WO2023236094A1 - 感知结果信息的发送接收方法、装置、设备及存储介质 - Google Patents

感知结果信息的发送接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023236094A1
WO2023236094A1 PCT/CN2022/097585 CN2022097585W WO2023236094A1 WO 2023236094 A1 WO2023236094 A1 WO 2023236094A1 CN 2022097585 W CN2022097585 W CN 2022097585W WO 2023236094 A1 WO2023236094 A1 WO 2023236094A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sensing
result information
node
transmission resource
Prior art date
Application number
PCT/CN2022/097585
Other languages
English (en)
French (fr)
Inventor
林亚男
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/097585 priority Critical patent/WO2023236094A1/zh
Publication of WO2023236094A1 publication Critical patent/WO2023236094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of perception measurement, and in particular to a method, device, equipment and storage medium for sending and receiving perception result information.
  • Wireless sensing refers to a technology that uses backscattered radio waves to detect parameters of the physical environment to achieve environmental perception such as target positioning, action recognition, and imaging.
  • the terminal When the terminal serves as a sensing signal receiving node to assist in sensing, if the terminal receives multiple sets of sensing signals, the terminal may cache multiple sensing result information. At this time, how the terminal sends multiple sensing result information to the sensing control node or the sensing result sending node is a technical problem that has not yet been solved.
  • Embodiments of the present application provide a method, device, equipment and storage medium for sending and receiving sensing result information, which can reduce the signaling overhead when a node sends sensing result information when there is multiple sensing result information.
  • the technical solutions are as follows:
  • a method for sending perception result information includes:
  • the first node uses the first transmission resource to send M pieces of first sensing result information
  • the M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • a method for sending perception result information includes:
  • the first node After receiving N sets of sensing signals, the first node uses the second transmission resource to send the first information, where N is a positive integer;
  • the first node uses the third transmission resource scheduled by the scheduling information to send part or all of the N pieces of first sensing result information; or, in the first When three transmission resources are within the first time period, the first node uses the third transmission resource to send part or all of the N first sensing result information;
  • the starting point of the first time period is the transmission position of the second transmission resource or is determined based on the transmission position of the second transmission resource, and the N first sensing result information is obtained based on the N groups of sensing signals.
  • each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • a method for receiving perception result information includes:
  • the M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • a method for receiving perception result information the method further includes:
  • the starting point of the first time period is the transmission position of the second transmission resource or is determined based on the transmission position of the second transmission resource, and the N first sensing result information is obtained based on the N groups of sensing signals.
  • each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • a device for sending sensing result information includes:
  • the sending module uses the first transmission resource to send M pieces of first sensing result information
  • the M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • a device for sending sensing result information includes:
  • the sending module is configured to use the second transmission resource to send the first information after the receiving module receives the N sets of sensing signals, where N is a positive integer;
  • the sending module is configured to use the third transmission resource scheduled by the scheduling information to send part or all of the N first sensing result information when the receiving module receives the scheduling information within the first time period. ; Or, when the third transmission resource is within the first time period, the first node uses the third transmission resource to send part or all of the N first sensing result information;
  • the starting point of the first time period is the transmission position of the second transmission resource or is determined based on the transmission position of the second transmission resource, and the N first sensing result information is obtained based on the N groups of sensing signals.
  • each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • a device for receiving perception result information includes:
  • a receiving module configured to receive M pieces of first sensing result information sent by the first node using the first transmission resource
  • the M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • a device for receiving perception result information includes:
  • a receiving module configured to receive the first information sent by the first node using the second transmission resource, where the first information is sent by the first node after receiving N sets of sensing signals, where N is a positive integer;
  • a sending module configured to send scheduling information to the first node, where the scheduling information is used to schedule the first node to send a third transmission resource of part or all of the N first sensing result information; the scheduling information and/ Or the third transmission resource is located within the first time period;
  • the starting point of the first time period is the transmission position of the second transmission resource or is determined based on the transmission position of the second transmission resource, and the N first sensing result information is obtained based on the N groups of sensing signals.
  • each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • a perceptual measurement device includes: a processor and a memory. At least one program is stored in the memory. The at least one program is loaded by the perceptual measurement device and Executed to implement the method for sending sensing result information as described above.
  • a perceptual measurement device includes: a processor and a memory. At least one program is stored in the memory. The at least one program is loaded by the perceptual measurement device and Executed to implement the method for receiving sensing result information as described above.
  • a computer-readable storage medium stores at least one program.
  • the at least one program is loaded and executed by a computer device to achieve the sensing results as described above.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and a computer device equipped with the chip is used to implement the method of sending sensing result information as described above, and/or, the method for receiving the perception result information as described above.
  • a computer program product When the computer program product is run on (the processor of) a computer device, it causes the computer device to perform the method of sending sensing result information as described above, and/or, The method of receiving the perception result information as described above.
  • the first node When the first node serves as a sensing signal receiving node to assist in realizing sensing, the first node needs to report the obtained sensing results to the sensing control node or the sensing result receiving node.
  • This application provides a reporting method for a first node to report multiple first sensing result information to a second node when there is multiple first sensing result information.
  • the first node reports M pieces of first sensing result information together in the same transmission resource, without reporting each first sensing result information separately, thereby reducing signaling overhead.
  • the first node when the first node expects to report multiple first sensing result information (for example, abnormal sensing measurement result information is found), the first node first reports the first information, and the first information is used to trigger the second node or
  • the sensing control node delivers scheduling information; if the scheduling information is received within the first time period, the third transmission resource indicated by the scheduling information is used to transmit and report all or part of the multiple first sensing result information, without the need for each third transmission resource.
  • Each sensing result information is reported once respectively, thereby reducing signaling overhead.
  • Figure 1 is a schematic diagram of sensing scenario 1 provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic diagram of sensing scenario 2 provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic diagram of sensing scenario three provided by an exemplary embodiment of the present application.
  • Figure 4 is a schematic diagram of a perceptual measurement system provided by an exemplary embodiment of the present application.
  • Figure 5 is a flow chart of a method for sending sensing result information provided by an exemplary embodiment of the present application
  • Figure 6 is a time-frequency schematic diagram of a method for sending sensing result information provided by an exemplary embodiment of the present application
  • Figure 7 is a flow chart of a method for sending sensing result information provided by an exemplary embodiment of the present application.
  • Figure 8 is a time-frequency schematic diagram of a method for sending sensing result information provided by an exemplary embodiment of the present application
  • Figure 9 is a time-frequency schematic diagram of a method for sending sensing result information provided by an exemplary embodiment of the present application.
  • Figure 10 is a time-frequency schematic diagram of a method for sending sensing result information provided by an exemplary embodiment of the present application
  • Figure 11 is a flow chart of a method for sending sensing result information provided by another exemplary embodiment of the present application.
  • Figure 12 is a flow chart of a method for receiving sensing result information provided by another exemplary embodiment of the present application.
  • Figure 13 is a time-frequency schematic diagram of a method for sending sensing result information provided by another exemplary embodiment of the present application.
  • Figure 14 is a flow chart of a method for receiving sensing result information provided by another exemplary embodiment of the present application.
  • Figure 15 is a structural block diagram of a device for sending sensing result information provided by an exemplary embodiment of the present application.
  • Figure 16 is a structural block diagram of a device for sending sensing result information provided by an exemplary embodiment of the present application.
  • Figure 17 is a structural block diagram of a device for receiving sensing result information provided by an exemplary embodiment of the present application.
  • Figure 18 is a structural block diagram of a device for receiving sensing result information provided by an exemplary embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a sensing device provided by an exemplary embodiment of the present application.
  • Wireless communication and wireless sensing are two important applications of modern radio frequency technology.
  • Wireless sensing uses backscattered radio waves to detect parameters of the physical environment to achieve environmental sensing such as target positioning, action recognition, and imaging.
  • Traditional wireless sensing and cellular communication exist independently, and the separated design results in a waste of wireless spectrum and hardware resources.
  • Communication sensing technology integrates the two functions of communication and sensing, and can use wireless resource management of communication to solve the interference problem in traditional wireless sensing; it can use widely deployed cellular networks to realize sensing services in a wider range; it can use base stations and multiple Terminals perform joint sensing to achieve higher sensing accuracy; communication hardware modules can be reused to implement sensing functions and reduce costs.
  • communication sensing technology enables future wireless communication systems to have sensing capabilities, providing a foundation for the development of future smart transportation, smart cities, smart factories, drones and other businesses.
  • Sensing scenario 1 As shown in Figure 1, the base station 10 serves as a sensing signal sending node (Sensing Tx, STx) to send a sensing signal (Sensing Signal) to the first terminal 11. The sensing signal is reflected or refracted at the first terminal 11. The second terminal 12 serves as a sensing signal receiving node to receive the reflected/refracted signal to obtain sensing results, and reports them to the base station or other receivers.
  • the base station 10 serves as a sensing signal sending node (Sensing Tx, STx) to send a sensing signal (Sensing Signal) to the first terminal 11.
  • the sensing signal is reflected or refracted at the first terminal 11.
  • the second terminal 12 serves as a sensing signal receiving node to receive the reflected/refracted signal to obtain sensing results, and reports them to the base station or other receivers.
  • Sensing Scenario 2 When the sensed object itself is an active object (such as a mobile phone, IoT device, etc.), if the sensed object can assist to participate in sensing to a certain extent, it will definitely be of great benefit to improve the sensing performance.
  • the base station 10 serves as a sensing signal sending node and sends sensing signals to the third terminal 13.
  • the third terminal 13 serves as a sensing signal receiving node, obtains sensing results based on the received sensing signals, and reports the sensing results to the base station 10 or other receivers (other base stations, terminals).
  • the first terminal 11 serves as a sensing signal sending node to send a sensing signal to the second terminal 12.
  • the first terminal 11 is also a sensing signal receiving node. Based on the echo signal reflected/refracted from the sensing signal, the Sensing results are reported to the base station 10 or other receivers (other base stations, terminals).
  • FIG. 4 shows a structural block diagram of a perceptual measurement system 100 provided by an exemplary embodiment of the present application.
  • the perceptual measurement system 100 includes: a base station 10, a first terminal 11 and a second terminal 12.
  • the base station 10 is also called access network equipment.
  • the base station 10 is used to control the use of air interface resources by the first terminal 140 and the second terminal 160.
  • the first terminal 11 is the first node, which serves as a sensing signal receiving node.
  • the base station 10 is a second node, which serves as a sensing signal sending node, a sensing result receiving node, and a sensing control node.
  • the first terminal 11 is the first node, which serves as a sensing signal receiving node.
  • the second terminal 12 is a second node, which serves as a sensing signal sending node and a sensing result receiving node.
  • Base station 10 is a sensing control node.
  • Figure 5 shows a flow chart of a method for sending sensing result information provided by an exemplary embodiment of the present application. This embodiment illustrates that the method is executed by the first node. The method includes:
  • Step 502 The first node uses the first transmission resource to send M pieces of first sensing result information
  • the first node is the node involved in the sensing measurement.
  • the first node uses the first transmission resource to send M pieces of first sensing result information to the second node.
  • the second node is a sensing signal sending node, or a sensing control node.
  • the first node is the sensing signal receiving node.
  • the first node serves as a sensing signal sending node and a sensing signal receiving node at the same time. This embodiment does not limit the role of the first node in the sensing measurement process, and it depends on the specific sensing scenario.
  • M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, each group of sensing signals in the M groups of sensing signals includes at least one sensing signal, and the sensing signals in each group of sensing signals are The quantities are the same or different.
  • the M groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • M sets of sensing signals are sent periodically, or M sets of sensing signals are sent aperiodically.
  • the M groups of sensing signals are M groups of continuous sensing signals among multiple groups of sensing signals that are sent periodically, or the M groups of sensing signals are designated or filtered M groups among the multiple groups of sensing signals that are periodically sent.
  • Sense signal (not necessarily continuous).
  • the first node uses the first transmission resource 50 to send four pieces of first sensing result information 1-4.
  • the first sensing result information 1 is obtained based on the first group of sensing signals
  • the first sensing result information 2 is obtained based on the second group of sensing signals
  • the first sensing result information 3 is obtained based on the third group of sensing signals
  • the first transmission resource is a periodic transmission resource, a semi-statically indicated transmission resource, or a dynamically indicated transmission resource.
  • the first transmission resource may be configured by the second node to the first node, or the sensing control node may configure the first node, or the first node may autonomously select it from the resource pool.
  • the M groups of sensing signals are the last M groups of sensing signals before the first time position.
  • the first time position is any of the following time positions:
  • the first time position is the time domain position of the first transmission resource
  • the first time position is the starting position of the first transmission resource in the time domain, or the first time position is the end position of the first transmission resource in the time domain.
  • the first time position is determined based on the time domain position of the first transmission resource
  • the first time position is determined based on the starting position of the first transmission resource in the time domain, or the first time position is determined based on the end position of the first transmission resource in the time domain, or the first time position is based on the first transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the first time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first time position is the transmission position of the indicated information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is sent by the second node to the first node, or the indication information is sent by a sensing control node different from the second node to the first node.
  • the first time position is determined based on the transmission position of the indication information
  • the first time position is determined based on the starting position of the transmission position of the indication information in the time domain, or the first time position is determined based on the end position of the transmission position of the indication information in the time domain, or the first time position is based on the indication information
  • the transmission position is determined by the start position and end position in the time domain, such as the middle position between the start position and the end position.
  • the first time position is a time position indicating that the transmission position of the information is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first sensing result information includes at least one of the following information:
  • the characteristic quantities of the perceived signal include: signal amplitude, signal amplitude mean, signal amplitude variance, angle difference, angle mean, angle variance, amplitude mean/variance distribution, angle mean/variance distribution, power spectrum, and Doppler shift At least one of the characteristics such as information.
  • the offset information of the feature quantity refers to the offset value of the feature quantity of the current perception signal relative to the feature quantity of the reference perception signal.
  • the difference information of the feature quantity refers to the difference of the feature quantity of the current perception signal with respect to the feature quantity of the reference perception signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • the channel information experienced by the sensing signal includes: at least one of channel matrix information, multipath delay, and fading information.
  • the offset information of the channel information refers to the offset value of the channel information of the current sensing signal relative to the channel information of the reference sensing signal.
  • the difference information of the channel information refers to the difference of the channel information of the current sensing signal relative to the channel information of the reference sensing signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • the method provided in this embodiment by standardizing the reporting method of the first node, can use less first transmission resources to send simultaneously when the first node senses multiple first sensing result information. M first sensing result information does not need to be reported separately for each first sensing result information, which saves resource consumption required for the sensing result reporting process and reduces signaling overhead.
  • Figure 7 shows a flow chart of a method for sending sensing result information provided by an exemplary embodiment of the present application. This embodiment illustrates that the method is executed by the first node. The method includes:
  • Step 501 The first node obtains N first sensing result information based on N groups of sensing signals;
  • N is greater than or equal to M
  • the N pieces of first sensing result information include M pieces of first sensing result information
  • the first node is the node involved in the sensing measurement.
  • the first node is a sensing signal receiving node.
  • the first node serves as a sensing signal sending node and a sensing signal receiving node at the same time. This embodiment does not limit the role of the first node in the sensing measurement process, and it depends on the specific sensing scenario.
  • the N groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • the N sets of sensing signals are sent periodically, or the N sets of sensing signals are sent aperiodically.
  • a sensing sending node may send multiple sets of sensing signals.
  • the first node obtains N first sensing result information based on N groups of sensing signals. That is, N first sensing result information is obtained based on N groups of sensing signals, N is a positive integer greater than 1, each group of sensing signals in the N groups of sensing signals includes at least one sensing signal, and the sensing signal in each group of sensing signals
  • the quantities are the same or different.
  • N is related to the cache capability of the first node. For example, N is equal to or less than the amount of first sensing result information that the first node can cache.
  • the N groups of sensing signals are the last N groups of sensing signals before the second time position.
  • the N first perception result information are the last 4 first perception result information before the second time position.
  • the first sensing result information obtained by the first node before the second time position may be less than N pieces of first sensing result information.
  • the second time location is any of the following time locations:
  • the second time position is the time domain position of the first transmission resource
  • the second time position is the starting position of the first transmission resource in the time domain, or the second time position is the end position of the first transmission resource in the time domain.
  • the second time position is determined based on the time domain position of the first transmission resource
  • the second time position is determined based on the starting position of the first transmission resource in the time domain, or the second time position is determined based on the end position of the first transmission resource in the time domain, or the second time position is based on the first transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the second time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or independently determined.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the second time position is the transmission position of the indication information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is sent by the second node to the first node, or the indication information is sent by a sensing control node different from the second node to the first node.
  • the second time position is determined based on the transmission position of the indication information
  • the second time position is determined based on the starting position of the transmission position of the indication information in the time domain, or the second time position is determined based on the end position of the transmission position of the indication information in the time domain, or the second time position is based on the indication information
  • the transmission position is determined by the start position and end position in the time domain, such as the middle position between the start position and the end position.
  • the second time position is a time position at which the transmission position of the indication information is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the second time position is the starting position of the first transmission resource in the time domain.
  • the first node always caches the latest 4 first sensing result information.
  • the four sets of first perception result information only include: first perception result information 1 and second perception result information 2.
  • the four groups of first sensing result information include: first sensing result information 1 to 4.
  • the four groups of first sensing result information include: first sensing result information 3 to 6.
  • the second time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the four groups of first sensing result information include: first sensing result information 1 to 4.
  • the transmission resources of the multiple or N groups of sensing information are semi-statically configured periodic resources, or the transmission resources of each group of sensing signals in the multiple or N groups of sensing signals are dynamically configured dynamic resources. .
  • This embodiment does not limit the transmission method of the above multiple sets or N sets of sensing information.
  • the first sensing result information includes at least one of the following information:
  • the characteristic quantities of the perceived signal include: signal amplitude, signal amplitude mean, signal amplitude variance, angle difference, angle mean, angle variance, amplitude mean/variance distribution, angle mean/variance distribution, power spectrum, and Doppler shift At least one of the characteristics such as information.
  • the offset information of the feature quantity refers to the offset value of the feature quantity of the current perception signal relative to the feature quantity of the reference perception signal.
  • the difference information of the feature quantity refers to the difference of the feature quantity of the current perception signal with respect to the feature quantity of the reference perception signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • the channel information experienced by the sensing signal includes: at least one of channel matrix information, multipath delay, and fading information.
  • the offset information of the channel information refers to the offset value of the channel information of the current sensing signal relative to the channel information of the reference sensing signal.
  • the difference information of the channel information refers to the difference of the channel information of the current sensing signal relative to the channel information of the reference sensing signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • Step 502 The first node uses the first transmission resource to send M pieces of first sensing result information
  • M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • the M groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • M sets of sensing signals are sent periodically, or M sets of sensing signals are sent aperiodically.
  • the M groups of sensing signals are M groups of continuous sensing signals among multiple groups of sensing signals that are sent periodically, or the M groups of sensing signals are designated or filtered M groups among the multiple groups of sensing signals that are periodically sent.
  • Sense signal (not necessarily continuous).
  • the first transmission resource is a periodic transmission resource, a semi-statically indicated transmission resource, or a dynamically indicated transmission resource.
  • the first transmission resource may be configured by the second node to the first node, or the sensing control node may configure the first node, or the first node may autonomously select it from the resource pool.
  • the first node receives indication information, and the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is also used to indicate the value of M.
  • the indication information is also used to indicate M pieces of first sensing result information, that is, information that determines M pieces of first sensing result information from N pieces of first sensing result information, such as a bitmap (Bitmap).
  • the first node receives configuration information
  • the configuration information is used to indicate at least one of the following information: the first transmission resource, the value of M.
  • the configuration information and the above indication information may be the same information, or the configuration information and the above indication information may be two different pieces of information.
  • the configuration information and the indication information are the same information; for another example, when the first transmission resource is a semi-statically indicated periodic transmission resource, the configuration information and the indication information are Different information
  • the configuration information may be configuration information of semi-static configuration
  • the indication information may be activation signaling of semi-static configuration.
  • the M groups of sensing signals are the last M groups of sensing signals before the first time position.
  • the first time position is any of the following time positions:
  • the first time position is the time domain position of the first transmission resource
  • the first time position is the starting position of the first transmission resource in the time domain, or the first time position is the end position of the first transmission resource in the time domain.
  • the first time position is determined based on the time domain position of the first transmission resource
  • the first time position is determined based on the starting position of the first transmission resource in the time domain, or the first time position is determined based on the end position of the first transmission resource in the time domain, or the first time position is based on the first transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the first time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first time position is the transmission position of the indicated information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is sent by the second node to the first node, or the indication information is sent by a sensing control node different from the second node to the first node.
  • the first time position is determined based on the transmission position of the indication information
  • the first time position is determined based on the starting position of the transmission position of the indication information in the time domain, or the first time position is determined based on the end position of the transmission position of the indication information in the time domain, or the first time position is based on the indication information
  • the transmission position is determined by the start position and end position in the time domain, such as the middle position between the start position and the end position.
  • the first time position is a time position indicating that the transmission position of the information is advanced by T time period.
  • the T duration is predefined, preconfigured, or independently determined.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first time position and the second time position are the same time position, or different time positions.
  • the second time position is determined based on the time domain position of the first transmission resource, and the first time position is determined by the transmission position of the indication information.
  • the M pieces of first sensing result information include the first sensing result 4 and the first sensing result information.
  • the M pieces of first sensing result information are determined from the N pieces of first sensing result information based on the indication information.
  • the indication information carries a bitmap
  • the first node determines M pieces of first sensing result information from N pieces of first sensing result information based on the bitmap.
  • N pieces of first sensing result information are first sensing result information 1 to 4.
  • the bitmap is equal to 1010, it means that M pieces of first sensing result information are first sensing result information 1 and first sensing result information 3;
  • the bitmap is equal to 0011, it represents that the M pieces of first sensing result information are first sensing result information 3 and first sensing result information 4. That is, the bitmap includes N bits.
  • the i-th bit takes the first value (such as 1), it means that the i-th first perception result information belongs to the M first perception result information; when the i-th bit
  • the bit value is the second value (for example, 0), it means that the i-th first sensing result information does not belong to the M first sensing result information.
  • the method provided in this embodiment by standardizing the reporting method of the first node, can use less first transmission resources to send simultaneously when the first node senses multiple first sensing result information. M first sensing result information does not need to be reported separately for each first sensing result information, which saves resource consumption required for the sensing result reporting process and reduces signaling overhead.
  • the sensing control node when N is greater than M, can trigger the first node to report more first sensing result information at certain times based on sensing requirements (that is, increase the value of M, up to a maximum of N), improve the perception accuracy; when N is always equal to M, the storage resource requirements of the first node can be reduced, and the hardware cost or storage overhead of the first node can be reduced.
  • the second node or the sensing control node indicates the M pieces of first sensing result information that need to be uploaded to the first node through a bitmap.
  • the first node stores multiple recent first sensing result information.
  • the second node or the sensing control node can require the first node to report multiple specified sensing results based on the performance requirements of the sensing service, thereby observing changes in the sensing signal. Get a more accurate final perception result.
  • Figure 11 shows a flow chart of a method for receiving sensing result information provided by an exemplary embodiment of the present application. This embodiment illustrates that the method is executed by the second node. The method includes:
  • Step 602 The second node receives M pieces of first sensing result information sent by the first node using the first transmission resource.
  • the second node is the node involved in the sensing measurement.
  • the second node is a sensing signal sending node or a sensing control node.
  • the first node is the node involved in the sensing measurement.
  • the first node uses the first transmission resource to send M pieces of first sensing result information to the second node.
  • the second node is a sensing signal sending node, a sensing control node, or both a sensing signal sending node and a sensing control node. This embodiment does not limit the role of the second node in the sensing measurement process, and it depends on the specific sensing scenario.
  • the first node is the sensing signal receiving node.
  • the first node serves as a sensing signal sending node and a sensing signal receiving node at the same time. This embodiment does not limit the role of the first node in the sensing measurement process, and it depends on the specific sensing scenario.
  • M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, each group of sensing signals in the M groups of sensing signals includes at least one sensing signal, and the sensing signals in each group of sensing signals are The quantities are the same or different.
  • the M groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • M sets of sensing signals are sent periodically, or M sets of sensing signals are sent aperiodically.
  • the M groups of sensing signals are M groups of continuous sensing signals among multiple groups of sensing signals that are sent periodically, or the M groups of sensing signals are designated or filtered M groups among the multiple groups of sensing signals that are periodically sent.
  • Sense signal (not necessarily continuous).
  • the first transmission resource is a periodic transmission resource, a semi-statically indicated transmission resource, or a dynamically indicated transmission resource.
  • the first transmission resource may be configured by the second node to the first node, or the sensing control node may configure the first node, or the first node may autonomously select it from the resource pool.
  • the M groups of sensing signals are the last M groups of sensing signals before the first time position.
  • the first time position is any of the following time positions:
  • the first time position is the time domain position of the first transmission resource
  • the first time position is the starting position of the first transmission resource in the time domain, or the first time position is the end position of the first transmission resource in the time domain.
  • the first time position is determined based on the time domain position of the first transmission resource
  • the first time position is determined based on the starting position of the first transmission resource in the time domain, or the first time position is determined based on the end position of the first transmission resource in the time domain, or the first time position is based on the first transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the first time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or independently determined.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first time position is the transmission position of the indicated information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is sent by the second node to the first node, or the indication information is sent by a sensing control node different from the second node to the first node.
  • the first time position is determined based on the transmission position of the indication information
  • the first time position is determined based on the starting position of the transmission position of the indication information in the time domain, or the first time position is determined based on the end position of the transmission position of the indication information in the time domain, or the first time position is based on the indication information
  • the transmission position is determined by the start position and end position in the time domain, such as the middle position between the start position and the end position.
  • the first time position is a time position indicating that the transmission position of the information is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the first sensing result information includes at least one of the following information:
  • the characteristic quantities of the perceived signal include: signal amplitude, signal amplitude mean, signal amplitude variance, angle difference, angle mean, angle variance, amplitude mean/variance distribution, angle mean/variance distribution, power spectrum, and Doppler shift At least one of the characteristics such as information.
  • the offset information of the feature quantity refers to the offset value of the feature quantity of the current perception signal relative to the feature quantity of the reference perception signal.
  • the difference information of the feature quantity refers to the difference of the feature quantity of the current perception signal with respect to the feature quantity of the reference perception signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • the channel information experienced by the sensing signal includes: at least one of channel matrix information, multipath delay, and fading information.
  • the offset information of the channel information refers to the offset value of the channel information of the current sensing signal relative to the channel information of the reference sensing signal.
  • the difference information of the channel information refers to the difference of the channel information of the current sensing signal relative to the channel information of the reference sensing signal. information. Offset information and differential information can be understood as the same information or the same type of information.
  • the reference sensing signal can be the first sensing signal, or the first sensing signal within a period of time, or the first sensing signal within a period, or the first sensing signal in the same group of sensing signals, or the current sensing signal The previous sensing signal, or the first sensing signal among the M sensing signals reported this time. This embodiment does not limit the selection method of the reference sensing signal.
  • the second node When the second node is a sensing signal sending node, the second node also sends multiple sets of sensing signals to the first node in advance. For example, the second node sends N sets of sensing signals to the first node.
  • N first sensing result information is obtained based on N groups of sensing signals, N is a positive integer greater than 1, and each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • the N groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • the N sets of sensing signals are sent periodically, or the N sets of sensing signals are sent aperiodically.
  • N is related to the cache capability of the first node. For example, N is equal to or less than the amount of first sensing result information that the first node can cache.
  • the N groups of sensing signals are the last N groups of sensing signals before the second time position.
  • the N first perception result information are the last 4 first perception result information before the second time position.
  • the first sensing result information obtained by the first node before the second time position may be less than N pieces of first sensing result information.
  • the second time location is any of the following time locations:
  • the second time position is the time domain position of the first transmission resource
  • the second time position is the starting position of the first transmission resource in the time domain, or the second time position is the end position of the first transmission resource in the time domain.
  • the second time position is determined based on the time domain position of the first transmission resource
  • the second time position is determined based on the starting position of the first transmission resource in the time domain, or the second time position is determined based on the end position of the first transmission resource in the time domain, or the second time position is based on the first transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the second time position is a time position in which the time domain position of the first transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the second time position is the transmission position of the indication information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is sent by the second node to the first node, or the indication information is sent by a sensing control node different from the second node to the first node.
  • the second time position is determined based on the transmission position of the indication information
  • the second time position is determined based on the starting position of the transmission position of the indication information in the time domain, or the second time position is determined based on the end position of the transmission position of the indication information in the time domain, or the second time position is based on the indication information
  • the transmission position is determined by the start position and end position in the time domain, such as the middle position between the start position and the end position.
  • the second time position is a time position at which the transmission position of the indication information is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the transmission resources of the multiple or N groups of sensing information are semi-statically configured periodic resources, or the transmission resources of each group of sensing signals in the multiple or N groups of sensing signals are dynamically configured dynamic resources. .
  • This embodiment does not limit the transmission method of the above multiple sets or N sets of sensing information.
  • the second node also sends indication information to the first node, where the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the indication information is also used to indicate the value of M.
  • the indication information is also used to indicate M pieces of first sensing result information, that is, information that determines M pieces of first sensing result information from N pieces of first sensing result information, such as a bitmap (Bitmap).
  • the bitmap is used to instruct the first node to determine M pieces of first sensing result information from N pieces of first sensing result information.
  • N pieces of first sensing result information are first sensing result information 1 to 4.
  • the bitmap is equal to 1010, it means that M pieces of first sensing result information are first sensing result information 1 and first sensing result information 3;
  • the bitmap is equal to 0011, it represents that the M pieces of first sensing result information are first sensing result information 3 and first sensing result information 4. That is, the bitmap includes N bits.
  • the i-th bit takes the first value (such as 1), it means that the i-th first perception result information belongs to the M first perception result information; when the i-th bit
  • the bit value is the second value (for example, 0), it means that the i-th first sensing result information does not belong to the M first sensing result information.
  • the method provided in this embodiment by standardizing the reporting method of the first node, can use less first transmission resources to send simultaneously when the first node senses multiple first sensing result information. M first sensing result information does not need to be reported separately for each first sensing result information, which saves resource consumption required for the sensing result reporting process and reduces signaling overhead.
  • the second node or the sensing control node indicates the M pieces of first sensing result information that need to be uploaded to the first node through a bitmap.
  • the first node stores multiple recent first sensing result information.
  • the second node or the sensing control node can require the first node to report multiple specified sensing results based on the performance requirements of the sensing service, thereby observing changes in the sensing signal. Get a more accurate final perception result.
  • Figure 12 is a flow chart of a method for sending sensing result information provided by an exemplary embodiment of the present application. This embodiment illustrates that the method is executed by the first node. The method includes:
  • Step 702 After receiving N sets of sensing signals, the first node uses the second transmission resource to send the first information, where N is a positive integer;
  • the first node is the node involved in the sensing measurement.
  • the first node is a sensing signal receiving node.
  • the first node serves as a sensing signal sending node and a sensing signal receiving node at the same time. This embodiment does not limit the role of the first node in the sensing measurement process, and it depends on the specific sensing scenario.
  • the first node receives N groups of sensing signals and generates N pieces of first sensing result information based on the N groups of sensing signals.
  • Each group of sensing signals in the N groups of sensing signals includes at least one sensing signal, and the number of sensing signals in each group of sensing signals is the same or different.
  • the N first sensing result information is obtained based on N groups of sensing signals, N is a positive integer greater than 1, and each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • the N groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • the N sets of sensing signals are sent periodically, or the N sets of sensing signals are sent aperiodically.
  • a sensing sending node may send multiple sets of sensing signals.
  • the first node obtains N first sensing result information based on N groups of sensing signals.
  • N is related to the cache capability of the first node. For example, N is equal to or less than the amount of first sensing result information that the first node can cache.
  • the first information is used to indicate that the first node desires to report all or part of the N pieces of first sensing result information. In some embodiments, the first information is used to indicate the presence of abnormal sensing result information. In some embodiments, the first information is used to request transmission resources for scheduling all or part of the N first sensing result information.
  • the first information includes at least one of the following information:
  • the application-oriented sensing results are determined based on the N sets of sensing signals
  • application-oriented sensing results may be understood as abnormal sensing result information. For example: there is information such as the presence of a person or object falling, the presence of moving object intrusion, the count of target objects, etc.
  • the resource request information is used to request the second node or the sensing control node to schedule a third transmission resource.
  • the third transmission resource is used by the first node to send part or all of the N first sensing result information.
  • the resource request information may be a Scheduling Request (SR).
  • information obtained based on at least one first perception result information (filtering) among the N first perception result information can be understood as abnormal perception result information.
  • the abnormal perception result information includes: perception result information with a value lower than the first threshold in the N first perception result information; or perception result information with a value higher than the second threshold in the N first perception result information. information; or, the perception result information in which the value of the N first perception result information changes to a jump condition.
  • the first threshold, the second threshold, and the transition condition may be predefined, preconfigured, dynamically configured, or dynamically determined based on N first sensing result information.
  • the first threshold, the second threshold, and the jump condition are determined based on the average value, variance, etc. of N first sensing result information.
  • the above-mentioned first information is also used to indicate the value of N, or the data amount of N first sensing result information.
  • the second transmission resource is the transmission resource occupied by the first information.
  • the second transmission resource is preconfigured by the second node or the perception control node, or the first node obtains it by requesting the second node or the perception control node through SR, or the first node obtains it in the preconfigured self-selected from the resource pool. This embodiment does not limit the configuration information of the second transmission resource.
  • the N groups of sensing signals are the last N groups of sensing signals before the third time position.
  • the N first perception result information are the last 4 first perception result information before the third time position.
  • the first sensing result information obtained by the first node before the third time position may be less than N pieces of first sensing result information.
  • the third time location is any of the following time locations:
  • the third time position is the time domain position of the transmission position of the first information (that is, the second transmission resource);
  • the third time position is the starting position of the second transmission resource in the time domain, or the third time position is the end position of the second transmission resource in the time domain.
  • the third time position is determined based on the time domain position of the transmission position of the first information
  • the third time position is determined based on the starting position of the second transmission resource in the time domain, or the third time position is determined based on the end position of the second transmission resource in the time domain, or the third time position is based on the second transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the third time position is a time position in which the time domain position of the second transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the third time position is the transmission position of the resource configuration information of the second transmission resource
  • the resource configuration information of the second transmission resource is used to configure the second transmission resource.
  • the resource configuration information of the second transmission resource is sent to the first node by the second node, or the resource configuration information of the second transmission resource is sent to the first node by a sensing control node different from the second node.
  • the third time position is determined based on the transmission position of the resource configuration information of the second transmission resource
  • the third time position is determined based on the starting position of the transmission position of the resource configuration information of the second transmission resource in the time domain, or the third time position is based on the end of the transmission position of the resource configuration information of the second transmission resource in the time domain.
  • the position is determined, or the third time position is determined based on the start position and the end position of the transmission position of the resource configuration information of the second transmission resource in the time domain, such as the middle position of the start position and the end position.
  • the third time position is a time position in which the transmission position of the resource configuration information of the second transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • Step 704 When the scheduling information is received within the first time period, the first node uses the third transmission resource scheduled by the scheduling information to send part or all of the N pieces of first sensing result information, or, in the third transmission resource In the case within the first time period, the first node uses the third transmission resource to send part or all of the N pieces of first sensing result information;
  • the starting point of the first time period is the transmission position of the first information or is determined based on the transmission position of the first information.
  • the starting point of the first time period is the starting position of the transmission position of the first information in the time domain, or the starting point of the first time period is the end position of the transmission position of the first information in the time domain, or the first information
  • the starting point of is obtained when the transmission position of the first information is advanced by K duration or delayed by K duration.
  • K is based on the round-trip time (RTT) between the first node and the second node.
  • the length of the first time period may be preconfigured, dynamically configured by the second node or the sensing control node, predefined by the communication protocol, or implemented autonomously.
  • the scheduling information is used to schedule a third transmission resource, and the third transmission resource is used to transmit part or all of the N first sensing result information.
  • the scheduling information also carries an indication of the first sensing result information that needs to be uploaded.
  • the scheduling information also carries an instruction to upload all N pieces of first sensing result information, or the scheduling information also carries an instruction to upload M pieces of first sensing result information, where M is a positive integer not greater than N, or
  • the scheduling information is used to indicate M pieces of first sensing result information, or the scheduling information is used to indicate information that determines M pieces of first sensing result information from N pieces of first sensing result information.
  • the scheduling information carries a bitmap (Bitmap), and the bitmap is used to instruct the first node to determine M pieces of first sensing result information from N pieces of first sensing result information.
  • N pieces of first sensing result information are first sensing result information 1 to 4.
  • the bitmap is equal to 1010, it means that M pieces of first sensing result information are first sensing result information 1 and first sensing result information 3;
  • the bitmap is equal to 0011, it represents that the M pieces of first sensing result information are first sensing result information 3 and first sensing result information 4. That is, the bitmap includes N bits.
  • the i-th bit takes the first value (such as 1), it means that the i-th first perception result information belongs to the M first perception result information; when the i-th bit
  • the bit value is the second value (for example, 0), it means that the i-th first sensing result information does not belong to the M first sensing result information.
  • the M pieces of first sensing result information that need to be uploaded are determined by the first node itself. For example, the first node determines based on the amount of data that the third transmission resource can carry. In some embodiments, the first node is selected from the N first sensing result information based on the filtering conditions, and the filtering conditions are used to filter the first sensing result information that meets the abnormal results.
  • the first time period T1 is the time starting from the starting position or the ending position of the second transmission resource or the starting position of the time unit where the second transmission resource is located or the end position of the time unit where the second transmission resource is located. part. If the first node receives the scheduling information within the first time period T1, or the transmission position (starting position or end position) of the third transmission resource indicated by the scheduling information is within the first time period T1, the first node uses the third transmission resource.
  • the resource transmits M pieces of first sensing result information, and the M pieces of first sensing result information include at least one first sensing result among the N pieces of first sensing result information.
  • the first node when the scheduling information is received after the first time period or the scheduling information is not received before the end position of the first time period, the first node does not send the information obtained based on the N group of sensing channels. Part or all of the N first perception result information.
  • the first node receives the scheduling information after the first time period T1, or does not receive the scheduling information before the end position of the first time period T1, or the transmission position (starting position or End position) After the first period of time T1, the first node clears, releases, or discards part or all of the N first sensing result information.
  • the first node does not expect to receive scheduling information indicating transmission of at least one first sensing result information among the N first sensing result information outside the first time period T1. Or, the first node does not expect that the transmission resource (starting position or ending position) for transmitting at least one of the N first sensing result information indicated by the scheduling information is outside the first time period T1.
  • the first node After receiving the sensing signal 3, the first node finds that there is a sensing abnormality and sends the first information. During the first time period T1, the first node needs to store the first sensing result information 2 and 3 and wait for the sensing control node to send scheduling information to indicate the transmission of the first sensing result information 2 and 3. If the first time period T1 is exceeded, the first node does not need to forcefully store the first sensing result information 2 and 3. If there is updated first sensing result information, the earlier first sensing result information 2 and 3 can be cleared.
  • the method provided in this embodiment reports part or all of the N first sensing result information only when the sensing result is abnormal, which can significantly reduce the number of requests from the first node to the second node or sensing control.
  • the resource overhead when nodes report sensing results improves system efficiency and reduces the power consumption of the first node.
  • a maximum waiting time (first time period) is set for reporting. If within the waiting first time period, the second node or the sensing control node does not schedule the first node, the first node will no longer be invited to store.
  • the previous sensing result information avoids memory occupation caused by unlimited waiting and increases the memory resource overhead of the first node or the hardware cost of the memory.
  • Figure 14 shows a flow chart of a method for receiving sensing result information provided by an exemplary embodiment of the present application. This embodiment illustrates that the method is executed by the second node or the sensing control node. The method includes:
  • Step 802 The second node or the sensing control node receives the first information sent by the first node using the second transmission resource.
  • the first information is sent by the first node after receiving N sets of sensing information, where N is a positive integer;
  • the first node is the node involved in the sensing measurement.
  • the first node is a sensing signal receiving node.
  • the first node serves as a sensing signal sending node and a sensing signal receiving node at the same time. This embodiment does not limit the role of the first node in the sensing measurement process, and it depends on the specific sensing scenario.
  • the first node receives N groups of sensing signals and generates N pieces of first sensing result information based on the N groups of sensing signals.
  • Each group of sensing signals in the N groups of sensing signals includes at least one sensing signal, and the number of sensing signals in each group of sensing signals is the same or different.
  • the N first sensing result information is obtained based on N groups of sensing signals, N is a positive integer greater than 1, and each group of sensing signals in the N groups of sensing signals includes at least one sensing signal.
  • the N groups of sensing signals have different time domain positions when they are sent, or there are at least two groups of sensing signals that have different time domain positions when they are sent.
  • the N sets of sensing signals are sent periodically, or the N sets of sensing signals are sent aperiodically.
  • a sensing sending node may send multiple sets of sensing signals.
  • the first node obtains N first sensing result information based on N groups of sensing signals.
  • N is related to the cache capability of the first node. For example, N is equal to or less than the amount of first sensing result information that the first node can cache.
  • the first information is used to indicate that the first node desires to report all or part of the N pieces of first sensing result information. In some embodiments, the first information is used to indicate the presence of abnormal sensing result information. In some embodiments, the first information is used to request transmission resources for scheduling all or part of the N first sensing result information.
  • the first information includes at least one of the following information:
  • the application-oriented sensing results are determined based on the N sets of sensing signals
  • application-oriented sensing results may be understood as abnormal sensing result information. For example: there is information such as the presence of a person or object falling, the presence of moving object intrusion, the count of target objects, etc.
  • the resource request information is used to request the second node or the sensing control node to schedule a third transmission resource.
  • the third transmission resource is used by the first node to send part or all of the N first sensing result information.
  • the resource request information may be a Scheduling Request (SR).
  • information obtained based on at least one first perception result information (filtering) among the N first perception result information can be understood as abnormal perception result information.
  • the abnormal perception result information includes: perception result information with a value lower than the first threshold in the N first perception result information; or perception result information with a value higher than the second threshold in the N first perception result information. information; or, the perception result information in which the value of the N first perception result information changes to a jump condition.
  • the first threshold, the second threshold, and the transition condition may be predefined, preconfigured, dynamically configured, or dynamically determined based on N first sensing result information.
  • the first threshold, the second threshold, and the jump condition are determined based on the average value, variance, etc. of N first sensing result information.
  • the above-mentioned first information is also used to indicate the value of N, or the data amount of N first sensing result information.
  • the second transmission resource is the transmission resource occupied by the first information.
  • the second transmission resource is preconfigured by the second node or the perception control node, or the first node obtains it by requesting the second node or the perception control node through SR, or the first node obtains it in the preconfigured self-selected from the resource pool. This embodiment does not limit the configuration information of the second transmission resource.
  • the N groups of sensing signals are the last N groups of sensing signals before the third time position.
  • the N first perception result information are the last 4 first perception result information before the third time position.
  • the first sensing result information obtained by the first node before the third time position may be less than N pieces of first sensing result information.
  • the third time location is any of the following time locations:
  • the third time position is the time domain position of the transmission position of the first information (that is, the second transmission resource);
  • the third time position is the starting position of the second transmission resource in the time domain, or the third time position is the end position of the second transmission resource in the time domain.
  • the third time position is determined based on the time domain position of the transmission position of the first information
  • the third time position is determined based on the starting position of the second transmission resource in the time domain, or the third time position is determined based on the end position of the second transmission resource in the time domain, or the third time position is based on the second transmission resource
  • the start position and end position in the time domain are determined, such as the middle position between the start position and the end position.
  • the third time position is a time position in which the time domain position of the second transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • the third time position is the transmission position of the resource configuration information of the second transmission resource
  • the resource configuration information of the second transmission resource is used to configure the second transmission resource.
  • the resource configuration information of the second transmission resource is sent to the first node by the second node, or the resource configuration information of the second transmission resource is sent to the first node by a sensing control node different from the second node.
  • the third time position is determined based on the transmission position of the resource configuration information of the second transmission resource
  • the third time position is determined based on the starting position of the transmission position of the resource configuration information of the second transmission resource in the time domain, or the third time position is based on the end of the transmission position of the resource configuration information of the second transmission resource in the time domain.
  • the position is determined, or the third time position is determined based on the start position and the end position of the transmission position of the resource configuration information of the second transmission resource in the time domain, such as the middle position of the start position and the end position.
  • the third time position is a time position in which the transmission position of the resource configuration information of the second transmission resource is advanced by T time period.
  • the T duration is predefined, preconfigured, or determined independently.
  • the T duration is related to the processing delay of the first node generating sensing result information based on the sensing signal.
  • Step 804 The second node or the sensing control node sends scheduling information to the first node.
  • the scheduling information is used to schedule the third transmission resource for the first node to send part or all of the N first sensing result information.
  • the scheduling information or the third transmission resource is used to schedule the first node to send part or all of the N first sensing result information.
  • Three transmission resources are within the first time period;
  • the starting point of the first time period is the transmission position of the first information or is determined based on the transmission position of the first information.
  • the starting point of the first time period is the starting position of the transmission position of the first information in the time domain, or the starting point of the first time period is the end position of the transmission position of the first information in the time domain, or the first information
  • the starting point of is obtained when the transmission position of the first information is advanced by K duration or delayed by K duration.
  • K is based on the round-trip time (RTT) between the first node and the second node.
  • the length of the first time period may be preconfigured, dynamically configured by the second node or the sensing control node, predefined by the communication protocol, or implemented autonomously.
  • the scheduling information is used to schedule a third transmission resource, and the third transmission resource is used to transmit part or all of the N first sensing result information.
  • the scheduling information also carries an indication of the first sensing result information that needs to be uploaded.
  • the scheduling information also carries an instruction to upload all N pieces of first sensing result information, or the scheduling information also carries an instruction to upload M pieces of first sensing result information, where M is a positive integer not greater than N, or
  • the scheduling information is used to indicate M pieces of first sensing result information, or the scheduling information is used to indicate information that determines M pieces of first sensing result information from N pieces of first sensing result information.
  • the scheduling information carries a bitmap (Bitmap), and the bitmap is used to instruct the first node to determine M pieces of first sensing result information from N pieces of first sensing result information.
  • N pieces of first sensing result information are first sensing result information 1 to 4.
  • the bitmap is equal to 1010, it means that M pieces of first sensing result information are first sensing result information 1 and first sensing result information 3;
  • the bitmap is equal to 0011, it represents that the M pieces of first sensing result information are first sensing result information 3 and first sensing result information 4. That is, the bitmap includes N bits.
  • the i-th bit takes the first value (such as 1), it means that the i-th first perception result information belongs to the M first perception result information; when the i-th bit
  • the bit value is the second value (for example, 0), it means that the i-th first sensing result information does not belong to the M first sensing result information.
  • the M pieces of first sensing result information that need to be uploaded are determined by the first node itself. For example, the first node determines based on the amount of data that the third transmission resource can carry. In some embodiments, the first node is selected from the N first sensing result information based on the filtering conditions, and the filtering conditions are used to filter the first sensing result information that meets the abnormal results.
  • the first time period T1 is the time starting from the starting position or the ending position of the second transmission resource or the starting position of the time unit where the second transmission resource is located or the end position of the time unit where the second transmission resource is located. part. If the first node receives the scheduling information within the first time period T1, or the transmission position (starting position or end position) of the third transmission resource indicated by the scheduling information is within the first time period T1, the first node uses the third transmission resource.
  • the resource transmits M pieces of first sensing result information, and the M pieces of first sensing result information include at least one first sensing result among the N pieces of first sensing result information.
  • the first node When the scheduling information is received after the first time period or the scheduling information is not received before the end of the first time period, the first node does not send the N first sensing results based on the N groups of sensing channels. part or all of the information.
  • the first node receives the scheduling information after the first time period T1, or does not receive the scheduling information before the end position of the first time period T1, or the transmission position (starting position or End position) After the first period of time T1, the first node clears, releases, or discards part or all of the N first sensing result information.
  • the first node does not expect to receive scheduling information indicating transmission of at least one first sensing result information among the N first sensing result information outside the first time period T1. Or, the first node does not expect that the transmission resource (starting position or ending position) for transmitting at least one of the N first sensing result information indicated by the scheduling information is outside the first time period T1.
  • the second node or the sensing control node receives part or all of the N pieces of first sensing result information sent by the first node using the third transmission resource.
  • the method provided in this embodiment reports part or all of the N first sensing result information only when the sensing result is abnormal, which can significantly reduce the number of requests from the first node to the second node or sensing control.
  • the resource overhead when nodes report sensing results improves system efficiency and reduces the power consumption of the first node.
  • a maximum waiting time (first time period) is set for reporting. If within the waiting first time period, the second node or the sensing control node does not schedule the first node, the first node will no longer be invited to store.
  • the previous sensing result information avoids memory occupation caused by unlimited waiting and increases the memory resource overhead of the first node or the hardware cost of the memory.
  • Figure 15 shows a block diagram of a device for sending sensing result information provided by an exemplary embodiment of the present application.
  • the device includes: a sending module 1520, a processing module 1540 and a receiving module 1560;
  • the sending module 1520 is configured to send M pieces of first sensing result information using the first transmission resource
  • M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • the M groups of sensing signals are the last M groups of sensing signals before the first time position
  • the first time position is the time domain position of the first transmission resource; or,
  • the first time position is determined based on the time domain position of the first transmission resource; or,
  • the first time location is the transmission location of the indicated information.
  • the first time position is determined based on the transmission position of the indication information
  • the instruction information is used to instruct the device to send M pieces of first sensing result information.
  • the processing module 1540 is configured to obtain N first sensing result information based on N groups of sensing signals, N is greater than or equal to M, and the N first sensing result information includes Mth 1. Perception result information.
  • the N groups of sensing signals are the last N groups of sensing signals before the second time position
  • the second time position is the time domain position of the first transmission resource.
  • the second time position is the transmission position of the indication information.
  • the second time position is determined based on the time domain position of the first transmission resource; or,
  • the second time position is determined based on the transmission position of the indication information
  • the instruction information is used to instruct the device to send M pieces of first sensing result information.
  • the value of M is indicated by the indication information, and/or the information that determines the M pieces of first sensing result information from the N pieces of first sensing result information is indicated by the indication information.
  • the receiving module 1560 is used to receive configuration information, and the configuration information is used to indicate at least one of the following information:
  • the first perception result information includes at least one of the following information:
  • the offset information or differential information of the channel information experienced by the sensing signal is the offset information or differential information of the channel information experienced by the sensing signal
  • the device in this embodiment is used to implement the corresponding steps performed by the first node in the above method embodiment.
  • the device in this embodiment is used to implement the corresponding steps performed by the first node in the above method embodiment.
  • details that are not described in detail in this embodiment please refer to the details in the above method embodiment and will not be described again.
  • Figure 16 shows a block diagram of a device for sending sensing result information provided by an exemplary embodiment of the present application.
  • the device includes: a sending module 1620 and a receiving module 1660;
  • the sending module 1620 is configured to use the second transmission resource to send the first information after the receiving module 1660 receives N sets of sensing signals, where N is a positive integer;
  • the sending module 1620 is configured to, when the receiving module 1660 receives the scheduling information within the first time period, the first node uses the third transmission resource scheduled by the scheduling information to send parts of the N first sensing result information. Or all the information; or, if the third transmission resource is within the first time period, the first node uses the third transmission resource to send part or all of the N pieces of first sensing result information;
  • the starting point of the first time period is the transmission position of the first information or is determined based on the transmission position of the first information
  • the N first sensing result information is obtained based on N groups of sensing signals
  • each group of sensing signals in the N groups of sensing signals includes at least one sensory signal.
  • the first information includes at least one of the following information:
  • Application-oriented sensing results are determined based on N sets of sensing signals
  • Resource request information which is used to request third transmission resources
  • the information obtained based on at least one first perception result information among the N first perception result information includes:
  • Perception result information in which the change degree of the values in the N first perception result information reaches the jump condition.
  • the first information is also used to indicate the value of N.
  • the sending module 1620 is configured to not send parts of the N first sensing result information when the receiving module 1660 receives the scheduling information after the first time period. or all information; or,
  • the sending module 1620 is configured to not send part or all of the N first sensing result information when the receiving module 1660 does not receive the scheduling information before the first time period times out; or,
  • the sending module 1620 is configured to not send part or all of the N pieces of first sensing result information when the third transmission resource scheduled by the scheduling information is after the first time period.
  • the first perception result information includes at least one of the following information:
  • the offset information or differential information of the channel information experienced by the sensing signal is the offset information or differential information of the channel information experienced by the sensing signal.
  • the device in this embodiment is used to implement the corresponding steps performed by the first node in the above method embodiment.
  • the device in this embodiment is used to implement the corresponding steps performed by the first node in the above method embodiment.
  • details that are not described in detail in this embodiment please refer to the details in the above method embodiment and will not be described again.
  • Figure 17 shows a block diagram of a device for receiving sensing result information provided by an exemplary embodiment of the present application.
  • the device includes: a receiving module 1720 and a sending module 1740;
  • the receiving module 1720 is configured to receive M pieces of first sensing result information sent by the first node using the first transmission resource
  • M first sensing result information is obtained based on M groups of sensing signals, M is a positive integer greater than 1, and each group of sensing signals in the M groups of sensing signals includes at least one sensing signal.
  • the M groups of sensing signals are the last M groups of sensing signals before the first time position
  • the first time position is the time domain position of the first transmission resource; or,
  • the first time position is determined based on the time domain position of the first transmission resource; or,
  • the first time location is the transmission location of the indicated information.
  • the first time position is determined based on the transmission position of the indication information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the sending module 1740 is configured to send N groups of sensing signals, N is greater than or equal to M, and the N groups of sensing signals include M groups of sensing signals.
  • the N groups of sensing signals are the last N groups of sensing signals before the second time position
  • the second time position is the time domain position of the first transmission resource.
  • the second time position is the transmission position of the indication information.
  • the second time position is determined based on the time domain position of the first transmission resource; or,
  • the second time position is determined based on the transmission position of the indication information
  • the indication information is used to instruct the first node to send M pieces of first sensing result information.
  • the sending module 1740 is used to send indication information.
  • the indication information is also used to indicate the value of M, and/or the indication information is also used to indicate the information from the N first sensing results. Information that determines M first perception result information.
  • the sending module 1740 is configured to send configuration information, and the configuration information is used to indicate at least one of the following information: the first transmission resource; the value of M.
  • the first perception result information includes at least one of the following information:
  • the offset information or differential information of the channel information experienced by the sensing signal is the offset information or differential information of the channel information experienced by the sensing signal
  • Figure 18 shows a block diagram of a device for receiving sensing result information provided by an exemplary embodiment of the present application.
  • the device includes: a receiving module 1820 and a sending module 1840;
  • the receiving module 1820 is used to receive the first information sent by the first node using the second transmission resource.
  • the first information is sent by the first node after receiving N sets of sensing signals, where N is a positive integer;
  • Sending module 1840 configured to send scheduling information to the first node.
  • the scheduling information is used to schedule the third transmission resource for the first node to send part or all of the N first sensing result information; scheduling information and/or third transmission resources. Located within the first time period;
  • the starting point of the first time period is the transmission position of the first information or is determined based on the transmission position of the first information
  • the N first sensing result information is obtained based on N groups of sensing signals
  • each group of sensing signals in the N groups of sensing signals Includes at least one sensing signal.
  • the first information includes:
  • Application-oriented sensing results are determined based on N sets of sensing signals
  • Resource request information which is used to request third transmission resources
  • the information obtained based on at least one first perception result information among the N first perception result information includes:
  • Perception result information in which the change degree of the values in the N first perception result information reaches the jump condition.
  • the first information is also used to indicate the value of N.
  • the first perception result information includes at least one of the following information:
  • the offset information or differential information of the channel information experienced by the sensing signal is the offset information or differential information of the channel information experienced by the sensing signal.
  • Figure 19 shows a schematic structural diagram of a perception measurement device (a first node or a second node or a perception sending node or a perception receiving node or a perception control node) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , receiver 102, transmitter 103, memory 104 and bus 105.
  • the processor 101 includes one or more processing cores.
  • the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 can be implemented as a communication component, which can be a communication chip, and the communication component can be called a transceiver.
  • the memory 104 is connected to the processor 101 via a bus 105 .
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 104 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory
  • the processor and transceiver in the perception measurement device involved in the embodiments of the present application can perform the methods shown in the above embodiments by the first node or the second node or the perception sending node or the perception receiving node or the perception control The steps performed by the node will not be repeated here.
  • a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, and the at least one instruction, the At least a section of the program, the code set or the instruction set is loaded and executed by the processor to implement the sending method of sensing result information or the receiving method of sensing result information performed by the communication device provided by each of the above method embodiments.
  • a chip is also provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a computer device, it is used to implement the sensing result information described in the above aspect. method of sending or receiving method of sensing result information.
  • a computer program product is also provided.
  • the computer device When the computer program product is run on a processor of a computer device, the computer device performs the sending method of sensing result information or the sensing result information described in the above aspect. Receive method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知结果信息的发送接收方法、装置、设备及存储介质,涉及感知测量领域。所述方法包括:第一节点使用第一传输资源发送M个第一感知结果信息(502);第二节点接收第一节点使用第一传输资源发送的M个第一感知结果信息。本申请提出了在存在多个第一感知结果信息时,第一节点如何向第二节点上报M个第一感知结果信息的上报方式。

Description

感知结果信息的发送接收方法、装置、设备及存储介质 技术领域
本申请涉及感知测量领域,特别涉及一种感知结果信息的发送接收方法、装置、设备及存储介质。
背景技术
无线感知是指利用反向散射的无线电波探测物理环境的参数,以实现目标定位、动作识别、成像等环境感知的技术。
当终端作为感知信号接收节点辅助实现感知时,若终端接收到多组感知信号,终端可能缓存多个感知结果信息。此时终端如何向感知控制节点或感知结果发送节点发送多个感知结果信息,是目前尚未解决的技术问题。
发明内容
本申请实施例提供了一种感知结果信息的发送接收方法、装置、设备及存储介质,可以在存在多个感知结果信息时,减少节点发送感知结果信息时的信令开销。所述技术方案如下:
根据本申请的一个方面,提供了一种感知结果信息的发送方法,所述方法包括:
第一节点使用第一传输资源发送M个第一感知结果信息;
其中,所述M个第一感知结果信息是基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的发送方法,所述方法包括:
第一节点在接收到N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
在第一时间段内接收到调度信息的情况下,所述第一节点使用所述调度信息调度的第三传输资源发送N个第一感知结果信息的部分或全部信息;或,在所述第三传输资源在所述第一时间段内的情况下,所述第一节点使用所述第三传输资源发送所述N个第一感知结果信息的部分或全部信息;
其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的接收方法,所述方法包括:
接收第一节点使用第一传输资源发送的M个第一感知结果信息;
其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,一种感知结果信息的接收方法,所述方法还包括:
接收第一节点使用第二传输资源发送的第一信息,所述第一信息是所述第一节点在接收N组感知信号后发送的,N为正整数;
向所述第一节点发送调度信息,所述调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源;所述调度信息和/或所述第三传输资源位于第一时间段内;
其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的发送装置,所述装置包括:
发送模块,使用第一传输资源发送M个第一感知结果信息;
其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的发送装置,所述装置包括:
发送模块,用于在接收模块接收到N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
所述发送模块,用于在所述接收模块在第一时间段内接收到调度信息的情况下,使用所述调度信息调度的第三传输资源发送N个第一感知结果信息的部分或全部信息;或,在所述第三传输资源在所述第一时间段内的情况下,所述第一节点使用所述第三传输资源发送N个第一感知结果信息的部分或全部信息;
其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的接收装置,所述装置包括:
接收模块,用于接收第一节点使用第一传输资源发送的M个第一感知结果信息;
其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知结果信息的接收装置,所述装置包括:
接收模块,用于接收第一节点使用第二传输资源发送的第一信息,所述第一信息是所述第一节点在接收N组感知信号后发送的,N为正整数;
发送模块,用于向所述第一节点发送调度信息,所述调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源;所述调度信息和/或所述第三传输资源位于第一时间段内;
其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
根据本申请的一个方面,提供了一种感知测量设备,所述感知测量设备包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述感知测量设备加载并执行,以实现如上所述的感知结果信息的发送方法。
根据本申请的一个方面,提供了一种感知测量设备,所述代理响应设备包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述感知测量设备加载并执行,以实现如上所述的感知结果信息的接收方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一段程序,所述至少一段程序由计算机设备加载并执行以实现如上所述的感知结果信息的发送方法,和/或,如上所述的感知结果信息的接收方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有该芯片的计算机设备用于实现如上所述的感知结果信息的发送方法,和/或,如上所述的感知结果信息的接收方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在计算机设备(的处理器)上运行时,使得计算机设备执行如上所述的感知结果信息的发送方法,和/或,如上所述的感知结果信息的接收方法。
本申请实施例提供的技术方案至少包括如下有益效果:
当第一节点作为感知信号接收节点辅助实现感知时,第一节点需要将得到的感知结果上报给感知控制节点或感知结果接收节点。本申请提供了在存在多个第一感知结果信息时,第一节点向第二节点上报多个第一感知结果信息的上报方式。
在一种实现可能中,第一节点将M个第一感知结果信息集中在同一个传输资源中上报,无需每个第一感知结果信息分别上报一次,从而减少了信令的开销。
在一种实现可能中,第一节点在期望上报多个第一感知结果信息(比如发现存在异常的感知测量结果信息)时,先上报第一信息,该第一信息用于触发第二节点或感知控制节点下发调度信息;若在第一时间段内接收到调度信息,则使用调度信息指示的第三传输资源传输上报多个第一感知结果信息中的全部或部分信息,无需每个第一感知结果信息分别上报一次,从而减少了信令的开销。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的感知场景一的示意图;
图2是本申请一个示例性实施例提供的感知场景二的示意图;
图3是本申请一个示例性实施例提供的感知场景三的示意图;
图4是本申请一个示例性实施例提供的感知测量系统的示意图;
图5是本申请一个示例性实施例提供的感知结果信息的发送方法的流程图;
图6是本申请一个示例性实施例提供的感知结果信息的发送方法的时频示意图;
图7是本申请一个示例性实施例提供的感知结果信息的发送方法的流程图;
图8是本申请一个示例性实施例提供的感知结果信息的发送方法的时频示意图;
图9是本申请一个示例性实施例提供的感知结果信息的发送方法的时频示意图;
图10是本申请一个示例性实施例提供的感知结果信息的发送方法的时频示意图;
图11是本申请另一个示例性实施例提供的感知结果信息的发送方法的流程图;
图12是本申请另一个示例性实施例提供的感知结果信息的接收方法的流程图;
图13是本申请另一个示例性实施例提供的感知结果信息的发送方法的时频示意图;
图14是本申请另一个示例性实施例提供的感知结果信息的接收方法的流程图;
图15是本申请一个示例性实施例提供的感知结果信息的发送装置的结构框图;
图16是本申请一个示例性实施例提供的感知结果信息的发送装置的结构框图;
图17是本申请一个示例性实施例提供的感知结果信息的接收装置的结构框图;
图18是本申请一个示例性实施例提供的感知结果信息的接收装置的结构框图;
图19是本申请一个示例性实施例提供的感知设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
无线通信和无线感知(Sensing)是现代射频技术的两大重要应用。无线感知利用反向散射的无线电波探测物理环境的参数,以实现目标定位、动作识别、成像等环境感知。传统的无线感知与蜂窝通信是独立存在的,分离化的设计存在无线频谱和硬件资源的浪费。
在进入超5代移动通信系统(B5G)、第6代移动通信系统(6G)时代,通信频谱迈向了毫米波、太赫兹、可见光通信,未来无线通信的频谱会与传统的感知频谱重合。通信感知技术将通信和感知两个功能融合,可以利用通信的无线资源管理解决传统无线感知中的干扰问题;可以利用广泛部署的蜂窝网络实现更大范围内的感知业务;可以利用基站和多个终端进行联合感知,实现更高的感知精度;可以复用通信的硬件模块实现感知功能,降低成本。总之通信感知技术使得未来无线通信系统具有感知能力,为未来的智慧交通、智慧城市、智慧工厂、无人机等业务的发展提供一种基础。
以下给出几种基站控制,终端协助的感知场景:
感知场景1:如图1所示,基站10作为感知信号发送节点(Sensing Tx,STx)向第一终端11发送感知信号(Sensing Signal),感知信号在第一终端11处发生反射或折射,第二终端12作为感知信号接收节点接收反射/折射的信号得到感知结果,并将其上报给基站或其他接收方。
感知场景2:当被感知对象本身为有源物体(如手机、IoT设备等)时,若被感知对象能够一定程度的辅助来参与感知,则对提升感知性能必定会有极大的好处。如图2所示,基站10作为感知信号发送节点向第三终端13发送感知信号。第三终端13作为感知信号接收节点,基于接收到的感知信号得到感知结果,并将感知结果上报给基站10或者其他接收方(其他基站、终端)。
感知场景3:如图3所示,第一终端11作为感知信号发送节点向第二终端12发送感知信号,同时第一终端11也是感知信号接收节点,基于感知信号反射/折射的回波信号得到感知结果,将感知结果上报给基站10或者其他接收方(其他基站、终端)。
当然整个感知测量过程也可以是由一个终端控制,其他终端协助完成的。即将上图1至图3中的基站换成终端,不再赘述。
图4示出了本申请一个示例性实施例提供的感知测量系统100的结构框图。该感知测量系统100包括:基站10、第一终端11和第二终端12。
基站10也称接入网设备,基站10用于控制第一终端140和第二终端160对空口资源的使用。
在一些感知场景中,第一终端11是第一节点,该第一节点作为感知信号接收节点。基站10是第二节点,该第二节点作为感知信号发送节点、感知结果接收节点和感知控制节点。
在一些感知场景中,第一终端11是第一节点,该第一节点作为感知信号接收节点。第二终端12是第二节点,该第二节点作为感知信号发送节点和感知结果接收节点。基站10是感知控制节点。
当然,在不同感知场景中,上述各个设备所扮演的感知测量角色的类型可能不同,本实施例不再一一枚举。
图5示出了本申请一个示例性实施例提供的感知结果信息的发送方法的流程图。本实施例以该方法由第一节点执行来举例说明。该方法包括:
步骤502:第一节点使用第一传输资源发送M个第一感知结果信息;
第一节点是参与感知测量的节点。可选地,第一节点使用第一传输资源向第二节点发送M个第一感知结果信息。第二节点是感知信号发送节点,或感知控制节点。
第一节点是感知信号接收节点。可选地,第一节点同时作为感知信号发送节点和感知信号接收节点。本实施例对第一节点在感知测量过程中的角色不加以限定,视具体的感知场景而定。
其中,M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,M组感知信号中的每组感知信号包括至少一个感知信号,每组感知信号中的感知信号的数量相同或不同。
在一些实施例中,M组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,M组感知信号是周期性发送的,或M组感知信号是非周期性发送的。可选地,M组感知信号是周期性发送的多组感知信号中的连续M组感知信号,或者,M组感知信号是周期性发送 的多组感知信号中被指定的或筛选出的M组感知信号(不一定连续)。
示例性的如图6所示,第一节点使用第一传输资源50发送4个第一感知结果信息1-4。第一感知结果信息1基于第1组感知信号得到的,第一感知结果信息2基于第2组感知信号得到的,第一感知结果信息3基于第3组感知信号得到的,第一感知结果信息4基于第4组感知信号得到的。
第一传输资源是周期性的传输资源,或半静态指示的传输资源,或动态指示的传输资源。第一传输资源可以由第二节点向第一节点配置,或感知控制节点向第一节点配置,或由第一节点在资源池中自主选取。
在一些实施例中,M组感知信号是第一时间位置前的最后M组感知信号。
第一时间位置:
在一些实施例中,第一时间位置是如下时间位置中的任意一种:
·第一时间位置是第一传输资源的时域位置;
第一时间位置是第一传输资源在时域上的起始位置,或,第一时间位置是第一传输资源在时域上的结束位置。
·第一时间位置基于第一传输资源的时域位置确定;
第一时间位置基于第一传输资源在时域上的起始位置确定,或,第一时间位置基于第一传输资源在时域上的结束位置确定,或,第一时间位置基于第一传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是第一传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第一时间位置是指示信息的传输位置;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。该指示信息由第二节点向第一节点发送,或,该指示信息由不同于第二节点的感知控制节点向第一节点发送。
·第一时间位置基于指示信息的传输位置确定;
第一时间位置基于指示信息的传输位置在时域上的起始位置确定,或,第一时间位置基于指示信息的传输位置在时域上的结束位置确定,或,第一时间位置基于指示信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是指示信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
第一感知结果信息:
在一些实施例中,第一感知结果信息包括以下信息中的至少一种:
·感知信号的特征量;
感知信号的特征量包括:信号幅度、信号幅度均值、信号幅度方差、角度差、角度均值、角度方差、幅度的均值/方差的分布、角度的均值/方差的分布、功率谱、多普勒位移信息等特征中的至少一种。
·感知信号的特征量的偏移信息或差分信息;
特征量的偏移信息是指当前感知信号的特征量相对于参考感知信号的特征量的偏移值,特征量的差分信息是指当前感知信号的特征量相对于参考感知信号的特征量的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·感知信号经历的信道信息;
感知信号经历的信道信息包括:信道矩阵信息、多径时延、衰落信息中的至少一种。
·感知信号经历的信道信息的偏移信息或差分信息;
信道信息的偏移信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的偏移值,信道信息的差分信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·面向应用的感知结果。
例如:存在人物或物体跌倒、存在运动物体入侵、目标对象的计数等信息。
综上所述,本实施例提供的方法,通过规范第一节点的上报方式,能够在第一节点感知到多个第一感知结果信息的情况下,使用较少的第一传输资源来同时发送M个第一感知结果信息,无需每个第一感知结 果信息分别上报一次,节省感知结果上报过程所需要的资源消耗,减少了信令的开销。
图7示出了本申请一个示例性实施例提供的感知结果信息的发送方法的流程图。本实施例以该方法由第一节点执行来举例说明。该方法包括:
步骤501:第一节点基于N组感知信号获取N个第一感知结果信息;
其中,N大于或等于M,N个第一感知结果信息包括M个第一感知结果信息。
第一节点是参与感知测量的节点。可选地,第一节点是感知信号接收节点。可选地,第一节点同时作为感知信号发送节点和感知信号接收节点。本实施例对第一节点在感知测量过程中的角色不加以限定,视具体的感知场景而定。
在一些实施例中,N组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,N组感知信号是周期性发送的,或N组感知信号是非周期性发送的。
在一些实施例中,感知发送节点可以发送多组感知信号。第一节点基于N组感知信号获取N个第一感知结果信息。也即,N个第一感知结果信息基于N组感知信号得到的,N为大于1的正整数,N组感知信号中的每组感知信号包括至少一个感知信号,每组感知信号中的感知信号的数量相同或不同。在一些实施例中,N与第一节点的缓存能力有关,比如N等于或小于第一节点所能缓存的第一感知结果信息的数量。
在一些实施例中,N组感知信号是第二时间位置前的最后N组感知信号。比如,N=4,则N组感知型号是第二时间位置前的最后4组感知信号。N个第一感知结果信息是第二时间位置前的最后4个第一感知结果信息。当然,在多组感知信号的开始阶段或结束阶段,第一节点在第二时间位置前获取到的第一感知结果信息可以少于N个第一感知结果信息。
第二时间位置:
在一些实施例中,第二时间位置是如下时间位置中的任意一种:
·第二时间位置是第一传输资源的时域位置;
第二时间位置是第一传输资源在时域上的起始位置,或,第二时间位置是第一传输资源在时域上的结束位置。
·第二时间位置基于第一传输资源的时域位置确定;
第二时间位置基于第一传输资源在时域上的起始位置确定,或,第二时间位置基于第一传输资源在时域上的结束位置确定,或,第二时间位置基于第一传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第二时间位置是第一传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定的。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第二时间位置是指示信息的传输位置;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。该指示信息由第二节点向第一节点发送,或,该指示信息由不同于第二节点的感知控制节点向第一节点发送。
·第二时间位置基于指示信息的传输位置确定;
第二时间位置基于指示信息的传输位置在时域上的起始位置确定,或,第二时间位置基于指示信息的传输位置在时域上的结束位置确定,或,第二时间位置基于指示信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第二时间位置是指示信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
示例性的如图8所示,假设N=4,第二时间位置是第一传输资源在时域上的起始位置。第一节点总是缓存最近4个第一感知结果信息。在第二时间位置51之前,4组第一感知结果信息只包括:第一感知结果信息1和第二感知结果信息2。在第二时间位置52之前,4组第一感知结果信息包括:第一感知结果信息1至4。在第二时间位置53之前,4组第一感知结果信息包括:第一感知结果信息3至6。
示例性的如图9所示,假设N=4,第二时间位置是第一传输资源的时域位置提前T时长的时间位置。在第二时间位置54之前,4组第一感知结果信息包括:第一感知结果信息1至4。
在一些实施例中,上述多组或N组感知信息的传输资源是半静态配置的周期性资源,或者,上述多组或N组感知信号中每组感知信号的传输资源是动态配置的动态资源。本实施例对上述多组或N组感知信息的传输方式不加以限定。
第一感知结果信息:
在一些实施例中,第一感知结果信息包括以下信息中的至少一种:
·感知信号的特征量;
感知信号的特征量包括:信号幅度、信号幅度均值、信号幅度方差、角度差、角度均值、角度方差、幅度的均值/方差的分布、角度的均值/方差的分布、功率谱、多普勒位移信息等特征中的至少一种。
·感知信号的特征量的偏移信息或差分信息;
特征量的偏移信息是指当前感知信号的特征量相对于参考感知信号的特征量的偏移值,特征量的差分信息是指当前感知信号的特征量相对于参考感知信号的特征量的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·感知信号经历的信道信息;
感知信号经历的信道信息包括:信道矩阵信息、多径时延、衰落信息中的至少一种。
·感知信号经历的信道信息的偏移信息或差分信息;
信道信息的偏移信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的偏移值,信道信息的差分信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·面向应用的感知结果。
例如:存在人物或物体跌倒、存在运动物体入侵、目标对象的计数等信息。
步骤502:第一节点使用第一传输资源发送M个第一感知结果信息;
M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,M组感知信号中的每组感知信号包括至少一个感知信号。
在一些实施例中,M组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,M组感知信号是周期性发送的,或M组感知信号是非周期性发送的。可选地,M组感知信号是周期性发送的多组感知信号中的连续M组感知信号,或者,M组感知信号是周期性发送的多组感知信号中被指定的或筛选出的M组感知信号(不一定连续)。
第一传输资源是周期性的传输资源,或半静态指示的传输资源,或动态指示的传输资源。第一传输资源可以由第二节点向第一节点配置,或感知控制节点向第一节点配置,或由第一节点在资源池中自主选取。
在一些实施例中,第一节点接收指示信息,该指示信息用于指示第一节点发送M个第一感知结果信息。可选地,该指示信息还用于指示M的取值。或者,该指示信息还用指示M个第一感知结果信息,也即从N个第一感知结果信息中确定出M个第一感知结果信息的信息,比如比特位图(Bitmap)。
在一些实施例中,第一节点接收配置信息,配置信息用于指示以下信息中的至少一种:第一传输资源、M的取值。该配置信息和上述指示信息可以为同一个信息,或,该配置信息和上述指示信息是不同的两个信息。比如,在第一传输资源是动态指示的传输资源时,配置信息和指示信息为同一个信息;又比如,在第一传输资源是半静态指示的周期性传输资源时,配置信息和指示信息为不同信息,该配置信息可以是半静态配置的配置信息,该指示信息可以是半静态配置的激活信令。
在一些实施例中,M组感知信号是第一时间位置前的最后M组感知信号。
第一时间位置:
在一些实施例中,第一时间位置是如下时间位置中的任意一种:
·第一时间位置是第一传输资源的时域位置;
第一时间位置是第一传输资源在时域上的起始位置,或,第一时间位置是第一传输资源在时域上的结束位置。
·第一时间位置基于第一传输资源的时域位置确定;
第一时间位置基于第一传输资源在时域上的起始位置确定,或,第一时间位置基于第一传输资源在时域上的结束位置确定,或,第一时间位置基于第一传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是第一传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第一时间位置是指示信息的传输位置;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。该指示信息由第二节点向第一节点发送,或,该指示信息由不同于第二节点的感知控制节点向第一节点发送。
·第一时间位置基于指示信息的传输位置确定;
第一时间位置基于指示信息的传输位置在时域上的起始位置确定,或,第一时间位置基于指示信息的 传输位置在时域上的结束位置确定,或,第一时间位置基于指示信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是指示信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定的。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
在一些实施例中,第一时间位置和第二时间位置是相同的时间位置,或不相同的时间位置。比如,第二时间位置基于第一传输资源的时域位置确定,第一时间位置是指示信息的传输位置确定。
示例性的参考图10,假设第二时间位置和第一时间位置相同,均为第一传输资源的传输位置,M=2,则M个第一感知结果信息包括第一感知结果4和第一感知结果信息5。假设第二时间位置是指示信息的传输位置,第一传输资源的传输位置是第一传输资源提前T时长的位置,M=2,则M个第一感知结果信息包括第一感知结果3和第一感知结果信息4。
在一些实施例中,M个第一感知结果信息基于指示信息从N个第一感知结果信息中确定。示例性的,指示信息携带有比特位图,第一节点基于比特位图从N个第一感知结果信息中确定出M个第一感知结果信息。
比如,N个第一感知结果信息为第一感知结果信息1至4,当比特位图等于1010时,代表M个第一感知结果信息是第一感知结果信息1和第一感知结果信息3;当比特位图等于0011时,代表M个第一感知结果信息是第一感知结果信息3和第一感知结果信息4。也即比特位图包括N个比特,当第i个比特取值为第一取值(比如1)时,代表第i个第一感知结果信息属于M个第一感知结果信息;当第i个比特取值为第二取值(比如0)时,代表第i个第一感知结果信息不属于M个第一感知结果信息。
综上所述,本实施例提供的方法,通过规范第一节点的上报方式,能够在第一节点感知到多个第一感知结果信息的情况下,使用较少的第一传输资源来同时发送M个第一感知结果信息,无需每个第一感知结果信息分别上报一次,节省感知结果上报过程所需要的资源消耗,减少了信令的开销。
本实施例提供的方法,当N大于M时,感知控制节点可以基于感知需求,在某些时候触发第一节点上报更多的第一感知结果信息(也即增大M的取值,最大为N),提高感知精确性;当N总是等于M时,可以降低第一节点的存储资源需求,降低第一节点的硬件成本或存储开销。
本实施例提供的方法,第二节点或感知控制节点通过比特位图向第一节点指示需要上传的M个第一感知结果信息。第一节点存储最近的多个第一感知结果信息,第二节点或感知控制节点可基于感知业务的性能需求,要求第一节点上报指定的多个感知结果,从而观测到感知信号的变化情况,得到更准确的最终感知结果。
图11示出了本申请一个示例性实施例提供的感知结果信息的接收方法的流程图。本实施例以该方法由第二节点执行来举例说明。该方法包括:
步骤602:第二节点接收第一节点使用第一传输资源发送的M个第一感知结果信息。
第二节点是参与感知测量的节点。可选地,第二节点是感知信号发送节点,或感知控制节点。
第一节点是参与感知测量的节点。可选地,第一节点使用第一传输资源向第二节点发送M个第一感知结果信息。第二节点是感知信号发送节点,或感知控制节点,或同时作为感知信号发送节点和感知控制节点。本实施例对第二节点在感知测量过程中的角色不加以限定,视具体的感知场景而定。
第一节点是感知信号接收节点。可选地,第一节点同时作为感知信号发送节点和感知信号接收节点。本实施例对第一节点在感知测量过程中的角色不加以限定,视具体的感知场景而定。
其中,M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,M组感知信号中的每组感知信号包括至少一个感知信号,每组感知信号中的感知信号的数量相同或不同。
在一些实施例中,M组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,M组感知信号是周期性发送的,或M组感知信号是非周期性发送的。可选地,M组感知信号是周期性发送的多组感知信号中的连续M组感知信号,或者,M组感知信号是周期性发送的多组感知信号中被指定的或筛选出的M组感知信号(不一定连续)。
第一传输资源是周期性的传输资源,或半静态指示的传输资源,或动态指示的传输资源。第一传输资源可以由第二节点向第一节点配置,或感知控制节点向第一节点配置,或由第一节点在资源池中自主选取。
在一些实施例中,M组感知信号是第一时间位置前的最后M组感知信号。
第一时间位置:
在一些实施例中,第一时间位置是如下时间位置中的任意一种:
·第一时间位置是第一传输资源的时域位置;
第一时间位置是第一传输资源在时域上的起始位置,或,第一时间位置是第一传输资源在时域上的结束位置。
·第一时间位置基于第一传输资源的时域位置确定;
第一时间位置基于第一传输资源在时域上的起始位置确定,或,第一时间位置基于第一传输资源在时域上的结束位置确定,或,第一时间位置基于第一传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是第一传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定的。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第一时间位置是指示信息的传输位置;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。该指示信息由第二节点向第一节点发送,或,该指示信息由不同于第二节点的感知控制节点向第一节点发送。
·第一时间位置基于指示信息的传输位置确定;
第一时间位置基于指示信息的传输位置在时域上的起始位置确定,或,第一时间位置基于指示信息的传输位置在时域上的结束位置确定,或,第一时间位置基于指示信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第一时间位置是指示信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
第一感知结果信息:
在一些实施例中,第一感知结果信息包括以下信息中的至少一种:
·感知信号的特征量;
感知信号的特征量包括:信号幅度、信号幅度均值、信号幅度方差、角度差、角度均值、角度方差、幅度的均值/方差的分布、角度的均值/方差的分布、功率谱、多普勒位移信息等特征中的至少一种。
·感知信号的特征量的偏移信息或差分信息;
特征量的偏移信息是指当前感知信号的特征量相对于参考感知信号的特征量的偏移值,特征量的差分信息是指当前感知信号的特征量相对于参考感知信号的特征量的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·感知信号经历的信道信息;
感知信号经历的信道信息包括:信道矩阵信息、多径时延、衰落信息中的至少一种。
·感知信号经历的信道信息的偏移信息或差分信息;
信道信息的偏移信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的偏移值,信道信息的差分信息是指当前感知信号的信道信息相对于参考感知信号的信道信息的差分信息。偏移信息和差分信息可理解为相同信息或相同种类的信息。
参考感知信号可以是第一个感知信号,或一段时间内的第一个感知信号,或一个周期内的第一个感知信号,或同一组感知信号中的第一个感知信号,或当前感知信号的前一个感知信号,或本次上报的M个感知信号中的第一个感知信号。本实施例对参考感知信号的选择方式不加以限定。
·面向应用的感知结果。
例如:存在人物或物体跌倒、存在运动物体入侵、目标对象的计数等信息。
在第二节点是感知信号发送节点的情况下,第二节点还提前向第一节点发送多组感知信号。示例性的,第二节点向第一节点发送N组感知信号。其中,N个第一感知结果信息基于N组感知信号得到的,N为大于1的正整数,N组感知信号中的每组感知信号包括至少一个感知信号。
在一些实施例中,N组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,N组感知信号是周期性发送的,或N组感知信号是非周期性发送的。
在一些实施例中,N与第一节点的缓存能力有关,比如N等于或小于第一节点所能缓存的第一感知结果信息的数量。
在一些实施例中,N组感知信号是第二时间位置前的最后N组感知信号。比如,N=4,则N组感知型号是第二时间位置前的最后4组感知信号。N个第一感知结果信息是第二时间位置前的最后4个第一感知结果信息。当然,在多组感知信号的开始阶段或结束阶段,第一节点在第二时间位置前获取到的第一感知结果信息可以少于N个第一感知结果信息。
第二时间位置:
在一些实施例中,第二时间位置是如下时间位置中的任意一种:
·第二时间位置是第一传输资源的时域位置;
第二时间位置是第一传输资源在时域上的起始位置,或,第二时间位置是第一传输资源在时域上的结 束位置。
·第二时间位置基于第一传输资源的时域位置确定的;
第二时间位置基于第一传输资源在时域上的起始位置确定,或,第二时间位置基于第一传输资源在时域上的结束位置确定,或,第二时间位置基于第一传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第二时间位置是第一传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第二时间位置是指示信息的传输位置;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。该指示信息由第二节点向第一节点发送,或,该指示信息由不同于第二节点的感知控制节点向第一节点发送。
·第二时间位置基于指示信息的传输位置确定;
第二时间位置基于指示信息的传输位置在时域上的起始位置确定,或,第二时间位置基于指示信息的传输位置在时域上的结束位置确定,或,第二时间位置基于指示信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第二时间位置是指示信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
在一些实施例中,上述多组或N组感知信息的传输资源是半静态配置的周期性资源,或者,上述多组或N组感知信号中每组感知信号的传输资源是动态配置的动态资源。本实施例对上述多组或N组感知信息的传输方式不加以限定。
在一些实施例中,第二节点还向第一节点发送指示信息,该指示信息用于指示第一节点发送M个第一感知结果信息。可选地,该指示信息还用于指示M的取值。或者,该指示信息还用指示M个第一感知结果信息,也即从N个第一感知结果信息中确定出M个第一感知结果信息的信息,比如比特位图(Bitmap)。
该比特位图用于指示第一节点从N个第一感知结果信息中确定出M个第一感知结果信息。
比如,N个第一感知结果信息为第一感知结果信息1至4,当比特位图等于1010时,代表M个第一感知结果信息是第一感知结果信息1和第一感知结果信息3;当比特位图等于0011时,代表M个第一感知结果信息是第一感知结果信息3和第一感知结果信息4。也即比特位图包括N个比特,当第i个比特取值为第一取值(比如1)时,代表第i个第一感知结果信息属于M个第一感知结果信息;当第i个比特取值为第二取值(比如0)时,代表第i个第一感知结果信息不属于M个第一感知结果信息。
综上所述,本实施例提供的方法,通过规范第一节点的上报方式,能够在第一节点感知到多个第一感知结果信息的情况下,使用较少的第一传输资源来同时发送M个第一感知结果信息,无需每个第一感知结果信息分别上报一次,节省感知结果上报过程所需要的资源消耗,减少了信令的开销。
本实施例提供的方法,当N大于M时,感知控制节点可以基于感知需求,在某些时候触发第一节点上报更多的第一感知结果信息,提高感知精确性;当N=M时,降低第一节点的存储资源需求,降低第一节点的硬件成本或存储开销。
本实施例提供的方法,第二节点或感知控制节点通过比特位图向第一节点指示需要上传的M个第一感知结果信息。第一节点存储最近的多个第一感知结果信息,第二节点或感知控制节点可基于感知业务的性能需求,要求第一节点上报指定的多个感知结果,从而观测到感知信号的变化情况,得到更准确的最终感知结果。
图12是本申请一个示例性实施例提供的感知结果信息的发送方法的流程图。本实施例以该方法由第一节点执行来举例说明。该方法包括:
步骤702:第一节点在接收N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
第一节点是参与感知测量的节点。可选地,第一节点是感知信号接收节点。可选地,第一节点同时作为感知信号发送节点和感知信号接收节点。本实施例对第一节点在感知测量过程中的角色不加以限定,视具体的感知场景而定。
第一节点接收N组感知信号,基于N组感知信号生成N个第一感知结果信息。N组感知信号中的每组感知信号包括至少一个感知信号,每组感知信号中的感知信号的数量相同或不同。N个第一感知结果信息基于N组感知信号得到的,N为大于1的正整数,N组感知信号中的每组感知信号包括至少一个感知信号。
在一些实施例中,N组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,N组感知信号是周期性发送的,或N组感知信号是非周期性发送的。
在一些实施例中,感知发送节点可以发送多组感知信号。第一节点基于N组感知信号获取N个第一感知结果信息。在一些实施例中,N与第一节点的缓存能力有关,比如N等于或小于第一节点所能缓存的 第一感知结果信息的数量。
在一些实施例中,第一信息用于指示第一节点期望上报N个第一感知结果信息中的全部或部分信息。在一些实施例中,第一信息用于指示存在异常的感知结果信息。在一些实施例中,第一信息用于请求调度N个第一感知结果信息中的全部或部分信息的传输资源。
可选地,第一信息包括如下信息中的至少一种:
·面向应用的感知结果,面向应用的感知结果基于所述N组感知信号确定;
·资源请求信息,资源请求信息用于请求所述第三传输资源;
·基于N个第一感知结果信息中至少一个第一感知结果信息得到的信息。
在一些实施例中,面向应用的感知结果可理解为存在异常的感知结果信息。例如:存在人物或物体跌倒、存在运动物体入侵、目标对象的计数等信息。
在一些实施例中,资源请求信息用于请求第二节点或感知控制节点调度第三传输资源,该第三传输资源用于第一节点发送N个第一感知结果信息的部分或全部信息。该资源请求信息可以是调度申请(Scheduling Request,SR)。
在一些实施例中,基于N个第一感知结果信息中至少一个第一感知结果信息(筛选)得到的信息,可理解为存在异常的感知结果信息。示例性的,存在异常的感知结果信息包括:N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
其中,第一阈值、第二阈值、跳变条件可以是预定义的,预配置的,动态配置的,或基于N个第一感知结果信息动态确定。比如,第一阈值、第二阈值、跳变条件基于N个第一感知结果信息的平均值、方差等确定。
在一些实施例中,上述第一信息还用于指示N的取值,或,N个第一感知结果信息的数据量。
第二传输资源是第一信息所占用的传输资源。在一些实施例中,第二传输资源是第二节点或感知控制节点预先配置的,或者,第一节点通过SR向第二节点或感知控制节点请求得到的,或者,第一节点在预配置的资源池中自行选择的。本实施例对第二传输资源的配置信息不加以限定。
在一些实施例中,N组感知信号是第三时间位置前的最后N组感知信号。比如,N=4,则N组感知型号是第三时间位置前的最后4组感知信号。N个第一感知结果信息是第三时间位置前的最后4个第一感知结果信息。当然,在多组感知信号的开始阶段或结束阶段,第一节点在第三时间位置前获取到的第一感知结果信息可以少于N个第一感知结果信息。
第三时间位置:
在一些实施例中,第三时间位置是如下时间位置中的任意一种:
·第三时间位置是第一信息的传输位置(也即第二传输资源)的时域位置;
第三时间位置是第二传输资源在时域上的起始位置,或,第三时间位置是第二传输资源在时域上的结束位置。
·第三时间位置基于第一信息的传输位置的时域位置确定;
第三时间位置基于第二传输资源在时域上的起始位置确定,或,第三时间位置基于第二传输资源在时域上的结束位置确定,或,第三时间位置基于第二传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第三时间位置是第二传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第三时间位置是第二传输资源的资源配置信息的传输位置;
其中,第二传输资源的资源配置信息用于配置第二传输资源。该第二传输资源的资源配置信息由第二节点向第一节点发送,或,该第二传输资源的资源配置信息由不同于第二节点的感知控制节点向第一节点发送。
·第三时间位置基于第二传输资源的资源配置信息的传输位置确定;
第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的起始位置确定,或,第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的结束位置确定,或,第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第三时间位置是第二传输资源的资源配置信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
步骤704:在第一时间段内接收到调度信息的情况下,第一节点使用调度信息调度的第三传输资源发 送N个第一感知结果信息的部分或全部信息,或,在第三传输资源在第一时间段内的情况下,第一节点使用第三传输资源发送N个第一感知结果信息的部分或全部信息;
其中,第一时间段的起点是第一信息的传输位置或基于第一信息的传输位置确定。第一时间段的起点是第一信息的传输位置在时域上的起始位置,或,第一时间段的起点是第一信息的传输位置在时域上的结束位置,或,第一信息的起点是第一信息的传输位置提前K时长,或延迟K时长后得到的。比如,K是基于第一节点和第二节点之间的往返时间(Round-Trip Time,RTT)。
第一时间段的长度可以是预配置的,第二节点或感知控制节点动态配置的,通信协议预定义的,或,自主实现的。
可选地,调度信息用于调度第三传输资源,第三传输资源用于传输N个第一感知结果信息的部分或全部信息。
在一些实施例中,调度信息还携带有需要上传的第一感知结果信息的指示。示例性的,该调度信息还携带有上传全部N个第一感知结果信息的指示,或该调度信息还携带有上传M个第一感知结果信息的指示,M为不大于N的正整数,或该调度信息用于指示M个第一感知结果信息,或,该调度信息用于指示从N个第一感知结果信息中确定出M个第一感知结果信息的信息。比如,调度信息携带有比特位图(Bitmap),该比特位图用于指示第一节点从N个第一感知结果信息中确定出M个第一感知结果信息。
比如,N个第一感知结果信息为第一感知结果信息1至4,当比特位图等于1010时,代表M个第一感知结果信息是第一感知结果信息1和第一感知结果信息3;当比特位图等于0011时,代表M个第一感知结果信息是第一感知结果信息3和第一感知结果信息4。也即比特位图包括N个比特,当第i个比特取值为第一取值(比如1)时,代表第i个第一感知结果信息属于M个第一感知结果信息;当第i个比特取值为第二取值(比如0)时,代表第i个第一感知结果信息不属于M个第一感知结果信息。
在一些实施例中,需要上传的M个第一感知结果信息是由第一节点自行确定,比如,第一节点基于第三传输资源所能承载的数据量来确定。在一些实施例中,第一节点基于筛选条件从N个第一感知结果信息中选择的,该筛选条件用于筛选符合异常结果的第一感知结果信息。
示例性的,第一时间段T1是自第二传输资源的起始位置或结束位置或第二传输资源所在的时间单元的起始位置或第二传输资源所在的时间单元的结束位置开始的时间段。若第一节点在第一时间段T1内收到调度信息,或调度信息指示的第三传输资源的传输位置(起始位置或结束位置)在第一时间段T1内,第一节点使用第三资源传输M个第一感知结果信息,M个第一感知结果信息包括N个第一感知结果信息中的至少一个第一感知结果。
在一些实施例中,在第一时间段之后接收到调度信息的情况下或在第一时间段的结束位置之前未接收到调度信息的情况下,第一节点不发送基于N组感知信道得到的N个第一感知结果信息的部分或全部信息。
若第一节点在第一时间段T1之后收到调度信息,或在第一时间段T1的结束位置之前未接收到调度信息,或调度信息指示的第三传输资源的传输位置(起始位置或结束位置)在第一时间段T1之后,第一节点清除、释放、丢弃N个第一感知结果信息的部分或全部信息。
在一些实施例中,第一节点不期待在第一时间段T1之外,收到调度信息指示传输N个第一感知结果信息中的至少一个第一感知结果信息。或,第一节点不期待调度信息指示的用于传输N个第一感知结果信息中的至少一个第一感知结果信息的传输资源(起始位置或结束位置)在第一时间段T1之外。
以图13为例,设N=2。第一节点在接收感知信号3之后发现存在感知异常,发送第一信息。在第一时间段T1内第一节点需要存储第一感知结果信息2和3,等待感知控制节点发送调度信息指示传输第一感知结果信息2和3。若超过第一时间段T1,第一节点不需要强制存储第一感知结果信息2和3。如果有更新的第一感知结果信息可以将较早的第一感知结果信息2和3清除。
综上所述,本实施例提供的方法,只有感知结果存在异常的时候才进行N个第一感知结果信息中的部分或全部信息进行上报,可显著降低第一节点向第二节点或感知控制节点上报感知结果时的资源开销,提高系统效率,降低第一节点的功耗。并且对于上报设定了一个最大等待时间(第一时间段),如果在等待第一时间段之内,第二节点或感知控制节点没有对第一节点进行调度,则不再邀请第一节点存储之前的感知结果信息,避免无限制等待造成的存储器占用,提高第一节点的存储器资源开销或存储器的硬件成本。
图14示出了本申请一个示例性实施例提供的感知结果信息的接收方法的流程图。本实施例以该方法由第二节点或感知控制节点执行来举例说明。该方法包括:
步骤802:第二节点或感知控制节点接收第一节点使用第二传输资源发送的第一信息,第一信息是第一节点在接收N组感知信息后发送的,N为正整数;
第一节点是参与感知测量的节点。可选地,第一节点是感知信号接收节点。可选地,第一节点同时作为感知信号发送节点和感知信号接收节点。本实施例对第一节点在感知测量过程中的角色不加以限定,视 具体的感知场景而定。
第一节点接收N组感知信号,基于N组感知信号生成N个第一感知结果信息。N组感知信号中的每组感知信号包括至少一个感知信号,每组感知信号中的感知信号的数量相同或不同。N个第一感知结果信息基于N组感知信号得到的,N为大于1的正整数,N组感知信号中的每组感知信号包括至少一个感知信号。
在一些实施例中,N组感知信号在发送时的时域位置各不相同,或存在至少两组感知信号在发送时的时域位置不相同。可选地,N组感知信号是周期性发送的,或N组感知信号是非周期性发送的。
在一些实施例中,感知发送节点可以发送多组感知信号。第一节点基于N组感知信号获取N个第一感知结果信息。在一些实施例中,N与第一节点的缓存能力有关,比如N等于或小于第一节点所能缓存的第一感知结果信息的数量。
在一些实施例中,第一信息用于指示第一节点期望上报N个第一感知结果信息中的全部或部分信息。在一些实施例中,第一信息用于指示存在异常的感知结果信息。在一些实施例中,第一信息用于请求调度N个第一感知结果信息中的全部或部分信息的传输资源。
可选地,第一信息包括如下信息中的至少一种:
·面向应用的感知结果,面向应用的感知结果基于所述N组感知信号确定;
·资源请求信息,资源请求信息用于请求所述第三传输资源;
·基于N个第一感知结果信息中至少一个第一感知结果信息得到的信息。
在一些实施例中,面向应用的感知结果可理解为存在异常的感知结果信息。例如:存在人物或物体跌倒、存在运动物体入侵、目标对象的计数等信息。
在一些实施例中,资源请求信息用于请求第二节点或感知控制节点调度第三传输资源,该第三传输资源用于第一节点发送N个第一感知结果信息的部分或全部信息。该资源请求信息可以是调度申请(Scheduling Request,SR)。
在一些实施例中,基于N个第一感知结果信息中至少一个第一感知结果信息(筛选)得到的信息,可理解为存在异常的感知结果信息。示例性的,存在异常的感知结果信息包括:N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
其中,第一阈值、第二阈值、跳变条件可以是预定义的,预配置的,动态配置的,或基于N个第一感知结果信息动态确定。比如,第一阈值、第二阈值、跳变条件基于N个第一感知结果信息的平均值、方差等确定。
在一些实施例中,上述第一信息还用于指示N的取值,或,N个第一感知结果信息的数据量。
第二传输资源是第一信息所占用的传输资源。在一些实施例中,第二传输资源是第二节点或感知控制节点预先配置的,或者,第一节点通过SR向第二节点或感知控制节点请求得到的,或者,第一节点在预配置的资源池中自行选择的。本实施例对第二传输资源的配置信息不加以限定。
在一些实施例中,N组感知信号是第三时间位置前的最后N组感知信号。比如,N=4,则N组感知型号是第三时间位置前的最后4组感知信号。N个第一感知结果信息是第三时间位置前的最后4个第一感知结果信息。当然,在多组感知信号的开始阶段或结束阶段,第一节点在第三时间位置前获取到的第一感知结果信息可以少于N个第一感知结果信息。
第三时间位置:
在一些实施例中,第三时间位置是如下时间位置中的任意一种:
·第三时间位置是第一信息的传输位置(也即第二传输资源)的时域位置;
第三时间位置是第二传输资源在时域上的起始位置,或,第三时间位置是第二传输资源在时域上的结束位置。
·第三时间位置基于第一信息的传输位置的时域位置确定;
第三时间位置基于第二传输资源在时域上的起始位置确定,或,第三时间位置基于第二传输资源在时域上的结束位置确定,或,第三时间位置基于第二传输资源在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第三时间位置是第二传输资源的时域位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
·第三时间位置是第二传输资源的资源配置信息的传输位置;
其中,第二传输资源的资源配置信息用于配置第二传输资源。该第二传输资源的资源配置信息由第二节点向第一节点发送,或,该第二传输资源的资源配置信息由不同于第二节点的感知控制节点向第一节点发送。
·第三时间位置基于第二传输资源的资源配置信息的传输位置确定;
第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的起始位置确定,或,第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的结束位置确定,或,第三时间位置基于第二传输资源的资源配置信息的传输位置在时域上的起始位置和结束位置确定,比如起始位置和结束位置的中间位置。
示例性的,第三时间位置是第二传输资源的资源配置信息的传输位置提前T时长的时间位置。该T时长是预定义的,或预配置的,或自主确定。该T时长与第一节点基于感知信号生成感知结果信息的处理时延相关。
步骤804:第二节点或感知控制节点向第一节点发送调度信息,该调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源,调度信息或第三传输资源在第一时间段内;
其中,第一时间段的起点是第一信息的传输位置或基于第一信息的传输位置确定。第一时间段的起点是第一信息的传输位置在时域上的起始位置,或,第一时间段的起点是第一信息的传输位置在时域上的结束位置,或,第一信息的起点是第一信息的传输位置提前K时长,或延迟K时长后得到的。比如,K是基于第一节点和第二节点之间的往返时间(Round-Trip Time,RTT)。
第一时间段的长度可以是预配置的,第二节点或感知控制节点动态配置的,通信协议预定义的,或,自主实现的。
可选地,调度信息用于调度第三传输资源,第三传输资源用于传输N个第一感知结果信息的部分或全部信息。
在一些实施例中,调度信息还携带有需要上传的第一感知结果信息的指示。示例性的,该调度信息还携带有上传全部N个第一感知结果信息的指示,或该调度信息还携带有上传M个第一感知结果信息的指示,M为不大于N的正整数,或该调度信息用于指示M个第一感知结果信息,或,该调度信息用于指示从N个第一感知结果信息中确定出M个第一感知结果信息的信息。比如,调度信息携带有比特位图(Bitmap),该比特位图用于指示第一节点从N个第一感知结果信息中确定出M个第一感知结果信息。
比如,N个第一感知结果信息为第一感知结果信息1至4,当比特位图等于1010时,代表M个第一感知结果信息是第一感知结果信息1和第一感知结果信息3;当比特位图等于0011时,代表M个第一感知结果信息是第一感知结果信息3和第一感知结果信息4。也即比特位图包括N个比特,当第i个比特取值为第一取值(比如1)时,代表第i个第一感知结果信息属于M个第一感知结果信息;当第i个比特取值为第二取值(比如0)时,代表第i个第一感知结果信息不属于M个第一感知结果信息。
在一些实施例中,需要上传的M个第一感知结果信息是由第一节点自行确定,比如,第一节点基于第三传输资源所能承载的数据量来确定。在一些实施例中,第一节点基于筛选条件从N个第一感知结果信息中选择的,该筛选条件用于筛选符合异常结果的第一感知结果信息。
示例性的,第一时间段T1是自第二传输资源的起始位置或结束位置或第二传输资源所在的时间单元的起始位置或第二传输资源所在的时间单元的结束位置开始的时间段。若第一节点在第一时间段T1内收到调度信息,或调度信息指示的第三传输资源的传输位置(起始位置或结束位置)在第一时间段T1内,第一节点使用第三资源传输M个第一感知结果信息,M个第一感知结果信息包括N个第一感知结果信息中的至少一个第一感知结果。
在第一时间段之后接收到调度信息的情况下或在第一时间段的结束位置之前未接收到调度信息的情况下,第一节点不发送基于N组感知信道得到的N个第一感知结果信息的部分或全部信息。
若第一节点在第一时间段T1之后收到调度信息,或在第一时间段T1的结束位置之前未接收到调度信息,或调度信息指示的第三传输资源的传输位置(起始位置或结束位置)在第一时间段T1之后,第一节点清除、释放、丢弃N个第一感知结果信息的部分或全部信息。
在一些实施例中,第一节点不期待在第一时间段T1之外,收到调度信息指示传输N个第一感知结果信息中的至少一个第一感知结果信息。或,第一节点不期待调度信息指示的用于传输N个第一感知结果信息中的至少一个第一感知结果信息的传输资源(起始位置或结束位置)在第一时间段T1之外。
第二节点或感知控制节点接收第一节点使用第三传输资源发送的N个第一感知结果信息中的部分或全部信息。
综上所述,本实施例提供的方法,只有感知结果存在异常的时候才进行N个第一感知结果信息中的部分或全部信息进行上报,可显著降低第一节点向第二节点或感知控制节点上报感知结果时的资源开销,提高系统效率,降低第一节点的功耗。并且对于上报设定了一个最大等待时间(第一时间段),如果在等待第一时间段之内,第二节点或感知控制节点没有对第一节点进行调度,则不再邀请第一节点存储之前的感知结果信息,避免无限制等待造成的存储器占用,提高第一节点的存储器资源开销或存储器的硬件成本。
图15示出了本申请一个示例性实施例提供的一种感知结果信息的发送装置的框图。所述装置包括: 发送模块1520、处理模块1540和接收模块1560;
所述发送模块1520,用于使用第一传输资源发送M个第一感知结果信息;
其中,M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,M组感知信号中的每组感知信号包括至少一个感知信号。
在本实施例的一种可能设计中,M组感知信号是第一时间位置前的最后M组感知信号;
第一时间位置是第一传输资源的时域位置;或,
第一时间位置基于第一传输资源的时域位置确定;或,
第一时间位置是指示信息的传输位置;或,
第一时间位置基于指示信息的传输位置确定;
其中,指示信息用于指示所述装置发送M个第一感知结果信息。
在本实施例的一种可能设计中,所述处理模块1540,用于基于N组感知信号获取N个第一感知结果信息,N大于或等于M,N个第一感知结果信息包括M个第一感知结果信息。
在本实施例的一种可能设计中,N组感知信号是第二时间位置前的最后N组感知信号;
第二时间位置是第一传输资源的时域位置;或,
第二时间位置是指示信息的传输位置;或,
第二时间位置基于第一传输资源的时域位置确定;或,
第二时间位置基于指示信息的传输位置确定;
其中,指示信息用于指示所述装置发送M个第一感知结果信息。
在本实施例的一种可能设计中,M的取值由指示信息指示,和/或,从N个第一感知结果信息中确定M个第一感知结果信息的信息由指示信息指示。
在本实施例的一种可能设计中,所述接收模块1560,用于接收配置信息,配置信息用于指示以下信息中的至少一种:
第一传输资源;
M的取值。
在本实施例的一种可能设计中,第一感知结果信息包括以下信息中的至少一种:
感知信号的特征量;
感知信号的特征量的偏移信息或差分信息;
感知信号经历的信道信息;
感知信号经历的信道信息的偏移信息或差分信息;
面向应用的感知结果。
需要说明的是,本实施例中的装置用于实现上述方法实施例中由第一节点执行的相应步骤。对于本实施例中未详细说明的细节,可以参考上述方法实施例中的细节,不再赘述。
图16示出了本申请一个示例性实施例提供的一种感知结果信息的发送装置的框图。所述装置包括:发送模块1620和接收模块1660;
所述发送模块1620,用于在所述接收模块1660接收到N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
所述发送模块1620,用于在所述接收模块1660在第一时间段内接收到调度信息的情况下,第一节点使用调度信息调度的第三传输资源发送N个第一感知结果信息的部分或全部信息;或,在第三传输资源在第一时间段内的情况下,第一节点使用第三传输资源发送N个第一感知结果信息的部分或全部信息;
其中,第一时间段的起点是第一信息的传输位置或基于第一信息的传输位置确定,N个第一感知结果信息基于N组感知信号得到的,N组感知信号中的每组感知信号包括至少一个感知信号。
在本实施例的一种可能设计中,第一信息包括如下信息中的至少一种:
面向应用的感知结果,面向应用的感知结果基于N组感知信号确定;
资源请求信息,资源请求信息用于请求第三传输资源;
基于N个第一感知结果信息中至少一个第一感知结果信息得到的信息。
在本实施例的一种可能设计中,基于N个第一感知结果信息中至少一个第一感知结果信息得到的信息,包括:
N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,
N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,
N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
在本实施例的一种可能设计中,第一信息还用于指示N的取值。
在本实施例的一种可能设计中,所述发送模块1620,用于在所述接收模块1660在第一时间段之后接 收到调度信息的情况下,不发送N个第一感知结果信息的部分或全部信息;或,
所述发送模块1620,用于在所述接收模块1660在第一时间段超时前未接收到调度信息的情况下,不发送N个第一感知结果信息的部分或全部信息;或,
所述发送模块1620,用于在调度信息调度的第三传输资源在第一时间段之后的情况下,不发送N个第一感知结果信息的部分或全部信息。
在本实施例的一种可能设计中,第一感知结果信息包括以下信息中的至少一种:
感知信号的特征量;
感知信号的特征量的偏移信息或差分信息;
感知信号经历的信道信息;
感知信号经历的信道信息的偏移信息或差分信息。
需要说明的是,本实施例中的装置用于实现上述方法实施例中由第一节点执行的相应步骤。对于本实施例中未详细说明的细节,可以参考上述方法实施例中的细节,不再赘述。
图17示出了本申请一个示例性实施例提供的一种感知结果信息的接收装置的框图。所述装置包括:接收模块1720和发送模块1740;
接收模块1720,用于接收第一节点使用第一传输资源发送的M个第一感知结果信息;
其中,M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,M组感知信号中的每组感知信号包括至少一个感知信号。
在本实施例的一种可能设计中,M组感知信号是第一时间位置前的最后M组感知信号;
第一时间位置是第一传输资源的时域位置;或,
第一时间位置基于第一传输资源的时域位置确定;或,
第一时间位置是指示信息的传输位置;或,
第一时间位置基于指示信息的传输位置确定;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。
在本实施例的一种可能设计中,发送模块1740,用于发送N组感知信号,N大于或等于M,N组感知信号包括M组感知信号。
在本实施例的一种可能设计中,N组感知信号是第二时间位置前的最后N组感知信号;
第二时间位置是第一传输资源的时域位置;或,
第二时间位置是指示信息的传输位置;或,
第二时间位置基于第一传输资源的时域位置确定;或,
第二时间位置基于指示信息的传输位置确定;
其中,指示信息用于指示第一节点发送M个第一感知结果信息。
在本实施例的一种可能设计中,发送模块1740,用于发送指示信息,指示信息还用于指示M的取值,和/或,指示信息还用于指示从N个第一感知结果信息中确定M个第一感知结果信息的信息。
在本实施例的一种可能设计中,发送模块1740,用于发送配置信息,配置信息用于指示以下信息中的至少一种:第一传输资源;M的取值。
在本实施例的一种可能设计中,第一感知结果信息包括以下信息中的至少一种:
感知信号的特征量;
感知信号的特征量的偏移信息或差分信息;
感知信号经历的信道信息;
感知信号经历的信道信息的偏移信息或差分信息;
面向应用的感知结果。
图18示出了本申请一个示例性实施例提供的一种感知结果信息的接收装置的框图。所述装置包括:接收模块1820和发送模块1840;
接收模块1820,用于接收第一节点使用第二传输资源发送的第一信息,第一信息是第一节点在接收N组感知信号后发送的,N为正整数;
发送模块1840,用于向第一节点发送调度信息,调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源;调度信息和/或第三传输资源位于第一时间段内;
其中,第一时间段的起点是第一信息的传输位置或基于第一信息的传输位置确定,N个第一感知结果信息基于N组感知信号得到的,N组感知信号中的每组感知信号包括至少一个感知信号。
在本实施例的一种可能设计中,第一信息包括:
面向应用的感知结果,面向应用的感知结果基于N组感知信号确定;
资源请求信息,资源请求信息用于请求第三传输资源;
基于N个第一感知结果信息中的至少一个第一感知结果信息得到的信息。
在本实施例的一种可能设计中,基于N个第一感知结果信息中至少一个第一感知结果信息得到的信息,包括:
N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,
N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,
N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
在本实施例的一种可能设计中,第一信息还用于指示N的取值。
在本实施例的一种可能设计中,第一感知结果信息包括以下信息中的至少一种:
感知信号的特征量;
感知信号的特征量的偏移信息或差分信息;
感知信号经历的信道信息;
感知信号经历的信道信息的偏移信息或差分信息。
图19示出了本申请一个示例性实施例提供的感知测量设备(第一节点或第二节点或感知发送节点或感知接收节点或感知控制节点)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片,该通信组件可以称为收发器。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,本申请实施例涉及的感知测量设备中的处理器和收发器,可以执行上述各个实施例所示的方法中,由第一节点或第二节点或感知发送节点或感知接收节点或感知控制节点执行的步骤,此处不再赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的感知结果信息的发送方法或感知结果信息的接收方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的感知结果信息的发送方法或感知结果信息的接收方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的感知结果信息的发送方法或感知结果信息的接收方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种感知结果信息的发送方法,其特征在于,所述方法包括:
    第一节点使用第一传输资源发送M个第一感知结果信息;
    其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
  2. 根据权利要求1所述的方法,其特征在于,所述M组感知信号是第一时间位置前的最后M组感知信号;
    所述第一时间位置是所述第一传输资源的时域位置;或,
    所述第一时间位置基于所述第一传输资源的时域位置确定;或,
    所述第一时间位置是指示信息的传输位置;或,
    所述第一时间位置基于所述指示信息的传输位置确定;
    其中,所述指示信息用于指示所述第一节点发送所述M个第一感知结果信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一节点基于N组感知信号获取N个第一感知结果信息,N大于或等于M,所述N个第一感知结果信息包括所述M个第一感知结果信息。
  4. 根据权利要求3所述的方法,其特征在于,所述N组感知信号是第二时间位置前的最后N组感知信号;
    所述第二时间位置是所述第一传输资源的时域位置;或,
    所述第二时间位置是指示信息的传输位置;或,
    所述第二时间位置基于所述第一传输资源的时域位置确定;或,
    所述第二时间位置基于所述指示信息的传输位置确定;
    其中,所述指示信息用于指示所述第一节点发送所述M个第一感知结果信息。
  5. 根据权利要求4所述的方法,其特征在于,所述M的取值由所述指示信息指示。
  6. 根据权利要求4所述的方法,其特征在于,从所述N个第一感知结果信息中确定所述M个第一感知结果信息的信息由所述指示信息指示。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收配置信息,所述配置信息用于指示以下信息中的至少一种:
    所述第一传输资源;
    所述M的取值。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一感知结果信息包括以下信息中的至少一种:
    感知信号的特征量;
    所述感知信号的特征量的偏移信息或差分信息;
    所述感知信号经历的信道信息;
    所述感知信号经历的信道信息的偏移信息或差分信息;
    面向应用的感知结果。
  9. 一种感知结果信息的发送方法,其特征在于,所述方法包括:
    第一节点在接收到N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
    在第一时间段内接收到调度信息的情况下,所述第一节点使用所述调度信息调度的第三传输资源发送N个第一感知结果信息的部分或全部信息;或,在所述第三传输资源在所述第一时间段内的情况下,所述第一节点使用所述第三传输资源发送N个第一感知结果信息的部分或全部信息;
    其中,所述第一时间段的起点是所述第一信息的传输位置或基于所述第一信息的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息包括如下信息中的至少一种:
    面向应用的感知结果,所述面向应用的感知结果基于所述N组感知信号确定;
    资源请求信息,所述资源请求信息用于请求所述第三传输资源;
    基于所述N个第一感知结果信息中至少一个第一感知结果信息得到的信息。
  11. 根据权利要求10所述的方法,其特征在于,所述基于所述N个第一感知结果信息中至少一个第一感知结果信息得到的信息,包括:
    所述N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,
    所述N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,
    所述N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
  12. 根据权利要求9至11任一所述的方法,其特征在于,所述第一信息用于指示N的取值。
  13. 根据权利要求9至12任一所述的方法,其特征在于,所述方法还包括:
    在所述第一时间段之后接收到所述调度信息的情况下,所述第一节点不发送所述N个第一感知结果信息的部分或全部信息;或,
    在所述第一时间段超时前未接收到所述调度信息的情况下,所述第一节点不发送所述N个第一感知结果信息的部分或全部信息;或,
    在所述第三传输资源在所述第一时间段之后的情况下,所述第一节点不发送所述N个第一感知结果信息的部分或全部信息。
  14. 根据权利要求9至13任一所述的方法,其特征在于,所述第一感知结果信息包括以下信息中的至少一种:
    感知信号的特征量;
    所述感知信号的特征量的偏移信息或差分信息;
    所述感知信号经历的信道信息;
    所述感知信号经历的信道信息的偏移信息或差分信息。
  15. 一种感知结果信息的接收方法,其特征在于,所述方法包括:
    接收第一节点使用第一传输资源发送的M个第一感知结果信息;
    其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
  16. 根据权利要求15所述的方法,其特征在于,所述M组感知信号是第一时间位置前的最后M组感知信号;
    所述第一时间位置是所述第一传输资源的时域位置;或,
    所述第一时间位置基于所述第一传输资源的时域位置确定;或,
    所述第一时间位置是指示信息的传输位置;或,
    所述第一时间位置基于所述指示信息的传输位置确定;
    其中,所述指示信息用于指示所述第一节点发送所述M个第一感知结果信息。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    发送N组感知信号,N大于或等于M,所述N组感知信号包括所述M组感知信号。
  18. 根据权利要求17所述的方法,其特征在于,所述N组感知信号是第二时间位置前的最后N组感知信号;
    所述第二时间位置是所述第一传输资源的时域位置;或,
    所述第二时间位置是指示信息的传输位置;或,
    所述第二时间位置基于所述第一传输资源的时域位置确定;或,
    所述第二时间位置基于所述指示信息的传输位置确定;
    其中,所述指示信息用于指示所述第一节点发送所述M个第一感知结果信息。
  19. 根据权利要求18所述的方法,其特征在于,所述指示信息还用于指示所述M的取值。
  20. 根据权利要求18所述的方法,其特征在于,所述指示信息还用于指示从所述N个第一感知结果信息中确定所述M个第一感知结果信息的信息。
  21. 根据权利要求15至20任一所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于指示以下信息中的至少一种:
    所述第一传输资源;
    M的取值。
  22. 根据权利要求15至21任一所述的方法,其特征在于,所述第一感知结果信息包括以下信息中的至少一种:
    感知信号的特征量;
    所述感知信号的特征量的偏移信息或差分信息;
    所述感知信号经历的信道信息;
    所述感知信号经历的信道信息的偏移信息或差分信息;
    面向应用的感知结果。
  23. 一种感知结果信息的接收方法,其特征在于,所述方法还包括:
    接收第一节点使用第二传输资源发送的第一信息,所述第一信息是所述第一节点在接收N组感知信号 后发送的,N为正整数;
    向所述第一节点发送调度信息,所述调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源;所述调度信息和/或所述第三传输资源位于第一时间段内;
    其中,所述第一时间段的起点是所述第一信息的传输位置或基于所述第一信息的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信息包括:
    面向应用的感知结果,所述面向应用的感知结果基于所述N组感知信号确定;
    资源请求信息,所述资源请求信息用于请求所述第三传输资源;
    基于所述N个第一感知结果信息中的至少一个第一感知结果信息得到的信息。
  25. 根据权利要求24所述的方法,其特征在于,所述基于所述N个第一感知结果信息中至少一个第一感知结果信息得到的信息,包括:
    所述N个第一感知结果信息中数值低于第一阈值的感知结果信息;或,
    所述N个第一感知结果信息中数值高于第二阈值的感知结果信息;或,
    所述N个第一感知结果信息中数值的变化程度达到跳变条件的感知结果信息。
  26. 根据权利要求23至25任一所述的方法,其特征在于,所述第一信息用于指示N的取值。
  27. 根据权利要求23至26任一所述的方法,其特征在于,所述第一感知结果信息包括以下信息中的至少一种:
    感知信号的特征量;
    所述感知信号的特征量的偏移信息或差分信息;
    所述感知信号经历的信道信息;
    所述感知信号经历的信道信息的偏移信息或差分信息。
  28. 一种感知结果信息的发送装置,其特征在于,所述装置包括:
    发送模块,使用第一传输资源发送M个第一感知结果信息;
    其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
  29. 一种感知结果信息的发送装置,其特征在于,所述装置包括:
    发送模块,用于在接收模块接收到N组感知信号后,使用第二传输资源发送第一信息,N为正整数;
    所述发送模块,用于在所述接收模块在第一时间段内接收到调度信息的情况下,使用所述调度信息调度的第三传输资源发送N个第一感知结果信息的部分或全部信息;或,在所述第三传输资源在所述第一时间段内的情况下,所述第一节点使用所述第三传输资源发送N个第一感知结果信息的部分或全部信息;
    其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
  30. 一种感知结果信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于接收第一节点使用第一传输资源发送的M个第一感知结果信息;
    其中,所述M个第一感知结果信息基于M组感知信号得到的,M为大于1的正整数,所述M组感知信号中的每组感知信号包括至少一个感知信号。
  31. 一种感知结果信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于接收第一节点使用第二传输资源发送的第一信息,所述第一信息是所述第一节点在接收N组感知信号后发送的,N为正整数;
    发送模块,用于向所述第一节点发送调度信息,所述调度信息用于调度第一节点发送N个第一感知结果信息的部分或全部信息的第三传输资源;所述调度信息和/或所述第三传输资源位于第一时间段内;
    其中,所述第一时间段的起点是所述第二传输资源的传输位置或基于所述第二传输资源的传输位置确定,所述N个第一感知结果信息基于所述N组感知信号得到的,所述N组感知信号中的每组感知信号包括至少一个感知信号。
  32. 一种感知测量设备,其特征在于,所述感知测量设备包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述感知测量设备加载并执行,以实现如权利要求1至14任一所述的感知结果信息的发送方法。
  33. 一种感知测量设备,其特征在于,所述代理响应设备包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述感知测量设备加载并执行,以实现如权利要求15至27任一所述的感知结果信息的接收方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一段程序,所述至少一段程序由计算机设备加载并执行以实现如权利要求1至14任一所述的感知结果信息的发送方法,和/或,如权利要求15至27任一所述的感知结果信息的接收方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有至少一段程序,所述至少一段程序由计算机设备加载并执行以实现如权利要求1至14任一所述的感知结果信息的发送方法,和/或,如权利要求15至27任一所述的感知结果信息的接收方法。
  36. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,安装有所述芯片的设备用于实现如权利要求1至14任一所述的感知结果信息的发送方法,和/或,如权利要求15至27任一所述的感知结果信息的接收方法。
PCT/CN2022/097585 2022-06-08 2022-06-08 感知结果信息的发送接收方法、装置、设备及存储介质 WO2023236094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097585 WO2023236094A1 (zh) 2022-06-08 2022-06-08 感知结果信息的发送接收方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097585 WO2023236094A1 (zh) 2022-06-08 2022-06-08 感知结果信息的发送接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023236094A1 true WO2023236094A1 (zh) 2023-12-14

Family

ID=89117232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097585 WO2023236094A1 (zh) 2022-06-08 2022-06-08 感知结果信息的发送接收方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023236094A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792752A (zh) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 直连资源配置方法及装置
CN112689978A (zh) * 2018-09-12 2021-04-20 Oppo广东移动通信有限公司 用户设备、基站以及其车到万物通信方法
US20210274432A1 (en) * 2018-09-21 2021-09-02 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for reporting resource sensing result, user equipment, and storage medium
WO2021196154A1 (en) * 2020-04-03 2021-10-07 Lenovo (Beijing) Limited Method and apparatus for sensing measurement and report for nr sidelink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689978A (zh) * 2018-09-12 2021-04-20 Oppo广东移动通信有限公司 用户设备、基站以及其车到万物通信方法
US20210274432A1 (en) * 2018-09-21 2021-09-02 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for reporting resource sensing result, user equipment, and storage medium
CN109792752A (zh) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 直连资源配置方法及装置
WO2021196154A1 (en) * 2020-04-03 2021-10-07 Lenovo (Beijing) Limited Method and apparatus for sensing measurement and report for nr sidelink

Similar Documents

Publication Publication Date Title
CN102918913B (zh) 无线对等网络中用于针对介质访问的抢占式回退的方法和装置
CN110261848B (zh) 基于波束功率分配的雷达通信一体化协同探测方法及装置
WO2020249294A1 (en) Positioning support for wireless devices such as nr-iot devices and useful for geofencing
WO2022152108A1 (zh) 协作信息发送方法、资源确定方法、通信节点及存储介质
CN114980220B (zh) 管理无线网络中的网络感知能力
CN114762402A (zh) 一种定位方法及装置
CN114521012B (zh) 定位方法、装置、终端设备、基站及位置管理服务器
WO2015154248A1 (zh) 一种系统信息的传输方法及基站、用户设备
CN108351397B (zh) 批量精细定时测量消息调度
WO2023236094A1 (zh) 感知结果信息的发送接收方法、装置、设备及存储介质
US10805829B2 (en) BLE-based location services in high density deployments
CN117279116A (zh) 连接控制方法、装置及系统
AU2017445111A1 (en) Beam selection method, terminal device and computer storage medium
KR20220164016A (ko) 참조신호 자원의 구성 방법, 장치, 기기 및 저장매체
CN109714722B (zh) 室内天线的管理方法、装置、电子设备及存储介质
CN113543022A (zh) 发射功率的确定方法、装置、对讲机、设备及存储介质
CN109076482B (zh) 在通信网络中执行至少一个定位功能的装置、方法、介质
WO2023226732A1 (zh) 信号的发送方法及装置、信号的接收方法及装置
WO2023216260A1 (zh) 信息传输方法、节点、介质及程序产品
US20230189201A1 (en) Information transmission method and related device
WO2023050060A1 (zh) 信息配置方法、装置、设备及存储介质
CN114401482B (zh) 终端设备定位方法、装置及存储介质
CN114125938B (zh) 通讯装置排程方法、伺服器、回报数据的方法及通讯装置
WO2023206480A1 (zh) 绝对位置的定位方法、装置、设备和介质
WO2023205972A1 (zh) 定位参考信号的发送方法、装置、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945240

Country of ref document: EP

Kind code of ref document: A1