WO2022166861A1 - 激光装置、光网络终端的功率调节方法 - Google Patents

激光装置、光网络终端的功率调节方法 Download PDF

Info

Publication number
WO2022166861A1
WO2022166861A1 PCT/CN2022/074877 CN2022074877W WO2022166861A1 WO 2022166861 A1 WO2022166861 A1 WO 2022166861A1 CN 2022074877 W CN2022074877 W CN 2022074877W WO 2022166861 A1 WO2022166861 A1 WO 2022166861A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
power
terminal
optical
optical signal
Prior art date
Application number
PCT/CN2022/074877
Other languages
English (en)
French (fr)
Inventor
陈光灿
程远兵
常天海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22749140.4A priority Critical patent/EP4277050A1/en
Publication of WO2022166861A1 publication Critical patent/WO2022166861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0614Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by electric field, i.e. whereby an additional electric field is used to tune the bandgap, e.g. using the Stark-effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present application relates to the field of optical communication, and in particular, to a power adjustment method of a laser device and an optical network terminal.
  • Passive Optical Network is a single-fiber bidirectional optical access network.
  • An optical line terminal (Optical Distribution Network, OLT) is connected to a plurality of optical network units (Optical Network Unit, ONU) through an optical distribution network (Optical Distribution Network, ODN).
  • OLT optical Distribution Network
  • ODN optical Distribution Network
  • the OLT needs to use a Burst-mode Trans-impedance Amplifier (BM-TIA) with adjustable gain and can quickly switch the gain value to meet the requirement that the output voltage signal of the BM-TIA has a consistent amplitude. Therefore, the larger the dynamic adjustment range of the BM-TIA, the larger the loss difference can be balanced.
  • BM-TIA Burst-mode Trans-impedance Amplifier
  • the present application provides a power adjustment method for a laser device and an optical network terminal, which can adjust the optical transmit power of the laser device through the power tuning region, thereby reducing the OLT's requirement for the dynamic adjustment range of the BM-TIA and reducing costs.
  • a first aspect of the present application provides a laser device.
  • the device includes: a laser area, an electrical isolation area and a power adjustment area.
  • the laser region includes a first active layer, which generates a target optical signal when a laser bias voltage is applied to the laser region.
  • the target optical signal is introduced into the power conditioning region optically coupled to the laser region.
  • the electrical isolation area is arranged between the laser area and the power adjustment area, and the electrical isolation area is used to isolate the electrical crosstalk between the laser area and the power adjustment area.
  • the power adjustment region includes a second active layer, and when the power adjustment region is applied with a forward bias voltage, the second active layer gains the target optical signal; and/or, when the power adjustment region is applied with a reverse bias voltage, The second active layer attenuates the target optical signal.
  • the power tuning region can gain the target optical signal through stimulated emission, or attenuate the target optical signal through stimulated absorption.
  • the target optical signal may be a continuous laser generated by a laser, or may be
  • the power tuning region of the laser device can gain or attenuate the target optical signal, thus increasing the power tuning range of the laser device. Therefore, by controlling the power tuning region to gain or attenuate the target optical signal, the requirement of the OLT for the dynamic adjustment range of the BM-TIA can be reduced, thereby reducing the cost.
  • the electrical isolation region includes a third active layer.
  • the third active layer is optically coupled to the first active layer and the second active layer.
  • the device includes an integrated optical chip
  • the integrated optical chip includes a laser region, an electrical isolation region and a power adjustment region.
  • One end of the power adjustment region coincides with one end of the electrical isolation region
  • the other end of the electrical isolation region coincides with one end of the laser region.
  • the laser area, the electrical isolation area and the power adjustment area are integrated in an integrated optical chip, which can improve the integration degree of the laser device.
  • the laser region further includes a first substrate, a first lower confinement layer and a first upper confinement layer
  • the power adjustment region further includes a second substrate, a second lower confinement layer and a first upper confinement layer.
  • Two upper confinement layers, the electrical isolation region further includes a third upper confinement layer, a third lower confinement layer and a third substrate.
  • the integrated optical chip satisfies any one or more of the following conditions: the first substrate, the second substrate and the third substrate are of the same material and belong to the same substrate layer; the first lower confinement layer, the second lower confinement layer and the third The materials of the three lower confinement layers are the same and belong to the same confinement layer; the first upper confinement layer, the second upper confinement layer and the third upper confinement layer are of the same material and belong to the same confinement layer; The source region and the third active region have the same material and belong to the same active layer.
  • the first to third lower confinement layers are collectively referred to as lower confinement layers.
  • the process flow of the lower confinement layer is simpler.
  • the first lower confinement layer, the second lower confinement layer and the third lower confinement layer may be completed by one epitaxial growth. Therefore, the present application can simplify the process flow, thereby reducing the cost.
  • the laser region is a distributed feedback (Distributed Feedback Laser, DFB) laser region or a distributed Bragg reflector (distributed Bragg reflector, DBR) laser region.
  • the laser region also includes a grating, and the power adjustment region does not include a grating.
  • the grating in the laser region is used for wavelength selection.
  • the power conditioning region is used for gain, the second active region also produces stimulated emission.
  • the power adjustment area includes a grating, the working state of the power adjustment area will be affected.
  • the laser region further includes a first positive electrode and a first negative electrode
  • the power adjustment region further includes a second positive electrode and a second negative electrode.
  • the first positive electrode and the second positive electrode are separated by an electrical isolation region, and the first negative electrode and the second negative electrode belong to the same negative electrode layer. Doing so can simplify the process flow of the electrode layer. For example, the complexity of the process can be reduced compared to forming the isolation region between the first and second negative electrodes by etching.
  • the power adjustment region further includes a second positive electrode and a second negative electrode
  • the device further includes a first single-pole double-throw switch.
  • the second negative pole is grounded, and the second positive pole is connected to the common terminal of the first SPDT switch.
  • the first terminal of the first SPDT switch is connected to the first positive voltage terminal, and the second terminal of the first SPDT switch is connected to the negative voltage terminal.
  • the power adjustment region further includes a second positive electrode and a second negative electrode
  • the device further includes a first SPDT switch and a second SPDT switch.
  • the second negative pole is connected to the first common terminal of the first SPDT switch
  • the second positive pole is connected to the second common terminal of the second SPDT switch.
  • the first end of the first SPDT switch is connected to the first positive voltage end, and the second end of the first SPDT switch is grounded.
  • the third terminal of the second SPDT switch is connected to the second positive voltage terminal, and the fourth terminal of the second SPDT switch is grounded.
  • the first SPDT switch and/or the second SPDT switch further includes a control terminal
  • the laser device further includes a controller.
  • the controller is connected with the control terminal.
  • the controller is used to control which terminal the common terminal of the SPDT switch is connected to.
  • the laser device further includes a driver, and the first positive voltage terminal is connected to the driver.
  • the controller is connected with the driver. The controller is used to control the output voltage of the driver, so that the positive voltage terminal and/or the negative voltage terminal of the driver provide different voltages.
  • a second aspect of the present application provides a power adjustment method for an optical network terminal.
  • the method includes: the first optical network terminal obtains the first adjustment value.
  • the first optical network terminal includes a laser area and a power conditioning area.
  • the first optical network terminal applies a laser bias voltage in the laser region to generate a target optical signal, and the target optical signal is introduced into the power tuning region optically coupled to the laser region.
  • the first optical network terminal applies a forward bias voltage in the power tuning area to gain the target optical signal, or according to the first adjustment value, the first optical network terminal applies a reverse bias voltage in the power tuning area to attenuate the target optical signal light signal.
  • the power tuning region can gain the target optical signal through stimulated emission, or attenuate the target optical signal through stimulated absorption.
  • the target optical signal may be a continuous laser generated by a laser, or may be a signal light obtained through internal modulation.
  • the power tuning area of the first optical network terminal can gain or attenuate the target optical signal, thus increasing the power adjustment range of the first optical network terminal. Therefore, by controlling the power tuning region to gain or attenuate the target optical signal, the requirement of the OLT for the dynamic adjustment range of the BM-TIA can be reduced, thereby reducing the cost.
  • the gain of the power tuning region to the target optical signal by applying a forward bias voltage ranges from 0 to N decibels, and the power tuning region applying a reverse bias voltage to the gain of the target optical signal.
  • the attenuation range is from 0 to -M decibels, where N and M are positive numbers.
  • the first adjustment value is a first loss difference
  • the first loss difference is a difference between the second loss and the first loss
  • the first loss is the first optical network terminal and the first loss.
  • the link loss of the OLT, and the second loss is the link loss between the second optical network terminal and the OLT.
  • the first optical network terminal acquires the first optical receive power of the optical signal from the OLT; the first optical network terminal sends the first optical receive power to the OLT, and the difference between the optical transmit power of the optical signal and the first optical receive power is the first loss.
  • the OLT can obtain the second loss, and then obtain the first loss difference according to the first loss and the second loss.
  • the first adjustment value is a first power difference value
  • the first power difference value is a difference between the first optical received power and the second optical received power
  • the first optical received power is The optical received power of the first optical signal received by the OLT from the first optical network terminal
  • the second optical received power is the optical received power of the second optical signal received by the OLT from the second optical network terminal.
  • the power of the target optical signal is X decibel milliwatts dBm
  • the method further includes: the first optical network terminal applies a forward bias voltage in the power tuning region to gain the first optical signal, and the gain The optical transmission power of the last first optical signal is equal to X+N decibel milliwatts, where X is a positive number.
  • the first optical network terminal adopts the maximum gain to transmit the first optical signal, it can ensure that the optical receiving power of the first optical signal is the largest, thereby effectively reducing the probability that the first optical signal is not received by the OLT because the power is too low, thereby Improve the stability of the received optical signal.
  • the gain value of the first optical network terminal to the target optical signal through the power tuning area is N-Z decibels, where Z is the first an adjustment value. If the first adjustment value is greater than N and less than or equal to N+M, the attenuation value of the first optical network terminal to the target optical signal through the power tuning area is Z-N decibels.
  • the method further includes: if the first adjustment value is greater than N+M, the first optical network terminal reduces the laser bias voltage to reduce the power of the target optical signal. Among them, reducing the laser bias voltage will reduce the power of the target optical signal. Therefore, when the adjustment range of the power tuning region is insufficient, reducing the laser bias voltage can further improve the power adjustment range of the first optical network. Therefore, the requirement of the OLT for the dynamic adjustment range of the BM-TIA can be further reduced, and the cost can be reduced.
  • the sum of N and M is greater than or equal to 15.
  • the difference between the optical transmit powers of different optical network terminals can reach 15dB, that is, the difference between the powers of different target optical signals can reach 15dB. Therefore, under the condition that the path losses of different optical network terminals and the OLT are the same, the difference between the optical received powers of different optical network terminals reaching the OLT can also reach 15dB.
  • the sum of N and M is defined to be greater than or equal to 15.
  • the method further includes: the first optical network terminal obtains the second adjustment value. If the absolute value of the second adjustment value is greater than the first threshold, the first optical network terminal adjusts the gain value or attenuation value of the target optical signal by the first adjustment value according to the second adjustment value. Wherein, after the first optical network terminal adjusts the power of the target optical signal according to the first adjustment value, if the optical transmit power of the first optical network terminal still does not meet the requirements, the first optical network terminal may adjust the first optical network terminal according to the second modulation value.
  • An adjustment value is the gain value or attenuation value of the target optical signal.
  • the optical transmit power of the first optical network terminal can be further adjusted, that is, the optical receive power of the OLT to the first optical network terminal can be adjusted, thereby further ensuring the optical power of the burst optical signal sent by each optical network terminal reaching the OLT equal. Therefore, the demand of the OLT for the dynamic adjustment capability of the BM-TIA can be reduced, and the cost can be reduced.
  • the laser bias voltage is a modulated electrical signal.
  • the target optical signal is the signal light obtained through internal modulation.
  • the negative pole of the power tuning area is grounded, the positive pole of the power tuning area is connected to the common terminal of the SPDT switch, the first terminal of the SPDT switch is connected to the positive voltage terminal, and the SPDT switch is connected to the positive voltage terminal.
  • the second terminal of the switch is connected to the negative voltage terminal.
  • the first optical network terminal is connected with the first terminal and the common terminal to apply a forward bias voltage to gain the target optical signal.
  • the first optical network terminal is connected to the second terminal and the common terminal to apply a reverse bias voltage to attenuate the target optical signal.
  • the negative pole of the power tuning area is connected to the first common terminal of the first SPDT switch, and the positive pole of the power tuning area is connected to the second common terminal of the second SPDT switch,
  • the first terminal of the first SPDT switch is connected to the positive voltage terminal
  • the second terminal of the first SPDT switch is grounded
  • the third terminal of the second SPDT switch is connected to the negative voltage terminal
  • the third terminal of the first SPDT switch is connected to the negative voltage terminal.
  • Four terminals are grounded.
  • the first optical network terminal is connected with the first terminal and the first common terminal, and the fourth terminal and the second common terminal to apply a reverse bias voltage to attenuate the target optical signal.
  • the first optical network terminal is connected with the second terminal and the first common terminal, and the third terminal and the second common terminal are connected to apply a forward bias voltage to gain the target optical signal.
  • the laser region is a DFB laser region or a DBR laser region.
  • a third aspect of the present application provides a passive optical network (Passive Optical Network, PON) system.
  • the system includes: a first optical network terminal and an optical line terminal OLT.
  • the first optical network terminal is configured to receive the first adjustment value sent by the OLT.
  • the first optical network terminal is further configured to execute the second aspect or the method of any one of the second aspect.
  • system further includes a second optical network terminal.
  • the first adjustment value is a first loss difference value.
  • the OLT is used for sending optical signals to the first optical network terminal and the second optical network terminal.
  • the first optical network terminal is further configured to acquire the first optical received power of the optical signal, and send the first optical received power to the OLT.
  • the difference between the optical transmit power of the optical signal and the first optical receive power is the first loss.
  • the second optical network terminal is configured to acquire the second optical received power of the optical signal, and send the second optical received power to the OLT.
  • the difference between the optical transmission power of the optical signal and the second optical reception power is the second loss.
  • the OLT is configured to obtain the first loss difference according to the first loss and the second loss, and send the first loss difference to the first optical network terminal.
  • the first loss difference is the difference between the second loss and the first loss.
  • the first adjustment value is a first power difference value.
  • the first optical network terminal is further configured to send the first optical signal to the OLT.
  • the second optical network terminal is used for sending the second optical signal to the OLT.
  • the OLT is used to obtain the first optical received power of the first optical signal and the second optical received power of the second optical signal, obtain the first power difference according to the first optical received power and the second optical received power, and send the data to the first optical network.
  • the terminal sends the first power difference.
  • the first power difference is the difference between the first optical received power and the second optical received power.
  • system further includes an optical distribution network ODN, where the ODN is used to connect the first optical network terminal and the OLT.
  • a fourth aspect of the present application provides a computer storage medium, characterized in that, the computer storage medium stores instructions, and when the instructions are executed on a computer, the computer is made to execute any one of the second aspect or the second aspect. The method of one embodiment.
  • a fifth aspect of the present application provides a computer program product, characterized in that, when the computer program product is executed on a computer, the computer causes the computer to execute the method according to the second aspect or any one of the implementation manners of the second aspect. .
  • FIG. 1 is a schematic diagram of a PON system framework of an application scenario of the application
  • FIG. 2 is a schematic structural diagram of the laser device provided in the application.
  • 3 is a top view of the laser device provided in the application.
  • FIG. 6 is another schematic structural diagram of the laser device provided in the application.
  • FIG. 7 is a schematic flowchart of a power adjustment method for an optical network terminal provided in this application.
  • FIG. 8 is a schematic flowchart of obtaining the first adjustment value provided in this application.
  • FIG. 10 is a schematic diagram of a forward mapping relationship provided in the application.
  • FIG. 11 is a schematic diagram of a reverse mapping relationship provided in this application.
  • the present application provides a power adjustment method for a laser device and an optical network terminal.
  • the power tuning area By controlling the power tuning area to gain or attenuate a target optical signal, the OLT's requirement for the dynamic adjustment range of the BM-TIA can be reduced, thereby reducing costs.
  • FIG. 1 is a schematic diagram of a PON system framework of an application scenario of the present application.
  • the PON system includes an OLT 101, an ODN 102 and optical network terminals 103-105.
  • the PON system is a point-to-multipoint single-fiber bidirectional optical access network (in Figure 1, one OLT corresponds to three optical network terminals).
  • ODN 102 in a PON system uses optical fibers and passive components (eg, splitter/combiner 1021).
  • the optical splitter/combiner 1021 is a point-to-multipoint core device, and the PON system uses the optical splitter/combiner 1021 to separate and collect optical signals transmitted through the network.
  • the OLT 101 distributes the optical signal to all ONUs through the splitter/combiner 1021; in the upstream direction, the optical signals from each ONU are time-divisionally coupled to the same fiber through the splitter/combiner 1021 , transmitted to the OLT 101.
  • the optical network terminals 103 to 105 may be an optical network unit ONU, or an optical network terminal ONT.
  • a communication signal of each optical network terminal is a burst optical signal.
  • the photodetector of the OLT converts the received burst optical signals with unequal received light powers into electrical signals with different amplitudes. After that, the OLT amplifies the electrical signals with different amplitudes into voltage signals with the same amplitude through a Trans-impedance Amplifier (TIA).
  • TIA Trans-impedance Amplifier
  • the present application provides a laser device, which can be an optical network terminal, an optical module in an optical network terminal, or an integrated optical chip in an optical module, and is used to generate a modulated optical signal with adjustable power.
  • the above method essentially uses the BM-TIA in the OLT to balance the loss difference of different optical network terminals.
  • the present application hopes to balance the loss difference of different optical network terminals at the optical network terminal. Therefore, the optical transmit power of the optical network terminal needs to be power adjustable.
  • the laser device includes a laser region, a power adjustment region, and an electrical isolation region disposed therebetween. The laser area is used to generate the target optical signal.
  • the power adjustment region includes a second active layer, and when the power adjustment region is applied with a forward bias voltage, the power adjustment region gains (also referred to as amplifying) the target optical signal through the second active layer, and/or when the power adjustment region is When the reverse bias voltage is applied, the power adjustment region attenuates the target optical signal through the second active layer.
  • the power tuning region of the laser device can gain or attenuate the target optical signal, thus increasing the power adjustment range of the laser device, thereby reducing the requirement of the OLT for the dynamic adjustment range of the BM-TIA.
  • the optical transmit powers of the first optical network terminal and the second optical network terminal are both 8 dBm.
  • the loss of the optical signal of the first optical network terminal reaching the OLT is 15dB, and the loss of the optical signal of the second optical network terminal reaching the OLT is 25dB.
  • the optical received power of the optical signal received by the OLT from the first optical network terminal is -7 dBm
  • the optical received power of the optical signal received from the second optical network terminal is -17 dBm.
  • the BM-TIA needs at least a dynamic adjustment range of 10dB (-17dBm to -7dBm).
  • the adjustment range of the power tuning region of the laser device is 5dB.
  • the laser device adjusts the optical transmit power of the first optical network terminal to 2 dBm, and the optical receive power of the optical signal received by the OLT from the first optical network terminal is -12 dBm.
  • the optical receive power of the optical signal received by the OLT from the second optical network terminal remains unchanged.
  • the BM-TIA needs a dynamic adjustment range of 5dB (-17dBm to -12dBm), which reduces the requirement of the OLT for the dynamic adjustment range of the BM-TIA. Therefore, the cost of the BM-TIA in the OLT can be reduced.
  • it takes time for BM-TIA to adjust the gain so guard time is required between burst uplink signals of different optical network terminals.
  • the guard time is used to adjust the gain of BM-TIA. Therefore, the OLT cannot receive the upstream signal sent by the ONU within the guard time, which reduces the upstream bandwidth efficiency.
  • the present application adjusts the optical transmit power at the optical network terminal side, so the guard time can be reduced or even eliminated.
  • the above example is only for describing how to reduce the requirement for the dynamic adjustment range of the BM-TIA (referred to as the requirement for the BM-TIA).
  • the larger the adjustment range of the laser device the lower the demand for BM-TIA.
  • the adjustment range of the laser device is greater than the loss difference (for example, the above-mentioned 25dB to 15dB), the demand for BM-TIA can be reduced to 0dB.
  • the application of the laser device in the PON system is just an example. In practical applications, if the optical transmit power of the optical network terminal needs to be adjusted, the laser device provided in this application can be used.
  • FIG. 2 is a schematic structural diagram of the laser device provided in this application.
  • the laser device may be an integrated optical chip, and the integrated optical chip includes a negative electrode layer, a substrate layer, a lower confinement layer, an active layer and an upper confinement layer from bottom to top.
  • a ridge waveguide and a positive electrode layer are also provided on the upper confinement layer.
  • the laser device includes, from right to left, a laser region, an electrical isolation region, and a power adjustment region (also called a power tuning region).
  • the electrical isolation region does not include a positive electrode layer, thereby isolating the first positive electrode and the second positive electrode.
  • the plane 202 and the plane 201 divide the negative electrode layer into three parts, namely the first negative electrode layer, the second negative electrode layer and the third negative electrode layer.
  • the first negative electrode layer is on the right end of the plane 202
  • the second negative electrode layer is on the left end of the plane 202
  • the third negative electrode layer is between the plane 202 and the plane 201 .
  • plane 202 and plane 201 divide the substrate layer, lower confinement layer, active layer and upper confinement layer into three parts. Therefore, the laser region includes a first anode layer, a first substrate layer, a first lower confinement layer, a first active layer and a first upper confinement layer.
  • the power adjustment region includes a second negative electrode layer, a second substrate layer, a second lower confinement layer, a second active layer and a second upper confinement layer.
  • the electrical isolation region includes a third negative electrode layer, a third substrate layer, a third lower confinement layer, a third active layer, and a third upper confinement layer.
  • the laser region includes a first lower confinement layer, a first active layer and a first upper confinement layer.
  • a laser bias voltage By applying a laser bias voltage to the laser region, carriers are injected into the active layer, and an inversion distribution of carriers in the first active layer is established, that is, population inversion.
  • the stimulated radiation in order to obtain stimulated radiation, the stimulated radiation must be fed back multiple times in the resonant cavity to form laser oscillation, and the cavity surface or grating can play an optical feedback role to form laser oscillation.
  • the target optical signal is output from the left end face (plane 202 ) of the laser region.
  • the target light signal can be continuous laser light or signal light obtained by internal modulation.
  • the laser bias voltage is applied to the first positive electrode, and the first negative electrode layer is grounded. By determining the laser bias voltage connected to the first positive electrode, it can be determined whether the target light signal is continuous laser light or modulated signal light.
  • FIG. 3 is a top view of the laser device provided in this application. As shown in FIG. 3 , the laser bias voltage applied to the first positive electrode may include a DC bias signal and an AC modulation signal.
  • the target light signal is a continuous laser; when the laser bias voltage applied by the first positive electrode includes both the DC bias signal and the AC modulation signal The target light signal is the modulated signal light.
  • a laser bias current will be formed between the first positive electrode and the negative electrode layer. Therefore, applying a laser bias voltage can also be understood as applying a laser bias current. Conversely, to apply a laser bias current, a laser bias voltage must be applied. Therefore, in the description of this application, the laser bias voltage and the laser bias current are equivalent. Similarly, in the following description, the forward bias voltage and the forward bias current are equivalent, and the reverse bias voltage and the reverse bias current are equivalent.
  • the electrical isolation region includes the third active layer and the ridge waveguide.
  • the third active layer introduces the target optical signal generated by the first active layer in the laser region into the second active layer in the power adjustment region.
  • the electrically isolated region does not include a positive electrode layer.
  • the electrical isolation region does not include the contact layer. Specifically, after the contact layer is epitaxially grown in the power adjustment region, the electrical isolation region and the laser region, the contact layer of the electrical isolation region can be etched away.
  • the power conditioning region includes a second positive electrode and a second negative electrode layer.
  • a forward bias voltage may be applied to the power conditioning region through the second anode and second anode layers.
  • the second positive pole is connected to the SPDT 301 of the SPDT switch, and the second negative pole is grounded.
  • the forward bias voltage can make the second active layer of the power adjustment region gain the target optical signal through stimulated emission.
  • a forward bias voltage when a forward bias voltage is applied to the power tuning region, electrons are injected into the second active layer to form population inversion, and when excited by the target optical signal, the second active region generates stimulated radiation, and the radiation
  • An optical signal with the same frequency and phase as the target optical signal is output to form a gain for the target optical signal, and the size of the gain can be adjusted by the size of the bias voltage. Therefore, the second active region can form a gain for the target optical signal, and the value of the gain can be adjusted as required.
  • a reverse bias voltage can also be applied to the power adjustment region through the second positive electrode and the second negative electrode layer. The reverse bias voltage can make the second active layer of the power adjustment region attenuate the target optical signal through stimulated absorption, and the magnitude of the attenuation value can also be adjusted by the magnitude of the reverse bias voltage.
  • the output end face of the power adjustment region (the left end face of the second active layer in FIG. 2 ) is coated with an anti-reflection film.
  • the gain or attenuated target optical signal is output on the left end face of the second active layer.
  • the process flow of producing the laser region includes: epitaxially growing a first lower confinement layer on the first substrate layer, epitaxially growing a first active layer on the first lower confinement layer, and growing on the first active layer
  • a first upper confinement layer is epitaxially grown, a p-type cap layer and a contact layer are epitaxially grown on the first upper confinement layer, the P-type cap layer and the contact layer are made into a ridge waveguide, and finally a first negative electrode layer and a first positive electrode are added.
  • the first substrate, the second substrate and the third substrate are made of the same material and belong to the same substrate layer; the first lower confinement layer, the second lower confinement layer and the third lower confinement layer are made of the same material , and belong to the same confinement layer; the material of the first upper confinement layer, the second upper confinement layer and the third upper confinement layer are the same and belong to the same confinement layer; the first active area, the second active area and the third active area The regions are of the same material and belong to the same active layer.
  • the first lower confinement layer, the second lower confinement layer, the third lower confinement layer, the first active region and the second active region can be completed by one epitaxial growth.
  • the grating is fabricated in the laser region, the growth of the P-type cap layer and the contact layer is completed by the second epitaxy. Therefore, in the embodiment of the present application, only the secondary epitaxy can be used to complete the fabrication of the integrated optical chip, thereby reducing the processing cost.
  • an integrated optical chip in FIG. 2 is just an example. In practical applications, the integrated optical chip can be a more complex structure.
  • an integrated optical chip includes, from bottom to top, an anode layer, an indium phosphide InP substrate, an InP buffer layer, a lower confinement layer, an active layer, an upper confinement layer, a P-type inner cap layer, an etch stop layer, and a P-type cap. layer, P-type contact layer, ridge waveguide, insulating layer and cathode layer.
  • the specific processing flow is as follows.
  • an InP buffer layer, a lower confinement layer, an active layer (the active layer can be a multiple quantum well structure or a bulk material structure) and an upper confinement layer are sequentially epitaxially grown on the InP substrate.
  • a P-type inner cap layer, an etch stop layer, a P-type cap layer and a P-type contact layer are epitaxially grown on the upper confinement layer.
  • a ridge waveguide is fabricated on the P-type contact layer.
  • the P-type contact layer of the electrical isolation region is etched away to prevent current crosstalk between the laser region and the power adjustment region.
  • an insulating layer is grown on the ridge waveguide and the P-type contact layer, and a current injection window is opened on the ridge waveguide. Finally, a positive electrode layer is fabricated, and a negative electrode layer is fabricated on the thinned substrate.
  • the laser region is a DFB laser region or a DBR laser region, and the laser region further includes a grating.
  • the grating is used for wavelength selection, and the grating can be in the upper confinement layer, or it can be a separate grating layer.
  • the power adjustment region does not include gratings.
  • the power adjustment region, the electrical isolation region and the laser region may be integrated on an integrated optical chip (eg, FIG. 2 ), or may be separate devices.
  • the electrical isolation region does not include the ridge waveguide, the third upper confinement layer, the third active layer, the third lower confinement layer, the third substrate layer, and the third electrode layer.
  • the electrical isolation region includes the optical coupling device 1 , the waveguide and the optical coupling device 2 .
  • the optical coupling device 1 is used for introducing the target optical signal generated in the first active region into the waveguide
  • the optical coupling device 2 is used for introducing the target optical signal in the waveguide into the second active region.
  • the left end face (plane 202) of the laser area is coated with an anti-reflection coating.
  • the power adjustment region includes a second positive electrode and a second negative electrode layer. The following describes how to apply the bias voltage to the power adjustment region.
  • FIG. 4 is another schematic structural diagram of the laser device provided in this application.
  • the laser device 401 includes a power adjustment area 402 , a SPDT switch 404 (also called a first SPDT switch) and a SPDT switch 403 (also called a second SPDT switch).
  • the second negative electrode layer (also referred to as the second negative electrode) of the power adjustment region 502 is connected to the common terminal of the SPDT switch 404
  • the second positive electrode is connected to the common terminal of the SPDT switch 403 .
  • the 3-port (also referred to as the first terminal) of the SPDT switch 404 is connected to the first positive voltage terminal, and the 4-port (also referred to as the second terminal) of the SPDT switch 404 is grounded.
  • Port 1 (also referred to as the third terminal) of the SPDT switch 403 is connected to the second positive voltage terminal, and port 2 (also referred to as the fourth terminal) of the SPDT switch 403 is grounded.
  • port 3 is connected to the first common terminal and port 2 is connected to the second common terminal, a reverse bias voltage is applied to the power adjustment region 402;
  • port 4 is connected to the first common terminal, port 1 is connected to the second common terminal , the power regulation region 402 is applied with a forward bias voltage.
  • FIG. 5 is another schematic structural diagram of the laser device provided in this application.
  • the laser device 501 includes a power adjustment area 502 and a SPDT switch 503 (also referred to as a first SPDT switch).
  • the second negative electrode layer (also referred to as the second negative electrode) of the power conditioning region 502 is grounded.
  • the second positive pole of the power regulation area 502 is connected to the common terminal of the SPDT switch 503 .
  • Port 1 (also referred to as the first terminal) of the SPDT switch 503 is connected to the positive voltage terminal, and port 2 (also referred to as the second terminal) of the SPDT switch 503 is connected to the negative voltage terminal.
  • the power adjustment area 502 When port 1 is connected to the common terminal, the power adjustment area 502 is applied with a forward bias voltage; when port 2 is connected to the common terminal, the power adjustment area 502 is applied with a reverse bias voltage.
  • FIG. 6 is another schematic structural diagram of the laser device provided in this application.
  • the laser device 601 includes a power adjustment region 602 , a single-pole double-throw switch 603 , a controller 605 and a driver 604 .
  • the second negative layer of the power conditioning region 602 is grounded.
  • the second positive pole of the power regulation area 502 is connected to the common terminal of the SPDT switch 603 .
  • Port 1 of the SPDT switch 603 is connected to the positive voltage terminal of the driver 604
  • port 2 of the SPDT switch 603 is connected to the negative voltage terminal of the driver 604 .
  • the port 5 (also called the control terminal) of the SPDT switch 603 is connected to the controller 605 .
  • the controller 605 is used to control the common terminal of the SPDT switch 603 to be connected to the 1 port or the 2 port.
  • the controller 605 is connected to the driver 604 .
  • the controller is used to control the output voltage of the driver, so that the positive voltage terminal and/or the negative voltage terminal of the driver provide different voltages.
  • the controller may be a processor, such as a media access control (Media Access Control, MAC) chip.
  • Media Access Control Media Access Control
  • the laser device is described above.
  • the above-mentioned laser device can be applied to an optical network terminal in a PON system.
  • the optical network terminal can adjust the optical transmission power through the laser device.
  • the power adjustment method of the optical network terminal in the present application will be described below.
  • the laser device may be an optical network terminal, or an optical module in an optical network terminal, or an integrated optical chip in an optical module.
  • the technical solution provided by the present application is described below by taking the laser device as an ONU as an example.
  • FIG. 7 is a schematic flowchart of a power adjustment method for an optical network terminal provided in this application. As shown in Figure 7, the method includes the following steps.
  • step 701 the first ONU obtains the first adjustment value.
  • the laser device can gain or attenuate the target optical signal, that is, the power adjustment region of the laser device has a gain range and an attenuation range.
  • the adjustment range of the first ONU includes the gain range and the attenuation range.
  • the first adjustment value is used for the first ONU to determine the gain value or adjustment value.
  • the first adjustment value may be a first power difference value or a first loss difference value. The two manners for obtaining the first adjustment value will be described separately below.
  • the first loss difference is the difference between the first loss and the target loss.
  • the first loss is the link loss from the first ONU to the OLT.
  • the target loss can be a loss value defined by the OLT, or it can be the loss of other ONUs connected to the OLT.
  • the target loss is the second loss
  • the second loss is the link loss from the second ONU to the OLT.
  • FIG. 8 is a schematic flowchart of obtaining the first adjustment value provided in this application. As shown in FIG. 8 , obtaining the first adjustment value by the first ONU includes the following steps.
  • step 801 the OLT sends a measurement optical signal to the first ONU and the second ONU.
  • the optical splitter/combiner can split the measurement optical signal (optical signal for short) to different ONUs, such as the first ONU and the second ONU.
  • the MAC address carried in the measurement optical signal is the MAC address of the first ONU
  • the second ONU discards the measurement optical signal after receiving it.
  • the measured optical signal is used to measure the optical received power of the second ONU, and discarding it will not affect the second ONU to obtain the second optical received power. Therefore, the present application does not limit the content carried in the measurement optical signal.
  • the OLT can send the measurement optical signal to the first ONU and the second ONU simultaneously by sending the measurement optical signal once.
  • the OLT may also send the measurement optical signal to the first ONU and the second ONU respectively by sending the secondary measurement optical signal.
  • the OLT records the optical transmit power of the measured optical signal.
  • step 802 the first ONU acquires the first optical received power of the measurement optical signal.
  • step 803 the second ONU acquires the second optical received power of the measurement optical signal.
  • step 804 the first ONU sends the first optical received power to the OLT.
  • step 805 the second ONU sends the second optical receive power to the OLT.
  • step 806 the OLT obtains the first loss difference according to the first optical received power and the second optical received power.
  • the OLT records the optical transmit power of the measured optical signal.
  • the difference between the optical transmission power and the first optical reception power is the first loss
  • the difference between the optical transmission power and the second optical reception power is the second loss.
  • the difference between the second loss and the first loss is the first loss difference
  • the second loss is greater than the first loss.
  • the second loss is the largest of all losses. All losses include link losses between each ONU and OLT. For example, the first loss and the second loss are included.
  • the OLT When the OLT is connected to multiple ONUs, the OLT will send measurement optical signals to the multiple ONUs in step 801 . After receiving multiple optical receive powers sent by multiple ONUs, the OLT calculates multiple losses according to the multiple optical receive powers, and determines the loss with the largest value as the target loss, such as the second loss. Among them, there is a one-to-one correspondence between multiple ONUs and multiple losses. After determining the target loss, the OLT calculates the difference between the remaining losses in the multiple losses and the target loss, and sends the difference to the corresponding ONU.
  • the first loss difference value is sent to the first ONU.
  • the second loss is the target loss
  • the OLT takes the second loss as a reference. Therefore, the second loss difference is zero.
  • the OLT may not need to send the second loss difference to the second ONU.
  • step 807 the OLT sends the first adjustment value to the first ONU.
  • the first adjustment value is the first loss difference.
  • the first power difference value is the difference between the first optical received power and the target received power.
  • the first optical received power is the optical received power of the optical signal received by the OLT from the first ONU.
  • the target received power may be a received power defined by the OLT, or may be the optical received power of the optical signal received by the OLT from other ONUs.
  • the optical reception power is the second optical reception power
  • the second optical reception power is the optical reception power of the optical signal received by the OLT from the second ONU.
  • FIG. 9 is another schematic flowchart of obtaining the first adjustment value provided in the present application. As shown in FIG. 9 , another method for the first ONU to acquire the first adjustment value includes the following steps.
  • step 901 the first ONU sends a first optical signal to the OLT.
  • the present application does not limit the content carried in the first optical signal.
  • the OLT acquires the first optical received power.
  • the first optical received power is the optical received power of the first optical signal.
  • step 903 the second ONU sends a second optical signal to the OLT.
  • the optical signals from each ONU are time-divisionally coupled to the same optical fiber through the splitter/combiner, and then transmitted to the OLT. Therefore, in order for the OLT to accurately acquire the optical received power of the first optical signal, the first optical signal and the second optical signal are staggered in the time domain, so as to avoid mutual interference.
  • the power adjustment area in the first ONU performs the maximum gain on the first optical signal
  • the power adjustment area in the second ONU performs the maximum gain on the second optical signal.
  • the gain of the power tuning region to the target optical signal by applying a forward bias voltage ranges from 0 to N dB
  • the attenuation range of the power tuning region to the target optical signal by applying a reverse bias voltage ranges from 0 to -M dB. If the power of the target optical signal generated by the laser area is X dBm, the optical transmission power of the first optical signal and the second optical signal is equal to X+N dBm, and X is a positive number.
  • step 904 the OLT acquires the second optical received power.
  • the second optical received power is the optical received power of the second optical signal.
  • step 905 the OLT obtains a first power difference according to the first optical received power and the second optical received power.
  • the first power difference is a difference between the first optical received power and the second optical received power, and the first optical received power is greater than the second optical received power.
  • the second optical received power is the minimum value among all optical received powers.
  • All optical received power includes the link loss between each ONU and OLT.
  • the first optical reception power and the second optical reception power are included.
  • the OLT When the OLT is connected to multiple ONUs, the OLT will receive multiple ONUs and send multiple optical signals. After receiving multiple optical signals sent by multiple ONUs, the OLT obtains multiple optical receiving powers of the multiple optical signals, and determines the optical receiving power with the largest value among the multiple optical receiving powers as the target optical receiving power, such as the second optical receiving power. received power. Among them, the multiple ONUs correspond to the multiple optical received powers one-to-one.
  • the OLT After determining the target optical received power, the OLT calculates the difference between the remaining optical received power and the target optical received power respectively, and sends the difference to the corresponding ONU. For example, the first power difference value is sent to the first ONU.
  • the second optical received power is the target optical received power, that is, the OLT takes the second optical received power as a reference. Therefore, the second power difference is zero. The OLT may not need to send the second power difference to the second ONU.
  • step 906 the OLT sends the first adjustment value to the first ONU.
  • the first adjustment value is the first power difference value.
  • the first adjustment value is obtained in two ways above. In practical applications, one way can be selected to obtain the first adjustment value.
  • the content of the power adjustment performed by the first ONU according to the first adjustment value will be described below.
  • step 702 the first ONU gains or attenuates the target optical signal according to the first adjustment value.
  • the first ONU includes a laser area and a power adjustment area.
  • the first ONU applies a laser bias voltage in the laser region to generate a target optical signal, and the target optical signal is introduced into a power tuning region optically coupled to the laser region.
  • the first ONU applies a forward bias voltage in the power tuning region to gain the target optical signal, or according to the first adjustment value, the first ONU applies a reverse bias voltage in the power tuning region to attenuate the target optical signal.
  • the laser region and the power adjustment region reference may be made to the description of the laser device in the foregoing FIGS. 2 to 6 .
  • the above description of the laser device can be correspondingly applied to the power adjustment method of the optical network terminal.
  • an electrical isolation area is provided between the laser area and the power adjustment area in the first ONU, the first active layer of the laser area and the second active layer of the power adjustment area are made of the same material and are in the same active layer, etc. .
  • the unit of the first adjustment value is the power unit, such as dB, dBm or mW.
  • the power adjustment region gains the target optical signal by applying a bias voltage. Therefore, the first adjustment value needs to be converted into a bias voltage.
  • the initial state of the first ONU also affects the conversion of the first adjustment value and the bias voltage.
  • the initial state of the first ONU includes full gain, no adjustment and full attenuation.
  • the full gain refers to the maximum gain performed by the first ONU on the optical signal. No adjustment means that the first ONU does not gain or attenuate the optical signal.
  • the full attenuation means that the first ONU performs maximum attenuation on the existing optical signal.
  • the gain range of the power tuning region of the first ONU to the target optical signal by applying a forward bias voltage is 0 to N dB
  • the attenuation range of the power tuning region to the target optical signal by applying a reverse bias voltage is 0 to – M dB.
  • Z is the first adjustment value.
  • the first adjustment value is the first power difference value.
  • the first power difference is a difference between the first optical received power and the second optical received power.
  • the first ONU When the initial state of the first ONU is no adjustment, if the first adjustment value is a positive value, indicating that the optical transmission power of the optical signal needs to be reduced, the first ONU attenuates the target optical signal. Specifically, the first ONU converts the first adjustment value into a reverse bias voltage through a reverse mapping relationship, applies the reverse bias voltage to the power adjustment region, and attenuates the target optical signal generated in the laser region. At this time, the attenuation value of the first ONU is Z decibels. If the first adjustment value is a negative value, indicating that the optical transmission power of the optical signal needs to be increased, the first ONU gains the target optical signal.
  • the first ONU converts the first adjustment value into a forward bias voltage through a forward mapping relationship, applies the forward bias voltage to the power adjustment region, and gains the target optical signal generated in the laser region.
  • the gain value of the first ONU is Z decibels. If the first adjustment value is 0, it means that the optical transmit power of the optical signal does not need to be changed, and the first ONU still remains in an unadjusted state.
  • the first ONU When the initial state of the first ONU is full gain, if the first adjustment value is a positive value and is less than or equal to N, the first ONU needs to reduce the gain to the optical signal. Specifically, the first ONU acquires N ⁇ Z (N minus Z). The first ONU converts N-Z into a forward bias voltage through a forward mapping relationship, and applies the forward bias voltage to the power adjustment region to gain a target optical signal generated in the laser region. At this time, the gain value of the first ONU is N-Z decibels. If the first adjustment value is greater than N and less than or equal to N+M, the full gain of the optical signal required by the first ONU becomes the attenuation of the optical signal. Specifically, the first ONU acquires Z-N.
  • the first ONU converts Z-N into a reverse bias voltage through a reverse mapping relationship, applies the reverse bias voltage to the power adjustment area, and attenuates the target optical signal generated in the laser area.
  • the attenuation value of the first ONU is N-Z decibels. If the first adjustment value is equal to N, the full gain of the optical signal required by the first ONU becomes no adjustment to the optical signal. At this time, the gain value or attenuation value of the first ONU is 0 dB. If the first adjustment value is a negative value, it means that the optical transmission power of the optical signal needs to be increased, and the first ONU is already in a state of full gain, so the forward bias voltage cannot be increased to increase the gain.
  • the first optical received power is limited to be greater than the second optical received power, or the target optical received power is defined as the minimum value among multiple optical received powers is meaningful.
  • the second optical received power is greater than the first optical received power
  • the first adjustment value is a negative value. The first ONU can no longer increase the gain, that is, the OLT cannot use the first ONU to balance the optical receiving power of the OLT to the first ONU and the second ONU.
  • the first ONU needs to continue to attenuate the optical signal on the basis that the full gain of the optical signal becomes the full attenuation of the optical signal. It should be understood that the above-mentioned full gain and full attenuation are for the adjustment capability of the power adjustment region.
  • the laser area can also adjust the power of the target optical signal. Specifically, by reducing the laser bias voltage, the target optical signal is attenuated.
  • the initial state of the first ONU is full attenuation, please refer to the foregoing description that the initial state is full gain.
  • the three initial states of the first ONU are described above.
  • the first ONU transmits the first optical signal using the maximum gain. If the power of the target optical signal generated by the laser region is X decibel-milliwatts, the optical transmission power of the first optical signal is equal to X+N decibel-milliwatts. Therefore, it can be ensured that the optical receiving power of the first optical signal is the maximum, thereby effectively reducing the probability that the first optical signal is not received by the OLT because the power is too low.
  • step 703 the first ONU obtains the second adjustment value.
  • the optical receive powers of the optical signals of the multiple ONUs reaching the OLT are not necessarily equal.
  • the error mainly comes from two aspects.
  • the error of the forward mapping relationship or the reverse mapping relationship For example, when the first adjustment value is 5dB, the gain provided when the forward bias voltage applied in the power adjustment region is 3V is 5dB.
  • the forward bias voltage obtained according to the first adjustment value 5dB and the forward mapping relationship is 2.9V, and the gain of the forward bias voltage of 2.9V is 4.6dB. Therefore, it can be understood as the error of the mapping relationship.
  • Another aspect is the fluctuation error of the loss. That is, during the transmission of the optical signal, the loss may change. Therefore, even after the first ONU gains or attenuates the target optical signal, when measuring again, the optical received powers of the optical signals of the multiple ONUs reaching the OLT are not necessarily equal.
  • the first ONU obtains the second adjustment value.
  • the manner in which the first ONU acquires the second adjustment value is similar to the manner in which the first ONU acquires the first adjustment value, and the foregoing description may be referred to.
  • the first adjustment value is a power difference value
  • the second adjustment value is a loss difference value. That is, the method corresponding to FIG. 9 is used to obtain the first adjustment value, and the method corresponding to FIG. 8 is used to obtain the second adjustment value.
  • the first adjustment value sent in step 906 may be carried in the measurement optical signal, thereby reducing the interaction flow between the ONU and the OLT.
  • step 704 the first ONU adjusts the gain value or attenuation value of the target optical signal by the first adjustment value according to the second adjustment value.
  • the first ONU adjusts the gain value or attenuation value of the target optical signal by the first adjustment value according to the second adjustment value.
  • the following is an example of the initial state of the first ONU in step 702 being full gain. If the first adjustment value is greater than N and less than or equal to N+M, the attenuation value of the first ONU is N-Z decibels.
  • the second adjustment value is Y. If Y is a positive value and smaller than N-Z, the first ONU needs to reduce the gain to the optical signal.
  • the first ONU obtains N-Z-Y, and the first ONU converts N-Z-Y into a forward bias voltage through the forward mapping relationship, and applies the forward bias voltage to the power adjustment area, and the target generated in the laser area is The optical signal is gain.
  • the gain value of the first ONU is N-Z-Y decibels. If Y is greater than N-Z and less than N-Z+M, the gain of the first ONU to the optical signal becomes the attenuation of the optical signal.
  • the first ONU obtains Y-(N-Z), and the first ONU converts Y-(N-Z) into a reverse bias voltage through the reverse mapping relationship, and applies the reverse bias voltage to the power adjustment area, and the laser
  • the target light signal generated by the zone is attenuated.
  • the attenuation value of the first ONU is Y-(N-Z) decibels.
  • the power adjustment method of the optical network terminal in the present application has been described above.
  • the forward mapping relationship and the reverse mapping relationship are mentioned.
  • An example of a forward mapping relationship and a reverse mapping relationship is provided below.
  • FIG. 10 is a schematic diagram of the forward mapping relationship provided in this application.
  • the abscissa is the forward bias current
  • the ordinate is the power of the target optical signal after gain.
  • the bias current of the laser region of the forward mapping relationship 1001 is 80 mA
  • the bias current of the laser region of the forward mapping relationship 1002 is 60 mA.
  • the forward mapping relationship 1001 by increasing the forward bias current, the gain of the first ONU to the first ONU is also greater.
  • FIG. 11 is a schematic diagram of a reverse mapping relationship provided in this application.
  • the abscissa is the forward bias voltage
  • the ordinate is the power of the target optical signal after gain.
  • the bias current of the laser region of the reverse mapping relationship 1101 is 80 mA
  • the bias current of the laser region of the reverse mapping relationship 1102 is 60 mA.
  • the reverse mapping relationship 1101 by increasing the forward bias current, the gain of the first ONU to the first ONU is also greater.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光装置(401,501,601),应用于光通信领域,包括:激光器区,电隔离区和功率调节区(402,502,602);当激光器区被施加激光偏置电压时,第一有源层产生目标光信号,目标光信号被引入与激光器区光耦合的功率调节区(402,502,602);功率调节区(402,502,602)包括第二有源层;当功率调节区(402,502,602)被施加正向偏置电压时,第二有源层放大目标光信号,和/或,当功率调节区(402,502,602)被施加反向偏置电压时,第二有源层衰减目标光信号。通过功率调谐区(402,502,602)放大或衰减目标光信号,降低了光线路终端OLT对突发模式跨阻放大器BM-TIA的动态调节范围的需求,从而降低了设备成本。

Description

激光装置、光网络终端的功率调节方法
本申请要求于2021年2月2日提交中国国家知识产权局、申请号为202110143338.2、申请名称为“激光装置、光网络终端的功率调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种激光装置、光网络终端的功率调节方法。
背景技术
无源光网络(Passive Optical Network,PON)是一种单光纤双向光接入网络。光线路终端(Optical Distribution Network,OLT)通过光分配网络(Optical Distribution Network,ODN)与多个光网络单元(Optical Network Unit,ONU)连接。
由于ODN的不等比分光,各个ONU到OLT之间的距离存在差异,导致各个ONU到OLT的损耗存在差异,进而使得各个ONU发送的突发光信号到达OLT的光功率不相等。因此,OLT需要使用增益可调并且可以快速切换增益值的突发模式跨阻放大器(Burst-mode Trans-impedance Amplifier,BM-TIA),以满足BM-TIA输出电压信号幅度一致的需求。因此,BM-TIA的动态调节范围越大,就能平衡越大的损耗差值。
但是,一般情况下,BM-TIA的动态调节范围越大,其成本也越高。
发明内容
本申请提供了一种激光装置、光网络终端的功率调节方法,可以通过功率调谐区调节激光装置的光发射功率,从而降低OLT对BM-TIA的动态调节范围的需求,降低成本。
本申请第一方面提供了一种激光装置。该装置包括:激光器区,电隔离区和功率调节区。激光器区包括第一有源层,当激光器区被施加激光偏置电压时,第一有源层产生目标光信号。目标光信号被引入与激光器区光耦合的功率调节区。电隔离区设置在激光器区和功率调节区之间,电隔离区用于隔离激光器区和功率调节区之间的电串扰。功率调节区包括第二有源层,当功率调节区被施加正向偏置电压时,第二有源层增益目标光信号;和/或,当功率调节区被施加反向偏置电压时,第二有源层衰减目标光信号。具体地,功率调谐区可以通过受激辐射增益目标光信号,或通过受激吸收衰减目标光信号。其中,目标光信号可以是激光器产生的连续激光,也可以是经过内调制得到的信号光。
在本申请中,激光装置的功率调谐区可以增益或衰减目标光信号,因此增大了激光装置的功率调节范围。因此,通过控制功率调谐区进行增益或衰减目标光信号,可以降低OLT对BM-TIA的动态调节范围的需求,从而降低成本。
在第一方面的一种可选方式中,电隔离区包括第三有源层。第三有源层与第一有源层、第二有源层光耦合。
在第一方面的一种可选方式中,装置包括集成光芯片,集成光芯片包括激光器区,电隔离区和功率调节区。功率调节区的一端和电隔离区的一端重合,电隔离区的另一端和激光器区的一端重合。其中,将激光器区,电隔离区和功率调节区集成在一个集成光芯片中,可以提高激光装置的集成度。
在第一方面的一种可选方式中,激光器区还包括第一衬底、第一下限制层和第一上限制层,功率调节区还包括第二衬底、第二下限制层和第二上限制层,电隔离区还包括第三上限制层、第三下限制层和第三衬底。集成光芯片满足以下任意一项或多项条件:第一衬底、第二衬底和第三衬底的材质相同,且属于同一衬底层;第一下限制层、第二下限制层和第三下限制层的材质相同,且属于同一限制层;第一上限制层、第二上限制层和第三上限制层的材质相同,且属于同一限制层;第一有源区、第二有源区和第三有源区的材质相同,且属于同一有源层。其中,将第一至第三下限制层统称为下限制层。当集成光芯片中的第一下限制层、第二下限制层和第三下限制层的材质相同,且属于同一限制层时,下限制层的工艺流程更为简单。例如,可以通过一次外延生长完成第一下限制层、第二下限制层和第三下限制层。因此,本申请可以简化工艺流程,从而降低成本。
在第一方面的一种可选方式中,激光器区为分布反馈式(Distributed Feedback Laser,DFB)激光器区或分布布拉格反射式(distributed Bragg reflector,DBR)激光器区。激光器区还包括光栅,功率调节区不包括光栅。其中,当激光器区通过受激辐射产生目标光信号时,激光器区中的光栅用于波长选择。当功率调节区用于增益时,第二有源区也会产生受激辐射。但是,若是功率调节区包括光栅,则会影响功率调节区的工作状态。
在第一方面的一种可选方式中,激光器区还包括第一正极和第一负极,功率调节区还包括第二正极和第二负极。第一正极和第二正极被电隔离区隔离,第一负极和第二负极属于同一负电极层。这么做可以简化电极层的工艺流程。例如,相比于通过刻蚀形成第一负极和第二负极之间的隔离区,可以降低工艺的复杂性。
在第一方面的一种可选方式中,功率调节区还包括第二正极和第二负极,装置还包括第一单刀双掷开关。第二负极接地,第二正极和第一单刀双掷开关的公共端相连。第一单刀双掷开关的第一端连接第一正电压端,第一单刀双掷开关的第二端连接负电压端。当第一端与公共端相连时,功率调节区被施加正向偏置电压;当第二端与公共端相连时,功率调节区被施加反向偏置电压。
在第一方面的一种可选方式中,功率调节区还包括第二正极和第二负极,装置还包括第一单刀双掷开关和第二单刀双掷开关。第二负极和第一单刀双掷开关的第一公共端相连,第二正极和第二单刀双掷开关的第二公共端相连。第一单刀双掷开关的第一端连接第一正电压端,第一单刀双掷开关的第二端接地。第二单刀双掷开关的第三端连接第二正电压端,第二单刀双掷开关的第四端接地。当第一端和第一公共端相连,第四端和所述第二公共端相连时,功率调节区被施加反向偏置电压。当第二端和第一公共端相连,第三端和第二公共端相连时,功率调节区被施加正向偏置电压。
在第一方面的一种可选方式中,第一单刀双掷开关和/或第二单刀双掷开关还包括控制端,激光装置还包括控制器。其中,控制器与控制端相连。控制器用于控制单刀双掷开关的公共端与哪个端相连。
在第一方面的一种可选方式中,激光装置还包括驱动器,第一正电压端与驱动器相连。其中,控制器与驱动器相连。控制器用于控制驱动器的输出电压,使得驱动器的正电压端和/或负电压端提供不同大小的电压。
本申请第二方面提供了一种光网络终端的功率调节方法。该方法包括:第一光网络终端获取第一调节值。第一光网络终端包括激光器区和功率调节区。第一光网络终端在激光器区施加激光偏置电压产生目标光信号,目标光信号被引入与激光器区光耦合的所述功率调谐区。根据第一调节值,第一光网络终端在功率调谐区施加正向偏置电压增益目标光信号,或根据第一调节值,第一光网络终端在功率调谐区施加反向偏置电压衰减目标光信号。具体地,功率调谐区可以通过受激辐射增益目标光信号,或通过受激吸收衰减目标光信号。其中,目标光信号可以是激光器产生的连续激光,也可以是经过内调制得到的信号光。
在本申请中,第一光网络终端的功率调谐区可以增益或衰减目标光信号,因此增大了第一光网络终端的功率调节范围。因此,通过控制功率调谐区进行增益或衰减目标光信号,可以降低OLT对BM-TIA的动态调节范围的需求,从而降低成本。
在第二方面的一种可选方式中,功率调谐区通过施加正向偏置电压对目标光信号的增益范围为0至N分贝,功率调谐区通过施加反向偏置电压对目标光信号的衰减范围为0至﹣M分贝,N和M为正数。
在第二方面的一种可选方式中,第一调节值为第一损耗差值,第一损耗差值为第二损耗和第一损耗的差值,第一损耗为第一光网络终端和OLT的链路损耗,第二损耗为第二光网络终端与OLT的链路损耗。第一光网络终端获取来自OLT的光信号的第一光接收功率;第一光网络终端向OLT发送第一光接收功率,光信号的光发送功率和第一光接收功率的差值为第一损耗。类似地,OLT可以获取第二损耗,然后根据第一损耗和第二损耗得到第一损耗差值。
在第二方面的一种可选方式中,第一调节值为第一功率差值,第一功率差值为第一光接收功率和第二光接收功率的差值,第一光接收功率为OLT从第一光网络终端接收的第一光信号的光接收功率,第二光接收功率为OLT从第二光网络终端接收的第二光信号的光接收功率。
在第二方面的一种可选方式中,目标光信号的功率为X分贝毫瓦dBm,方法还包括:第一光网络终端在功率调谐区施加正向偏置电压增益第一光信号,增益后的第一光信号的光发送功率等于X+N分贝毫瓦,X为正数。其中,当第一光网络终端采用最大增益发送第一光信号时,可以保证第一光信号的光接收功率最大,从而可以有效降低第一光信号因为功率太低未被OLT接收的概率,从而提高接收光信号的稳定性。
在第二方面的一种可选方式中,若第一调节值小于或等于N,则第一光网络终端通过功率调谐区对目标光信号的增益值为N-Z分贝,其中,Z为第一调节值。若第一调节值大于N,且小于或等于N+M,则第一光网络终端通过功率调谐区对目标光信号的衰减值为Z-N分贝。
在第二方面的一种可选方式中,所述方法还包括:若第一调节值大于N+M,则第一光网络终端减小激光偏置电压,以减小目标光信号的功率。其中,减小激光偏置电压,将会减少目标光信号的功率。因此,在功率调谐区的调节范围不够的情况下,减少激光偏置 电压可以进一步提升第一光网络的功率调节范围。因此,可以进一步降低OLT对BM-TIA的动态调节范围的需求,降低成本。
在第二方面的一种可选方式中,N和M的和大于或等于15。其中,不同光网络终端的光发射功率的差值可以达到15dB,即不同的目标光信号的功率差值可以达到15dB。因此,在不同光网络终端与OLT的路径损耗相同的情况下,不同光网络终端到达OLT的光接收功率的差值也能达到15dB。为此,限定N和M的和大于或等于15。
在第二方面的一种可选方式中,在第一光网络终端根据第一调节值增益或衰减目标光信号后,所述方法还包括:第一光网络终端获取第二调节值。若第二调节值的绝对值大于第一阈值,则第一光网络终端根据第二调节值调整第一调节值对目标光信号的增益值或衰减值。其中,在第一光网络终端根据第一调节值调节目标光信号的功率后,若第一光网络终端的光发射功率仍然不满足要求,则第一光网络终端可以根据第二调制值调整第一调节值对目标光信号的增益值或衰减值。因此,可以进一步调整第一光网络终端的光发送功率,即调整了OLT对第一光网络终端的光接收功率,从而可以进一步保证了各个光网络终端发送的突发光信号到达OLT的光功率相等。因此,可以降低OLT对BM-TIA的动态调节能力的需求,降低成本。
在第二方面的一种可选方式中,激光偏置电压为调制电信号。其中,当激光偏置电压为调制电信号时,目标光信号是经过内调制得到的信号光。
在第二方面的一种可选方式中,功率调谐区的负极接地,功率调谐区的正极和单刀双掷开关的公共端相连,单刀双掷开关的第一端连接正电压端,单刀双掷开关的第二端连接负电压端。第一光网络终端连通第一端和公共端来施加正向偏置电压,以增益目标光信号。第一光网络终端连通第二端和公共端来施加反向偏置电压,以衰减目标光信号。
在第二方面的一种可选方式中,功率调谐区的负极和第一单刀双掷开关的第一公共端相连,功率调谐区的正极和第二单刀双掷开关的第二公共端相连,第一单刀双掷开关的第一端连接正电压端,第一单刀双掷开关的第二端接地,第二单刀双掷开关的第三端连接负电压端,第一单刀双掷开关的第四端接地。第一光网络终端连通第一端和第一公共端,第四端和第二公共端来施加反向偏置电压,以衰减目标光信号。第一光网络终端连通第二端和第一公共端,第三端和第二公共端来施加正向偏置电压,以增益目标光信号。
在第二方面的一种可选方式中,激光器区为DFB激光器区或DBR激光器区。
本申请第三方面提供了一种无源光网络(Passive Optical Network,PON)系统。该系统包括:第一光网络终端和光线路终端OLT。第一光网络终端用于接收OLT发送的第一调节值。第一光网络终端还用于执行上述第二方面或第二方面任意一项的方法。
在第三方面的一种可选方式中,系统还包括第二光网络终端。
在第三方面的一种可选方式中,第一调节值为第一损耗差值。OLT用于向第一光网络终端和第二光网络终端发送光信号。第一光网络终端还用于获取光信号的第一光接收功率,向OLT发送所述第一光接收功率。光信号的光发送功率和第一光接收功率的差值为第一损耗。第二光网络终端用于获取光信号的第二光接收功率,向OLT发送所述第二光接收功率。光信号的光发送功率和第二光接收功率的差值为第二损耗。OLT用于根据第一损耗和第二损耗得到第一损耗差值,向第一光网络终端发送第一损耗差值。其中,第一损耗差值为第 二损耗和第一损耗的差值。
在第三方面的一种可选方式中,第一调节值为第一功率差值。第一光网络终端还用于向OLT发送第一光信号。第二光网络终端用于向OLT发送第二光信号。OLT用于获取第一光信号的第一光接收功率和第二光信号的第二光接收功率,根据第一光接收功率和第二光接收功率得到第一功率差值,向第一光网络终端发送第一功率差值。其中,第一功率差值为第一光接收功率和第二光接收功率的差值。
在第三方面的一种可选方式中,所述系统还包括光分配网络ODN,所述ODN用于连接所述第一光网络终端和所述OLT。
本申请第四方面提供了一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,所述指令在计算机上执行时,使得所述计算机执行如第二方面或第二方面任意一种实施方式所述的方法。
本申请第五方面提供了一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,使得所述计算机执行如第二方面或第二方面任意一种实施方式所述的方法。
附图说明
图1为本申请的应用场景的PON系统框架示意图;
图2为本申请中提供的激光装置的一个结构示意图;
图3为本申请中提供的激光装置的俯视图;
图4为本申请中提供的激光装置的另一个结构示意图;
图5为本申请中提供的激光装置的另一个结构示意图;
图6为本申请中提供的激光装置的另一个结构示意图;
图7为本申请中提供的光网络终端的功率调节方法的流程示意图;
图8为本申请中提供的获取第一调节值的一个流程示意图;
图9为本申请中提供的获取第一调节值的另一个流程示意图;
图10为本申请中提供的正向映射关系的示意图;
图11为本申请中提供的反向映射关系的示意图。
具体实施方式
本申请提供了一种激光装置、光网络终端的功率调节方法,通过控制功率调谐区进行增益或衰减目标光信号,可降低OLT对BM-TIA的动态调节范围的需求,从而降低成本。
本申请中的激光装置、光网络终端的功率调节方法可以应用于光通信领域。例如,可以应用于PON系统。图1为本申请的应用场景的PON系统框架示意图。如图1所示,PON系统包括OLT 101,ODN 102和光网络终端103~105。PON系统是一种点对多点的单纤双向光接入网络(在图1中,是一个OLT对应3个光网络终端)。PON系统中的ODN 102使用光纤和无源组件(例如分光/合路器1021)。在PON系统中,分光/合路器1021是点到多点的核心器件,PON系统利用分光/合路器1021来分离和收集通过网络传输的光信号。具体地,在下行方向,OLT 101通过分光/合路器1021将光信号分配到所有的ONU;在上行方向,来自各个ONU的光信号分时的通过分光/合路器1021耦合到同一根光纤,传输到OLT 101。 光网络终端103~105可以是光网络单元ONU,或光网络终端ONT。
其中,由于ODN的不等比分光,各个光网络终端到OLT之间的距离差异,导致各个光网络终端到OLT的损耗存在差异,进而各个光网络终端发送的光信号到达OLT的光接收功率不相等。对于OLT侧,每一个光网络终端的一次通讯信号为一次突发光信号。OLT的光电探测器将接收到的光接收功率不相等的突发光信号转换成幅度不一的电信号。之后,OLT通过跨阻放大器(Trans-impedance Amplifier,TIA)将幅度不一的电信号放大成幅度一致的电压信号。在这个过程中,需要使用增益可调,并且可以快速切换增益值的BM-TIA,以满足TIA输出的电压信号的幅度一致的需求。因此,BM-TIA的动态调节范围越大,就能平衡越大的损耗差值。
但是,一般情况下,BM-TIA的动态调节范围越大,其成本也越高,从而难以满足PON系统的低成本需求。
为此,本申请提供了一种激光装置,激光装置可以是光网络终端,或光网络终端中的光模块,或光模块中的集成光芯片,用来产生功率可调的调制光信号。上述方法本质上是通过OLT中的BM-TIA来平衡不同光网络终端的损耗差值,本申请希望可以在光网络终端来平衡不同光网络终端的损耗差值。因此,光网络终端的光发射功率需要功率可调。具体地,激光装置包括激光器区、功率调节区以及设置在两者之间的电隔离区。激光器区用于产生目标光信号。功率调节区包括第二有源层,当功率调节区被施加正向偏置电压时,功率调节区通过第二有源层增益(也称放大)目标光信号,和/或当功率调节区被施加反向偏置电压时,功率调节区通过第二有源层衰减目标光信号。
在本申请的激光装置中,激光装置的功率调谐区可以增益或衰减目标光信号,因此增大了激光装置的功率调节范围,从而降低了OLT对BM-TIA的动态调节范围的需求。例如,第一光网络终端和第二光网络终端的光发射功率都为8dBm。第一光网络终端的光信号到达OLT的损耗为15dB,第二光网络终端的光信号到达OLT的损耗为25dB。此时,OLT从第一光网络终端接收的光信号的光接收功率为-7dBm,从第二光网络终端接收的光信号的光接收功率为-17dBm。将OLT中的BM-TIA的电压增益范围等价为光信号的功率增益范围,则BM-TIA至少需要10dB(-17dBm到-7dBm)的动态调节范围。假设第一光网络终端采用本申请中的激光装置,激光装置的功率调谐区的调节范围为5dB。激光装置将第一光网络终端的光发射功率调整为2dBm,则OLT从第一光网络终端接收的光信号的光接收功率为-12dBm。OLT从第二光网络终端接收的光信号的光接收功率不变。因此,BM-TIA需要5dB(-17dBm到-12dBm)的动态调节范围,降低了OLT对BM-TIA的动态调节范围的需求。因此,可以降低OLT中的BM-TIA的成本。此外,BM-TIA调整增益需要时间,因此不同光网络终端的突发上行信号之间需要保护时间。保护时间用于调节BM-TIA的增益。因此,在保护时间内OLT无法接收ONU发送的上行信号,降低了上行带宽效率。本申请在光网络终端侧调整光发射功率,因此可以降低甚至消除保护时间。
应理解,上述示例只是为了描述如何降低对BM-TIA的动态调节范围的需求(简称对BM-TIA的需求)。在实际应用中,激光装置的调节范围越大,则对BM-TIA的需求越低。特别地,在不同光网络终端的光发射功率相等的情况下,若激光装置的调节范围大于损耗差值(例如上述的25dB到15dB),则可以将对BM-TIA的需求降为0dB。
应理解,激光装置在PON系统中的应用只是一个示例。在实际应用中,若需要调节光网络终端的光发射功率,则可以采用本申请提供的激光装置。
下面对本申请中的激光装置进行描述。图2为本申请中提供的激光装置的一个结构示意图。如图2所示,激光装置可以是集成光芯片,集成光芯片从下往上包括负极层,衬底层,下限制层,有源层和上限制层。在上限制层之上还设置有脊波导和正极层。激光装置从右往左包括激光器区、电隔离区和功率调节区(也称功率调谐区)。激光器区的一端和电隔离区的一端在平面202出重合,电隔离区的另一端和功率调节区的一端在平面201处重合。其中,电隔离区不包括正极层,从而将第一正极和第二正极隔离。
平面202和平面201将负极层划分为三部分,即第一负极层,第二负极层和第三负极层。第一负极层在平面202右端,第二负极层在平面202左端,第三负极层在平面202和平面201之间。类似地,平面202和平面201将衬底层、下限制层、有源层和上限制层划分为三部分。因此,激光器区包括第一负极层、第一衬底层、第一下限制层、第一有源层和第一上限制层。功率调节区包括第二负极层、第二衬底层、第二下限制层、第二有源层和第二上限制层。电隔离区包括第三负极层、第三衬底层、第三下限制层、第三有源层和第三上限制层。
激光器区包括第一下限制层、第一有源层和第一上限制层。通过在激光器区上施加激光偏置电压,有源层中被注入载流子,建立第一有源层内载流子的反转分布,即粒子数反转。并且,为获得受激辐射,必须使受激辐射在谐振腔内得到多次反馈而形成激光振荡,腔面或光栅能起到光反馈作用,形成激光振荡。在本申请实施例中,目标光信号从激光器区的左端面(平面202)输出。
目标光信号可以是连续激光或经过内调制得到的信号光。一般地,激光偏置电压施加在第一正极,第一负极层接地。通过确定第一正极连接的激光偏置电压,便可以确定目标光信号是连续激光还是经过调制的信号光。图3为本申请中提供的激光装置的俯视图。如图3所示,第一正极施加的激光偏置电压可以包括直流偏置信号和交流调制信号。当第一正极施加的激光偏置电压包括直流偏置信号,但不包括交流调制信号时,目标光信号是连续激光;当第一正极施加的激光偏置电压同时包括直流偏置信号和交流调制信号时,目标光信号是经过调制的信号光。
应理解,通过在第一正极施加激光偏置电压,则会在第一正极和负极层之间形成激光偏置电流。因此,施加激光偏置电压也可以理解成施加激光偏置电流。相反的,施加激光偏置电流则必须施加激光偏置电压。因此,在本申请的描述中,激光偏置电压和激光偏置电流等同。类似地,在后续的描述中,正向偏置电压和正向偏置电流等同,反向偏置电压和反向偏置电流等同。
电隔离区包括第三有源层和脊波导。第三有源层将激光器区的第一有源层产生的目标光信号引入功率调节区的第二有源层。电隔离区不包括正极层。并且,当在脊波导和正电极层之间还包括接触层时,电隔离区不包括接触层。具体地,可以在功率调节区、电隔离区和激光器区统一外延生长接触层后,刻蚀掉电隔离区的接触层。
功率调节区包括第二正极和第二负极层。可以通过第二正极和第二负极层向功率调节区施加正向偏置电压。例如,如图3所示,第二正极与单刀双掷开关SPDT 301相连,第二 负极接地。正向偏置电压可以使得功率调节区的第二有源层通过受激辐射增益目标光信号。具体地,当功率调谐区被施加正向偏置电压时,第二有源层被注入电子,形成粒子数反转,受到目标光信号的激励时,第二有源区产生受激辐射,辐射出与目标光信号同频率、同相位的光信号,对目标光信号形成增益,增益的大小可以通过偏置电压的大小来进行调节。因此,第二有源区可以对目标光信号形成增益,且增益值得大小可以根据需要调节。反之,也可以通过第二正极和第二负极层向功率调节区施加反向偏置电压。反向偏置电压可以使得功率调节区的第二有源层通过受激吸收衰减目标光信号,衰减值的大小也可以通过反向偏置电压的大小来进行调节。
在其他实施例中,功率调节区的输出端面(图2中为第二有源层的左端面)镀有减反射膜。增益或衰减后的目标光信号在第二有源层的左端面输出,通过增加减反射膜,有利于降低目标光信号的反射损耗。
如图2所示,生产激光器区的工艺流程包括:在第一衬底层上外延生长第一下限制层,在第一下限制层上外延生长第一有源层,在第一有源层上外延生长第一上限制层,在第一上限制层上外延p型盖层和接触层,将P型盖层和接触层制作成脊波导,最后增加第一负极层和第一正极。
在其他实施例中,第一衬底、第二衬底和第三衬底的材质相同,且属于同一衬底层;第一下限制层、第二下限制层和第三下限制层的材质相同,且属于同一限制层;第一上限制层、第二上限制层和第三上限制层的材质相同,且属于同一限制层;第一有源区、第二有源区和第三有源区的材质相同,且属于同一有源层。当满足上述条件时,在生产集成光芯片的工艺流程中,可以通过一次外延生长完成第一下限制层、第二下限制层、第三下限制层和第一有源区、第二有源区、第三有源区和第一上限制层、第二上限制层和第三上限制层。在激光器区完成光栅制作之后,通过第二次外延完成P型盖层和接触层的生长。因此,本申请实施例仅需二次外延可以完成集成光芯片制作,从而降低加工成本。
应理解,图2中的集成光芯片只是一个示例。在实际应用中,集成光芯片可以是更为复杂的结构。例如,集成光芯片从下往上包括负极层,磷化铟InP衬底,InP缓冲层,下限制层,有源层,上限制层,P型内盖层,刻蚀停止层,P型盖层,P型接触层,脊波导,绝缘层和正极层。具体加工流程如下。首先,在InP衬底上依次外延生长InP缓冲层、下限制层、有源层(有源层可以是多量子阱结构,也可以是体材料结构)和上限制层。然后,在上限制层上外延生长P型内盖层,刻蚀停止层,P型盖层和P型接触层。在完成P型接触层的外延生长完后,在P型接触层上制作脊波导。之后,刻蚀掉电隔离区的P型接触层,防止激光器区和功率调节区之间的电流串扰。在电隔离区制作完成之后,在脊波导和P型接触层上生长绝缘层,并在脊波导上打开电流注入窗口。最后,制作正极层,并在减薄的衬底上制作负极层。
在其他实施例中,激光器区为DFB激光器区或DBR激光器区,激光器区还包括光栅。光栅用于波长选择,光栅可以处于上限制层,也可以是单独的光栅层。其中,功率调节区不包括光栅。
应理解,功率调节区、电隔离区和激光器区可以集成在一个集成光芯片上(例如图2),也可以是独立的器件。例如,在图2中,电隔离区不包括脊波导、第三上限制层、第三有 源层、第三下限制层、第三衬底层和第三电极层。电隔离区包括光耦合器件1、波导和光耦合器件2。其中,光耦合器件1用于将第一有源区产生的目标光信号引入波导,光耦合器件2用于将波导中的目标光信号引入第二有源区。在激光器区的左端面(平面202)镀有减反射膜。通过将功率调节区和激光器区做成独立的器件,可以使得设计上更为灵活。例如,通过改变电隔离区中的波导的形状,可以改变功率调节区和激光器区的相对位置。
根据上面的描述可知,功率调节区包括第二正极很第二负极层,下面对功率调节区如何施加偏置电压进行描述。
图4为本申请中提供的激光装置的另一个结构示意图。如图4所示,激光装置401包括功率调节区402,单刀双掷开关404(也称第一单刀双掷开关)和单刀双掷开关403(也称第二单刀双掷开关)。功率调节区502的第二负极层(也称第二负极)和单刀双掷开关404的公共端相连,第二正极和单刀双掷开关403的公共端相连。单刀双掷开关404的3端口(也称第一端)连接第一正电压端,单刀双掷开关404的4端口(也称第二端)接地。单刀双掷开关403的1端口(也称第三端)连接第二正电压端,单刀双掷开关403的2端口(也称第四端)接地。当3端口和第一公共端相连,2端口和第二公共端相连时,功率调节区402被施加反向偏置电压;当4端口和第一公共端相连,1端口和第二公共端相连时,功率调节区402被施加正向偏置电压。
图5为本申请中提供的激光装置的另一个结构示意图。如图5所示,激光装置501包括功率调节区502,单刀双掷开关503(也称第一单刀双掷开关)。功率调节区502的第二负极层(也称第二负极)接地。功率调节区502的第二正极和单刀双掷开关503的公共端相连。单刀双掷开关503的1端口(也称第一端)连接正电压端,单刀双掷开关503的2端口(也称第二端)连接负电压端。当1端口与公共端相连时,功率调节区502被施加正向偏置电压;当2端口与公共端相连时,功率调节区502被施加反向偏置电压。
除了单刀双掷开关,激光装置还可以包括控制器和驱动器。下面在图5的基础上,对此进行说明。图6为本申请中提供的激光装置的另一个结构示意图。如图6所示,激光装置601包括功率调节区602、单刀双掷开关603、控制器605和驱动器604。功率调节区602的第二负极层接地。功率调节区502的第二正极和单刀双掷开关603的公共端相连。单刀双掷开关603的1端口和驱动器604的正电压端相连,单刀双掷开关603的2端口和驱动器604的负电压端相连。单刀双掷开关603的端口5(也称控制端)和控制器605相连。控制器605用于控制单刀双掷开关603的公共端和1端口或2端口相连。控制器605和驱动器604相连。控制器用于控制驱动器的输出电压,使得驱动器的正电压端和/或负电压端提供不同大小的电压。具体地,控制器可以是处理器,例如介质访问控制(Media Access Control,MAC)芯片。
上面对激光装置进行了描述。上述激光装置可以应用于PON系统中的光网络终端。具体地,光网络终端可以通过激光装置调节光发射功率。下面对本申请中的光网络终端的功率调节方法进行描述。根据上面的描述可知,激光装置可以是光网络终端,或光网络终端中的光模块,或光模块中的集成光芯片。下面以激光装置为ONU为例,对本申请提供的技术方案进行描述。图7为本申请中提供的光网络终端的功率调节方法的流程示意图。如图7所示,该方法包括如下步骤。
在步骤701中,第一ONU获取第一调节值。
根据前面对激光装置的描述可知,激光装置可以增益或衰减目标光信号,即激光装置的功率调节区存在增益范围和衰减范围。第一ONU的调节范围包括该增益范围和衰减范围。第一调节值用于第一ONU确定增益值或调节值。第一调节值可以是第一功率差值或第一损耗差值。下面分别对这两种获取第一调节值的方式进行描述。
若第一调节值是第一损耗差值,第一损耗差值是第一损耗和目标损耗的差值。其中,第一损耗为第一ONU到OLT的链路损耗。目标损耗可以是OLT定义的一个损耗值,也可以是与OLT相连的其它ONU的损耗。例如目标损耗是第二损耗,第二损耗为第二ONU到OLT的链路损耗。图8为本申请中提供的获取第一调节值的一个流程示意图。如图8所示,第一ONU获取第一调节值包括如下步骤。
在步骤801中,OLT向第一ONU和第二ONU发送测量光信号。
如前述针对PON系统的描述可知,分光/合路器能将测量光信号(简称光信号)分束至不同的ONU,例如第一ONU和第二ONU。当测量光信号中携带的MAC地址为第一ONU的MAC地址时,第二ONU在收到测量光信号后会将其丢弃。但是,测量光信号用于测量第二ONU的光接收功率,丢弃并不会影响第二ONU获取第二光接收功率。因此,本申请对测量光信号中携带的内容不限定。例如MAC地址,IP地址,携带的数据等。OLT可以通过发送一次测量光信号,实现同时向第一ONU和第二ONU发送测量光信号。OLT也可以通过发送二次测量光信号,分别向第一ONU和第二ONU发送测量光信号。OLT会记录测量光信号的光发送功率。
在步骤802中,第一ONU获取测量光信号的第一光接收功率。
在步骤803中,第二ONU获取测量光信号的第二光接收功率。
在步骤804中,第一ONU向OLT发送第一光接收功率。
在步骤805中,第二ONU向OLT发送第二光接收功率。
在步骤806中,OLT根据第一光接收功率和第二光接收功率获取第一损耗差值。
在前述步骤801中,OLT记录了测量光信号的光发送功率。光发送功率和第一光接收功率的差值为第一损耗,光发送功率和第二光接收功率的差值为第二损耗。第二损耗和第一损耗的差值为第一损耗差值,第二损耗大于第一损耗。
在其他实施例中,第二损耗为所有损耗中的最大值。所有损耗包括各个ONU与OLT的链路损耗。例如包括第一损耗和第二损耗。当OLT与多个ONU相连时,OLT会在步骤801中向多个ONU发送测量光信号。在接收到多个ONU发送的多个光接收功率后,OLT根据多个光接收功率计算多个损耗,确定数值最大的损耗为目标损耗,例如第二损耗。其中,多个ONU和多个损耗一一对应。在确定目标损耗后,OLT分别计算多个损耗中剩余的损耗与目标损耗的差值,并将差值发送给相对应的ONU。例如将第一损耗差值发送给第一ONU。特别地,由于第二损耗为目标损耗,即OLT将第二损耗作为基准。因此,第二损耗差值为0。OLT可以无需向第二ONU发送第二损耗差值。
在步骤807中,OLT向第一ONU发送第一调节值。第一调节值为第一损耗差值。
应理解,上述步骤802至步骤805之间没有严格限定的时序关系。
若第一调节值是第一功率差值,第一功率差值是第一光接收功率和目标接收功率的差 值。其中,第一光接收功率为OLT从第一ONU接收的光信号的光接收功率。目标接收功率可以是OLT定义的一个接收功率,也可以是OLT从其他ONU接收的光信号的光接收功率。例如光接收功率是第二光接收功率,第二光接收功率为OLT从第二ONU接收的光信号的光接收功率。图9为本申请中提供的获取第一调节值的另一个流程示意图。如图9所示,第一ONU获取第一调节值的另一方法包括如下步骤。
在步骤901中,第一ONU向OLT发送第一光信号。
由于第一光信号中携带的内容并不会影响第一ONU获取第一光信号的第一光接收功率,本申请对第一光信号中携带的内容不限定。
在步骤902中,OLT获取第一光接收功率。第一光接收功率为第一光信号的光接收功率。
在步骤903中,第二ONU向OLT发送第二光信号。
如前述对PON系统的描述可知,来自各个ONU的光信号分时的通过分光/合路器耦合到同一根光纤,传输到OLT。因此,为了使得OLT能准确获取第一光信号的光接收功率,第一光信号和第二光信号在时域上错开,从而避免互相干扰。
在其他实施例中,第一ONU中的功率调节区对第一光信号进行最大的增益,第二ONU中的功率调节区对第二光信号进行最大的增益。例如,功率调谐区通过施加正向偏置电压对目标光信号的增益范围为0至N分贝,功率调谐区通过施加反向偏置电压对目标光信号的衰减范围为0至﹣M分贝。若激光器区产生的目标光信号的功率为X dBm,则第一光信号和第二光信号的光发送功率等于X+N dBm,X为正数。
在步骤904中,OLT获取第二光接收功率。第二光接收功率为第二光信号的光接收功率。
在步骤905中,OLT根据第一光接收功率和第二光接收功率获取第一功率差值。第一功率差值为第一光接收功率和第二光接收功率的差值,第一光接收功率大于第二光接收功率。
在其他实施例中,第二光接收功率为所有光接收功率中的最小值。所有光接收功率包括各个ONU与OLT的链路损耗。例如包括第一光接收功率和第二光接收功率。当OLT与多个ONU相连时,OLT会接收多个ONU发送多个光信号。在接收到多个ONU发送的多个光信号后,OLT获取多个光信号的多个光接收功率,确定多个光接收功率中数值最大的光接收功率为目标光接收功率,例如第二光接收功率。其中,多个ONU和多个光接收功率一一对应。在确定目标光接收功率后,OLT分别计算多个光接收功率中剩余的光接收功率与目标光接收功率的差值,并将差值发送给相对应的ONU。例如将第一功率差值发送给第一ONU。特别地,由于第二光接收功率为目标光接收功率,即OLT将第二光接收功率作为基准。因此,第二功率差值为0。OLT可以无需向第二ONU发送第二功率差值。
在步骤906中,OLT向第一ONU发送第一调节值。第一调节值为第一功率差值。
应理解,上述步骤901-904之间没有严格限定的时序关系。
上面采用2种方式获取了第一调节值,在实际应用中,可以选择一种方式获取第一调节值。下面对第一ONU根据第一调节值进行功率调节的内容进行描述。
在步骤702中,第一ONU根据第一调节值增益或衰减目标光信号。
第一ONU包括激光器区和功率调节区。第一ONU在激光器区施加激光偏置电压产生目标光信号,目标光信号被引入与激光器区光耦合的功率调谐区。根据第一调节值,第一ONU在功率调谐区施加正向偏置电压增益目标光信号,或根据第一调节值,第一ONU在功率调谐区施加反向偏置电压衰减目标光信号。关于激光器区和功率调节区的描述,可以参考前述图2~图6对激光装置的描述。并且,上述对激光装置中的描述可以相应的应用到光网络终端的功率调节方法中。例如,第一ONU中的激光器区和功率调节区之间设置有电隔离区,激光器区的第一有源层和功率调节区的第二有源层的材质相同,并且处于同一有源层等。
根据上述第一调节值的描述可知,不管第一调节值是第一损耗差值还是第一功率差值,第一调节值的单位是功率单位,例如dB,dBm或mW等。而在图2中,功率调节区通过施加偏置电压对目标光信号进行增益。因此,需要将第一调节值转换为偏置电压。并且,第一ONU的初始状态也会影响第一调节值和偏置电压的转换。第一ONU的初始状态包括满增益,无调节和满衰减。其中,满增益是指第一ONU对已经光信号进行最大增益。无调节是指第一ONU未对光信号进行增益或衰减。满衰减是指第一ONU对已经光信号进行最大衰减。为了方便描述,限定第一ONU的功率调谐区通过施加正向偏置电压对目标光信号的增益范围为0至N分贝,功率调谐区通过施加反向偏置电压对目标光信号的衰减范围为0至﹣M分贝。Z为第一调节值。
下面以第一调节值是第一功率差值为例进行描述。第一功率差值为第一光接收功率和第二光接收功率的差值。
当第一ONU的初始状态为无调节时,若第一调节值为正值,说明需要降低光信号的光发送功率,则第一ONU衰减目标光信号。具体地,第一ONU通过反向映射关系将第一调节值转换为反向偏置电压,将反向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行衰减。此时,第一ONU的衰减值为Z分贝。若第一调节值为负值,说明需要增加光信号的光发送功率,则第一ONU增益目标光信号。具体地,第一ONU通过正向映射关系将第一调节值转换为正向偏置电压,将正向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行增益。此时,第一ONU的增益值为Z分贝。若第一调节值为0,说明不需要改变光信号的光发送功率,第一ONU仍旧保持无调节的状态。
当第一ONU的初始状态为满增益时,若第一调节值为正值,且小于或等于N,则第一ONU需要减少对光信号的增益。具体地,第一ONU获取N-Z(N减Z)。第一ONU通过正向映射关系将N-Z转换为正向偏置电压,将正向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行增益。此时,第一ONU的增益值为N-Z分贝。若第一调节值大于N,且小于或等于N+M,则第一ONU需要对光信号的满增益变为对光信号的衰减。具体地,第一ONU获取Z-N。第一ONU通过反向映射关系将Z-N转换为反向偏置电压,将反向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行衰减。此时,第一ONU的衰减值为N-Z分贝。若第一调节值等于N,则第一ONU需要对光信号的满增益变为对光信号的无调节。此时,第一ONU的增益值或衰减值为0分贝。若第一调节值为负值,说明需要增加光信号的光发送功率,则第一ONU已经是满增益的状态,因此无法加大正向偏置电压来提升增益。因此,在第一ONU处于满增益的状态时,在图9的实施例中,限定第 一光接收功率大于第二光接收功率,或限定目标光接收功率为多个光接收功率中的最小值是有意义的。反之,若第二光接收功率大于第一光接收功率,则第一调节值为负值。第一ONU无法再提高增益,即OLT无法通过第一ONU来平衡OLT对第一ONU和第二ONU的光接收功率。
在其他实施例中,若第一调节值大于N+M,则第一ONU需要在对光信号的满增益变为对光信号的满衰减的基础上,继续衰减光信号。应理解,上述的满增益和满衰减是针对功率调节区的调节能力而言。除了功率调节区,激光器区也可以调节目标光信号的功率。具体地,通过降低激光偏置电压,衰减目标光信号。
当第一ONU的初始状态为满衰减时,请参考前述初始状态为满增益的描述。
上面对第一ONU的三种初始状态进行了描述,当第一ONU的初始状态是满增益时,第一ONU会采用最大增益发送第一光信号。若激光器区产生的目标光信号的功率为X分贝毫瓦,则第一光信号光发送功率等于X+N分贝毫瓦。因此,可以保证第一光信号的光接收功率最大,从而可以有效降低第一光信号因为功率太低未被OLT接收的概率。
在步骤703中,第一ONU获取第二调节值。
在第一ONU增益或衰减目标光信号后,由于存在误差,多个ONU的光信号到达OLT的光接收功率不一定相等。误差主要来源于两个方面。一方面是正向映射关系或反向映射关系的误差。例如,当第一调节值为5dB,功率调节区施加的正向偏置电压为3V时提供的增益为5dB。但是,在根据第一调节值5dB和正向映射关系得到的正向偏置电压为2.9V,2.9V的正向偏置电压的增益为4.6dB。因此,可以理解为映射关系的误差。另一方面是损耗的波动误差。即在光信号的传输过程中,损耗可能会发生变化。因此,即使在第一ONU增益或衰减目标光信号后,再次测量时,多个ONU的光信号到达OLT的光接收功率不一定相等。
因此,在第一ONU根据第一调节值增益或衰减目标光信号后,第一ONU获取第二调节值。第一ONU获取第二调节值的方式与上述第一ONU获取第一调节值的方式类似,可以参考前述的说明。
在其他实施例中,第一调节值为功率差值,第二调节值为损耗差值。即获取第一调节值采用图9对应的方式,获取第二调节值采用图8对应的方式。此时,步骤906中发送的第一调节值可以携带在测量光信号中,从而减少ONU和OLT的交互流程。
在步骤704中,第一ONU根据第二调节值调整第一调节值对目标光信号的增益值或衰减值。
在第二调节值的绝对值大于第一阈值的情况下,第一ONU根据第二调节值调整第一调节值对目标光信号的增益值或衰减值。下面以步骤702中第一ONU的初始状态是满增益为例。若第一调节值大于N,且小于或等于N+M,则第一ONU的衰减值为N-Z分贝。
假设第二调节值为Y。若Y为正值,且小于N-Z,则第一ONU需要减小对光信号的增益。第一ONU获取N-Z-Y,第一ONU通过正向映射关系将N-Z-Y转换为正向偏置电压,将正向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行增益。此时,第一ONU的增益值为N-Z-Y分贝。若Y大于N-Z,且小于N-Z+M,则第一ONU对光信号的增益变为对光信号的衰减。第一ONU获取Y-(N-Z),第一ONU通过反向映射关 系将Y-(N-Z)转换为反向偏置电压,将反向偏置电压施加在功率调节区,对激光器区产生的目标光信号进行衰减。此时,第一ONU的衰减值为Y-(N-Z)分贝。
上面对本申请中的光网络终端的功率调节方法进行了描述。在上述方法中,提到了正向映射关系和反向映射关系。下面提供一个正向映射关系和反向映射关系的示例。
图10为本申请中提供的正向映射关系的示意图。如图10所示,横标表为正向偏置电流,纵坐标为经过增益后的目标光信号的功率。图10中存在2个正向映射关系。正向映射关系1001的激光器区的偏置电流为80mA,正向映射关系1002的激光器区的偏置电流为60mA。以正向映射关系1001为例,通过增大正向偏置电流,第一ONU对第一ONU的增益也越大。
图11为本申请中提供的反向映射关系的示意图。如图11所示,横标表为正向偏置电压,纵坐标为经过增益后的目标光信号的功率。图11中存在2个反向映射关系。反向映射关系1101的激光器区的偏置电流为80mA,反向映射关系1102的激光器区的偏置电流为60mA。以反向映射关系1101为例,通过增大正向偏置电流,第一ONU对第一ONU的增益也越大。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (23)

  1. 一种激光装置,其特征在于,包括:激光器区、电隔离区和功率调节区,其中:
    所述激光器区包括第一有源层,当所述激光器区被施加激光偏置电压时,所述第一有源层产生目标光信号,所述目标光信号被引入与所述激光器区光耦合的所述功率调节区;
    所述电隔离区设置在所述激光器区和所述功率调节区之间;
    所述功率调节区包括第二有源层;
    当所述功率调节区被施加正向偏置电压时,所述第二有源层增益所述目标光信号,和/或,当所述功率调节区被施加反向偏置电压时,所述第二有源层衰减所述目标光信号。
  2. 根据权利要求1所述的装置,其特征在于,所述电隔离区包括第三有源层;
    其中,所述第三有源层与所述第一有源层、所述第二有源层光耦合。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置包括集成光芯片,所述集成光芯片包括所述激光器区,所述电隔离区和所述功率调节区;
    其中,所述功率调节区的一端和所述电隔离区的一端重合,所述电隔离区的另一端和所述激光器区的一端重合。
  4. 根据权利要求3所述的装置,其特征在于,所述激光器区还包括第一衬底、第一下限制层和第一上限制层,所述功率调节区还包括第二衬底、第二下限制层和第二上限制层,所述电隔离区还包括第三上限制层、第三下限制层和第三衬底;
    所述集成光芯片满足以下任意一项或多项条件:
    所述第一衬底、所述第二衬底和所述第三衬底的材质相同,且属于同一衬底层;
    所述第一下限制层、所述第二下限制层和所述第三下限制层的材质相同,且属于同一限制层;
    所述第一上限制层、所述第二上限制层和所述第三上限制层的材质相同,且属于同一限制层;
    所述第一有源区、所述第二有源区和所述第三有源区的材质相同,且属于同一有源层。
  5. 根据权利要求1至4任意一项所述的装置,其特征在于,所述激光器区为分布反馈式DFB激光器区或分布布拉格反射式DBR激光器区,所述激光器区还包括光栅;
    其中,所述功率调节区不包括光栅。
  6. 根据权利要求1至5任意一项所述的装置,其特征在于,所述激光器区还包括第一正极和第一负极,所述功率调节区还包括第二正极和第二负极;
    其中,所述第一正极和所述第二正极被所述电隔离区隔离,所述第一负极和所述第二负极属于同一电极层。
  7. 根据权利要求1至5所述的装置,其特征在于,所述功率调节区还包括第二正极和第二负极,所述装置还包括第一单刀双掷开关;
    所述第二负极接地,所述第二正极和所述第一单刀双掷开关的公共端相连,所述第一单刀双掷开关的第一端连接第一正电压端,所述第一单刀双掷开关的第二端连接负电压端;
    当所述第一端与所述公共端相连时,所述功率调节区被施加正向偏置电压;
    当所述第二端与所述公共端相连时,所述功率调节区被施加反向偏置电压。
  8. 根据权利要求1至5任意一项所述的装置,其特征在于,所述功率调节区还包括第 二正极和第二负极,所述装置还包括第一单刀双掷开关和第二单刀双掷开关;
    所述第二负极和所述第一单刀双掷开关的第一公共端相连,所述第二正极和所述第二单刀双掷开关的第二公共端相连,所述第一单刀双掷开关的第一端连接第一正电压端,所述第一单刀双掷开关的第二端接地,所述第二单刀双掷开关的第三端连接第二正电压端,所述第二单刀双掷开关的第四端接地;
    当所述第一端和所述第一公共端相连,所述第四端和所述第二公共端相连时,所述功率调节区被施加反向偏置电压;
    当所述第二端和所述第一公共端相连,所述第三端和所述第二公共端相连时,所述功率调节区被施加正向偏置电压。
  9. 根据权利要求7或8所述的装置,其特征在于,所述第一单刀双掷开关和/或所述第二单刀双掷开关还包括控制端,所述装置还包括控制器;
    其中,所述控制器与所述控制端相连。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括驱动器,所述第一正电压端与所述驱动器相连;
    其中,所述控制器与所述驱动器相连。
  11. 一种光网络终端的功率调节方法,其特征在于,包括:
    第一光网络终端获取第一调节值,所述第一光网络终端包括激光器区和功率调节区;
    所述第一光网络终端在所述激光器区施加激光偏置电压产生目标光信号,所述目标光信号被引入与所述激光器区光耦合的所述功率调谐区;
    根据所述第一调节值,所述第一光网络终端在所述功率调谐区施加正向偏置电压增益所述目标光信号,或
    根据所述第一调节值,所述第一光网络终端在所述功率调谐区施加反向偏置电压衰减所述目标光信号。
  12. 根据权利要求11所述的方法,其特征在于,所述功率调谐区通过施加所述正向偏置电压对所述目标光信号的增益范围为0至N分贝,所述功率调谐区通过施加所述反向偏置电压对所述目标光信号的衰减范围为0至﹣M分贝,N和M为正数。
  13. 根据权利要求12所述的方法,其特征在于,所述第一调节值为第一损耗差值,所述第一损耗差值为第二损耗和第一损耗的差值,所述第一损耗为所述第一光网络终端和光线路终端OLT的链路损耗,所述第二损耗为第二光网络终端与所述OLT的链路损耗;
    所述方法还包括:
    所述第一光网络终端获取来自所述OLT的光信号的第一光接收功率;
    所述第一光网络终端向所述OLT发送所述第一光接收功率,所述光信号的光发送功率和所述第一光接收功率的差值为所述第一损耗。
  14. 根据权利要求12所述的方法,其特征在于,所述第一调节值为第一功率差值,所述第一功率差值为第一光接收功率和第二光接收功率的差值,所述第一光接收功率为OLT从所述第一光网络终端接收的第一光信号的光接收功率,所述第二光接收功率为所述OLT从第二光网络终端接收的第二光信号的光接收功率。
  15. 根据权利要求14所述的方法,其特征在于,所述目标光信号的功率为X分贝毫瓦, 所述方法还包括:
    所述第一光网络终端在所述功率调谐区施加正向偏置电压增益所述第一光信号,增益后的所述第一光信号的光发送功率等于X+N分贝毫瓦,X为正数。
  16. 根据权利要求13至15任意一项所述的方法,其特征在于,所述根据所述第一调节值,所述第一光网络终端在所述功率调谐区施加正向偏置电压增益所述激光包括:
    若所述第一调节值小于或等于所述N,则所述第一光网络终端通过所述功率调谐区对所述目标光信号的增益值为N-Z分贝,其中,Z为所述第一调节值;
    所述根据所述第一调节值,所述第一光网络终端在所述功率调谐区施加反向偏置电压衰减所述激光包括:
    若所述第一调节值大于所述N,且小于或等于N+M,则所述第一光网络终端通过所述功率调谐区对所述目标光信号的衰减值为Z-N分贝。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    若所述第一调节值大于所述N+M,则所述第一光网络终端减小所述激光偏置电压,以减小所述目标光信号的功率。
  18. 根据权利要求12至17任意一项所述的方法,其特征在于,所述N和所述M的和大于或等于15。
  19. 根据权利要求12至18任意一项所述的方法,其特征在于,在所述第一光网络终端根据所述第一调节值增益或衰减所述目标光信号后,所述方法还包括:
    所述第一光网络终端获取第二调节值;
    若所述第二调节值的绝对值大于第一阈值,则所述第一光网络终端根据所述第二调节值调整所述第一调节值对所述目标光信号的增益值或衰减值。
  20. 根据权利要求12至19任意一项所述的方法,其特征在于,所述激光偏置电压为调制电信号。
  21. 根据权利要求11至20任意一项所述的方法,其特征在于,所述功率调谐区的负极接地,所述功率调谐区的正极和单刀双掷开关的公共端相连,所述单刀双掷开关的第一端连接正电压端,所述单刀双掷开关的第二端连接负电压端;
    所述第一光网络终端在所述功率调谐区施加正向偏置电压增益所述目标光信号包括:
    所述第一光网络终端连通所述第一端和所述公共端来施加所述正向偏置电压,以增益所述目标光信号;
    所述第一光网络终端在所述功率调谐区施加反向偏置电压衰减所述目标光信号包括:
    所述第一光网络终端连通所述第二端和所述公共端来施加所述反向偏置电压,以衰减所述目标光信号。
  22. 根据权利要求11至20任意一项所述的方法,其特征在于,所述功率调谐区的负极和第一单刀双掷开关的第一公共端相连,所述功率调谐区的正极和第二单刀双掷开关的第二公共端相连,所述第一单刀双掷开关的第一端连接第一正电压端,所述第一单刀双掷开关的第二端接地,所述第二单刀双掷开关的第三端连接第二正电压端,所述第一单刀双掷开关的第四端接地;
    所述第一光网络终端在所述功率调谐区施加正向偏置电压增益所述目标光信号包括:
    所述第一光网络终端连通所述第二端和所述第一公共端,所述第三端和所述第二公共端来施加所述正向偏置电压,以增益所述目标光信号;
    所述第一光网络终端在所述功率调谐区施加反向偏置电压衰减所述目标光信号包括:
    所述第一光网络终端连通所述第一端和所述第一公共端,所述第四端和所述第二公共端来施加所述反向偏置电压,以衰减所述目标光信号。
  23. 根据权利要求11至22任意一项所述的方法,其特征在于,所述激光器区为分布反馈式DFB激光器区或分布布拉格反射式DBR激光器区。
PCT/CN2022/074877 2021-02-02 2022-01-29 激光装置、光网络终端的功率调节方法 WO2022166861A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22749140.4A EP4277050A1 (en) 2021-02-02 2022-01-29 Laser apparatus and power adjustment method for optical network terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110143338.2A CN114843880A (zh) 2021-02-02 2021-02-02 激光装置、光网络终端的功率调节方法
CN202110143338.2 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022166861A1 true WO2022166861A1 (zh) 2022-08-11

Family

ID=82560941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074877 WO2022166861A1 (zh) 2021-02-02 2022-01-29 激光装置、光网络终端的功率调节方法

Country Status (3)

Country Link
EP (1) EP4277050A1 (zh)
CN (1) CN114843880A (zh)
WO (1) WO2022166861A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072002A1 (en) * 2012-09-12 2014-03-13 Innovative Photonics Solutions Method and System for Operating Semiconductor Optical Amplifiers
CN106785885A (zh) * 2016-11-21 2017-05-31 华中科技大学 一种多通道干涉激光器与半导体光放大器的集成器件
JP2017103455A (ja) * 2015-11-24 2017-06-08 住友電気工業株式会社 波長可変レーザ装置および波長可変レーザの制御方法
CN107078458A (zh) * 2014-09-15 2017-08-18 昂科公司 制作及操作光学调制器的方法
CN108768514A (zh) * 2017-04-19 2018-11-06 中兴通讯股份有限公司 光分配网络中差分路径损耗的动态均衡
EP3664233A1 (en) * 2018-12-04 2020-06-10 Huawei Technologies Co., Ltd. Optical amplifier with increased dynamic range

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072002A1 (en) * 2012-09-12 2014-03-13 Innovative Photonics Solutions Method and System for Operating Semiconductor Optical Amplifiers
CN107078458A (zh) * 2014-09-15 2017-08-18 昂科公司 制作及操作光学调制器的方法
JP2017103455A (ja) * 2015-11-24 2017-06-08 住友電気工業株式会社 波長可変レーザ装置および波長可変レーザの制御方法
CN106785885A (zh) * 2016-11-21 2017-05-31 华中科技大学 一种多通道干涉激光器与半导体光放大器的集成器件
CN108768514A (zh) * 2017-04-19 2018-11-06 中兴通讯股份有限公司 光分配网络中差分路径损耗的动态均衡
EP3664233A1 (en) * 2018-12-04 2020-06-10 Huawei Technologies Co., Ltd. Optical amplifier with increased dynamic range

Also Published As

Publication number Publication date
CN114843880A (zh) 2022-08-02
EP4277050A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US5576881A (en) Multi-frequency optical signal source having reduced distortion and crosstalk
WO2016066064A1 (zh) 光发射机、波长对准方法及无源光网络系统
WO1997015969A2 (en) Optical transmission link capable of high temperature operation without cooling with an optical receiver module having temperature independent sensitivity performance and optical transmitter module with laser diode source
US20050006654A1 (en) Semiconductor monolithic integrated optical transmitter
US20210194589A1 (en) Optical communication system and optical communication method
WO2017050129A1 (zh) 无源光网络功率均衡的方法、装置、终端、单元及系统
WO2020140286A1 (zh) 半导体激光器、光发射组件、光线路终端及光网络单元
CN103891066A (zh) 自表征可调谐光网络单元
WO2022078254A1 (zh) 一种激光器芯片、注入锁定激光器和网络设备
CN108011671B (zh) 控制包括半导体光放大器的半导体光学装置的方法
US5471335A (en) Semiconductor optical amplifier device and a method of using the same
WO2020093189A1 (zh) 一种抗反射激光器
WO2022166861A1 (zh) 激光装置、光网络终端的功率调节方法
CN111585171A (zh) 一种光信号放大器阵列、光学芯片及其制作方法
WO2020115105A1 (en) Optical amplifier with increased dynamic range
WO2022227577A1 (zh) 一种光信号的获取方法以及相关设备
Buchali et al. Amplifier less 400 Gb/s coherent transmission at short reach
CN201315587Y (zh) 一种单纤三向模块
US20240006859A1 (en) Optical modulation and amplification apparatus, optical module, optical network unit, and optical communication system
WO2024078242A1 (zh) 一种光功率可调光合分器、相关设备以及系统
US11876347B2 (en) Broadband tuning system and method
CN113805363B (zh) 一种突发发送的硅光调制器装置及控制方法
WO2024057358A1 (en) Semiconductor laser and two-channel laser array
EP4207519A1 (en) Laser chip, transmitting optical sub-assembly, optical module, and laser generation device
CN113169516B (zh) 一种具有更大动态范围的光放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022749140

Country of ref document: EP

Effective date: 20230807

NENP Non-entry into the national phase

Ref country code: DE