WO2023216260A1 - 信息传输方法、节点、介质及程序产品 - Google Patents

信息传输方法、节点、介质及程序产品 Download PDF

Info

Publication number
WO2023216260A1
WO2023216260A1 PCT/CN2022/092846 CN2022092846W WO2023216260A1 WO 2023216260 A1 WO2023216260 A1 WO 2023216260A1 CN 2022092846 W CN2022092846 W CN 2022092846W WO 2023216260 A1 WO2023216260 A1 WO 2023216260A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resources
information
node
transmission
sensing
Prior art date
Application number
PCT/CN2022/092846
Other languages
English (en)
French (fr)
Inventor
林亚男
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/092846 priority Critical patent/WO2023216260A1/zh
Publication of WO2023216260A1 publication Critical patent/WO2023216260A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure belongs to the field of perceptual communication technology, and specifically relates to an information transmission method, node, medium and program product.
  • wireless sensing can be used to detect parameters of the physical environment to achieve target positioning, action recognition, imaging, etc.
  • base stations and multiple terminals can be used for joint sensing.
  • the joint participation of multiple sensing nodes in sensing can improve the accuracy of sensing.
  • the purpose of the embodiments of the present disclosure is to provide an information transmission method, node, medium and program product that can solve the problem of selecting a suitable sensing node from multiple sensing nodes to participate in sensing.
  • embodiments of the present disclosure provide an information transmission method, which is applied to a sensed node.
  • the method includes: receiving configuration information, the configuration information is used to indicate N groups of transmission resources, N is a positive integer; through the N group
  • the transmission resource receives a signal from at least one sensing node; determines N pieces of reporting information based on the signal from the at least one sensing node; and sends the N pieces of reporting information to the control node.
  • embodiments of the present disclosure provide an information transmission method, which is applied to a control node.
  • the method includes: sending configuration information indicating N sets of transmission resources, and the N sets of transmission resources are used for at least one sensing node to The sensed node sends a signal, N is a positive integer; receives N pieces of reported information from the sensed node, the N pieces of reported information are determined by the sensed node based on the signal sent by the at least one sensing node on the N group of transmission resources.
  • embodiments of the present disclosure provide an information transmission method, which is applied to a control node.
  • the method includes: sending configuration information indicating a first transmission resource used by a first sensing node to send a signal to a sensed node. ; Receive N pieces of reported information from the sensed node, the N piece of reported information is determined by the sensed node based on a signal sent by at least one sensing node through an N group of transmission resources, the N group of transmission resources including the first transmission resource, The at least one sensing node includes the first sensing node, and N is a positive integer.
  • embodiments of the present disclosure provide an information transmission method, which is applied to a first sensing node.
  • the method includes: receiving configuration information indicating a first transmission of a signal sent by the first sensing node to a sensed node. resource, the first transmission resource is a transmission resource in an N group of transmission resources.
  • the N group of transmission resources is used for at least one sensing node to send a signal to a sensed node.
  • the at least one sensing node includes the first sensing node, and N is a positive Integer; send a signal to the sensed node on the first transmission resource
  • inventions of the present disclosure provide a sensed node.
  • the sensed node includes: a receiving module, a determining module and a sending module; the receiving module is used to receive configuration information, and the configuration information is used to indicate N groups of transmission resources. , N is a positive integer; the receiving module is also used to receive a signal from at least one sensing node through the N group of transmission resources; the determining module is used to determine N reporting information based on the signal from the at least one sensing node ; The sending module is used to send the N pieces of reported information to the control node.
  • embodiments of the present disclosure provide a control node, which includes: a sending module and a receiving module; the sending module is used to send configuration information, the configuration information indicates N groups of transmission resources, and the N groups of transmission resources Used for at least one sensing node to send signals to the sensed node, N is a positive integer; the receiving module is used to receive N pieces of reported information from the sensed node, and the N pieces of reported information are sent by the sensed node based on the at least one sensed node. The signal sent by the node on the N sets of transmission resources is determined.
  • inventions of the present disclosure provide a control node.
  • the control node includes: a sending module and a receiving module; the sending module is used to send configuration information, the configuration information indicates that the first sensing node transmits information to the sensed node.
  • the N groups of transmission resources include the first transmission resource, the at least one sensing node includes the first sensing node, and N is a positive integer.
  • inventions of the present disclosure provide a sensing node.
  • the sensing node is a first sensing node.
  • the first sensing node includes: a receiving module and a sending module; the receiving module is used to receive configuration information, and the configuration information indicates The first transmission resource for the first sensing node to send a signal to the sensed node, the first transmission resource is a transmission resource in an N group of transmission resources, and the N group of transmission resources is used for at least one sensing node to send a signal to the sensed node,
  • the at least one sensing node includes the first sensing node, N is a positive integer; and the sending module is used to send signals to the sensed node on the first transmission resource.
  • inventions of the present disclosure provide a sensed node.
  • the sensed node includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor.
  • the processor is Configured to implement the steps of the information transmission method described in the first aspect when the program or instruction is executed.
  • an embodiment of the present disclosure provides a control node.
  • the control node includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor.
  • the processor is configured To implement the steps of the information transmission method described in the second aspect or the third aspect when the program or instruction is executed.
  • inventions of the present disclosure provide a sensing node.
  • the sensed node includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor.
  • the processor is Configured to implement the steps of the information transmission method described in the fourth aspect when the program or instruction is executed.
  • embodiments of the present disclosure provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • embodiments of the present disclosure provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first The information transmission method described in the aspect, the second aspect, the third aspect or the fourth aspect.
  • embodiments of the present disclosure provide a computer program product containing instructions that, when run on a computer, cause the computer to perform the steps described in the first aspect, the second aspect, the third aspect or the fourth aspect. Steps of information transfer method.
  • Figure 1 is a schematic architectural diagram of a sensing system provided by an embodiment of the present disclosure
  • Figure 2 is one of the interactive flow diagrams of the information transmission method provided by the embodiment of the present disclosure.
  • Figure 3 is a time domain schematic diagram of a transmission resource provided by an embodiment of the present disclosure.
  • Figure 4 is a periodic diagram of a transmission resource provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of time domain continuity of transmission resources provided by an embodiment of the present disclosure.
  • Figure 6 is one of the schematic diagrams of a set of transmission resources including at least two transmission opportunities provided by an embodiment of the present disclosure
  • Figure 7 is a second schematic diagram of a set of transmission resources including at least two transmission opportunities provided by an embodiment of the present disclosure
  • Figure 8 is a third schematic diagram of a set of transmission resources including at least two transmission opportunities provided by an embodiment of the present disclosure
  • Figure 9 is a second schematic diagram of the interaction flow of the information transmission method provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of a possible structure of a sensed node provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of a possible structure of a control node provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic diagram of a possible structure of a sensing node provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic diagram of a possible structure of a node provided by an embodiment of the present disclosure.
  • Figure 14 is a hardware schematic diagram of a node provided by an embodiment of the present disclosure.
  • Wireless communication and wireless sensing are two major applications of modern radio frequency technology.
  • wireless sensing can use backscattered radio waves to detect parameters of the physical environment to achieve environmental sensing such as target positioning, action recognition, and imaging.
  • Future communication sensing technology can integrate the two functions of communication and sensing, and can use wireless resource management of communication to solve the interference problem in traditional wireless sensing; it can use widely deployed cellular networks to implement sensing services in a wider range; it can use base stations Perform joint sensing with multiple terminals to achieve higher sensing accuracy; communication hardware modules can be reused to implement sensing functions and reduce costs.
  • communication sensing technology enables future wireless communication systems to have sensing capabilities, providing a foundation for the development of future smart transportation, smart cities, smart factories, drones and other businesses.
  • the control node can be a base station or a mobile terminal.
  • sensing terminals there are three sensing terminals surrounding the sensed terminal. Compared with the base station, the three sensing terminals are closer to the sensed terminal. Using these three sensing terminals for sensing may be more efficient and accurate than using the base station for sensing. high. Furthermore, in the future, based on the performance requirements of the sensing service, the characteristics of the sensing terminal and the characteristics of the sensed terminal, some sensing terminals can be selected to perform the sensing service.
  • first, second, etc. in the description and claims of the present disclosure are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that embodiments of the present disclosure can be practiced in sequences other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution, Long Term Evolution
  • LTE-A Long Term Evolution-Advanced, LTE Evolution
  • CDMA Code Division Multiple Access, Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access, Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR system for example purposes, and NR terminology is used in most of the following description, although these techniques can also be applied to applications other than NR system applications, such as 6G (6th Generation, 6th Generation) communication systems. .
  • Figure 1 is a schematic architectural diagram of a sensing system provided by an embodiment of the present disclosure.
  • the sensing system includes: a control node 100, a sensed node 101 and at least one sensing node 102.
  • the control node 100 is used to send configuration information to the sensing node 102 and the sensed node 101 to configure transmission resources for transmitting signals, so that each sensing node 102 sends signals to the sensed node 101 on the configured transmission resources.
  • the sensing node 101 receives signals sent by each sensing node 102 on the configured transmission resources, so that the sensed node 101 reports information to the control node 100 according to the received signals, so that the control node 100 can provide information for the sensed node 101 based on the reported information. Select sensing nodes to participate in sensing.
  • control node is a node that controls and manages sensing services, that is, it can control or manage sensing nodes to send sensing signals to sensed nodes.
  • the sensing node is configured to perform or participate in sensing, the sensing node can send sensing signals to sense the sensed node.
  • control node may be a base station accessed by the sensing node, or may be a sensing node among surrounding sensing nodes.
  • FIG. 2 is a schematic interactive flow diagram of an information transmission method provided by an embodiment of the present disclosure. As shown in Figure 2, the method includes the following S201 to S208:
  • the control node sends configuration information.
  • the configuration information is used to indicate N groups of transmission resources, and N is a positive integer.
  • configuration information may be used to instruct at least one sensing node to send signals through the N groups of transmission resources.
  • the above-mentioned at least one sensing node may be a sensing node surrounding the sensed node.
  • control node may send configuration information with the same configuration content to the sensed node and the sensing node.
  • the signals sent by the N groups of transmission resources may be sensing signals sent by sensing nodes, or may be measurement signals sent by sensing nodes.
  • the configured transmission resources may include at least one of time domain resources, frequency domain resources and sequence resources.
  • the sensed node receives configuration information.
  • At least one sensing node receives configuration information.
  • the sensed node may receive configuration information sent by the control node.
  • At least one sensing node sends a signal to the sensed node on the N groups of transmission resources.
  • the sensed node receives the signal sent from the above-mentioned at least one sensing node through the N groups of transmission resources.
  • the sensed node determines N pieces of reported information based on the signal sent from the at least one sensing node.
  • the reported information may be sensing result information or sensing measurement information.
  • the sensed node sends the above N pieces of reporting information to the control node.
  • the control node receives N pieces of reported information from the sensed node.
  • the N pieces of reported information are determined by the sensed node based on signals sent by the at least one sensing node on the N sets of transmission resources.
  • control node After the control node receives N pieces of reported information from the sensing nodes, it can select sensing nodes that participate in sensing services for the sensing nodes based on the N pieces of reported information.
  • the control node can send configuration information to the sensed node and the sensed node to instruct at least one sensing node to send a signal through N groups of transmission resources.
  • at least one sensing node Signals can be sent to the sensed node through the N group of transmission resources.
  • the sensed node can receive the signal sent by at least one sensing node according to the N group of transmission resources indicated by the configuration information, and then according to the at least one sensing node Based on the received signals, N pieces of reported information are determined, so that it can be determined whether the performance of signals sent by different sensing nodes meets the requirements.
  • the sensed node can send the N pieces of reported information to the control node, so that the control node can reasonably and effectively select sensing nodes that participate in sensing communication for the sensing node based on the reported information, so that higher efficiency sensing can be selected.
  • the node provides higher sensing performance to the sensed node.
  • the above-mentioned N pieces of reported information correspond to the above-mentioned N groups of transmission resources in a one-to-one correspondence.
  • the sensed node can obtain a report information based on the signal received on one of the above-mentioned N groups of transmission resources. That is, each set of configured transmission resources can correspond to one piece of reported information.
  • a sensing node can send a set of measurement signals on a set of transmission resources, and the sensed node can obtain a measurement result based on the set of measurement signals, and the measurement result corresponds to a piece of reporting information.
  • the reported information includes at least one of the following 1-1 to 1-10:
  • the result information indicates that the sensing result or measurement result of the signal received on one group of the N groups of transmission resources satisfies the preset condition.
  • the failure result signal does not indicate that the sensing result or measurement result of the signal received on one group of the above-mentioned N groups of transmission resources does not meet the preset condition.
  • the reported information may not include specific measurement results; for sensing signals on a set of transmission resources, the reported information may not include specific sensing results.
  • the reported information can carry simple result information, for example, "0" indicates passing result information, and "1" indicates failing result information.
  • the result information when the result information is set to "1", it can be indicated that the measurement result of the measurement signal on the group of transmission resources meets the predefined performance requirements, for example, the measurement result is greater than or equal to Performance requirement threshold; when the result information is set to "0", it can indicate that the measurement results of the measurement signals on this group of transmission resources do not meet the predefined performance requirements, for example, the measurement result is less than the performance requirement threshold.
  • One possible example is that if the measurement result or the sensing result passes, the information can be reported. If the measurement result or the sensing result passes, the information does not need to be reported.
  • the permission information indicates that a sensing node is allowed to send sensing signals or measurement signals to the sensed node, or that a sensing node that sends signals on a group of transmission resources in the above N groups of transmission resources is allowed to send sensing signals or measurements to the sensed node. Signal.
  • the rejection information indicates that a sensing node is refused to send sensing signals or measurement signals to the sensed node, or that a sensing node that sends signals on one of the above N groups of transmission resources is refused to send sensing signals or measurements to the sensed node. Signal.
  • the sensing nodes that send signals on the above group of transmission resources may include at least one sensing node.
  • the reported information may not include a specific measurement permission result.
  • the reporting information may not include a specific perception permission result.
  • a simple allow or deny message can be sent, such as "0" or "1".
  • the sensed node can be instructed to allow the sensing node that sends the measurement signal on the group of transmission resources to the sensed node.
  • Send a sensing signal when the permission result is set to "0", the sensed node can be instructed not to allow the sensing node on the group of transmission resources to send measurement signals and send a sensing signal to the sensed node.
  • the sensed node may report permission information; if the sensed node prohibits a sensing node from sending measurement signals or sensing signals, it may not report the information.
  • RSRQ Reference Signal Receiving Quality, reference signal receiving quality
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SNR Signal to Noise Ratio, signal-to-noise ratio
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio
  • the configuration information may also include characteristic information of one of the above-mentioned at least one sensing nodes.
  • the above-mentioned one sensing node may correspond to a group of transmission resources among the N groups of transmission resources.
  • the sensing nodes corresponding to the set of transmission resources may include one or more sensing nodes.
  • the configuration information may include characteristic information of a sensing node corresponding to the group of transmission resources; if a group of transmission resources corresponds to at least two sensing nodes, the configuration information may include the group of sensing nodes. The characteristic information of at least the sensing node corresponding to the transmission resource.
  • the configuration information may further include characteristic information of the first sensing node among the at least one sensing node.
  • the first sensing node includes one or more sensing nodes.
  • the first sensing node corresponds to a group of transmission resources in the above N groups of transmission resources.
  • the configuration information may indicate the characteristic information of one sensing node corresponding to a group of transmission resources (for example, when a group of transmission resources corresponds to one sensing node), or may indicate multiple sensing nodes corresponding to a group of transmission resources. Characteristic information of nodes (for example, when a set of transmission resources corresponds to multiple sensing nodes).
  • the characteristic information of the sensing node may include at least one of the following: device type, device capability, power supply information, device location information, and device antenna configuration information.
  • the allowed information value corresponding to the signal sent by the sensed node can be "0" for the signal sent by the mobile phone terminal.
  • the sensed node when the sensed node detects that the device type indicated by the characteristic information of the sensing node in the configuration information is a non-preferred type, it may not receive the signal sent by the device on the configured transmission resource, Directly determine that the value of the allowed information corresponding to this group of transmission resources is "0".
  • the above-mentioned S207 can be specifically performed by the following S27a or S27b:
  • the sensed node sends the above-mentioned N pieces of reporting information to the control node through a physical channel.
  • the control node receives N pieces of reported information from the sensed node through a physical channel.
  • the one physical channel may be determined based on configuration information or first information, and the first information is indication information of reported resources received after receiving the configuration information.
  • the configuration information or the first information may also indicate the physical channel resources for transmitting the reporting information, for example, may indicate at least one of time domain resources, frequency domain resources and sequence resources.
  • the sensed node may also bear configuration information or The transmission position of the physical transmission channel of the first information determines the physical channel resource for transmitting the reported information.
  • the physical channel for transmitting the reported information may be PUCCH (Physical Uplink Control Channel, physical uplink control channel) or PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • S27b The sensed node sends the above-mentioned N pieces of reporting information to the control node through M physical channels.
  • M is a positive integer less than or equal to N.
  • the control node receives N pieces of reported information from the sensed nodes through M physical channels.
  • the sensed node can send the reporting information in batches, thereby achieving a lower reporting delay. Since the amount of information reported each time is small, higher reliability can also be ensured.
  • the sensed node can send separate reporting information for the signal of each sensing node, and can according to the specific transmission resources in each group of transmission resources. (for example, the first transmission resource or the last transmission resource) determines the physical channel resources for transmitting the corresponding reported information.
  • the above-mentioned S27a can be specifically performed by the following A1:
  • the sensed node jointly encodes the above N pieces of reported information and sends the above N pieces of reported information to the control node through a physical channel.
  • the sensed node can concatenate and jointly encode the N reporting signals according to the group number, or can concatenate and jointly encode the N reporting signals according to the time domain resource order.
  • the transmission method of transmitting N pieces of reported information through joint coding has high transmission efficiency and low power consumption.
  • control node can configure N groups of transmission resources for transmitting signals.
  • Each group of transmission resources can include at least one transmission opportunity.
  • the sensed object can obtain a reporting result for the signal transmitted on each group of transmission resources.
  • an information transmission method provided by embodiments of the present disclosure may include at least one of the following methods 1 to 3:
  • Method 1 The above N groups of transmission resources have a one-to-one relationship with at least one sensing node.
  • a set of transmission resources has a one-to-one correspondence with a sensing node. That is to say, the signals on one group of the above N groups of transmission resources are sent by the same sensing node.
  • the sensing node that sends signals through a set of transmission resources.
  • the sensing node only sends signals on one group of transmission resources among the above-mentioned N groups of transmission resources, and a reporting information corresponding to this group of transmission resources is determined by the signal sent by the sensing node.
  • the sensing node may be any one of the at least one sensing node mentioned above.
  • each sensing node sends a signal on a set of transmission resources, for example, node 1 sends a signal on transmission resource group 1 and node 2 sends a signal on transmission resource group 2, then the number of the above-mentioned at least one sensing node can be is N, that is, the number of sensing nodes can be N.
  • the sensed node can obtain a reporting result for the signal sent by each of the N sensing nodes on the configured transmission resources.
  • the control node can determine the sensing nodes included in the subsequent sensing set based on the N reporting results corresponding to the N sensing nodes.
  • Method 2 The above-mentioned N groups of transmission resources have a one-to-many relationship with the above-mentioned at least one sensing node.
  • one group of transmission resources corresponds to at least two sensing nodes; that is to say, signals on the same group of transmission resources in the above N groups of transmission resources are sent by at least two sensing nodes.
  • the sensing nodes around the sensed node there are two sensing nodes that send signals through a set of transmission resources.
  • at least two sensing nodes send signals on a set of transmission resources, and a reporting information corresponding to the set of transmission resources is determined by the signals sent by the at least two sensing nodes.
  • the reported information is an overall reported information based on signals sent by at least two sensing nodes, and is not accurate to each sensing node.
  • a set of measurement signals includes multiple measurement signals, and multiple sensing nodes respectively send measurement signals to the sensed node on each transmission resource of the set of transmission resources.
  • Method 3 The above-mentioned N groups of transmission resources have a many-to-one relationship with the above-mentioned at least one sensing node.
  • multiple groups of transmission resources among the above N groups of transmission resources have a many-to-one relationship with the same sensing node. That is to say, the signals on at least two groups of the above N groups of transmission resources are sent by the same sensing node.
  • a sensing node that sends signals through at least two sets of transmission resources.
  • a sensing node sends signals in at least two groups of transmission resources, and at least two reporting information corresponding to the at least two groups of transmission resources are determined by the signals sent by the node.
  • the sensing node can obtain at least two reported information based on the signal sent by the same sensed node, so that the result obtained based on the signal sent by the sensing node is more accurate.
  • whether to configure multiple sets of transmission resources for the sensing node may be determined based on the distance between the sensing node and the sensed node.
  • the above-mentioned at least one sensing node may be H sensing nodes, where H is a positive integer less than N.
  • one group of transmission resources may include at least one transmission opportunity (transmission resource).
  • One transmission opportunity may correspond to one signal transmission, which is not specifically limited in this embodiment of the disclosure.
  • the sensed node may not know the number of sensed nodes or the corresponding relationship between the sensed nodes and signals.
  • the sensed node may independently process the signals received on the N groups of transmission resources and Just give feedback.
  • the sensed node may also clarify the corresponding relationship between the sensing node and the signal, which is not specifically limited in the embodiments of the present disclosure.
  • each group of transmission resources in the above N groups of transmission resources is configured independently.
  • the control node can independently configure each group of transmission resources in the configuration information. For example, it can independently configure at least one of time domain resources, frequency domain resources and sequence resources in each group of transmission resources.
  • control node may send first signaling to the sensing node and the sensed node.
  • the first signaling includes multiple sub-signalings, one of which may be used to configure at least one set of transmission resources. .
  • control node may also send multiple pieces of second signaling, each piece of second signaling independently indicating a set of transmission resources. That is, the transmission resources between different groups are completely irrelevant or have no commonality.
  • each group of transmission resources in the above-mentioned N groups of transmission resources includes a transmission opportunity (transmission resource); the N groups of transmission resources can satisfy the following Any one of conditions 1-1 and 1-2:
  • Condition 1-1 The N groups of transmission resources are periodic transmission resources
  • N groups of transmission resources are continuous transmission resources in the time domain.
  • the frequency domain resources occupied by each group of transmission resources in the N groups of transmission resources may be the same or different.
  • the frequency domain resources of each group of transmission resources can be obtained by frequency hopping based on an agreed method.
  • the sequence resources occupied by each group of transmission resources in the N groups of transmission resources may be the same or different.
  • the sequence resources may be jumped to the sequence resources of each group of transmission resources based on an agreed method. For example, the parameters, numbers, or cyclic shift values of the sequences used by the signals may be determined based on an agreed method.
  • the N groups of transmission resources may have at least one of time domain periodicity or frequency domain periodicity.
  • time domain periodicity is taken as an example.
  • the configuration information can indicate the time domain period, and can also indicate at least one of the following: starting symbol S0, ending symbol S1, and the time domain length L of a group of transmission resources ( number of symbols), frequency domain resources occupied by one transmission resource, and the value of N.
  • Figure 4 is a periodic diagram of a transmission resource provided by an embodiment of the present disclosure. As shown in Figure 4, four groups of time domain periodic transmission resources are configured. The starting symbol of the first group of transmission resources is S0, S0 is the starting symbol of time slot n, and the time interval of each group of transmission resources is 1 time slot (14 symbols), the end symbol of the fourth group of transmission resources is S1, and S1 is the L-th symbol of time slot n+3 (L at this time is a positive integer less than 14).
  • the first time unit is determined based on the second information.
  • the first time unit is the time unit (time slot, sub-slot or at least one time domain symbol) in which the first group of transmission resources of the above-mentioned N groups of transmission resources is located; the first group of transmission resources is the transmission resource in the N group of transmission resources.
  • the second information is configuration information or the above-mentioned first information.
  • the first time unit is indicated by the second information, or is determined based on the sending time unit of the second information and the first time offset.
  • the first time offset is a predefined time offset or a time offset indicated by the second information.
  • the configuration information when the N groups of transmission resources are periodic transmission resources, the configuration information further includes at least one of the following: a first time unit, and the first time unit is the N group of transmission resources. The time unit in which the first set of transmission resources of the resource is located; time offset.
  • the configuration information may indicate at least one of the following: a first time unit where the first group of measurement signals is located, and a first time offset.
  • the time unit in which the first group of N groups of transmission resources is located may be the first time unit, or the time unit determined by the time unit and the first time offset for sending the configuration information, or the time for sending the configuration information. unit and a time unit determined by a predefined offset.
  • the control node sends the first information.
  • the control node may send first information to the sensed node to instruct the sensed node to use the transmission resources to send the reported information.
  • the first information may indicate at least one of the following: a second time unit in which the first set of measurement signals is located, and a second time offset.
  • the time unit in which the first group of N groups of transmission resources is located may be the second time unit, or the time unit determined by the time unit and the second time offset for sending the first information, or the time unit for sending the first information. time unit and a time unit determined by a predefined offset.
  • first time unit and the second time unit may be the same time unit or different time units, and the first time offset and the second time offset may be offsets with the same value. , can also be offsets with different values, which are not specifically limited in the embodiments of the present disclosure.
  • concentrating the transmission of measurement signals in a relatively short period of time can not only reduce the impact of the sensing measurement process on the communication process, but also enable measurement with less signaling overhead.
  • the configuration information may indicate the starting position of N groups of transmission resources and at least one of the following: duration, end position, and value of N; where the number of time domain symbols occupied by each group of transmission resources is Predefined or indicated by configuration information.
  • Example 2-1 The configuration information indicates the starting position and duration of the N group of transmission resources.
  • Example 2-2 The configuration information indicates the starting position of the N group of transmission resources and the value of N.
  • Example 2-3 The configuration information indicates the starting position and ending position of the N group of transmission resources.
  • Figure 5 is a schematic diagram of time domain continuity of transmission resources provided by an embodiment of the present disclosure. Assume that the total length of the N group of symbols does not exceed 1 timeslot. As shown in (a) in Figure 5, the starting position S0 of the transmission resource indicated in the configuration information is the first symbol of timeslot n, and a total of W occupies symbol; as shown in (b) of Figure 5, the configuration information can indicate that the starting position S0 of the transmission resource is the first symbol of timeslot n, and the specific value of N; as shown in (c) of Figure 5 Indicates that the configuration information may indicate the starting position S0 and the ending position S1 of the transmission resource.
  • At least one group of the N groups of transmission resources includes at least two transmission opportunities (at least two transmission resources).
  • each group of transmission resources in the at least one group of transmission resources is configured independently.
  • One possible example is that for multiple groups of transmission resources with at least two transmission opportunities, the transmission opportunities in each group of transmission resources can be configured independently.
  • the number of transmission opportunities in each group of transmission resources may be the same or different; the frequency domain resources (or symbol resources) occupied by the transmission opportunities in each group of transmission resources may be the same or different. ; The embodiments of the present disclosure do not specifically limit this.
  • the first group of transmission resources includes 3 transmission opportunities
  • the second group of transmission resources includes 2 transmission opportunities. In chronological order, they are: Group 1 transmission opportunity 1, Group 1 Transmission Opportunity 2, Group 2 Transmission Opportunity 1, Group 1 Transmission Opportunity 2, and Group 2 Transmission Opportunity 2.
  • At least two transmission opportunities included in the at least one set of transmission resources may satisfy any one of the following conditions 2-1 to 2-3:
  • the at least two transmission opportunities are periodic transmission opportunities
  • Condition 2-2 The at least two transmission opportunities are consecutive transmission opportunities in the time domain
  • Condition 2-3 The at least two transmission opportunities are transmission opportunities discretely distributed in the time domain.
  • condition 2-1 and condition 2-2 reference may be made to the description of the above-mentioned condition 1-1 and condition 1-2, which will not be described again here.
  • the frequency domain resources occupied by each of the at least two transmission opportunities may be the same or different.
  • frequency domain resources for each transmission opportunity can be obtained by frequency hopping based on an agreed method.
  • the sequence resources occupied by each of the at least two transmission opportunities may be the same or different.
  • the sequence resources of each transmission opportunity can be jumped based on an agreed method. For example, the parameters, numbers, or cyclic shift values of the sequences used by the signals can be determined based on an agreed method.
  • Figure 7 is a schematic diagram of a set of transmission resources including at least two transmission opportunities provided by an embodiment of the present disclosure.
  • a set of transmission resources includes 4 transmission opportunities, as shown in (a) in Figure 7.
  • the 4 transmission opportunities are periodic transmission opportunities. Each transmission opportunity is separated by 1 time slot.
  • the 4 transmission opportunities are respectively are the first L symbols of each time slot from time slot n to time slot n+3.
  • the four transmission opportunities are discretely distributed in the time domain.
  • Transmission opportunity 1 occupies the first L symbols of time slot n
  • transmission opportunity 2 occupies the last L symbols of time slot n.
  • transmission opportunity 3 occupies the last L symbols of time slot n+2
  • transmission opportunity 4 occupies the first L symbols of time slot n+3.
  • FIG. 8 is a schematic diagram of a set of transmission resources including at least two transmission opportunities provided by an embodiment of the present disclosure. Assume that the at least two transmission opportunities are continuous transmission opportunities in the time domain, and the length of the time domain symbols occupied by each transmission opportunity is the same. The length of the time domain symbols occupied by each transmission opportunity may be predefined, or may be Indicated by configuration information.
  • the configuration information may indicate the starting position S0 of the at least two transmission opportunities and the total number of occupied symbols is P; as shown in (b) in Figure 8, the configuration information The starting position S0 and the number of transmission opportunities Q of the at least two transmission opportunities may be indicated; as shown in (c) of Figure 8 , the starting position S0 and the ending position of the at least two transmission opportunities may be indicated in the configuration information S1.
  • the configuration information may indicate the first symbol in the target timeslot and the second symbol separated from the first symbol by a preset number of symbols; or the configuration information may indicate the first symbol and the first symbol in the target timeslot.
  • a symbol length, a second symbol spaced from the first symbol by a predetermined number of symbols, and the second symbol length may indicate the first symbol in the target timeslot.
  • the pattern of the starting position of each transmission opportunity can be configured in the configuration information (for example, a bitmap is configured).
  • the number of time domain symbols included in each transmission opportunity is predefined or indicated by the configuration information.
  • the starting position and duration pattern of each transmission opportunity can be configured in the configuration information.
  • the determination method of time slot n may refer to the above-mentioned determination method of the first time unit, which will not be described again here.
  • the configuration information sent by the control node to the sensed node can indicate N groups of transmission resources, indicating to the sensed node that at least one sensing node sends sensing signals or measurement signals through the N groups of transmission resources, and the configuration information sent to each sensing node can Indicates the transmission resources corresponding to each sensing node.
  • the following description takes the control node sending configuration information to the first sensing node (any one of at least one sensing node) as an example.
  • FIG. 9 is a schematic flowchart of an information transmission method provided by an embodiment of the present disclosure. It is applied to a control node configuring transmission resources to a single sensing node, which may include the following S901 and S902:
  • the control node sends configuration information.
  • the configuration information is used to indicate the first transmission resource for the first sensing node to send a signal to the sensed node.
  • the first transmission resource is a transmission resource in an N group of transmission resources.
  • the N group of transmission resources is used for at least one sensing node to send a signal to the sensed node.
  • the sensed node sends a signal, the at least one sensing node includes a first sensing node, and N is a positive integer.
  • control node configures N sets of transmission resources for at least one sensing node, and the N sets of transmission resources include the first transmission resources.
  • the first sensing node receives configuration information.
  • sensing nodes can also receive corresponding configuration information.
  • the first sensing node sends a signal to the sensed node on the first transmission resource.
  • the sensed node receives a signal from at least one sensing node through N sets of transmission resources.
  • the sensed node determines N pieces of reported information based on the signal from the at least one sensing node.
  • the N pieces of reported information are determined by the sensed node based on signals sent by at least one sensing node through N groups of transmission resources, the N group of transmission resources include first transmission resources, and the at least one sensing node includes the first sensing node.
  • the N pieces of reported information are sensing result information or sensing measurement information.
  • the sensed node sends N pieces of reporting information to the control node.
  • the control node receives N pieces of reported information from the sensed node.
  • the N pieces of reported information are determined by signals sent on the above-mentioned N groups of transmission resources, and the above-mentioned reported information is sensing result information or sensing measurement information.
  • control node can receive N pieces of reporting information sent by the sensing node.
  • Embodiments of the present disclosure provide an information transmission method.
  • a control node can send configuration information to each sensing node separately.
  • the configuration information received by each sensing node can be configured with transmission resources corresponding to each sensing node, so that Each sensing node obtains the transmission position of the signal it sends to the sensed node with less overhead.
  • the control node sends the first information.
  • the first information includes at least one of a first time unit and a time offset, and the first time unit is the time unit where the first group of transmission resources of the N groups of transmission resources is located.
  • the method for determining the first time unit may refer to the description in the above embodiment, and will not be described again here.
  • the configuration information instructs the first sensing node to send a signal or a set of signals.
  • the at least two transmission opportunities satisfy any one of the following: the at least two transmission opportunities are periodic transmission opportunities, the At least two transmission opportunities are continuous transmission opportunities in the time domain, and the at least two transmission opportunities are discretely distributed transmission opportunities in the time domain.
  • first transmission resource including at least two transmission opportunities
  • the configuration information also indicates a second transmission resource for the second sensing node to send a signal to the sensed node, and the above-mentioned N groups of transmission resources include the second transmission resource.
  • the configuration information may indicate transmission resources for multiple sensing nodes in at least one sensing node to respectively send signals.
  • the control node can send the same configuration information to each sensing node, and each sensing node obtains the corresponding transmission resources in the configuration information.
  • the control node can also send the same configuration information to each sensing node individually.
  • Each sensing node sends corresponding configuration information, and the same configuration information can also be sent to multiple sensing nodes in at least one sensing node.
  • the above-mentioned S902 may be specifically performed by the following S92a or S92b:
  • the first sensing node receives configuration information based on the first signaling.
  • the first signaling includes R sub-signaling, the first sub-signaling indicates the first transmission resource for the first sensing node to send a signal to the sensed node, and R is an integer greater than 1 and less than or equal to N.
  • the first sensing node receives configuration information based on the second signaling.
  • the second signaling indicates the first transmission resource for the first sensing node to send the signal to the sensed node.
  • the configuration information also includes characteristic information of the first sensing node.
  • the first sensing node may correspond to a group of transmission resources in the N groups of transmission resources.
  • the characteristic information includes at least one of the following: device type, device capabilities, power supply information, device location information, and device antenna configuration information.
  • the execution subject may also be an information reporting device, or a control module in the information reporting device for executing the information transmission method.
  • the method of reporting information by the sensed node and the control node is taken as an example to illustrate the device for reporting information provided by the embodiment of the present disclosure.
  • FIG 10 is a schematic structural diagram of a sensed node provided by an embodiment of the present disclosure.
  • the sensed node 1000 includes: a receiving module 1001, a determining module 1002 and a sending module 1003; the receiving module 1001 is used to receive Configuration information, the configuration information is used to indicate N groups of transmission resources, N is a positive integer; the receiving module 1001 is also used to receive signals from at least one sensing node through the N groups of transmission resources; the determining module 1002 is used to The signal from the at least one sensing node determines N pieces of reported information; the sending module 1003 is configured to send the N pieces of reported information to the control node.
  • the N pieces of reported information correspond to the N groups of transmission resources one-to-one.
  • each of the N pieces of reported information includes at least one of the following: pass result information, the pass result information indicates a group of transmission resources in the N groups of transmission resources.
  • the sensing result or measurement result of the signal received on the transmission resource satisfies the preset condition;
  • the failure result information indicates the sensing result or measurement result of the signal received on a group of transmission resources in the N groups of transmission resources.
  • the preset conditions are not met;
  • the permission information indicates that a sensing node is allowed to send sensing signals or measurement signals to the sensed node, or indicates that signals are allowed to be sent on a group of transmission resources in the N groups of transmission resources.
  • the sensing node sends sensing signals or measurement signals to the sensed node; rejection information, the rejection information indicates rejecting a sensing node to send sensing signals or measurement signals to the sensed node, or indicates rejecting transmission in the N group
  • a sensing node that sends a signal on a group of transmission resources in the resource sends a sensing signal or a measurement signal to the sensed node; signal amplitude information; power information; energy information; signal phase information; signal arrival time information; and, signal arrival angle information.
  • the configuration information further includes characteristic information of one sensing node among the at least one sensing node.
  • the one sensing node corresponds to a group of transmission resources in the N groups of transmission resources.
  • the characteristic information includes at least one of the following: device type, device capabilities, power supply information, device location information, and device antenna configuration information.
  • the sending module 1003 is specifically configured to: send the N pieces of reported information to the control node through one physical channel; or send the N pieces of reported information to the control node through M physical channels, where M is A positive integer less than or equal to N.
  • the sending module 1003 is specifically configured to jointly encode the N pieces of reported information and send the N pieces of reported information to the control node through the one physical channel.
  • the N group of transmission resources has a one-to-one relationship with the at least one sensing node; or the N group of transmission resources has a one-to-many relationship with the at least one sensing node; or the N group of transmission resources has a one-to-many relationship with the at least one sensing node;
  • the N groups of transmission resources have a many-to-one relationship with the at least one sensing node.
  • each group of transmission resources in the N groups of transmission resources is independently configured.
  • each group of transmission resources in the N groups of transmission resources includes a transmission opportunity; the N groups of transmission resources satisfy any one of the following: the N groups of transmission resources are periodic transmission resources ; The N groups of transmission resources are transmission resources that are continuous in the time domain.
  • At least one group of transmission resources among the N groups of transmission resources includes at least two transmission opportunities; wherein the at least two transmission opportunities satisfy any one of the following: the at least two transmission opportunities They are periodic transmission opportunities; the at least two transmission opportunities are continuous transmission opportunities in the time domain; and the at least two transmission opportunities are discretely distributed transmission opportunities in the time domain.
  • Embodiments of the present disclosure provide a sensed node. After receiving configuration information, the sensed node can receive a signal sent by at least one sensing node according to the N sets of transmission resources indicated by the configuration information, and then receive a signal from the at least one sensing node according to Signal, obtain N pieces of reported information, so as to determine whether the performance of signals sent by different sensing nodes meets the requirements.
  • the sensed node can send the N pieces of reported information to the control node, so that the control node can reasonably and effectively select sensing nodes that participate in sensing communication for the sensing node based on the reported information, so that higher efficiency sensing can be selected.
  • the node provides higher sensing performance to the sensed node.
  • the sensed node 1000 provided by the embodiment of the present disclosure can implement each process implemented by the method embodiments in Figures 1 to 9. To avoid duplication, details will not be described here.
  • FIG 11 is a schematic structural diagram of a control node provided by an embodiment of the present disclosure.
  • the control node 1100 includes: a sending module 1101 and a receiving module 1102; the sending module 1101 is used to send configuration information.
  • the configuration The information indicates N groups of transmission resources.
  • the N groups of transmission resources are used by at least one sensing node to send signals to the sensed node.
  • N is a positive integer;
  • the receiving module 1102 is used to receive N pieces of reported information from the sensed node. , the N pieces of reported information are determined by the sensed node based on the signal sent by the at least one sensing node on the N groups of transmission resources.
  • the N pieces of reported information correspond to the N groups of transmission resources one-to-one.
  • each group of transmission resources in the N groups of transmission resources is independently configured.
  • each group of transmission resources in the N groups of transmission resources includes a transmission opportunity; the N groups of transmission resources satisfy any one of the following: the N groups of transmission resources are periodic transmission resources ; The N groups of transmission resources are transmission resources that are continuous in the time domain.
  • the N groups of transmission resources are periodic transmission resources; the configuration information further includes at least one of the following: a first time unit, and the first time unit is the N group of transmission resources.
  • the N groups of transmission resources are periodic transmission resources; after sending the configuration information, the method further includes: sending first information; wherein the first information includes a first At least one of a time unit and a time offset, the first time unit is the time unit where the first group of transmission resources of the N groups of transmission resources is located.
  • At least one group of transmission resources among the N groups of transmission resources includes at least two transmission opportunities; the at least two transmission opportunities satisfy any one of the following: the at least two transmission opportunities are periodic The at least two transmission opportunities are continuous transmission opportunities in the time domain; the at least two transmission opportunities are discretely distributed transmission opportunities in the time domain.
  • the N group of transmission resources has a one-to-one relationship with the at least one sensing node; or the N group of transmission resources has a one-to-many relationship with the at least one sensing node; or , the N groups of transmission resources have a many-to-one relationship with the at least one sensing node.
  • the configuration information further includes characteristic information of a first sensing node among the at least one sensing node.
  • the first sensing node corresponds to a group of transmission resources in the N groups of transmission resources.
  • the characteristic information includes at least one of the following: device type, device capabilities, power supply information, device location information, and device antenna configuration information.
  • the reporting information includes at least one of the following: passing result information indicating a sensing result of a signal received on a set of transmission resources in the N sets of transmission resources; or The measurement result satisfies the preset condition; the failure result information indicates that the sensing result or the measurement result of the signal received on a group of transmission resources in the N groups of transmission resources does not meet the preset condition; the permission information , the permission information indicates that a sensing node is allowed to send sensing signals or measurement signals to the sensed node, or indicates that a sensing node that sends signals on a group of transmission resources in the N groups of transmission resources is allowed to send signals to the sensed node.
  • the node sends a sensing signal or a measurement signal; the rejection information indicates a rejection of a sensing node sending a sensing signal or a measurement signal to the sensed node, or an indication of rejection on a group of transmission resources in the N groups of transmission resources.
  • the sensing node that sends the signal sends a sensing signal or measurement signal; signal amplitude information; power information; energy information; signal phase information; signal arrival time information; and signal arrival angle information to the sensed node.
  • the receiving module 1102 is specifically configured to: receive N pieces of reported information from the sensed node through one physical channel; or, receive N pieces of reported information from the sensed node through M physical channels.
  • N pieces of reported information, M is a positive integer less than or equal to N.
  • Embodiments of the present disclosure provide a control node.
  • the control node can send configuration information to a sensing node and a sensed node to instruct at least one sensing node to send a signal through N groups of transmission resources.
  • the sensed node can The N groups of transmission resources indicated by the configuration information receive the signal sent by at least one sensing node, and then obtain N pieces of reported information based on the signal received by the at least one sensing node, so as to determine whether the performance of signals sent by different sensing nodes meets the requirements.
  • the sensed node can send the N pieces of reported information to the control node, so that the control node can reasonably and effectively select sensing nodes that participate in sensing communication for the sensing node based on the reported information, so that higher efficiency sensing can be selected.
  • the node provides higher sensing performance to the sensed node.
  • control node 1100 provided by the embodiment of the present disclosure can implement various processes implemented by the method embodiments in Figures 1 to 9. To avoid duplication, they will not be described again here.
  • the embodiment of the present disclosure provides a schematic structural diagram of a control node.
  • the control node 1100 includes: a sending module 1101 and a receiving module 1102; the sending module 1101 is used to send configuration information.
  • the configuration information indicates the first transmission resource used by the first sensing node to send signals to the sensed node;
  • the receiving module 1102 is configured to receive N pieces of reported information from the sensed node, the N piece of reported information Determined by the sensed node based on signals sent by at least one sensing node through N groups of transmission resources, the N groups of transmission resources include the first transmission resources, and the at least one sensing node includes the first sensing node, N is a positive integer.
  • the N groups of transmission resources are independently configured.
  • each group of transmission resources in the N groups of transmission resources includes a transmission opportunity; the N groups of transmission resources satisfy any one of the following: the N groups of transmission resources are periodic transmission resources ; The N groups of transmission resources are transmission resources that are continuous in the time domain.
  • the N groups of transmission resources are periodic transmission resources; the configuration information further includes at least one of the following: a first time unit, and the first time unit is the N group of transmission resources.
  • the N groups of transmission resources are periodic transmission resources; the sending module 1101 is also configured to send first information after sending the configuration information; wherein the first information includes a first time At least one of a unit and a time offset, and the first time unit is a time unit in which the first group of transmission resources of the N groups of transmission resources is located.
  • the configuration information is used by the first sensing node to send a signal or a group of signals.
  • the first transmission resource includes at least two transmission opportunities, and the at least two transmission opportunities satisfy any one of the following: the at least two transmission opportunities are periodic transmission opportunities; At least two transmission opportunities are continuous transmission opportunities in the time domain; and the at least two transmission opportunities are discretely distributed transmission opportunities in the time domain.
  • the configuration information also indicates a second transmission resource for the second sensing node to send a signal to the sensed node, and the N groups of transmission resources include the second transmission resource.
  • the configuration information further includes characteristic information of the first sensing node.
  • the first sensing node corresponds to a group of transmission resources in the N groups of transmission resources.
  • the characteristic information includes at least one of the following: device type, device capabilities, power supply information, device location information, and device antenna configuration information.
  • Embodiments of the present disclosure provide a control node.
  • the control node can send configuration information to a sensing node to indicate the transmission resources for the sensing node to send signals.
  • the sensing node can send a signal to the sensed node according to the transmission resources indicated by the configuration information.
  • the sensed node obtains N pieces of reported information based on the received signal, so that it can determine whether the performance of signals sent by different sensing nodes meets the requirements.
  • the sensed node can send the N pieces of reported information to the control node, so that the control node can reasonably and effectively select sensing nodes that participate in sensing communication for the sensing node based on the reported information, so that higher efficiency sensing can be selected.
  • the node provides higher sensing performance to the sensed node.
  • control node 1100 provided by the embodiment of the present disclosure can implement various processes implemented by the method embodiments in Figures 1 to 9. To avoid duplication, they will not be described again here.
  • FIG 12 is a schematic structural diagram of a sensing node provided by an embodiment of the present disclosure.
  • the sensing node is a first sensing node.
  • the sensing node 1200 includes: a receiving module 1201 and a sending module 1202; the receiving module 1201, Used to receive configuration information, where the configuration information indicates a first transmission resource for the first sensing node to send a signal to the sensed node, where the first transmission resource is a transmission resource in an N group of transmission resources, and the N group of transmission resources
  • the resource is used for at least one sensing node to send a signal to the sensed node.
  • the at least one sensing node includes the first sensing node, and N is a positive integer; the sending module 1202 is used to send a signal to the first sensing node on the first transmission resource.
  • the sensed node sends a signal.
  • the configuration information indicates transmission resources for the first sensing node to send a signal or a group of signals.
  • the configuration information further includes characteristic information of the first sensing node.
  • the first sensing node corresponds to a group of transmission resources in the N groups of transmission resources.
  • the characteristic information includes at least one of the following: device type, device capabilities, power supply information, device location information, and device antenna configuration information.
  • each group of transmission resources in the N groups of transmission resources is independently configured.
  • each group of transmission resources in the N groups of transmission resources includes a transmission opportunity; the N groups of transmission resources satisfy any one of the following: the N groups of transmission resources are periodic transmission resources ; The N groups of transmission resources are transmission resources that are continuous in the time domain.
  • the N groups of transmission resources are periodic transmission resources; the configuration information further includes at least one of the following: a first time unit, and the first time unit is the N group of transmission resources.
  • the first transmission resource includes at least two transmission opportunities, and the at least two transmission opportunities satisfy any one of the following: the at least two transmission opportunities are periodic transmission opportunities; At least two transmission opportunities are continuous transmission opportunities in the time domain; and the at least two transmission opportunities are discretely distributed transmission opportunities in the time domain.
  • the receiving module 1201 is specifically configured to receive the configuration information based on first signaling, where the first signaling includes R sub-signalings, and the first sub-signaling indicates the A sensing node sends a first transmission resource to the sensed node, where R is an integer greater than 1 and less than or equal to N; or, the configuration information is received based on second signaling, and the second signaling indicates the The first sensing node sends a first transmission resource of a signal to the sensed node.
  • Embodiments of the present disclosure provide a sensing node.
  • the control node can send configuration information to the sensing node to indicate the transmission resources for the sensing node to send signals.
  • the sensing node can send the sensing node to the sensing node according to the first transmission resource indicated by the configuration information.
  • the sensed node obtains N pieces of reported information based on the received signal, so that it can determine whether the performance of signals sent by different sensing nodes meets the requirements.
  • the sensed node can send the N pieces of reported information to the control node, so that the control node can reasonably and effectively select sensing nodes that participate in sensing communication for the sensing node based on the reported information, so that higher efficiency sensing can be selected.
  • the node provides higher sensing performance to the sensed node.
  • the sensing node 1200 provided by the embodiment of the present disclosure can implement various processes implemented by the method embodiments in Figures 1 to 9. To avoid duplication, they will not be described again here.
  • the embodiment of the present disclosure also provides a node 1300, including a processor 1301, a memory 1302, a program stored on the memory 1302 and executable on the processor 1301, or
  • a program stored on the memory 1302 and executable on the processor 1301, or
  • the program or instruction is executed by the processor 1301, it implements each process of the above information transmission method embodiment and can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • the node 1300 may be the above-mentioned control node, sensing node or sensed node.
  • node 1400 shown in Figure 14 is only an example, and should not bring any limitations to the functions and scope of use of the embodiments of the present disclosure.
  • the node 1400 includes a central processing unit (Central Processing Unit, CPU) 1401, which can be loaded into a RAM (Random) according to a program stored in a ROM (Read Only Memory) 1402 or from a storage part 1408. Access Memory (random access memory) 1403 to perform various appropriate actions and processes. In RAM 1403, various programs and data required for system operation are also stored.
  • CPU 1401, ROM 1402 and RAM 1403 are connected to each other through bus 1404.
  • I/O (Input/Output, input/output) interface 1405 is also connected to bus 1404.
  • the following components are connected to the I/O interface 1405: an input section 1406 including a keyboard, a mouse, etc.; an output section 1407 including a CRT (Cathode Ray Tube, cathode ray tube), LCD (Liquid Crystal Display), etc., and speakers, etc. ; a storage part 1408 including a hard disk, etc.; and a communication part 1409 including a network interface card such as a LAN (Local Area Network, wireless network) card, a modem, etc.
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • Driver 1410 is also connected to I/O interface 1405 as needed.
  • Removable media 1411 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc., are installed on the drive 1410 as needed, so that a computer program read therefrom is installed into the storage portion 1408 as needed.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communications portion 1409, and/or installed from removable media 1411.
  • CPU 1401 central processing unit
  • various functions defined in the system of the present application are executed.
  • Embodiments of the present disclosure also provide a readable storage medium, with a program or instructions stored on the readable storage medium, and the processor is configured to implement each process of the above information transmission method embodiment when executing the program or instructions, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage media includes computer-readable storage media, such as ROM, RAM, magnetic disks or optical disks.
  • An embodiment of the present disclosure further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is configured to implement the above information transmission method when executing a program or instruction.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • the chip mentioned in the embodiments of the present disclosure may also be called a system-on-chip, a system-on-a-chip, a system-on-a-chip or a system-on-chip, etc.
  • Embodiments of the present disclosure provide a computer program product containing instructions that, when run on a computer, cause the computer to perform the steps of the information transmission method as described above, and can achieve the same technical effect. To avoid duplication, they will not be repeated here. Repeat.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息传输方法、节点、介质及程序产品,属于感知通信技术领域。该方法包括:接收配置信息(S202),该配置信息用于指示N组传输资源,N为正整数;通过该N组传输资源接收来自于至少一个感知节点的信号(S205);基于来自于该至少一个感知节点的信号,确定N个上报信息(S206);向控制节点发送N个上报信息(S207)。基于本公开实施例提供的信息传输方法,可以从多个感知节点中选择出合适的感知节点参与感知。

Description

信息传输方法、节点、介质及程序产品 技术领域
本公开属于感知通信技术领域,具体涉及一种信息传输方法、节点、介质及程序产品。
背景技术
在通信系统中,无线感知(sensing)可以用于探测物理环境的参数,从而实现目标定位、动作识别、成像等。
传统的无线感知与无线通信是独立存在的,分离化的设计存在无线频谱和硬件资源的浪费。在未来进入B5G(Beyond 5G,超5代移动通信系统)时代、6G时代后,可以将利用基站和多个终端进行联合感知。在无线通信系统中,当一个被感知节点周围存在多个感知节点(例如可以发送信号的基站、手机、物联网设备等)时,多个感知节点共同参与感知可以提高感知的准确性。
然而,虽然参与感知的节点数量越多有利于提高感知性能,但是从效率上并不是节点越多效率最高。因此,如何从多个感知节点中选择出合适的感知节点参与感知是目前亟待解决的问题。
发明内容
本公开实施例的目的是提供一种信息传输方法、节点、介质及程序产品,能够解决从多个感知节点中选择出合适的感知节点参与感知的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种信息传输方法,应用于被感知节点,该方法包括:接收配置信息,该配置信息用于指示N组传输资源,N为正整数;通过该N组传输资源接收来自于至少一个感知节点的信号;基于来自于该至少一个感知节点的信号,确定N个上报信息;向控制节点发送该N个上报信息。
第二方面,本公开实施例提供了一种信息传输方法,应用于控制节点,该方法包括:发送配置信息,该配置信息指示N组传输资源,该N组传输资源用于至少一个感知节点向被感知节点发送信号,N为正整数;接收来自于被感知节点的N个上报信息,该N个上报信息由被感知节点基于该至少一个感知节点在该N组传输资源上发送的信号确定。
第三方面,本公开实施例提供了一种信息传输方法,应用于控制节点,该方法包括:发送配置信息,该配置信息指示用于第一感知节点向被感知节点发送信号的第一传输资源;接收来自于被感知节点的N个上报信息,该N个上报信息由被感知节点基于至少一个感知节点通过N组传输资源发送的信号确定的,该N组传输资源包括该第一传输资源,该至少一个感知节点包括该第一感知节点,N为正整数。
第四方面,本公开实施例提供了一种信息传输方法,应用于第一感知节点,该方法包括:接收配置信息,该配置信息指示该第一感知节点向被感知节点发送信号的第一传输资源,该第一传输资源为N组传输资源中的传输资源,该N组传输资源用于至少一个感知节点向被感知节点发送信号,该至少一个感知节点包括该第一感知节点,N为正整数;在该第一传输资源上向被感知节点发送信号
第五方面,本公开实施例提供了一种被感知节点,被感知节点包括:接收模块、确定模块和发送模块;该接收模块,用于接收配置信息,该配置信息用于指示N组传输资源,N为正整数;该接收模块,还用于通过该N组传输资源接收来自至少一个感知节点的信号;该确定模块,用于基于来自于该至少一个感知节点的信号,确定N个上报信息;该发送模块,用于向控制节点发送该N个上报信息。
第六方面,本公开实施例提供了一种控制节点,该控制节点包括:发送模块和接收模块;该发送模块,用于发送配置信息,该配置信息指示N组传输资源,该N组传输资源用于至少一个感知节点向被感知节点发送信号,N为正整数;该接收模块,用于接收来自于被感知节点的N个上报信息,该N个上报信息由被感知节点基于该至少一个感知节点在该N组传输资源上发送的信号确定。
第七方面,本公开实施例提供了一种控制节点,该控制节点包括:发送模块和接收模块;该发送模块,用于发送配置信息,该配置信息指示用于第一感知节点向被感知节点发送信号的第一传输资源;该接收模块,用于接收来自于被感知节点的N个上报信息,该N个上报信息由被感 知节点基于至少一个感知节点通过N组传输资源发送的信号确定,该N组传输资源包括该第一传输资源,该至少一个感知节点包括该第一感知节点,N为正整数。
第八方面,本公开实施例提供了一种感知节点,该感知节点为第一感知节点,第一感知节点包括:接收模块和发送模块;该接收模块,用于接收配置信息,该配置信息指示该第一感知节点向被感知节点发送信号的第一传输资源,该第一传输资源为N组传输资源中的传输资源,该N组传输资源用于至少一个感知节点向被感知节点发送信号,该至少一个感知节点包括该第一感知节点,N为正整数;该发送模块,用于在该第一传输资源上向被感知节点发送信号。
第九方面,本公开实施例提供了一种被感知节点,被感知节点包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述处理器被配置为执行所述程序或指令时实现如第一方面所述的信息传输方法的步骤。
第十方面,本公开实施例提供了一种控制节点,该控制节点包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述处理器被配置为执行所述程序或指令执行时实现如第二方面或第三方面所述的信息传输方法的步骤。
第十一方面,本公开实施例提供了一种感知节点,被感知节点包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述处理器被配置为执行所述程序或指令时实现如第四方面所述的信息传输方法的步骤。
第十二方面,本公开实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第二方面、第三方面或第四方面所述的信息传输方法的步骤。
第十三方面,本公开实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第二方面、第三方面或第四方面所述的信息传输方法。
第十四方面,本公开实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面、第二方面、第三方面或第四方面所述的信息传输方法的步骤。
附图说明
图1为本公开实施例提供的一种感知系统的架构示意图;
图2为本公开实施例提供的信息传输方法的交互流程示意图之一;
图3为本公开实施例提供的一种传输资源的时域示意图;
图4为本公开实施例提供的一种传输资源的周期性示意图;
图5为本公开实施例提供的一种传输资源时域连续性的示意图;
图6为本公开实施例提供的一组传输资源包括至少两个传输机会的示意图之一;
图7为本公开实施例提供的一组传输资源包括至少两个传输机会的示意图之二;
图8为本公开实施例提供的一组传输资源包括至少两个传输机会的示意图之三;
图9为本公开实施例提供的信息传输方法的交互流程示意图之二;
图10为本公开实施例提供的一种被感知节点可能的结构示意图;
图11为本公开实施例提供的一种控制节点可能的结构示意图;
图12为本公开实施例提供的一种感知节点可能的结构示意图;
图13为本公开实施例提供的一种节点可能的结构示意图;
图14为本公开实施例提供的一种节点的硬件示意图。
具体实施方式
为了便于理解,首先对本公开实施例中涉及的相关术语进行解释:
一、无线感知
无线通信和无线感知是现代射频技术的两大重大应用。其中,无线感知可以利用反向散射的无线电波探测物理环境的参数,以实现目标定位、动作识别、成像等环境感知。
传统的无线感知与通信是独立存在的,分离化的设计存在无线频谱和硬件资源的浪费问题。在进入B5G、6G时代之后,通信频谱可以迈向毫米波、太赫兹、可见光通信,未来无线通信的频谱会与传统的感知频谱重合。
未来的通信感知技术可以将通信和感知两个功能融合,可以利用通信的无线资源管理解决传统无线感知中的干扰问题;可以利用广泛部署的蜂窝网络实现更大范围内的感知业务;可以利用基站和多个终端进行联合感知,实现更高的感知精度;可以复用通信的硬件模块实现感知功能,降低成本。总之,通信感知技术使得未来无线通信系统具有感知能力,为未来的智慧交通、智慧城市、智慧工厂、无人机等业务的发展提供一种基础。
如前所述,无线通信系统中的终端设备数量大,例如:手机、IoT设备(Internet of Things,物联网)。当一个被感知节点周围存在多个感知节点时,多个感知节点共同参与感知将能够提高感知的准确性,并且可满足更复杂的感知业务需求,提供更丰富的感知业务。可以理解,当系统内存在多个感知节点时,由一个感知控制节点来控制、管理整个感知业务可提高效率。该控制节点可以是基站,也可以是一个移动终端。参与感知的节点数量增多,虽然有利于提高感知性能,但从效率上来说并不是最优的。如何从多个感知节点中选择出适当的节点参与感知将是通信感知中需要研究的一个主要问题。例如,被感知终端周围包括三个感知终端,相比于基站,三个感知终端距离被感知终端距离更近,利用该三个感知终端进行感知可能会比利用基站进行感知的效率和准确性更高。进一步地,未来也可以根据感知业务的性能需求,感知终端的特征及被感知终端的特征,可以从多个感知终端中选择部分执行感知业务。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
值得指出的是,本公开实施例所描述的技术不限于LTE(Long Term Evolution,长期演进型)/LTE-A(LTE-Advanced,LTE的演进)系统,还可用于其他无线通信系统,诸如CDMA(Code Division Multiple Access,码分多址)、TDMA(Time Division Multiple Access,时分多址)、FDMA(Frequency Division Multiple Access,频分多址)、OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)、SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如6G(6th Generation,第6代)通信系统。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的信息传输方法进行详细地说明。
图1为本公开实施例提供的一种感知系统的架构示意图。如图1中所示,该感知系统包括:控制节点100、被感知节点101和至少一个感知节点102。其中,控制节点100,用于向感知节点102和被感知节点101发送配置信息,以配置传输信号的传输资源,以使得各个感知节点102在配置的传输资源上向被感知节点101发送信号,被感知节点101在配置的传输资源上接收各个感知节点102发送的信号,从而使得被感知节点101根据接收的信号向控制节点100上报信息,以使得控制节点100可以基于上报的信息为被感知节点101选择参与感知的感知节点。
其中,控制节点为控制、管理感知业务的节点,即可以控制或管理感知节点向被感知节点发送感知信号。感知节点在被配置进行或参与感知时,感知节点可以发送感知信号,用于感知被感知节点。
在本公开的一些实施例中,控制节点可以为被感知节点接入的基站,也可以为周围的感知节点中的一个感知节点。
图2为本公开实施例提供的一种信息传输方法的交互流程示意图,如图2中所示,该方法包括下述的S201至S208:
S201、控制节点发送配置信息。
其中,配置信息用于指示N组传输资源,N为正整数。
需要说明的是,配置信息可以用于指示至少一个感知节点通过该N组传输资源发送信号。
例如,上述至少一个感知节点可以为被感知节点周围的感知节点。
示例性地,控制节点可以向被感知节点和感知节点发送配置内容相同的配置信息。
在本公开的一些实施例中,上述N组传输资源发送的信号可以为感知节点发送的感知信号,也可以为感知节点发送的测量信号。
需要说明的是,在本公开实施例中,配置的传输资源可以包括时域资源、频域资源和序列资源中的至少一种。
S202、被感知节点接收配置信息。
S203、至少一个感知节点接收配置信息。
示例性地,被感知节点可以接收控制节点发送的配置信息。
S204、至少一个感知节点在该N组传输资源上向被感知节点发送信号。
S205、被感知节点通过该N组传输资源接收来自上述至少一个感知节点发送的信号。
S206、被感知节点基于来自于上述至少一个感知节点发送的信号,确定N个上报信息。
其中,上报信息可以为感知结果信息或感知测量信息。
S207、被感知节点向控制节点发送上述N个上报信息。
S208、控制节点接收来自于被感知节点的N个上报信息。
其中,该N个上报信息由所述被感知节点基于上述至少一个感知节点在上述N组传输资源上发送的信号确定。
示例性地,当控制节点接收到感知节点的N个上报信息之后,可以根据该N个上报信息为感知节点选择参与感知服务的感知节点。
本公开实施例提供的信息传输方法,控制节点可以向被感知节点和被感知节点发送配置信息,以指示至少一个感知节点通过N组传输资源发送信号,至少一个感知节点在接收到配置信息之后,可以通过该N组传输资源向被感知节点发送信号,被感知节点在接收到配置信息之后,可以根据配置信息指示的N组传输资源接收至少一个感知节点发送的信号,然后根据该至少一个感知节点上接收的信号,确定N个上报信息,从而可以确定不同感知节点发送信号的性能是否满足需求。被感知节点可以将该N个上报信息可以发送给控制节点,从而使得控制节点可以根据上报信息,可以合理、有效地为感知节点选择参与感知通信的感知节点,从而可以选择较高的效率的感知节点为被感知节点提供较高的感知性能。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,上述N个上报信息与上述N组传输资源一一对应。
也就是说,被感知节点可以根据上述N组传输资源中的其中一组传输资源上接收的信号得到一个上报信息。即,配置的每一组传输资源可以对应一个上报信息。
示例性地,在一组传输资源上可以感知节点可以发送一组测量信号,被感知节点可以基于该组测量信号得到一个测量结果,该测量结果对应一个上报信息。
在本公开实施例提供的一种信息传输方法中,上报信息包括以下1-1至1-10中的至少一项:
1-1:通过结果信息;
其中,通过结果信息指示在上述N组传输资源中的一组传输资源上接收到的信号的感知结果或测量结果满足预设条件。
1-2:未通过结果信息;
其中,未通过结果信未指示在上述N组传输资源中的一组传输资源上接收到的信号的感知结果或测量结果不满足预设条件。
一种可能的示例,对于一组传输资源上的测量信号,上报信息中可以不包括具体的测量结果;对于一组传输资源上的感知信号,上报信息中可以不包括具体的感知结果。上报信息中可以携带简单的结果信息,例如“0”表示通过结果信息、“1”表示未通过结果信息。
以感知节点发送的信号为测量信号为例,当结果信息置为“1”的情况下,可以指示该组传输资源上的测量信号的测量结果满足预定义的性能需求,例如测量结果大于或等于性能需求门限值;当结果信息置为“0”的情况下,可以指示该组传输资源上的测量信号的测量结果不满足预定义的性能需求,例如测量结果小于性能需求门限值。
一种可能的示例,若测量结果或感知结果通过,则可以上报该信息,若测量结果或感知结果通过,则可以不上报该信息。
1-3:允许信息;
其中,允许信息指示允许一个感知节点向被感知节点发送感知信号或测量信号,或指示允许在上述N组传输资源中的一组传输资源上发送信号的感知节点向被感知节点发送感知信号或测量信号。
1-4:拒绝信息;
其中,拒绝信息指示拒绝一个感知节点向被感知节点发送感知信号或测量信号,或指示拒绝在上述N组传输资源中的一组传输资源上发送信号的感知节点向被感知节点发送感知信号或测量信号。
需要说明的是,上述一组传输资源上发送信号的感知节点,可以包括至少一个感知节点。
一种可能的示例,对于一组传输资源上的测量信号,上报信息中可以不包括具体的测量允许结果,对于一组传输资源上的感知信号,上报信息中可以不包括具体的感知允许结果,可以发送简单的允许信息或拒绝信息,例如“0”或“1”。
同样地,以感知节点发送的信号为测量信号为例,当允许结果置为“1”的情况下,可以指示被感知节点允许该组传输资源上的发送测量信号的感知节点,向被感知节点发送感知信号;当允许结果置为“0”的情况下,可以指示被感知节点不允许该组传输资源上的发送测量信号的感知节点,向被感知节点发送感知信号。
一种可能的示例,若被感知节点允许一个感知节点发送测量信号或感知信号,则可以上报允许信息,若被感知节点禁止一个感知节点发送测量信号或感知信号,则可以不上报信息。
1-5:信号幅度信息;
例如,RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
1-6:功率信息;
例如,RSRP(Reference Signal Receiving Power,参考信号接收功率)。
1-7:能量信息;
例如,SNR(Signal to Noise Ratio,信噪比)、SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)等信息。
1-8:信号相位信息;
1-9:信号的到达时间信息;
1-10:信号的到达角度信息。
在本公开的一些实施例中,在本公开实施例提供的一种信息传输方法中,配置信息还可以包括上述至少一个感知节点中的一个感知节点的特征信息。
在本公开的一些实施例中,上述一个感知节点可以对应N组传输资源中的一组传输资源。
其中,该一组传输资源对应的感知节点可以包括一个或多个感知节点。
可以理解,若一组传输资源对应一个感知节点,则配置信息可以包括该组传输资源对应的一个感知节点的特征信息;若一组传输资源对应至少两个感知节点,则配置信息可以包括该组传输资源对应的至少感知节点的特征信息。
在本公开的一些实施例中,配置信息还可以包括上述至少一个感知节点中的第一感知节点的特征信息。在本公开的一些实施例中,第一感知节点包括一个或多个感知节点。
在本公开的一些实施例中,第一感知节点对应上述N组传输资源中的一组传输资源。
示例性地,配置信息中可以指示一组传输资源对应的一个感知节点(例如,一组传输资源与一个感知节点一一对应时)的特征信息,也可以指示一组传输资源对应的多个感知节点(例如一组传输资源与多个感知节点一多对应时)的特征信息。
在本公开的一些实施例中,感知节点的特征信息可以包括以下至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
例如,对于一个被感知节点,若被感知节点不允许手机类终端对自己进行感知,即使一个手机终端发送的测量信号满足预定义的性能需求,但由于手机类终端不是被感知节点偏好的设备类型,则被感知节点可以针对该手机终端发送的信号对应的允许信息值为“0”。
一种可能的示例,被感知节点可以在检测到配置信息中针对该感知节点的特征信息指示的设备类型为非偏好类型的情况下,可以不接收该设备在配置的传输资源上发送的信号,直接确定该组传输资源对应允许信息的值为“0”。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,上述的S207具体可以通过下述的S27a或S27b执行:
S27a、被感知节点通过一个物理信道向控制节点发送上述N个上报信息。
进而,上述的S208可以通过下述的S28a执行:
S28a、控制节点通过一个物理信道接收来自于被感知节点的N个上报信息。
其中,该一个物理信道可以为根据配置信息或第一信息确定的,第一信息为在接收到配置信息之后接收到的上报资源的指示信息。
示例性地,配置信息或第一信息还可以指示传输上报信息的物理信道资源,例如可以指示时域资源、频域资源和序列资源中的至少一种,被感知节点也可以根据承载配置信息或第一信息的物理传输信道的传输位置确定传输上报信息的物理信道资源。
示例性地,传输上报信息的物理信道可以为PUCCH(Physical Uplink Control Channel,物理上行控制信道)或PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
S27b,被感知节点通过M个物理信道向控制节点发送上述N个上报信息。
其中,M为小于或等于N的正整数。
进而,上述的S208可以通过下述的S28b执行:
S28b、控制节点通过M个物理信道接收来自于被感知节点的N个上报信息。
示例性地,被感知节点可以采用分批上报的方式发送上报信息,从而可以实现较低的上报时延,由于每次上报的信息量小,从而还可以保证较高的可靠性。
例如,在N组传输资源中每两组传输资源的时域间隔较大的情况下,被感知节点可以针对每个感知节点的信号单独发送上报信息,可以根据每组传输资源中的特定传输资源(例如第一个传输资源或最后一个传输资源)确定传输对应上报信息的物理信道资源。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,上述的S27a具体可以通过下述的A1执行:
A1:被感知节点对上述N个上报信息进行联合编码通过一个物理信道向控制节点发送上述N个上报信息。
示例性地,被感知节点可以对N个上报信按组编号级联并联合编码,也可以对N个上报信按时域资源顺序级联并联合编码。
可以理解,通过联合编码的方式传输N个上报信息的传输方式的传输效率高,功耗低。
需要说明的是,控制节点可以配置传输信号的N组传输资源,每组传输资源中可以包括至少一个传输机会,被感知对象可以针对每一组传输资源上传输的信号得到一个上报结果。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,可以包括以下方式1至方式3中的至少一项:
方式1:上述N组传输资源与至少一个感知节点具有一对一关系。
例如,一组传输资源与一个感知节点一一对应。也就是说,上述N组传输资源中的一组传输资源上的信号是由同一个感知节点发送的。
即,被感知节点周围的感知节点中,存在感知节点是通过一组传输资源发送信号的发送方式。其中,感知节点仅在上述N组传输资源中的其中一组传输资源上发送信号,该组传输资源对应的一个上报信息为该感知节点发送的信号确定的。该感知节点可以为上述至少一个感知节点中的任意一个感知节点。
可以理解,若每一个感知节点均在一组传输资源上发送信号,例如节点1在传输资源组1上发送信号、节点2在传输资源组2上发送信号,则上述至少一个感知节点的数量可以为N,即感知节点的数量可以为N个。被感知节点针对该N个感知节点中的每个感知节点在配置的传输资源上发送的信号可以得到一个上报结果。控制节点可以基于N个感知节点对应的N个上报结果,确定后续感知集合中包括的感知节点。
方式2:上述N组传输资源与上述至少一个感知节点具有一对多关系。
例如,一组传输资源与至少两个感知节点一多对应;也就是说,上述N组传输资源中的同一组传输资源上的信号是由至少两个感知节点发送的。
即,被感知节点周围的感知节点中,存在两个感知节点是通过一组传输资源发送信号的发送方式。其中,至少两个感知节点在一组传输资源上发送信号,该组传输资源对应的一个上报信息为该至少两个感知节点发送的信号确定的。
可以理解,该上报信息为基于至少两个感知节点发送的信号得到的一个整体的上报信息,并 非精确到每个感知节点。
例如,一组测量信号包括多个测量信号,多个感知节点分别在该组传输资源上的每个传输资源向被感知节点发送测量信号。
方式3:上述N组传输资源与上述至少一个感知节点具有多对一关系。
例如,上述N组传输资源中的多组传输资源,与同一个感知节点存在多对一关系。也就是说上述N组传输资源中的至少两组传输资源上的信号是由同一个感知节点发送的。
即,被感知节点周围的感知节点中,存在一个感知节点是通过至少两组传输资源发送信号的发送方式。其中,一个感知节点在至少两组传输资源发送信号,该至少两组传输资源对应的至少两个上报信息为该节点发送的信号确定的。
可以理解,该感知节点基于同一个被感知节点发送的信号可以得到至少两个上报信息,从而使得根据该感知节点发送的信号获取的结果准确性更高。
示例性地,可以根据感知节点与被感知节点的距离,确定是否为感知节点配置多组传输资源。
一种可能的示例,若存在一个感知节点在至少两组传输资源上发送信号,则上述的至少一个感知节点可以为H个感知节点,H为小于N的正整数。
需要说明的是,在本公开实施例中,上述的N组传输资源中,一组传输资源可以包括至少一个传输机会(传输资源)。其中,一个传输机会可以对应一次信号的传输,本公开实施例对此不作具体限定。
需要说明的是,在本公开实施例中,被感知节点可以不明确被感知节点的数量,被感知节点和信号的对应关系,被感知节点可以针对N组传输资源上接收的信号进行独立处理并进行反馈即可。
在本公开的一些实施例中,被感知节点也可以明确感知节点和信号的对应关系,本公开实施例对此不作具体限定。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,上述N组传输资源中的每组传输资源为独立配置的。
控制节点在配置信息中可以独立配置各组传输资源,例如可以独立配置各组传输资源中的时域资源、频域资源和序列资源中的至少一项。
在本公开的一些实施例中,控制节点可以向感知节点和被感知节点发送第一信令,第一信令中包括多个子信令,其中一个子信令可以用于配置至少一组传输资源。
在本公开的一些实施例中,控制节点也可以发送多条第二信令,每条第二信令单独指示一组传输资源。即不同组之间的传输资源完全不相关或没有共性。
在本公开的一些实施例中,本公开实施例提供的一种信息传输方法中,上述N组传输资源中的每组传输资源包括一个传输机会(传输资源);该N组传输资源可以满足以下条件1-1和条件1-2中的任意一项:
条件1-1:该N组传输资源为周期性的传输资源;
条件1-2:该N组传输资源为时域连续的传输资源。
图3为本公开实施例提供的一种传输资源的时域示意图,假设N=4,即配置了4组传输资源,每组传输资源包括一个传输机会。如图3中的(a)所示,为上述4组传输资源的时域周期性示意图,按照时间先后顺序依次为第1组传输资源、第2组传输资源、第3组传输资源和第4组传输资源。每组传输资源的时间长度相同为L,每组传输资源间隔相同的时间T。继续结合图3,如图3中的(b)所示,为4组传输资源的时域连续性示意图,按照时间先后顺序依次为第1组传输资源、第2组传输资源、第3组传输资源和第4组传输资源,每组传输资源的结束符号与下一组传输资源的起始符号相邻。
需要说明的是,在本公开实施例中,以各个传输资源或各个传输机会的时域资源占用的符号长度为例进行说明。
在本公开的一些实施例中,该N组传输资源中各组传输资源占用的频域资源可以相同,也可以不同。在频域资源不同的情况下,可以为基于约定方式跳频得到各组传输资源的频域资源。
在本公开的一些实施例中,该N组传输资源中各组传输资源占用的序列资源可以相同,也可以不同。在序列资源不同的情况下,可以为基于约定方式跳变得到各组传输资源的序列资源,例如可以基于约定的方式确定信号所使用的序列的参数、编号或循环移位值。
针对上述条件1-1:
在本公开的一些实施例中,该N组传输资源可以具有时域周期性或者频域周期性中的至少一种周期性。
为了便于说明,以时域周期性为例进行说明,配置信息中可以指示时域周期,还可以指示以下至少一项:起始符号S0、结束符号S1、一组传输资源的时域长度L(符号数量)、一个传输资源占用的频域资源、N的取值。
图4为本公开实施例提供的一种传输资源的周期性示意图。如图4中所示,配置的4组时域周期性的传输资源,第1组传输资源的起始符号为S0,S0为时隙n的起始符号,每组传输资源的时间间隔为1时隙(14个符号),第4组传输资源的结束符号为S1,S1为时隙n+3的第L个符号(此时的L为小于14的正整数)。
在本公开的一些实施例中,在上述N组传输资源为周期性的传输资源的情况下,第一时间单元为根据第二信息确定的。其中,第一时间单元为上述N组传输资源的第一组传输资源所在的时间单元(时隙、子时隙或至少一个时域符号);第一组传输资源为N组传输资源中,传输时间最早的一组传输资源。第二信息为配置信息或上述的第一信息。
在本公开的一些实施例中,第一时间单元为第二信息指示的,或为根据第二信息的发送时间单元和第一时间偏移量确定的。其中,第一时间偏移量为预定义的时间偏移量或第二信息指示的时间偏移量。
在本公开的一些实施例中,在N组传输资源为周期性的传输资源的情况下,配置信息还包括以下至少一项:第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;时间偏移量。
示例1-1:
例如,配置信息可以指示以下至少一项:第一组测量信号所在的第一时间单元、第一时间偏移量。
进而,N组传输资源的第一组传输资源所在的时间单元可以为第一时间单元、或为发送配置信息的时间单元和第一时间偏移量确定的时间单元,或为发送配置信息的时间单元和预定义偏移量确定的时间单元。
在本公开的一些实施例中,在上述的S201之后,还可以包括下述的S209:
S209、控制节点发送第一信息。
一种可能的示例,控制节点在发送配置信息之后可以向被感知节点发送第一信息,以指示被感知节点发送上报信息的传输资源。
示例1-2:
例如,第一信息可以指示以下至少一项:第一组测量信号所在的第二时间单元、第二时间偏移量。
进而,N组传输资源的第一组传输资源所在的时间单元可以为第二时间单元、或为发送第一信息的时间单元和第二时间偏移量确定的时间单元,或为发送第一信息的时间单元和预定义偏移量确定的时间单元。
需要说明的是,第一时间单元和第二时间单元可以为同一个时间单元,也可以为不同的时间单元,第一时间偏移量和第二时间偏移量可以为值相同的偏移量,也可以为值不同的偏移量,本公开实施例对此不作具体限定。
针对上述条件1-2:
例如,将测量信号的发送集中在相对短的时间内,不仅可以降低感知测量过程对通信过程的影响,而且可以以较小的信令开销进行测量。
在本公开的一些实施例中,配置信息可以指示N组传输资源的起始位置和以下至少一项:持续时长、结束位置、N的值;其中,每组传输资源占用的时域符号数量为预定义的或配置信息指示的。
示例2-1:配置信息指示N组传输资源的起始位置和持续时长。
示例2-2:配置信息指示N组传输资源的起始位置和N的取值。
示例2-3:配置信息指示N组传输资源的起始位置和结束位置。
图5为本公开实施例提供的一种传输资源时域连续性的示意图。假设N组符号的总长度未超过1 时隙,如图5中的(a)所示,配置信息中指示传输资源的起始位置S0为时隙n的第1个符号,以及总共占用W个符号;如图5中的(b)所示,配置信息中可以指示传输资源的起始位置S0为时隙n的第1个符号,以及N的具体值;如图5中的(c)所示,配置信息中可以指示传输资源的起始位置S0和结束位置S1。
本公开实施例提供的一种信息传输方法中,上述N组传输资源中的至少一组传输资源包括至少两个传输机会(至少两个传输资源)。
一种可能的示例,该至少一组传输资源中的每组传输资源为独立配置的。
一种可能的示例,对于存在至少两个传输机会的多组传输资源,各组传输资源中的传输机会可以为独立配置的。
在本公开的一些实施例中,各组传输资源中的传输机会的数量可以相同,也可以不同;各组传输资源中的传输机会占有的频域资源(或符号资源)可以相同,也可以不同;本公开实施例对此不作具体限定。
图6为本公开实施例提供的一种一组传输资源包括至少两个传输机会的示意图。假设N=2,即配置了2组传输资源。如图6中的(a)所示,2组传输资源是时域连续的传输资源,2组传输资源均包括2个传输机会,按照时间先后顺序依次为:第1组传输机会1、第1组传输机会2、第2组传输机会1和第2组传输机会2。如图6中的(b)所示,2组传输资源分别是周期性的传输资源,2组传输资源均包括2个传输机会,按照时间先后顺序依次为:第1组传输机会1、第2组传输机会1、第1组传输机会2和第2组传输机会2。如图6中的(c)所示,第1组传输资源包括3个传输机会,第2组传输资源包括2个传输机会,按照时间先后顺序依次为:第1组传输机会1、第1组传输机会2、第2组传输机会1、第1组传输机会2以及第2组传输机会2。
在本公开的一些实施例中,上述至少一组传输资源包括的至少两个传输机会可以满足以下条件2-1至条件2-3中的任意一项:
条件2-1:该至少两个传输机会为周期性的传输机会;
条件2-2:该至少两个传输机会为时域连续的传输机会;
条件2-3:该至少两个传输机会为时域离散分布的传输机会。
需要说明的,针对上述的条件2-1和条件2-2,可以参考上述条件1-1和条件1-2的描述,此处不再赘述。
在本公开的一些实施例中,该至少两个传输机会中各个传输机会占用的频域资源可以相同,也可以不同。在频域资源不同的情况下,可以基于约定方式跳频得到各个传输机会的频域资源。
在本公开的一些实施例中,该至少两个传输机会中各个传输机会占用的序列资源可以相同,也可以不同。在序列资源不同的情况下,可以基于约定方式跳变得到各个传输机会的序列资源,例如可以基于约定的方式确定信号所使用的序列的参数、编号或循环移位值。
图7为本公开实施例提供的一组传输资源包括至少两个传输机会的示意图。假设一组传输资源包括4个传输机会,如图7中的(a)所示,该4个传输机会为周期性的传输机会,每个传输机会间隔1个时隙,该4个传输机会分别为时隙n至时隙n+3中每个时隙的前L个符号。如图7中的(c)所示,该4个传输机会为时域离散分布的传输机会,传输机会1占用时隙n的前L个符号、传输机会2占用时隙n的后L个符号、传输机会3占用时隙n+2的后L个符号、传输机会4占用时隙n+3的前L个符号。
图8为本公开实施例提供的一组传输资源包括至少两个传输机会的示意图。假设该至少两个传输机会为时域连续的传输机会,每个传输机会占用的时域符号的长度是相同的,其中每个传输机会占用的时域符号的长度可以为预定义的,也可以为配置信息指示的。如图8中的(a)所示,配置信息中可以指示该至少两个传输机会的起始位置S0和总占用的符号数量为P;如图8中的(b)所示,配置信息中可以指示该至少两个传输机会的起始位置S0和传输机会的数量Q;如图8中的(c)所示,配置信息中可以指示该至少两个传输机会的起始位置S0和结束位置S1。
针对上述的条件2-3:
一种可能的实现方式,配置信息可以指示目标时隙中的第一符号、与第一符号间隔预设数量符号的第二符号;或者,配置信息可以指示目标时隙中的第一符号和第一符号长度、与第一符号间隔预设数量符号的第二符号和第二符号长度。
示例3-1:
配置信息中可以配置各个传输机会的起始位置的图样(例如配置了bitmap)。
例如:{时隙n中的符号0,时隙n中的符号6,时隙n+2中的符号12,时隙n+3中的符号0}。
其中,每个传输机会包括的时域符号的数量为预定义的,或配置信息指示的。
示例3-2:
配置信息中可以配置各个传输机会的起始位置和时长的图样。
例如:{时隙n中的符号0且时长为2符号,时隙n中的符号6且时长为2符号,时隙n+2中的符号12且时长为1符号,时隙n+3中的符号0且时长为3符号}。
需要说明的是,在本公开实施例中,时隙n的确定方式可以参考上述第一时间单元的确定方式,此处不再赘述。
可以理解,在不同的感知节点到被感知节点间的传输信道不同、不同的感知节点的能力、功耗不同的情况下,可以基于不同的感知节点使用不同数量的传输资源配置。
在本公开实施例中,对于一个感知节点,可以无需获取控制节点配置的所有N组传输资源,仅获取自己的传输位置即可。即控制节点向被感知节点发送的配置信息可以指示N组传输资源,向被感知节点指示至少一个感知节点通过该N组传输资源发送感知信号或测量信号,向每个感知节点发送的配置信息可以指示每个感知节点对应的传输资源。下面以控制节点向第一感知节点(至少一个感知节点中的任意一个感知节点)发送配置信息为例进行说明。
图9为本公开实施例提供一种信息传输方法的方法流程示意图,应用于控制节点向单个感知节点配置传输资源,可以包括下述的S901和S902:
S901、控制节点发送配置信息。
其中,该配置信息用于指示第一感知节点向被感知节点发送信号的第一传输资源,第一传输资源为N组传输资源中的传输资源,该N组传输资源用于至少一个感知节点向被感知节点发送信号,该至少一个感知节点包括第一感知节点,N为正整数。
可以理解,控制节点为至少一个感知节点配置了N组传输资源,该N组传输资源包括第一传输资源。
S902、第一感知节点接收配置信息。
可以理解,其他感知节点也可以接收对应的配置信息。
S903、第一感知节点在第一传输资源上向被感知节点发送信号。
S904、被感知节点通过N组传输资源接收来自于至少一个感知节点的信号。
S905、被感知节点基于来自于上述至少一个感知节点的信号,确定N个上报信息。
其中,该N个上报信息由被感知节点基于至少一个感知节点通过N组传输资源发送的信号确定,该N组传输资源包括第一传输资源,该至少一个感知节点包括第一感知节点。
该N个上报信息为感知结果信息或感知测量信息。
S906、被感知节点向控制节点发送N个上报信息。
S907、控制节点接收来自于被感知节点的N个上报信息。
其中,该N个上报信息为上述N组传输资源上发送的信号确定的,上述上报信息为感知结果信息或感知测量信息。
可以理解,控制节点可以接收感知节点发送的N个上报信息。
本公开实施例提供一种信息传输方法,控制节点在发送配置信息时,可以向各个感知节点单独发送配置信息,各个感知节点接收的配置信息中可以配置各个感知节点对应的传输资源,从而可以使得各个感知节点以较少的开销获取自己向被感知节点发送信号的传输位置。
需要说明的是,上述N组传输资源的相关描述,可以参考上述实施例中的描述,此处不再赘述。
在本公开的一些实施例中,在上述N组传输资源为周期性的传输资源的情况下,在上述的S901之后,还可以包括下述的S908:
S908、控制节点发送第一信息。
其中,第一信息包括第一时间单元和时间偏移量中的至少一项,第一时间单元为上述N组传输资源的第一组传输资源所在的时间单元。
需要说明的是,在该方案中,第一时间单元的确定方式可以参考上述实施例中的描述,此处不再赘述。
在本公开的一些实施例中,配置信息指示第一感知节点发送一个信号或一组信号。
在本公开的一些实施例中,在第一传输资源包括至少两个传输机会的情况下,该至少两个传输机会满足以下任意一项:该至少两个传输机会为周期性的传输机会、该至少两个传输机会为时域连续的传输机会、该至少两个传输机会为时域离散分布的传输机会。
需要说明的是,针对第一传输资源包括至少两个传输机会的描述,可以参考上述实施例中针对一个传输资源包括至少两个传输机会的描述,此处不再赘述。
在本公开的一些实施例中,在本公开实施例中,配置信息还指示第二感知节点向被感知节点发送信号的第二传输资源,上述N组传输资源包括所述第二传输资源。
即,配置信息可以指示至少一个感知节点中多个感知节点分别发送信号的传输资源。
在本公开的一些实施例中,在本公开实施例中,控制节点可以向每一个感知节点发送相同的配置信息,各个感知节点在该配置信息中获取对应的传输资源,控制节点也可以单独向每个感知节点发送对应的配置信息,也可以向至少一个感知节点中的多个感知节点发送相同的配置信息。
在本公开的一些实施例中,上述的S902具体可以通过下述的S92a或S92b执行:
S92a、第一感知节点基于第一信令接收配置信息。
其中,第一信令包括R个子信令,第一子信令指示该第一感知节点向被感知节点发送信号的第一传输资源,R为大于1且小于或等于N的整数。
S92b、第一感知节点基于第二信令接收配置信息。
其中,第二信令指示第一感知节点向被感知节点发送信号的第一传输资源。
在本公开的一些实施例中,配置信息还包括第一感知节点的特征信息。
在本公开的一些实施例中,第一感知节点可以对应N组传输资源中的一组传输资源。
在本公开的一些实施例中,特征信息包括以下中的至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
需要说明的是,本公开实施例中的其他描述可以参考上述实施例中的具体描述,此处不再赘述。
需要说明的是,本公开实施例提供的信息传输方法,执行主体还可以为信息上报装置,或者该信息上报装置中的用于执行信息传输方法的控制模块。本公开实施例中以被感知节点和控制节点执行信息上报的方法为例,说明本公开实施例提供的信息上报的装置。
图10为本公开实施例提供的一种被感知节点的结构示意图,如图10中所示,被感知节点1000包括:接收模块1001、确定模块1002和发送模块1003;接收模块1001,用于接收配置信息,所述配置信息用于指示N组传输资源,N为正整数;接收模块1001还用于通过所述N组传输资源接收来自于至少一个感知节点的信号;确定模块1002,用于基于所述来自于所述至少一个感知节点的信号,确定N个上报信息;发送模块1003,用于向控制节点发送所述N个上报信息。
在本公开的一些实施例中,所述N个上报信息与所述N组传输资源一一对应。
在本公开的一些实施例中,所述N个上报信息中的每个上报信息包括以下至少一项:通过结果信息,所述通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果满足预设条件;未通过结果信息,所述未通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果不满足预设条件;允许信息,所述允许信息指示允许一个感知节点向所述被感知节点发送感知信号或测量信号,或指示允许在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;拒绝信息,所述拒绝信息指示拒绝一个感知节点向所述被感知节点发送感知信号或测量信号,或指示拒绝在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;信号幅度信息;功率信息;能量信息;信号相位信息;信号到达时间信息;以及,信号到达角度信息。
在本公开的一些实施例中,所述配置信息还包括所述至少一个感知节点中的一个感知节点的特征信息。
在本公开的一些实施例中,所述一个感知节点对应所述N组传输资源中的一组传输资源。
在本公开的一些实施例中,所述特征信息包括以下中的至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
在本公开的一些实施例中,发送模块1003具体用于:通过一个物理信道向控制节点发送所述N个上报信息;或通过M个物理信道向控制节点发送所述N个上报信息,M为小于或等于N 的正整数。
在本公开的一些实施例中,发送模块1003具体用于:对所述N个上报信息进行联合编码通过所述一个物理信道向控制节点发送所述N个上报信息。
在本公开的一些实施例中,所述N组传输资源与所述至少一个感知节点具有一对一关系;或所述N组传输资源与所述至少一个感知节点具有一对多关系;或所述N组传输资源与所述至少一个感知节点具有多对一关系。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源独立配置。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:所述N组传输资源为周期性的传输资源;所述N组传输资源为时域连续的传输资源。
在本公开的一些实施例中,所述N组传输资源中的至少一组传输资源包括至少两个传输机会;其中,所至少两个传输机会满足以下任意一项:所述至少两个传输机会为周期性的传输机会;所述至少两个传输机会为时域连续的传输机会;所述至少两个传输机会为时域离散分布的传输机会。
本公开实施例提供一种被感知节点,被感知节点在接收到配置信息之后,可以根据配置信息指示的N组传输资源接收至少一个感知节点发送的信号,然后根据该至少一个感知节点上接收的信号,获取N个上报信息,从而可以确定不同感知节点发送信号的性能是否满足需求。被感知节点可以将该N个上报信息可以发送给控制节点,从而使得控制节点可以根据上报信息,可以合理、有效地为感知节点选择参与感知通信的感知节点,从而可以选择较高的效率的感知节点为被感知节点提供较高的感知性能。
本公开实施例提供的被感知节点1000能够实现图1至图9方法实施例实现的各个过程,为避免重复,这里不再赘述。
图11为本公开实施例提供的一种控制节点的结构示意图,如图11中所示,控制节点1100包括:发送模块1101和接收模块1102;发送模块1101,用于发送配置信息,所述配置信息指示N组传输资源,所述N组传输资源用于至少一个感知节点向被感知节点发送信号,N为正整数;接收模块1102,用于接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于所述至少一个感知节点在所述N组传输资源上发送的信号确定。
在本公开的一些实施例中,所述N个上报信息与所述N组传输资源一一对应。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源独立配置。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:所述N组传输资源为周期性的传输资源;所述N组传输资源为时域连续的传输资源。
在本公开的一些实施例中,所述N组传输资源为周期性的传输资源;所述配置信息还包括以下至少一项:第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;时间偏移量。
在本公开的一些实施例中,所述N组传输资源为周期性的传输资源;所述发送配置信息之后,所述方法还包括:发送第一信息;其中,所述第一信息包括第一时间单元和时间偏移量中的至少一项,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元。
在本公开的一些实施例中,所述N组传输资源中的至少一组传输资源包括至少两个传输机会;所至少两个传输机会满足以下任意一项:所述至少两个传输机会为周期性的传输机会;所述至少两个传输机会为时域连续的传输机会;所述至少两个传输机会为时域离散分布的传输机会。
在本公开的一些实施例中,所述N组传输资源与所述至少一个感知节点具有一对一关系;或,所述N组传输资源与所述至少一个感知节点具有一对多关系;或,所述N组传输资源与所述至少一个感知节点具有多对一关系。
在本公开的一些实施例中,所述配置信息还包括所述至少一个感知节点中的第一感知节点的特征信息。
在本公开的一些实施例中,所述第一感知节点对应所述N组传输资源中的一组传输资源。
在本公开的一些实施例中,所述特征信息包括以下中的至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
在本公开的一些实施例中,所述上报信息包括以下至少一项:通过结果信息,所述通过结果 信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果满足预设条件;未通过结果信息,所述未通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果未满足预设条件;允许信息,所述允许信息指示允许一个感知节点向所述被感知节点发送感知信号或测量信号,或指示允许在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;拒绝信息,所述拒绝信息指示拒绝一个感知节点向所述被感知节点发送感知信号或测量信号,或指示拒绝在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;信号幅度信息;功率信息;能量信息;信号相位信息;信号到达时间信息;以及,信号到达角度信息。
在本公开的一些实施例中,接收模块1102具体用于:通过一个物理信道接收来自于所述被感知节点的N个上报信息;或者,通过M个物理信道接收来自于所述被感知节点的N个上报信息,M为小于或等于N的正整数。
本公开实施例提供一种控制节点,控制节点可以向感知节点和被感知节点发送配置信息,以指示至少一个感知节点通过N组传输资源发送信号,被感知节点在接收到配置信息之后,可以根据配置信息指示的N组传输资源接收至少一个感知节点发送的信号,然后根据该至少一个感知节点上接收的信号,得到N个上报信息,从而可以确定不同感知节点发送信号的性能是否满足需求。被感知节点可以将该N个上报信息可以发送给控制节点,从而使得控制节点可以根据上报信息,可以合理、有效地为感知节点选择参与感知通信的感知节点,从而可以选择较高的效率的感知节点为被感知节点提供较高的感知性能。
本公开实施例提供的控制节点1100能够实现图1至图9方法实施例实现的各个过程,为避免重复,这里不再赘述。
在本公开的一些实施例中,本公开实施例提供的一种控制节点的结构示意图,继续结合图11,控制节点1100包括:发送模块1101和接收模块1102;发送模块1101,用于发送配置信息,所述配置信息指示用于第一感知节点向被感知节点发送信号的第一传输资源;接收模块1102,用于接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于至少一个感知节点通过N组传输资源发送的信号确定的,所述N组传输资源包括所述第一传输资源,所述至少一个感知节点包括所述第一感知节点,N为正整数。
在本公开的一些实施例中,所述N组传输资源独立配置。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:所述N组传输资源为周期性的传输资源;所述N组传输资源为时域连续的传输资源。
在本公开的一些实施例中,所述N组传输资源为周期性的传输资源;所述配置信息还包括以下至少一项:第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;时间偏移量。
在本公开的一些实施例中,所述N组传输资源为周期性的传输资源;发送模块1101还用于在发送配置信息之后,发送第一信息;其中,所述第一信息包括第一时间单元和时间偏移量中的至少一项,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元。
在本公开的一些实施例中,所述配置信息用于所述第一感知节点发送一个信号或一组信号。
在本公开的一些实施例中,所述第一传输资源包括至少两个传输机会,所至少两个传输机会满足以下任意一项:所述至少两个传输机会为周期性的传输机会;所述至少两个传输机会为时域连续的传输机会;所述至少两个传输机会为时域离散分布的传输机会。
在本公开的一些实施例中,所述配置信息还指示第二感知节点向所述被感知节点发送信号的第二传输资源,所述N组传输资源包括所述第二传输资源。
在本公开的一些实施例中,所述配置信息还包括所述第一感知节点的特征信息。
在本公开的一些实施例中,所述第一感知节点对应所述N组传输资源中的一组传输资源。
在本公开的一些实施例中,所述特征信息包括以下中的至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
本公开实施例提供一种控制节点,控制节点可以向感知节点发送配置信息,以指示感知节点发送信号的传输资源,感知节点在接收到配置信息之后,可以根据配置信息指示的传输资源向被感知节点 发送的信号,被感知节点根据接收的信号,得到N个上报信息,从而可以确定不同感知节点发送信号的性能是否满足需求。被感知节点可以将该N个上报信息可以发送给控制节点,从而使得控制节点可以根据上报信息,可以合理、有效地为感知节点选择参与感知通信的感知节点,从而可以选择较高的效率的感知节点为被感知节点提供较高的感知性能。
本公开实施例提供的控制节点1100能够实现图1至图9方法实施例实现的各个过程,为避免重复,这里不再赘述。
图12本公开实施例提供的一种感知节点的结构示意图,该感知节点为第一感知节点,如图12中所示,感知节点1200,包括:接收模块1201和发送模块1202;接收模块1201,用于接收配置信息,所述配置信息指示所述第一感知节点向被感知节点发送信号的第一传输资源,所述第一传输资源为N组传输资源中的传输资源,所述N组传输资源用于至少一个感知节点向所述被感知节点发送信号,所述至少一个感知节点包括所述第一感知节点,N为正整数;发送模块1202,用于在所述第一传输资源上向所述被感知节点发送信号。
在本公开的一些实施例中,所述配置信息指示所述第一感知节点发送一个信号或一组信号的传输资源。
在本公开的一些实施例中,所述配置信息还包括所述第一感知节点的特征信息。
在本公开的一些实施例中,所述第一感知节点对应所述N组传输资源中的一组传输资源。
在本公开的一些实施例中,所述特征信息包括以下中的至少一项:设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源独立配置。
在本公开的一些实施例中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:所述N组传输资源为周期性的传输资源;所述N组传输资源为时域连续的传输资源。
在本公开的一些实施例中,所述N组传输资源为周期性的传输资源;所述配置信息还包括以下至少一项:第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;时间偏移量。
在本公开的一些实施例中,所述第一传输资源包括至少两个传输机会,所至少两个传输机会满足以下任意一项:所述至少两个传输机会为周期性的传输机会;所述至少两个传输机会为时域连续的传输机会;所述至少两个传输机会为时域离散分布的传输机会。
在本公开的一些实施例中,接收模块1201具体用于,基于第一信令接收所述配置信息,所述第一信令包括R个子信令,所述第一子信令指示所述第一感知节点向所述被感知节点发送信号的第一传输资源,R为大于1且小于或等于N的整数;或者,基于第二信令接收所述配置信息,所述第二信令指示所述第一感知节点向所述被感知节点发送信号的第一传输资源。
本公开实施例提供一种感知节点,控制节点可以向感知节点发送配置信息,以指示感知节点发送信号的传输资源,感知节点在接收到配置信息之后,可以根据配置信息指示的第一传输资源向被感知节点发送的信号,被感知节点根据接收的信号,得到N个上报信息,从而可以确定不同感知节点发送信号的性能是否满足需求。被感知节点可以将该N个上报信息可以发送给控制节点,从而使得控制节点可以根据上报信息,可以合理、有效地为感知节点选择参与感知通信的感知节点,从而可以选择较高的效率的感知节点为被感知节点提供较高的感知性能。
本公开实施例提供的感知节点1200能够实现图1至图9方法实施例实现的各个过程,为避免重复,这里不再赘述。
在本公开的一些实施例中,如图13所示,本公开实施例还提供一种节点1300,包括处理器1301,存储器1302,存储在存储器1302上并可在处理器1301上运行的程序或指令,该程序或指令被处理器1301执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在本公开的一些实施例中,节点1300可以为上述的控制节点、感知节点或被感知节点。
需要说明的是,图14示出的节点1400仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图14所示,节点1400包括中央处理单元(Central Processing Unit,CPU)1401,其可以根据存储在ROM(Read Only Memory只读存储器,)1402中的程序或者从存储部分1408加载到RAM (Random Access Memory,随机访问存储器)1403中的程序而执行各种适当的动作和处理。在RAM1403中,还存储有系统操作所需的各种程序和数据。CPU 1401、ROM 1402以及RAM 1403通过总线1404彼此相连。I/O(Input/Output,输入/输出)接口1405也连接至总线1404。
以下部件连接至I/O接口1405:包括键盘、鼠标等的输入部分1406;包括诸如CRT(Cathode Ray Tube,阴极射线管)、LCD(Liquid Crystal Display,液晶显示器)等以及扬声器等的输出部分1407;包括硬盘等的存储部分1408;以及包括诸如LAN(Local Area Network,无线网络)卡、调制解调器等的网络接口卡的通信部分1409。通信部分1409经由诸如因特网的网络执行通信处理。驱动器1410也根据需要连接至I/O接口1405。可拆卸介质1411,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1410上,以便于从其上读出的计算机程序根据需要被安装入存储部分1408。
特别地,根据本公开的实施例,下文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1409从网络上被下载和安装,和/或从可拆卸介质1411被安装。在该计算机程序被中央处理单元(CPU 1401)执行时,执行本申请的系统中限定的各种功能。
本公开实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,处理器被配置为执行该程序或指令时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如ROM、RAM、磁碟或者光盘等。
本公开实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器被配置为执行程序或指令时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本公开实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本公开实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述的信息传输方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本公开实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (47)

  1. 一种信息传输方法,应用于被感知节点,所述方法包括:
    接收配置信息,所述配置信息用于指示N组传输资源,N为正整数;
    通过所述N组传输资源接收来自于至少一个感知节点的信号;
    基于所述来自于所述至少一个感知节点的信号,确定N个上报信息;
    向控制节点发送所述N个上报信息。
  2. 根据权利要求1所述的方法,其中,所述N个上报信息与所述N组传输资源一一对应。
  3. 根据权利要求1或2所述的方法,其中,所述N个上报信息中的每个上报信息包括以下至少一项:
    通过结果信息,所述通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果满足预设条件;
    未通过结果信息,所述未通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果不满足预设条件;
    允许信息,所述允许信息指示允许一个感知节点向所述被感知节点发送感知信号或测量信号,或指示允许在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;
    拒绝信息,所述拒绝信息指示拒绝一个感知节点向所述被感知节点发送感知信号或测量信号,或指示拒绝在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;
    信号幅度信息;
    功率信息;
    能量信息;
    信号相位信息;
    信号到达时间信息;以及,
    信号到达角度信息。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述配置信息还包括所述至少一个感知节点中的一个感知节点的特征信息。
  5. 根据权利要求4所述的方法,其中,所述一个感知节点对应所述N组传输资源中的一组传输资源。
  6. 根据权利要求5所述的方法,其中,所述特征信息包括以下中的至少一项:
    设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
  7. 根据权利要求1至6任一项所述的方法,其中,所述向控制节点发送所述N个上报信息,包括:
    通过一个物理信道向控制节点发送所述N个上报信息;或
    通过M个物理信道向控制节点发送所述N个上报信息,M为小于或等于N的正整数。
  8. 根据权利要求7所述的方法,其中,所述通过一个物理信道向控制节点发送所述N个上报信息包括:
    对所述N个上报信息进行联合编码通过所述一个物理信道向控制节点发送所述N个上报信息。
  9. 根据权利要求1至8中任一项所述的方法,其中,
    所述N组传输资源与所述至少一个感知节点具有一对一关系;或
    所述N组传输资源与所述至少一个感知节点具有一对多关系;或
    所述N组传输资源与所述至少一个感知节点具有多对一关系。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述N组传输资源中的每组传输资源独立配置。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:
    所述N组传输资源为周期性的传输资源;
    所述N组传输资源为时域连续的传输资源。
  12. 根据权利要求1至10中任一项所述的方法,其中,所述N组传输资源中的至少一组传输资源包括至少两个传输机会;
    其中,所至少两个传输机会满足以下任意一项:
    所述至少两个传输机会为周期性的传输机会;
    所述至少两个传输机会为时域连续的传输机会;
    所述至少两个传输机会为时域离散分布的传输机会。
  13. 一种信息传输方法,应用于控制节点,所述方法包括:
    发送配置信息,所述配置信息指示N组传输资源,所述N组传输资源用于至少一个感知节点向被感知节点发送信号,N为正整数;
    接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于所述至少一个感知节点在所述N组传输资源上发送的信号确定。
  14. 根据权利要求13所述的方法,其中,所述N个上报信息与所述N组传输资源一一对应。
  15. 根据权利要求13或14所述的方法,其中,所述N组传输资源中的每组传输资源独立配置。
  16. 根据权利要求13至15任一项所述的方法,其中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:
    所述N组传输资源为周期性的传输资源;
    所述N组传输资源为时域连续的传输资源。
  17. 根据权利要求16所述的方法,其中,所述N组传输资源为周期性的传输资源;所述配置信息还包括以下至少一项:
    第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;
    时间偏移量。
  18. 根据权利要求16或17所述的方法,其中,所述N组传输资源为周期性的传输资源;所述发送配置信息之后,所述方法还包括:
    发送第一信息;
    其中,所述第一信息包括第一时间单元和时间偏移量中的至少一项,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元。
  19. 根据权利要求13至18任一项所述的方法,其中,所述N组传输资源中的至少一组传输资源包括至少两个传输机会;所至少两个传输机会满足以下任意一项:
    所述至少两个传输机会为周期性的传输机会;
    所述至少两个传输机会为时域连续的传输机会;
    所述至少两个传输机会为时域离散分布的传输机会。
  20. 根据权利要求13至19任一项所述的方法,其中,
    所述N组传输资源与所述至少一个感知节点具有一对一关系;或,
    所述N组传输资源与所述至少一个感知节点具有一对多关系;或,
    所述N组传输资源与所述至少一个感知节点具有多对一关系。
  21. 根据权利要求13至20中任一项所述的方法,其中,
    所述配置信息还包括所述至少一个感知节点中的第一感知节点的特征信息。
  22. 根据权利要求21所述的方法,其中,所述第一感知节点对应所述N组传输资源中的一组传输资源。
  23. 根据权利要求21或22所述的方法,其中,所述特征信息包括以下中的至少一项:
    设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
  24. 根据权利要求13至23任一项所述的方法,其中,所述上报信息包括以下至少一项:
    通过结果信息,所述通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果满足预设条件;
    未通过结果信息,所述未通过结果信息指示在所述N组传输资源中的一组传输资源上接收的信号的感知结果或测量结果未满足预设条件;
    允许信息,所述允许信息指示允许一个感知节点向所述被感知节点发送感知信号或测量信号,或指示允许在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发 送感知信号或测量信号;
    拒绝信息,所述拒绝信息指示拒绝一个感知节点向所述被感知节点发送感知信号或测量信号,或指示拒绝在所述N组传输资源中的一组传输资源上发送信号的感知节点向所述被感知节点发送感知信号或测量信号;
    信号幅度信息;
    功率信息;
    能量信息;
    信号相位信息;
    信号到达时间信息;以及,
    信号到达角度信息。
  25. 根据权利要求13至24任一项所述的方法,其中,接收来自于被是感知节点的N个上报信息,包括:
    通过一个物理信道接收来自于所述被感知节点的N个上报信息;或者,
    通过M个物理信道接收来自于所述被感知节点的N个上报信息,M为小于或等于N的正整数。
  26. 一种信息传输方法,应用于控制节点,所述方法包括:
    发送配置信息,所述配置信息指示用于第一感知节点向被感知节点发送信号的第一传输资源;
    接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于至少一个感知节点通过N组传输资源发送的信号确定的,所述N组传输资源包括所述第一传输资源,所述至少一个感知节点包括所述第一感知节点,N为正整数。
  27. 根据权利要求26所述的方法,其中,所述N组传输资源独立配置。
  28. 根据权利要求26或27所述的方法,其中,所述N组传输资源中的每组传输资源包括一个传输机会;所述N组传输资源满足以下任意一项:
    所述N组传输资源为周期性的传输资源;
    所述N组传输资源为时域连续的传输资源。
  29. 根据权利要求28所述的方法,其中,所述N组传输资源为周期性的传输资源;所述配置信息还包括以下至少一项:
    第一时间单元,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元;
    时间偏移量。
  30. 根据权利要求28或29所述的方法,其中,所述N组传输资源为周期性的传输资源;所述发送配置信息之后,所述方法还包括:
    发送第一信息;
    其中,所述第一信息包括第一时间单元和时间偏移量中的至少一项,所述第一时间单元为所述N组传输资源的第一组传输资源所在的时间单元。
  31. 根据权利要求26至30任一项所述的方法,其中,所述配置信息用于所述第一感知节点发送一个信号或一组信号。
  32. 根据权利要求26至31任一项所述的方法,其中,所述第一传输资源包括至少两个传输机会,所至少两个传输机会满足以下任意一项:
    所述至少两个传输机会为周期性的传输机会;
    所述至少两个传输机会为时域连续的传输机会;
    所述至少两个传输机会为时域离散分布的传输机会。
  33. 根据权利要求26至32任一项所述的方法,其中,所述配置信息还指示第二感知节点向所述被感知节点发送信号的第二传输资源,所述N组传输资源包括所述第二传输资源。
  34. 根据权利要求26至33任一项所述的方法,其中,所述配置信息还包括所述第一感知节点的特征信息。
  35. 根据权利要求34所述的方法,其中,所述第一感知节点对应所述N组传输资源中的一组传输资源。
  36. 根据权利要求34或35所述的方法,其中,所述特征信息包括以下中的至少一项:
    设备类型、设备能力、电源信息、设备位置信息、以及设备天线配置信息。
  37. 一种被感知节点,包括:接收模块、确定模块和发送模块;
    所述接收模块,用于接收配置信息,所述配置信息用于指示N组传输资源,N为正整数;
    所述接收模块,还用于通过所述N组传输资源接收来自至少一个感知节点的信号;
    所述确定模块,用于基于所述来自于所述至少一个感知节点的信号,确定N个上报信息;
    所述发送模块,用于向控制节点发送所述N个上报信息。
  38. 一种控制节点,包括:发送模块和接收模块;
    所述发送模块,用于发送配置信息,所述配置信息指示N组传输资源,所述N组传输资源用于至少一个感知节点向被感知节点发送信号,N为正整数;
    所述接收模块,用于接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于所述至少一个感知节点在所述N组传输资源上发送的信号确定。
  39. 一种控制节点,包括:发送模块和接收模块;
    所述发送模块,用于发送配置信息,所述配置信息指示用于第一感知节点向被感知节点发送信号的第一传输资源;
    所述接收模块,用于接收来自于所述被感知节点的N个上报信息,所述N个上报信息由所述被感知节点基于至少一个感知节点通过N组传输资源发送的信号确定,所述N组传输资源包括所述第一传输资源,所述至少一个感知节点包括所述第一感知节点,N为正整数。
  40. 一种被感知节点,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述处理器被配置为执行所述程序或指令时实现如权利要求1至11中任一项所述的信息传输方法的步骤。
  41. 一种控制节点,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述处理器被配置为执行所述程序或指令时实现如权利要求13至25,或26至36中任一项所述的信息传输方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12中任一项所述的信息传输方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求13至25中任一项所述的信息传输方法的步骤。
  44. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求26至36中任一项所述的信息传输方法的步骤。
  45. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的信息传输方法的步骤。
  46. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求13至25中任一项所述的信息传输方法的步骤。
  47. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求26至36中任一项所述的信息传输方法的步骤。
PCT/CN2022/092846 2022-05-13 2022-05-13 信息传输方法、节点、介质及程序产品 WO2023216260A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092846 WO2023216260A1 (zh) 2022-05-13 2022-05-13 信息传输方法、节点、介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092846 WO2023216260A1 (zh) 2022-05-13 2022-05-13 信息传输方法、节点、介质及程序产品

Publications (1)

Publication Number Publication Date
WO2023216260A1 true WO2023216260A1 (zh) 2023-11-16

Family

ID=88729463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092846 WO2023216260A1 (zh) 2022-05-13 2022-05-13 信息传输方法、节点、介质及程序产品

Country Status (1)

Country Link
WO (1) WO2023216260A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338458A (zh) * 2013-07-11 2013-10-02 东南大学 一种用于认知无线电系统的协作频谱感知方法
CN103428706A (zh) * 2012-05-17 2013-12-04 普天信息技术研究院有限公司 协作频谱感知节点的选择方法
CN103812583A (zh) * 2012-11-15 2014-05-21 电信科学技术研究院 一种基于认知无线电系统的协作频谱感知方法和设备
WO2014206253A1 (zh) * 2013-06-24 2014-12-31 电信科学技术研究院 认知无线电系统中的传输调度方法和装置
US10164685B2 (en) * 2014-12-31 2018-12-25 Freelinc Technologies Inc. Spatially aware wireless network
WO2021204121A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 测量方法、装置、节点和存储介质
WO2022001560A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Precoding for joint sensing and communication services

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428706A (zh) * 2012-05-17 2013-12-04 普天信息技术研究院有限公司 协作频谱感知节点的选择方法
CN103812583A (zh) * 2012-11-15 2014-05-21 电信科学技术研究院 一种基于认知无线电系统的协作频谱感知方法和设备
WO2014206253A1 (zh) * 2013-06-24 2014-12-31 电信科学技术研究院 认知无线电系统中的传输调度方法和装置
CN103338458A (zh) * 2013-07-11 2013-10-02 东南大学 一种用于认知无线电系统的协作频谱感知方法
US10164685B2 (en) * 2014-12-31 2018-12-25 Freelinc Technologies Inc. Spatially aware wireless network
WO2021204121A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 测量方法、装置、节点和存储介质
WO2022001560A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Precoding for joint sensing and communication services

Similar Documents

Publication Publication Date Title
CN114071611B (zh) 测量上报方法、装置及设备
CN111148146B (zh) 一种通信方法及装置
KR102381362B1 (ko) 협대역 무선 네트워크에서의 이용가능한 채널로의 튜닝
WO2020164258A1 (zh) 同步信号块信息处理方法、装置及通信装置
US10694520B2 (en) Uplink transmission resource allocation method, base station, and user equipment
CN110971367A (zh) 信息的确定方法、信号的接收方法及装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
WO2022022505A1 (zh) 参考信号传输方法、装置及通信设备
US20240196388A1 (en) Transmission processing method and apparatus, and device
US20230126936A1 (en) Measurement indication method, terminal, and network-side device
CN111464473A (zh) 配置信息的方法与装置
CA3164087A1 (en) Blind detection and descrambling method and device, storage medium and electronic device
CN113923750A (zh) 接入小区的方法和装置
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
EP3641147A1 (en) Indicating and information determining method and device
WO2023216260A1 (zh) 信息传输方法、节点、介质及程序产品
US20230189042A1 (en) Rs measurement method and apparatus, and communications device
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
US20180279343A1 (en) Partial bandwidth radio transmission method and device, base station and user equipment
KR20230045035A (ko) 접근 제어 방법, 장치, 단말 및 네트워크 기기
US20130083738A1 (en) Method and apparatus for modifying resource allocation
WO2022022553A1 (zh) 干扰协调处理方法及相关设备
WO2024011630A1 (en) Method and apparatus related to channel state information reporting
US20240137950A1 (en) Access management for reduced capability devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941212

Country of ref document: EP

Kind code of ref document: A1