WO2024077417A1 - 一种感知方法、通信装置及通信系统 - Google Patents

一种感知方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2024077417A1
WO2024077417A1 PCT/CN2022/124143 CN2022124143W WO2024077417A1 WO 2024077417 A1 WO2024077417 A1 WO 2024077417A1 CN 2022124143 W CN2022124143 W CN 2022124143W WO 2024077417 A1 WO2024077417 A1 WO 2024077417A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
perception
beams
index
transmission beam
Prior art date
Application number
PCT/CN2022/124143
Other languages
English (en)
French (fr)
Inventor
董蕾
唐浩
张立清
马江镭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/124143 priority Critical patent/WO2024077417A1/zh
Publication of WO2024077417A1 publication Critical patent/WO2024077417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a sensing method, a communication device and a communication system.
  • wireless communication systems have undergone evolution and research from the first generation of analog communications to the fifth generation (5G) communications.
  • Perception networks refer to networks with the capabilities of target positioning (ranging, speed, angle, etc.), target imaging, target detection, and target recognition.
  • a perception network generally includes one or more devices. Taking two devices as an example, one device sends a perception signal, and the other device receives the perception signal, and determines the relevant information of the perception target in the environment based on the reception of the perception signal.
  • the perception target can be one of the two devices or another device outside the two devices.
  • the present application provides a perception method, a communication device and a communication system to improve the accuracy of perception.
  • an embodiment of the present application provides a perception method, which is performed by a first device, which may be a terminal device, a network device, or other device.
  • the method includes: the first device receives a perception signal from a second device through one or more receiving beams, and the perception signal is sent by one or more transmitting beams of the second device; the first device sends a perception result to the second device, and the perception result includes one or more perception beam information, and the perception beam information is used to indicate the target transmitting beam and/or target receiving beam corresponding to the perception signal, and the target transmitting beam is one of the one or more transmitting beams, and the target receiving beam is one of the one or more receiving beams.
  • the first device receives the perception signal sent by the second device, and reports the perception result generated according to the perception signal to the second device, and the second device can determine the perception target according to the perception result. Since the first device reports the perception result of the beam granularity, it helps the second device to accurately determine the perception target, which can improve the accuracy of perception.
  • the first device receives transmit beam information and/or receive beam information, where the transmit beam information corresponds to one or more transmit beams, and the receive beam information corresponds to one or more receive beams.
  • the above scheme configures the receiving beam information for the first device, so that the first device can receive the perception signal more quickly and accurately, which helps to accurately determine the perception result and thus improve the accuracy of perception.
  • the transmission beam information includes one or more of directions of multiple transmission beams and time intervals between beams, and the directions of the multiple transmission beams are the same.
  • the second device sends a perception signal to the first device via multiple transmission beams in the same direction, which helps the first device to accurately perceive the perception target in the environment and can improve the accuracy of perception.
  • the transmission beam information includes index information, and the index information corresponds to one or more of the directions of the multiple transmission beams and the time intervals between the beams.
  • the second device sends a perception signal to the first device via multiple transmission beams in the same direction, which helps the first device to accurately perceive the perception target in the environment and can improve the accuracy of perception.
  • the transmission beam information includes one or more of information of multiple transmission beam groups and time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes one or more of the beam direction of the transmission beam group and the time intervals between the beams within the transmission beam group, wherein the directions of the beams within the same transmission beam group are the same.
  • the second device transmits a perception signal to the first device via multiple transmission beams, wherein the multiple transmission beams include transmission beams in the same direction, thereby helping the first device to accurately perceive the perception target in the environment and improving the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, thereby helping to improve the range of perception and quickly perceive the perception target in the environment.
  • the transmission beam information includes information of multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes information of multiple transmission beam sub-groups and one or more of the time intervals between the transmission beam sub-groups, and the information of the transmission beam sub-group includes beam directions of the transmission beam sub-group and one or more of the time intervals between beams within the transmission beam sub-group, wherein the directions of the beams within the same transmission beam sub-group are the same.
  • the second device transmits a perception signal to the first device through multiple transmission beams, and a transmission beam group is divided into one or more transmission beam sub-groups.
  • the multiple transmission beams in each transmission beam sub-group include transmission beams in the same direction, which helps the first device to accurately perceive a perception target in the environment by adjusting the beam direction, and can improve the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, which helps to improve the range of perception and quickly perceive the perception target in the environment.
  • the sensing beam information includes information of the target transmitting beam and/or information of the target receiving beam; wherein, the information of the target transmitting beam includes one or more of the index, direction, width or angle of the target transmitting beam, and the information of the target receiving beam includes one or more of the index, direction, width or angle of the target receiving beam.
  • the sensing beam information reported by the first device to the second device includes information about the target transmitting beam and/or information about the target receiving beam, which helps the second device to accurately determine the sensing target.
  • the perception result also includes one or more of a perception distance index and a speed index; wherein the perception distance index is used to indicate the distance between the perception target and the first device, and the speed index is used to indicate the speed of the perception target.
  • the sensing result also includes the sensing distance index and/or the speed index, which helps the second device to accurately determine the sensing target and improves the effectiveness of the sensing.
  • the sensing distance index and the speed index are reported, which can reduce signaling overhead.
  • the distance indicated by the perception distance index is determined according to a range resolution
  • the range resolution is determined according to one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the above solution determines the distance through range resolution, which can accurately determine the distance and help the host improve perception accuracy.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the above scheme determines the speed through speed resolution, which can accurately determine the speed and help improve the perception accuracy.
  • the first device receives a perception signal from the second device through one or more receiving beams, including: the first device receives the perception signal from the second device through the one or more receiving beams within a receiving time range.
  • the first device receives the perception signal within a receiving time range, and can perceive the perception target according to the needs of the second device, which helps to achieve flexibility in perception.
  • the first device receives time information, where the time information is used to indicate the receiving time range.
  • the first device receives the perception signal within the receiving time range according to the needs of the second device, which can improve the matching degree between the perception result and the perception demand, avoid unnecessary information transmission, reduce interference, and improve perception efficiency.
  • an embodiment of the present application provides a perception method, which is performed by a second device, which may be a terminal device, a network device, or other device.
  • the method includes: the second device sends a perception signal to the first device through one or more transmission beams corresponding to the transmission beam information, and the perception signal is received through one or more receiving beams; the second device receives a perception result from the first device, and the perception result includes one or more perception beam information, and the perception beam information is used to indicate the target transmission beam and/or target receiving beam corresponding to the perception signal, and the target transmission beam is one of the one or more transmission beams, and the target receiving beam is one of the one or more receiving beams.
  • the first device receives the perception signal sent by the second device, and reports the perception result generated according to the perception signal to the second device, and the second device can determine the perception target according to the perception result. Since the first device reports the perception result of the beam granularity, it helps the second device to accurately determine the perception target, which can improve the accuracy of perception.
  • the second device sends the transmission beam information to the first device.
  • the above scheme configures the first device to send beam information, so that the first device can receive the perception signal more quickly and accurately, which helps to accurately determine the perception result and thus improve the accuracy of perception.
  • the second device sends receiving beam information to the first device, and the receiving beam information corresponds to the one or more receiving beams.
  • the above scheme configures the receiving beam information for the first device, so that the first device can receive the perception signal more quickly and accurately, which helps to accurately determine the perception result and thus improve the accuracy of perception.
  • the transmission beam information includes one or more of directions of multiple transmission beams and time intervals between beams, and the directions of the multiple transmission beams are the same.
  • the second device sends a perception signal to the first device via multiple transmission beams in the same direction, which helps the first device to accurately perceive the perception target in the environment and can improve the accuracy of perception.
  • the transmission beam information includes index information, and the index information corresponds to one or more of the directions of the multiple transmission beams and the time intervals between the beams.
  • the second device sends a perception signal to the first device via multiple transmission beams in the same direction, which helps the first device to accurately perceive the perception target in the environment and can improve the accuracy of perception.
  • the transmission beam information includes one or more of information of multiple transmission beam groups and time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes one or more of the beam direction of the transmission beam group and the time intervals between the beams within the transmission beam group, wherein the directions of the beams within the same transmission beam group are the same.
  • the second device transmits a perception signal to the first device via multiple transmission beams, wherein the multiple transmission beams include transmission beams in the same direction, thereby helping the first device to accurately perceive the perception target in the environment and improving the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, thereby helping to improve the range of perception and quickly perceive the perception target in the environment.
  • the transmission beam information includes information of multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes information of multiple transmission beam sub-groups and one or more of the time intervals between the transmission beam sub-groups, and the information of the transmission beam sub-group includes beam directions of the transmission beam sub-group and one or more of the time intervals between beams within the transmission beam sub-group, wherein the directions of the beams within the same transmission beam sub-group are the same.
  • the second device transmits a perception signal to the first device via multiple transmission beams, wherein the multiple transmission beams include transmission beams in the same direction, thereby helping the first device to accurately perceive the perception target in the environment and improving the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, thereby helping to improve the range of perception and quickly perceive the perception target in the environment.
  • the sensing beam information includes information of the target transmitting beam and/or information of the target receiving beam; wherein, the information of the target transmitting beam includes one or more of the index, direction, width or angle of the target transmitting beam, and the information of the target receiving beam includes one or more of the index, direction, width or angle of the target receiving beam.
  • the sensing beam information reported by the first device to the second device includes information about the target transmitting beam and/or information about the target receiving beam, which helps the second device to accurately determine the sensing target.
  • the perception result also includes one or more of a perception distance index and a speed index; wherein the perception distance index is used to indicate the distance between the perception target and the first device, and the speed index is used to indicate the speed of the perception target.
  • the sensing result also includes the sensing distance index and/or speed index, which helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing distance index and speed index are reported instead of the sensing distance and speed, which can reduce signaling overhead.
  • the distance indicated by the perception distance index is determined according to a range resolution
  • the range resolution is determined according to one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the above solution determines the distance through range resolution, which can accurately determine the distance and effectively improve the perception accuracy.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the above scheme determines the speed through speed resolution, which can accurately determine the speed and effectively improve the perception accuracy.
  • the perception signal is received through one or more receiving beams, including: the perception signal is received through one or more receiving beams within a receiving time range.
  • the first device receives the perception signal within a receiving time range, and can perceive the perception target according to the needs of the second device, which helps to achieve flexibility in perception.
  • the second device sends time information to the first device, where the time information is used to indicate the receiving time range.
  • the first device receives the perception signal within the receiving time range according to the needs of the second device, which can improve the matching degree between the perception result and the perception demand, avoid unnecessary information transmission, reduce interference, and improve perception efficiency.
  • an embodiment of the present application provides a perception method, which is performed by a first device, which may be a terminal device, a network device or other device.
  • the method includes: the first device receives a perception signal from a second device within a receiving time range.
  • the first device receives the perception signal within a receiving time range, and can perceive the perception target according to the needs of the second device, which helps to achieve flexibility in perception.
  • the first device receives time information, where the time information is used to indicate the receiving time range.
  • the above solution indicates the receiving time range through time information, which helps to accurately configure the receiving time range.
  • the first device sends a perception result corresponding to the perception signal to the second device, and the perception result includes at least one of delay information, path length information or Doppler shift information; wherein the delay information indicates the time delay length experienced by the perception signal from the second device to reach the first device after passing through the perception target; the path length information indicates the path length experienced by the perception signal from the second device to reach the first device after passing through the perception target; the Doppler shift information indicates the offset between the original frequency of the perception signal when it is sent from the second device and the actual frequency of the perception signal when it passes through the perception target and reaches the first device.
  • the delay information indicates the time delay length experienced by the perception signal from the second device to reach the first device after passing through the perception target
  • the path length information indicates the path length experienced by the perception signal from the second device to reach the first device after passing through the perception target
  • the Doppler shift information indicates the offset between the original frequency of the perception signal when it is sent from the second device and the actual frequency of the perception signal when it passes through the perception target and reaches
  • the above scheme includes at least one of delay information, path length information or Doppler shift information in the perception result, which helps the second device to determine the perception target according to the perception result.
  • an embodiment of the present application provides a perception method, which is performed by a first device, which may be a terminal device, a network device, or other device.
  • the method includes: the first device receives a perception signal from a second device; the first device sends a perception result to the second device, the perception result includes a perception distance index, and the perception distance index is used to indicate the distance between the perception target corresponding to the perception signal and the first device.
  • the sensing result also includes a sensing distance index, which helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing distance index helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing distance index not the sensing distance, which can reduce signaling overhead.
  • the distance indicated by the perception distance index is determined according to a range resolution
  • the range resolution is determined according to one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the above scheme determines the distance through range resolution, which can accurately determine the distance and effectively improve the perception accuracy.
  • an embodiment of the present application provides a perception method, which is performed by a first device, which may be a terminal device, a network device or other device.
  • the method includes: the first device receives a perception signal from a second device; the first device sends a perception result to the second device, the perception result includes a speed index, and the speed index is used to indicate the speed of the perception target.
  • the sensing result also includes a sensing speed index, which helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing speed index is reported instead of the sensing speed, which can reduce signaling overhead.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the above scheme determines the speed through speed resolution, which can accurately determine the speed and effectively improve the perception accuracy.
  • an embodiment of the present application provides a perception method, which is performed by a second device, which may be a terminal device, a network device or other device.
  • the method includes: the second device sends a perception signal to the first device; the second device receives a perception result from the first device, the perception result includes a perception distance index, and the perception distance index is used to indicate the distance between the perception target corresponding to the perception signal and the first device.
  • the sensing result also includes a sensing distance index, which helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing distance index helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing distance index not the sensing distance, which can reduce signaling overhead.
  • the distance indicated by the perception distance index is determined based on a range resolution
  • the range resolution is determined based on one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the above solution determines the distance through range resolution, which can accurately determine the distance and effectively improve the perception accuracy.
  • an embodiment of the present application provides a perception method, which is performed by a second device, which may be a terminal device, a network device or other device.
  • the method includes: the second device sends a perception signal to the first device; the second device receives a perception result from the first device, the perception result includes a speed index, and the speed index is used to indicate the speed of the perceived target.
  • the sensing result also includes a sensing speed index, which helps the second device to accurately determine the sensing target and improves the effectiveness of sensing.
  • the sensing speed index is reported instead of the sensing speed, which can reduce signaling overhead.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the above scheme determines the speed through speed resolution, which can accurately determine the speed and effectively improve the perception accuracy.
  • an embodiment of the present application provides a communication device.
  • the device has the function of implementing any implementation method of the first to seventh aspects above.
  • the function can be implemented by hardware, or by hardware executing corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, comprising a unit or means for executing each step of any implementation method in the first to seventh aspects above.
  • an embodiment of the present application provides a communication device, comprising at least one processor, wherein the processor is used to execute any implementation method in the above-mentioned first to seventh aspects through at least one of the following: running computer instructions or programs, logic circuits.
  • the processor is coupled to a memory, and the memory stores the above-mentioned computer instructions or programs; or, the memory stores a configuration file of a logic circuit.
  • the memory may be located within the device, that is, the device includes the memory; optionally, the processor and the memory are integrated together; optionally, the memory may also be located outside the device.
  • the communication device further includes: an interface circuit, the interface circuit is used to input and/or output signals.
  • the processor is used to communicate with other devices through the interface circuit.
  • the communication device is a chip.
  • an embodiment of the present application further provides a computer program product, which includes a computer program or instructions.
  • a computer program product which includes a computer program or instructions.
  • an embodiment of the present application further provides a computer-readable storage medium, wherein instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a communication device, any implementation method in the above-mentioned first to seventh aspects is executed.
  • an embodiment of the present application also provides a chip system, including: a processor, used to execute any implementation method of the above-mentioned first to seventh aspects.
  • an embodiment of the present application further provides a communication system, comprising a first device for executing any implementation method of the first aspect, and a second device for executing any implementation method of the second aspect.
  • an embodiment of the present application further provides a communication system, comprising a first device for executing any implementation method of the fourth aspect, and a second device for executing any implementation method of the sixth aspect.
  • an embodiment of the present application also provides a communication system, comprising a first device for executing any implementation method of the fifth aspect, and a second device for executing any implementation method of the seventh aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system used in an embodiment of the present application.
  • FIG2 is another schematic diagram of a communication system used in an embodiment of the present application.
  • FIG3 is a schematic diagram of an interaction flow of a perception method provided in an embodiment of the present application.
  • FIG4( a) is an example diagram of a transmission beam indicated by transmission beam information
  • FIG4( b) is another example diagram of a transmission beam indicated by transmission beam information
  • FIG4( c ) is another example diagram of a transmission beam indicated by transmission beam information
  • FIG5( a ) is an example diagram of sending a sensing signal
  • FIG5( b ) is another example diagram of sending a perception signal
  • FIG6 is an example diagram of a receiving time range
  • FIG. 7( a ) is a schematic diagram of a configuration method for a receiving time range
  • FIG7( b ) is a schematic diagram of another configuration method for receiving the time range
  • FIG8 is a schematic diagram of the structure of a possible communication device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of a possible communication device provided in an embodiment of the present application.
  • Fig. 1 is a schematic diagram of the architecture of a communication system used in an embodiment of the present application.
  • the communication system includes a first device and a second device.
  • the first device is a network device or a module used in a network device
  • the second device is a terminal device or a module used in a terminal device.
  • the first device and the second device communicate with each other via an air interface.
  • the first device is a terminal device or a module used in a terminal device
  • the second device is a network device or a module used in a network device.
  • the first device and the second device communicate with each other via an air interface.
  • the first device is a terminal device or a module for a terminal device
  • the second device is a terminal device or a module for a terminal device.
  • the first device and the second device can perform side link (SL) communication via a PC5 interface.
  • first device and the second device in the embodiment of the present application may also be other types of devices, and the present application does not limit this.
  • a terminal device is a device with wireless transceiver functions, which may specifically refer to user equipment (UE), access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device may be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it may also be deployed on the water (such as ships, etc.); it may also be deployed in the air (such as airplanes, balloons and satellites, etc.).
  • the terminal device can be a cellular phone, a mobile phone, a tablet computer (pad), a wireless data card, a wireless modem, a satellite terminal, a vehicle-mounted device, a wearable device, a drone, a robot, a smart point of sale (POS) machine, a customer-premises equipment (CPE), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a terminal device in industrial control (industrial control), a terminal device in self driving, a terminal device in remote medical, a terminal device in a smart grid (smart grid), a terminal in transportation safety (transportation safety), a terminal device in a smart city (smart city), and a terminal in a smart home (smart home).
  • POS point of sale
  • CPE customer-premises equipment
  • VR virtual reality
  • AR augmented reality
  • the network device is a device with wireless transceiver functions, which is used to communicate with the terminal device; it can also be a device that can connect the terminal device to the wireless network, such as a radio access network (RAN) device or node.
  • RAN radio access network
  • the network device in the embodiment of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, devices that implement base station functions in communication systems that evolve after 5G, access points (AP) in WiFi systems, integrated access and backhaul (IAB) nodes, transmission points (TRP), transmitting points (TP), mobile switching centers, and device-to-device (D2D), vehicle-to-everything (V2X) , equipment that assumes the function of a base station in machine-to-machine (M2M) communication, etc., and may also include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (C-RAN) system, and network equipment in a non-terrestrial network (NTN) communication system, that is, it may be deployed on a high-altitude platform or a satellite; it may also be various types of equipment that constitute an access node, such as an active antenna unit (AAU), a baseband unit (BBU), etc
  • the embodiments of the present application are described by taking an example in which the first device is a terminal device and the second device is a network device.
  • Fig. 2 is another schematic diagram of a communication system used in an embodiment of the present application.
  • the communication system includes a network device and a terminal device.
  • the terminal device is an example of a first device
  • the network device is an example of a second device.
  • FIG3 is a schematic diagram of an interactive process of a perception method provided in an embodiment of the present application. The method comprises the following steps:
  • Step 301 The terminal device receives transmit beam information and/or receive beam information.
  • the transmission beam information is used by the network device to send a perception signal to the terminal device.
  • the terminal device may receive the transmission beam information from the network device or from other devices, or the terminal device may determine the transmission beam information by itself, which is not limited in this application.
  • the receiving beam information is used by the terminal device to receive the sensing signal from the network device.
  • the terminal device can receive the receiving beam information from the network device, or can receive the transmitting beam information from other devices, or the terminal device can determine the receiving beam information by itself, which is not limited in this application.
  • This step 301 is an optional step. In one implementation method, this step 301 is not performed, and the terminal device determines the transmission beam information and the reception beam information by itself. In another implementation method, the terminal device receives the transmission beam information and determines the reception beam information by itself. In another implementation method, the terminal device receives the reception beam information and determines the transmission beam information by itself. In another implementation method, the terminal device receives the transmission beam information and the reception beam information.
  • the transmission beam information includes one or more of the directions of the multiple transmission beams and the time intervals between the beams, and the directions of the multiple transmission beams are the same, or the transmission beam information includes index information, and the index information corresponds to one or more of the directions of the multiple transmission beams and the time intervals between the beams.
  • the directions of the multiple transmission beams indicated by the transmission beam information are the same.
  • the second device sends a perception signal to the first device via multiple transmission beams in the same direction, which helps the first device to accurately perceive the perception target in the environment and can improve the accuracy of perception.
  • the index information corresponds to the directions of multiple transmission beams.
  • the time interval between beams can be defined by the protocol or by default.
  • Table 1-1 is an example of the relationship between the index information and the directions of the transmission beams.
  • the index information included in the transmission beam information when the index information included in the transmission beam information is 0, it indicates that the direction of the multiple transmission beams is direction 1; when the index information included in the transmission beam information is 1, it indicates that the direction of the multiple transmission beams is direction 2, and so on.
  • the index information corresponds to the time interval between beams.
  • the directions of the multiple transmission beams may be protocol defined or default. Table 1-2 is an example of the relationship between the index information and the time interval between beams.
  • the index information included in the transmitted beam information when the index information included in the transmitted beam information is 0, it indicates that the time interval between beams is a1; when the index information included in the transmitted beam information is 1, it indicates that the time interval between beams is a2, and so on.
  • the index information corresponds to the directions of the multiple transmission beams and the time intervals between the beams.
  • Table 1-3 is an example of the relationship between the index information and the directions of the multiple transmission beams and the time intervals between the beams.
  • the index information included in the transmitted beam information when the index information included in the transmitted beam information is 0, it means that the direction of the multiple transmitted beams is direction 1 and the time interval between the beams is b1; when the index information included in the transmitted beam information is 1, it means that the direction of the multiple transmitted beams is direction 1 and the time interval between the beams is b2, and so on.
  • FIG4(a) is an example diagram of a transmission beam indicated by transmission beam information.
  • the transmission beam information indicates one or more of the directions of three beams and the time intervals between beams. The directions of the three beams are the same.
  • the transmission beam information includes the directions of the three transmission beams and the time intervals between beams, or the transmission beam information includes index information, and the index information indicates the directions of the three transmission beams and the time intervals between beams.
  • the transmission beam information includes one or more of information of multiple transmission beam groups and time intervals between transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to information of multiple transmission beam groups and one or more of time intervals between transmission beam groups; wherein the information of the transmission beam group includes one or more of the beam direction of the transmission beam group and the time intervals between beams within the transmission beam group, wherein the directions of beams within the same transmission beam group are the same.
  • index information please refer to the examples in Tables 1-1, 1-2 and 1-3 in the above method one, and will not be repeated here.
  • the second device sends a perception signal to the first device through multiple transmission beams
  • the multiple transmission beams include transmission beams in the same direction, so as to help the first device to accurately perceive the perception target in the environment and improve the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, which helps to improve the range of perception and quickly perceive the perception target in the environment.
  • FIG4(b) is another example diagram of the transmission beam indicated by the transmission beam information.
  • the transmission beam information indicates one or more of the information of two transmission beam groups and the time interval between the transmission beam groups.
  • the information of each transmission beam group indicates one or more of the beam direction and the time interval between the beams. Among them, the directions of different beams in transmission beam group 1 are the same, and the directions of different beams in transmission beam group 2 are the same.
  • the transmission beam information includes the beam direction of transmission beam group 1, the time interval between the beams of transmission beam group 1, the beam direction of transmission beam group 2, the time interval between the beams of transmission beam group 2, and the time interval between transmission beam groups, or the transmission beam information includes index information, which indicates the beam direction of transmission beam group 1, the time interval between the beams of transmission beam group 1, the beam direction of transmission beam group 2, the time interval between the beams of transmission beam group 2, and the time interval between transmission beam groups.
  • the transmission beam information includes one or more of the information of multiple transmission beam groups and the time intervals between the transmission beam groups, or the transmission beam information includes index information, and the index information corresponds to one or more of the information of multiple transmission beam groups and the time intervals between the transmission beam groups.
  • the information of the transmission beam group includes the information of multiple transmission beam subgroups and the time intervals between the transmission beam subgroups, and the information of the transmission beam subgroup includes the beam direction of the transmission beam subgroup and the time intervals between the beams in the transmission beam subgroup, wherein the directions of the beams in the same transmission beam subgroup are the same.
  • index information please refer to the examples in Tables 1-1, 1-2 and 1-3 in the above method one, and will not be repeated here.
  • the second device sends a perception signal to the first device through multiple transmission beams, and a transmission beam group is divided into one or more transmission beam sub-groups.
  • the multiple transmission beams in each transmission beam sub-group include transmission beams in the same direction, which helps the first device to accurately perceive a certain perception target in the environment by adjusting the beam direction, and can improve the accuracy of perception.
  • the multiple transmission beams also include transmission beams in different directions, which helps to improve the range of perception and quickly perceive the perception target in the environment.
  • FIG4(c) is another example diagram of the transmission beam indicated by the transmission beam information.
  • the transmission beam information indicates one or more of the information of two transmission beam groups and the time interval between the transmission beam groups.
  • the information of each transmission beam group indicates one or more of the information of two transmission beam subgroups and the time interval between the transmission beam subgroups, and the information of each transmission beam subgroup indicates one or more of the beam direction and the time interval between the beams.
  • the directions of different beams of transmission beam subgroup 1 in transmission beam group 1 are the same, the directions of different beams of transmission beam subgroup 2 in transmission beam group 1 are the same, the directions of different beams of transmission beam subgroup 1 in transmission beam group 2 are the same, and the directions of different beams of transmission beam subgroup 2 in transmission beam group 2 are the same.
  • the transmission beam information includes information of transmission beam group 1, information of transmission beam group 2 and the time interval between transmission beam groups, wherein the information of transmission beam group 1 includes the direction of transmission beam subgroup 1, the time interval between beams within transmission beam subgroup 1, the direction of transmission beam subgroup 2, the time interval between beams within transmission beam subgroup 2 and the time interval between two transmission beam subgroups, and the information of transmission beam group 2 includes the direction of transmission beam subgroup 3, the time interval between beams within transmission beam subgroup 3, the direction of transmission beam subgroup 4, the time interval between beams within transmission beam subgroup 4 and the time interval between two transmission beam subgroups, or the transmission beam information includes index information, which indicates the information of transmission beam group 1, the information of transmission beam group 2 and the time interval between transmission beam groups.
  • the implementation method of receiving beam information is similar to the implementation method of sending beam information mentioned above. Please refer to the above-mentioned method one to method three for details and will not be repeated here.
  • Step 302 The network device sends a perception signal to the terminal device through one or more transmission beams corresponding to the transmission beam information.
  • the terminal device receives the perception signal through one or more reception beams.
  • the sensing signal may be a synchronization signal/physical layer broadcast signal block (SS/PBCH resource block, SSB), where SS is the abbreviation of synchronization signal block, and PBCH is the abbreviation of physical broadcast channel.
  • SS synchronization signal/physical layer broadcast signal block
  • PBCH physical broadcast channel
  • the embodiment of the present application does not limit the number of perception signals sent by the network device.
  • the perception signal can be continuously sent over a period of time.
  • the network device sends multiple beams in different directions at the same time, or sends multiple beams in the same direction at different times, etc.
  • the terminal device receives the perception information through one or more receiving beams.
  • the receiving beam used by the terminal device to receive the perception signal can be determined by the terminal device itself or configured by the network device for the terminal device.
  • the terminal device receives receiving beam information from the network device or other device, and the receiving beam information corresponds to one or more receiving beams. Exemplarily, different ways of sending perception signals are described below.
  • Figure 5(a) is an example diagram of sending a perception signal.
  • the transmission beams and receiving beams in multiple directions can detect multiple perception targets at the same time, thereby obtaining multiple perception results, each of which corresponds to a perception target.
  • transmission beam 0 and receiving beam 0 can perceive perception target 1 in the environment
  • transmission beam 1 and receiving beam 1 can perceive perception target 2 in the environment.
  • Figure 5(b) is another example diagram of sending a perception signal.
  • the transmission beams and receiving beams in multiple directions can detect multiple perception targets at the same time, thereby obtaining multiple perception results, each of which corresponds to a perception target.
  • transmission beam 0 and receiving beam 0 can perceive perception target 1 in the environment, and transmission beam 0 and receiving beam 0 can also perceive perception target 2 in the environment.
  • Step 303 The terminal device sends the sensing result to the network device.
  • the network device receives the sensing result.
  • the perception result includes one or more perception beam information, each perception beam information is used to indicate a target transmitting beam and/or a target receiving beam corresponding to a perception signal, the target transmitting beam is one of the one or more transmitting beams corresponding to the transmitting beam information, and the target receiving beam is one of the one or more receiving beams corresponding to the receiving beam information.
  • each sensing beam information includes information of a target transmission beam and/or information of a target reception beam, wherein the information of the target transmission beam includes one or more of an index, direction, width or angle of the target transmission beam, and the information of the target reception beam includes one or more of an index, direction, width or angle of the target reception beam.
  • the direction of the target transmission beam is, for example, a horizontal direction or a vertical direction, etc.
  • the width of the target transmission beam is, for example, 3 decibels (db), 5 db, etc.
  • the angle of the target transmission beam is, for example, 30 degrees or 40 degrees, etc.
  • the network device sends perception signal 1 to the terminal device through transmission beam 0, and sends perception signal 2 to the terminal device through transmission beam 1.
  • the terminal device receives perception signal 1 through reception beam 0, and receives perception signal 2 through reception beam 1. Therefore, the perception result generated by the terminal device includes perception beam information 1 and perception beam information 2.
  • the perception beam information 1 includes information about transmission beam 0 and information about reception beam 0, and the perception beam information 2 includes information about transmission beam 1 and information about reception beam 1.
  • the terminal device reports the perception result according to the beam granularity, that is, the perception result includes perception beam information of two beams, and each perception beam information corresponds to a transmission beam and a reception beam.
  • the network device sends a sensing signal to the terminal device through the transmission beam 0.
  • the sensing signal is reflected by the sensing target 1 and the sensing target 2, it is received by the receiving beam 0 of the terminal device. That is, a sensing signal sent by the network device through the transmission beam 0 reaches the terminal device through two paths and is received by the same receiving beam 0 of the terminal device.
  • the sensing result determined by the terminal device includes sensing beam information 1 and sensing beam information 2.
  • the sensing beam information 1 includes the information of the transmission beam 0, the information of the receiving beam 0, and the information of the path 0 under the transmission beam 0 and the receiving beam 0.
  • the sensing beam information 2 includes the information of the transmission beam 0 and the information of the receiving beam 0, and the information of the path 1 under the transmission beam 0 and the receiving beam 0.
  • the information of the path 0 and the information of the path 1 can be represented by at least one of the delay information, the path length information and the Doppler shift information.
  • the sensing beam information 1 corresponds to at least one of the delay information 1
  • the sensing beam information 2 corresponds to at least one of the delay information 2, the path length information 2 and the Doppler shift information 2.
  • the delay information 1 indicates the time delay that the perception signal experiences when it is sent from the network device, passes through the perception target 1 and then reaches the terminal device
  • the delay information 2 indicates the time delay that the perception signal experiences when it is sent from the network device, passes through the perception target 2 and then reaches the terminal device
  • Path length information 1 indicates the path length that the perception signal experiences when it is sent from the network device, passes through the perception target 1 and then reaches the terminal device
  • path length information 2 indicates the path length that the perception signal experiences when it is sent from the network device, passes through the perception target 2 and then reaches the terminal device.
  • the path length here can be a physical distance, such as 5 meters, 10 meters, etc., or a delay, such as 2 nanoseconds, 3 nanoseconds, etc.
  • Doppler shift information 1 indicates the offset between the original frequency of the perception signal when it is sent from the network device and the actual frequency when the perception signal reaches the terminal device after passing through the perception target 1
  • Doppler shift information 2 indicates the offset between the original frequency of the perception signal when it is sent from the network device and the actual frequency when the perception signal reaches the terminal device after passing through the perception target 2.
  • the terminal device reports the perception results at the path granularity, that is, the perception results include the perception beam information of two paths, each perception beam information corresponds to a transmit beam and a receive beam, and includes information related to the path.
  • This solution reporting the perception results at the path granularity, helps to improve the accuracy of perception.
  • the network device hopes to obtain information about a target at a specific location or within a specific range in the environment. Since targets at different locations or ranges may cause the perception signal to arrive at the terminal device at different times, the network device may configure the receiving time information for the terminal device, and the time information is used to indicate the receiving time range. Therefore, if the terminal device receives the perception signal within the configured receiving time range, the terminal device generates and reports the perception result. If the terminal device does not receive the perception signal within the configured receiving time range, the terminal device does not report the perception result.
  • the above step 302 can be understood as: the terminal device receives the perception signal from the network device within the receiving time range through one or more receiving beams.
  • the receiving time range may be a receiving time range determined according to the timing of the terminal device, or a receiving time range determined according to the timing of the terminal device. If the network device sends the receiving time range determined according to the timing of the network device to the terminal device, the terminal device also needs to convert the receiving time range determined according to the timing of the network device into a receiving time range determined according to the timing of the terminal device.
  • FIG6 is an example diagram of a receiving time range.
  • the network device pays attention to the perceived targets within receiving time range 1 and the perceived targets within receiving time range 2.
  • Receiving time range 1 corresponds to physical distance range 1
  • receiving time range 2 corresponds to physical distance range 2.
  • Physical distance range 1 is a distance range with the network device as the center and distance 1 as the radius
  • physical distance range 2 is a distance range with the network device as the center and distance 2 as the radius. It can also be understood that the network device only pays attention to the environmental targets within physical distance range 1, and/or pays attention to the environmental targets within physical distance range 2.
  • the following are two methods for configuring the receiving time range.
  • FIG7(a) is a schematic diagram of a configuration method for a receiving time range.
  • T1 is the start time of receiving time range 1
  • T2 is the end time of receiving time range 1 and the start time of receiving time range 2
  • T3 is the end time of receiving time range 2.
  • the start time of receiving time range 2 coincides with the end time of receiving time range 1.
  • This method configures T2 as the end time of receiving time range 1 and the start time of receiving time range 2. There is no need to configure an end time for receiving time range 1 and a start time for receiving time range 2 separately, which can reduce the signaling overhead during configuration.
  • FIG7(b) is a schematic diagram of another configuration method for receiving time ranges.
  • T1 is the start time of receiving time range 1
  • T2 is the end time of receiving time range 1
  • T3 is the start time of receiving time range 2
  • T4 is the end time of receiving time range 2.
  • the start time of receiving time range 2 does not overlap with the end time of receiving time range 1.
  • This method configures a start time and an end time for receiving time range 1 separately, and configures a start time and an end time for receiving time range 2 separately.
  • the receiving time range 1 is decoupled from the receiving time range 2, and a more flexible configuration of the receiving time range can be achieved.
  • the perception result reported by the terminal device also includes a perception distance index corresponding to each perception beam information, and the perception distance index is used to indicate the distance between the perception target and the terminal device.
  • the distance is determined according to the range resolution (RR), and the range resolution is used to represent the minimum distance between two different targets in the environment.
  • the duration of a time slot is related to the subcarrier spacing. For example, when the subcarrier spacing is 15Khz, a time slot is 1ms, if the pulse duration of the perception signal lasts for the duration of 1 time slot, then the pulse duration of the perception signal is 1ms. When the subcarrier spacing is 60Khz, a time slot is 0.25ms, if the pulse duration of the perception signal lasts for the duration of 1 time slot, then the pulse duration of the perception signal is 0.25ms. Therefore, the range resolution in the embodiment of the present application may also be related to the subcarrier spacing.
  • the correspondence between the range resolution and the perception distance index can be configured in advance in the terminal device and the network device.
  • Table 2-1 is an example of the correspondence between the pulse duration of the perception signal in absolute time units, the perception distance information and the perception distance index.
  • Perceptual distance index Perceiving distance information 0 RR0 ⁇ 2*RR0 1 2*RR0 ⁇ 3*RR0 2 3*RR0 ⁇ 4*RR0 3 4*RR0 ⁇ 5*RR0 ... ...
  • the perception distance index corresponding to 2*RR0 in the above Table 2-1 can be either 0 or 1.
  • the perception distance index corresponding to 3*RR0 can be either 1 or 2, and so on.
  • RR0 ⁇ 2*RR0 in the above Table 2-1 represents (RR0, 2*RR0], 2*RR0 ⁇ 3*RR0 represents (2*RR0, 3*RR0], 3*RR0 ⁇ 4*RR0 represents (3*RR0, 4*RR0], and 4*RR0 ⁇ 5*RR0 represents (4*RR0, 5*RR0].
  • (] indicates that the left side is an open interval and the right side is a closed interval, for example, (a, b] represents a value greater than a and less than or equal to b.
  • the corresponding range resolution is determined to be RR0.
  • the terminal device determines that the distance between a certain perception target and the terminal device is X. If X is included in RR0 ⁇ 2*RR0, the perception distance index reported by the terminal device is 0.
  • the network device determines that the distance between the perception target and the terminal device is between RR0 and 2*RR0 based on Table 2-1 and perception distance index 0. If X is included in 2*RR0 ⁇ 3*RR0, the perception distance index reported by the terminal device is 1.
  • the network device determines that the distance between the perception target and the terminal device is between 2*RR0 and 3*RR0 based on Table 2-1 and perception distance index 1. And so on, no further details are given.
  • Table 2-2 is an example of the correspondence between the perceived distance information and the perceived distance index when the subcarrier spacing is 120kHz.
  • Perceptual distance index Perceiving distance information 0 RR1 ⁇ 2*RR1 1 2*RR1 ⁇ 3*RR1 2 3*RR1 ⁇ 4*RR1 3 4*RR1 ⁇ 5*RR1 ... ...
  • the absolute duration of the pulse duration is determined according to the number of time slots in which the pulse duration of the perception signal lasts, and then the corresponding range resolution is determined to be RR1 according to the definition of range resolution.
  • the terminal device determines that the distance between a certain perception target and the terminal device is X. If X is included in RR1 ⁇ 2*RR1, the perception distance index reported by the terminal device is 0, and the network device determines that the distance between the perception target and the terminal device is between RR1 and 2*RR1 according to Table 2-2 and the perception distance index 0.
  • the perception distance index reported by the terminal device is 1, and the network device determines that the distance between the perception target and the terminal device is between 2*RR1 and 3*RR1 according to Table 2-2 and the perception distance index 1. And so on, no further description is given.
  • Table 2-3 is an example of the correspondence between the perceived distance information and the perceived distance index when the subcarrier spacing is 240kHz.
  • Perceptual distance index Perceiving distance information 0 RR2 ⁇ 2*RR2 1 2*RR2 ⁇ 3*RR2 2 3*RR2 ⁇ 4*RR2 3 4*RR2 ⁇ 5*RR2 ... ...
  • the absolute duration of the pulse duration is determined according to the number of time slots in which the pulse duration of the perception signal lasts, and then the corresponding range resolution is determined to be RR2 according to the definition of range resolution.
  • the terminal device determines that the distance between a certain perception target and the terminal device is X. If X is included in RR2 ⁇ 2*RR2, the perception distance index reported by the terminal device is 0, and the network device determines that the distance between the perception target and the terminal device is between RR2 and 2*RR2 according to Table 2-3 and the perception distance index 0.
  • the perception distance index reported by the terminal device is 1, and the network device determines that the distance between the perception target and the terminal device is between 2*RR2 and 3*RR2 according to Table 2-3 and the perception distance index 1. And so on, no further details are given.
  • the perception result reported by the terminal device also includes a speed index corresponding to each perception beam information, and the speed index is used to indicate the speed of the perceived target.
  • the speed indicated by the speed index can be determined according to the speed resolution (SR).
  • SR velocity resolution
  • ⁇ t wavelength of perceived signal
  • CPI coherent processing interval
  • a CPI includes a plurality of pulse repetition intervals (PRIs). Therefore, the speed resolution in the embodiment of the present application can be determined based on one or more of the CPI and PRI of the perceived signal.
  • PRIs pulse repetition intervals
  • the embodiment of the present application can pre-configure the correspondence between the speed index and the speed information in the terminal device and the network device.
  • Table 3-1 is an example of the correspondence between the speed index and the speed information when the CPI is 0.5 ms and ⁇ t is 15 mm.
  • the corresponding speed resolution SR1 15m/s.
  • the terminal device determines that the speed of a certain perceived target is S. If the speed S of the perceived target measured by the terminal device is included in 0-15m/s, the speed index reported by the terminal device is 0. The network device determines that the speed S of the perceived target is between 0 and 15m/s based on Table 3-1 and speed index 0. If the speed S of the perceived target measured by the terminal device is included in 15-30m/s, the speed index reported by the terminal device is 1. The network device determines that the speed S of the perceived target is between 15 and 30m/s based on Table 3-1 and speed index 1. And so on, no further details are given.
  • Table 3-2 is an example of the correspondence between the speed index and the speed information when the CPI is 5 ms and ⁇ t is 15 mm.
  • the corresponding speed resolution SR2 1.5m/s.
  • the terminal device determines that the speed of a certain perceived target is S. If the speed S of the perceived target measured by the terminal device is included in 0-1.5m/s, the speed index reported by the terminal device is 0. The network device determines that the speed S of the perceived target is between 0 and 1.5m/s based on Table 3-2 and speed index 0. If the speed S of the perceived target measured by the terminal device is included in 1.5-3m/s, the speed index reported by the terminal device is 1. The network device determines that the speed S of the perceived target is between 1.5 and 3m/s based on Table 3-2 and speed index 1. And so on, no further details are given.
  • perception target in the embodiment of the present application can be other devices other than the network device and the terminal device, or it can be the terminal device.
  • the terminal device receives the perception signal sent by the network device, and reports the perception result generated according to the perception signal to the network device, so that the network device can determine the perception target according to the perception result. Since the terminal device reports the perception result of the beam granularity, it helps the network device to accurately determine the perception target and improve the accuracy of perception.
  • the first device or the second device includes hardware structures and/or software modules corresponding to the execution of each function. It should be easy for those skilled in the art to realize that, in combination with the units and method steps of each example described in the embodiments disclosed in this application, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • Figures 8 and 9 are schematic diagrams of the structures of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the first device or the second device in the above method embodiment, and thus can also achieve the beneficial effects possessed by the above method embodiment.
  • the communication device can be the first device or the second device shown in Figure 1.
  • the communication device 800 shown in Fig. 8 includes a sending unit 820 and a receiving unit 830, and optionally also includes a processing unit 810.
  • the communication device 800 is used to implement the functions of the first device or the second device in the above method embodiment.
  • the receiving unit 830 is used to receive a perception signal from the second device through one or more receiving beams, and the perception signal is sent by one or more transmitting beams of the second device;
  • the sending unit 820 is used to send a perception result to the second device, and the perception result includes one or more perception beam information, and the perception beam information is used to indicate the target transmitting beam and/or target receiving beam corresponding to the perception signal, and the target transmitting beam is one of the one or more transmitting beams, and the target receiving beam is one of the one or more receiving beams.
  • a possible implementation method is that the receiving unit 830 is further used to receive transmit beam information and/or receive beam information, where the transmit beam information corresponds to one or more transmit beams, and the receive beam information corresponds to one or more receive beams.
  • a possible implementation method is that the transmission beam information includes one or more of the directions of multiple transmission beams and the time intervals between the beams, and the directions of the multiple transmission beams are the same; or, the transmission beam information includes index information, and the index information corresponds to one or more of the directions of the multiple transmission beams and the time intervals between the beams.
  • the transmission beam information includes one or more of information of multiple transmission beam groups and time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes one or more of the beam direction of the transmission beam group and the time intervals between the beams within the transmission beam group, wherein the directions of the beams within the same transmission beam group are the same.
  • the transmission beam information includes information of multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes information of multiple transmission beam sub-groups and one or more of the time intervals between the transmission beam sub-groups, and the information of the transmission beam sub-group includes beam directions of the transmission beam sub-groups and one or more of the time intervals between beams within the transmission beam sub-group, wherein the directions of beams within the same transmission beam sub-group are the same.
  • the sensing beam information includes information of the target transmitting beam and/or information of the target receiving beam; wherein the information of the target transmitting beam includes one or more of the index, direction, width or angle of the target transmitting beam, and the information of the target receiving beam includes one or more of the index, direction, width or angle of the target receiving beam.
  • the perception result also includes one or more of a perception distance index and a speed index; wherein the perception distance index is used to indicate the distance between the perception target and the first device, and the speed index is used to indicate the speed of the perception target.
  • a possible implementation method is that the distance indicated by the perception distance index is determined based on a range resolution, and the range resolution is determined based on one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the receiving unit 830 is specifically configured to receive the perception signal from the second device within a receiving time range through the one or more receiving beams.
  • the receiving unit 830 is further configured to receive time information, where the time information is used to indicate the receiving time range.
  • the sending unit 820 is used to send a perception signal to the first device through one or more transmitting beams corresponding to the transmitting beam information, and the perception signal is received through one or more receiving beams;
  • the receiving unit 830 is used to receive a perception result from the first device, and the perception result includes one or more perception beam information, and the perception beam information is used to indicate the target transmitting beam and/or target receiving beam corresponding to the perception signal, and the target transmitting beam is one of the one or more transmitting beams, and the target receiving beam is one of the one or more receiving beams.
  • the sending unit 820 is further used to send the transmission beam information to the first device.
  • the sending unit 820 is further used to send receiving beam information to the first device, where the receiving beam information corresponds to the one or more receiving beams.
  • the transmission beam information includes one or more of directions of multiple transmission beams and time intervals between beams, and the directions of the multiple transmission beams are the same.
  • the transmission beam information includes index information, and the index information corresponds to one or more of the directions of the multiple transmission beams and the time intervals between the beams.
  • the transmission beam information includes one or more of information of multiple transmission beam groups and time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes one or more of the beam direction of the transmission beam group and the time intervals between the beams within the transmission beam group, wherein the directions of the beams within the same transmission beam group are the same.
  • the transmission beam information includes information of multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; or, the transmission beam information includes index information, and the index information corresponds to the information of the multiple transmission beam groups and one or more of the time intervals between the transmission beam groups; wherein the information of the transmission beam group includes information of multiple transmission beam sub-groups and one or more of the time intervals between the transmission beam sub-groups, and the information of the transmission beam sub-group includes beam directions of the transmission beam sub-groups and one or more of the time intervals between beams within the transmission beam sub-group, wherein the directions of beams within the same transmission beam sub-group are the same.
  • the sensing beam information includes information of the target transmitting beam and/or information of the target receiving beam; wherein the information of the target transmitting beam includes one or more of the index, direction, width or angle of the target transmitting beam, and the information of the target receiving beam includes one or more of the index, direction, width or angle of the target receiving beam.
  • the perception result also includes one or more of a perception distance index and a speed index; wherein the perception distance index is used to indicate the distance between the perception target and the first device, and the speed index is used to indicate the speed of the perception target.
  • the distance indicated by the perception distance index is determined according to a range resolution
  • the range resolution is determined according to one or more of a subcarrier spacing and a pulse duration of the perception signal.
  • the speed indicated by the speed index is determined according to a speed resolution, and the speed resolution is determined according to one or more of a coherent processing interval CPI and a pulse repetition interval PRI of the perception signal.
  • the perception signal is received through one or more receiving beams, includes: the perception signal is received through one or more receiving beams within a receiving time range.
  • the sending unit 820 is further used to send time information to the first device, where the time information is used to indicate the receiving time range.
  • processing unit 810 For a more detailed description of the processing unit 810, the sending unit 820 and the receiving unit 830, reference may be made to the relevant description in the above method embodiment, which will not be repeated here.
  • the communication device 900 shown in FIG9 includes a processor 910 and an interface circuit 920.
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input/output interface.
  • the communication device 900 may further include a memory 930 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to execute instructions or storing data generated after the processor 910 executes instructions; or when the processor is a logic circuit (device), storing a configuration file of the logic circuit (device).
  • the processor 910 is used to implement the function of the above processing unit 810
  • the interface circuit 920 is used to implement the functions of the above sending unit 820 and the receiving unit 830.
  • processors in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, registers, hard disks, mobile hard disks, compact disc read-only memory (compact disc read-only memory, CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in the first device or the second device.
  • the processor and the storage medium can also be present in the first device or the second device as discrete components.
  • all or part of the embodiments may be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments may be implemented in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • a computer program refers to a set of instructions that instruct each step of an electronic computer or other device with message processing capabilities, usually written in a certain programming language and running on a certain target architecture.
  • the process or function described in the embodiment of the present application is executed in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that integrates one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; an optical medium, such as a digital video disk; or a semiconductor medium, such as a solid state drive.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both volatile and non-volatile types of storage media.
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship; in the formula of this application, the character “/” indicates that the previous and next associated objects are in a "division” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例提供一种感知方法、通信装置及通信系统。该方法包括:第一装置接收第二装置发送的感知信号,并向第二装置上报根据感知信号生成的感知结果,该感知结果包括一个或多个感知波束信息,该感知波束信息用于指示该感知信号对应的目标发送波束和/或目标接收波束,该目标发送波束是该一个或多个发送波束中的一个,该目标接收波束是该一个或多个接收波束中的一个,第二装置可以根据感知结果确定感知目标。由于第一装置上报的是波束粒度的感知结果,有助于第二装置精确确定感知目标,能够提升感知的精确度。

Description

一种感知方法、通信装置及通信系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种感知方法、通信装置及通信系统。
背景技术
在过去的几十年中,无线通信系统经历了从第一代模拟通信到第五代(5th generation,5G)通信的演变和研究。
随着通信技术的发展,感知网络的应用范围越来越广泛,通信网络和感知网络的融合也成为5G之后演进的技术与业务的主导趋势之一。感知网络是指具有目标定位(测距、测速、测角等)、目标成像、目标检测和目标识别等能力的网络。
感知网络中一般包括一个或多个装置,以两个装置为例,其中一个装置发送感知信号,另一个装置接收感知信号,并根据感知信号的接收情况确定环境中的感知目标的相关信息,该感知目标可以是该两个装置中的某个装置,也可以是该两个装置之外的其它装置。
在通信系统中,如何提升感知的精确度,需要持续关注。
发明内容
本申请提供一种感知方法、通信装置及通信系统,用以提升感知的精确度。
第一方面,本申请实施例提供一种感知方法,该方法由第一装置执行,该第一装置可以是终端设备、网络设备或其它设备。该方法包括:第一装置通过一个或多个接收波束接收来自第二装置的感知信号,该感知信号由第二装置的一个或多个发送波束发送;该第一装置向该第二装置发送感知结果,该感知结果包括一个或多个感知波束信息,该感知波束信息用于指示该感知信号对应的目标发送波束和/或目标接收波束,该目标发送波束是该一个或多个发送波束中的一个,该目标接收波束是该一个或多个接收波束中的一个。
上述方案,第一装置接收第二装置发送的感知信号,并向第二装置上报根据感知信号生成的感知结果,第二装置可以根据感知结果确定感知目标。由于第一装置上报的是波束粒度的感知结果,有助于第二装置精确确定感知目标,能够提升感知的精确度。
一种可能的实现方法中,该第一装置接收发送波束信息和/或接收波束信息,该发送波束信息对应该一个或多个发送波束,该接收波束信息对应该一个或多个接收波束。
上述方案,为第一装置配置接收波束信息,从而第一装置能够更加快速准确地接收到感知信号,有助于准确确定感知结果,进而提升感知的精确度。
一种可能的实现方法中,该发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,该多个发送波束的方向相同。
上述方案,第二装置通过多个方向相同的发送波束向第一装置发送感知信号,有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度。
一种可能的实现中,该发送波束信息包括索引信息,该索引信息对应该多个发送波束的方向、该波束间的时间间隔中的一个或多个。
上述方案,第二装置通过多个方向相同的发送波束向第一装置发送感知信号,有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度。
一种可能的实现方法中,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括发送波束组的波束方向、发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
上述方案,第二装置通过多个发送波束向第一装置发送感知信号,该多个发送波束中包括相同方向的发送波束,从而有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
一种可能的实现方法中,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,该发送波束子组的信息包括发送波束子组的波束方向、发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
上述方案,第二装置通过多个发送波束向第一装置发送感知信号,一个发送波束组分为一个或多个发送波束子组,每个发送波束子组内多个发送波束中包括相同方向的发送波束,从而有助于通过波束方向的调整实现第一装置对环境中的某个感知目标进行精确感知,能够提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
一种可能的实现方法中,该感知波束信息包括该目标发送波束的信息和/或该目标接收波束的信息;其中,该目标发送波束的信息包括该目标发送波束的索引、方向、宽度或角度中的一个或多个,该目标接收波束的信息包括该目标接收波束的索引、方向、宽度或角度中的一个或多个。
上述方案,第一装置向第二装置上报的感知波束信息包括目标发送波束的信息和/或该目标接收波束的信息,有助于第二装置准确确定感知目标。
一种可能的实现方法中,该感知结果还包括感知距离索引、速度索引中的一个或多个;其中,该感知距离索引用于指示感知目标与该第一装置之间的距离,该速度索引用于指示该感知目标的速度。
上述方案,感知结果还包括感知距离索引和/或速度索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知距离索引、速度索引,可以减少信令开销。
一种可能的实现方法中,该感知距离索引指示的距离是根据范围分辨率确定的,该范围分辨率是根据该感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
上述方案,通过范围分辨率确定距离,能够实现准确确定距离,有助主提升感知准确性。
一种可能的实现方法中,该速度索引指示的速度是根据速度分辨率确定的,该速度分辨率是根据该感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
上述方案,通过速度分辨率确定速度,能够实现准确确定速度,有助提升感知准确性。
一种可能的实现方法中,该第一装置通过一个或多个接收波束接收来自第二装置的感 知信号,包括:该第一装置通过该一个或多个接收波束,在接收时间范围内接收来自该第二装置的该感知信号。
上述方案,第一装置在一个接收时间范围内接收感知信号,可以实现根据第二装置的需求对感知目标进行感知,有助于实现感知的灵活性。
一种可能的实现方法中,该第一装置接收时间信息,该时间信息用于指示该接收时间范围。
上述方案,第一装置根据第二装置的需求,在接收时间范围内接收感知信号,可以提高感知结果与感知需求的匹配度,避免不必要的信息传输,降低干扰,提高感知效率。
第二方面,本申请实施例提供一种感知方法,该方法由第二装置执行,该第二装置可以是终端设备、网络设备或其它设备。该方法包括:第二装置通过发送波束信息对应的一个或多个发送波束,向第一装置发送感知信号,该感知信号是通过一个或多个接收波束接收的;该第二装置接收来自该第一装置的感知结果,该感知结果包括一个或多个感知波束信息,该感知波束信息用于指示该感知信号对应的目标发送波束和/或目标接收波束,该目标发送波束是该一个或多个发送波束中的一个,该目标接收波束是该一个或多个接收波束中的一个。
上述方案,第一装置接收第二装置发送的感知信号,并向第二装置上报根据感知信号生成的感知结果,第二装置可以根据感知结果确定感知目标。由于第一装置上报的是波束粒度的感知结果,有助于第二装置精确确定感知目标,能够提升感知的精确度。
一种可能的实现方法中,该第二装置向该第一装置发送该发送波束信息。
上述方案,为第一装置配置发送波束信息,从而第一装置能够更加快速准确地接收到感知信号,有助于准确确定感知结果,进而提升感知的精确度。
一种可能的实现方法中,该第二装置向该第一装置发送接收波束信息,该接收波束信息对应该一个或多个接收波束。
上述方案,为第一装置配置接收波束信息,从而第一装置能够更加快速准确地接收到感知信号,有助于准确确定感知结果,进而提升感知的精确度。
一种可能的实现方法中,该发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,该多个发送波束的方向相同。
上述方案,第二装置通过多个方向相同的发送波束向第一装置发送感知信号,有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度。
一种可能的实现方法中,该发送波束信息包括索引信息,该索引信息对应该多个发送波束的方向、该波束间的时间间隔中的一个或多个。
上述方案,第二装置通过多个方向相同的发送波束向第一装置发送感知信号,有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度。
一种可能的实现方法中,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括发送波束组的波束方向、发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
上述方案,第二装置通过多个发送波束向第一装置发送感知信号,该多个发送波束中包括相同方向的发送波束,从而有助于第一装置对环境中的感知目标进行精确感知,能够 提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
一种可能的实现方法中,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,该发送波束子组的信息包括发送波束子组的波束方向、发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
上述方案,第二装置通过多个发送波束向第一装置发送感知信号,该多个发送波束中包括相同方向的发送波束,从而有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
一种可能的实现方法中,该感知波束信息包括该目标发送波束的信息和/或该目标接收波束的信息;其中,该目标发送波束的信息包括该目标发送波束的索引、方向、宽度或角度中的一个或多个,该目标接收波束的信息包括该目标接收波束的索引、方向、宽度或角度中的一个或多个。
上述方案,第一装置向第二装置上报的感知波束信息包括目标发送波束的信息和/或该目标接收波束的信息,有助于第二装置准确确定感知目标。
一种可能的实现方法中,该感知结果还包括感知距离索引、速度索引中的一个或多个;其中,该感知距离索引用于指示感知目标与该第一装置之间的距离,该速度索引用于指示该感知目标的速度。
上述方案,感知结果还包括感知距离索引和/或速度索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知距离索引、速度索引,而不是感知距离、速度,可以减少信令开销。
一种可能的实现方法中,该感知距离索引指示的距离是根据范围分辨率确定的,该范围分辨率是根据该感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
上述方案,通过范围分辨率确定距离,能够实现准确确定距离,有主提升感知准确性。
一种可能的实现方法中,该速度索引指示的速度是根据速度分辨率确定的,该速度分辨率是根据该感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
上述方案,通过速度分辨率确定速度,能够实现准确确定速度,有主提升感知准确性。
一种可能的实现方法中,该感知信号是通过一个或多个接收波束接收的,包括:该感知信号是通过一个或多个接收波束,在接收时间范围内接收的。
上述方案,第一装置在一个接收时间范围内接收感知信号,可以实现根据第二装置的需求对感知目标进行感知,有助于实现感知的灵活性。
一种可能的实现方法中,该第二装置向该第一装置发送时间信息,该时间信息用于指示该接收时间范围。
上述方案,第一装置根据第二装置的需求,在接收时间范围内接收感知信号,可以提高感知结果与感知需求的匹配度,避免不必要的信息传输,降低干扰,提高感知效率。
第三方面,本申请实施例提供一种感知方法,该方法由第一装置执行,该第一装置可以是终端设备、网络设备或其它设备。该方法包括:第一装置在接收时间范围内接收来自 第二装置的感知信号。
上述方案,第一装置在一个接收时间范围内接收感知信号,可以实现根据第二装置的需求对感知目标进行感知,有助于实现感知的灵活性。
一种可能的实现方法中,第一装置接收时间信息,该时间信息用于指示该接收时间范围。
上述方案,通过时间信息指示接收时间范围,有助于实现准确配置接收时间范围。
一种可能的实现方法中,第一装置向第二装置发送该感知信号对应的感知结果,该感知结果包括时延信息、路径长度信息或多普勒偏移信息中至少一种;其中,时延信息表示感知信号从第二装置发出,经过感知目标后到达第一装置所经历的时延长度;路径长度信息表示感知信号从第二装置发出,经过感知目标后到达第一装置所经历的路径长度;多普勒偏移信息表示感知信号从第二装置发出时的原始频率,与该感知信号经过感知目标后到达第一装置时的实际频率之间的偏移。
上述方案,在感知结果中包括时延信息、路径长度信息或多普勒偏移信息中至少一种,有助于第二装置根据感知结果确定感知目标。
第四方面,本申请实施例提供一种感知方法,该方法由第一装置执行,该第一装置可以是终端设备、网络设备或其它设备。该方法包括:第一装置接收来自第二装置的感知信号;该第一装置向该第二装置发送感知结果,该感知结果包括感知距离索引,该感知距离索引用于指示感知信号对应的感知目标与第一装置之间的距离。
上述方案,感知结果还包括感知距离索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知距离索引,而不是感知距离,可以减少信令开销。
一种可能的实现方法中,该感知距离索引指示的距离是根据范围分辨率确定的,所述范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
上述方案,通过范围分辨率确定距离,能够实现准确确定距离,有主提升感知准确性。
第五方面,本申请实施例提供一种感知方法,该方法由第一装置执行,该第一装置可以是终端设备、网络设备或其它设备。该方法包括:第一装置接收来自第二装置的感知信号;该第一装置向该第二装置发送感知结果,该感知结果包括速度索引,该速度索引用于指示所述感知目标的速度。
上述方案,感知结果还包括感知速度索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知速度索引,而不是感知速度,可以减少信令开销。
一种可能的实现方法中,该速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
上述方案,通过速度分辨率确定速度,能够实现准确确定速度,有主提升感知准确性。
第六方面,本申请实施例提供一种感知方法,该方法由第二装置执行,该第二装置可以是终端设备、网络设备或其它设备。该方法包括:第二装置向第一装置发送感知信号;该第二装置接收来自该第一装置的感知结果,该感知结果包括感知距离索引,该感知距离索引用于指示感知信号对应的感知目标与第一装置之间的距离。
上述方案,感知结果还包括感知距离索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知距离索引,而不是感知距离,可以减少信令开销。
一种可能的实现方法中,该感知距离索引指示的距离是根据范围分辨率确定的,所述 范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
上述方案,通过范围分辨率确定距离,能够实现准确确定距离,有主提升感知准确性。
第七方面,本申请实施例提供一种感知方法,该方法由第二装置执行,该第二装置可以是终端设备、网络设备或其它设备。该方法包括:第二装置向第一装置发送感知信号;该第二装置接收来自该第一装置的感知结果,该感知结果包括速度索引,该速度索引用于指示所述感知目标的速度。
上述方案,感知结果还包括感知速度索引,有助于第二装置准确确定感知目标,提升了感知的有效性。并且,上报的是感知速度索引,而不是感知速度,可以减少信令开销。
一种可能的实现方法中,该速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
上述方案,通过速度分辨率确定速度,能够实现准确确定速度,有主提升感知准确性。
第八方面,本申请实施例提供一种通信装置。该装置具有实现上述第一方面至第七方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第七方面中的任意实现方法的各个步骤的单元或手段(means)。
第十方面,本申请实施例提供一种通信装置,包括至少一个处理器,所述处理器用于通过以下至少一项:运行计算机指令或程序、逻辑电路,执行上述第一方面至第七方面中的任意实现方法。
一种可能的实现中,该处理器与存储器耦合,该存储器存储上述计算机指令或程序;或者,该存储器存储逻辑电路的配置文件。可选地,该存储器可以位于该装置之内,即该装置包括存储器;可选地,处理器和存储器集成在一起;可选地,该存储器也可以位于该装置之外。
一种可能的实现中,该通信装置还包括:接口电路,该接口电路用于输入和/或输出信号。所述处理器用于通过接口电路与其它装置通信。
一种可能的实现中,该通信装置为芯片。
第十一方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被通信装置运行时,使得上述第一方面至第七方面中的任意实现方法被执行。
第十二方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面至第七方面中的任意实现方法被执行。
第十三方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第七方面的任意实现方法。
第十四方面,本申请实施例还提供一种通信系统,包括用于执行第一方面的任意实现方法的第一装置,和用于执行第二方面的任意实现方法的第二装置。
第十五方面,本申请实施例还提供一种通信系统,包括用于执行第四方面的任意实现方法的第一装置,和用于执行第六方面的任意实现方法的第二装置。
第十六方面,本申请实施例还提供一种通信系统,包括用于执行第五方面的任意实现 方法的第一装置,和用于执行第七方面的任意实现方法的第二装置。
附图说明
图1为本申请实施例应用的通信系统的架构示意图;
图2为本申请实施例应用的通信系统的又一示意图;
图3为本申请实施例提供的一种感知方法的交互流程示意图;
图4(a)为发送波束信息指示的发送波束的一个示例图;
图4(b)为发送波束信息指示的发送波束的又一个示例图;
图4(c)为发送波束信息指示的发送波束的又一个示例图;
图5(a)为发送感知信号的一个示例图;
图5(b)为发送感知信号的又一个示例图;
图6为接收时间范围的示例图;
图7(a)为接收时间范围的一种配置方法的示意图;
图7(b)为接收时间范围的又一种配置方法的示意图;
图8为本申请的实施例提供的可能的通信装置的结构示意图;
图9为本申请的实施例提供的可能的通信装置的结构示意图。
具体实施方式
图1为本申请实施例应用的通信系统的架构示意图。该通信系统包括第一装置和第二装置。
一种实现方法中,第一装置是网络设备或用于网络设备的模块,第二装置是终端设备或用于终端设备的模块。第一装置与第二装置之间通过空口进行通信。
又一种实现方法中,第一装置是终端设备或用于终端设备的模块,第二装置是网络设备或用于网络设备的模块。第一装置与第二装置之间通过空口进行通信。
又一种实现方法中,第一装置是终端设备或用于终端设备的模块,第二装置是终端设备或用于终端设备的模块。第一装置与第二装置之间可以通过PC5接口进行侧行链路(side link,SL)通信。
当然,本申请实施例中的第一装置、第二装置还可以是其他类型的设备,本申请对此不做限定。
本申请实施中,终端设备是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是蜂窝电话、手机(mobile phone)、平板电脑(pad)、无线数据卡、无线调制解调器、卫星终端、车载设备、可穿戴设备、无人机、机器人、智能销售点(point of sale,POS)机、客户终端设备(customer-premises equipment,CPE)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的终端设备、无人驾驶(self driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、运输安全(transportation safety)中的终 端、智慧城市(smart city)中的终端设备、智慧家庭(smart home)中的终端。
本申请实施中,网络设备具有无线收发功能的设备,用于与终端设备进行通信;也可以是能够将终端设备接入到无线网络的设备,如无线接入网(radio access network,RAN)设备或节点。本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G之后演进的通信系统中实现基站功能的设备、WiFi系统中的接入点(access point,AP)、接入回传一体化(integrated access and backhaul,IAB)节点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、非陆地通信网络(non-terrestrial network,NTN)通信系统中的网络设备,即可以部署于高空平台或者卫星;还可以是构成接入节点的各类设备,如有源天线处理单元(active antenna unit,AAU)、基带单元(baseband unit,BBU)等。本申请实施例对此不作具体限定。
为便于说明,本申请实施例中以第一装置是终端设备、第二装置是网络设备为例进行说明。
图2为本申请实施例应用的通信系统的又一示意图。该通信系统包括网络设备和终端设备。该终端设备是第一装置的一个示例,该网络设备是第二装置的一个示例。
图3为本申请实施例提供的一种感知方法的交互流程示意图。该方法包括以下步骤:
步骤301,终端设备接收发送波束信息和/或接收波束信息。
该发送波束信息用于网络设备向终端设备发送感知信号。其中,终端设备可以从网络设备接收该发送波束信息,也可以从其它设备接收该发送波束信息,或者终端设备自行确定发送波束信息,本申请对此不限定。
该接收波束信息用于终端设备从网络设备接收感知信号。其中,终端设备可以从网络设备接收该接收波束信息,也可以从其它设备接收该发送波束信息,或者终端设备自行确定接收波束信息,本申请对此不限定。
该步骤301为可选步骤。一种实现方法中,该步骤301不执行,由终端设备自行确定发送波束信息和接收波束信息。又一种实现方法中,终端设备接收发送波束信息,以及自行确定接收波束信息。又一种实现方法中,终端设备接收接收波束信息,以及自行确定发送波束信息。又一种实现方法中,终端设备接收发送波束信息和接收波束信息。
示例性地,下面介绍该发送波束信息的不同实现方法。
方法一,发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,多个发送波束的方向相同,或者该发送波束信息包括索引信息,该索引信息对应多个发送波束的方向、波束间的时间间隔中的一个或多个。其中,该发送波束信息指示的多个发送波束的方向相同。
该方法,第二装置通过多个方向相同的发送波束向第一装置发送感知信号,有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度。
下面结合示例,说明索引信息的实现方法。
一种实现方法中,索引信息对应多个发送波束的方向。该实现方法中,波束间的时间间隔可以是协议定义或默认的。表1-1为索引信息与发送波束的方向之间的关系示例。
表1-1
索引信息 发送波束的方向
0 方向1
1 方向2
2 方向3
3 方向4
…… ……
比如,当发送波束信息包括的索引信息为0,表示多个发送波束的方向为方向1;当发送波束信息包括的索引信息为1,表示多个发送波束的方向为方向2,等等。
又一种实现方法中,索引信息对应波束间的时间间隔。该实现方法中,多个发送波束的方向可以是协议定义或默认的。表1-2为索引信息与波束间的时间间隔之间的关系示例。
表1-2
索引信息 波束间的时间间隔
0 a1
1 a2
2 a3
3 a4
…… ……
比如,当发送波束信息包括的索引信息为0,表示波束间的时间间隔为a1;当发送波束信息包括的索引信息为1,表示波束间的时间间隔为a2,等等。
又一种实现方法中,索引信息对应多个发送波束的方向以及波束间的时间间隔。表1-3为索引信息与多个发送波束的方向以及波束间的时间间隔之间的关系示例。
表1-3
索引信息 发送波束的方向 波束间的时间间隔
0 方向1 b1
1 方向1 b2
2 方向2 b3
3 方向2 b4
4 方向3 b5
…… …… ……
比如,当发送波束信息包括的索引信息为0,表示多个发送波束的方向为方向1且波 束间的时间间隔为b1;当发送波束信息包括的索引信息为1,表示多个发送波束的方向为方向1且波束间的时间间隔为b2,等等。
图4(a)为发送波束信息指示的发送波束的一个示例图。该示例中,发送波束信息指示了3个波束的方向、波束间的时间间隔中的一个或多个。该3个波束的方向相同。该示例中,发送波束信息包括3个发送波束的方向和波束间的时间间隔,或者该发送波束信息包括索引信息,该索引信息指示了3个发送波束的方向和波束间的时间间隔。
方法二,发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,发送波束信息包括索引信息,索引信息对应多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;其中,发送波束组的信息包括发送波束组的波束方向、发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
其中,关于索引信息的实现方法,可以参考上述方法一中的表1-1,1-2及1-3的示例,不再赘述。
该方法,第二装置通过多个发送波束向第一装置发送感知信号,该多个发送波束中包括相同方向的发送波束,从而有助于第一装置对环境中的感知目标进行精确感知,能够提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
图4(b)为发送波束信息指示的发送波束的又一个示例图。该示例中,发送波束信息指示了2个发送波束组的信息、发送波束组间的时间间隔中的一个或多个。每个发送波束组的信息指示了波束方向、波束间的时间间隔中的一个或多个。其中,发送波束组1内的不同波束的方向相同,发送波束组2内的不同波束的方向相同。该示例中,发送波束信息包括发送波束组1的波束方向、发送波束组1的波束间的时间间隔、发送波束组2的波束方向、发送波束组2的波束间的时间间隔以及发送波束组间的时间间隔,或者该发送波束信息包括索引信息,该索引信息指示了发送波束组1的波束方向、发送波束组1的波束间的时间间隔、发送波束组2的波束方向、发送波束组2的波束间的时间间隔以及发送波束组间的时间间隔。
方法三,发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个,或者发送波束信息包括索引信息,索引信息对应多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个。其中,发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,发送波束子组的信息包括发送波束子组的波束方向、发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
其中,关于索引信息的实现方法,可以参考上述方法一中的表1-1,1-2及1-3的示例,不再赘述。
上述方法中,第二装置通过多个发送波束向第一装置发送感知信号,一个发送波束组分为一个或多个发送波束子组,每个发送波束子组内多个发送波束中包括相同方向的发送波束,从而有助于通过波束方向的调整实现第一装置对环境中的某个感知目标进行精确感知,能够提升感知的精确度,该多个发送波束中还包括不同方向的发送波束,从而有助于提升感知的范围,快速感知环境中的感知目标。
图4(c)为发送波束信息指示的发送波束的又一个示例图。该示例中,发送波束信息指 示了2个发送波束组的信息、发送波束组间的时间间隔中的一个或多个。每个发送波束组的信息指示了2个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,每个发送波束子组的信息指示了波束方向、波束间的时间间隔中的一个或多个。其中,发送波束组1中的发送波束子组1的不同波束的方向相同,发送波束组1中的发送波束子组2的不同波束的方向相同,发送波束组2中的发送波束子组1的不同波束的方向相同,发送波束组2中的发送波束子组2的不同波束的方向相同。该示例中,发送波束信息包括发送波束组1的信息、发送波束组2的信息以及发送波束组间的时间间隔,其中,发送波束组1的信息包括发送波束子组1的方向、发送波束子组1内波束间的时间间隔、发送波束子组2的方向、发送波束子组2内波束间的时间间隔以及两个发送波束子组间的时间间隔,发送波束组2的信息包括发送波束子组3的方向、发送波束子组3内波束间的时间间隔、发送波束子组4的方向、发送波束子组4内波束间的时间间隔以及两个发送波束子组间的时间间隔,或者该发送波束信息包括索引信息,该索引信息指示了发送波束组1的信息、发送波束组2的信息以及发送波束组间的时间间隔。
关于该接收波束信息的实现方法,与上述发送波束信息的实现方法类似,具体可以参考前述方法一至方法三,不再赘述。
步骤302,网络设备通过发送波束信息对应的一个或多个发送波束,向终端设备发送感知信号。相应地,终端设备通过一个或多个接收波束接收该感知信号。
一种实现方法中,该感知信号可以是同步信号/物理层广播信号块(SS/PBCH resource block,SSB)。其中,SS是同步信号块(synchronization signal)的简称,PBCH是物理广播信道(physical broadcast channel)的简称。
本申请实施例对网络设备发送的感知信号的数量不做限定。为了获得更加准确的感知结果,可以在一段时间内持续的发送感知信号。比如,网络设备在同一时刻在不同方向发送多个波束,或者在不同时刻向同一方向发送多个波束等等。
网络设备在发送感知信号之后,终端设备通过一个或多个接收波束接收感知信息。其中,终端设备用于接收感知信号的接收波束可以是终端设备自行确定的,也可以是网络设备为终端设备配置的。比如,终端设备从网络设备或其它设备接收接收波束信息,该接收波束信息对应一个或多个接收波束。示例性地,下面介绍感知信号的不同发送方式。
图5(a)为发送感知信号的一个示例图。在同一时刻,网络设备侧存在两个发送波束,每个发送波束可以发送一个感知信号,终端设备侧存在三个接收波束。当环境中存在多个感知目标时,多个方向的发送波束和接收波束可同时对多个感知目标进行探测,从而获取到多个感知结果,每个感知结果对应一个感知目标。比如图5(a)中,发送波束0和接收波束0可以感知到环境中的感知目标1,发送波束1和接收波束1可以感知到环境中的感知目标2。
图5(b)为发送感知信号的又一个示例图。在同一时刻,网络设备侧存在两个发送波束,每个发送波束可以发送一个感知信号,终端设备侧存在三个接收波束。当环境中存在多个感知目标时,多个方向的发送波束和接收波束可同时对多个感知目标进行探测,从而获取到多个感知结果,每个感知结果对应一个感知目标。比如图5(b)中,发送波束0和接收波束0可以感知到环境中的感知目标1,并且发送波束0和接收波束0还可以感知到环境中的感知目标2。
步骤303,终端设备向网络设备发送感知结果。相应地,网络设备接收该感知结果。
该感知结果包括一个或多个感知波束信息,每个感知波束信息用于指示一个感知信号对应的目标发送波束和/或目标接收波束,目标发送波束是发送波束信息对应的一个或多个发送波束中的一个,目标接收波束是接收波束信息对应的一个或多个接收波束中的一个。
一种实现方法中,每个感知波束信息包括目标发送波束的信息和/或目标接收波束的信息,该目标发送波束的信息包括目标发送波束的索引、方向、宽度或角度中的一个或多个,该目标接收波束的信息包括目标接收波束的索引、方向、宽度或角度中的一个或多个。示例性地,目标发送波束的方向比如是水平方向或垂直方向等。目标发送波束的宽度比如是3分贝(db)、5db等。目标发送波束的角度比如是30度或40度等。
以图5(a)为例,网络设备通过发送波束0向终端设备发送感知信号1,以及通过发送波束1向终端设备发送感知信号2,终端设备通过接收波束0接收到感知信号1,以及通过接收波束1接收到感知信号2,因此终端设备生成的感知结果包括感知波束信息1和感知波束信息2,该感知波束信息1包括发送波束0的信息和接收波束0的信息,该感知波束信息2包括发送波束1的信息和接收波束1的信息。该示例中,终端设备是按照波束粒度进行感知结果的上报,也即感知结果中包括2个波束的感知波束信息,每个感知波束信息对应一个发送波束和一个接收波束。
以图5(b)为例,网络设备通过发送波束0向终端设备发送感知信号,该感知信号分别经过感知目标1、感知目标2的反射之后,由终端设备的接收波束0接收到。也即网络设备通过发送波束0发送的一个感知信号经过两条路径到达终端设备,且被终端设备的同一个接收波束0接收到。该情形下,终端设备确定的感知结果包括感知波束信息1和感知波束信息2,该感知波束信息1包括发送波束0的信息,接收波束0的信息以及发送波束0和接收波束0下的路径0的信息,该感知波束信息2包括发送波束0的信息和接收波束0的信息,以及发送波束0和接收波束0下的路径1的信息。该路径0的信息和路径1的信息可以通过时延信息,路径长度信息和多普勒偏移信息中至少一种表示。例如,该感知波束信息1对应时延信息1,路径长度信息1和多普勒偏移信息1中的至少一种,该感知波束信息2对应时延信息2,路径长度信息2和多普勒偏移信息2中的至少一种。其中,时延信息1表示感知信号从网络设备发出,经过感知目标1然后到达终端设备所经历的时延长度,时延信息2表示感知信号从网络设备发出,经过感知目标2然后到达终端设备所经历的时延长度。路径长度信息1表示感知信号从网络设备发出,经过感知目标1然后到达终端设备所经历的路径长度,路径长度信息2表示感知信号从网络设备发出,经过感知目标2然后到达终端设备所经历的路径长度。其中,这里的路径长度可以是物理距离,比如5米,10米等,也可以是时延,比如2纳秒,3纳秒等。多普勒偏移信息1表示感知信号从网络设备发出时的原始频率,与该感知信号经过感知目标1后到达终端设备时的实际频率之间的偏移,多普勒偏移信息2表示感知信号从网络设备发出时的原始频率,与该感知信号经过感知目标2后到达终端设备时的实际频率之间的偏移。该示例中,终端设备是按照路径粒度进行感知结果的上报,也即感知结果中包括2个路径的感知波束信息,每个感知波束信息对应一个发送波束和一个接收波束,以及包括与路径相关的信息。该方案,上报路径粒度的感知结果,有助于提升感知的精确度。
一种实现方法中,在某些场景下,网络设备希望获取环境中特定位置或特定范围内的目标的信息,由于不同位置或范围的目标会导致感知信号在不同时刻到达终端设备,因此网络设备可以为终端设备配置接收时间信息,该时间信息用于指示该接收时间范围。因此, 如果终端设备在配置的接收时间范围内收到感知信号,则终端设备生成感知结果并上报,如果终端设备在配置的接收时间范围内没有收到感知信号,则终端设备不上报感知结果。因此在为终端设备配置了接收时间范围的情况下,上述步骤302可以理解为:终端设备通过一个或多个接收波束,在接收时间范围内接收来自网络设备的感知信号。需要说明的是,该接收时间范围可以是按照终端设备的定时确定的接收时间范围,也可以是按照终端设备的定时确定的接收时间范围,如果网络设备向终端设备发送的是按照网络设备的定时确定的接收时间范围,则终端设备还需要将按照网络设备的定时确定的接收时间范围转换为按照终端设备的定时确定的接收时间范围。
图6为接收时间范围的示例图。该示例中,网络设备关注接收时间范围1内的感知目标和接收时间范围2内的感知目标。接收时间范围1对应物理距离范围1,接收时间范围2对应物理距离范围2。物理距离范围1是以网络设备为中心,以距离1为半径的一个距离范围,物理距离范围2是以网络设备为中心,以距离2为半径的一个距离范围。也可以理解为,网络设备只关注物理距离范围1内的环境目标,和/或关注物理距离范围2内的环境目标。
下面介绍两种配置接收时间范围的方法。
图7(a)为接收时间范围的一种配置方法的示意图。该示例中,T1为接收时间范围1的起始时刻,T2为接收时间范围1的结束时刻以及还是接收时间范围2的起始时刻,T3是接收时间范围2的结束时刻。该示例中,接收时间范围2的起始时刻与接收时间范围1的结束时刻重合。该方法将T2配置为接收时间范围1的结束时刻和接收时间范围2的起始时刻,不需要单独为接收时间范围1配置一个结束时刻,以及为接收时间范围2配置一个起始时刻,可以减少配置时的信令开销。
图7(b)为接收时间范围的又一种配置方法的示意图。该示例中,T1为接收时间范围1的起始时刻,T2为接收时间范围1的结束时刻,T3是接收时间范围2的起始时刻,T4是接收时间范围2的结束时刻。该示例中,接收时间范围2的起始时刻与接收时间范围1的结束时刻没有重合。该方法单独为接收时间范围1配置一个起始时刻和一个结束时刻,以及单独为接收时间范围2配置一个起始时刻和一个结束时刻,接收时间范围1与接收时间范围2之间解耦,可以实现更为灵活地配置接收时间范围。
一种实现方法中,本申请实施例中,终端设备上报的感知结果中还包括每个感知波束信息对应的感知距离索引,该感知距离索引用于指示感知目标与终端设备之间的距离。该距离是根据范围分辨率(range resolution,RR)确定的,该范围分辨率用于表示分辨环境中的两个不同目标的最小距离。
一般地,分辨两个不同距离的目标,要求感知信号的脉冲时长小于等于光速经过这两个目标的时间的2倍,这样才能形成两个不重叠的反射波,也即T<=2*RR/c,因此RR>=c*T/2,其中c表示光速,RR表示范围分辨率,T表示感知信号的脉冲时长。因此本申请实施例中可以根据感知信号的脉冲时长确定范围分辨率。
此外,由于感知信号的脉冲时长可以以时隙为单位进行表示,一个时隙的时长与子载波间隔相关。例如当子载波间隔为15Khz,一个时隙为1ms,如果感知信号的脉冲时长持续1个时隙的时长,则感知信号的脉冲时长为1ms。当子载波间隔为60Khz,一个时隙为0.25ms,如果感知信号的脉冲时长持续1个时隙的时长,则感知信号的脉冲时长为0.25ms。因此本申请实施例中的范围分辨率也可以与子载波间隔相关。
本申请实施例可以预先在终端设备和网络设备配置范围分辨率与感知距离索引之间的对应关系。
表2-1为感知信号的脉冲时长以绝对时间为单位,感知距离信息与感知距离索引之间的对应关系的示例。
表2-1
感知距离索引 感知距离信息
0 RR0~2*RR0
1 2*RR0~3*RR0
2 3*RR0~4*RR0
3 4*RR0~5*RR0
…… ……
需要说明的是,上述表2-1中的2*RR0对应的感知距离索引既可以是0,或者,也可以是1,类似的,3*RR0对应的感知距离索引既可以是1,也可以是2,等等。示例性地,上述表2-1中的RR0~2*RR0表示(RR0,2*RR0],2*RR0~3*RR0表示(2*RR0,3*RR0],3*RR0~4*RR0表示(3*RR0,4*RR0],4*RR0~5*RR0表示(4*RR0,5*RR0]。其中(]表示左边是开区间,右边是闭区间,例如(a,b]表示大于a且小于或等于b的数值。
后续表2-2,表2-3,表3-1以及表3-2的表达方式的含义可以参考此处的描述,不再赘述。
基于表2-1的示例,根据范围分辨率的定义,确定相应的范围分辨率为RR0。终端设备确定某个感知目标与终端设备之间的距离为X。如果X包含于RR0~2*RR0,则终端设备上报的感知距离索引为0,网络设备根据表2-1和感知距离索引0,确定感知目标与终端设备之间的距离是在RR0与2*RR0之间。如果X包含于2*RR0~3*RR0,则终端设备上报的感知距离索引为1,网络设备根据表2-1和感知距离索引1,确定感知目标与终端设备之间的距离是在2*RR0与3*RR0之间。以此类推,不再赘述。
表2-2为子载波间隔为120kHz时,感知距离信息与感知距离索引之间的对应关系的示例。
表2-2
感知距离索引 感知距离信息
0 RR1~2*RR1
1 2*RR1~3*RR1
2 3*RR1~4*RR1
3 4*RR1~5*RR1
…… ……
基于表2-2的示例,当子载波间隔为120kHz,根据感知信号的脉冲时长持续的时隙个数,确定脉冲时长持续的绝对时间,再根据范围分辨率的定义,确定相应的范围分辨率为RR1。终端设备确定某个感知目标与终端设备之间的距离为X。如果X包含于RR1~2*RR1,则终端设备上报的感知距离索引为0,网络设备根据表2-2和感知距离索引0,确定感知目标与终端设备之间的距离是在RR1与2*RR1之间。如果X包含于2*RR1~3*RR1,则终端设备上报的感知距离索引为1,网络设备根据表2-2和感知距离索引1,确定感知目标与终端设备之间的距离是在2*RR1与3*RR1之间。以此类推,不再赘述。
表2-3为子载波间隔为240kHz时,感知距离信息与感知距离索引之间的对应关系的示例。
表2-3
感知距离索引 感知距离信息
0 RR2~2*RR2
1 2*RR2~3*RR2
2 3*RR2~4*RR2
3 4*RR2~5*RR2
…… ……
基于表2-3的示例,当子载波间隔为240kHz,根据感知信号的脉冲时长持续的时隙个数,确定脉冲时长持续的绝对时间,再根据范围分辨率的定义,确定相应的范围分辨率为RR2。终端设备确定某个感知目标与终端设备之间的距离为X。如果X包含于RR2~2*RR2,则终端设备上报的感知距离索引为0,网络设备根据表2-3和感知距离索引0,确定感知目标与终端设备之间的距离是在RR2与2*RR2之间。如果X包含于2*RR2~3*RR2,则终端设备上报的感知距离索引为1,网络设备根据表2-3和感知距离索引1,确定感知目标与终端设备之间的距离是在2*RR2与3*RR2之间。以此类推,不再赘述。
一种实现方法中,本申请实施例中,终端设备上报的感知结果中还包括每个感知波束信息对应的速度索引,该速度索引用于指示感知目标的速度。该速度索引指示的速度可以是根据速度分辨率(speed resolution,SR)确定的。
一般地,速度分辨率(SR)、感知信号的波长(λ t)以及相干处理间隔(coherent processing interval,CPI)之间具有如下关系:
Figure PCTCN2022124143-appb-000001
并且,一个CPI包括多个脉冲重复间隔(pulse repetition interval,PRI)。因此本申请实施例中的速度分辨率可以是根据感知信号的CPI、PRI中的一个或多个确定的。
本申请实施例可以预先在终端设备和网络设备配置速度索引与速度信息之间的对应关系。
表3-1为CPI为0.5ms,λ t为15mm时,速度索引与速度信息之间的对应关系的示例。
表3-1
速度索引 速度信息
0 0~15m/s
1 15~30m/s
2 30~45m/s
3 45~60m/s
…… ……
基于表3-1的示例,当CPI为0.5ms,λ t为15mm,相应的速度分辨率SR1=15m/s。终端设备确定某个感知目标的速度为S。如果终端设备测量到的感知目标的速度S包含于0~15m/s,则终端设备上报的速度索引为0,网络设备根据表3-1和速度索引0,确定感知目标的速度S是在0到15m/s之间。如果终端设备测量到的感知目标的速度S包含于15~30m/s,则终端设备上报的速度索引为1,网络设备根据表3-1和速度索引1,确定感知目标的速度S是在15到30m/s之间。以此类推,不再赘述。
表3-2为CPI为5ms,λ t为15mm时,速度索引与速度信息之间的对应关系的示例。
表3-2
速度索引 速度信息
0 0~1.5m/s
1 1.5~3m/s
2 3~4.5m/s
3 4.5~6m/s
…… ……
基于表3-2的示例,当CPI为5ms,λ t为15mm,相应的速度分辨率SR2=1.5m/s。终端设备确定某个感知目标的速度为S。如果终端设备测量到的感知目标的速度S包含于0~1.5m/s,则终端设备上报的速度索引为0,网络设备根据表3-2和速度索引0,确定感知目标的速度S是在0到1.5m/s之间。如果终端设备测量到的感知目标的速度S包含于1.5~3m/s,则终端设备上报的速度索引为1,网络设备根据表3-2和速度索引1,确定感知目标的速度S是在1.5到3m/s之间。以此类推,不再赘述。
需要说明的是,本申请实施例中的感知目标既可以是网络设备与终端设备之外的其它设备,也可以是该终端设备。
本申请实施例,终端设备接收网络设备发送的感知信号,并向网络设备上报根据感知信号生成的感知结果,从而网络设备可以根据感知结果确定感知目标。由于终端设备上报的是波束粒度的感知结果,有助于网络设备精确确定感知目标,能够提升感知的精确度。
可以理解的是,为了实现上述实施例中功能,第一装置或第二装置包括了执行各个功 能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一装置或第二装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是图1所示的第一装置或第二装置。
图8所示的通信装置800包括发送单元820和接收单元830,可选的还包括处理单元810。通信装置800用于实现上述方法实施例中第一装置或第二装置的功能。
当通信装置800用于实现上述方法实施例中第一装置的功能,接收单元830,用于通过一个或多个接收波束接收来自第二装置的感知信号,该感知信号由第二装置的一个或多个发送波束发送;发送单元820,用于向该第二装置发送感知结果,该感知结果包括一个或多个感知波束信息,该感知波束信息用于指示该感知信号对应的目标发送波束和/或目标接收波束,该目标发送波束是该一个或多个发送波束中的一个,该目标接收波束是该一个或多个接收波束中的一个。
一种可能的实现方法,该接收单元830,还用于接收发送波束信息和/或接收波束信息,该发送波束信息对应该一个或多个发送波束,该接收波束信息对应该一个或多个接收波束。
一种可能的实现方法,该发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,该多个发送波束的方向相同;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束的方向、该波束间的时间间隔中的一个或多个。
一种可能的实现方法,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括发送波束组的波束方向、发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
一种可能的实现方法,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,该发送波束子组的信息包括发送波束子组的波束方向、发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
一种可能的实现方法,该感知波束信息包括该目标发送波束的信息和/或该目标接收波束的信息;其中,该目标发送波束的信息包括该目标发送波束的索引、方向、宽度或角度中的一个或多个,该目标接收波束的信息包括该目标接收波束的索引、方向、宽度或角度中的一个或多个。
一种可能的实现方法,该感知结果还包括感知距离索引、速度索引中的一个或多个;其中,该感知距离索引用于指示感知目标与该第一装置之间的距离,该速度索引用于指示该感知目标的速度。
一种可能的实现方法,该感知距离索引指示的距离是根据范围分辨率确定的,该范围 分辨率是根据该感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
一种可能的实现方法,该速度索引指示的速度是根据速度分辨率确定的,该速度分辨率是根据该感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
一种可能的实现方法,该接收单元830,具体用于通过该一个或多个接收波束,在接收时间范围内接收来自该第二装置的该感知信号。
一种可能的实现方法,该接收单元830,还用于接收时间信息,该时间信息用于指示该接收时间范围。
当通信装置800用于实现上述方法实施例中第二装置的功能,发送单元820,用于通过发送波束信息对应的一个或多个发送波束,向第一装置发送感知信号,该感知信号是通过一个或多个接收波束接收的;接收单元830,用于接收来自该第一装置的感知结果,该感知结果包括一个或多个感知波束信息,该感知波束信息用于指示该感知信号对应的目标发送波束和/或目标接收波束,该目标发送波束是该一个或多个发送波束中的一个,该目标接收波束是该一个或多个接收波束中的一个。
一种可能的实现方法,该发送单元820,还用于向该第一装置发送该发送波束信息。
一种可能的实现方法,该发送单元820,还用于向该第一装置发送接收波束信息,该接收波束信息对应该一个或多个接收波束。
一种可能的实现方法,该发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,该多个发送波束的方向相同。
一种可能的实现方法,该发送波束信息包括索引信息,该索引信息对应该多个发送波束的方向、该波束间的时间间隔中的一个或多个。
一种可能的实现方法,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括发送波束组的波束方向、发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
一种可能的实现方法,该发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,该发送波束信息包括索引信息,该索引信息对应该多个发送波束组的信息、该发送波束组间的时间间隔中的一个或多个;其中,该发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,该发送波束子组的信息包括发送波束子组的波束方向、发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
一种可能的实现方法,该感知波束信息包括该目标发送波束的信息和/或该目标接收波束的信息;其中,该目标发送波束的信息包括该目标发送波束的索引、方向、宽度或角度中的一个或多个,该目标接收波束的信息包括该目标接收波束的索引、方向、宽度或角度中的一个或多个。
一种可能的实现方法,该感知结果还包括感知距离索引、速度索引中的一个或多个;其中,该感知距离索引用于指示感知目标与该第一装置之间的距离,该速度索引用于指示该感知目标的速度。
一种可能的实现方法,该感知距离索引指示的距离是根据范围分辨率确定的,该范围分辨率是根据该感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
一种可能的实现方法,该速度索引指示的速度是根据速度分辨率确定的,该速度分辨率是根据该感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
一种可能的实现方法,该感知信号是通过一个或多个接收波束接收的,包括:该感知信号是通过一个或多个接收波束,在接收时间范围内接收的。
一种可能的实现方法,该发送单元820,还用于向该第一装置发送时间信息,该时间信息用于指示该接收时间范围。
有关上述处理单元810、发送单元820和接收单元830更详细的描述,可以直接参考上述方法实施例中相关描述直接得到,这里不加赘述。
图9所示的通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据;或者当处理器为逻辑电路(器件)时,存储逻辑电路(器件)的配置文件。
当通信装置900用于实现上述方法实施例时,处理器910用于实现上述处理单元810的功能,接口电路920用于实现上述发送单元820和接收单元830的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、致密光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于第一装置或第二装置中。当然,处理器和存储介质也可以作为分立组件存在于第一装置或第二装置中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。计算机程序(computer program)是指一组指示电子计算机或其他具有消息处理能力设备每一步动作的指令,通常用某种程序设计语言编写,运行于某种目标体系结构上。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的 服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (50)

  1. 一种感知方法,其特征在于,包括:
    第一装置通过一个或多个接收波束接收来自第二装置的感知信号,所述感知信号由所述第二装置的一个或多个发送波束发送;
    所述第一装置向所述第二装置发送感知结果,所述感知结果包括一个或多个感知波束信息,所述感知波束信息用于指示所述感知信号对应的目标发送波束和/或目标接收波束,所述目标发送波束是所述一个或多个发送波束中的一个,所述目标接收波束是所述一个或多个接收波束中的一个。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收发送波束信息和/或接收波束信息,所述发送波束信息对应所述一个或多个发送波束,所述接收波束信息对应所述一个或多个接收波束。
  3. 如权利要求2所述的方法,其特征在于,所述发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,所述多个发送波束的方向相同;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束的方向、所述波束间的时间间隔中的一个或多个。
  4. 如权利要求2所述的方法,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括所述发送波束组的波束方向、所述发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
  5. 如权利要求2所述的方法,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,所述发送波束子组的信息包括所述发送波束子组的波束方向、所述发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述感知波束信息包括所述目标发送波束的信息和/或所述目标接收波束的信息;
    其中,所述目标发送波束的信息包括所述目标发送波束的索引、方向、宽度或角度中的一个或多个,所述目标接收波束的信息包括所述目标接收波束的索引、方向、宽度或角度中的一个或多个。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述感知结果还包括感知距离索引、速度索引中的一个或多个;
    其中,所述感知距离索引用于指示感知目标与所述第一装置之间的距离,所述速度索引用于指示所述感知目标的速度。
  8. 如权利要求7所述的方法,其特征在于,所述感知距离索引指示的距离是根据范围 分辨率确定的,所述范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
  9. 如权利要求7或8所述的方法,其特征在于,所述速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述第一装置通过一个或多个接收波束接收来自第二装置的感知信号,包括:
    所述第一装置通过所述一个或多个接收波束,在接收时间范围内接收来自所述第二装置的所述感知信号。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收时间信息,所述时间信息用于指示所述接收时间范围。
  12. 一种感知方法,其特征在于,包括:
    第二装置通过发送波束信息对应的一个或多个发送波束,向第一装置发送感知信号,所述感知信号是通过一个或多个接收波束接收的;
    所述第二装置接收来自所述第一装置的感知结果,所述感知结果包括一个或多个感知波束信息,所述感知波束信息用于指示所述感知信号对应的目标发送波束和/或目标接收波束,所述目标发送波束是所述一个或多个发送波束中的一个,所述目标接收波束是所述一个或多个接收波束中的一个。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置发送所述发送波束信息。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置发送接收波束信息,所述接收波束信息对应所述一个或多个接收波束。
  15. 如权利要求12至14中任一项所述的方法,其特征在于,所述发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,所述多个发送波束的方向相同;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束的方向、所述波束间的时间间隔中的一个或多个。
  16. 如权利要求12至14中任一项所述的方法,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括所述发送波束组的波束方向、所述发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
  17. 如权利要求12至14中任一项所述的方法,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,所述发送波束子组的信息包括所述发送波束子组的波束方向、所述 发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
  18. 如权利要求12至17中任一项所述的方法,其特征在于,所述感知波束信息包括所述目标发送波束的信息和/或所述目标接收波束的信息;
    其中,所述目标发送波束的信息包括所述目标发送波束的索引、方向、宽度或角度中的一个或多个,所述目标接收波束的信息包括所述目标接收波束的索引、方向、宽度或角度中的一个或多个。
  19. 如权利要求12至18中任一项所述的方法,其特征在于,所述感知结果还包括感知距离索引、速度索引中的一个或多个;
    其中,所述感知距离索引用于指示感知目标与所述第一装置之间的距离,所述速度索引用于指示所述感知目标的速度。
  20. 如权利要求19所述的方法,其特征在于,所述感知距离索引指示的距离是根据范围分辨率确定的,所述范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
  21. 如权利要求19或20所述的方法,其特征在于,所述速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
  22. 如权利要求12至21中任一项所述的方法,其特征在于,所述感知信号是通过一个或多个接收波束接收的,包括:
    所述感知信号是通过一个或多个接收波束,在接收时间范围内接收的。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置发送时间信息,所述时间信息用于指示所述接收时间范围。
  24. 一种通信装置,其特征在于,包括:
    接收单元,用于通过一个或多个接收波束接收来自第二装置的感知信号,所述感知信号由所述第二装置的一个或多个发送波束发送;
    发送单元,用于向所述第二装置发送感知结果,所述感知结果包括一个或多个感知波束信息,所述感知波束信息用于指示所述感知信号对应的目标发送波束和/或目标接收波束,所述目标发送波束是所述一个或多个发送波束中的一个,所述目标接收波束是所述一个或多个接收波束中的一个。
  25. 如权利要求24所述的装置,其特征在于,所述接收单元,还用于接收发送波束信息和/或接收波束信息,所述发送波束信息对应所述一个或多个发送波束,所述接收波束信息对应所述一个或多个接收波束。
  26. 如权利要求25所述的装置,其特征在于,所述发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,所述多个发送波束的方向相同;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束的方向、所述波束间的时间间隔中的一个或多个。
  27. 如权利要求25所述的装置,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所 述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括所述发送波束组的波束方向、所述发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
  28. 如权利要求25所述的装置,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,所述发送波束子组的信息包括所述发送波束子组的波束方向、所述发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
  29. 如权利要求24至28中任一项所述的装置,其特征在于,所述感知波束信息包括所述目标发送波束的信息和/或所述目标接收波束的信息;
    其中,所述目标发送波束的信息包括所述目标发送波束的索引、方向、宽度或角度中的一个或多个,所述目标接收波束的信息包括所述目标接收波束的索引、方向、宽度或角度中的一个或多个。
  30. 如权利要求24至29中任一项所述的装置,其特征在于,所述感知结果还包括感知距离索引、速度索引中的一个或多个;
    其中,所述感知距离索引用于指示感知目标与所述第一装置之间的距离,所述速度索引用于指示所述感知目标的速度。
  31. 如权利要求30所述的装置,其特征在于,所述感知距离索引指示的距离是根据范围分辨率确定的,所述范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
  32. 如权利要求30或31所述的装置,其特征在于,所述速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
  33. 如权利要求24至32中任一项所述的装置,其特征在于,所述接收单元,具体用于通过所述一个或多个接收波束,在接收时间范围内接收来自所述第二装置的所述感知信号。
  34. 如权利要求33所述的装置,其特征在于,所述接收单元,还用于接收时间信息,所述时间信息用于指示所述接收时间范围。
  35. 一种通信装置,其特征在于,包括:
    发送单元,用于通过发送波束信息对应的一个或多个发送波束,向第一装置发送感知信号,所述感知信号是通过一个或多个接收波束接收的;
    接收单元,用于接收来自所述第一装置的感知结果,所述感知结果包括一个或多个感知波束信息,所述感知波束信息用于指示所述感知信号对应的目标发送波束和/或目标接收波束,所述目标发送波束是所述一个或多个发送波束中的一个,所述目标接收波束是所述一个或多个接收波束中的一个。
  36. 如权利要求35所述的装置,其特征在于,所述发送单元,还用于向所述第一装置发送所述发送波束信息。
  37. 如权利要求35或36所述的装置,其特征在于,所述发送单元,还用于向所述第一 装置发送接收波束信息,所述接收波束信息对应所述一个或多个接收波束。
  38. 如权利要求35至37中任一项所述的装置,其特征在于,所述发送波束信息包括多个发送波束的方向、波束间的时间间隔中的一个或多个,所述多个发送波束的方向相同;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束的方向、所述波束间的时间间隔中的一个或多个。
  39. 如权利要求35至37中任一项所述的装置,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括所述发送波束组内的波束方向、所述发送波束组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束组内的波束的方向相同。
  40. 如权利要求35至37中任一项所述的装置,其特征在于,所述发送波束信息包括多个发送波束组的信息、发送波束组间的时间间隔中的一个或多个;或者,
    所述发送波束信息包括索引信息,所述索引信息对应所述多个发送波束组的信息、所述发送波束组间的时间间隔中的一个或多个;
    其中,所述发送波束组的信息包括多个发送波束子组的信息、发送波束子组间的时间间隔中的一个或多个,所述发送波束子组的信息包括所述发送波束子组的波束方向、所述发送波束子组内的波束间的时间间隔中的一个或多个,其中,同一个发送波束子组内的波束的方向相同。
  41. 如权利要求35至40中任一项所述的装置,其特征在于,所述感知波束信息包括所述目标发送波束的信息和/或所述目标接收波束的信息;
    其中,所述目标发送波束的信息包括所述目标发送波束的索引、方向、宽度或角度中的一个或多个,所述目标接收波束的信息包括所述目标接收波束的索引、方向、宽度或角度中的一个或多个。
  42. 如权利要求35至41中任一项所述的装置,其特征在于,所述感知结果还包括感知距离索引、速度索引中的一个或多个;
    其中,所述感知距离索引用于指示感知目标与所述第一装置之间的距离,所述速度索引用于指示所述感知目标的速度。
  43. 如权利要求42所述的装置,其特征在于,所述感知距离索引指示的距离是根据范围分辨率确定的,所述范围分辨率是根据所述感知信号的子载波间隔、脉冲时长中的一个或多个确定的。
  44. 如权利要求42或43所述的装置,其特征在于,所述速度索引指示的速度是根据速度分辨率确定的,所述速度分辨率是根据所述感知信号的相干处理间隔CPI、脉冲重复间隔PRI中的一个或多个确定的。
  45. 如权利要求35至44中任一项所述的装置,其特征在于,所述感知信号是通过一个或多个接收波束接收的,包括:
    所述感知信号是通过一个或多个接收波束,在接收时间范围内接收的。
  46. 如权利要求45所述的装置,其特征在于,所述发送单元,还用于向所述第一装置发送时间信息,所述时间信息用于指示所述接收时间范围。
  47. 一种通信装置,其特征在于,包括:
    至少一个处理器,用于通过以下至少一项:运行计算机指令或程序、逻辑电路,使得所述通信装置执行如权利要求1至11中任一项所述的感知方法,或执行如权利要求12至23中任一项所述的感知方法。
  48. 一种通信系统,其特征在于,包括用于执行如权利要求1至11中任一项所述方法的第一装置,和用于执行如权利要求12至23中任一项所述方法的第二装置。
  49. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被通信装置执行时,实现如权利要求1至11中任一项所述的方法,或实现如权利要求12至23中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至11中任一项所述的方法,或实现如权利要求12至23中任一项所述的方法。
PCT/CN2022/124143 2022-10-09 2022-10-09 一种感知方法、通信装置及通信系统 WO2024077417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124143 WO2024077417A1 (zh) 2022-10-09 2022-10-09 一种感知方法、通信装置及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124143 WO2024077417A1 (zh) 2022-10-09 2022-10-09 一种感知方法、通信装置及通信系统

Publications (1)

Publication Number Publication Date
WO2024077417A1 true WO2024077417A1 (zh) 2024-04-18

Family

ID=90668493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124143 WO2024077417A1 (zh) 2022-10-09 2022-10-09 一种感知方法、通信装置及通信系统

Country Status (1)

Country Link
WO (1) WO2024077417A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416090A (zh) * 2014-12-18 2017-02-15 联发科技股份有限公司 用于确定发送或接收波束的优选集合的方法及使用相同方法的通信设备
CN110073605A (zh) * 2017-01-05 2019-07-30 Oppo广东移动通信有限公司 无线通信方法和装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
WO2022133901A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Beam indication framework for sensing-assisted mimo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416090A (zh) * 2014-12-18 2017-02-15 联发科技股份有限公司 用于确定发送或接收波束的优选集合的方法及使用相同方法的通信设备
CN110073605A (zh) * 2017-01-05 2019-07-30 Oppo广东移动通信有限公司 无线通信方法和装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
WO2022133901A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Beam indication framework for sensing-assisted mimo

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Further discussion on multi beam enhancement", 3GPP TSG RAN WG1 #106B-E, R1-2108951, 1 October 2021 (2021-10-01), XP052057786 *

Similar Documents

Publication Publication Date Title
US20200205115A1 (en) Wireless positioning method and system using the same
WO2020088350A1 (zh) 一种定位方法及设备
US20090059794A1 (en) Method and apparatus for wiFi long range radio coordination
WO2024164794A1 (zh) 一种通信方法、装置、存储介质及计算机程序产品
WO2022141219A1 (zh) 一种定位方法及相关装置
WO2022165825A1 (zh) 一种基于参考信号的通信方法及相关装置
WO2024077417A1 (zh) 一种感知方法、通信装置及通信系统
US20230180093A1 (en) Communication method, apparatus, and system
WO2021169511A1 (zh) 干扰测量方法、装置、网络侧设备及终端
CN115835372A (zh) 一种用于定位的信号的发送方法及装置
WO2020010985A1 (zh) 终端覆盖方法、通信装置及计算机可读存储介质
CN115707094A (zh) 一种定位方法及通信装置
WO2024114550A1 (zh) 一种位置确定方法及装置
WO2024182953A1 (zh) 波束生成方法和装置
WO2023236094A1 (zh) 感知结果信息的发送接收方法、装置、设备及存储介质
WO2024140061A1 (zh) 一种定位信号的接收方法及装置
WO2024168525A1 (zh) 通信方法及通信装置
WO2024032372A1 (zh) 一种定位方法以及相关装置
WO2024178594A9 (zh) 一种定位方法及装置
WO2024187450A1 (zh) 数据传输方法、通信装置及通信系统
WO2023082941A1 (zh) 一种基于时间反演的通信方法及装置
WO2024146440A1 (zh) 一种通信方法及装置
WO2024093658A1 (zh) 一种通信方法及通信装置
WO2022205478A1 (zh) 定位测量结果上报方法、装置、通信设备及存储介质
WO2024156109A1 (zh) 一种感知方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961614

Country of ref document: EP

Kind code of ref document: A1