WO2024077633A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2024077633A1
WO2024077633A1 PCT/CN2022/125520 CN2022125520W WO2024077633A1 WO 2024077633 A1 WO2024077633 A1 WO 2024077633A1 CN 2022125520 W CN2022125520 W CN 2022125520W WO 2024077633 A1 WO2024077633 A1 WO 2024077633A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
along
battery cell
present application
pressure relief
Prior art date
Application number
PCT/CN2022/125520
Other languages
English (en)
French (fr)
Inventor
刘瑞堤
王增忠
吴友鑫
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125520 priority Critical patent/WO2024077633A1/zh
Priority to CN202321954420.4U priority patent/CN220895667U/zh
Publication of WO2024077633A1 publication Critical patent/WO2024077633A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • the battery includes multiple battery cells, each of which is provided with a pressure relief mechanism.
  • a pressure relief mechanism When the pressure or temperature inside the battery cell increases due to a vehicle collision or other reasons, the high-pressure gas inside the battery cell can be discharged to the outside of the battery cell through the pressure relief mechanism.
  • the pressure relief mechanism due to the location of the pressure relief mechanism, it is easy to hit the pressure relief mechanism when the vehicle collides, causing damage to the pressure relief mechanism, thus affecting the normal operation of the battery and posing a safety hazard.
  • the purpose of the present application is to provide a battery and an electrical device, which can effectively solve the problem of damage to the pressure relief mechanism when a vehicle collides.
  • the first aspect of the present application discloses a battery, comprising:
  • a battery assembly the battery assembly includes at least one battery cell, and the battery assembly is arranged along a first direction, the first direction being the length direction of the battery or the running direction of an electric device having the battery;
  • the battery cell includes multiple surfaces, including a first surface with the largest area; the multiple surfaces also include two second surfaces arranged opposite to each other, and the two second surfaces are respectively connected to the first surface; the battery cell also includes a pressure relief mechanism, which is arranged on the first surface or one of the second surfaces.
  • the pressure relief mechanism when the pressure relief mechanism is arranged on the second surface, the pressure relief mechanism can be arranged in the vertical direction or along the walking direction of the electrical equipment, so that when the electrical equipment collides in the lateral direction along the walking direction, the pressure relief mechanism will not be hit, thereby avoiding damage to the pressure relief mechanism and ensuring the normal use of the pressure relief mechanism.
  • the pressure relief mechanism When the pressure relief mechanism is arranged on the first surface, since the first surface is the surface with the largest area, the pressure relief mechanism occupies a small area on the first surface, and when the electrical equipment collides, it is not easy to hit the pressure relief mechanism, thereby avoiding damage to the pressure relief mechanism and ensuring the normal use of the pressure relief mechanism.
  • the two second surfaces are arranged relative to each other along a second direction; the second direction intersects with the first direction.
  • the second direction can be a vertical direction, so that the two second surfaces are arranged relative to each other along the vertical direction, that is, the pressure relief mechanism is arranged along the vertical direction, so that when the electrical equipment collides in the lateral direction of the walking direction, the pressure relief mechanism will not be hit.
  • the two second surfaces are arranged opposite to each other along the first direction.
  • the two second surfaces are arranged opposite to each other along the first direction, that is, the pressure relief mechanism is arranged along the walking direction of the electric device, so that when the electric device collides in the lateral direction along the walking direction, the pressure relief mechanism will not be hit.
  • the first surface intersects with the horizontal plane.
  • the first surface is the surface with the largest area of the battery cell. Intersecting the first surface with the horizontal plane can maximize the number of battery cells arranged in the horizontal plane, thereby improving the overall energy density of the battery.
  • the second direction intersects or is parallel to the horizontal plane. That is, the second direction may be substantially vertical or along the horizontal direction.
  • the corresponding second surface may be arranged substantially along the horizontal direction or along the vertical direction.
  • a heat conductor is further included, and the heat conductor is arranged along the first direction; the battery cell is thermally connected to the heat conductor at least through the first surface.
  • the heat conductor is arranged along the first direction, and heat can be exchanged with any battery cell in the battery assembly through the heat conductor.
  • the battery cell is thermally connected to the heat conductor through the first surface, which can maximize the contact area between the heat conductor and the battery cell, thereby ensuring the heat exchange effect of the heat conductor on the battery cell.
  • At least two battery assemblies are included; along the third direction, two sides of the heat conductive member are respectively connected to the two battery assemblies by heat conduction; the third direction intersects both the first direction and the first surface.
  • the two sides of the heat conductive member are respectively connected to the first surface of the battery cell by heat conduction, thereby improving the heat exchange effect of the heat conductive member on the battery cell.
  • the length direction of the battery is parallel to or intersects with the travel direction of the electrical device.
  • the battery in the present application can be arranged in the device along any direction to facilitate the arrangement of the battery.
  • a heat exchange medium channel is provided in the heat conducting member, and the heat exchange medium channel is used to circulate the heat exchange medium, so that the heat emitted by the battery cell is taken away by the flow of the heat exchange medium, or the battery cell is heated, thereby improving the heat exchange efficiency of the battery cell.
  • the battery includes a plurality of heat conductive members, and the plurality of heat conductive members are arranged along a third direction, and the third direction intersects both the first direction and the first surface.
  • the plurality of heat conductive members are arranged along the third direction and are used together to dissipate heat from the battery, thereby effectively improving the heat exchange speed of the battery.
  • heat conducting members are provided on both sides of the battery assembly respectively; the battery assembly is thermally connected to the heat conducting members on both sides. Both sides of the battery assembly are thermally connected to the heat conducting members at the same time, and heat is dissipated simultaneously through both sides of the battery assembly, effectively improving the heat exchange speed of the battery.
  • the battery cell along the third direction, includes two opposite first surfaces, and the two first surfaces of the battery cell are respectively thermally connected to a heat conducting member.
  • the heat exchange speed of the battery is effectively improved by dissipating heat from the two first surfaces at the same time.
  • a battery cell includes an electrode assembly, the electrode assembly includes a main body and a pole ear protruding from the main body, the pole ear is electrically connected to the electrode terminal, along a third direction, the projections of the heat conductive member and the main body at least partially overlap and have an overlapping area, and the third direction intersects both the first direction and the first surface.
  • the size of the main body is L1
  • the size of the heat conductor is L2, wherein 0.5 ⁇ L2/L1 ⁇ 1.5, and the first direction, the second direction, and the third direction intersect each other.
  • the L2/L1 range is set to be greater than 0.5 and less than 1.5 to ensure that the heat conductor has sufficient heat conduction area, thereby performing heat exchange with the main body, greatly enhancing the heat exchange effect of the heat conductor on the main body.
  • the size of the overlap area is L3, 0.5 ⁇ L3/L1 ⁇ 1.
  • the battery further comprises a current collector, the current collector being in fluid communication with the plurality of heat conducting members;
  • the heat conducting member is provided with a current collecting member at one end in the first direction, or the heat conducting member is provided with current collecting members at both ends in the first direction.
  • the current collecting member is used to supply or recover the heat exchange medium in the heat exchange medium channel, so as to exchange heat with the battery.
  • the current collecting member is provided at the end of the heat conducting member in the first direction.
  • the two current collectors are arranged at one end of the heat conductive member in the first direction, and the two current collectors are arranged along the second direction, and the second direction intersects both the first direction and the horizontal plane.
  • the two current collectors are arranged together at one end of the first direction and arranged along the second direction, which can effectively reduce the space occupied by the current collectors in the battery along the first direction, thereby facilitating the arrangement of other structures in the battery and improving the energy density of the battery; the two current collectors are arranged together at one end of the first direction, which can also reduce the probability of damage to the current collectors when facing a collision in the first direction.
  • the battery cell includes an electrode terminal, there is at least one electrode terminal, and the pressure relief mechanism and the at least one electrode terminal are arranged on the same second surface, or the pressure relief mechanism and the electrode terminal are arranged on two second surfaces respectively.
  • the pressure relief mechanism is connected to the interior of the battery cell and is used to discharge the internal pressure of the battery cell when the internal pressure of the battery cell increases.
  • the pressure relief mechanism can be arranged on the same second surface as the electrode terminal, or on two second surfaces respectively, as needed, so that the pressure relief mechanism avoids the first surface that exchanges heat with the heat conductive member, so that the pressure relief mechanism can be discharged smoothly in the event of thermal runaway of the battery cell.
  • the electrode terminal includes two electrode terminals with opposite polarities; the two electrode terminals are arranged on one second surface, or the two electrode terminals are arranged on two second surfaces respectively.
  • the two electrode terminals with opposite polarities are arranged on the same second surface of the battery cell as required, or are arranged on two second surfaces respectively, so as to facilitate the installation of the battery cell.
  • the battery cell includes an electrode terminal, and the electrode terminal is arranged on the first surface.
  • the electrode terminal is arranged on the first surface, and the electric device is powered through the electronic terminal on the first surface.
  • the electrode terminal is arranged on the first surface, which can save the space occupied by the electrode terminal in the second direction of the battery, thereby improving the energy density of the battery.
  • a battery cell includes a first surface and a fourth surface disposed opposite to the first surface, the first surface and the fourth surface are disposed opposite to each other along a third direction, the third direction intersects both the first direction and the first surface; a recess is disposed at the edge of the fourth surface; the first surface is used to dispose an electrode terminal; the electrode terminal is disposed protrudingly on the first surface in the third direction and corresponds to the recess.
  • the electrode terminal is disposed on the first surface, and a recess corresponding to the electrode terminal is disposed at the edge of the fourth surface, so that the electrode terminal of the adjacent battery cell is accommodated by the recess, leaving an operating space for electrical connection, so that the overall structure of the battery is more compact and the space utilization rate is high.
  • the plurality of surfaces further include two third surfaces arranged opposite to each other along the first direction, the first direction, the second direction and the third direction intersect each other, and the electrode terminal includes two electrode terminals with opposite polarities; the two electrode terminals are arranged on one third surface, or the two electrode terminals are arranged on two third surfaces respectively.
  • the two electrode terminals with opposite polarities are arranged on the same third surface of the battery cell as required, or are arranged on two third surfaces respectively, so as to facilitate the installation of the battery cell.
  • the battery cell includes an electrode assembly;
  • the electrode assembly is a wound structure and is flat, and the outer surface of the electrode assembly includes two flat surfaces, and the two flat surfaces face each other along a third direction;
  • the electrode assembly is a laminated structure, and the first electrode sheet, the diaphragm, and the second electrode sheet of the electrode assembly are stacked along a third direction;
  • the third direction intersects with both the first direction and the first surface.
  • the battery assembly includes at least two battery cells, and the at least two battery cells are arranged along a first direction.
  • the at least two battery cells are arranged along the first direction, and when heat exchange of the battery cells is required, the heat conductive member can be arranged along the first direction, so that heat exchange of the at least two battery cells in the battery assembly can be performed separately, thereby improving the heat exchange speed of the heat conductive member.
  • the maximum size of the battery cell is L
  • the maximum size of the battery cell is H
  • the L/H range is 0.5 to 6
  • the second direction intersects both the first direction and the horizontal plane.
  • the battery cells are arranged according to the above-mentioned size ratios, which can maximize the power of the battery cells while ensuring the supporting strength of the battery cells.
  • the maximum size of the battery cell is D, wherein the L/D range is 1 to 30; the first direction, the second direction and the third direction intersect each other.
  • Arranging the battery cells according to the above size ratio can maximize the power of the battery cells while ensuring the supporting strength of the battery cells.
  • the electrode terminal and the pressure relief mechanism are arranged on a second surface;
  • the battery includes a support plate, and the battery cell is fixedly connected to the support plate through another second surface where the electrode terminal is not arranged, and the second direction intersects with both the first direction and the horizontal plane.
  • the battery cell is connected to the support plate through one end where the electrode terminal is not arranged, so as to be fixed in the box, so as to install and fix the battery cell.
  • another second surface is fixedly connected to the support plate through a first adhesive layer; the heat conductive member is heat conductively connected to the first surface through a second adhesive layer, and the thermal conductivity of the first adhesive layer is less than or equal to the thermal conductivity of the second adhesive layer. Since the first adhesive layer is used to connect the second surface and the support plate, and the second adhesive layer is used to heat conductively connect the first surface and the heat conductive member, the thermal conductivity of the first adhesive layer is set to be less than or equal to the thermal conductivity of the second adhesive layer to ensure more effective heat exchange of the battery cell through the heat conductive member.
  • the ratio of the thermal conductivity of the first adhesive layer to the thermal conductivity of the second adhesive layer is in the range of 0.1 to 1. According to the above ratio setting, the heat of the battery cell can be effectively exchanged through the heat conductive member.
  • the second aspect of the present application discloses an electrical device, comprising a battery as described in any one of the above items, wherein the battery is used to provide electrical energy to drive the electrical device to move.
  • the first direction is the walking direction of the electric device.
  • the first direction is set as the walking direction of the electric device.
  • the electrode terminal can be arranged in the vertical direction or along the walking direction of the electric device, so that when the electric device collides in the lateral direction of the walking direction, the electrode terminal will not be hit, thereby avoiding damage to the electrode terminal and ensuring normal power supply of the battery.
  • the electrode terminal is arranged on the first surface, since the first surface is the surface with the largest area, the proportion of the electrode terminal on the first surface is small. When the electric device collides, it is not easy to hit the electrode terminal, thereby avoiding damage to the electrode terminal and ensuring normal power supply of the battery.
  • FIG1 is a schematic structural diagram of a vehicle provided in one embodiment of the present application.
  • FIG2 is a schematic diagram of an exploded structure of a battery provided in one embodiment of the present application.
  • FIG3 is a schematic structural diagram of a battery assembly provided in one embodiment of the present application.
  • FIG4 is a schematic structural diagram of a battery cell provided in one embodiment of the present application.
  • FIG5 is a schematic diagram of an exploded structure of a battery cell provided in one embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a battery provided in one embodiment of the present application.
  • FIG9 is a schematic diagram of an exploded structure of a battery provided in one embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a battery assembly provided in one embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a battery assembly provided in one embodiment of the present application.
  • FIG12 is a schematic structural diagram of a battery assembly provided in one embodiment of the present application.
  • FIG13 is a schematic structural diagram of a battery cell provided in one embodiment of the present application.
  • FIG14 is a schematic structural diagram of a battery assembly provided in one embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of a battery assembly provided in one embodiment of the present application.
  • FIG18 is a schematic structural diagram of a battery assembly provided in one embodiment of the present application.
  • FIG19 is a schematic structural diagram of a battery cell provided in one embodiment of the present application.
  • FIG20 is a schematic structural diagram of a heat conducting member provided in one embodiment of the present application.
  • FIG21 is a schematic structural diagram of the second part provided by an embodiment of the present application.
  • FIG22 is a schematic diagram of the assembly structure of the second part and the battery assembly provided in one embodiment of the present application.
  • FIG23 is an enlarged structural schematic diagram of part A provided in one embodiment of the present application.
  • FIG24 is a schematic diagram of a B-B cross-sectional structure provided by an embodiment of the present application.
  • FIG25 is an enlarged structural schematic diagram of a C portion provided in one embodiment of the present application.
  • FIG26 is a schematic diagram of the internal structure of the second part provided in one embodiment of the present application.
  • FIG27 is an enlarged structural schematic diagram of a D portion provided in one embodiment of the present application.
  • FIG. 28 is a schematic diagram of the distribution structure of batteries on an electrical device provided in one embodiment of the present application.
  • box body 31: first part, 311: support plate, 32: second part, 321: baffle;
  • 61 first adhesive layer
  • 62 second adhesive layer
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields.
  • Lithium-ion batteries have been widely used in mobile and portable electrical appliances due to their high energy density, high average open circuit voltage and long cycle life.
  • the battery includes a plurality of battery cells, and a pressure relief mechanism is provided on the battery cells.
  • a pressure relief mechanism is provided on the battery cells.
  • the high-pressure gas inside the battery cells can be discharged to the outside of the battery cells through the pressure relief mechanism.
  • due to the location of the pressure relief mechanism when a vehicle collides, it is easy to hit the pressure relief mechanism, thereby causing damage to the pressure relief mechanism, and the high-pressure gas inside the battery cells cannot be discharged in a timely and effective manner, thereby causing further damage to the battery and posing a safety hazard.
  • the inventor of the present application has designed a battery after in-depth research, including a battery assembly, the battery assembly including at least one battery cell, the battery assembly is arranged along a first direction, the first direction is the length direction of the battery or the walking direction of the electrical equipment having the battery; the battery cell includes multiple surfaces, the multiple surfaces include a first surface with the largest area; the multiple surfaces also include two second surfaces arranged opposite to each other along a second direction, the second direction intersecting with the first direction; the battery cell also includes a pressure relief mechanism, the pressure relief mechanism is arranged on the first surface or one of the second surfaces.
  • the pressure relief mechanism when the pressure relief mechanism is arranged on the second surface, since the two second surfaces are arranged relatively to each other along the second direction and the second direction intersects with the first direction, that is, the pressure relief mechanism will not be arranged at the end of the length direction of the battery or the end of the walking direction of the electrical equipment, when the electrical equipment collides along the walking direction, the pressure relief mechanism will not be hit, thereby avoiding damage to the pressure relief mechanism and ensuring the normal use of the pressure relief mechanism.
  • the pressure relief mechanism When the pressure relief mechanism is arranged on the first surface, since the first surface is the surface with the largest area, the pressure relief mechanism occupies a small proportion on the first surface, and when the electrical equipment collides, it is not easy to hit the pressure relief mechanism, thereby avoiding damage to the pressure relief mechanism and ensuring the normal use of the pressure relief mechanism.
  • the present application provides a battery and an electrical device having the battery.
  • the battery can be applicable to various electrical devices using batteries, such as mobile phones, portable devices, laptop computers, electric vehicles, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • batteries such as mobile phones, portable devices, laptop computers, electric vehicles, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.; the battery is used to provide electrical energy for the above-mentioned electrical devices.
  • FIG1 is a schematic diagram of the structure of a vehicle 1 provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of the exploded structure of a battery 10 provided in one embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a battery assembly 20 provided in one embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 10 is provided inside the vehicle 1, and the battery 10 can be provided at the bottom, head or tail of the vehicle 1.
  • the battery 10 can be used to power the vehicle 1, for example, the battery 10 can be used as an operating power source for the vehicle 1.
  • the vehicle 1 can also include a controller 11 and a motor 12, and the controller 11 is used to control the battery 10 to power the motor 12, for example, for the starting, navigation and driving power requirements of the vehicle 1.
  • the battery 10 can be used not only as an operating power source for the vehicle 1 , but also as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include a plurality of battery cells 21, where a battery cell 21 refers to the smallest unit that constitutes a battery assembly 20 or a battery pack.
  • a plurality of battery cells 21 can be connected in series and/or in parallel via electrode terminals for use in various applications.
  • the battery 10 mentioned in the present application is a battery pack.
  • a plurality of battery cells 21 can be connected in series, in parallel, or in mixed connection, where mixed connection refers to a mixture of series and parallel connection.
  • a plurality of battery cells 21 can directly constitute a battery pack, or they can first constitute a battery assembly 20, and the battery assembly 20 can then constitute a battery pack.
  • the battery 10 may include a plurality of battery assemblies 20 and a box 30, wherein the plurality of battery assemblies 20 are contained inside the box 30.
  • the box 30 is used to contain the battery cells 21 or the battery assemblies 20 to prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 21.
  • the box 30 may be a simple three-dimensional structure such as a single cuboid, cylinder or sphere, or a complex three-dimensional structure composed of simple three-dimensional structures such as cuboids, cylinders or spheres, which is not limited in the embodiments of the present application.
  • the material of the box 30 may be an alloy material such as aluminum alloy, iron alloy, or a polymer material such as polycarbonate, polyisocyanurate foam plastic, or a composite material such as glass fiber plus epoxy resin, which is not limited in the embodiments of the present application.
  • the box body 30 may include a first portion 31 and a second portion 32, the first portion 31 and the second portion 32 cover each other, and the first portion 31 and the second portion 32 jointly define a space for accommodating the battery cell 21.
  • the second portion 32 may be a hollow structure with one end open, and the first portion 31 may be a plate-like structure, and the first portion 31 covers the open side of the second portion 32, so that the first portion 31 and the second portion 32 jointly define a space for accommodating the battery cell 21; the first portion 31 and the second portion 32 may also be hollow structures with one side open, and the open side of the first portion 31 covers the open side of the second portion 32.
  • the battery assembly 20 may include a plurality of battery cells 21.
  • the plurality of battery cells 21 may be connected in series, in parallel, or in a mixed connection to form the battery assembly 20, and the plurality of battery assemblies 20 may be connected in series, in parallel, or in a mixed connection to form the battery 10.
  • the battery cell 21 may be cylindrical, flat, rectangular, or in other shapes, and the embodiments of the present application are not limited thereto.
  • the battery cell 21 generally includes: cylindrical battery cells, square shell battery cells, soft-pack battery cells, and multi-prismatic cross-section battery cells, and the embodiments of the present application are not limited thereto. However, for the sake of simplicity, the following embodiments are all described using a square lithium-ion battery cell 21 as an example.
  • FIG. 4 is a schematic diagram of the structure of a battery cell 21 provided in one embodiment of the present application
  • FIG. 5 is a schematic diagram of the exploded structure of a battery cell 21 provided in one embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a battery cell provided in one embodiment of the present application.
  • a battery cell 21 refers to the smallest unit that constitutes a battery 10. As shown in FIG. 4 to FIG. 7, the battery cell 21 includes an end cap 212, a shell 211 and an electrode assembly 213.
  • the end cap 212 refers to a component that covers the opening of the shell 211 to isolate the internal environment of the battery cell 21 from the external environment.
  • the shape of the end cap 212 can be adapted to the shape of the shell 211 to match the shell 211.
  • the end cap 212 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 212 is not easily deformed when squeezed and collided, so that the battery cell 21 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 214 can be provided on the end cap 212. The electrode terminal 214 can be used to electrically connect to the electrode assembly 213 for outputting or inputting electrical energy of the battery cell 21.
  • the end cap 212 can also be provided with a pressure relief mechanism 215 for releasing the internal pressure when the internal pressure or temperature of the battery cell 21 reaches a threshold.
  • a pressure relief mechanism 215 for releasing the internal pressure when the internal pressure or temperature of the battery cell 21 reaches a threshold.
  • an insulating member may be provided inside the end cap 212 to isolate the electrical connection components in the housing 211 from the end cap 212 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, or the like.
  • the shell 211 is a component used to cooperate with the end cap 212 to form the internal environment of the battery cell 21, wherein the formed internal environment can be used to accommodate the electrode assembly 213, the electrolyte (not shown in the figure) and other components.
  • the shell 211 and the end cap 212 can be independent components, and an opening can be set on the shell 211, and the internal environment of the battery cell 21 is formed by covering the opening with the end cap 212 at the opening.
  • the end cap 212 and the shell 211 can also be integrated.
  • the end cap 212 and the shell 211 can form a common connection surface before other components are put into the shell, and when it is necessary to encapsulate the interior of the shell 211, the end cap 212 covers the shell 211.
  • the shell 211 can be of various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc. Specifically, the shape of the shell 211 can be determined according to the specific shape and size of the electrode assembly 213.
  • the shell 211 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiments of the present application do not impose any special restrictions on this.
  • the electrode assembly 213 is a component in the battery cell 21 where electrochemical reactions occur.
  • One or more electrode assemblies 213 may be included in the housing 211.
  • the electrode assembly 213 is mainly formed by winding or stacking positive and negative electrode sheets, and a separator is usually provided between the positive and negative electrode sheets.
  • the parts of the positive and negative electrode sheets with active materials constitute the main body of the electrode assembly 213, and the parts of the positive and negative electrode sheets without active materials each constitute a pole ear (not shown in the figure).
  • the positive pole ear and the negative pole ear may be located together at one end of the main body or respectively at both ends of the main body.
  • the positive electrode active material and the negative electrode active material react with the electrolyte, and the pole ear connects the electrode terminal 214 to form a current loop.
  • FIG8 is a schematic diagram of the structure of a battery 10 provided in an embodiment of the present application
  • FIG9 is a schematic diagram of the exploded structure of a battery 10 provided in an embodiment of the present application.
  • the battery 10 includes a battery assembly 20, the battery assembly 20 includes at least one battery cell 21, the battery assembly 20 is arranged along a first direction, the first direction is the length direction of the battery 10 or the walking direction of the electric device having the battery 10
  • the battery cell 21 includes a plurality of surfaces, the plurality of surfaces include a first surface 2111 with the largest area
  • the plurality of surfaces also include two second surfaces 2121 arranged opposite to each other along a second direction, the second direction intersects with both the first direction and the horizontal plane
  • the battery cell 21 also includes a pressure relief mechanism 215, the pressure relief mechanism 215 is arranged on the first surface 2111 or one of the second surfaces 2121.
  • the battery cell 21 may be a square shell-shaped battery cell 21, and the battery cell 21 includes two first surfaces 2111 arranged oppositely along a first direction, two second surfaces 2121 arranged oppositely along a second direction, and two third surfaces 2112 arranged oppositely along a third direction.
  • a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electric device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electric device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged in the vertical direction, when the electrical equipment 1 is hit in the lateral direction along the walking direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • the battery cell 21 may be a square shell-shaped battery cell 21, and the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along a first direction, two second surfaces 2121 arranged opposite to each other along a second direction, and two third surfaces 2112 arranged opposite to each other along a third direction.
  • a pressure relief mechanism 215 is provided on the first surface 2111.
  • the first direction is the length direction of the battery 10 or the walking direction of the electric device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electric device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the first surface 2111, since the first surface 2111 is the surface with the largest area, the pressure relief mechanism 215 occupies a small area on the first surface 2111. When the electrical equipment 1 is hit, it is not easy to hit the pressure relief mechanism 215, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG10 is a schematic diagram of the structure of a battery assembly 20 provided in an embodiment of the present application.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along a third direction, two second surfaces 2121 arranged opposite to each other along a second direction, and also includes two third surfaces 2112 arranged opposite to each other along the first direction.
  • a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electrical device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged in the vertical direction, when the electrical equipment 1 is hit in the lateral direction along the walking direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along the third direction, two second surfaces 2121 arranged opposite to each other along the second direction, and two third surfaces 2112 arranged opposite to each other along the first direction.
  • a pressure relief mechanism 215 is provided on the first surface 2111.
  • the first direction is the length direction of the battery 10 or the walking direction of the electric device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electric device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the first surface 2111, since the first surface 2111 is the surface with the largest area, the pressure relief mechanism 215 occupies a small area on the first surface 2111. When the electrical equipment 1 is hit, it is not easy to hit the pressure relief mechanism 215, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG11 is a schematic diagram of the structure of a battery assembly 20 provided in one embodiment of the present application.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along the second direction, two second surfaces 2121 arranged opposite to each other along the first direction, and two third surfaces 2112 arranged opposite to each other along the third direction.
  • a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electrical device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged at the end of the length direction of the battery 10 or the end of the electric equipment 1 in the traveling direction, when the electric equipment 1 is hit in the lateral direction along the traveling direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG12 is a schematic diagram of the structure of a battery assembly 20 provided in an embodiment of the present application
  • FIG13 is a schematic diagram of the structure of a battery cell 21 provided in an embodiment of the present application.
  • the battery cell 21 is a cylindrical battery cell 21, and at least two battery cells 21 are arranged along a first direction to form a battery assembly 20.
  • the battery cell 21 includes a cylindrical first surface 2111, and two second surfaces 2121 arranged opposite to each other along a second direction. Among them, a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1, and the second direction is the vertical direction.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged in the vertical direction, when the electrical equipment 1 is hit in the lateral direction along the walking direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG. 14 is a schematic diagram of the structure of a battery assembly 20 provided in an embodiment of the present application
  • FIG. 15 is a schematic diagram of the structure of a battery cell provided in an embodiment of the present application
  • FIG. 16 is a schematic diagram of the structure of a battery cell provided in an embodiment of the present application.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along a third direction, two second surfaces 2121 arranged opposite to each other along a first direction, and two third surfaces 2112 arranged opposite to each other along a second direction.
  • a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electrical device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged at the end of the length direction of the battery 10 or the end of the electric equipment 1 in the traveling direction, when the electric equipment 1 is hit in the lateral direction along the traveling direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG17 is a schematic diagram of the structure of a battery assembly provided in an embodiment of the present application.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along the second direction, two second surfaces 2121 arranged opposite to each other along the first direction, and also includes two third surfaces 2112 arranged opposite to each other along the third direction.
  • a pressure relief mechanism 215 is provided on the second surface 2121.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1
  • the second direction is the width direction of the battery 10 or the lateral direction of the electrical device 1
  • the third direction is the vertical direction.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, that is, the pressure relief mechanism 215 is arranged at the end of the length direction of the battery 10 or the end of the electric equipment 1 in the traveling direction, when the electric equipment 1 is hit in the lateral direction along the traveling direction, the pressure relief mechanism 215 will not be hit, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • FIG18 is a schematic diagram of the structure of a battery assembly provided in an embodiment of the present application
  • FIG19 is a schematic diagram of the structure of a battery cell provided in an embodiment of the present application.
  • the battery cell 21 is a square shell-shaped battery cell 21.
  • the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along a third direction, two second surfaces 2121 arranged opposite to each other along a second direction, and two third surfaces 2112 arranged opposite to each other along the first direction.
  • a pressure relief mechanism 215 is provided on the first surface 2111.
  • the first direction is the length direction of the battery 10 or the walking direction of the electrical device 1
  • the second direction is the vertical direction
  • the third direction is the width direction of the battery 10 or the lateral direction of the electrical device 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the first surface 2111, since the first surface 2111 is the surface with the largest area, the pressure relief mechanism 215 occupies a small area on the first surface 2111. When the electrical equipment 1 is hit, it is not easy to hit the pressure relief mechanism 215, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • the pressure relief mechanism 215 when the pressure relief mechanism 215 is arranged on the second surface 2121, the pressure relief mechanism 215 can be arranged in the vertical direction or in the walking direction of the electric equipment 1, so that when the electric equipment 1 collides in the lateral direction along the walking direction, it will not hit the pressure relief mechanism 215, thereby avoiding damage to the pressure relief mechanism 215 and ensuring normal power supply of the battery 10.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the first surface 2111, since the first surface 2111 is the surface with the largest area, the pressure relief mechanism 215 occupies a small area on the first surface 2111. When the electric equipment 1 collides, it is not easy to hit the pressure relief mechanism 215, thereby avoiding damage to the pressure relief mechanism 215 and ensuring normal power supply of the battery 10.
  • the first surface 2111 intersects with a horizontal plane.
  • the first surface 2111 may be disposed along a vertical direction.
  • the first surface 2111 intersects with a horizontal plane.
  • the first surface 2111 intersects with a horizontal plane.
  • the first surface 2111 intersects with a horizontal plane.
  • the first surface 2111 intersects with a horizontal plane.
  • first surface 2111 is the surface with the largest area of the battery cell 21 , intersecting the first surface 2111 with the horizontal plane can maximize the number of battery cells 21 arranged in the horizontal plane, thereby improving the overall energy density of the battery 10 .
  • FIG20 is a schematic diagram of the structure of a heat conductive member 40 provided in an embodiment of the present application.
  • a heat conductive member 40 is further included, and the heat conductive member 40 is arranged along the first direction; each battery cell 21 of the battery assembly 20 is thermally connected to the heat conductive member 40 at least through the first surface 2111.
  • the heat conductor 40 can be thermally connected to the battery cell 21, and the heat of the battery cell 21 is transferred to the heat conductor 40, thereby achieving heat exchange of the battery cell 21.
  • the heat exchange of the battery cell 21 includes cooling and dissipating the heat of the battery cell 21, or heating the battery cell 21.
  • the heat conductor 40 can be a heat-conducting plate, a heat-conducting glue or a heat-conducting structure.
  • the heat-conducting plate can be a metal plate, such as a copper plate, an aluminum plate, etc., or other materials with good thermal conductivity.
  • a cavity can also be set inside the heat conductor.
  • the heat conductor 40 is a heat-conducting plate. Since the first surface 2111 is thermally connected to the heat conductor 40, and the first surface 2111 intersects with the horizontal plane, the heat conductor 40 also intersects with the horizontal plane. In some embodiments of the present application, the heat conductor 40 is arranged in the vertical direction and extends in the first direction.
  • the heat conducting member 40 is arranged along the first direction and intersects with the horizontal plane, and the battery cell 21 is thermally connected to the heat conducting member 40 via the first surface 2111 .
  • the heat conductive member 40 is disposed along a first direction and intersects with a horizontal plane, and the battery cell 21 is thermally connected to the heat conductive member 40 via a first surface 2111 .
  • the heat conductive member 40 is arranged along a first direction and intersects with a horizontal plane, and the battery cell 21 is thermally connected to the heat conductive member 40 via a first surface 2111 .
  • the heat conductive member 40 is arranged along the first direction, so that heat can be exchanged with any battery cell 21 in the battery assembly 20 through the heat conductive member 40. At the same time, when the electrical equipment 1 collides along the lateral direction, the impact force will not directly act on the end of the heat conductive member 40.
  • the battery cell 21 is thermally connected to the heat conductive member 40 through the first surface 2111, which can maximize the contact area between the heat conductive member 40 and the battery cell 21, thereby ensuring the heat exchange effect of the heat conductive member 40 on the battery cell 21.
  • FIG. 21 is a schematic diagram of the structure of the second part 32 provided in an embodiment of the present application
  • FIG. 22 is a schematic diagram of the assembly structure of the second part 32 and the battery assembly 20 provided in an embodiment of the present application
  • FIG. 23 is an enlarged schematic diagram of the structure of the A part provided in an embodiment of the present application.
  • the battery 10 includes at least two battery assemblies 20; along the third direction, the two sides of the heat conductive member 40 are respectively connected to the two battery assemblies 20 for thermal conduction; and the third direction intersects both the first direction and the first surface 2111.
  • the heat conductive member 40 is disposed between the two battery assemblies 20 and is thermally connected to the two battery assemblies 20.
  • the third direction is the width direction of the battery 10 or the lateral direction of the running direction of the electric device 1.
  • the battery 10 includes at least two battery assemblies 20; along the third direction, the two sides of the heat conductor 40 are thermally connected to the two battery assemblies 20 respectively; the third direction intersects with the first direction and the first surface 2111.
  • the length direction of the battery 10 is parallel to or intersects with the moving direction of the electrical device 1 .
  • the length direction of the battery 10 can be set parallel to the travel direction of the electrical device 1, so that when the heat conductor 40 is set along the length direction of the battery 10, the two ends of the heat conductor 40 are respectively arranged at the two ends of the length direction of the battery 10, that is, respectively arranged at the two ends of the travel direction of the electrical device 1.
  • the impact force will not directly act on the end of the heat conductor 40, thereby preventing damage to the heat conductor 40 and ensuring the safety and reliability of the use of the battery 10.
  • the length direction of the battery 10 may be set at an angle to the travel direction of the electric device 1 , and the electric device 1 may also be powered by the battery 10 , thereby facilitating the setting of the position of the battery 10 .
  • a heat exchange medium channel is provided in the heat conducting member 40 .
  • the heat exchange medium channel is used to circulate the heat exchange medium, so that the heat emitted by the battery cell 21 is taken away by the flow of the heat exchange medium, or the battery cell 21 is heated, thereby improving the heat exchange efficiency of the battery cell 21.
  • the heat exchange medium can be a heat exchange liquid, specifically oil or water.
  • FIG24 is a schematic diagram of the cross-sectional structure of B-B provided in one embodiment of the present application
  • FIG25 is an enlarged schematic diagram of the structure of the C portion provided in one embodiment of the present application.
  • the battery 10 includes a plurality of heat conducting members 40, and the plurality of heat conducting members 40 are arranged along a third direction, and the third direction intersects both the first direction and the first surface 2111.
  • the battery 10 includes a plurality of heat conductive members 40 , and the plurality of heat conductive members 40 are arranged along a third direction, and the third direction intersects with both the first direction and the first surface 2111 .
  • the battery 10 includes a plurality of heat conductive members 40 , and the plurality of heat conductive members 40 are arranged along a third direction, and the third direction intersects with both the first direction and the first surface 2111 .
  • the first direction is the length direction of the battery 10
  • the third direction is the width direction of the battery 10.
  • Multiple heat conductive members 40 are arranged along the third direction, and are thermally connected to the first surface 2111 of the battery cell 21 through multiple heat conductive members 40, and are jointly used to dissipate heat from the battery 10, thereby effectively improving the heat exchange speed of the battery 10.
  • heat conducting members 40 are respectively provided on both sides of the battery assembly 20; the battery assembly 20 is thermally connected to the heat conducting members 40 on both sides.
  • heat conducting members 40 are provided on both sides of the battery assembly 20 ; the battery assembly 20 is thermally connected to the heat conducting members 40 on both sides.
  • heat conducting members 40 are provided on both sides of the battery assembly 20 ; the battery assembly 20 is thermally connected to the heat conducting members 40 on both sides.
  • heat conducting members 40 are provided on both sides of the battery assembly 20 ; the battery assembly 20 is thermally connected to the heat conducting members 40 on both sides.
  • the battery cell 21 includes two opposite first surfaces 2111 , and the two first surfaces 2111 of the battery cell 21 are thermally connected to a heat conductor 40 respectively.
  • the battery cell 21 includes two opposite first surfaces 2111 , and the two first surfaces 2111 of the battery cell 21 are thermally connected to a heat conductor 40 respectively.
  • the heat exchange rate of the battery 10 is effectively improved by dissipating heat from the two first surfaces 2111 at the same time.
  • the battery cell 21 includes an electrode assembly 213, the electrode assembly 213 includes a main body 2131 and a pole ear 2132 protruding from the main body 2131, the pole ear 2132 is electrically connected to the electrode terminal 214, and along the third direction, the projections of the heat conductor 40 and the main body 2131 at least partially overlap, and the third direction intersects with both the first direction and the first surface 2111.
  • the heat conducting member 40 is extended along the first direction and is disposed on the side of the battery cell 21 along the third direction.
  • the first direction is the length direction of the battery cell 21, and the third direction is the width direction of the battery cell 21.
  • the battery cell 21 includes an electrode assembly 213, the electrode assembly 213 includes a main body 2131 and a pole ear 2132 protruding from the main body 2131, the pole ear 2132 is electrically connected to the electrode terminal 214, and along the third direction, the projections of the heat conductor 40 and the main body 2131 at least partially overlap, and the third direction intersects with both the first direction and the first surface 2111.
  • the heat conducting member 40 is extended along the first direction and is disposed on the side of the battery cell 21 along the third direction.
  • the first direction is the moving direction of the electric device 1
  • the third direction is the radial direction of the battery cell 21 .
  • the battery cell 21 includes an electrode assembly 213, the electrode assembly 213 includes a main body 2131 and a pole ear 2132 protruding from the main body 2131, the pole ear 2132 is electrically connected to the electrode terminal 214, and along the third direction, the projections of the heat conductor 40 and the main body 2131 at least partially overlap, and the third direction intersects with both the first direction and the first surface 2111.
  • the heat conducting member 40 is extended along the first direction and is disposed on the side of the battery cell 21 along the third direction.
  • the first direction is the length direction of the battery cell 21, and the third direction is the width direction of the battery cell 21.
  • the battery cell 21 includes an electrode assembly 213, the electrode assembly 213 includes a main body 2131 and a pole ear 2132 protruding from the main body 2131, the pole ear 2132 is electrically connected to the electrode terminal 214, and along the third direction, the projections of the heat conductor 40 and the main body 2131 at least partially overlap, and the third direction intersects with both the first direction and the first surface 2111.
  • the heat conducting member 40 is extended along the first direction and is arranged on the side of the battery cell 21 along the third direction.
  • the first direction is the moving direction of the electric device 1
  • the third direction is the lateral direction of the electric device 1.
  • the heat conducting member 40 can effectively exchange heat with the main body, thereby ensuring the heat exchange effect on the battery 10 .
  • the size of the main body 2131 is L1
  • the size of the heat conductor 40 is L2, 0.5 ⁇ L2/L1 ⁇ 1.5, wherein the first direction, the second direction and the third direction intersect each other.
  • the first direction is the length direction of the battery cell 21
  • the second direction is the height direction of the battery cell 21 .
  • the size of the main body 2131 is L1
  • the size of the heat conductor 40 is L2, 0.5 ⁇ L2/L1 ⁇ 1.5, wherein the first direction, the second direction and the third direction intersect each other.
  • the first direction is the moving direction of the electric device 1
  • the second direction is the height direction of the battery cell 21 .
  • the size of the main body 2131 is L1
  • the size of the heat conductor 40 is L2, 0.5 ⁇ L2/L1 ⁇ 1.5, wherein the first direction, the second direction and the third direction intersect each other.
  • the first direction is the length direction of the battery cell 21
  • the second direction is the height direction of the battery cell 21 .
  • the size of the main body 2131 is L1
  • the size of the heat conductor 40 is L2, 0.5 ⁇ L2/L1 ⁇ 1.5, wherein the first direction, the second direction and the third direction intersect each other.
  • the first direction is the length direction of the battery cell 21
  • the second direction is the height direction of the battery cell 21 .
  • the L2/L1 range value is set to be greater than 0.5 and less than 1.5 to ensure that the heat conductive member 40 has a sufficient heat conductive area to exchange heat with the main body 2131 , thereby greatly enhancing the heat exchange effect of the heat conductive member 40 on the main body 2131 .
  • the value of L2/L1 can be 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4...1.5.
  • the size of the overlapping area is L3, 0.5 ⁇ L3/L1 ⁇ 1.
  • the heat exchange area between the heat conductive member 40 and the main body 2131 can be reasonably set, which can greatly enhance the heat exchange effect of the heat conductive member 40 on the main body 2131 .
  • the value of L3/L1 can be 0.5, 0.6, 0.7, 0.8, 0.9...1.
  • the battery 10 further includes a current collector 50 , and the current collector 50 is in fluid communication with the plurality of heat conducting members 40 ;
  • the heat conducting member 40 is provided with a current collecting member 50 at one end in the first direction, or the heat conducting member 40 is provided with current collecting members 50 at both ends in the first direction.
  • the current collecting member 50 is used to supply or recover the heat exchange medium in the heat exchange medium channel, so as to exchange heat with the battery 10.
  • the current collecting part 50 is arranged at one end in the length direction of the battery 10 or the end in the traveling direction of the electrical equipment 1, and the current collecting part 50 is arranged at one end or both ends according to actual needs.
  • the current collecting member 50 is arranged at the end of the first direction of the heat conducting member 40.
  • the impact force will not directly act on the current collecting member 50 at the end of the moving direction of the electric device 1, thereby preventing damage to the current collecting member 50 and ensuring the safety and reliability of the use of the battery 10.
  • the two current collecting parts 50 are arranged at one end of the heat conducting part 40 in the first direction.
  • the two current collecting parts 50 are arranged along the second direction, and the second direction intersects with the first direction and the horizontal plane.
  • the second direction may be a vertical direction, that is, two current collecting members 50 are arranged at intervals along the vertical direction.
  • the two current collecting members 50 may be an inlet current collecting member and an outlet current collecting member, respectively.
  • the two current collectors 50 are arranged together at one end of the first direction and arranged along the second direction, which can effectively reduce the space occupied by the current collectors 50 in the battery 10 along the first direction, thereby facilitating the arrangement of other structures in the battery 10 and improving the energy density of the battery; the two current collectors are arranged together at one end of the first direction, which can also reduce the probability of damage to the current collectors when facing a collision in the first direction.
  • the battery cell 21 includes an electrode terminal 214, there is at least one electrode terminal 214, the pressure relief mechanism 215 and the at least one electrode terminal 214 are arranged on the same second surface 2121, or the pressure relief mechanism 215 and the electrode terminal 214 are respectively arranged on two second surfaces 215.
  • the pressure relief mechanism 215 and the two electrode terminals 214 are jointly arranged on the same second surface 2121 along the second direction, wherein the second direction is a vertical direction.
  • the pressure relief mechanism 215 is arranged on one second surface 2121 along the second direction, and the two electrode terminals 214 are respectively arranged on the other second surface 2121 along the second direction, or the two electrode terminals 214 are respectively arranged on two second surfaces 2121 along the second direction, and the pressure relief mechanism 215 and one of the electrode terminals 214 are jointly arranged on one of the second surfaces 2121.
  • an electrode terminal 214 is protruding from one of the second surfaces 2121, and the pressure relief mechanism 215 is provided on the second surface 2121 together with the protruding electrode terminal 214; or, an electrode terminal 214 is protruding from one of the second surfaces 2121, and a pressure relief mechanism 215 is provided on the other second surface 2121 without a protruding electrode terminal 214.
  • the two electrode terminals 214 are respectively arranged on the two second surfaces 2121 along the first direction, and the pressure relief mechanism 215 and one of the electrode terminals 214 are jointly arranged on one of the second surfaces, wherein the first direction is the length direction of the battery 10 or the running direction of the electric device 1.
  • the pressure relief mechanism 215 is arranged on one of the second surfaces 2121 along the first direction, and the two electrode terminals 214 are jointly arranged on the other second surface 2121 along the first direction, or the two electrode terminals 214 and the pressure relief mechanism 215 are jointly arranged on one of the second surfaces 2121.
  • the pressure relief mechanism 215 is connected to the inside of the battery cell 21, and is used to discharge the internal pressure of the battery cell 21 when the internal pressure of the battery cell 21 increases.
  • the pressure relief mechanism 215 can be arranged on the same second surface 2121 as the electrode terminal 214, or on two second surfaces 2121 respectively, so that the pressure relief mechanism 215 avoids the first surface 2111 that exchanges heat with the heat conductive member 40, so that the pressure relief mechanism 215 can smoothly discharge the gas in the case of thermal runaway of the battery cell 21.
  • the electrode terminal 214 includes two electrode terminals 214 with opposite polarities; the two electrode terminals 214 are arranged on one second surface 2121 , or the two electrode terminals 214 are respectively arranged on two second surfaces.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are disposed on the same second surface 2121 along the second direction.
  • the second direction may be a vertical direction.
  • the two electrode terminals 214 may also be disposed on two second surfaces 2121, respectively.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are disposed on the same second surface 2121 along the second direction.
  • the second direction may be a vertical direction.
  • the two electrode terminals 214 may also be disposed on two second surfaces 2121, respectively.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are disposed on the same second surface 2121 along a first direction.
  • the first direction is the length direction of the battery 10 or the travel direction of the electric device 1.
  • the two electrode terminals 214 may also be disposed on two second surfaces 2121, respectively.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are respectively arranged on two second surfaces 2121 along the second direction, wherein one electrode terminal 214 is flush with the end surface of the battery cell 21, and the end of the battery cell 21 is the electrode terminal 214.
  • the second direction is a vertical direction.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are respectively arranged on two second surfaces 2121 along a first direction.
  • the first direction is the length direction of the battery 10 or the running direction of the electric device 1.
  • the two electrode terminals 214 can also be respectively arranged on the two second surfaces 2121.
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are respectively arranged on the two second surfaces 2121 along the first direction.
  • the first direction is the length direction of the battery 10 or the running direction of the electric device 1.
  • the two electrode terminals 214 can also be respectively arranged on the two second surfaces 2121.
  • the two electrode terminals 214 with opposite polarities are arranged on the same second surface 2121 of the battery cell 21 as needed, or respectively arranged on two second surfaces 2121, so that the electrode terminals 214 avoid the first surface 2111 for heat exchange with the heat conductive member 40, so as to facilitate subsequent electrical connection with other adjacent battery cells 21.
  • the electrode terminal 214 is disposed on the first surface 2111 .
  • the battery cell 21 includes two electrode terminals 214, and the two electrode terminals 214 are jointly arranged on the first surface 2111.
  • the length direction of the battery cell 21 is arranged along the first direction, and the battery cell 21 includes two first surfaces 2111 arranged opposite to each other along the third direction, and the two electrode terminals 214 are jointly arranged on one of the first surfaces 2111.
  • the first direction is a horizontal direction.
  • Disposing the electrode terminal 214 on the first surface 2111 can save the space occupied by the battery 10 along the second direction, thereby improving the energy density of the battery 10 .
  • the battery cell 21 includes a first surface 2111 and a fourth surface arranged opposite to the first surface 2111, the first surface 2111 and the fourth surface are arranged opposite to each other along a third direction, and the third direction intersects with both the first direction and the first surface 2111; a recess is provided at the edge of the fourth surface; the first surface 2111 is used to set the electrode terminal 214; the electrode terminal 214 is protruded from the first surface 2111 in the third direction and corresponds to the recess.
  • the length direction of the battery cell 21 is arranged along the first direction, and the battery cell 21 includes a first surface 2111 and a fourth surface arranged relatively along a third direction, and a recess is provided on the edge of the fourth surface; the first surface 2111 is used to set the electrode terminal 214.
  • the electrode terminal 214 is disposed on the first surface 2111, and a recess corresponding to the electrode terminal 2111 is disposed at the edge of the fourth surface, so that the electrode terminal 214 of the adjacent battery cell 21 is accommodated by the recess, leaving operating space for electrical connection, so that the overall structure of the battery 10 is more compact and the space utilization rate is high.
  • the plurality of surfaces further include two third surfaces 2112 disposed opposite to each other along the first direction, the first direction, the second direction and the third direction intersect each other, and the electrode terminal 214 includes two electrode terminals 214 with opposite polarities; the two electrode terminals 214 are respectively disposed on the two third surfaces 2112. In some embodiments of the present application, the two electrode terminals 214 may also be disposed on the same third surface 2112.
  • the plurality of surfaces further include two third surfaces 2112 disposed opposite to each other along the second direction, the first direction, the second direction and the third direction intersect each other, and the electrode terminal 214 includes two electrode terminals 214 with opposite polarities; the two electrode terminals 214 are respectively disposed on the two third surfaces 2112. In some embodiments of the present application, the two electrode terminals 214 may also be disposed on the same third surface 2112.
  • the two electrode terminals 214 with opposite polarities are arranged on the same third surface 2112 of the battery cell 21 as required, or are arranged on two third surfaces 2112 respectively, so as to facilitate the installation of the battery cell 21 .
  • the battery cell 21 includes an electrode assembly 213; the electrode assembly 213 is a wound structure and is flat, and the outer surface of the electrode assembly 213 includes two flat surfaces, and the two flat surfaces face each other along a third direction; or, the electrode assembly 213 is a stacked structure, and the first electrode sheet, the diaphragm, and the second electrode sheet of the electrode assembly 213 are stacked along the third direction; the third direction intersects with both the first direction and the first surface.
  • the electrode assembly 213 By configuring the electrode assembly 213 to have a laminated structure or a wound structure, the electrode assembly 213 can effectively supply power to the electrical device 1 .
  • the battery assembly 20 includes at least two battery cells 21 , and the at least two battery cells 21 are arranged along a first direction.
  • the battery assembly 20 includes at least two battery cells 21 , and the at least two battery cells 21 are arranged along a first direction.
  • the battery assembly 20 includes at least two battery cells 21, and the at least two battery cells 21 are arranged along the first direction. It should be noted that only one battery cell 21 is illustrated along the first direction in FIG.
  • the battery assembly 20 includes at least two battery cells 21 , and the at least two battery cells 21 are arranged along a first direction.
  • the battery assembly 20 includes at least two battery cells 21, and the at least two battery cells 21 are arranged along the first direction. It should be noted that only one battery cell 21 is illustrated along the first direction in FIG.
  • the battery assembly 20 includes at least two battery cells 21, and the at least two battery cells 21 are arranged along the first direction. It should be noted that only one battery cell 21 is illustrated along the first direction in FIG.
  • the battery assembly 20 includes at least two battery cells 21, and the at least two battery cells 21 are arranged along the first direction. It should be noted that only one battery cell 21 is illustrated along the first direction in FIG.
  • the maximum dimension of the battery cell 21 is L
  • the maximum dimension of the battery cell 21 is H
  • the L/H range is 0.5 to 6.
  • the L/H has a maximum size ratio of 6, and when the battery cell 21 is as shown in FIG. 13 , the L/H has a minimum size ratio of 0.5.
  • the size of the battery cell 21 along the first direction is too large, which makes it inconvenient to install and reduces the support strength of the battery cell 21.
  • the L/H size ratio is less than 0.5, the size of the battery cell 21 along the second direction is too large, which makes it inconvenient to install and reduces the support strength of the battery cell 21.
  • L/H can be 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 ... 5, 5.5 ... 6.
  • the battery cell 21 can have different shapes to meet the requirements of different models of batteries 10.
  • the maximum size H of the battery cell 21 includes the size of the housing 211 and the size of the electrode terminal 214 protruding from the housing 211.
  • the battery cell 21 is arranged according to the above-mentioned size ratio, which can maximize the power of the battery cell 21 while ensuring the supporting strength of the battery cell 21, and facilitate the installation of the battery cell 21.
  • the maximum dimension of the battery cell 21 is D, wherein the L/D range is 1 to 30; the first direction, the second direction and the third direction intersect each other.
  • the size of the battery cell 21 along the first direction will be too large, making it inconvenient to install and reducing the supporting strength of the battery cell 21.
  • the L/D ratio is less than 1, the size of the battery cell 21 along the first direction will be too small, thereby reducing the power of the battery cell 21.
  • L/D can be 1, 2, 3, 4, 5, 6, 7, 8 ... 10 ... 15 ... 20 ... 25 ... 28 ... 30.
  • the battery cell 21 can have different shapes, thereby meeting the requirements of different models of batteries 10.
  • the L/D has a maximum dimension ratio of 30, and when the battery cell 21 is as shown in FIG. 11 , the L/D has a minimum dimension ratio of 1.
  • the battery cell 21 is arranged according to the above-mentioned dimension ratio, which can maximize the power of the battery cell 21 while ensuring the supporting strength of the battery cell 21 .
  • FIG26 is a schematic diagram of the internal structure of the second part 32 provided in one embodiment of the present application
  • FIG27 is an enlarged schematic diagram of the structure of the D part provided in one embodiment of the present application.
  • the battery 10 further includes a baffle 321, which is arranged along the second direction opposite to the second surface 2121 of the battery cell 21 provided with the electrode terminal 214, and the interval between the electrode terminal 214 and the baffle 321 is 1.2 mm to 25 mm, and the second direction intersects with both the first direction and the horizontal plane.
  • the baffle 321 may be a part of the structure of the box body 30 itself, or the baffle 321 is connected to the box body 30 and is disposed in the box body 30.
  • the second direction may be a vertical direction.
  • the battery 21 also includes a baffle 321, which is arranged along the second direction opposite to the second surface 2121 of the battery cell 21 on which the electrode terminal 214 is protruding, and the interval between the electrode terminal 214 and the baffle 321 is 1.2 mm to 25 mm, and the second direction intersects with the first direction and the horizontal plane.
  • the motor terminal 214 may easily hit the baffle, thereby damaging the electrode terminal 214.
  • the distance between the electrode terminal 214 and the baffle 321 is greater than 25 mm, the size of the battery 10 may be too large, making it inconvenient to install the battery 10.
  • the baffle plate 321 is spaced 1.2 mm to 25 mm from the electrode terminal 214 , so that when the battery 10 collides along the second direction, the baffle plate 321 and the electrode terminal 214 are prevented from colliding with each other, thereby damaging the electrode terminal 214 .
  • the spacing between the baffle 321 and the electrode terminal 214 can be 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8...10...15...20...23, 24, 25 mm.
  • At least one electrode terminal 214 is located below the battery cell 21, and the baffle 321 is located below the electrode terminal 214; or, at least one electrode terminal 214 is located above the battery cell 21, and the baffle 321 is located above the electrode terminal 214.
  • the electrode terminal 214 and the baffle 321 are arranged together along the second direction, and the baffle 321 is located below the battery cell 21, that is, the baffle 321 is arranged closer to the second portion 32 than the electrode terminal 214.
  • the second direction may be a vertical direction, and the two electrode terminals 214 may be arranged together below the battery cell 21, or one of them may be arranged below the battery cell 21, and the other may be arranged above the battery cell 21.
  • the electrode terminal 214 and the baffle 321 are arranged together along the second direction, and the baffle 321 is located above the battery cell 21, that is, the baffle 321 is arranged closer to the first portion 31 than the electrode terminal 214, wherein the two electrode terminals 214 may be arranged together above the battery cell 21, or one of them may be arranged below the battery cell 21, and the other may be arranged above the battery cell 1.
  • the protruding electrode terminal 214 is located below the battery cell 21, and the baffle 321 is located below the electrode terminal 214; or, the protruding electrode terminal 214 is located above the battery cell 21, and the baffle 321 is located above the electrode terminal 214.
  • baffle 321 By arranging the baffle 321 below the electrode terminal 214 along the second direction, or above the electrode terminal 214 along the second direction, a reasonable arrangement can be performed according to the actual installation position.
  • the electrode terminal 214 and the pressure relief mechanism 215 are arranged on a second surface 2121 ;
  • the battery 10 includes a support plate 311 , and the battery cell 21 is fixedly connected to the support plate 311 through another second surface 2121 on which the electrode terminal 214 is not arranged, and the second direction intersects with both the first direction and the horizontal plane.
  • the support plate 311 may be a part of the structure of the box body 30 itself, or the support plate 311 is connected to the box body 30 and is disposed in the box body 30.
  • the support plate 311 may be disposed in the first part 31 or the second part 32.
  • the two electrode terminals 214 may be jointly arranged along the second direction on one of the second surfaces 2121 of the battery cell 21 , and the other second surface 2121 without the electrode terminal 214 is fixedly connected to the support plate 311 , thereby fixing the battery cell 21 in the box body 30 .
  • the electrode terminal 214 is protruded from one of the second surfaces 2121 , and the other second surface 2121 without the electrode terminal 214 is fixedly connected to the support plate 311 .
  • the battery cell 21 is fixed in the box body 30 through the support plate 311 so as to install and fix the battery cell 21 .
  • another second surface 2121 is fixedly connected to the support plate 311 through a first adhesive layer 61; the thermal conductor 40 is thermally connected to the first surface 2111 through a second adhesive layer 62, and the thermal conductivity of the first adhesive layer 61 is less than or equal to the thermal conductivity of the second adhesive layer 62.
  • the surface without the electrode terminal 214 is fixedly connected to the support plate 311 through the first adhesive layer 61 .
  • the second surface 2121 without the protruding electrode terminal 214 is fixedly connected to the support plate 311 through the first adhesive layer 61, and the heat conductive member 40 is heat conductively connected to the first surface 2111 through the second adhesive layer 62.
  • the first adhesive layer 61 and the second adhesive layer 62 can respectively use a heat conductive polyurethane adhesive layer, and different amounts of heat conductive particles can be added therein to achieve different thermal conductivity coefficients.
  • the thermal conductivity of the first adhesive layer 61 is set to be less than or equal to the thermal conductivity of the second adhesive layer 62 to ensure more effective heat exchange of the battery cell 21 through the thermal conductive member 40.
  • the ratio of the thermal conductivity of the first bonding layer 61 to the thermal conductivity of the second bonding layer 62 is in the range of 0.1 to 1.
  • the heat of the battery cells 21 can be effectively exchanged through the heat conducting member 40 .
  • the ratio of the thermal conductivity of the first adhesive layer 61 to the thermal conductivity of the second adhesive layer 62 is less than 0.1, the thermal conductivity of the first adhesive layer 61 is poor, and the support plate 311 connected to the first adhesive layer 61 cannot transfer heat through one side of the first adhesive layer 61, thereby failing to exchange heat for the support plate 311.
  • the ratio of the thermal conductivity of the first adhesive layer 61 to the thermal conductivity of the second adhesive layer 62 is greater than 1, the thermal conductivity of the first adhesive layer 61 is stronger than that of the second adhesive layer 62, and the ability of the battery cell 21 to exchange heat through the heat conductive member 40 is weakened, resulting in poor heat exchange effect of the battery cell 21.
  • the ratio of the thermal conductivity of the first bonding layer 61 to the thermal conductivity of the second bonding layer 62 may be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ..., 1.
  • the second aspect of the present application proposes an electrical device 1, comprising a battery 10 of any one of the above items, and the battery 10 is used to provide electrical energy to drive the electrical device 1 to move.
  • Fig. 28 is a schematic diagram of the distribution structure of the battery 10 on the electric device 1 provided in one embodiment of the present application.
  • the first direction is the moving direction of the electric device 1.
  • the length direction of the battery 10 may be perpendicular to the travel direction of the electric device 1.
  • one or more batteries 10 may be arranged in the travel direction of the electric device 1.
  • the length direction of at least one battery 10 is perpendicular to the travel direction of the electric device 1.
  • the first direction is the travel direction of the electric device 1. That is, in the battery 10 whose length direction is perpendicular to the travel direction of the electric device 1, the battery assembly 20 and the heat conductor 40 are arranged along the width direction of the battery 10, which is consistent with the travel direction of the electric device 1.
  • the electrical equipment 1 of the present application can be a mobile phone, a portable device, a laptop computer, an electric car, an electric toy, an electric tool, an electric vehicle, a ship, and a spacecraft, etc.
  • the spacecraft includes an airplane, a rocket, a space shuttle, and a spacecraft, etc.
  • the first direction is set as the moving direction of the electrical equipment 1.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the second surface 2121, since the two second surfaces 2121 are arranged relatively along the second direction and the second direction intersects with the first direction, the pressure relief mechanism 215 will not be arranged at the end of the moving direction of the electrical equipment 1. When the electrical equipment 1 collides along the moving direction, the pressure relief mechanism 215 will not be collided, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • the pressure relief mechanism 215 When the pressure relief mechanism 215 is arranged on the first surface 2111, since the first surface 2111 is the surface with the largest area, the pressure relief mechanism 215 occupies a small area on the first surface 2111. When the electrical equipment 1 collides, the pressure relief mechanism 215 is not easily collided, thereby avoiding damage to the pressure relief mechanism 215 and ensuring the normal use of the pressure relief mechanism 215.
  • the electric device 1 includes a battery 10, and the battery 10 is used to provide electric energy to drive the electric device 1 to move.
  • the battery 10 includes a box 30 and a plurality of battery assemblies 20 arranged in the box 30, and the box 30 includes a first part 31 and a second part 32, and the first part 31 and the second part 32 are enclosed to form a space for accommodating the battery assembly 20.
  • the plurality of battery assemblies 20 are respectively arranged along the first direction and arranged along the third direction.
  • the battery assembly 20 includes a plurality of battery cells 21, the length direction of the battery cell 21 is arranged along the first direction, the height direction of the battery cell 21 is arranged along the second direction, and the width direction of the battery cell 21 is arranged along the third direction.
  • the battery cell 21 includes two third surfaces 2112 arranged oppositely along the first direction, two second surfaces 2121 arranged oppositely along the second direction, and two first surfaces 2111 arranged oppositely along the third direction, and the first surface 2111 is the surface with the largest area of the battery cell 21.
  • the first direction is the moving direction of the electric device 1
  • the length direction of the battery 10 is parallel to the moving direction of the electric device 1
  • the second direction is the vertical direction
  • the third direction is the lateral direction of the moving direction of the electric device 1.
  • the battery cell 21 includes an electrode assembly 213, which includes a main body 2131 and a tab 2132 protruding from the main body 2131, and the tab 2132 is electrically connected to the electrode terminal 214.
  • the projections of the heat conducting member 40 and the main body 2131 at least partially overlap and have an overlapping area.
  • the size of the main body 2131 is L1
  • the size of the heat conducting member 40 is L2
  • the size of the overlapping area is L3, 0.5 ⁇ L2/L1 ⁇ 1.5, 0.5 ⁇ L3/L1 ⁇ 1.
  • the battery cell 21 includes two electrode terminals 214 with opposite polarities; the two electrode terminals 214 are arranged on a second surface 2121.
  • the battery cell 21 also includes a pressure relief mechanism 215; the pressure relief mechanism 215 and the two electrode terminals 214 are arranged on the same second surface 2121.
  • the maximum size of the battery cell 21 is L
  • the maximum size of the battery cell 21 is H
  • the L/H range value is 0.5 to 6.
  • the maximum size of the battery cell 21 is D, wherein the L/D range value is 1 to 30.
  • the battery 10 also includes a baffle 321, which is arranged on the second part 32.
  • the baffle 321 is arranged opposite to the second surface 2121 of the battery cell 21 on which the electrode terminal 214 is arranged along the second direction, the electrode terminal 214 is located below the battery cell 21, and the baffle 214 is located below the electrode terminal 214, and the spacing size between the electrode terminal 214 and the baffle 321 is 1.2mm to 25m.
  • a plurality of heat-conducting members 40 are also provided in the box body 30, and the heat-conducting members 40 are arranged along the first direction, and the plurality of heat-conducting members 40 are arranged along the third direction.
  • Heat-conducting members 40 are respectively provided on both sides of the battery assembly 20 along the third direction, and the first surfaces 2111 on both sides along the third direction are respectively connected to the heat-conducting members 40 by heat conduction.
  • a heat exchange medium channel is provided in the heat-conducting member 40.
  • the battery 10 also includes a current collector 50, which is extended along the third direction and is fluidically connected to the plurality of heat-conducting members 40. There are two current collectors 50, and the two current collectors 50 are jointly provided at one end of the travel direction of the electrical equipment 1, and are arranged at intervals along the second direction.
  • a support plate 311 is also provided in the box body 30, and the support plate 311 is provided in the first part 31.
  • the battery cell 21 is fixedly connected to the support plate 311 through the second surface 2121 without the electrode terminal 214.
  • the second surface 2121 without the electrode terminal 214 is fixedly connected to the support plate 311 through the first adhesive layer 61;
  • the heat conductive member 40 is heat-conductively connected to the first surface 2111 through the second adhesive layer 62, and the ratio of the thermal conductivity of the first adhesive layer 61 to the thermal conductivity of the second adhesive layer 62 is in the range of 0.1 to 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及电池技术领域,特别涉及一种电池和用电设备。本申请的电池包括电池组件,电池组件包括至少一个电池单体,电池组件沿第一方向设置,第一方向为电池的长度方向或具有电池的用电设备的行走方向;电池单体包括多个表面,多个表面包括面积最大的第一表面;多个表面还包括相对设置的两个第二表面,两个第二表面与第一表面分别连接;电池单体上还包括泄压机构,泄压机构设于第一表面或其中一个第二表面。根据本申请的电池,当用电设备发生撞击时,不易撞击到泄压机构,从而避免泄压机构发生损坏,保证泄压机构的正常使用。

Description

电池和用电设备 技术领域
本申请涉及电池技术领域,特别涉及一种电池和用电设备。
背景技术
近年来,随着经济发展,电池技术被广泛应用于各种领域,尤其是在是新能源车辆领域。目前,新能源车辆已对传统的燃油车辆造成巨大的冲击。电池作为新能源车辆的核心部件,在新能源车辆的发展过程中,扮演着至关重要的角色。
电池内包括多个电池单体,电池单体上设有泄压机构。当车辆发生碰撞或其他原因导致电池单体内部压力或温度增大时,电池单体内的高压气体可通过泄压机构排出至电池单体的外部。然而由于泄压机构的设置位置问题,当车辆发生碰撞时容易撞击泄压机构,从而导致泄压机构的损坏从而影响电池的正常工作,并带来安全隐患。
发明内容
鉴于现有技术存在的缺陷,本申请的目的在于提供一种电池和用电设备,其能够有效地解决车辆发生撞击时导致泄压机构损坏的问题。
本申请的第一方面公开了一种电池,包括:
电池组件,电池组件包括至少一个电池单体,电池组件沿第一方向设置,第一方向为电池的长度方向或具有电池的用电设备的行走方向;
电池单体包括多个表面,多个表面包括面积最大的第一表面;多个表面还包括相对设置的两个第二表面,两个第二表面与第一表面分别连接;电池单体上还包括泄压机构,泄压机构设于第一表面或其中一个第二表面。
根据本申请的电池,当泄压机构设于第二表面时,泄压机构可以沿竖直方向设置或沿用电设备的行走方向设置,从而当用电设备沿行走方向的侧向方向发生碰撞时不会撞击到泄压机构,从而避免泄压机构发生损坏,保证泄压机构的正常使用,当泄压机构设于第一表面时,由于第一表面为面积最大的表面,因此泄压机构在第一表面上的占比小,当用电设备发生撞击时,不易撞击到泄压机构,从而避免泄压机构发生损坏,保证泄压机构的正常使用。
在本申请的一些实施方式中,两个第二表面沿第二方向相对设置;第二方向与第一方向相交。第二方向可以为竖直方向,从而使两个第二表面沿竖直方向相对设置,即泄压机构沿竖直方向设置,从而当用电设备沿行走方向的侧向方向发生碰撞时不会撞击到泄压机构。
在本申请的一些实施方式中,两个第二表面沿第一方向相对设置。将两个第二表面沿第一方向相对设置,即泄压机构沿用电设备沿行走方向设置,从而当用电设备沿行走方向的侧向方向发生碰撞时不会撞击到泄压机构。
在本申请的一些实施方式中,第一表面与水平面相交。第一表面为电池单体面积最大的表面,将第一表面与水平面相交,可最大限度地提升水平面内电池单体的布置数量,从而提升电池的整体能量密度。
在本申请的一些实施方式中,第二方向与水平面相交或平行。即第二方向可以为大致竖直方向或者沿水平方向。对应的第二表面可以大致沿水平方向布置或者沿竖直方向布置。
在本申请的一些实施方式中,还包括导热件,导热件沿第一方向设置;电池单体至少通过第一表面与导热件导热连接。将导热件沿第一方向设置,能够通过导热件对电池组件内的任一电池单体进行换热,同时当用电设备沿侧向方向发生碰撞时,冲击力不会直接作用于导热件的端部,避免造成导热件的损坏,同时,将电池单体通过第一表面与导热件导热连接,能够最大限度地保证导热件与电池单体的接触面积, 从而保证导热件对电池单体的换热效果。
在本申请的一些实施方式中,包括至少两个电池组件;沿第三方向,导热件的两侧分别与两个电池组件导热连接;第三方向与第一方向和第一表面均相交。将导热件的两侧分别与电池单体的第一表面导热连接,从而提高导热件对电池单体的换热效果。
在本申请的一些实施方式中,电池的长度方向与用电设备的行走方向平行或者相交。本申请中的电池可沿任意方向设于用于设备中,以便电池的设置。
在本申请的一些实施方式中,导热件内设有换热介质通道。换热介质通道用于流通换热介质,从而通过换热介质的流动将带走电池单体散发的热量,或者给电池单体加热,进而提升电池单体的换热效率。
在本申请的一些实施方式中,电池包括多个导热件,多个导热件沿第三方向排列,第三方向与第一方向和第一表面均相交。通过多个导热件沿第三方向排列,共同用于对电池进行散热,有效地提高对电池的换热速度。
在本申请的一些实施方式中,沿第三方向,电池组件的两侧分别设有导热件;电池组件与两侧的导热件导热连接。电池组件的两侧同时与导热件导热连接,通过电池组件的两侧同时进行散热,有效地提高对电池的换热速度。
在本申请的一些实施方式中,沿第三方向,电池单体包括两个相对的第一表面,电池单体的两个第一表面分别与一个所导热件导热连接。在电池单体具有两个最大面积的第一表面时,通过对两个第一表面同时进行散热,有效地提高对电池的换热速度。
在本申请的一些实施方式中,电池单体包括电极组件,电极组件包括主体部和凸出于主体部的极耳,极耳与电极端子电连接,沿第三方向,导热件和主体部的投影至少部分重合且具有重合区域,第三方向与第一方向和第一表面均相交。通过将导热件和主体部沿第三方向至少部分重合设置,能够通过导热件有效地对主体部进行换热,从而提高了对电池单体的换热效果。
在本申请的一些实施方式中,沿第二方向,主体部的尺寸为L1,导热件的尺寸为L2,其中,0.5≤L2/L1≤1.5,第一方向、第二方向和第三方向两两相交。将L2/L1范围值设定为大于0.5且小于1.5,保证导热件具有足够的导热面积,从而与主体部间进行热交换,极大地增强导热件对主体部的换热效果。
在本申请的一些实施方式中,沿第二方向,重合区域的尺寸为L3,0.5≤L3/L1≤1。通过对重合区域在第二方向尺寸的设定,从而能够使得导热件与主体部之间的换热面积能够合理设定,能够极大地增强导热件对主体部的换热效果。
在本申请的一些实施方式中,电池还包括集流件,集流件与多个导热件流体连通;
其中,导热件位于第一方向的一端设有集流件,或,导热件位于第一方向的两端分别设有集流件。集流件用于供给或回收换热介质通道内的换热介质,从而用于与电池换热,将集流件设于导热件的第一方向的端部,当用电设备沿侧向方向发生碰撞时,冲击力不会直接作用于导热件的端部,从而防止导热件的损坏,保证电池使用的安全性和可靠性。
在本申请的一些实施方式中,集流件为两个,两个集流件设于导热件的位于第一方向的一端,两个集流件沿第二方向排布,第二方向与第一方向和水平面均相交。将两个集流件共同设于第一方向的一端,且沿第二方向排布,可有效地减小集流件沿第一方向在电池内的占用空间,从而便于在电池内设置其他结构,提高电池的能量密度;两个集流件共同设于第一方向的一端,还可以降低面临第一方向的碰撞时集流件损坏的机率。
在本申请的一些实施方式中,电池单体包括电极端子,电极端子为至少一个,泄压机构与至少一个电极端子设在同一个第二表面上,或者泄压机构与电极端子分别设在两个第二表面上。泄压机构与电池单体的内部相连通,用于当电池单体的内部压力增大时排出其内部的压力。泄压机构可根据需要与电极端子设于同一个第二表面上,或分别设于两个第二表面上,从而使泄压机构避开与导热件换热的第一表面,便于电池单体在发生热失控的情况下,泄压机构顺利排气。
在本申请的一些实施方式中,电极端子包括极性相反的两个电极端子;两个电极端子设在一个第二表面上,或者两个电极端子分别设在两个第二表面上。两个极性相反的电极端子根据需要设于电池单体的同一个第二表面上,或分别设于两个第二表面上,从而便于对电池单体进行安装。
在本申请的一些实施方式中,电池单体包括电极端子,电极端子设在第一表面上。将电极端子设于第一表面,并通过第一表面上的电子端子对用电设备进行供电。将电极端子设在第一表面上,可以节省电池在第二方向被电极端子占用的空间,进而提升电池的能量密度。
在本申请的一些实施方式中,电池单体包括第一表面和与第一表面相对设置的第四表面,第一表面和第四表面沿第三方向相对设置,第三方向与第一方向和第一表面均相交;第四表面的边缘设有凹部;第一表面用于设置电极端子;电极端子在第三方向上凸出设置于第一表面,并且与凹部对应。将电极端子设于第一表面上,并在第四表面的边缘设有与电极端子相对应的凹部,从而通过凹部容纳相邻电池单 体的电极端子,留出电连接的操作空间,使得电池整体结构更紧凑,空间利用率高。
在本申请的一些实施方式中,多个表面还包括沿第一方向相对设置的两个第三表面,第一方向、第二方向和第三方向两两相交,电极端子包括极性相反的两个电极端子;两个电极端子设在一个第三表面上,或者两个电极端子分别设在两个第三表面上。将两个极性相反的电极端子根据需要设于电池单体的同一个第三表面上,或分别设于两个第三表面上,从而便于对电池单体进行安装。
在本申请的一些实施方式中,电池单体包括电极组件;电极组件为卷绕式结构且为扁平状,电极组件的外表面包括两个扁平面,两个扁平面沿第三方向相互面对;
或,电极组件为叠片式结构,电极组件的第一极片、隔膜和第二极片沿第三方向层叠;
第三方向与第一方向和第一表面均相交。通过将将电极组件设置为叠片式结构或卷绕式结构,均能够通过电极组件对用电设备进行有效供电。
在本申请的一些实施方式中,电池组件包括至少两个电池单体,至少两个电池单体沿第一方向排列。将至少两个电池单体沿第一方向排列,当需要对电池单体进行换热时,可将导热件沿第一方向设置,从而以便对电池组件内的至少两个电池单体分别进行换热,从而提高导热件的换热速度。
在本申请的一些实施方式中,沿第一方向,电池单体的最大尺寸为L,沿第二方向,电池单体的最大尺寸为H,L/H范围值为0.5~6;第二方向与第一方向和水平面均相交。将电池单体的按照上述尺寸比例设置,能够在保证电池单体支撑强度的基础上,最大限度地提升电池单体的电量。
在本申请的一些实施方式中,沿第三方向,电池单体的最大尺寸为D,其中,L/D范围值为1~30;第一方向、第二方向和第三方向两两相交。将电池单体的按照上述尺寸比例设置,能够在保证电池单体支撑强度的基础上,最大限度地提升电池单体的电量。
在本申请的一些实施方式中,电极端子和泄压机构设在一个第二表面上;电池包括支撑板,电池单体通过未设置电极端子的另一个第二表面与支撑板固定连接,第二方向与第一方向和水平面均相交。电池单体通过没有设置电极端子的一端与支撑板相连,从而固定于箱体内,以便对电池单体进行安装固定。
在本申请的一些实施方式中,另一个第二表面通过第一粘结层与支撑板固定连接;导热件通过第二粘结层与第一表面导热连接,第一粘结层的导热系数小于或等于第二粘结层的导热系数。由于第一粘结层用于连接第二表面和支撑板,而第二粘结层用于导热连接第一表面和导热件,故将第一粘结层的导热系数小于或等于第二粘结层的导热系数设置,以保证更加有效地通过导热件对电池单体进行换热。
在本申请的一些实施方式中,第一粘结层的导热系数与第二粘结层的导热系数的比值范围为0.1~1。按照上述比例设置,均能够有效地通过导热件对电池单体进行换热。
本申请的第二方面公开了一种用电设备,包括如上任一项所述的电池,电池用于提供电能驱动用电设备行走。
在本申请的一些实施方式中,在电池的长度方向与用电设备的行走方向不同的情况下,第一方向为用电设备的行走方向。将第一方向设定为用电设备的行走方向,当泄压机构设于第二表面时,电极端子可以沿竖直方向设置或沿用电设备的行走方向设置,从而当用电设备沿行走方向的侧向方向发生碰撞时不会撞击到电极端子,从而避免电极端子发生损坏,保证电池的正常供电,当电极端子设于第一表面时,由于第一表面为面积最大的表面,因此电极端子在第一表面上的占比小,当用电设备发生撞击时,不易撞击到电极端子,从而避免电极端子发生损坏,保证电池的正常供电。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本申请一实施方式提供的车辆的结构示意图;
图2是本申请一实施方式提供的电池的分解结构示意图;
图3是本申请一实施方式提供的电池组件的结构示意图;
图4是本申请一实施方式提供的电池单体的结构示意图;
图5是本申请一实施方式提供的电池单体的分解结构示意图;
图6是本申请一实施方式提供的电池单体的结构示意图;
图7是本申请一实施方式提供的电池单体的结构示意图
图8是本申请一实施方式提供的电池的结构示意图;
图9是本申请一实施方式提供的电池的分解结构示意图;
图10是本申请一实施方式提供的电池组件的结构示意图;
图11是本申请一实施方式提供的电池组件的结构示意图;
图12是本申请一实施方式提供的电池组件的结构示意图;
图13是本申请一实施方式提供的电池单体的结构示意图;
图14是本申请一实施方式提供的电池组件的结构示意图;
图15是本申请一实施方式提供的电池单体的结构示意图;
图16是本申请一实施方式提供的电池单体的结构示意图;
图17是本申请一实施方式提供的电池组件的结构示意图;
图18是本申请一实施方式提供的电池组件的结构示意图;
图19是本申请一实施方式提供的电池单体的结构示意图;
图20是本申请一实施方式提供的导热件的结构示意图;
图21是本申请一实施方式提供的第二部分的结构示意图;
图22是本申请一实施方式提供的第二部分与电池组件的装配结构示意图;
图23是本申请一实施方式提供的A部的放大结构示意图;
图24是本申请一实施方式提供的B-B剖面结构示意图;
图25是本申请一实施方式提供的C部的放大结构示意图;
图26是本申请一实施方式提供的第二部分的内部结构示意图;
图27是本申请一实施方式提供的D部的放大结构示意图;
图28是本申请一实施方式提供的用电设备上电池的分布结构示意图。
具体实施方式中的附图标号如下:
1:车辆;
10:电池、11:控制器、12:马达;
20:电池组件、21:电池单体、211:壳体、2111:第一表面、2112:第三表面、212:盖板、2121:第二表面、213:电极组件、2131:主体部、2132:极耳、214:电极端子、215:泄压机构;
30:箱体、31:第一部分、311:支撑板、32:第二部分、321:挡板;
40:导热件;
50:集流件;
61:第一粘结层、62:第二粘结层。
具体实施方式
下面将结合附图对本申请技术方案的实施方式进行详细的描述。以下实施方式仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施方式使用的技术术语或者科学术语应当为本申请实施方式所属领域技术人员所理解的通常意义。
在本申请实施方式的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施方式的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施方式的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施方式的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或 两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施方式中的具体含义。
在本申请实施方式的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。锂离子电池因能量密度高、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器中。
本申请的发明人注意到,电池内包括多个电池单体,电池单体上设有泄压机构。当车辆发生碰撞或其他原因导致电池单体内部压力或温度增大时,电池单体内的高压气体可通过泄压机构排出至电池单体的外部。然而由于泄压机构的设置位置问题,当车辆发生碰撞时容易撞击泄压机构,从而导致泄压机构的损坏,无法及时有效地排出电池单体内的高压气体,从而导致电池的进一步地损坏,并带来安全隐患。
为解决车辆发生撞击时导致电极端子损坏的问题,本申请的发明人经过深入研究,设计了一种电池,包括电池组件,电池组件包括至少一个电池单体,电池组件沿第一方向设置,第一方向为电池的长度方向或具有电池的用电设备的行走方向;电池单体包括多个表面,多个表面包括面积最大的第一表面;多个表面还包括沿第二方向相对设置的两个第二表面,第二方向与第一方向相交;电池单体上还包括泄压机构,泄压机构设于第一表面或其中一个第二表面。
根据本申请的电池,当泄压机构设于第二表面时,由于两个第二表面沿第二方向相对设置,且第二方向与第一方向相交,即泄压机构不会设于电池的长度方向的端部或用电设备行走方向的端部,当用电设备沿行走方向发生撞击时,不会撞击到泄压机构,从而避免泄压机构发生损坏,保证泄压机构的正常使用,当泄压机构设于第一表面时,由于第一表面为面积最大的表面,因此泄压机构在第一表面上的占比小,当用电设备发生撞击时,不易撞击到泄压机构,从而避免泄压机构发生损坏,保证泄压机构的正常使用。
本申请提供了一种电池及具有该电池的用电设备,该电池可适用于各种使用电池的用电设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池用于为上述用电设备提供电能。
应理解,本申请实施方式描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有包括箱体的电池以及使用电池的用电设备,但为描述简洁,下述实施方式均以电动车辆为例进行说明。
图1为本申请一些实施方式提供的车辆1的结构示意图。图2是本申请一实施方式提供的电池10的分解结构示意图。图3是本申请一实施方式提供的电池组件20的结构示意图。结合图1至图3所示,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。车辆1还可以包括控制器11和马达12,控制器11用来控制电池10为马达12供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施方式中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体21,电池单体21是指组成电池组件20或电池包的最小单元。多个电池单体21可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池10为电池包。其中,多个电池单体21之间可以串联或并联或混联,混联是指串联和并联的混合。本申请的实施方式中多个电池单体21可以直接组成电池包,也可以先组成电池组件20,电池组件20再组成电池包。
结合图2和图3所示,电池10可以包括多个电池组件20和箱体30,多个电池组件20容纳于箱体30内部。箱体30用于容纳电池单体21或电池组件20,以避免液体或其他异物影响电池单体21的充电或放电。箱体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施方式对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料,本申请实施方式对此也并不限定。
在一些实施方式中,箱体30可以包括第一部分31和第二部分32,第一部分31与第二部分32相互盖合,第一部分31和第二部分32共同限定出用于容纳电池单体21的空间。第二部分32可以为一端开口的空心结构,第一部分31可以为板状结构,第一部分31盖合于第二部分32的开口侧,以使第一部分31与第二部分32共同限定出容纳电池单体21的空间;第一部分31和第二部分32也可以是均为一侧开口的空心结构,第一部分31的开口侧盖合于第二部分32的开口侧。
电池组件20可以包括多个电池单体21,多个电池单体21可以先串联或并联或混联组成电池组件20,多个电池组件20再串联或并联或混联组成电池10。电池单体21可呈圆柱体、扁平体、长方体或其它形状等,本申请实施方式对此也不限定。电池单体21一般包括:柱形电芯、方壳电芯、软包电芯,以及多棱柱截面电芯等,本申请实施方式对此也不限定。但为描述简洁,下述实施方式均以方体方形的锂离子的电池单体21为例进行说明。
图4是本申请一实施方式提供的电池单体21的结构示意图;图5是本申请一实施方式提供的电池单体21的分解结构示意图。图6是本申请一实施方式提供的电池单体的结构示意图。图7是本申请一实施方式提供的电池单体的结构示意图。电池单体21是指组成电池10的最小单元。结合图4至图7所示,电池单体21包括有端盖212、壳体211和电极组件213。
端盖212是指盖合于壳体211的开口处以将电池单体21的内部环境隔绝于外部环境的部件。不限地,端盖212的形状可以与壳体211的形状相适应以配合壳体211。可选地,端盖212可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖212在受挤压碰撞时就不易发生形变,使电池单体21能够具备更高的结构强度,安全性能也可以有所提高。端盖212上可以设置有如电极端子214等的功能性部件。电极端子214可以用于与电极组件213电连接,以用于输出或输入电池单体21的电能。在一些实施方式中,端盖212上还可以设置有用于在电池单体21的内部压力或温度达到阈值时泄放内部压力的泄压机构215。在一些实施方式中,在端盖212的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体211内的电连接部件与端盖212,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体211是用于配合端盖212以形成电池单体21的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件213、电解液(在图中未示出)以及其他部件。壳体211和端盖212可以是独立的部件,可以于壳体211上设置开口,通过在开口处使端盖212盖合开口以形成电池单体21的内部环境。不限地,也可以使端盖212和壳体211一体化,具体地,端盖212和壳体211可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体211的内部时,再使端盖212盖合壳体211。壳体211可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体211的形状可以根据电极组件213的具体形状和尺寸大小来确定。壳体211的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施方式对此不作特殊限制。
电极组件213是电池单体21中发生电化学反应的部件。壳体211内可以包含一个或更多个电极组件213。电极组件213主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性材料的部分构成电极组件213的主体部,正极片和负极片不具有活性物质的部分各自构成极耳(在图中未示出)。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性材料和负极活性材料与电解液发生反应,极耳连接电极端子214以形成电流回路。
图8是本申请一实施方式提供的电池10的结构示意图;图9是本申请一实施方式提供的电池10的分解结构示意图。结合图3至图9所示,在本申请的一些实施方式中,电池10包括电池组件20,电池组件20包括至少一个电池单体21,电池组件20沿第一方向设置,第一方向为电池10的长度方向或具有电池10的用电设备的行走方向;电池单体21包括多个表面,多个表面包括面积最大的第一表面2111;多个表面还包括沿第二方向相对设置的两个第二表面2121,第二方向与第一方向和水平面均相交;电池单体21上还包括泄压机构215,泄压机构215设于第一表面2111或其中一个第二表面2121。
具体地,结合图1、图3、图4和图9所示,在本申请的一些实施方式中,电池单体21可以为方壳形的电池单体21,电池单体21包括沿第一方向相对设置的两个第一表面2111,沿第二方向相对设置的两个第二表面2121,还包括沿第三方向相对设置的两个第三表面2112。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第二表面2121时,即泄压机构215沿竖直方向设置,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
结合图1、图3、图7和图9所示,在本申请的一些实施方式中,电池单体21可以为方壳形的电池单体21,电池单体21包括沿第一方向相对设置的两个第一表面2111,沿第二方向相对设置的两个第二表面2121,还包括沿第三方向相对设置的两个第三表面2112。其中,第一表面2111上设有泄压机构 215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第一表面2111时,由于第一表面2111为面积最大的表面,因此泄压机构215在第一表面2111上的占比小,当用电设备1发生撞击时,不易撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图10是本申请一实施方式提供的电池组件20的结构示意图。结合图1、图4、图9和图10所示,在本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第三方向相对设置的两个第一表面2111,沿第二方向相对设置的两个第二表面2121,还包括沿第一方向相对设置的两个第三表面2112。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第二表面2121时,即泄压机构215沿竖直方向设置,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
结合图1、图7、图9和图10所示,在本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第三方向相对设置的两个第一表面2111,沿第二方向相对设置的两个第二表面2121,还包括沿第一方向相对设置的两个第三表面2112。其中,第一表面2111上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第一表面2111时,由于第一表面2111为面积最大的表面,因此泄压机构215在第一表面2111上的占比小,当用电设备1发生撞击时,不易撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图11是本申请一实施方式提供的电池组件20的结构示意图。结合图1、图4、图9和图11所示,在本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第二方向相对设置的两个第一表面2111,沿第一方向相对设置的两个第二表面2121,还包括沿第三方向相对设置的两个第三表面2112。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第二表面2121时,即泄压机构215设于电池10的长度方向的端部或用电设备1行走方向的端部,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图12是本申请一实施方式提供的电池组件20的结构示意图;图13是本申请一实施方式提供的电池单体21的结构示意图。结合图1、图9、图12、和图13所示,本申请的一些实施方式中,电池单体21为圆柱形的电池单体21,至少两个电池单体21沿第一方向排列并形成电池组件20。电池单体21包括一个圆柱形的第一表面2111,以及沿第二方向相对设置的两个第二表面2121。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向。
当泄压机构215设于第二表面2121时,即泄压机构215沿竖直方向设置,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图14是本申请一实施方式提供的电池组件20的结构示意图;图15是本申请一实施方式提供的电池单体的结构示意图,图16是本申请一实施方式提供的电池单体的结构示意图。结合图1、图9、图14、图15和图16所示,本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第三方向相对设置的两个第一表面2111,沿第一方向相对设置的两个第二表面2121,还包括沿第二方向相对设置的两个第三表面2112。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第二表面2121时,即泄压机构215设于电池10的长度方向的端部或用电设备1行走方向的端部,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图17是本申请一实施方式提供的电池组件的结构示意图。结合图1、图9、图15和图17所示,本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第二方向相对设置的两个第一表面2111,沿第一方向相对设置的两个第二表面2121,还包括沿第三方向相对设置的两个第三表面2112。其中,第二表面2121上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为电池10的宽度方向或用电设备1的侧向方向,第三方向为竖直方向。
当泄压机构215设于第二表面2121时,即泄压机构215设于电池10的长度方向的端部或用电设备1行走方向的端部,当用电设备1沿行走方向的侧向方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
图18是本申请一实施方式提供的电池组件的结构示意图;图19是本申请一实施方式提供的电池单体的结构示意图。结合图1、图9、图18和图19所示,本申请的一些实施方式中,电池单体21为方壳形的电池单体21。电池单体21包括沿第三方向相对设置的两个第一表面2111,沿第二方向相对设置的两个第二表面2121,还包括沿第一方向相对设置的两个第三表面2112。其中,第一表面2111上设有泄压机构215。第一方向为电池10的长度方向或用电设备1的行走方向,第二方向为竖直方向,第三方向为电池10的宽度方向或用电设备1的侧向方向。
当泄压机构215设于第一表面2111时,由于第一表面2111为面积最大的表面,因此泄压机构215在第一表面2111上的占比小,当用电设备1发生撞击时,不易撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
根据本申请的电池10,当泄压机构215设于第二表面2121时,泄压机构215可以沿竖直方向设置或沿用电设备1的行走方向设置,从而当用电设备1沿行走方向的侧向方向发生碰撞时不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证电池10的正常供电,当泄压机构215设于第一表面2111时,由于第一表面2111为面积最大的表面,因此泄压机构215在第一表面2111上的占比小,当用电设备1发生撞击时,不易撞击到泄压机构215,从而避免泄压机构215发生损坏,保证电池10的正常供电。
结合图3和图4所示,在本申请的一些实施方式中,第一表面2111与水平面相交。
具体地,在本申请的一些实施方式中,第一表面2111可沿竖直方向设置。
结合图4和图10所示,在本申请的一些实施方式中,第一表面2111与水平面相交。
结合图12和图13所示,在本申请的一些实施方式中,第一表面2111与水平面相交。
结合图14和图15所示,在本申请的一些实施方式中,第一表面2111与水平面相交。
结合图18和图19所示,在本申请的一些实施方式中,第一表面2111与水平面相交。
由于第一表面2111为电池单体21的面积最大的表面,将第一表面2111与水平面相交,可最大限度地提升水平面内电池单体21的布置数量,从而提升电池10的整体能量密度。
图20是本申请一实施方式提供的导热件40的结构示意图。结合图4、图9、图10和图20所示,在本申请的一些实施方式中,还包括导热件40,导热件40沿第一方向设置;电池组件20的每个电池单体21至少通过第一表面2111与导热件40导热连接。
具体地,导热件40能够与电池单体21导热连接,通过将电池单体21的热量传导至导热件40上,从而实现对电池单体21的换热。其中,对电池单体21的换热包括对电池单体21的冷却散热,或对电池单体21的加热。导热件40可以采用导热板、导热胶或导热结构,在一些实施例中导热板可以采用金属板,如铜板、铝板等,或者其他导热系数比较好的材料。在一些实施例中,导热件内部还可设置空腔。在本申请的一些实施方式中,导热件40为导热板。由于第一表面2111与导热件40导热连接,且第一表面2111与水平面相交,因此,导热件40同样与水平面相交。在本申请的一些实施方式中,导热件40沿竖直方向设置并沿第一方向延伸。
结合图4、图9、图10和图20所示,导热件40沿第一方向设置并与水平面相交,电池单体21通过第一表面2111与导热件40导热连接。
结合图9、图12、图13和图20所示,在本申请的一些实施方式中导热件40沿第一方向设置并与水平面相交,电池单体21通过第一表面2111与导热件40导热连接。
结合图9、图18、图19和图20所示,在本申请的一些实施方式中,导热件40沿第一方向设置并与水平面相交,电池单体21通过第一表面2111与导热件40导热连接。
将导热件40沿第一方向设置,能够通过导热件40对电池组件20内的任一电池单体21进行换热,同时当用电设备1沿侧向方向发生碰撞时,冲击力不会直接作用于导热件40的端部,将电池单体21通过第一表面2111与导热件40导热连接,能够最大限度地保证导热件40与电池单体21的接触面积,从而保证导热件40对电池单体21的换热效果。
图21是本申请一实施方式提供的第二部分32的结构示意图;图22是本申请一实施方式提供的第二部分32与电池组件20的装配结构示意图;图23是本申请一实施方式提供的A部的放大结构示意图。结合图4、图10、图21、图22和图23所示,在本申请的一些实施方式中,电池10包括至少两个电池组件20;沿第三方向,导热件40的两侧分别与两个电池组件20导热连接;第三方向与第一方向和第一表面2111均相交。
具体地,导热件40设于两个电池组件20之间,并与两个电池组件20分别导热连接。其中,第三方向为电池10的宽度方向或用电设备1的行走方向的侧向方向。通过将导热件40的两侧分别与电池单体21的第一表面2111导热连接,从而提高导热件40对电池单体21的换热效果。
结合图12、图13、图21、图22和图23所示,在本申请的一些实施方式中,电池10包括至少两个电池组件20;沿第三方向,导热件40的两侧分别与两个电池组件20导热连接;第三方向与第一方向和第一表面2111均相交。
结合图1和图22所示,在本申请的一些实施方式中,电池10的长度方向与用电设备1的行走方向平行或者相交。
具体地,在本申请的一些实施方式中,可以将电池10的长度方向与用电设备1的行走方向平行设置,从而当导热件40沿电池10的长度方向设置时,导热件40的两端分别设于电池10的长度方向的两端,即分别设于用电设备1的行走方向的两端,当用电设备1沿侧向方向发生碰撞时,冲击力不会直接作用于导热件40的端部,从而防止导热件40的损坏,保证电池10使用的安全性和可靠性。
在本申请的一些实施方式中,也可以将电池10的长度方向与用电设备1的行走方向成夹角设置,同样能够通过电池10对用电设备1进行供电,从而便于电池10位置的设置。
结合图20至图23所示,在本申请的一些实施方式中,导热件40内设有换热介质通道。
换热介质通道用于流通换热介质,从而通过换热介质的流动将带走电池单体21散发的热量,或者给电池单体21加热,进而提升电池单体21的换热效率。其中,换热介质可以为换热液,具体可采用油液或水液。
图24是本申请一实施方式提供的B-B剖面结构示意图;图25是本申请一实施方式提供的C部的放大结构示意图。结合图4、图10、图23、图23、图24和图25所示,在本申请的一些实施方式中,电池10包括多个导热件40,多个导热件40沿第三方向排列,第三方向与第一方向和第一表面2111均相交。
结合图12、图13、图22、图23、图24和图25所示,在本申请的一些实施方式中,电池10包括多个导热件40,多个导热件40沿第三方向排列,第三方向与第一方向和第一表面2111均相交。
结合图18、图19、图22、图23、图24和图25所示,在本申请的一些实施方式中,电池10包括多个导热件40,多个导热件40沿第三方向排列,第三方向与第一方向和第一表面2111均相交。
具体地,第一方向为电池10的长度方向,第三方向为电池10的宽度方向,将多个导热件40沿第三方向排列,通过多个导热件40分别与电池单体21的第一表面2111导热连接,共同用于对电池10进行散热,有效地提高对电池10的换热速度。
结合图4、图10、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池组件20的两侧分别设有导热件40;电池组件20与两侧的导热件40导热连接。
结合图12、图13、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池组件20的两侧分别设有导热件40;电池组件20与两侧的导热件40导热连接。
结合图14、图15、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池组件20的两侧分别设有导热件40;电池组件20与两侧的导热件40导热连接。
结合图18、图19、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池组件20的两侧分别设有导热件40;电池组件20与两侧的导热件40导热连接。
通过将电池组件20的两侧同时与导热件40导热连接,通过电池组件20的两侧同时进行散热,有效地提高对电池1的换热速度。
结合图4、图10、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池单体21包括两个相对的第一表面2111,电池单体21的两个第一表面2111分别与一个导热件40导热连接。
结合图14、图15、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第三方向,电池单体21包括两个相对的第一表面2111,电池单体21的两个第一表面2111分别与一个导热件40导热连接。
在电池单体21具有两个最大面积的第一表面2111时,通过对两个第一表面2111同时进行散热,有效地提高对电池10的换热速度。
结合图4、图5、图10、图24和图25所示,在本申请的一些实施方式中,电池单体21包括电极组件213,电极组件213包括主体部2131和凸出于主体部2131的极耳2132,极耳2132与电极端子214电连接,沿第三方向,导热件40和主体部2131的投影至少部分重合,第三方向与第一方向和第一表面2111均相交。
具体地,导热件40沿第一方向延伸设置,并沿第三方向设于电池单体21的侧面。其中,第一方向为电池单体21的长度方向,第三方向为电池单体21的宽度方向。
结合图12、图13、图24和图25所示,在本申请的一些实施方式中,电池单体21包括电极组件213,电极组件213包括主体部2131和凸出于主体部2131的极耳2132,极耳2132与电极端子214电连接,沿第三方向,导热件40和主体部2131的投影至少部分重合,第三方向与第一方向和第一表面2111均相交。
具体地,导热件40沿第一方向延伸设置,并沿第三方向设于电池单体21的侧面。其中,第一方向为用电设备1的行走方向,第三方向为电池单体21的径向方向。
结合图14、图15、图22、图23、图24和图25所示,在本申请的一些实施方式中,电池单体21包括电极组件213,电极组件213包括主体部2131和凸出于主体部2131的极耳2132,极耳2132与电极端子214电连接,沿第三方向,导热件40和主体部2131的投影至少部分重合,第三方向与第一方向和第一表面2111均相交。
具体地,导热件40沿第一方向延伸设置,并沿第三方向设于电池单体21的侧面。其中,第一方向为电池单体21的长度方向,第三方向为电池单体21的宽度方向。
结合图18、图19、图24和图25所示,在本申请的一些实施方式中,电池单体21包括电极组件213,电极组件213包括主体部2131和凸出于主体部2131的极耳2132,极耳2132与电极端子214电连接,沿第三方向,导热件40和主体部2131的投影至少部分重合,第三方向与第一方向和第一表面2111均相交。
具体地,导热件40沿第一方向延伸设置,并沿第三方向设于电池单体21的侧面。其中,第一方向为用电设备1的行走方向,第三方向为用电设备1的侧向方向。
通过将导热件40和主体部沿第二方向至少部分重合设置,能够通过导热件40有效地对主体部进行换热,从而保证对电池10的换热效果。
结合图4、图5、图10、图24和图25所示,在本申请的一些实施方式中,沿第二方向,主体部2131的尺寸为L1,导热件40的尺寸为L2,0.5≤L2/L1≤1.5,其中,第一方向、第二方向和第三方向两两相交。
具体地,第一方向为电池单体21的长度方向,第二方向为电池单体21的高度方向。
结合图12、图13、图24和图25所示,在本申请的一些实施方式中,沿第二方向,主体部2131的尺寸为L1,导热件40的尺寸为L2,0.5≤L2/L1≤1.5,其中,第一方向、第二方向和第三方向两两相交。
具体地,第一方向为用电设备1的行走方向,第二方向为电池单体21的高度方向。
结合图14、图15、图22、图23、图24和图25所示,在本申请的一些实施方式中,沿第二方向,主体部2131的尺寸为L1,导热件40的尺寸为L2,0.5≤L2/L1≤1.5,其中,第一方向、第二方向和第三方向两两相交。
具体地,第一方向为电池单体21的长度方向,第二方向为电池单体21的高度方向。
结合图18、图19、图24和图25所示,在本申请的一些实施方式中,在本申请的一些实施方式中,沿第二方向,主体部2131的尺寸为L1,导热件40的尺寸为L2,0.5≤L2/L1≤1.5,其中,第一方向、第二方向和第三方向两两相交。
具体地,第一方向为电池单体21的长度方向,第二方向为电池单体21的高度方向。
将L2/L1范围值设定为大于0.5且小于1.5,保证导热件40具有足够的导热面积,从而与主体部2131间进行热交换,极大地增强导热件40对主体部2131的换热效果。
需要理解的是,当L2/L1小于0.5时导热件40的尺寸过小,无法对电池单体21进行有效换热;当L2/L1大于1.5时,导热件40的尺寸较大,易于占用电池10的空间,不利于提高电池10的空间利用率。
需要指出的是,在本申请的一些实施方式中,L2/L1的取值可以0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4……1.5。
结合图4、图5、图10、图24和图25所示,在本申请的一些实施方式中,沿第二方向,重合区域的尺寸为L3,0.5≤L3/L1≤1。
通过对重合区域在第二方向尺寸的设定,从而能够使得导热件40与主体部2131之间的换热面积得到合理设定,能够极大地增强导热件40对主体部2131的换热效果。
需要理解的是,当L3/L1小于0.5时,导热件40与主体部2131的重合面积过小,使得导热件40对电池单体21的换热效果变差,无法有效保证对电池单体21的散热。
需要指出的是,在本申请的一些实施方式中,L3/L1的取值可以为0.5、0.6、0.7、0.8、0.9……1。
结合图22和图23所示,在本申请的一些实施方式中,电池10还包括集流件50,集流件50与多个导热件40流体连通;
其中,导热件40位于第一方向的一端设有集流件50,或,导热件40位于第一方向的两端分别设有集流件50。集流件50用于供给或回收换热介质通道内的换热介质,从而用于与电池10换热。
具体地,由于多个导热件40分别沿电池10的长度方向设置或沿用电设备1的行走方向设置,为了便于通过集流件50分别与多个导热件40流体连通,故将集流件50设于电池10的长度方向的一端或用电设备1行走方向的端部,并根据实际需要将集流件50设置于一端或两端。
将集流件50设于导热件40的第一方向的端部,当用电设备1沿侧向方向发生碰撞时,冲击力不会直接作用于用电设备1行走方向的端部的集流件50,及从而防止集流件50的损坏,保证电池10使用的安全性和可靠性。
结合图22和图23所示,在本申请的一些实施方式中,集流件50为两个,两个集流件50设于导热件40的位于第一方向的一端,两个集流件50沿第二方向排布,第二方向与第一方向和水平面均相交。
具体地,在本申请的一些实施方式中,第二方向可以为竖直方向,即将两个集流件50沿竖直方向间隔设置。其中,两个集流件50可以分别为进水集流件和出水集流件。
将两个集流件50共同设于第一方向的一端,且沿第二方向排布,可有效地减小集流件50沿第一方向在电池10内的占用空间,从而便于在电池10内设置其他结构,提高电池的能量密度;两个集流件共同设于第一方向的一端,还可以降低面临第一方向的碰撞时集流件损坏的机率。
结合图4和图10所示,在本申请的一些实施方式中,电池单体21包括电极端子214,电极端子214为至少一个,泄压机构215与至少一个电极端子214设在同一个第二表面2121上,或者泄压机构215与电极端子214分别设在两个第二表面215上。
具体地,结合图4和图10所示,泄压机构215与两个电极端子214沿第二方向共同设在同一个第二表面2121上,其中第二方向为竖直方向。在本申请的一些实施方式中,泄压机构215沿第二方向设在一个第二表面2121上,两个电极端子214沿第二方向分别设在另一个第二表面2121上,或,两个电极端子214分别沿第二方向设在两个第二表面2121上,泄压机构215与其中一个电极端子214共同设其中一个第二表面2121上。
结合图12和图13所示,其中一个第二表面2121上凸出设有电极端子214,泄压机构215与一个凸出设置的电极端子214共同设于第二表面2121上,或者,其中一个第二表面2121上凸出设有电极端子214,另一个无电极端子214凸出设置的第二表面2121上设有泄压机构215。
结合图14和图15所示,两个电极端子214分别沿第一方向设在两个第二表面2121上,泄压机构215与其中一个电极端子214共同设其中一个第二表面上,其中,第一方向为电池10的长度方向或用电设备1的行走方向。或者,泄压机构215沿第一方向设在一个第二表面2121上,两个电极端子214沿第一方向共同设在另一个第二表面2121上,或,两个电极端子214和泄压机构215共同设其中一个第二表面2121上。
泄压机构215与电池单体21的内部相连通,用于当电池单体21的内部压力增大时排出其内部的压力。泄压机构215可根据需要与电极端子214设于同一个第二表面2121上,或分别设于两个第二表面2121上,从而使泄压机构215避开与导热件40换热的第一表面2111,便于电池单体21在发生热失控的情况下,泄压机构215顺利排气。
结合图3和图4所示,在本申请的一些实施方式中,电极端子214包括极性相反的两个电极端子214;两个电极端子214设在一个第二表面2121上,或者两个电极端子214分别设在两个第二表面上。
具体地,结合图3和图4所示,电池单体21包括两个电极端子214,且两个电极端子214共同沿第二方向设于同一个第二表面2121上。其中,第二方向可以为竖直方向。在本申请的一些实施方式中,两个电极端子214也可以分别设在两个第二表面2121上。
结合图4和图10所示,电池单体21包括两个电极端子214,且两个电极端子214共同沿第二方向设于同一个第二表面2121上。其中,第二方向可以为竖直方向。在本申请的一些实施方式中,两个电极端子214也可以分别设在两个第二表面2121上。
结合图4和图11所示,电池单体21包括两个电极端子214,且两个电极端子214共同沿第一方向设于同一个第二表面2121上。其中,第一方向为电池10的长度方向或用电设备1的行走方向。在本申请的一些实施方式中,两个电极端子214也可以分别设在两个第二表面2121上。
结合图12和图13所示,电池单体21包括两个电极端子214,且两个电极端子214沿第二方向分别设于两个第二表面2121上,其中,一个电极端子214与电池单体21的端面相平齐,电池单体21的端部即为电极端子214。其中,第二方向为竖直方向。
结合图14和图15所示,电池单体21包括两个电极端子214,且两个电极端子214沿第一方向分 别设于两个第二表面2121上。其中,第一方向为电池10的长度方向或用电设备1的行走方向。或者,两个电极端子214也可以分别设在两个第二表面2121上。
结合图15和图17所示,电池单体21包括两个电极端子214,且两个电极端子214沿第一方向分别设于两个第二表面2121上。其中,第一方向为电池10的长度方向或用电设备1的行走方向。或者,两个电极端子214也可以分别设在两个第二表面2121上。
将两个极性相反的电极端子214根据需要设于电池单体21的同一个第二表面2121上,或分别设于两个第二表面2121上,使电极端子214避开与导热件40换热的第一表面2111,便于后续与其他相邻的电池单体21电连接。
结合图1、图18和图19所示,在本申请的一些实施方式中,电极端子214设在第一表面2111上。
具体地,电池单体21包括两个电极端子214,两个电极端子214共同设在第一表面2111上。其中,电池单体21的长度方向沿第一方向设置,电池单体21包括沿第三方向相对设置的两个第一表面2111,两个电极端子214共同设于其中一个第一表面2111上。其中,第一方向为水平方向。
将电极端子214设在第一表面2111上,可以节省电池10沿第二方向占用的空间,进而提升电池10的能量密度。
结合图18和图19所示,在本申请的一些实施方式中,电池单体21包括第一表面2111和与第一表面2111相对设置的第四表面,第一表面2111和第四表面沿第三方向相对设置,第三方向与第一方向和第一表面2111均相交;第四表面的边缘设有凹部;第一表面2111用于设置电极端子214;电极端子214在第三方向上凸出设置于第一表面2111,并且与凹部对应。
具体地,结合图1、图18和图19所示,电池单体21的长度方向沿第一方向设置,电池单体21包括沿第三方向相对设置的第一表面2111和第四表面,第四表面的边缘的设有凹部;第一表面2111用于设置电极端子214。
将电极端子214设于第一表面2111上,并在第四表面的边缘设有与电极端子2111相对应的凹部,从而通过凹部容纳相邻电池单体21的电极端子214,留出电连接的操作空间,使得电池10整体结构更紧凑,空间利用率高。
结合图1、图6和图10所示,在本申请的一些实施方式中,多个表面还包括沿第一方向相对设置的两个第三表面2112,第一方向、第二方向和第三方向两两相交,电极端子214包括极性相反的两个电极端子214;两个电极端子214分别设在两个第三表面2112上。在本申请的一些实施方式中,两个电极端子214也可以共同设于同一个第三表面2112上。
结合图1、图14和图16所示,在本申请的一些实施方式中,多个表面还包括沿第二方向相对设置的两个第三表面2112,第一方向、第二方向和第三方向两两相交,电极端子214包括极性相反的两个电极端子214;两个电极端子214分别设在两个第三表面2112上。在本申请的一些实施方式中,两个电极端子214也可以共同设于同一个第三表面2112上。
将两个极性相反的电极端子214根据需要设于电池单体21的同一个第三表面2112上,或分别设于两个第三表面2112上,从而便于对电池单体21进行安装。
结合图4、图5和图10所示,在本申请的一些实施方式中,电池单体21包括电极组件213;电极组件213为卷绕式结构且为扁平状,电极组件213的外表面包括两个扁平面,两个扁平面沿第三方向相互面对;或,电极组件213为叠片式结构,电极组件213的第一极片、隔膜和第二极片沿第三方向层叠;第三方向与第一方向和第一表面均相交。
通过将将电极组件213设置为叠片式结构或卷绕式结构,均能够通过电极组件213对用电设备1进行有效供电。
结合图3、图4和图9所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。
结合图4、图9和图10所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。
结合图4、图9和图11所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。需要说明的是,附图11中沿第一方向仅例出了一个电池单体21。
结合图9、图12和图13所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。
结合图9、图14和图15所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。需要说明的是,附图14中沿第一方向仅例出了一个电池单 体21。
结合图9、图15和图17所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。需要说明的是,附图17中沿第一方向仅例出了一个电池单体21。
结合图9、图18和图19所示,在本申请的一些实施方式中,电池组件20包括至少两个电池单体21,至少两个电池单体21沿第一方向排列。需要说明的是,附图18中沿第一方向仅例出了一个电池单体21。
结合图4、图10、图12、图13、图18和图19所示,在本申请的一些实施方式中,沿第一方向,电池单体21的最大尺寸为L,沿第二方向,电池单体21的最大尺寸为H,L/H范围值为0.5~6。
其中,当电池单体21如图4或图19所示时,L/H具有最大尺寸比6,当电池单体21如图13所示时,L/H具有最小尺寸比0.5。
当L/H的尺寸比大于6时,则会导致电池单体21沿第一方向的尺寸过大,从而不便安装,同时降低电池单体21的支撑强度。当L/H的尺寸比小于0.5时,则会导致电池单体21沿第二方向的尺寸过大,从而不便安装,同时降低电池单体21的支撑强度。
需要指出的是,L/H的取值可以为0.5、1、1.5、2、2.5、3、3.5、4…5、5.5…6。通过L/H设定不同的值,从而能给使得电池单体21具有不同的形状,进而满足不同型号的电池10的需求。
电池单体21的最大尺寸H同时包括壳体211的尺寸,以及凸出壳体211设置的电极端子214的尺寸。电池单体21的按照上述尺寸比例设置,能够在保证电池单体21支撑强度的基础上,最大限度地提升电池单体21的电量,同时便于电池单体21的安装。
结合图4、图10、图12、图13、图18和图19所示,在本申请的一些实施方式中,沿第三方向,电池单体21的最大尺寸为D,其中,L/D范围值为1~30;第一方向、第二方向和第三方向两两相交。
当L/D的尺寸比大于30时,则会导致电池单体21沿第一方向的尺寸过大,从而不便安装,同时降低电池单体21的支撑强度。当L/D的尺寸比小于1时,则会导致电池单体21沿第一方向的尺寸过小,从而降低电池单体21的电量。
需要指出的是,L/D的取值可以为1、2、3、4、5、6、7、8…10…15…20…25…28…30。通过L/D设定不同的值,从而能给使得电池单体21具有不同的形状,进而满足不同型号的电池10的需求。
其中,当电池单体21如图4或图17所示时,L/D具有最大尺寸比30,当电池单体21如图11所示时,L/D具有最小尺寸比1。电池单体21的按照上述尺寸比例设置,能够在保证电池单体21支撑强度的基础上,最大限度地提升电池单体21的电量。
图26是本申请一实施方式提供的第二部分32的内部结构示意图;图27是本申请一实施方式提供的D部的放大结构示意图。结合图4、图10、图24、图25、图26和图27所示,在本申请的一些实施方式中,电池10还包括挡板321,挡板321沿第二方向与电池单体21设有电极端子214的第二表面2121相对设置,电极端子214与挡板321的间隔为1.2mm~25mm,第二方向与第一方向和水平面均相交。
具体地,挡板321可以为箱体30本身的一部分结构,或挡板321与箱体30相连并设于箱体30内。第二方向可以为竖直方向。
结合图12、图13、图24、图25、图26和图27所示,在本申请的一些实施方式中,电池21还包括挡板321,挡板321沿第二方向与电池单体21凸出设有电极端子214的第二表面2121相对设置,电极端子214与挡板321的间隔为1.2mm~25mm,第二方向与第一方向和水平面均相交。
当电极端子214与挡板321的间隔为小于1.2mm时,则容易导致电机端子214撞击挡板,从而导致电极端子214的损坏。当电极端子214与挡板321的间隔为大于25mm时,则会造成电池10的尺寸过大,不便于电池10的安装设置。
将挡板321与电极端子214间隔1.2mm~25mm设置,能够防止电池10沿第二方向发生撞击时,挡板321与电极端子214相撞击,从而导致电极端子214的损坏。
需要指出的是,挡板321与电极端子214间的间隔尺寸可以为1.2、1.5、1.8、2、3、4、5、6、7、8…10…15…20…23、24、25mm。
结合图1、图4、图10、图24、图25、图26和图27所示,在本申请的一些实施方式中,至少一个电极端子214位于电池单体21的下方,挡板321位于电极端子214的下方;或者,至少一个电极端子214位于电池单体21的上方,挡板321位于电极端子214的上方。
具体地,电极端子214和挡板321共同沿第二方向设置,且挡板321位于电池单体21的下方,即挡板321相较于电极端子214更加靠近第二部分32设置。其中,第二方向可以为竖直方向,两个电极端子214可共同设于电池单体21的下方,或其中一个设于电池单体21的下方,另一个设于电池单体 21的上方。或电极端子214和挡板321共同沿第二方向设置,且挡板321位于电池单体21的上方,即挡板321相较于电极端子214更加靠近第一部分31设置,其中,两个电极端子214可共同设于电池单体21的上方,或其中一个设于电池单体21的下方,另一个设于电池单体1的上方。
结合图1、图12、图13、图24、图25、图26和图27所示,在本申请的一些实施方式中,其中凸出设置的电极端子214位于电池单体21的下方,挡板321位于电极端子214的下方;或,凸出设置的电极端子214位于电池单体21的上方,挡板321位于电极端子214的上方。
通过将挡板321沿第二方向设于电极端子214的下方,或沿第二方向设于电极端子214的上方,以便根据实际安装位置进行合理的布置。
结合图4、图9、图10、图24和图25所示,在本申请的一些实施方式中,电极端子214和泄压机构215设在一个第二表面2121上;电池10包括支撑板311,电池单体21通过未设置电极端子214的另一个第二表面2121与支撑板311固定连接,第二方向与第一方向和水平面均相交。
具体地,支撑板311可以为箱体30本身的一部分结构,或支撑板311与箱体30相连并设于箱体30内。其中,支撑板311可设置在第一部分31或第二部分32。
结合图4、图10、图24和图25所示,俩个电极端子214可共同沿第二方向设于电池单体21的其中一个第二表面2121上,另一个没有电极端子214的第二表面2121与支撑板311固定连接,从而将电池单体21固定设于箱体30内。
结合图12、图13、图24和图25所示,电极端子214凸出设于其中一个第二表面2121上,另一个没有凸出设置电极端子214的第二表面2121与支撑板311固定连接。
将电池单体21通过支撑板311固定于箱体30内,以便对电池单体21进行安装固定。
结合图4、图10、图24和图25所示,在本申请的一些实施方式中,另一个第二表面2121通过第一粘结层61与支撑板311固定连接;导热件40通过第二粘结层62与第一表面2111导热连接,第一粘结层61的导热系数小于或等于第二粘结层62的导热系数。
具体地,没有设置电极端子214的表面与通过第一粘结层61与支撑板311固定连接。
结合图12、图13、图24和图25所示,在本申请的一些实施方式中,没有电极端子214凸出设置的第二表面2121通过第一粘结层61与支撑板311固定连接,导热件40通过第二粘结层62与第一表面2111导热连接。其中,第一粘结层61和第二粘结层62分别可选用导热型聚氨酯胶粘剂层,并在其中添加不同份量的导热颗粒,从而达到不同的导热系数。
由于第一粘结层61用于连接第二表面2121和支撑板311,而第二粘结层62用于导热连接第一表面2111和导热件40,故将第一粘结层61的导热系数小于或等于第二粘结层62的导热系数设置,以保证更加有效地通过导热件40对电池单体21进行换热。
结合图24和图25所示,在本申请的一些实施方式中,第一粘结层61的导热系数与第二粘结层62的导热系数的比值范围为0.1~1。
具体地,按照上述比例设置,均能够有效地通过导热件40对电池单体21进行换热。
需要理解的是,当第一粘结层61的导热系数与第二粘结层62的导热系数的比值小于0.1时,第一粘结层61的导热能力较差,与第一粘结层61相连的支撑板311的无法通过第一粘结层61的一侧进行热传递,从而无法对支撑板311进行换热。当第一粘结层61的导热系数与第二粘结层62的导热系数的比值大于1时,第一粘结层61的导热能力强于第二粘结层62,电池单体21通过导热件40进行换热的能力被削弱,会导致电池单体21的换热效果变差。
需要指出的是,第一粘结层61的导热系数与第二粘结层62的导热系数的比值可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9……1。
结合图1至图27所,本申请第二方面提出了一种用电设备1,包括上述任一项的电池10,电池用10于提供电能驱动用电设备1行走。
图28是本申请一实施方式提供的用电设备1上电池10的分布结构示意图。结合图1至图28所示,在本申请的一些实施方式中,在电池10的长度方向与用电设备1的行走方向不同的情况下,第一方向为用电设备1的行走方向。
在一些实施例中,电池10的长度方向可以与用电设备1的行走方向相垂直,例如,在用电设备1的行走方向上可以布置1个或者多个电池10,在布置多个电池10时,至少一个电池10的长度方向与用电设备1的行走方向相垂直。在这种实施例中,第一方向为用电设备1的行走方向,也就是说,在长度方向与用电设备1的行走方向相垂直的电池10中,电池组件20和导热件40沿电池10的宽度方向布置,与用电设备1的行走方向一致。
本申请的用电设备1可以为手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动 车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
将第一方向设定为用电设备1的行走方向,当泄压机构215设于第二表面2121时,由于两个第二表面2121沿第二方向相对设置,且第二方向与第一方向相交,即泄压机构215不会设于用电设备1行走方向的端部,当用电设备1沿行走方向发生撞击时,不会撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用,当泄压机构215设于第一表面2111时,由于第一表面2111为面积最大的表面,因此泄压机构215在第一表面2111上的占比小,当用电设备1发生撞击时,不易撞击到泄压机构215,从而避免泄压机构215发生损坏,保证泄压机构215的正常使用。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
结合图1、图4、图5、图9、图10、图20至图27所示,在本申请的一实施方式中,用电设备1包括电池10,电池10用于提供电能驱动用电设备1行走。电池10包括箱体30以及设于箱体30内的多个电池组件20,箱体30包括第一部分31和第二部分32,第一部分31和第二部分32合围成用于容纳电池组件20的空间。多个电池组件20分别沿第一方向设置,并沿第三方向排列。电池组件20包括多个电池单体21,电池单体21的长度方向沿第一方向设置,电池单体21的高度方向沿第二方向设置,电池单体21的宽度方向沿第三方向设置。电池单体21包括沿第一方向相对设置的两个第三表面2112,沿第二方向相对设置的两个第二表面2121,沿第三方向相对设置的两个第一表面2111,第一表面2111为电池单体21面积最大的面。其中,第一方向为用电设备1的行走方向,电池10的长度方向与用电设备1的行走方向平行,第二方向为竖直方向,第三方向用电设备1的行走方向的侧向方向。
电池单体21包括电极组件213,电极组件213包括主体部2131和凸出于主体部2131的极耳2132,极耳2132与电极端子214电连接,沿第三方向,导热件40和主体部2131的投影至少部分重合且具有重合区域。沿第二方向,主体部2131的尺寸为L1,导热件40的尺寸为L2,重合区域的尺寸为L3,0.5≤L2/L1≤1.5,0.5≤L3/L1≤1。
电池单体21包括极性相反的两个电极端子214;两个电极端子214设在一个第二表面2121上。电池单体21还包括泄压机构215;泄压机构215与两个电极端子214设在同一个第二表面2121上。沿第一方向,电池单体21的最大尺寸为L,沿第二方向,电池单体21的最大尺寸为H,L/H范围值为0.5~6。沿第三方向,电池单体21的最大尺寸为D,其中,L/D范围值为1~30。电池10还包括挡板321,挡板321设于第二部分32。挡板321沿第二方向与电池单体21设有电极端子214的第二表面2121相对设置,电极端子214位于电池单体21的下方,挡板214位于电极端子214的下方,电极端子214与挡板321的间隔尺寸为1.2mm~25m。
箱体30内还设有多个导热件40,导热件40沿第一方向设置,多个导热件40沿第三方向排列。电池组件20沿第三方向的两侧分别设有导热件40,且沿第三方向的两侧的第一表面2111分别导热件40导热连接。导热件40内设有换热介质通道。电池10还包括集流件50,集流件50沿第三方向延伸设置,并与多个导热件40流体连通。集流件50的数量为两个,两个集流件50共同设于用电设备1行走方向的一端,且沿第二方向间隔排布。
箱体30内还设有支撑板311,支撑板311设于第一部分31,电池单体21通过没有设置电极端子214的第二表面2121与支撑板311固定连接。没有设置电极端子214的第二表面2121通过第一粘结层61与支撑板311固定连接;导热件40通过第二粘结层62与第一表面2111导热连接,第一粘结层61的导热系数与第二粘结层62的导热系数的比值范围为0.1~1。
最后应说明的是:以上各实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施方式中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。

Claims (31)

  1. 一种电池,其特征在于,包括:
    电池组件(20),所述电池组件(20)包括至少一个电池单体(21),所述电池组件(20)沿第一方向设置,所述第一方向为所述电池(10)的长度方向或具有所述电池(10)的用电设备(1)的行走方向;
    所述电池单体(21)包括多个表面,所述多个表面包括面积最大的第一表面(2111);所述多个表面还包括相对设置的两个第二表面(2121),所述两个第二表面与所述第一表面分别连接;所述电池单体(21)上还包括泄压机构(215),所述泄压机构(215)设于所述第一表面或其中一个所述第二表面(2121)。
  2. 如权利要求1所述的电池,其特征在于,两个所述第二表面(2121)沿第二方向相对设置;所述第二方向与所述第一方向相交。
  3. 如权利要求1所述的电池,其特征在于,两个所述第二表面(2121)沿所述第一方向相对设置。
  4. 如权利要求1所述的电池,其特征在于,所述第一表面(2111)与水平面相交。
  5. 如权利要求2所述的电池,其特征在于,所述第二方向与水平面相交或平行。
  6. 如权利要求1-5中任一项所述的电池,其特征在于,还包括导热件(40),所述导热件(40)沿所述第一方向设置;所述电池单体(21)至少通过所述第一表面(2111)与所述导热件(40)导热连接。
  7. 如权利要求6所述的电池,其特征在于,包括至少两个电池组件(20);沿第三方向,所述导热件(40)的两侧分别与两个所述电池组件(20)导热连接;所述第三方向与所述第一方向和所述第一表面(2111)均相交。
  8. 如权利要求6所述的电池,其特征在于,所述电池(10)的长度方向与所述用电设备(1)的行走方向平行或者相交。
  9. 如权利要求6所述的电池,其特征在于,所述导热件(40)内设有换热介质通道。
  10. 如权利要求9所述的电池,其特征在于,所述电池(10)包括多个所述导热件(40),多个所述导热件(40)沿第三方向排列,所述第三方向与所述第一方向和所述第一表面(2111)均相交。
  11. 如权利要求10所述的电池,其特征在于,沿所述第三方向,所述电池组件(20)的两侧分别设有所述导热件(40);所述电池组件(20)与两侧的所述导热件(40)导热连接。
  12. 如权利要求10所述的电池,其特征在于,沿所述第三方向,所述电池单体(21)包括两个相对的所述第一表面(2111),所述电池单体(21)的两个所述第一表面(2111)分别与一个所述导热件(40)导热连接。
  13. 如权利要求6所述的电池,其特征在于,所述电池单体(21)包括电极组件(213),所述电极组件(213)包括主体部(2131)和凸出于所述主体部(2131)的极耳(2132),所述极耳(2132)与所述电极端子(214)电连接,沿第三方向,所述导热件(40)和所述主体部(2131)的投影至少部分重合且具有重合区域,所述第三方向与所述第一方向和所述第一表面(2111)均相交。
  14. 如权利要求13所述的电池,其特征在于,沿第二方向,所述主体部(2131)的尺寸为L1,所述导热件(40)的尺寸为L2,其中,0.5≤L2/L1≤1.5,所述第一方向、所述第二方向和所述第三方向两两相交。
  15. 如权利要求14所述的电池,其特征在于,沿所述第二方向,所述重合区域的尺寸为L3,0.5≤L3/L1≤1。
  16. 如权利要求6至15中任一项所述的电池,其特征在于,所述电池(10)还包括集流件(50),所述集流件(50)与多个所述导热件(40)流体连通;
    其中,所述导热件(40)位于所述第一方向的一端设有所述集流件(50),或,所述导热件(40)位于所述第一方向的两端分别设有所述集流件(50)。
  17. 如权利要求16所述的电池,其特征在于,所述集流件(50)为两个,两个所述集流件(50)设于所述导热件(40)的位于所述第一方向的一端,两个所述集流件(50)沿所述第二方向排布,所述第二方向与所述第一方向和所述水平面均相交。
  18. 如权利要求1至5中任一项所述的电池,其特征在于,所述电池单体(21)包括电极端子(214),所述电极端子(214)为至少一个,所述泄压机构(215)与至少一个所述电极端子(214)设在同一个所述第二表面(2121)上,或者所述泄压机构(215)与所述电极端子(214)分别设在两个所述第二表面(2121)上。
  19. 如权利要求18所述的电池,其特征在于,所述电极端子(214)包括极性相反的两个电极端子(214);所述两个电极端子(214)设在一个所述第二表面(2121)上,或者所述两个电极端子(214)分别设在两个所述第二表面(2121)上。
  20. 如权利要求1至5中任一项所述的电池,其特征在于,所述电池单体(21)包括电极端子(214),所述电极端子(214)设在所述第一表面(2111)上。
  21. 如权利要求20所述的电池,其特征在于,所述电池单体(21)包括所述第一表面(2111)和与所述第一表面相对设置的第四表面,所述第一表面(2111)和所述第四表面沿第三方向相对设置,所述第三方向与所述第一方向和所述第一表面(2111)均相交;所述第四表面的边缘设有凹部;所述第一表面(2111)用于设置所述电极端子(214);所述电极端子(214)在所述第三方向上凸出设置于所述第一表面(2111),并且与所述凹部对应。
  22. 如权利要求1至5中任一项所述的电池,其特征在于,所述多个表面还包括沿第一方向相对设置的两个第三表面(2112),所述第一方向、所述第二方向和所述第三方向两两相交,所述电极端子(214)包括极性相反的两个电极端子(214);所述两个电极端子(214)设在一个所述第三表面(2112)上,或者所述两个电极端子(214)分别设在两个所述第三表面(2112)上。
  23. 如权利要求1至5中任一项所述的电池,其特征在于,所述电池单体(21)包括电极组件(213);所述电极组件(213)为卷绕式结构且为扁平状,所述电极组件(213)的外表面包括两个扁平面,两个所述扁平面沿第三方向相互面对;
    或,所述电极组件(213)为叠片式结构,所述电极组件(213)的第一极片、隔膜和第二极片沿第三方向层叠;
    所述第三方向与所述第一方向和所述第一表面(2111)均相交。
  24. 如权利要求1至5中任一项所述的电池,其特征在于,所述电池组件(20)包括至少两个电池单体(21),至少两个所述电池单体(21)沿所述第一方向排列。
  25. 如权利要求1至5中任一项所述的电池,其特征在于,沿所述第一方向,所述电池单体(21)的最大尺寸为L,沿第二方向,所述电池单体(21)的最大尺寸为H,L/H范围值为0.5~6;所述第二方向与所述第一方向和水平面均相交。
  26. 如权利要求25所述的电池,其特征在于,沿第三方向,所述电池单体(21)的最大尺寸为D,其中,L/D范围值为1~30;所述第一方向、所述第二方向和所述第三方向两两相交。
  27. 如权利要求18所述的电池,其特征在于,所述电极端子(214)和所述泄压机构(215)设在一个所述第二表面(2121)上;所述电池(10)包括支撑板(311),所述电池单体(10)通过未设置电极端子(214)的另一个第二表面(2121)与所述支撑板(311)固定连接,所述第二方向与所述第一方向和所述水平面均相交。
  28. 如权利要求27所述的电池,其特征在于,所述另一个第二表面通过第一粘结层(61)与支撑板(311)固定连接;所述导热件(40)通过第二粘结层(62)与所述第一表面(2111)导热连接,所述第一粘结层(61)的导热系数小于或等于所述第二粘结层(62)的导热系数。
  29. 如权利要求28所述的电池,其特征在于,所述第一粘结层(61)的导热系数与所述第二粘结层(62)的导热系数的比值范围为0.1~1。
  30. 一种用电设备,其特征在于,包括如权利要求1至29中任一项所述的电池(10),所述电池(10)用于提供电能驱动所述用电设备(1)行走。
  31. 如权利要求30所述的用电设备,其特征在于,在所述电池(10)的长度方向与所述用电设备(1)的行走方向不同的情况下,所述第一方向为所述用电设备(1)的行走方向。
PCT/CN2022/125520 2022-10-14 2022-10-14 电池和用电设备 WO2024077633A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125520 WO2024077633A1 (zh) 2022-10-14 2022-10-14 电池和用电设备
CN202321954420.4U CN220895667U (zh) 2022-10-14 2023-07-24 电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125520 WO2024077633A1 (zh) 2022-10-14 2022-10-14 电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024077633A1 true WO2024077633A1 (zh) 2024-04-18

Family

ID=90668608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125520 WO2024077633A1 (zh) 2022-10-14 2022-10-14 电池和用电设备

Country Status (2)

Country Link
CN (1) CN220895667U (zh)
WO (1) WO2024077633A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN111384335A (zh) * 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池包及车辆
CN216250906U (zh) * 2021-10-22 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN216720196U (zh) * 2022-01-27 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN216872114U (zh) * 2022-02-21 2022-07-01 宁德时代新能源科技股份有限公司 电池和用电设备
CN216872113U (zh) * 2022-02-21 2022-07-01 宁德时代新能源科技股份有限公司 电池和用电设备
CN217158412U (zh) * 2022-04-02 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384335A (zh) * 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池包及车辆
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN216250906U (zh) * 2021-10-22 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN216720196U (zh) * 2022-01-27 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN216872114U (zh) * 2022-02-21 2022-07-01 宁德时代新能源科技股份有限公司 电池和用电设备
CN216872113U (zh) * 2022-02-21 2022-07-01 宁德时代新能源科技股份有限公司 电池和用电设备
CN217158412U (zh) * 2022-04-02 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN220895667U (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
CN217562707U (zh) 电池单体、电池及用电设备
US20230395902A1 (en) Case of battery, battery and electrical device
WO2024016451A1 (zh) 顶盖组件、电池单体、电池及用电设备
CN216720071U (zh) 电池和用电设备
CN216720070U (zh) 电池和用电设备
US20240204317A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
CN218414770U (zh) 电池包及电池舱
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2023245841A1 (zh) 电池壳、电池单体、电池及用电装置
WO2024077633A1 (zh) 电池和用电设备
CN217182266U (zh) 电池单体、电池和用电装置
WO2024077634A1 (zh) 电池和用电设备
EP4266464A1 (en) Battery, electric device, and method and device for preparing battery
WO2024077631A1 (zh) 电池和用电设备
CN216120489U (zh) 电池壳体、电池单体、电池及用电装置
WO2024077622A1 (zh) 电池及用电设备
WO2024077625A1 (zh) 电池及用电设备
WO2024077626A1 (zh) 电池及用电设备
CN219303780U (zh) 电池及用电设备
CN219226493U (zh) 电池以及用电装置
CN217114547U (zh) 电池单体、电池及用电装置
CN219591517U (zh) 电池及用电设备
WO2023155609A1 (zh) 电池单体、电池、用电设备及制造方法
CN220984598U (zh) 电池单体、电池及用电装置
WO2024065717A1 (zh) 电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961819

Country of ref document: EP

Kind code of ref document: A1