体用于将与第二光模块连接的第二设备的上行报文调制到上行数据子频带中,并根据上行带宽分配信息在第二设备对应的时隙中通过基于TDMA的上行光信道发送第二设备的上行报文;第一光模块,具体用于根据上行带宽分配信息在每个第二设备对应的时隙上接收对应的第二设备的上行报文。
在一种可能的实施方式中,第一设备,还用于:接收至少一个下行报文;基于设备管理表中的第二设备的物理地址确定接收的每个下行报文的目的地址对应的第二设备的管理标识,以及,为每个下行报文添加目的地址对应的第二设备的管理标识;向第一光模块发送至少一个携带管理标识的下行报文。
本实施方式中,第一设备能够基于设备管理表进行流量定向处理,有利于下行报文硬隔离。
在一种可能的实施方式中,每个第二光模块存储有与第二光模块连接的第二设备的管理标识;每个第二光模块,还用于:获取与第二光模块对应的第二设备的至少一个上行报文;为每个上行报文添加第二设备的管理标识。
在一种可能的实施方式中,第一设备,还用于基于设备管理表确定加密信息,并向第一光模块发送加密信息,加密信息用于指示针对不同的第二设备使用的不同密钥;第一光模块,还用于通过下行控制子频带发送加密信息;每个第二光模块,还用于通过下行控制子频带接收加密信息。
本实施方式中,第一设备能够为各个第二设备配置加密信息,有利于提高各个第二设备与第一设备交互数据的安全性。相比于传统技术中由OLT分配加密信息的方案,由第一设备配置加密信息能够提高密钥配置的灵活性。
第二方面,本申请提供了一种第一光模块,第一光模块应用于点到多点通信系统中。该点到多点通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,第一设备通过第一光模块连接光合分器,至少一个第二设备通过至少一个第二光模块连接光合分器。该第一光模块包括:
点到多点模块,用于与第二光模块建立基于频分复用-时分多址F-TDMA的点到多点的光信道,基于F-TDMA的点到多点光信道用于第一设备与至少一个第二设备进行通信。
本申请中,由于,该通信系统中的第一光模块与第二光模块能够建立基于频分复用-时分多址F-TDMA的点到多点的光信道(即下行采用频分复用FDM的方式且上行采用时分多址TDMA的方式)用于第一设备与至少一个第二设备通信,因此,不需要OLT等多址设备参与建立点到多点光信道。相比于传统技术中依赖于OLT建立点到多点光信道的方案,本实施例的方案能够省去多址管理设备(例如,OLT),实现第一设备与第一光模块直连,简化了系统架构。
在一种可能的实施方式中,基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,控制子频带用于在第一光模块和第二光模块之间交互控制信息,数据子频带用于在第一光模块和第二光模块之间交互数据。
在一种可能的实施方式中,控制子频带的频率小于数据子频带的频率。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱,控制子频带包括位于下行系统频谱的下行控制子频带和位于上行系统频谱的上行控制子频带,下行控制子频带的频率范围与上行控制子频带的频率范围不同,下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
在一种可能的实施方式中,下行控制子频带携带的控制信息包括时间同步信息和测距信息。点到多点模块,具体用于:
通过下行控制子频带发送时间同步信息和测距信息,时间同步信息和测距信息用于第二光模块执行时间同步流程和测距流程;通过下行控制子频带发送第一光模块为每个完成时间同步流程和测距流程的第二光模块对应的第二设备分配的管理标识;通过上行控制子频带接收管理标识、第二设备的物理地址和电口速率;将每个第二设备的管理标识、物理地址和电口速率对应存储至设备管理表中,设备管理表包括至少一个第二设备的管理标识和每个第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
在一种可能的实施方式中,第一光模块,还包括:接口模块,用于向第一设备发送设备管理表。
在一种可能的实施方式中,接口模块,还用于从第一设备接收下行带宽分配信息和/或上行带宽分配信息,下行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,上行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同;点到多点模块,还用于通过下行控制子频带发送下行带宽分配信息和/或上行带宽分配信息。
在一种可能的实施方式中,下行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的下行数据子频带的频带标识;点到多点模块,具体用于根据下行带宽分配信息将每个第二设备的下行报文调制到每个第二设备对应的下行数据子频带上,通过基于FDM的下行光信道发送至少一个第二设备的下行报文。
在一种可能的实施方式中,上行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的时隙的时隙标识;点到多点模块,具体用于根据上行带宽分配信息在每个第二设备对应的时隙上接收对应的第二设备的上行报文。
在一种可能的实施方式中,接口模块,还用于从第一设备获取加密信息,加密信息用于指示针对不同的第二设备使用的不同密钥;点到多点模块,还用于通过下行控制子频带发送加密信息。
需要说明的是,本方面的具体实施方式和有益效果与前文第一方面中的部分实施方式类似,具体可参见第一方面的具体实施方式和其有益效果,在此不再赘述。
第三方面,本申请提供了一种第二光模块,第二光模块应用于点到多点通信系统中。该点到多点通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,第一设备通过第一光模块连接光合分器,至少一个第二设备通过至少一个第二光模块连接光合分器。该第二光模块包括:
点到多点响应模块,用于与第一光模块建立基于频分复用-时分多址F-TDMA的点到多点的光信道,基于F-TDMA的点到多点光信道用于第一设备与多个第二设备进行通信。
本申请中,由于,该通信系统中的第一光模块与第二光模块能够建立基于频分复用-时分多址F-TDMA的点到多点的光信道(即下行采用频分复用FDM的方式且上行采用时分多址TDMA的方式)用于第一设备与至少一个第二设备通信,因此,不需要OLT等多址设备参与建立点到多点光信道。相比于传统技术中依赖于OLT建立点到多点光信道的方案,本实施例的方案能够省去多址管理设备(例如,OLT),实现第一设备与第一光模块直连,简化了系统架构。
在一种可能的实施方式中,基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,控制子频带用于在第一光模块和第二光模块之间交互控制信息,数据子频带用于在第一光模块和第二光模块之间交互数据。
在一种可能的实施方式中,控制子频带的频率小于数据子频带的频率。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱,控制子频带包括位于下行系统频谱的下行控制子频带和位于上行系统频谱的上行控制子频带,下行控制子频带的频率范围与上行控制子频带的频率范围不同,下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
在一种可能的实施方式中,下行控制子频带携带的控制信息包括时间同步信息和测距信息。
点到多点响应模块,具体用于:
通过下行控制子频带上接收时间同步信息和测距信息;基于时间同步信息和测距信息执行时间同步流程和测距流程;在完成时间同步流程和测距流程之后,通过下行控制子频带接收第一光模块为每个第二光模块对应的第二设备分配的管理标识;通过上行控制子频带发送管理标识、第二设备的物理地址和电口速率,管理标识、第二设备的物理地址和电口速率用于生成设备管理表,设备管理表包括至少一个第二设备的管理标识和每个第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
在一种可能的实施方式中,点到多点响应模块,还用于通过下行控制子频带接收下行带宽分配信息和/或上行带宽分配信息,下行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,上行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同。
在一种可能的实施方式中,下行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的下行数据子频带的频带标识;点到多点响应模块,具体用于根据下行带宽分配信息在与第二光模块连接的第二设备对应的下行数据子频带上接收第二设备的下行报文。
在一种可能的实施方式中,上行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的时隙的时隙标识;点到多点响应模块,具体用于将与第二光模块连接的第二设备的上行报文调制到上行数据子频带中,并根据上行带宽分配信息在第二设备对应的时隙中通过基于TDMA的上行光信道发送第二设备的上行报文。
在一种可能的实施方式中,每个第二光模块存储有与第二光模块连接的第二设备的管理标识。第二光模块,还包括接口模块;接口模块,用于获取与第二光模块对应的第二设备的至少一个上行报文;点对多点响应模块,还用于为每个上行报文添加第二设备的管理标识。
在一种可能的实施方式中,点到多点响应模块,还用于通过下行控制子频带接收加密信息,加密信息用于指示针对不同的第二设备使用的不同密钥。
需要说明的是,本方面的具体实施方式和有益效果与前文第一方面中的部分实施方式类似,具体可参见第一方面的具体实施方式和其有益效果,在此不再赘述。
第四方面,本申请提供了一种第一设备,第一设备应用于点到多点通信系统中。该点到多点通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,第一设备通过第一光模块连接光合分器,至少一个第二设备通过至少一个第二光模块连接光合分器。该第一设备包括:
接口模块,用于获取设备管理表,设备管理表指示至少一个第二设备的信息,设备管理表是在建立第一光模块与至少一个第二光模块之间的基于频分复用-时分多址F-TDMA的点到多点光信道的过程中生成的;处理模块,用于基于设备管理表通过基于F-TDMA的点到多点光信道与至少一个第二设备进行通信。
本申请中,第一设备能够基于设备管理表获知与该第一设备连接的各个第二设备,进而该第一设备能够基于设备管理表中至少一个第二设备的信息通过基于F-TDMA的点到多点光信道与至少一个第二设备进行通信。因此,相比于传统技术中核心节点设备(例如,核心交换机)不感知接入节点设备的方案,本实施方式中的第一设备能够基于设备管理表感知前述至少一个第二设备,有利于实现第一设备(例如,核心交换机)对至少一个第二设备(例如,接入节点设备)的管理。
在一种可能的实施方式中,基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,控制子频带用于在第一光模块和第二光模块之间交互控制信息,数据子频带用于在第一光模块和第二光模块之间交互数据。
在一种可能的实施方式中,控制子频带的频率小于数据子频带的频率。
在一种可能的实施方式中,设备管理表包括至少一个第二设备的物理地址和每个第二设备的物理地址对应的第二设备的管理标识,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
在一种可能的实施方式中,设备管理表还包括至少一个第二设备中每个第二设备的电口速率,电口速率用于指示第二设备允许使用的带宽上限;第一设备,还用于基于设备管理表中的电口速率确定下行带宽分配信息和/或上行带宽分配信息,下行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,上行带宽分配信息用于指示为至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同。
在一种可能的实施方式中,下行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的下行数据子频带的频带标识,不同的第二设备占用的下行数据子频带的频率范围不同;和/或,上行带宽分配信息包括至少一个第二设备中每个第二设备的管理标识和每个管理标识对应的时隙的时隙标识,不同的第二设备占用的时隙不同。
在一种可能的实施方式中,接口模块,还用于接收至少一个下行报文;处理模块,还用于基于设备管理表中的第二设备的物理地址确定接收的每个下行报文的目的地址对应的第二设备的管理标识,以及,为每个下行报文添加目的地址对应的第二设备的管理标识;发送至少一个携带管理标识的下行报文。
在一种可能的实施方式中,接口模块,还用于接收至少一个携带管理标识的上行报文;处理模块,还用于基于每个上行报文的管理标识对上行报文进行查表转发处理。
在一种可能的实施方式中,第一设备,还用于基于设备管理表确定加密信息,并向第一光模块发送加密信息,加密信息用于指示针对不同的第二设备使用的不同密钥。
需要说明的是,本方面的具体实施方式和有益效果与前文第一方面中的部分实施方式类似,具体可参见第一方面的具体实施方式和其有益效果,在此不再赘述。
第五方面,本申请提供了一种光模块,该光模块包括处理器和收发器;该收发器用于接收光信号以及发送光信号;该处理器用于实现上述第二方面中任意一种第一光模块的部分或全部功能;或者,实现上述第三方面中任意一种第一光模块的部分或全部功能。
第六方面,本申请提供了一种芯片,包括至少一个逻辑电路和输入输出接口;该输入输出接口用于输入输出电信号;该逻辑电路用于实现上述第一方面中点到多点模块的部分或全部功能,或者,实现上述第一方面中点到多点响应模块的部分或全部功能。
第七方面,本申请提供了一种核心节点设备,该核心节点设备包括处理器;该处理器用于实现上述第一方面中任意一种点到多点模块的部分或全部功能。
可选的,该核心节点设备为核心交换机或路由器。
可选的,该核心节点设备包括如第六方面所述的芯片。
第八方面,本申请提供了一种接入节点设备,该接入节点设备包括处理器;该处理器用于实现上述第一方面中任意一种点到多点响应模块的部分或全部功能。
可选的,该接入节点设备为ONT或ONU。
可选的,该接入节点设备包括如第六方面所述的芯片。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为传统技术中通信系统的一个网络架构图;
图2为本申请提供的点到多点通信系统的一个网络架构图;
图3A为本申请提供的点到多点通信系统的下行系统频谱的一个示例图;
图3B为本申请提供的点到多点通信系统的下行系统频谱的另一个示例图;
图4为本申请提供的建立点到多点光信道的流程一个示例图;
图5为本申请提供的第一设备中的处理模块的一个示例图;
图6A为本申请提供的第一设备的一个实施例示意图;
图6B为本申请提供的第一设备的另一个实施例示意图;
图7为本申请提供的第一光模块和第二光模块的一个实施例示意图;
图8为本申请提供的通信系统涉及的网络设备的一个实施例示意图;
图9为本申请提供的通信系统涉及的光模块的一个实施例示意图;
图10为本申请提供的芯片的一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请提出的通信系统,下面先对传统技术中的P2MP通信系统的主要架构进行介绍:
如图1所示,为传统技术中的P2MP通信系统的一个示例图。该P2MP通信系统主要包括由OLT、ONU/ONT以及OLT与ONU/ONT之间的无源器件构成的无源光网络(passive optical network,PON),以及,OLT上层的核心交换机。其中,PON包括OLT、OLT侧光模块、分光器、ONU/ONT侧光模块以及ONU/ONT。其中,OLT侧光模块直插在OLT上或者与OLT集成于一体,ONU/ONT侧光模块直插在ONU/ONT上或者与ONU/ONT集成于一体,OLT侧光模块通过主干光纤与分光器连接,分光器通过多条分支光纤与多个ONU/ONT侧光模块连接,进而实现OLT与多个ONU/ONT之间的连接。此外,OLT通过网线与上层的核心交换机连接,进而实现核心交换机与PON的连接。此外,ONU/ONT还可以通过网线或移动热点Wi-Fi与终端设备(例如,平板、手机等智能终端)连接。由于,OLT与核心交换机更靠近核心层,因此,核心交换机、OLT以及OLT侧光模块可以称为核心节点(core point,CP);由于,ONU/ONT更接近接入层的终端设备,因此,ONU/ONT侧光模块、ONU/ONT可以称为接入节点(access point,AP)。
在传统技术中,OLT侧光模块和ONU/ONT侧光模块主要用于光电转换。OLT作为多址设备通过与多个ONU/ONT之间的开窗、测距、注册上线等流程相关的信令建立该OLT与多个ONU/ONT之间的点到多点光信道,以使得OLT基于PON协议与下行的多个ONU/ONT进行通信。此外,OLT还可以通过以太协议与上行的核心交换机进行通信,能够对来自核心交换机的下行报文进行流量管控,对来自ONU/ONT的上行报文进行转发处理。由此可见,传统的通信系统依赖于OLT,导致系统架构复杂,网络延迟较大。
此外,在该P2MP通信系统中,OLT需要将PON的协议转换成以太协议后才能与核心交换机通信,而OLT到ONU/ONT是按照PON协议构建的一个相对独立封闭的系统。也就是说,整个PON的系统对于核心交换机来说是一个黑盒,即核心交换机无法直接管控PON系统中的ONU/ONT,因此,不利于系统维护。
此外,传统的P2MP系统中,下行采用TDM方式,上行采用TDMA方式。时分复用的下行传输导致同一时隙核心节点仅可以发送一个接入节点的报文,数据传输效率低。
对此,本申请提供了一种通信系统,该通信系统能够在不依赖于OLT等多址设备的情况下建立核心节点与多个接入节点之间的基于频分复用-时分多址(frequency division multiplexing-time division multiple access,F-TDMA)的点到多点光信道,能够简化系统架构,提高数据传输效率。
如图2所示,本申请提供的通信系统包括第一设备03、第一光模块01、光合分器05、至少一个第二设备04和至少一个第二光模块02。其中,第一设备03通过第一光模块01连接光合分器05,至少一个第二设备04通过至少一个第二光模块连02接光合分器05。示例性的,第一设备03可以是交换机(例如,核心层交换机、层2交换机)或路由器,第二设备04可以是ONU或ONT。第一光模块01可以直插在第一设备03上,也可以与第一设备03集成于一体;第二光模块02可以直插在第二设备04上,也可以与第二设备04集成于一体。光合分器05可以是分光器等。
示例性的,第一设备03更靠近核心层,第二设备04更靠近接入层,因此,第一设备03也可以称为核心节点设备(即CP设备),第二设备04也可以称为接入节点设备(即AP设备)。相应地,第一光模块01可以称为核心节点光模块(即CP光模块),第二光模块02可以称为接入节点光模块(即AP光模块)。
在图2所示的通信系统中,第一光模块01和至少一个第二光模块02用于建立基于频分复用-时分多址F-TDMA的点到多点的光信道;第一设备03通过基于F-TDMA的点到多点光信道与至少一个第二设备04进行通信。
本实施例中,由于,该通信系统中的第一光模块01与第二光模块02能够建立基于频分复用-时分多址F-TDMA的点到多点的光信道(即下行采用频分复用FDM的方式且上行采用时分多址TDMA的方式)用于第一设备03与至少一个第二设备04通信,因此,不需要OLT等多址设备参与建立点到多点光信道。相比于传统技术中依赖于OLT建立点到多点光信道的方案,本实施例的方案能够省去多址管理设备(例如,OLT),实现第一设备03与第一光模块01直连,简化了系统架构。此外,由于,该第一设备03能够通过前述基于F-TDMA的点到多点的光信道采用频分复用FDM的方式传输报文,有利于降低通信时延,提高带宽利用率,进而有利于提高通信效率。
在一种可能的实施方式中,基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道,即本申请提供的点到多点光信道的下行传输采用FDM的方式,上行传输采用TDMA的方式。
应理解,基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱。其中,下行系统频谱的频率范围与上行系统频谱的频率范围不同,并且,下行系统频谱的频率范围与上行系统频谱的频率范围交集为空。可选的,下行系统频谱的中心频率小于上行系统频谱的中心频率;或者,下行系统频谱的中心频率大于上行系统频谱的中心频率,本申请不做限定。该系统频谱包括数据子频带,该数据子频带用于在第一光模块01和第二光模块02之间交互数据。
其中,该下行系统频谱包括多个下行数据子频带,每个下行数据子频带用于传输一个第二设备04的下行报文,不同的下行数据子频带用于传输不同的第二设备04的下行报文。以图3A为例,下行系统频谱包括下行数据子频带D1、下行数据子频带D2和下行数据子频带D3,其中,D1、D2和D3分别对应第二设备#1、第二设备#2和第二设备#3,则第一光模块01在同一时刻通过D1、D2和D3发送第二设备#1、第二设备#2和第二设备#3的下行报文。
此外,该上行系统频谱包括至少一个上行数据子频带,该至少一个上行数据子频带用于传输一个第二设备04的上行报文,不同的第二光模块02在不同的时隙通过前述至少一个上行数据子频带发送上行报文。以图3B为例,下行系统频谱包括上行数据子频带U,时隙1、时隙2和时隙3分别对应第二设备#1、第二设备#2和第二设备#3三个不同的第二设备04,则第二光模块02通过上行数据子频带U1在时隙1发送第二设备#1的上行报文,第二光模块02通过上行数据子频带U1在时隙2发送第二设备#2的上行报文,第二光模块02通过上行数据子频带U1在时隙3发送第二设备#3的上行报文。
由于,该第一设备03能够通过前述基于F-TDMA的点到多点的光信道采用频分复用FDM的方式传输下行报文,即通过不同的子频带在同一时刻发送不同的第二设备04的下行报文,因此,能够提高通信效率。
进一步地,在一种可能的实施方式中,基于F-TDMA的点到多点光信道的系统频谱除了包括数据子频带之外,还包括控制子频带,该控制子频带用于在第一光模块01和第二光模块02之间交互控制信息。
其中,控制子频带分为下行控制子频带和上行控制子频带。该下行控制子频带位于下行系统频谱中,用于第一光模块01向第二光模块02传输控制信息。该上行控制子频带位于上行系统频谱中,用于第二光模块02向第一光模块01传输控制信息。由于,下行系统频谱的频率范围与上行系统频谱的频率范围不同,并且,下行系统频谱的频率范围与上行系统频谱的频率范围交集为空,因此,下行控制子频带的频率范围与上行控制子频带的频率范围不同。
在一种可能的实施方式中,下行系统频谱包括一个下行控制子频带,上行系统频谱包括一个上行控制子频带。如图3A所示,下行系统频谱包括一个下行控制子频带D0,该第一光模块01将需要发送给多个第二光模块02的控制信息均调制到前述下行控制子频带D0上,在同一时刻通过该下行控制子频带D0广播前述多个第二光模块02的控制信息。如图3B所示,上行系统频谱包括一个上行控制子频带U0,该上行控制子频带U0在不同的时隙由不同的第二光模块02发送控制信息。
应注意,前述控制信息是一个统称,本申请将与时间同步、测距、注册、密钥分发以及带宽配置等运维管理流程相关的信息统称为控制信息。
可选的,控制子频带的频率小于数据子频带的频率。示例性的,下行控制子频带的频率小于下行数据子频带的频率,上行控制子频带的频率小于上行数据子频带的频率。以图3A为例,下行控制子频带的频率D0小于下行数据子频带D1/D2/D3的频率。以图3B为例,上行控制子频带的频率U1小于上行数据子频带U1的频率。
可选的,下行控制子频带和上行控制子频带为系统预配置的子频带,例如,下行控制子频带位于下行系统频谱的某个固定频段,上行控制子频带位于上行系统频谱的某个固定频段。因此,在第一光模块01与第二光模块02建立基于F-TDMA的点到多点光信道的过程中,该第一光模块01与第二光模块02能够直接利用下行控制子频带和上行控制子频带交互控制信息。
本实施方式中,由于在基于F-TDMA的点到多点光信道的系统频谱配置了用于交互控制信息的控制子频带(即下控制子频带和上行控制子频带),相比于传统技术中将控制信息加载在报文的头部进行传输的方案,能够实现数据信息传输与控制信息传输相互分离,有利于提高控制信息的传输效率,进而有利于提高整个通信系统的传输效率。此外,将控制子频带配置在系统频谱的低频处,有利于增强控制子频带的抗干扰能力,保证控制子频带的信噪比,提高控制信息传输的可靠性。
需要说明的是,在基于F-TDMA的点到多点光信道建立之前,系统频谱中仅有下行控制子频带和上行控制子频带。例如,下行系统频谱仅有图3A所示的下行控制子频带D0,上行系统频谱仅有图3B所示的上行控制子频带U0。第一光模块01与第二光模块02通过下行控制子频带和上行控制子频带交互控制信息而建立基于F-TDMA的点到多点光信道之后,第一光模块01可以向第一设备03发送设备管理表,该设备管理表包括各个在第一光模块01注册的第二设备04的信息。然后,该第一设备03为各个第二设备04分配用于下行传输的下行数据子频带和用于上行传输的时隙,从而可以获得如图3A所示能够传输不同的第二设备04的下行报文的多个下行数据子频带和如图3B所示的能够传输不同的第二设备04的上行报文的多个时隙。
下面将先对第一光模块01与第二光模块02建立基于F-TDMA的点到多点光信道的实现方式进行介绍:
具体地,每当一个第二设备04上线,该第二设备04对应的第二光模块02将获取该第二设备04的信息(例如,物理地址、电口速率等信息),并通过上行控制子频带和下行控制子频带与第一光模块01交互控制信息,以申请注册该第二设备04。第一光模块01将为成功注册的至少一个第二设备04中的每个第二设备04分配管理标识,并将成功注册的至少一个第二设备04中每个第二设备04的信息(例如,物理地址、 电口速率等信息)与管理标识对应存储至存储介质(例如,存储器、寄存器或缓存)中。本申请中,将存储前述第二设备04的信息(例如,物理地址、电口速率等信息)与管理标识的数据结构称为设备管理表。应理解,在实际应用中,该设备管理表可以是数组、映射表还可能是其他的数据结构,此处不做限定。
在一种可能的实施方式中,设备管理表包括至少一个第二设备04的物理地址和每个第二设备04的物理地址对应的第二设备04的管理标识,不同的第二设备04的物理地址不同,不同的第二设备04的管理标识不同。应理解,第二设备04的管理标识可以指示该第二设备04已在第一设备03注册,即第一设备03可以对该第二设备04进行管理。示例性的,该第二设备04的管理标识可以是第一光模块01生成的接入节点标识(access point identity,AP-ID)。此外,第二设备04的物理地址用于唯一标识一个第二设备04,无论该第二设备04是否已在第一光模块01注册,该第二设备04的物理地址固定不变。示例性的,第二设备04的物理地址可以是第二设备04的媒体接入控制(media access control,MAC)地址,或者,与第二设备04连接的第二光模块02的接口的唯一标识,或者,其他的能够唯一标识第二设备04或与第二设备04连接的第二光模块02的信息,此处不做限定。
示例性的,以第二设备04的物理地址为第二设备04的MAC地址,第二设备04的管理标识为AP-ID为例,设备管理表可以如下表1-1所示:
表1-1
可选的,设备管理表还包括至少一个第二设备04中每个第二设备04的电口速率,电口速率指示第二设备04允许使用的带宽上限。可选的,前述指示一个第二设备04的电口速率可能不同,也可能相同,此处不做限定。
示例性的,若设备管理表包括电口速率,以第二设备04的物理地址为第二设备04的MAC地址,第二设备04的管理标识为AP-ID为例,设备管理表可以如下表1-2所示:
表1-2
应理解,当第一光模块01为至少一个第二设备04分配了管理标识,并且,该第一光模块01将管理标识与第二设备04的信息对应存储至设备管理表中时,就代表该第一光模块01与该第二设备04对应的第二光模块02之间的基于F-TDMA的点到多点光信道便建立成功了。
为便于理解,下面图4为例,下面结合具体的示例对本申请提供的第一光模块01与至少一个第二光模块02建立基于F-TDMA的点到多点光信道的过程进行介绍:
步骤401,至少一个第二设备04中的每个第二设备04向第二光模块02发送第二设备04的物理地址和电口速率;相应地,至少一个第二光模块02中的每个第二光模块02从对应的第二设备04接收该第二设备04的物理地址和电口速率。
其中,关于物理地址和电口速率的介绍请参阅前文中的相关描述,此处不予赘述。
步骤402,第一光模块01通过下行控制子频带发送时间同步信息和测距信息;相应地,至少一个第二光模块02中的每个第二光模块02通过下行控制子频带接收时间同步信息和测距信息。
在一种可能的实施方式中,第一光模块01通过一个下行控制子频带广播时间同步信息和测距信息。至少一个第二光模块02中的每个第二光模块02均通过前述下行控制子频带接收时间同步 信息和测距信息。示例性的,以图3A为例,第一光模块01可以通过下行控制子频带D0周期性广播时间同步信息和测距信息。每个未注册的第二光模块02均能够通过该下行控制子频带D0获取到该时间同步信息和测距信息,从而触发该第二光模块02执行时间同步流程和测距流程。
步骤403,至少一个第二光模块02中的每个第二光模块02基于时间同步信息和测距信息执行时间同步流程和测距流程。
其中,时间同步信息为第一光模块01的本地时间。测距信息用于指示测距时间窗,该测距时间窗为第二光模块02向第一光模块01发送与测距相关的控制信息时使用的时隙。
具体地,每个第二光模块02在收到时间信息之后,将基于该时间信息调整该第二光模块02的本地时间。然后,每个第二光模块02在测距时间窗内通过上行控制子频带发送测距请求消息,该测距请求消息包括该第二光模块02对应的第二设备04的物理地址。为了避免冲突,每个第二光模块02在测距时间窗内增加一个随机时延在通过上行控制子频带发送测距请求消息。例如,三个第二光模块02分别在时刻T0+t1、时刻T0+t2和时刻T0+t3发送各自的测距请求消息。其中,T0表示测距时间窗的起始时刻,t1、t2、t3分别表示各个第二光模块02添加的随机时延。然后,第一光模块01在收到测距请求消息之后,通过下行控制子频带向该测距请求消息对应的第二光模块02发送测距响应消息,该测距响应消息包括该第二光模块02对应的第二设备04的物理地址、第一时间差以及该第一光模块01为该第二光模块02对应的第二设备04分配的临时标识,第一时间差为测距时间窗的起始时刻与所述第一光模块01收到该测距请求消息的时刻之差。然后,每个第二光模块02基于第一时间差和初始定时偏移确定往返时延,以及,基于该往返时延调整第二光模块02的本地时间,进而实现各个第二光模块02的时间绝对同步。然后,每个第二光模块02通过上行控制子频带发送携带临时标识的测距完成确认消息,以指示该第二光模块02完成时间同步流程和测距流程。
步骤404,第一光模块01通过下行控制子频带发送管理标识;相应地,至少一个第二光模块02中的每个第二光模块02通过下行控制子频带接收管理标识。
具体地,第一光模块01通过下行控制子频带发送第一光模块01为每个完成时间同步流程和测距流程的第二光模块02对应的第二设备04分配的管理标识,不同的第二设备04的管理标识不同。此外,每个第二光模块02在收到前述管理标识之后,还将存储第二光模块02对应的第二设备04的管理标识。
步骤405,至少一个第二光模块02中的每个第二光模块02通过上行控制子频带发送管理标识、第二设备的物理地址和电口速率;相应地,第一光模块01通过上行控制子频带接收每个第二光模块02发送的管理标识、第二设备的物理地址和电口速率。
步骤406,第一光模块将每个第二设备04的管理标识、物理地址和电口速率对应存储至设备管理表中。
其中,设备管理表包括至少一个第二设备的管理标识和每个第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。关于设备管理表的具体内容请参阅前文的相关介绍,此处不予赘述。
步骤407,第一光模块01向第一设备03发送设备管理表;相应地,第一设备03从第一光模块01接收设备管理表。
应理解,前述图4所介绍的生成设备管理表的流程仅仅是一种示例,在实际应用中,第一光模块01与第二光模块02交互的信息的内容与前述流程可能不同,此处不做限定。
由于,第一设备03能够从第一光模块01获取设备管理表,因此,第一设备03能够基于设备管理表获知与该第一设备03连接的各个第二设备04,进而该第一设备03能够基于设备管理表中至少一个第二设备04的信息通过基于F-TDMA的点到多点光信道与至少一个第二设备04进行通信。相比于传统技术中核心节点设交换机不感知接入节点设备的方案,本实施例中的第一设备03能够基于设备管理表感知前述至少一个第二设备04,有利于实现第一设备03(例如,核心交换机)对至少一个第二设备04(例如,接入节点设备)的管理。
进一步地,第一设备03在获取到设备管理表之后,该第一设备03能够基于设备管理表对该设备管理表中记载的各个管理标识对应的第二设备04进行带宽资源分配。该第一设备03为各个第二设备04分配用于下行传输的下行数据子频带和用于上行传输的时隙,从而可以获得如图3A所示能够传输不同的第二设备04的下行报文的多个下行数据子频带和如图3B所示的能够传输不同的第二设备04的上行报文的多个时隙。
具体地,该第一设备03基于设备管理表确定带宽分配信息,该带宽分配信息用于指示每个第二设备04分得的带宽资源。该带宽分配信息包括下行带宽分配信息和/或上行带宽分配信息。
其中,下行带宽分配信息用于指示为至少一个第二设备04中每个第二设备04分配的下行数据子频带,不同的第二设备04分得的下行数据子频带的频率范围不同。在一种示例中,若采用非正交频分复用调制,则不同的下行数据子频带的频率范围的交集为空。例如,第一设备03为三个第二设备04分配的三个下行数据子频带的频率范围分别为200MHz~250MHz,280MHz~330MHz和350MHz~400MHz,前述三个频率范围的任意两个的交集为空,并且,三个频率范围的中心频率互不相同。在另一种示例中,若采用非正交频分复用调制,则不同的下行数据子频带的中心频率的交集为空。例如,第一设备03为三个第二设备04分配的三个下行数据子频带的频率范围分别为200MHz~250MHz,240MHz~290MHz和280MHz~330MHz,前述三个频率范围的中心频率互不相同,但是,相邻的两个子频带的频率范围可以有交集。此外,不同的下行数据子频带的宽度可以相同,也可以不同。在一种示例中,第一设备03为不同的第二设备04分配的下行数据子频带的宽度与电口速率相关。例如,每个第二设备04分得的下行数据子频带的宽度与电口速率呈正相关,即第二设备04的电口速率越大,第二设备04分得的下行数据子频带的宽度越宽。在另一种示例中,第一设备03为不同的第二设备04分配相同宽度的下行数据子频带。
此外,上行带宽分配信息用于指示为至少一个第二设备04中每个第二设备04分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同,不同的时隙的交集为空。该时隙可以理解是时间范围。例如,第一设备03为三个第二设备04分配的三个时隙分别为第nms、第(n+Δ)ms以及第(n+2Δ)ms,其中,n为大于0的实数,Δ为大于0的实数。此外,第一设备03为不同的第二设备04分配的时隙的时长可以相同,也可以不同。在一种示例中,第一设备03为不同的第二设备04分配的时隙的时长与电口速率相关。例如,每个第二设备04分得的时隙的时长与电口速率呈正相关,即第二设备04的电口速率越大,第二设备04分得的时隙的时长越长。在另一种示例中,第一设备03为不同的第二设备04分配相同时长的时隙。
示例性的,下行带宽分配信息包括至少一个第二设备04中每个第二设备04的管理标识和每个管理标识对应的下行数据子频带的频带标识;上行带宽分配信息包括至少一个第二设备04中每个第二设备04的管理标识和每个管理标识对应的时隙的时隙标识。
示例性的,以带宽分配信息包括下行带宽分配信息和上行带宽分配信息为例,该带宽分配信息可以如下表2-1所示:
表2-1
需要说明的是,第一设备03可以将带宽分配信息存储至前述设备管理表中,也可以单独存储带宽分配信息,此处不做限定。
在第一设备03确定带宽分配信息之后,第一设备03通过第一光模块01向至少一个第二光模块02发送带宽分配信息。示例性的,第一设备03可以将带宽分配信息传输至第一光模块01,然后,由第一光模块01通过下行控制子频带将该带宽分配信息广播至各个第二光模块02。也就是说,第一光模块01和第二光模块02均能够获得前述带宽分配信息。
本实施方式中,由于第一设备03能够基于设备管理表进行带宽资源分配,有利于第一设备03基于各个第二设备04的电口速率为各个第二设备04分配更合适的带宽资源,有利于提高带宽资源的利用率,提高系统管理效率。
此外,第一设备03在获取到设备管理表之后,该第一设备03还能够基于设备管理表确定加密信息,并向第一光模块01发送加密信息,加密信息用于指示针对不同的第二设备04使用的不同密钥。然后,第一光模块01通过下行控制子频带发送加密信息;相应地,每个第二光模块02通过下行控制子频带接收加密信息。
需要说明的是,第一设备03可以先生成并分发带宽分配信息,再生成并分发加密信息;也可以先生成并分发加密信息,再生成并分发带宽分配信息,此处不做限定。
进一步地,当第一设备03向第一光模块04发送各个第二设备04的带宽分配信息和加密信息之后,该第一设备03可以开始接收各个第二设备04的下行报文,并在第一设备03内部基于设备管理表进行对各个下行报文进行流量定向处理,进而第一光模块01能够基于带宽分配信息采用第一设备03分配的带宽资源发送下行报文和接收上行报文。
具体地,第一设备03能够基于设备管理表对收到的下行报文进行标记,以使得第一光模块01能够基于前述标记将每个下行报文准确传输到各个第二设备04对应的第二光模块02。此外,第一设备03还能够基于设备管理表和收到的上行报文的标记对该上行报文进行转发处理。可选的,该标记用于指示第二设备04或第二设备04对应的第二光模块02。示例性的,该标记可以是前文介绍的管理标识,例如,AP-ID。
在下行数据传输过程中,由第一设备03为各个下行报文添加标记。具体地,第一设备03可以接收至少一个下行报文,前述至少一个下行报文可以是某一个第二设备04的下行报文,也可以是多个第二设备04的下行报文,此处不做限定。第一设备03基于设备管理表中的各个第二设备04的物理地址确定接收的每个下行报文的目的地址对应的第二设备04的管理标识,以及,为每个下行报文添加目的地址对应的第二设备04的管理标识。
需要说明的是,每个下行报文携带的目的地址为通过第二设备04接入网络的终端设备的物理地址(例如,该终端设备的MAC地址)。该第一设备03中存储有第二设备04的物理地址与终端设备(即通过该第二设备04接入网络的终端设备)的物理地址的对应关系。第一设备03能够基于下行报文的目的地址和前述对应关系确定第二设备04的物理地址。本申请中,将存储存第二设备04的物理地址与终端设备(即通过该第二设备04接入网络的终端设备)的物理地址的数据结构称为物理地址管理表。应理解,在实际应用中,该物理地址管理表可以是数组、映射表还可能是其他的数据结构,此处不做限定。示例性的,该物理地址管理表可以如下表3-1所示:
表3-1
在表3-1所示示例中,物理地址为“MAC地址1”的第二设备连接了前述3个终端设备,3 个终端设备的物理地址分别为“MAC11”、“MAC12”以及“MAC13”;物理地址为“MAC地址2”的第二设备连接了2个终端设备,前述2个终端设备的物理地址分别为“MAC21”和“MAC22”;物理地址为“MAC地址3”的第二设备连接了3个终端设备,前述3个终端设备的物理地址分别为“MAC31”、“MAC32”以及“MAC33”。
为便于理解,以前文表1-1所示的设备管理表和表3-1所示的物理地址管理表为例。若第一设备03收到的下行报文的目的地址为MAC地址11,则该第一设备03基于表3-1所示的物理地址管理表确定该目的地址对应的第二设备04的物理地址为MAC地址1,然后,该第一设备03基于表1-1所示的设备管理表确定MAC地址1对应的第二设备04的管理标识为AP-ID1。也就是说,第一设备03基于下行报文携带的目的地址、物理地址管理表和设备管理表确定下行报文携带的目的地址对应的第二设备04的管理标识为AP-ID1。然后,该第一设备03在该下行报文上添加AP-ID1。第一设备03为每个下行报文添加管理标识之后,第一设备03将前述携带管理标识的下行报文传输至第一光模块01,以使得第一光模块01根据下行带宽分配信息将每个第二设备04的下行报文调制到每个第二设备04对应的下行数据子频带上,通过点到多点光信道向至少一个第二光模块02广播前述至少一个第二设备04的下行报文;进而每个第二光模块02根据下行带宽分配信息在第二光模块02对应的第二设备04的下行数据子频带上接收第二设备的下行报文。
关于第一设备03中的内部结构在流量定向处理过程中的功能实现,请参阅后文图6A和图6B对应的实施例。
需要说明的是,从第一设备03传输到第一光模块01的每个下行报文携带管理标识。从第一光模块01传输到第二光模块02的下行报文可以携带管理标识,也可以不携带管理标识。下面分别举例介绍:
在一种可能的示例中,从第一光模块01传输到第二光模块02的下行报文携带管理标识。具体地,第一光模块01从第一设备03获取到携带管理标识的下行报文之后,该第一光模块01根据下行带宽分配信息将每个携带管理标识的下行报文调制到该管理标识对应的下行数据子频带上,通过基于FDM的下行光信道向至少一个第二光模块02发送前述携带管理标识的下行报文。相应地,每个第二光模块02根据下行带宽分配信息在第二光模块02对应的第二设备04的下行数据子频带上接收携带该第二设备04的管理标识的下行报文。本示例中,第一光模块01发送给第二光模块02的下行报文均携带了该下行报文对应的第二设备04的管理标识,有利于每个第二光模块02基于管理标识从第一光模块01广播的下行光信号中确定出该第二光模块02对应的下行报文。
在另一种可能的示例中,从第一光模块01传输到第二光模块02的下行报文不携带管理标识。具体地,第一光模块01从第一设备03获取到携带管理标识的下行报文之后,该第一光模块01根据下行带宽分配信息和该下行报文中携带的管理标识确定发送下行报文使用的下行数据子频带,然后,删除该下行报文携带的管理标识,将未携带管理标识的下行报文调制到该管理标识对应的下行数据子频带上,通过点到多点光信道向至少一个第二光模块02发送前述未携带管理标识的下行报文。由于,每个第二光模块02存储有从第一设备03获取的下行带宽分配信息,该第二光模块02能够基于下行带宽分配信息和该第二光模块02存储的管理标识确定该第二光模块02对应的第二设备04的下行数据子频带,然后,在该下行数据子频带上接收未携带该管理标识的下行报文。本示例中,虽然,第一光模块01发送给第二光模块02的下行报文未携带管理标识,但是,第二光模块02能够在对应的下行数据子频带上接收下行报文,节省了下行传输中用于携带管理标识的开销,有利于提高下行数据传输效率。
此外,在上行数据传输过程中,第一设备03能够基于每个上行报文携带的标记(例如,第二设备的管理标识)对上行报文进行查表转发处理。每个上行报文携带的管理标识可以由第二光模块02为各个上行报文添加,也可以由第一光模块01为各个上行报文添加。下面分别进行介绍:
在一种可能的实施方式中,第二光模块02为各个上行报文添加管理标识。每个第二光模块02能够获取与第二光模块02对应的第二设备04的至少一个上行报文。由于,每个第二光模块02存储有对应的第二设备04的管理标识,因此,每个第二光模块02在获取到上行报文之后,能够为 该上行报文添加上该第二光模块02对应的第二设备04的管理标识。然后,第二光模块02根据上行带宽分配信息在第二设备04对应的时隙中发送携带管理标识的上行报文,通过基于TDMA的上行光信道向第一光模块01发送该上行报文。相应地,第一光模块01根据上行带宽分配信息在每个第二设备04对应的时隙中接收前述携带管理标识的上行报文。然后,第一光模块01将携带管理标识的上行报文传输至第一设备03,第一设备03基于每个上行报文的管理标识对上行报文进行查表转发处理。需要说明的是,当采用本实施方式时,从第一光模块01传输到第二光模块02的下行报文也携带管理标识。
在另一种可能的实施方式中,第一光模块01为各个上行报文添加管理标识。每个第二光模块02在获取到未携带管理标识的上行报文之后,直接根据上行带宽分配信息将未携带管理标识的上行报文调制到第二设备04对应的时隙上,通过基于TDMA的上行光信道向第一光模块01发送该上行报文。相应地,第一光模块01根据上行带宽分配信息在每个第二设备04对应的时隙中接收前述未携带管理标识的上行报文。然后,第一光模块01基于设备管理表为来自各个第二光模块02的上行报文添加该第二光模块02对应的第二设备04的管理标识,然后,第一光模块01将携带管理标识的上行报文传输至第一设备03,第一设备03基于每个上行报文的管理标识对上行报文进行查表转发处理。需要说明的是,当采用本实施方式时,从第一光模块01传输到第二光模块02的下行报文也未携带管理标识。
本实施方式中,第一设备03能够基于设备管理表进行流量定向处理,有利于下行报文硬隔离。
此外,第一设备03将下行报文传输给第一光模块01的过程中,该第一设备03还可以基于设备管理表对各个下行报文进行流量管控处理。
具体地,第一设备03能够基于第二设备管理中各个第二设备04的电口速率确定多条流量控制队列,不同的流量控制队列对应不同的管理标识。然后,第一设备03将每个下行报文传输至与该下行报文中的管理标识对应的流量控制队列,通过至少一个物理接口将多条流量控制队列中的下行报文传输至第一光模块01。示例性的,物理接口可以是串行/并行电路(serializing/deserializing circuitry,SerDes)。
本实施方式中,第一设备03能够基于设备管理表进行流量管控处理,有利于第一设备03基于各个第二设备04的电口速率控制下发给各个第二设备04的下行报文的数量,降低拥塞几率,提高数据传输效率。
关于第一设备03中的内部结构在流量管控处理过程中的功能实现,请参阅后文图6A和图6B对应的实施例。
本实施例中,提供的通信系统用第一光模块01代替传统技术中的OLT实现建立点到多点光信号,用第一设备03的代替传统技术中的OLT实现带宽资源分配、流量定向以及流量管控等处理,实现了免OLT的点到多点通信系统,将原本割裂的以太网与PON融合,简化网络架构。
前面对本申请提供的通信系统的主要结构和功能进行了介绍,下面分别对该通信系统中的各个设备进行介绍:
如图5所示,为本申请提供的第一设备03的结构示意图。该第一设备03包括接口模块031和处理模块032。其中,接口模块031用于获取设备管理表,设备管理表指示至少一个第二设备04的信息。处理模块032用于基于设备管理表通过基于F-TDMA的点到多点光信道与至少一个第二设备04进行通信。关于设备管理表的实现方式请参阅前文中的相关描述,此处不予赘述。
在一种可能的实施方式中,处理模块032具体用于基于设备管理表进行带宽资源分配。例如,处理模块032基于设备管理表中的电口速率确定带宽分配信息。具体请参阅前文第一设备03基于设备管理表进行带宽资源分配的实现方式中的相关介绍,此处不予赘述。
在一种可能的实施方式中,处理模块032具体用于基于设备管理表进行流量定向处理和流量管控处理。
在一种示例中,如图6A所示,该处理模块032包括交换(switch,SW)模块。在下行传输过 程中,该SW模块用于基于设备管理表中的第二设备的物理地址确定接收的每个下行报文的目的地址对应的第二设备的管理标识,以及,为每个下行报文添加目的地址对应的第二设备的管理标识。示例性的,SW模块能够获取设备管理表(例如,表1-1所示的设备管理表)和物理地址管理表(例如,表3-1所示的物理地址管理表),进而SW模块基于物理地址管理表确定下行报文携带的目的地址对应的第二设备的物理地址,进而SW模块基于设备管理表和该第二设备的物理地址确定第二设备的管理标识。
在一种示例中,如图6A所示,该处理模块032还包括流量管理(traffic management,TM)模块和MAC汇聚子系统(MAC Aggregation Sub-system,MAG)模块。该TM模块用于配置多条流量控制队列,不同的流量控制队列对应不同的管理标识;以及,将每个下行报文传输至与下行报文中的管理标识对应的流量控制队列。MAG模块用于通过至少一个物理接口将多条流量控制队列中的下行报文传输至第一光模块01。
为便于理解,以图6B为例,处理模块032中的SW模块存储有设备管理表和物理地址管理表,或者,SW模块能够从该第一设备03的存储介质中获取到设备管理表和物理地址管理表。SW模块收到源MAC地址为“0-0-0-0”且目的MAC地址为“0-1-2-3”的下行报文1之后,该SW模块查询物理地址管理表确定该目的MAC地址对应的终端设备通过MAC地址为“1-2-3-4”的第二设备接入网络,然后,SW模块基于设备管理表确定MAC地址“1-2-3-4”对应的第二设备的管理标识为“AP-ID1”,则SW模块在下行报文1中添加“AP-ID1”得到下行报文1’,并将下行报文1’传输至TM模块。TM模块存储有设备管理表或者TM模块能够从该第一设备03的存储介质中获取到设备管理表。该TM模块基于下行报文1’携带的管理标识“AP-ID1”将该下行报文传输至“AP-ID1”对应的流量控制队列(例如,图6B中的队列1)进行传输。由于,TM模块中的流量控制队列的数量与物理接口(例如,第一设备03与第一光模块01之间的串行/并行电路(serializing/deserializing circuitry,SerDes))的数量不一定相同。本示例以TM模块中具有8条流量控制队列而仅有1个SerDes为例。该MAG模块用于将该8条流量控制队列进行并串转换处理为1条输出队列,该1条输出队列通过1个SerDes传输至第一光模块01。
在一种示例中,如图6A所示,该处理模块032还包括网络处理器(network processor,NP)模块。在上行传输过程中,该MAG模块通过至少一个物理接口从第一光模块01接收来自至少一个第二设备04的携带管理标识的上行报文。该NP模块用于基于每个上行报文的管理标识对上行报文进行查表转发处理。
如图7所示,为本申请提供的第一光模块01和第二光模块02的结构示意图。该第一光模块01包括点到多点模块011,该第二光模块02包括点到多点响应模块021。该点到多点模块011,用于与点到多点响应模块021在第一光模块01与至少一个第二光模块02之间建立点到多点光信道,该点到多点光信道用于第一设备03与至少一个第二设备04进行通信。
在一种可能的实施方式中,该点到多点模块011,具体用于接收来自点到多点响应模块021的待注册的至少一个第二设备物理地址,不同的第二设备04的物理地址不同;为成功注册的至少一个第二设备04中的每个第二设备04分配管理标识,不同的第二设备04的管理标识不同;将成功注册的至少一个第二设备04中的每个第二设备04的物理地址与管理标识对应存储至设备管理表中。
示例性的,点到多点模块011通过下行控制子频带发送时间同步信息和测距信息;通过下行控制子频带发送为每个完成时间同步流程和测距流程的点到多点响应模块021对应的第二设备04分配的管理标识;通过上行控制子频带接收管理标识、第二设备的物理地址和电口速率;将每个第二设备04的管理标识、物理地址和电口速率对应存储至设备管理表中,设备管理表包括至少一个第二设备04的管理标识和每个第二设备04的管理标识对应的第二设备04的物理地址和电口速率,不同的第二设备04的物理地址不同,不同的第二设备04的管理标识不同。关于点到多点模块011生成设备管理表的具体实现方式,请参阅前文的相关描述,此处不予赘述。
此外,该点到多点模块011还用于向各个点到多点响应模块发送第一设备03生成的带宽分配信息。关于点到多点模块011传输带宽分配信息的具体实现方式,请参阅前文的相关描述,此处不予赘述。
此外,该点到多点模块011还用于根据下行带宽分配信息将每个第二设备的下行报文调制到每个第二设备对应的下行数据子频带上,通过各个下行数据子频带发送至少一个第二设备的下行报文。该点到多点模块011还用于根据上行带宽分配信息在每个第二设备对应的时隙中接收第二设备的上行报文。关于传输上下行报文的具体实现方式,请参阅前文的相关描述,此处不予赘述。
在一种可能的实施方式中,第一光模块01还包括接口模块012。该接口模块012用于从第一设备03接收信息和/或向第一设备03发送信息。例如,接口模块012用于向第一设备03发送设备管理表。又例如,接口模块012用于从第一设备03接收带宽分配信息,以使得点到多点模块011能够通过接口模块012获取到带宽分配信息。又例如,接口模块012用于从第一设备03接收至少一个下行报文,以及,向第一设备03发送上行报文。具体请参阅前文点到多点模块011与第一设备03交互信息的实现方式。
在一种可能的实施方式中,该点到多点响应模块021,具体用于获取与第二光模块02连接的第二设备04的物理地址,并基于第二设备04的物理地址在点到多点模块01申请注册第二设备04;以及,接收点到多点模块011为第二设备04分配的管理标识。
示例性的,点到多点响应模块021通过下行控制子频带上接收时间同步信息和测距信息;基于时间同步信息和测距信息执行时间同步流程和测距流程;在完成时间同步流程和测距流程之后,通过下行控制子频带接收每个第二光模块对应的第二设备04的管理标识;通过上行控制子频带发送管理标识、第二设备04的物理地址和电口速率,管理标识、第二设备04的物理地址和电口速率用于生成设备管理表,设备管理表包括至少一个第二设备04的管理标识和每个第二设备04的管理标识对应的第二设备04的物理地址和电口速率,不同的第二设备04的物理地址不同,不同的第二设备04的管理标识不同。关于点到多点响应模块021响应于点到多点模块011生成设备管理表的具体实现方式,请参阅前文的相关描述,此处不予赘述。
此外,该点到多点响应模块021还用于通过点到多点光信道接收带宽分配信息。此外,该点到多点响应模块021还用于根据下行带宽分配信息在通过与第二光模块02连接的第二设备04对应的带宽资源下行数据子频带上接收至少一个下行报文,以及,根据上行带宽分配信息通过第二设备04对应的时隙发送该第二设备04的上行报文。关于点到多点响应模块021接收带宽分配信息以及传输上下行报文的具体实现方式,请参阅前文的相关描述,此处不予赘述。
可选的,点到多点响应模块021还用于为每个上行报文添加第二设备04的管理标识。
在一种可能的实施方式中,第二光模块02还包括接口模块022。该接口模块022用于向第二设备04发送至少一个下行报文,以及,从与第二光模块02连接的二设备04接收至少一个上行报文。具体请参阅前文点到多点响应模块021与第二设备04交互信息的实现方式,此处不予赘述。
如图8所示,为本实施例提供的一种网络设备80的结构示意图。该网络设备80可以是交换机或路由器等设备。应当理解的是,图2所示的通信系统中的第一设备03的具体实现可以参考图8所示的网络设备80的内部结构。如图8所示,该网络设备80可以包括处理器801和收发器802,该处理器801与该收发器802耦合连接。该网络设备80支持PON接口,能够直接与光模块连接。例如,前述第一光模块01可以直插于该网络设备80板卡上。
其中,前述处理器801可以是中央处理器(central processing unit,CPU)、专用集成电路(application-specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器801可以是指一个处理器,也可以包括多个处理器,具体此处不做限定。处理器801用于实现第一设备03中处理模块032的功能。
其中,前述收发器802也可以称为收发单元、收发机、收发装置等。可选地,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。该收发器802用于实现第一设备03中接口模块031的功能。
可选的,该网络设备80还包括存储器803。其中,该处理器801与该存储器803耦合连接。该存储器803主要用于存储软件程序和数据。存储器803可以是独立存在,与处理器801相连。可选地,该存储器803可以和该处理器801集成于一体,例如集成于一个或多个芯片之内。其中,该存储器803能够存储执行本申请实施例的技术方案的程序代码,并由处理器801来控制执行,被执行的各类计算机程序代码也可被视为是处理器801的驱动程序。存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。存储器803可以是指一个存储器,也可以包括多个存储器。示例性的,存储器803,用于存储各种数据。例如,前文介绍的设备管理表、带宽分配信息等。
在一个实现方式中,存储器803中存储有计算机可读指令,所述计算机可读指令包括多个软件模块。处理器801调用前述计算机可读指令执行第一设备03中处理模块032的功能。例如,处理器801调用前述计算机可读指令执行处理模块032中的SW模块、TM模块、NP模块以及MAG模块的功能。具体请参阅前文图6A和图6B中的相关描述,此处不予赘述。
如图9所示,为本实施例提供的一种光模块90的结构示意图。该光模块90可以是前述第一光模块01或第二光模块02。应当理解的是,图2所示的通信系统中的第一光模块01的具体实现可以参考图9所示的光模块90的内部结构。该光模块90实现为第一光模块01时,该光模块90可以直插在第一设备03上,或者,该光模块90集成在第一设备03中。该光模块90实现为第二光模块02时,该光模块90可以直插在第二设备04上,或者,该光模块90集成在第二设备04中。
如图9所示,该光模块90可以包括处理器901、光电调制器902和收发器903,该处理器901分别与光电调制器902和收发器903耦合连接。
其中,前述处理器901可以是中央处理器(central processing unit,CPU)、专用集成电路(application-specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器901可以是指一个处理器,也可以包括多个处理器,具体此处不做限定。在一种可能的设计中,处理器901用于实现图2所示的第一光模块01中点到多点模块011的功能。在另一种可能的设计中,处理器901用于实现图2所示的第二光模块02中点到多点响应模块021的功能。具体请参阅前文图2相关的描述,此处不予赘述。
此外,前述光电调制器902用于在处理器901的控制下进行光电转换,以及调制光载波生成待发送的光信号。收发器903用于发射光信号和接收光信号。当该光模块90为第一光模块时,该收发器903包括突发光接收机和突发光发射机;当该光模块90为第二光模块时,该收发器903包括连续光接收机和连续光发射机。
可选的,该光模块90还包括存储器904。其中,该处理器901与该存储器904耦合连接。该存储器904主要用于存储软件程序和数据。存储器904可以是独立存在,与处理器901相连。可选地,该存储器904可以和该处理器901集成于一体,例如集成于一个或多个芯片之内。其中,该存储器904能够存储执行本申请实施例的技术方案的程序代码,并由处理器901来控制执行,被执行的各类计算机程序代码也可被视为是处理器901的驱动程序。存储器904可以包括易失性 存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器904还可以包括上述种类的存储器的组合。存储器904可以是指一个存储器,也可以包括多个存储器。示例性的,存储器904,用于存储各种数据。例如,前文介绍的设备管理表、带宽分配信息等。
在一个实现方式中,存储器904中存储有计算机可读指令,所述计算机可读指令包括多个软件模块。处理器901调用前述计算机可读指令执行第一设备03中处理模块032的功能。例如,处理器901调用前述计算机可读指令执行图2所示的第一光模块01中点到多点模块011的功能,或者,执行图2所示的第二光模块02中点到多点响应模块021的功能。
如图10所示,为本实施例提供的一种芯片100的结构示意图。该芯片100包括至少一个逻辑电路1001和输入输出接口1002。其中,该输入输出接口1002用于输入待处理电信号和已处理的电信号。在一种实现中,该逻辑电路1001用于执行上述图2所示的点到多点模块011或点到多点响应模块021的部分或全部功能。可选的,该芯片100还包括存储介质1003。该存储介质1003用于存储设备管理表等信息。
可选的,该芯片100可以集成于图2所示的第一光模块01中,也可以集成于图2所示的第二光模块02中。
可选的,该芯片100可以集成于图2所示的第一设备03中。
示例性的,该芯片100可以是系统级芯片(system on chip,SOC),具体此处不做限定。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (47)

  1. 一种通信系统,其特征在于,包括:
    第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,所述第一设备通过所述第一光模块连接所述光合分器,所述至少一个第二设备通过所述至少一个第二光模块连接所述光合分器;
    所述第一光模块和至少一个所述第二光模块用于建立基于频分复用-时分多址F-TDMA的点到多点的光信道;
    所述第一设备通过所述基于F-TDMA的点到多点光信道与至少一个所述第二设备进行通信。
  2. 根据权利要求1所述的通信系统,其特征在于,所述基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
  3. 根据权利要求2所述的通信系统,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,所述控制子频带用于在所述第一光模块和所述第二光模块之间交互控制信息,所述数据子频带用于在所述第一光模块和所述第二光模块之间交互数据。
  4. 根据权利要求3所述的通信系统,其特征在于,所述控制子频带的频率小于所述数据子频带的频率。
  5. 根据权利要求3或4所述的通信系统,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱,所述控制子频带包括位于所述下行系统频谱的下行控制子频带和位于所述上行系统频谱的上行控制子频带,所述下行控制子频带的频率范围与所述上行控制子频带的频率范围不同,所述下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,所述上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
  6. 根据权利要求5所述的通信系统,其特征在于,所述下行控制子频带携带的控制信息包括时间同步信息和测距信息;
    所述第一光模块,具体用于通过所述下行控制子频带发送所述时间同步信息和所述测距信息;
    每个所述第二光模块,具体用于基于所述时间同步信息和所述测距信息执行时间同步流程和测距流程;
    所述第一光模块,还用于通过所述下行控制子频带发送所述第一光模块为每个完成所述时间同步流程和所述测距流程的第二光模块对应的第二设备分配的管理标识;
    每个所述第二光模块,还用于通过所述上行控制子频带发送所述管理标识、所述第二设备的物理地址和电口速率;
    所述第一光模块,还用于将每个所述第二设备的管理标识、物理地址和电口速率对应存储至设备管理表中,所述设备管理表包括所述至少一个第二设备的管理标识和每个所述第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
  7. 根据权利要求6所述的通信系统,其特征在于,
    所述第一光模块,还用于向所述第一设备发送所述设备管理表;
    所述第一设备,还用于基于所述设备管理表中的电口速率确定下行带宽分配信息和/或上行带宽分配信息,所述下行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,所述上行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同;
    所述第一光模块,还用于从所述第一设备获取所述下行带宽分配信息和/或所述上行带宽分配信息,以及,向所述至少一个第二光模块中的每个第二光模块发送所述下行带宽分配信息和/或所述上行带宽分配信息。
  8. 根据权利要求7所述的通信系统,其特征在于,所述下行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的下行数据子频带的频带标识;
    所述第一光模块,具体用于根据所述下行带宽分配信息将每个第二设备的下行报文调制到每个第二设备对应的下行数据子频带上,通过所述基于FDM的下行光信道发送所述至少一个第二设备的下行报文;
    每个所述第二光模块,具体用于根据所述下行带宽分配信息在与所述第二光模块连接的第二设备对应的下行数据子频带上接收所述第二设备的下行报文。
  9. 根据权利要求7所述的通信系统,其特征在于,所述上行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的时隙的时隙标识;
    每个所述第二光模块,具体用于将与所述第二光模块连接的第二设备的上行报文调制到上行数据子频带中,并根据所述上行带宽分配信息在所述第二设备对应的时隙中通过所述基于TDMA的上行光信道发送所述第二设备的上行报文;
    所述第一光模块,具体用于根据所述上行带宽分配信息在每个第二设备对应的时隙上接收对应的第二设备的上行报文。
  10. 根据权利要求8所述的通信系统,其特征在于,所述第一设备,还用于:
    接收至少一个下行报文;
    基于所述设备管理表中的第二设备的物理地址确定接收的每个下行报文的目的地址对应的第二设备的管理标识,以及,为所述每个下行报文添加所述目的地址对应的第二设备的管理标识;
    向所述第一光模块发送至少一个携带所述管理标识的下行报文。
  11. 根据权利要求9所述的通信系统,其特征在于,每个所述第二光模块存储有与所述第二光模块连接的第二设备的管理标识;
    每个所述第二光模块,还用于:
    获取与所述第二光模块对应的第二设备的至少一个上行报文;
    为每个所述上行报文添加所述第二设备的管理标识。
  12. 根据权利要求7至11中任意一项所述的通信系统,其特征在于,
    所述第一设备,还用于基于所述设备管理表确定加密信息,并向所述第一光模块发送所述加密信息,所述加密信息用于指示针对不同的第二设备使用的不同密钥;
    所述第一光模块,还用于通过所述下行控制子频带发送所述加密信息;
    每个所述第二光模块,还用于通过所述下行控制子频带接收所述加密信息。
  13. 一种第一光模块,所述第一光模块应用于点到多点通信系统中,所述点到多点通信系统包括第一设备、所述第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,所述第一设备通过所述第一光模块连接所述光合分器,所述至少一个第二设备通过所述至少一个第二光模块连接所述光合分器,其特征在于,包括:
    点到多点模块,用于与所述第二光模块建立基于频分复用-时分多址F-TDMA的点到多点的光信道,所述基于F-TDMA的点到多点光信道用于所述第一设备与至少一个所述第二设备进行通信。
  14. 根据权利要求13所述的第一光模块,其特征在于,所述基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
  15. 根据权利要求14所述的第一光模块,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,所述控制子频带用于在所述第一光模块和所述第二光模块之间交互控制信息,所述数据子频带用于在所述第一光模块和所述第二光模块之间交互数据。
  16. 根据权利要求15所述的第一光模块,其特征在于,所述控制子频带的频率小于所述数据子频带的频率。
  17. 根据权利要求15或16所述的第一光模块,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱,所述控制子频带包括位于所述下行系统频谱的下行控制子频带和位于所述上行系统频谱的上行控制子频带,所述下行控制子频带的频率范围与所述上行控制子频带的频率范围不同,所述下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,所述上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
  18. 根据权利要求17所述的第一光模块,其特征在于,所述下行控制子频带携带的控制信息包括时间同步信息和测距信息;
    所述点到多点模块,具体用于:
    通过所述下行控制子频带发送所述时间同步信息和所述测距信息,所述时间同步信息和所述测距信息用于所述第二光模块执行时间同步流程和测距流程;
    通过所述下行控制子频带发送所述第一光模块为每个完成所述时间同步流程和所述测距流程的第二光模块对应的第二设备分配的管理标识;
    通过所述上行控制子频带接收所述管理标识、所述第二设备的物理地址和电口速率;
    将每个所述第二设备的管理标识、物理地址和电口速率对应存储至设备管理表中,所述设备管理表包括所述至少一个第二设备的管理标识和每个所述第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
  19. 根据权利要求17或18所述的第一光模块,其特征在于,所述第一光模块,还包括:
    接口模块,用于向所述第一设备发送所述设备管理表。
  20. 根据权利要求19所述的第一光模块,其特征在于,
    所述接口模块,还用于从所述第一设备接收下行带宽分配信息和/或上行带宽分配信息,所述下行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,所述上行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同;
    所述点到多点模块,还用于通过所述下行控制子频带发送所述下行带宽分配信息和/或所述上行带宽分配信息。
  21. 根据权利要求20所述的第一光模块,其特征在于,所述下行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的下行数据子频带的频带标识;
    所述点到多点模块,具体用于根据所述下行带宽分配信息将每个第二设备的下行报文调制到每个第二设备对应的下行数据子频带上,通过所述基于FDM的下行光信道发送所述至少一个第二设备的下行报文。
  22. 根据权利要求20所述的第一光模块,其特征在于,所述上行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的时隙的时隙标识;
    所述点到多点模块,具体用于根据所述上行带宽分配信息在每个第二设备对应的时隙上接收对应的第二设备的上行报文。
  23. 根据权利要求19至22中任意一项所述的第一光模块,其特征在于,
    所述接口模块,还用于从所述第一设备获取加密信息,所述加密信息用于指示针对不同的第二设备使用的不同密钥;
    所述点到多点模块,还用于通过所述下行控制子频带发送所述加密信息。
  24. 一种第二光模块,所述第二光模块应用于点到多点通信系统中,所述点到多点通信系统包括第一设备、第一光模块、光合分器、至少一个第二设备和至少一个所述第二光模块,所述第一设备通过所述第一光模块连接所述光合分器,所述至少一个第二设备通过所述至少一个第二光模块连接所述光合分器,其特征在于,包括:
    点到多点响应模块,用于与所述第一光模块建立基于频分复用-时分多址F-TDMA的点到多点的光信道,所述基于F-TDMA的点到多点光信道用于所述第一设备与多个所述第二设备进行通信。
  25. 根据权利要求24所述的第二光模块,其特征在于,所述基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
  26. 根据权利要求25所述的第二光模块,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,所述控制子频带用于在所述第一光模块和所述第二光 模块之间交互控制信息,所述数据子频带用于在所述第一光模块和所述第二光模块之间交互数据。
  27. 根据权利要求26所述的第二光模块,其特征在于,所述控制子频带的频率小于所述数据子频带的频率。
  28. 根据权利要求26或27所述的第二光模块,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括下行系统频谱和上行系统频谱,所述控制子频带包括位于所述下行系统频谱的下行控制子频带和位于所述上行系统频谱的上行控制子频带,所述下行控制子频带的频率范围与所述上行控制子频带的频率范围不同,所述下行控制子频带用于在同一时隙发送至少一个第二光模块的控制信息,所述上行控制子频带用于在不同的时隙发送不同的第二光模块的控制信息。
  29. 根据权利要求28所述的第二光模块,其特征在于,所述下行控制子频带携带的控制信息包括时间同步信息和测距信息;
    所述点到多点响应模块,具体用于:
    通过所述下行控制子频带上接收所述时间同步信息和所述测距信息;
    基于所述时间同步信息和所述测距信息执行时间同步流程和测距流程;
    在完成所述时间同步流程和所述测距流程之后,通过所述下行控制子频带接收所述第一光模块为所述每个所述第二光模块对应的第二设备分配的管理标识;
    通过所述上行控制子频带发送所述管理标识、所述第二设备的物理地址和电口速率,所述管理标识、所述第二设备的物理地址和电口速率用于生成设备管理表,所述设备管理表包括所述至少一个第二设备的管理标识和每个所述第二设备的管理标识对应的第二设备的物理地址和电口速率,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
  30. 根据权利要求29所述的第二光模块,其特征在于,所述点到多点响应模块,还用于通过所述下行控制子频带接收下行带宽分配信息和/或上行带宽分配信息,所述下行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,所述上行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同。
  31. 根据权利要求30所述的第二光模块,其特征在于,所述下行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的下行数据子频带的频带标识;
    所述点到多点响应模块,具体用于根据所述下行带宽分配信息在与所述第二光模块连接的第二设备对应的下行数据子频带上接收所述第二设备的下行报文。
  32. 根据权利要求30所述的第二光模块,其特征在于,所述上行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的时隙的时隙标识;
    所述点到多点响应模块,具体用于将与所述第二光模块连接的第二设备的上行报文调制到上行数据子频带中,并根据所述上行带宽分配信息在所述第二设备对应的时隙中通过所述基于TDMA的上行光信道发送所述第二设备的上行报文。
  33. 根据权利要求32所述的第二光模块,其特征在于,每个所述第二光模块存储有与所述第二光模块连接的第二设备的管理标识;
    所述第二光模块,还包括接口模块;
    所述接口模块,用于获取与所述第二光模块对应的第二设备的至少一个上行报文;
    所述点对多点响应模块,还用于为每个所述上行报文添加所述第二设备的管理标识。
  34. 根据权利要求28至33中任意一项所述的第二光模块,其特征在于,所述点到多点响应模块,还用于通过所述下行控制子频带接收加密信息,所述加密信息用于指示针对不同的第二设备使用的不同密钥。
  35. 一种第一设备,所述第一设备应用于点到多点通信系统中,所述点到多点通信系统包括所述第一设备、第一光模块、光合分器、至少一个第二设备和至少一个第二光模块,所述第一设备通过所述第一光模块连接所述光合分器,所述至少一个第二设备通过所述至少一个第二光模块连 接所述光合分器,其特征在于,包括:
    接口模块,用于获取设备管理表,所述设备管理表指示所述至少一个第二设备的信息,所述设备管理表是在建立所述第一光模块与所述至少一个第二光模块之间的基于频分复用-时分多址F-TDMA的点到多点光信道的过程中生成的;
    处理模块,用于基于所述设备管理表通过所述基于F-TDMA的点到多点光信道与至少一个所述第二设备进行通信。
  36. 根据权利要求35所述的第一设备,其特征在于,所述基于F-TDMA的点到多点的光信道包括基于频分复用FDM的下行光信道和基于时分多址TDMA的上行光信道。
  37. 根据权利要求36所述的第一设备,其特征在于,所述基于F-TDMA的点到多点光信道的系统频谱包括控制子频带和数据子频带,所述控制子频带用于在所述第一光模块和所述第二光模块之间交互控制信息,所述数据子频带用于在所述第一光模块和所述第二光模块之间交互数据。
  38. 根据权利要求37所述的第一设备,其特征在于,所述控制子频带的频率小于所述数据子频带的频率。
  39. 根据权利要求35至37中任意一项所述的第一设备,其特征在于,所述设备管理表包括所述至少一个第二设备的物理地址和每个所述第二设备的物理地址对应的第二设备的管理标识,不同的第二设备的物理地址不同,不同的第二设备的管理标识不同。
  40. 根据权利要求35至39中任意一项所述的第一设备,其特征在于,所述设备管理表还包括所述至少一个第二设备中每个所述第二设备的电口速率,所述电口速率用于指示所述第二设备允许使用的带宽上限;
    所述第一设备,还用于基于所述设备管理表中的电口速率确定下行带宽分配信息和/或上行带宽分配信息,所述下行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的下行数据子频带,不同的第二设备分得的下行数据子频带的频率范围不同,所述上行带宽分配信息用于指示为所述至少一个第二设备中每个第二设备分配的用于发送上行数据子频带的时隙,不同的第二设备分得的时隙不同。
  41. 根据权利要求40所述的第一设备,其特征在于,所述下行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的下行数据子频带的频带标识,不同的第二设备占用的下行数据子频带的频率范围不同;和/或,
    所述上行带宽分配信息包括所述至少一个第二设备中每个所述第二设备的管理标识和每个所述管理标识对应的时隙的时隙标识,不同的第二设备占用的时隙不同。
  42. 根据权利要求35至41中任意一项所述的第一设备,其特征在于,
    所述接口模块,还用于接收至少一个下行报文;
    所述处理模块,还用于基于所述设备管理表中的第二设备的物理地址确定接收的每个下行报文的目的地址对应的第二设备的管理标识,以及,为所述每个下行报文添加所述目的地址对应的第二设备的管理标识;
    发送至少一个携带所述管理标识的下行报文。
  43. 根据权利要求39至41中任意一项所述的第一设备,其特征在于,
    所述接口模块,还用于接收至少一个携带所述管理标识的上行报文;
    所述处理模块,还用于基于每个所述上行报文的所述管理标识对所述上行报文进行查表转发处理。
  44. 根据权利要求35至43中任意一项所述的第一设备,其特征在于,
    所述第一设备,还用于基于所述设备管理表确定加密信息,并向所述第一光模块发送所述加密信息,所述加密信息用于指示针对不同的第二设备使用的不同密钥。
  45. 一种芯片,包括处理单元和存储单元;
    其中,存储单元存储有计算机程序;
    所述处理单元调用所述计算机程序以使得所述芯片执行如权利要求13至23中任意一项所述 的点到多点模块的功能。
  46. 一种芯片,包括处理单元和存储单元;
    其中,存储单元存储有计算机程序;
    所述处理单元调用所述计算机程序以使得所述芯片执行如权利要求24至34中任意一项所述的点到多点响应模块的功能。
  47. 一种通信装置,其特征在于,包括:
    如权利要求13至23中任意一项所述的第一光模块;
    或者,
    如权利要求24至34中任意一项所述的第二光模块。
PCT/CN2023/110983 2022-10-09 2023-08-03 一种通信系统以及相关设备 WO2024078104A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211226927.8 2022-10-09
CN202211226927 2022-10-09
CN202211736375.5 2022-12-31
CN202211736375.5A CN117857948A (zh) 2022-10-09 2022-12-31 一种通信系统以及相关设备

Publications (1)

Publication Number Publication Date
WO2024078104A1 true WO2024078104A1 (zh) 2024-04-18

Family

ID=90534928

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/110983 WO2024078104A1 (zh) 2022-10-09 2023-08-03 一种通信系统以及相关设备
PCT/CN2023/118449 WO2024078242A1 (zh) 2022-10-09 2023-09-13 一种光功率可调光合分器、相关设备以及系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118449 WO2024078242A1 (zh) 2022-10-09 2023-09-13 一种光功率可调光合分器、相关设备以及系统

Country Status (2)

Country Link
CN (7) CN117856962A (zh)
WO (2) WO2024078104A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150361A (zh) * 2006-09-20 2008-03-26 北京格林威尔科技发展有限公司 一种在无源光网络中实现全保护倒换的方法和系统
CN113382318A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 光通信的方法和装置
WO2021218181A1 (zh) * 2020-04-29 2021-11-04 华为技术有限公司 一种onu、olt、光通信系统及数据传输方法
CN113747272A (zh) * 2020-05-28 2021-12-03 华为技术有限公司 检测光分配网络故障的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2302738B (en) * 1995-06-28 1999-03-03 Northern Telecom Ltd Semiconductor modulator with a shift
CN102401666A (zh) * 2010-09-10 2012-04-04 北京邮电大学 一种光纤光栅反射波长的解调方法和装置
CN103217820B (zh) * 2013-04-22 2015-11-25 华为技术有限公司 一种功率可调的光分路器
CN111610596B (zh) * 2020-07-13 2022-02-22 中国电子科技集团公司第四十四研究所 高边带抑制比的双驱m-z光学单边带调制器
CN114966990A (zh) * 2021-02-23 2022-08-30 中国移动通信集团广东有限公司 可调分光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150361A (zh) * 2006-09-20 2008-03-26 北京格林威尔科技发展有限公司 一种在无源光网络中实现全保护倒换的方法和系统
CN113382318A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 光通信的方法和装置
WO2021218181A1 (zh) * 2020-04-29 2021-11-04 华为技术有限公司 一种onu、olt、光通信系统及数据传输方法
CN113747272A (zh) * 2020-05-28 2021-12-03 华为技术有限公司 检测光分配网络故障的方法和装置

Also Published As

Publication number Publication date
CN117857069A (zh) 2024-04-09
WO2024078242A1 (zh) 2024-04-18
CN117857949A (zh) 2024-04-09
CN117857948A (zh) 2024-04-09
CN117856885A (zh) 2024-04-09
CN117856969A (zh) 2024-04-09
CN117856962A (zh) 2024-04-09
CN117856884A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
US8493982B2 (en) Two and three-stroke discovery process for 10G-EPONs
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
US7403490B2 (en) OAM capability discovery method in Ethernet passive optical network
US10091566B2 (en) Method and apparatus for virtualizing passive optical network, and passive optical network virtualization system
KR100547705B1 (ko) 기가비트 이더넷 수동 광 가입자망의 음성서비스를 위한대역폭 할당방법
WO2017049460A1 (zh) 一种光网络单元注册的方法、装置及系统
WO2020057187A1 (en) Passive optical network (pon) channel bonding protocol
EP3506583B1 (en) Communication method for ethernet passive optical network, optical network unit, and optical line terminal
WO2015139412A1 (zh) 一种通信方法、通信装置及通信系统
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
WO2021008224A1 (zh) 一种降低无源光网络上行时延的方法及相关设备
WO2017206726A1 (zh) Onu的类型确定方法及装置、olt、存储介质
KR20180044378A (ko) 수동형 광 네트워크 통신 방법과 장치, 및 시스템
JP2007324885A (ja) 光通信方法、光通信ネットワークシステム、親局光通信装置、子局光通信装置
WO2019114544A1 (zh) 一种数据传送的方法、设备和系统
CN109286864B (zh) 一种基于注册的信息处理方法、装置及存储介质
EP3883257B1 (en) Data communication and communication management method based on distributed processing unit (dpu) and dpu
EP3537673A1 (en) Data sending and receiving method and device, onu, and olt
JP4947729B2 (ja) 局側装置
WO2021082669A1 (zh) 一种基于无源光网络的通信方法、相关设备以及系统
WO2024078104A1 (zh) 一种通信系统以及相关设备
US20210044374A1 (en) Packet Processing Method And Device
CN106464385B (zh) 一种通信方法、装置及系统
CN114979838A (zh) 一种通信方法、光网络单元、光线路终端及光通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876310

Country of ref document: EP

Kind code of ref document: A1