WO2023226732A1 - 信号的发送方法及装置、信号的接收方法及装置 - Google Patents

信号的发送方法及装置、信号的接收方法及装置 Download PDF

Info

Publication number
WO2023226732A1
WO2023226732A1 PCT/CN2023/092589 CN2023092589W WO2023226732A1 WO 2023226732 A1 WO2023226732 A1 WO 2023226732A1 CN 2023092589 W CN2023092589 W CN 2023092589W WO 2023226732 A1 WO2023226732 A1 WO 2023226732A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
target
beams
response message
uplink
Prior art date
Application number
PCT/CN2023/092589
Other languages
English (en)
French (fr)
Inventor
鲁照华
刘锟
郑国增
肖华华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023226732A1 publication Critical patent/WO2023226732A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • Embodiments of the present disclosure relate to the field of communications, specifically, to a signal sending method and device, a signal receiving method and device, a storage medium, and an electronic device.
  • New Radio new radio, may be referred to as NR
  • 5G fifth generation mobile communication system
  • NR New Radio
  • 6G The arrival of the communication system (6th Generation Mobile Communication System, which can be referred to as 6G).
  • the terminal can only select a random access channel (Physical Random Access Channel, which can be referred to as PRACH) resource corresponding to one beam direction.
  • PRACH Physical Random Access Channel
  • PRACH Physical Random Access Channel
  • PRACH resources are limited or there are too many UEs selecting the same beam direction, it will cause the preamble sequences in the same beam direction to collide, which will cause the UE to fail to successfully access the system or cause the UE's access delay. Increase. Therefore, this random access method cannot meet the emerging new application requirements in the post-5G/6G era, such as communication requirements for extremely low latency, extremely high reliability, ultra-large bandwidth, and massive access.
  • the terminal can only select a random access channel resource corresponding to one beam direction to send a random access signal. This will limit the performance of the UE and cause the UE to be unable to successfully access the system or cause the UE to access the system incorrectly. As a result, communication requirements such as extremely low latency, extremely high reliability, ultra-large bandwidth, and massive access cannot be met. To address the above problems in related technologies, no effective solutions have yet been proposed.
  • Embodiments of the present disclosure provide a signal sending method and device, a signal receiving method and device, a storage medium and an electronic device, to at least solve the problem in related technologies that only a single beam can be used in the process of random access. Technical issues of transmitting random access signals on corresponding resources.
  • a signal sending method including: determining multiple target beams; and sending a random access signal to a first node based on resources respectively corresponding to the multiple target beams.
  • a signal receiving method including: receiving a random access signal sent by a second node on resources respectively corresponding to multiple target beams; wherein the multiple target beams are The beam determined by the second node.
  • a signal sending device including: a first determining module, configured to determine multiple target beams; a first sending module, configured to determine based on the corresponding values of the multiple target beams respectively.
  • the resource sends a random access signal to the first node.
  • a signal receiving device including: a third receiving module configured to receive a random access signal sent by a second node on resources respectively corresponding to multiple target beams; wherein , the plurality of target beams are beams determined by the second node.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running. Steps in Examples.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • Figure 1 is a hardware structure block diagram of a mobile terminal of a signal sending method according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a signal sending method according to an embodiment of the present disclosure
  • Figure 3 is a flow chart of a signal receiving method according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of different beam directions between a base station and a terminal according to an embodiment of the present disclosure
  • Figure 5 is a structural block diagram of an information sending device according to an embodiment of the present disclosure.
  • Figure 6 is a structural block diagram of an information receiving device according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structure block diagram of a mobile terminal for a signal sending method according to an embodiment of the present disclosure.
  • the mobile terminal may include one or more (only one is shown in Figure 1) processors 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and A memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a transmission device 106 and an input and output device 108 for communication functions.
  • processors 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 for storing data
  • the above-mentioned mobile terminal may also include a transmission device 106 and an input and output device 108 for communication functions.
  • the structure shown in Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than shown in FIG. 1 .
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the signal sending method in the embodiment of the present disclosure.
  • the processor 102 executes the computer program by running the computer program stored in the memory 104.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 2 is a flow chart of a signal sending method according to an embodiment of the present disclosure. As shown in Figure 2, the process includes the following steps:
  • Step S202 determine multiple target beams
  • Step S204 Send a random access signal to the first node based on resources respectively corresponding to the plurality of target beams.
  • the execution subject of the above steps may be a device with signal transceiver capabilities, such as a terminal device, a processor or processing module in the terminal device, or other processing devices or processing units with similar processing capabilities.
  • the first node may be a base station, a specific module in the base station, or other network nodes that can communicate with the base station, etc.
  • the above random access signal may also be called message 1, that is, Msg1.
  • a beam may be represented by a determined resource set, and the resource set may include at least one of the following: transmitter precoding, receiver precoding, transmitter antenna port configuration, transmitter antenna weight vector, Transmitting end antenna weight matrix, receiving end antenna port configuration, receiving end antenna weight vector, receiving end antenna weight matrix, determined time domain resources and/or frequency domain resources and/or code resources. Therefore, the beam index can be replaced by the resource index.
  • the beam may also be a transmission (sending/receiving) method, and the transmission method may include spatial division multiplexing, frequency domain and/or time domain diversity, etc.
  • the beam includes at least one of the following: a transmit beam, a receive beam, precoding, a precoding matrix, a precoding matrix index, a receive beam and a transmit beam pair, and a transmit beam and a receive beam pair.
  • the transmission method of the second channel/signal/resource is to refer to or use the transmission beam used by the first channel/signal/resource, then it is said that the second channel and the first channel use the same transmission beam. , wherein the transmission beam of the first channel/signal/resource is represented by the determined resource set.
  • the reception method of the second channel/signal/resource is to refer to or use the reception beam used by the first channel/signal/resource, then it is said that the second channel and the first channel use the same reception beam. , wherein the receiving beam of the first channel/signal/resource is represented by the determined resource set.
  • one target beam corresponds to one beam direction, and multiple target beams may correspond to the same beam direction or different beam directions.
  • multiple target beams may be determined, and then a random access signal may be sent to the first node based on resources respectively corresponding to the multiple target beams.
  • a random access signal may be sent to the first node based on resources respectively corresponding to the multiple target beams.
  • the first node sends a random access signal, which solves the technical problem in related technologies that only a single beam can be used to transmit the random access signal on the resource corresponding to the random access process, and achieves the goal of using multiple
  • the technical effect of transmitting random access signals on the resources corresponding to the beams meets the communication needs of extremely low latency, extremely high reliability, ultra-large bandwidth, and massive access.
  • determining multiple target beams includes at least one of the following: detecting downlink channels, and selecting multiple target beams based on the detection results; measuring downlink signals, and selecting multiple target beams based on the measurement results.
  • Target beams select a plurality of target beams from stored beams; obtain a plurality of target beams from a plurality of beams configured by the first node; select a target resource group from a plurality of configured resource groups, from Select multiple target beams from multiple beams corresponding to the target resource group.
  • the target resource group may include PRACH time-frequency resources and/or preamble resources on PRACH.
  • the target resource When multiple target beams are selected from multiple beams corresponding to the target resource group, the target resource The number of beams corresponding to the group is larger, and multiple target beams can be selected from them, where the beams corresponding to the target resource group can be pre-configured; in addition, when determining multiple target beams, the downlink channel can be Detect or measure, and then select the target beam corresponding to one or more downlink beams based on the detection result or measurement result. For example, when 4 downlink beams are selected based on the detection result or measurement result, the UE can select the target beam corresponding to the uplink beam and the downlink beam based on the detection result or measurement result.
  • Corresponding relationship (where the corresponding relationship can be predefined, or notified through signaling, or negotiated between the UE and the base station, etc.), select 2 downlink beams corresponding to the 4 downlink beams.
  • the uplink beam is used as the target beam; in addition, it should be noted that when determining the target beam by obtaining multiple target beams from multiple beams configured by the first node, the first node may pre-configure an updated multiple beams, and then the UE selects multiple target beams from the multiple beams.
  • sending a random access signal to the first node based on resources corresponding to multiple target beams includes: determining the transmission power of the random access signal on the target beam; The transmit power determines a first beam from a plurality of the target beams, wherein the number of the first beams is one or more, and the number of the first beams is less than or equal to the number of the target beams; The random access signal is sent on the resource corresponding to the first beam.
  • the first beam needs to be determined based on the transmission power.
  • the first beam can also be selected according to a specific selection method (for example, a pre-configured priority for the beam, the use of the beam frequency, etc.) one or more beams selected from the target beam. Of course, it can also be one or more beams selected randomly from the target beam. The number of the first beams can also be adjusted based on the actual situation. It should be noted that the above-mentioned selection method of the first beam is only an exemplary embodiment, and the first beam is not limited to the above-mentioned selection method.
  • determining the first beam from the plurality of target beams based on the transmission power includes: determining the target beam whose corresponding transmission power is less than or equal to a first threshold as the first beam. beam.
  • the first threshold is a value that can be set in advance, and can be set to the maximum transmission power supported by the first node or to the The configured maximum transmit power can be determined as the first beam by all target beams whose corresponding transmit power is less than or equal to the first threshold, or some of the target beams whose transmit power is less than or equal to the first threshold. Determined to be the first beam, it should also be noted that the setting of the above-mentioned first threshold can be flexibly adjusted according to actual application conditions.
  • the method further includes: obtaining a first response message sent by the first node ; Based on the uplink channel resources configured by the uplink channel configuration information in the first response message, send an uplink message to the first node, where the uplink message includes at least one of the following information: first indication information; sending the The identification information of the second node of the uplink message; wherein the first indication information is used to indicate whether to use the first effective beam, the first effective beam is the random access signal corresponding to the first response message.
  • the target beam, the beam corresponding to the first response message is the second effective beam.
  • the first response message (or called the second message, Msg2) is returned by the first node based on receiving the random access signal sent by the second node. That is, the first response message is a random access signal.
  • the response message of the access signal there is a corresponding relationship between the first effective beam and the second effective beam.
  • a first effective beam can correspond to a second effective beam.
  • the above-mentioned uplink message can also be called a third message, That is, Msg3.
  • the method further includes: the first node determines the first indication information based on the received first indication information in the uplink message.
  • the two nodes terminate sending the second response message to the second node on the resource corresponding to the second effective beam; the first node responds based on the received The first indication information in the uplink message determines that the second node uses the first effective beam, and sends a second response message to the second node on the resource corresponding to the second effective beam; wherein, The second response message is a response message to the uplink message.
  • the first node determines that the received uplink message does not include the first indication information, the first node will send a message to the second node on the resource corresponding to the second effective beam. Second response message.
  • the method further includes: the first node receiving the uplink message; and the first node receiving the uplink message within a time window.
  • the first indication information included in at least one of the uplink messages indicates that the first effective beam is no longer used
  • the first node will no longer use the first effective beam indicated by the second node.
  • Select at least one first effective beam among the effective beams and continue to send a second response message to the second node on the resource corresponding to the second effective beam corresponding to the selected at least one first effective beam, wherein,
  • the second response message is a response message to the uplink message.
  • the uplink message is scheduled through the information packet of the first response message, but the information packet of the first response message only contains the index information of the random access signal.
  • the random access signal It can be shared by terminals using the same beam. Therefore, there is no guarantee that only one terminal uses one beam to send uplink messages. In other words, there may be situations where multiple terminals use the same beam to send uplink messages.
  • the base station can modify the terminal's decision.
  • the first node continues to select at least one first effective beam from the first effective beams that are no longer used as indicated by the second node to complete the random access process.
  • Sending uplink messages will increase the delay in sending uplink messages.
  • the base station can modify the terminal's decision, that is, continue to use the first valid wave that is no longer used as indicated by the second node. Select at least one first effective beam among the beams to complete the random access process.
  • the method further includes at least one of the following: indicating resources corresponding to the second effective beam corresponding to the first effective beam not to be used. If the target downlink channel sent by the first node to the second node is not received, confirm that the use of the first effective beam is abandoned; and the second effective beam corresponding to the first effective beam indicating not to be used corresponds to When the target downlink channel sent by the first node to the second node is received on the resource, and the control information in the target downlink channel includes confirmation information not to use the first effective beam, the confirmation is not in the Continue to detect the target downlink channel on the resource corresponding to the second effective beam corresponding to the first effective beam; receive the first effective beam on the resource corresponding to the second effective beam corresponding to the first effective beam that is indicated not to be used.
  • the target downlink channel sent by the node and the control information in the target downlink channel includes information about using the first effective beam, continue to detect the target downlink channel according to the scheduling information of the second response message in the target downlink channel.
  • the second response message receiving the target downlink channel sent by the first node on the resource corresponding to the second effective beam corresponding to the first effective beam indicating not to be used, and the control information in the target downlink channel If the scheduling information of the second response message is included, and the scheduling information is in a valid state, the second response message is continued to be detected according to the scheduling information.
  • the terminal does not receive the target downlink channel sent by the base station on the resource corresponding to the second effective beam corresponding to the first effective beam, and the terminal will give up using the first effective beam based on this situation.
  • the target downlink channel sent by the base station is received on the resource corresponding to the second effective beam corresponding to the first effective beam, and the control information in the target downlink channel includes confirmation information not to use the first effective beam
  • the terminal will based on This situation confirms that it does not continue to detect the target downlink channel on the resource corresponding to the second effective beam corresponding to the first effective beam, and the terminal receives the target downlink channel sent by the base station on the resource corresponding to the second effective beam corresponding to the first effective beam.
  • the terminal will continue to detect the second response message based on this situation based on the scheduling information of the second response message in the target downlink channel.
  • the terminal Indicates that the target downlink channel sent by the base station is received on the resource corresponding to the second effective beam corresponding to the first effective beam, and the control information in the target downlink channel includes the scheduling information of the second response message, and the scheduling information is determined If it is in a valid state, the terminal will continue to detect the second response message based on the scheduling information based on this situation.
  • sending an uplink message to the first node based on the uplink channel resources configured by the uplink channel configuration information in the first response message includes: selecting from the obtained first response message. One or more first response messages; sending the uplink message to the first node through the uplink channel resources configured by the uplink channel configuration information in the selected first response message.
  • the information packet of the first response message is not necessarily carried in one first response message, but can be distributed in multiple first response messages. Therefore, one or more first response messages can be selected from the obtained first response messages. Send the uplink message to the base station using the uplink channel resources configured in the uplink channel configuration information of the first response message.
  • the uplink message when sending the uplink message, it can also be implemented in the following manner: selecting a predetermined number of first beams from the beams that receive the random access signal; and sending the first beam to the first beam through the resources corresponding to the first beam.
  • the node sends the uplink message, that is, the UE may choose to send Msg3 corresponding to a part of the beams (ie, the uplink message).
  • sending an uplink message to the first node includes: determining that the uplink message does not need to be sent on the resource corresponding to the first effective beam when at least one of the following rules is met: The uplink message whose transmission power exceeds the second threshold is sent on the resource corresponding to the first effective beam; the configured resource size of the uplink message does not meet the first requirement; the received first response message The channel quality performance does not meet the second requirement; sending other uplink messages except the uplink message that does not need to be sent to the first node.
  • the second threshold may be a preset value, which may be set to the maximum transmit power supported by the first node or the maximum transmit power configured for the first node, and may be sent on the resource corresponding to the first effective beam.
  • the uplink message In the case of an uplink message whose transmit power exceeds the second threshold, it is determined that the uplink message does not need to be sent on the resource corresponding to the first effective beam.
  • the first requirement may be bandwidth, data access quantity, etc.
  • the second requirement may be delay, reliability, efficiency, etc. It should be noted that the above second threshold, the above first requirement and the above second requirement are only an exemplary embodiment. , the second threshold, the first requirement, and the second requirement are not limited to the above examples.
  • the method further includes: receiving a target downlink channel sent by the first node, and determining whether to continue to use the target downlink channel based on the target downlink channel.
  • the first effective beam wherein, when the target downlink channel indicates that the first effective beam is no longer continued to be used, the second response message is no longer detected, and when the target downlink channel indicates that the target downlink channel needs to continue to be used, the second response message is no longer continued to be used.
  • the first effective beam continue to detect the second response message; wherein the second response message is the response message of the uplink message.
  • the second node may not be instructed directly through the target downlink channel not to continue to use the first effective beam.
  • the second node may be instructed to decode the target downlink by obtaining the indication information contained in the resource allocation information of the second response message.
  • the control information included in the channel determines that the resource allocation information of the second response message is in a valid state, it is determined that the first node instructs the second node to continue to use the first valid beam.
  • obtaining the first response message returned by the first node based on the received random access signal includes: detecting the random access signal within a target time window after sending the random access signal.
  • the target downlink channel sent by the first node, wherein the target control information of the target downlink channel carries the scheduling information of the first response message; detecting and receiving the first response message based on the scheduling information of the first response message.
  • a response message; after obtaining the first response message returned by the first node based on the received random access signal, the method further includes: terminating continuing to detect the target downlink within the target time window. channel.
  • the information packet of the first response message can be carried in multiple first response messages within the time window. Therefore, the information packet of a first response message at least includes the index information of a random access signal, The index information is a random access signal used to indicate that the information packet responds to the index information.
  • FIG. 3 is a flow chart of a signal receiving method according to an embodiment of the present disclosure. As shown in Figure 3, the process includes the following steps:
  • Step S302 Receive random access signals sent by the second node on resources respectively corresponding to multiple target beams; wherein the multiple target beams are beams determined by the second node.
  • the execution subject of the above steps may be the aforementioned first node.
  • the first node may be a device capable of transmitting and receiving signals, such as a base station, or a module within the base station, or a network node that can perform data transmission with the base station. , or it can also be other processing equipment or processing units with similar processing capabilities.
  • the following description will take the base station performing the above operations as an example (this is only an illustrative description, in actual operations, other devices or modules may also be used to perform the above operations), where the second node may be the aforementioned UE.
  • the second node may determine multiple target beams, and may further send a random access signal to the first node based on resources respectively corresponding to the multiple target beams.
  • the resources corresponding to the multiple target beams that can send random access signals to send random access signals to the first node, thus avoiding the inability to send random access signals to the first node when a resource corresponding to a single beam fails.
  • the situation where the first node sends a random access signal solves the technical problem in related technologies that only the resources corresponding to a single beam can be used to transmit the random access signal during the random access process. It achieves the technical effect of transmitting random access signals on resources corresponding to multiple beams, and meets the communication needs of extremely low latency, extremely high reliability, ultra-large bandwidth, and massive access.
  • the multiple target beams may be optimal beams determined by the second node from the multiple beams, or may be arbitrarily determined beams by the second node from the multiple beams.
  • the plurality of target beams are determined by the second node through at least one of the following methods: measuring downlink signals, and selecting multiple target beams based on the measurement results; from storage Select multiple target beams from the beams; obtain multiple target beams from multiple beams configured by the first node; select a target resource group from multiple configured resource groups, and select a target resource group from the corresponding target resource group. Select multiple target beams from multiple beams.
  • receiving the random access signal sent by the second node on the resources corresponding to the plurality of target beams includes: receiving the random access signal sent by the second node on the resources corresponding to the first beam.
  • Random access signal wherein the first beam is determined by the second node by: determining the transmission power of the random access signal on the target beam; based on the transmission power, from a plurality of The first beam is determined among the target beams, wherein the number of the first beams is one or more, and the number of the first beams is less than or equal to the number of the target beams.
  • the second node determines the first beam from a plurality of target beams based on the transmission power in the following manner: setting the corresponding transmission power to be less than or equal to The target beam of the first threshold is determined as the first beam.
  • the method further includes: based on the received random access signal, the method further includes: The second node returns a first response message, wherein the first response message is used to instruct the second node to return an uplink message based on the uplink channel resources configured by the uplink channel configuration information in the first response message, so
  • the uplink message includes at least one of the following information: first indication information; identification information of the second node that sends the uplink message; wherein the first indication information is used to indicate whether to use the first effective beam, where The first effective beam is a target beam targeted by the random access signal corresponding to the first response message, and the beam corresponding to the first response message is a second effective beam.
  • the second node when it is determined that the second node no longer uses the first effective beam based on the first indication information in the received uplink message, terminating on the second effective beam Send a second response message to the second node on the corresponding resource; when it is determined that the second node uses the first effective beam based on the first indication information in the received uplink message. , sending a second response message to the second node on the resource corresponding to the second effective beam; wherein the second response message is a response message of the uplink message.
  • the uplink message is received; the first indication information included in at least one of the uplink messages received within a time window indicates that the first effective beam is no longer used. Next, select at least one first effective beam among the first effective beams that are no longer used as indicated by the second node, and continue to select resources corresponding to the second effective beam corresponding to the at least one first effective beam selected. Upstream sends a second response message to the second node, where the second response message is a response message to the uplink message.
  • the information packet of the first response message can be carried using multiple first response messages, and the base station can receive the uplink channel configuration in one or more first response messages selected by the terminal from the obtained first response message. The uplink message sent by the configured uplink resource.
  • the target downlink channel is sent to the second node to indicate whether the second node continues to use the first effective beam, wherein after indicating that the second node no longer continues to use the In the case of the first effective beam, the second node no longer continues to detect the second response message; in the case of indicating that the second node needs to continue to use the first effective beam, the second node continues to detect A second response message; wherein the second response message is a response message to the uplink message.
  • the terminal receives the TRP (Transmit-Receive Point, 5G's new name for the base station) synchronization signal/physical broadcast channel block (Synchronization Signal/Physical Broadcast Channel Block, which can be referred to as SSB). Since SSB can be used It is sent in a multi-beam manner, that is, SSB information can be sent in different beam directions.
  • Figure 4 is a schematic diagram of different beam directions between a base station and a terminal according to an embodiment of the present disclosure.
  • the terminal selects a Beam direction corresponding to the SSB based on the received SSB, and further selects the random access channel resource corresponding to the Beam direction, and sends a random access signal (preamble) on the above-mentioned PRACH resource to start the random access process.
  • SSB includes primary synchronization signal (Primary Synchronization Signal, which can be referred to as PSS), secondary synchronization signal (Secondary Synchronization Signal, can be referred to as SSS), and physical broadcast channel (Physical Broadcast Channel, can be referred to as PBCH).
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • SSB SS/PBCH block, which carries downlink synchronization signals (including primary synchronization signal, PSS, and secondary synchronization signal, SSS) and PBCH (physical broadcast channel, which carries MIB (Management Information Base, Management Information Base) information) . Since NR supports multiple Beam transmissions, SSB also supports transmission in multiple Beam directions.
  • PRACH Occasion PRACH time-frequency resource, which can be referred to as RO: The corresponding time-frequency resource when the PRACH Preamble is sent. At the same time, multiple PRACH Occasions can be included in the frequency domain.
  • PRACH occasion must form a corresponding relationship with SSB, that is, 1 PRACH occasion may correspond to 1 SSB or multiple SSBs, which are configured by the base station.
  • Step 1 The UE sends a random access signal (preamble) on the PRACH time-frequency resources corresponding to multiple beams (ie, the aforementioned PRACH occasion), which can be called Msg1 (corresponding to the above random access signal) message transmission.
  • a random access signal preamble
  • Msg1 corresponding to the above random access signal
  • the UE can obtain the selected beam direction in at least one of the following ways:
  • Method 1 The UE measures/detects Downlink signals/channels (Downlink signals/channels can be sent in different beam directions), and then determines the multiple beam directions selected by the UE. Among them, the UE compares the measurement/detection result of the Downlink signal/channel with the threshold value, and determines the number of beam directions selected by the UE in the following manner, including: when the number of beams that meet the threshold requirement is greater than or equal to N.
  • the N beams directions can be RSRP (Reference Signal Receiving Power, reference signal receiving power)/RSRQ (Reference Signal Receiving Quality, LTE reference signal receiving quality)/RSSI (Reference Signal Strength) Indicator, received signal strength indicator)/SNR (Signal-to-Noise-Ratio, quality control method) optimal N, or any N); otherwise, all beams that meet the threshold requirements are selected beams direction, where meeting the threshold requirements includes measuring/detecting the RSRP/RSRQ/RSSI/SNR and other information of the Downlink signal/channel to be greater than or equal to the threshold.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality, LTE reference signal receiving quality
  • RSSI Reference Signal Strength
  • SNR Signal-to-Noise-Ratio, quality control method
  • the UE selects N beam directions by itself.
  • the N beam directions may be N beam directions stored by the UE, or may be from N beam directions used by the UE when accessing the system before.
  • Method 3 TPR configures N beam directions for the UE through DL information.
  • Method 4 When configuring PRACH resources, group PRACH resources (including PRACH time-frequency resources and/or preamble resources on PRACH). Each group of PRACH resources can support Msg1 transmission in multiple beams directions. When the UE selects a group of PRACH resources, the UE sends Msg1 on the M beams corresponding to the group of PRACH resources.
  • Step 1-1 If after the UE determines the beams according to the above step 1, if the transmission power required by the UE to transmit Msg1 in the direction of the beam exceeds a threshold, the beam does not need to transmit Msg1.
  • Step 2 The TRP sends Msg1 response information to the UE, which may be called Msg2 (corresponding to the above-mentioned first response information).
  • Msg2 the scheduling information of Msg2 is carried in the downlink control information (Downlink Control Information, which may be referred to as DCI) in the downlink control channel (Physical Downlink Control Channel, which may be referred to as PDCCH).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • Msg2 is carried and sent in PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • Msg2 includes one or more information packets, wherein the information packets include at least one preamble index information.
  • the preamble index information is used to indicate that the information packet is a response to the preamble of the index information.
  • Step 3 After sending Msg1, the UE will detect the PDCCH where the scheduling information of Msg2 sent by the TRP is located within a time window, and then detect Msg2 based on the scheduling information carried by the DCI in the detected PDCCH.
  • K K is less than or equal to M
  • M Msg2 sent by the TRP for the M beams sent by it
  • K is used here to represent Msg2
  • the K preamble index information in K Msg2 information packets K Msg2 information packets are not necessarily carried in one Msg2, but can also be distributed in multiple Msg2 within the above time window
  • the K Msg2 information packets also include resource allocation information of the PUSCH (Physical Uplink Shared Channel) channel, which is used by the UE to transmit the uplink message.
  • the uplink message may be called Msg3.
  • Step 4 The UE sends K1 Msg3 messages according to the PUSCH channel indicated by K Msg2 information packets.
  • the Msg3 message includes at least one of the following information:
  • the number of K1 is less than or equal to K. If the transmit power exceeds the threshold when the UE sends Msg3, the Msg3 will not be sent, and the corresponding beam direction will also be abandoned by the UE.
  • Step 5 After receiving the Msg3 message sent by the UE, the TRP performs the following operations:
  • Msg3 indicates that the UE does not use the beams direction
  • the TRP does not continue to send Msg3's response message, namely Msg4 (corresponding to the above-mentioned second response message) to the UE, not in the beams direction.
  • Msg4 is carried through the PDSCH scheduled by PDCCH;
  • the TRP continues to send the response information of Msg3, namely Msg4, to the UE.
  • This plan is an extension of step 5 in plan 1:
  • step 5 An extension of step 5 is as follows:
  • Step 5 After receiving the Msg3 message sent by the UE, the TRP performs the following operations:
  • the TRP sends the PDCCH to the UE, and indicates in the DCI whether to abandon the beam direction. If the DCI Instructing the UE to give up the beam direction, the UE will no longer continue to detect subsequent Msg4 information; if the DCI indicates that the UE continues to use the beam direction, the UE will continue to detect subsequent Msg4 information; it should be noted that if the If the DCI does not indicate that the UE continues to use the beam direction, the indication information included in the resource allocation information of Msg4 is obtained, that is, the UE is instructed to decode the DCI to determine that the resource allocation information of Msg4 is a valid value, and then it is determined that the TRP instructs the UE to continue to use the beam direction.
  • This plan is an extension of step 5 in plan 1:
  • step 5 An extension of step 5 is as follows:
  • Step 5 After receiving the Msg3 message sent by the UE, the TRP performs the following operations:
  • the TRP When the TRP only detects the Msg3 message sent by the UE in the beam direction that the UE indicates not to use, the TRP continues to send the Msg4 message to the UE in the beam direction, that is, during the random access process, although Msg3 is scheduled through the information packet of Msg2 Yes, but there is only preamble index information in the Msg2 information packet.
  • the preamble can be shared by UEs using the same beams. Therefore, there may be multiple UEs using the same beams to send Msg3, causing the Msg3 of multiple UEs to collide.
  • TRP did not detect Msg3 on the beams, but instead detected Msg3 on the beams abandoned by the UE.
  • the TRP can modify the UE's decision to continue using the beams direction to complete the random access process.
  • Step 6 The UE continues to detect the PDCCH of the response message Msg4 of the K Msg3 messages, and performs one of the following operations:
  • the UE does not receive the PDCCH in the direction where the UE indicates not to use the beams, confirm that the beams direction is abandoned;
  • the UE If the UE receives the PDCCH in the direction where the UE indicates not to use the beams, and the DCI in the PDCCH includes confirmation information confirming that the beams are not used, the UE does not continue to detect the PDCCH in the direction of the beams;
  • the UE If the UE receives the PDCCH in the direction in which the UE indicates not to use the beams, and the DCI in the PDCCH includes information to continue using the beams, the UE continues to detect the Msg4 message according to the PDSCH scheduling information in the PDCCH;
  • the UE If the UE receives the PDCCH in the direction where the UE indicates not to use the beams, and the DCI in the PDCCH includes PDSCH scheduling information, and the scheduling information of the PDSCH is a valid value, the UE continues to proceed according to the PDSCH scheduling information in the PDCCH. Detect Msg4 messages.
  • This plan is an expansion of steps 4-5 in plan 1:
  • Step 3 (consistent with solution 1): After sending Msg1, the UE will detect the PDCCH where the scheduling information of Msg2 sent by the TRP is located within a time window, and then detect Msg2 based on the scheduling information carried by the DCI in the detected PDCCH.
  • K K is less than or equal to M
  • M Msg2 sent by the TRP for the M beams sent by it
  • K is used here to represent Msg2
  • the K preamble index information in K Msg2 information packets K Msg2 information packets are not necessarily carried in one Msg2, but can also be distributed in multiple Msg2 within the above time window
  • the K Msg2 information packets also include resource allocation information of the PUSCH channel, which is used by the UE to transmit uplink messages. We call this uplink message Msg3.
  • Step 4 The UE receives Msg2 information packets in the direction of K beams, and the UE selects K1 beams among them to send the Msg3 message.
  • the scheduling information of the Msg3 message is indicated in the information packet of Msg2.
  • Msg3 in the beam direction is not sent when at least one of the following conditions is met, including:
  • step 5 The extension of step 5 above is as follows:
  • Step 5 After receiving the Msg3 message sent by the UE, the TRP performs the following operations:
  • the TRP sends the PDCCH to the UE, and indicates in the DCI whether to abandon the beam direction. If the DCI indicates that the UE gives up the beam direction, the UE will no longer continue to detect subsequent Msg4 information; if the DCI indicates that the UE continues to use the beam direction, the UE will continue to detect subsequent Msg4 information; if the DCI If the UE is not instructed to continue to use the beam direction, obtain the indication information included in the resource allocation information of Msg4, that is, instruct the UE to decode the DCI to determine that the resource allocation information of Msg4 is a valid value, then determine that the TRP instructs the UE to continue to use the beam direction.
  • This plan is an extension of step 3 in plan 1:
  • Step 2 (same as step 1-2 in solution 1): TRP sends Msg1 response information to the UE, which we call Msg2.
  • the scheduling information of Msg2 is carried in the downlink control information (DCI) in the downlink control channel (PDCCH).
  • the Msg2 bearer is sent in the PDSCH.
  • Msg2 includes one or more information packets, and each information packet includes at least one preamble index information.
  • the preamble index information is used to indicate that the information packet is a response to the preamble of the index information.
  • PRACH resources including PRACH time-frequency resources and/or preamble resources on PRACH
  • each group of PRACH resources can support Msg1 transmission in multiple beams directions.
  • the UE selects a group of PRACH resources, the UE sends Msg1 on the M beams corresponding to this group of PRACH resources.
  • Step 3 After sending Msg1, the UE will detect the PDCCH sent by the TRP within a time window.
  • the DCI of the PDCCH carries the scheduling information of Msg1's response information Msg2.
  • Msg3 Within the time window, when the UE detects the PDCCH and detects the preamble index sent by itself from the Msg2 message carried in the corresponding PDSCH, it continues to send Msg3 according to the Msg3 resource indicated in Msg2. Further, the UE does not continue to detect the PDCCH sent by the TRP within the time window.
  • the method according to the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • module may be a combination of software and/or hardware that implements a predetermined function.
  • the devices described in the following embodiments are implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of an information sending device according to an embodiment of the present disclosure. As shown in Figure 5, the device includes:
  • the first determination module 52 is used to determine multiple target beams
  • the first sending module 54 is configured to send a random access signal to the first node based on the resources respectively corresponding to the plurality of target beams.
  • the above-mentioned first determining module 52 is configured to determine multiple target beams in at least one of the following ways:
  • the above-mentioned first sending module 54 includes:
  • a first determining unit configured to determine the transmit power of the random access signal sent on the target beam
  • a second determining unit configured to determine a first beam from a plurality of the target beams based on the transmission power, wherein the number of the first beams is one or more, and the number of the first beams is less than or equal to the number of target beams;
  • the first sending unit is configured to send the random access signal on the resource corresponding to the first beam.
  • the above-mentioned second determining unit includes:
  • Determining subunit configured to determine the target beam whose corresponding transmission power is less than or equal to the first threshold as the first beam.
  • the above device further includes:
  • An acquisition module configured to acquire the first response message sent by the first node after sending a random access signal to the first node based on the resources respectively corresponding to the plurality of target beams;
  • the second sending module is configured to send an uplink message to the first node based on the uplink channel resources configured by the uplink channel configuration information in the first response message, where the uplink message includes at least one of the following information: An indication information; identification information of the second node that sends the uplink message; wherein the first indication information is used to indicate whether to use a first effective beam, and the first effective beam is the first effective beam corresponding to the first response message.
  • the target beam targeted by the random access signal, and the beam corresponding to the first response message is the second effective beam.
  • the above device further includes:
  • a first termination module configured to, after sending an uplink message to the first node, the first node determine that the second node no longer uses the In the case of the first effective beam, terminate sending the second response message to the second node on the resource corresponding to the second effective beam;
  • the third sending module is configured for the first node to determine that the second node uses the first effective beam based on the first indication information in the received uplink message. Send a second response message to the second node on the corresponding resource; wherein the second response message is a response message to the uplink message.
  • the above-mentioned first node includes:
  • a first receiving module configured to receive the uplink message
  • the fourth sending module is configured to: when the first indication information included in at least one of the uplink messages received within a time window indicates that the first effective beam is no longer used, the first node Select at least one first effective beam from the first effective beams that are no longer used as indicated by the second node, and continue to use resources corresponding to the second effective beam corresponding to the selected at least one first effective beam.
  • the second node sends a second response message, where the second response message is a response message to the uplink message.
  • the above device further includes at least one of the following:
  • a first confirmation module configured to, after sending an uplink message to the first node, indicate that the first valid When the target downlink channel sent by the first node to the second node is not received on the resource corresponding to the second effective beam corresponding to the effective beam, confirm that the use of the first effective beam is abandoned;
  • the second confirmation module is configured to receive the target downlink channel sent by the first node to the second node on the resource corresponding to the second effective beam corresponding to the first effective beam indicating not to be used, and the target downlink channel
  • the control information in the channel includes confirmation information not to use the first effective beam, confirm not to continue to detect the target downlink channel on the resource corresponding to the second effective beam corresponding to the first effective beam;
  • a first detection module configured to receive the target downlink channel sent by the first node on the resource corresponding to the second effective beam corresponding to the first effective beam that is indicated not to be used, and control the target downlink channel in the target downlink channel. If the information includes information about using the first effective beam, continue to detect the second response message according to the scheduling information of the second response message in the target downlink channel;
  • the second detection module is configured to receive the target downlink channel sent by the first node on the resource corresponding to the second effective beam corresponding to the first effective beam that is indicated not to be used, and the control information in the target downlink channel includes the scheduling information of the second response message, and the scheduling information is in a valid state, continue to detect the second response message according to the scheduling information.
  • the above-mentioned second sending module includes:
  • a selection unit configured to select one or more first response messages from the obtained first response messages
  • the second sending unit is configured to send the uplink message to the first node through the uplink channel resources configured by the uplink channel configuration information in the selected first response message.
  • the above-mentioned second sending module includes:
  • the third determining unit is configured to determine that the uplink message does not need to be sent on the resource corresponding to the first effective beam when at least one of the following rules is met: send all the uplink messages on the resource corresponding to the first effective beam.
  • the transmission power of the uplink message exceeds the second threshold; the configured resource size of the uplink message does not meet the first requirement; the channel quality performance of the received first response message does not meet the second requirement; third A sending unit, configured to send other uplink messages to the first node except the uplink messages that do not need to be sent.
  • the above device further includes:
  • the second receiving module is configured to receive the target downlink channel sent by the first node after sending the uplink message to the first node, and determine whether to continue to use the first effective beam based on the target downlink channel, wherein , when the target downlink channel indicates that the first effective beam is no longer to be used, the second response message is no longer detected, and when the target downlink channel indicates that the first effective beam needs to be continued to be used, , continue to detect the second response message; wherein the second response message is the response message of the uplink message.
  • the above acquisition module includes:
  • the first detection unit is configured to detect the target downlink channel sent by the first node within the target time window after sending the random access signal, wherein the target control information of the target downlink channel carries the Scheduling information of the first response message;
  • a second detection unit configured to detect and receive the first response message based on the scheduling information of the first response message
  • the above device also includes: a second termination module, configured to terminate continuing to detect the said random access signal within the target time window after obtaining the first response message returned by the first node based on the received random access signal.
  • a second termination module configured to terminate continuing to detect the said random access signal within the target time window after obtaining the first response message returned by the first node based on the received random access signal.
  • Target downlink channel configured to terminate continuing to detect the said random access signal within the target time window after obtaining the first response message returned by the first node based on the received random access signal.
  • Figure 6 is a structural block diagram of an information receiving device according to an embodiment of the present disclosure. As shown in Figure 6, the device includes:
  • the third receiving module 62 is used to receive random access signals sent by the second node on resources respectively corresponding to multiple target beams. incoming signal; wherein the plurality of target beams are beams determined by the second node.
  • the plurality of target beams are determined by the second node through at least one of the following methods: measuring downlink signals, and selecting multiple target beams based on the measurement results; Select a plurality of the target beams from the stored beams; obtain a plurality of the target beams from a plurality of beams configured by the first node; select a target resource group from a plurality of configured resource groups, and select from the target resource group. Select a plurality of target beams from a plurality of corresponding beams.
  • the above-mentioned third receiving module 62 includes:
  • the second receiving unit is configured to receive the random access signal sent by the second node on the resource corresponding to the first beam, where the first beam is determined by the second node in the following manner: Determine the transmission power for transmitting the random access signal on the target beam; determine the first beam from a plurality of the target beams based on the transmission power, wherein the number of the first beams is one or Multiple, and the number of the first beams is less than or equal to the number of the target beams.
  • the second node determines the first beam from a plurality of target beams based on the transmit power in the following manner: setting the corresponding transmit power to be less than or The target beam equal to the first threshold is determined as the first beam.
  • the above device further includes:
  • a return module configured to return a first response message to the second node based on the received random access signal after receiving the random access signal sent by the second node on the resources respectively corresponding to the plurality of target beams.
  • the first response message is used to instruct the second node to return an uplink message based on the uplink channel resources configured by the uplink channel configuration information in the first response message
  • the uplink message includes at least one of the following information 1: First indication information; identification information of the second node that sends the uplink message; wherein the first indication information is used to indicate whether to use a first effective beam, wherein the first effective beam is the third A target beam for a random access signal corresponding to a response message, and the beam corresponding to the first response message is a second effective beam.
  • the above device further includes:
  • a third termination module configured to terminate at the second effective beam when it is determined that the second node no longer uses the first effective beam based on the first indication information in the received uplink message. Send a second response message to the second node on the corresponding resource;
  • a processing module configured to, when it is determined that the second node uses the first effective beam based on the first indication information in the received uplink message, send a request to the resource corresponding to the second effective beam.
  • the second node sends a second response message; wherein the second response message is a response message to the uplink message.
  • the above device further includes:
  • the fourth receiving module is used to receive the uplink message
  • the fifth sending module is configured to: when the first indication information included in at least one of the uplink messages received within a time window indicates that the first effective beam is no longer used, when the second node Select at least one first effective beam from the indicated first effective beams that are no longer used, and continue to provide the second node with resources corresponding to the second effective beam corresponding to the selected at least one first effective beam. Send a second response message, where the second response message is a response message to the uplink message.
  • the device further includes:
  • the fifth receiving module is configured to receive the uplink message in one or more first response messages selected by the second node.
  • the uplink message is sent by the uplink channel resource configured by the channel configuration information, wherein the selected one or more first response messages are selected by the second node from the obtained first response messages.
  • the above device further includes:
  • the sixth sending module is configured to send the target downlink channel to the second node to indicate whether the second node continues to use the first effective beam, wherein the second node is instructed not to continue to use the first effective beam. In the case of the first effective beam, the second node no longer continues to detect the second response message. In the case of indicating that the second node needs to continue to use the first effective beam, the second node continues to detect the second response message. Two response messages, wherein the second response message is a response message to the uplink message.
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种信号的发送方法及装置、信号的接收方法及装置、存储介质及电子装置,该方法包括:确定多个目标波束;基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。通过本公开,解决了相关技术中存在的在随机接入的过程中只能采用单束波所对应的资源上传输随机接入信号的技术问题,进而达到了可以采用多束波所分别对应的资源上传输随机接入信号的技术效果,满足了极低时延、极高可靠性、超大带宽、海量接入等通信需求。

Description

信号的发送方法及装置、信号的接收方法及装置
相关申请的交叉引用
本公开基于2022年05月27日提交的发明名称为“信号的发送方法及装置、信号的接收方法及装置”的中国专利申请CN202210591041.7,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种信号的发送方法及装置、信号的接收方法及装置、存储介质及电子装置。
背景技术
第五代移动通信系统(5th Generation Mobile Communication System,可简称为5G)New Radio(新空口,可简称为NR)的大规模商用正在加速促进经济社会向数字化、网络化、智能化转型,推动网络跨入万物互联新时代。快速涌现的智慧城市、智慧交通、智慧工业生产等方面的应用需求,使得网络设备能力差异化、网络功能多样化、网络管控智能化的发展趋势持续增强,进一步推动了万物智联的第六代移动通信系统(6th Generation Mobile Communication System,可简称为6G)的到来。以智慧城市、智慧交通、智能家居为代表的6G典型应用场景中存在着大量能力高度差异化的智能自动化设备,对极低时延、极高可靠性、超大带宽、海量接入等方面的通信需求越发严苛,智能自动化类型的应用对感知能力也提出了高精度、高分辨率等要求。一方面,数目激增的无线通信、感知设备使得业务需求的无止境增长与无线资源和算力有限的矛盾愈发突出;另一方面,6G愿景的实现需要借助对环境感知信息的获取、信息交互与共享、智能信息处理、到控制信息(包括对通信网络的控制信息及应用执行设备的控制指令)逐层分发的闭环信息流处理。
相关技术中,第五代移动通信系统New Radio中,在随机接入过程中,终端只能选择一个beam(波束)方向对应的随机接入信道(Physical Random Access Channel,可简称为PRACH)资源上发送随机接入信号(preamble),开始随机接入过程。这样会限制UE的性能,当PRACH资源受限或者选择相同beam方向的UE数量过多时,会导致相同beam方向的preamble序列发生碰撞,进而导致UE无法成功接入系统或者导致UE的接入时延增加。因此,该随机接入方法是无法满足后5G/6G时代不断涌现的新的应用需求,例如,对极低时延、极高可靠性、超大带宽、海量接入等方面的通信需求。
可见,在相关技术中,终端只能选择一个beam方向对应的随机接入信道资源上发送随机接入信号,这样会限制UE的性能,并导致UE无法成功接入系统或者导致UE的接入时延增加,从而无法满足极低时延、极高可靠性、超大带宽、海量接入等方面的通信需求,针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种信号的发送方法及装置、信号的接收方法及装置、存储介质及电子装置,以至少解决相关技术中存在的在随机接入的过程中只能采用单束波所对应的资源上传输随机接入信号的技术问题。
根据本公开的一个实施例,提供了一种信号的发送方法,包括:确定多个目标波束;基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
根据本公开的一个实施例,提供了一种信号的接收方法,包括:接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号;其中,多个所述目标波束为所述第二节点所确定出的波束。
根据本公开的另一个实施例,提供了一种信号的发送装置,包括:第一确定模块,用于确定多个目标波束;第一发送模块,用于基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
根据本公开的另一个实施例,提供了一种信号的接收装置,包括:第三接收模块,用于接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号;其中,多个所述目标波束为所述第二节点所确定出的波束。
根据本公开的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本公开实施例的一种信号的发送方法的移动终端的硬件结构框图;
图2是根据本公开实施例的信号的发送方法的流程图;
图3是根据本公开实施例的信号的接收方法的流程图;
图4是本公开实施例的基站与终端之间的不同波束方向的示意图;
图5是根据本公开实施例的信息的发送装置的结构框图;
图6是根据本公开实施例的信息的接收装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种信号的发送方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和 用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的信号的发送方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种信号的发送方法,图2是根据本公开实施例的信号的发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定多个目标波束;
步骤S204,基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
其中,上述步骤的执行主体可以是具备信号收发能力的设备,例如,终端设备、终端设备内的处理器或者处理模块,或者还可以是其他的具备类似处理能力的处理设备或处理单元等,上述第一节点可以是基站、或者是基站中的特定模块,或者是其他的可以与基站通信的网络节点等等。上述随机接入信号也可以称为消息1,即,Msg1。
下面以终端设备(即,UE)执行上述操作为例(仅是一种示例性说明,在实际操作中还可以是其他的设备或模块来执行上述操作)进行说明。首先对本公开实施例中所涉及到的相关技术进行说明:
在本公开实施例中,波束可以通过确定的资源集合来表示,所述资源集合可以包括以下至少之一:发送端预编码,接收端预编码,发射端天线端口配置,发射端天线权重矢量,发射端天线权重矩阵,接收端天线端口配置,接收端天线权重矢量,接收端天线权重矩阵,确定的时域资源和/或频域资源和/或码子资源。因此,波束索引可以被替换为资源索引。波束也可以为一种传输(发送/接收)方式,所述的传输方式可以包括空分复用、频域和/或时域分集等。
在一个可选的实施例中,波束包括以下至少之一:发送波束、接收波束、预编码、预编码矩阵、预编码矩阵索引,接收波束和发送波束对,发送波束和接收波束对。
在一个可选的实施例中,第二信道/信号/资源的发送方式是参考或者使用第一信道/信号/资源使用的发送波束,则称为第二信道和第一信道使用相同的发送波束,其中,所述第一信道/信号/资源的发送波束则通过所述通过确定的资源集合来表示。
在一个可选的实施例中,第二信道/信号/资源的接收方式是参考或者使用第一信道/信号/资源使用的接收波束,则称为第二信道和第一信道使用相同的接收波束,其中,所述第一信道/信号/资源的接收波束则通过所述通过确定的资源集合来表示。
在一个可选的实施例中,一个目标波束对应一个波束方向,而多个目标波束可以对应相同的波束方向或者不同的波束方向。
在上述实施例中,可以确定多个目标波束,进而可以基于该多个目标波束所分别对应的资源向第一节点发送随机接入信号。采用这种方式,可以实现利用该多个目标波束所分别对应的可以发送随机接入信号的资源向第一节点发送随机接入信号,避免了仅采用单个波束所对应的资源发生故障时无法向第一节点发送随机接入信号的情况,解决了相关技术中存在的在随机接入的过程中只能采用单束波所对应的资源上传输随机接入信号的技术问题,达到了可以采用多束波所分别对应的资源上传输随机接入信号的技术效果,满足了极低时延、极高可靠性、超大带宽、海量接入等的通信需求。
在一个示例性实施例中,确定多个目标波束包括以下至少之一:对下行信道进行检测,基于检测结果选择多个所述目标波束;对下行信号进行测量,基于测量结果选择多个所述目标波束;从存储的波束中选择多个所述目标波束;从所述第一节点配置的多个波束中获取多个所述目标波束;从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择多个所述目标波束。在本实施例中,目标资源组可以包括PRACH时频资源和/或PRACH上的preamble资源,在从所述目标资源组所对应的多个波束中选择多个所述目标波束时,该目标资源组所对应的波束的数量更多,进而可以从中选择多个所述目标波束,其中,目标资源组所对应的波束可以预先配置;另外,在确定多个目标波束时,可以通过对下行信道进行检测或者测量,进而基于该检测结果或者测量结果选择一个或多个下行波束所对应的目标波束,例如,当基于检测结果或者测量结果选择了4个下行波束,UE可以根据上行波束和下行波束的对应关系(其中,所述对应关系可以是预先定义好的,或者是通过信令通知的,或者是UE和基站侧协商的等等),从该4个下行波束中选择2个下行波束对应的上行波束作为目标波束;此外,还需要说明的是,在采用从所述第一节点配置的多个波束中获取多个所述目标波束的方式来确定目标波束时,第一节点可以预先配置更多的波束,然后由UE从该更多的波束中去选择多个所述目标波束。
在一个示例性实施例中,基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号包括:确定所述目标波束上发送所述随机接入信号的发射功率;基于所述发射功率从多个所述目标波束中确定出第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量;在所述第一波束所对应的资源上发送所述随机接入信号。在本实施例中,需要基于发射功率来确定第一波束,此外,还需要说明的是,第一波束还可以是按照特定的选择方式(例如,为波束预先配置的优先级、波束的被使用频率等等)从目标波束中所选择出来的一个或多个波束,当然,也可以是从目标波束中随机选择的一个或多个波束,第一波束的数量也是可以基于实际情况进行调整的。需要说明的是,上述第一波束的选择方式仅是一种示例性实施例,第一波束并不仅限于上述的选择方式。
在一个示例性实施例中,基于所述发射功率从多个所述目标波束中确定出第一波束包括:将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。在本实施例中,第一阈值是可以预先设定的值,可以设定为第一节点支持的最大发射功率或者为对第一节点 配置的最大发射功率,可以将对应的所述发射功率小于或等于第一阈值的目标波束全部确定为所述第一波束,或者,将发射功率小于或等于第一阈值的目标波束中的部分波束确定为所述第一波束,还需要说明的是,上述第一阈值的设定可以根据实际应用情况进行灵活调整。
在一个示例性实施例中,在基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号之后,所述方法还包括:获取所述第一节点发送的第一响应消息;基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送上行消息,所述上行消息中包括以下信息至少之一:第一指示信息;发送所述上行消息的第二节点的标识信息;其中,所述第一指示信息用于指示是否使用第一有效波束,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。在本实施例中,第一响应消息(或称为第二消息,即Msg2)是第一节点基于接收到第二节点发送的随机接入信号所返回的,即,该第一响应消息是随机接入信号的响应消息,此外,第一有效波束与第二有效波束之间存在对应关系,例如,一个第一有效波束可以对应一个第二有效波束,上述上行消息也可以称为第三消息,即,Msg3。
在一个示例性实施例中,在向所述第一节点发送上行消息之后,所述方法还包括:所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。在本实施例中,如果第一节点在确定接收到的上行消息中不包括第一指示信息的情况下,则第一节点会在第二有效波束所对应的资源上向所述第二节点发送第二响应消息。
在一个示例性实施例中,在向所述第一节点发送上行消息之后,所述方法还包括:所述第一节点接收所述上行消息;所述第一节点在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,所述第一节点在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。在本实施例中,在随机接入过程中,上行消息是通过第一响应消息的信息包调度的,但第一响应消息的信息包中只有随机接入信号的索引信息,同时随机接入信号是可以给使用相同波束的终端公用的,因此,无法保证只有一个终端使用一个波束发送上行消息,也就是说,还可能存在多个终端使用相同的波束发送上行消息的情况,为了避免多个终端使用相同的波束导致上行消息发生碰撞,从而导致基站没有检测到该波束的上行消息,反而检测到终端放弃的波束的上行消息的情况,且为了保证随机接入流程,基站可以修改终端的决定,即继续从第一节点在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束完成随机接入流程,此外,还可能存在有多个终端使用相同的波束发送上行消息,从而导致发送上行消息的时延增加的情况,为了避免多个终端使用相同的波束导致发送上行消息的时延增加,从而导致基站没有检测到该波束的上行消息,反而检测到终端放弃的波束的上行消息的情况,且为了保证随机接入流程,基站可以修改终端的决定,即继续在第二节点所指示的不再使用的所述第一有效波 束中选择至少一个第一有效波束完成随机接入流程。
在一个示例性实施例中,在向所述第一节点发送上行消息之后,所述方法还包括以下至少之一:在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上没有收到所述第一节点发送给第二节点的目标下行信道的情况下,确认放弃使用所述第一有效波束;在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送给第二节点的目标下行信道,并且所述目标下行信道中的控制信息中包括不使用所述第一有效波束的确认信息的情况下,确认不在所述第一有效波束对应的第二有效波束对应的资源上继续检测所述目标下行信道;在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,并且所述目标下行信道中的控制信息中包括使用所述第一有效波束的信息的情况下,根据所述目标下行信道中的第二响应消息的调度信息继续检测所述第二响应消息;在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,所述目标下行信道中的控制信息中包括所述第二响应消息的调度信息,且所述调度信息为有效状态的情况下,根据所述调度信息继续检测所述第二响应消息。在本实施例中,终端在指示不使用第一有效波束对应的第二有效波束对应的资源上没有接收到基站发送目标下行信道,终端会基于该情况放弃使用第一有效波束,终端在指示不使用第一有效波束对应的第二有效波束对应的资源上接收到基站发送的目标下行信道,且目标下行信道中的控制信息中包括不使用第一有效波束的确认信息的情况下,终端会基于该情况确认不在第一有效波束对应的第二有效波束对应的资源上继续检测目标下行信道,终端在指示不使用第一有效波束对应的第二有效波束对应的资源上接收到基站发送的目标下行信道,且目标下行信道中的控制信息中包括使用第一有效波束的信息的情况下,终端会基于该情况根据目标下行信道中的第二响应消息的调度信息继续检测第二响应消息,终端在指示不使用第一有效波束对应的第二有效波束对应的资源上接收到基站发送的目标下行信道,且目标下行信道中的控制信息中包括第二响应消息的调度信息,且在确定该调度信息为有效状态的情况下,终端会基于该情况根据调度信息继续检测第二响应消息。
在一个示例性实施例中,基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送上行消息包括:从获取的所述第一响应消息中选择一个或者多个第一响应消息;通过所选择的第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送所述上行消息。在本实施例中,第一响应消息的信息包不一定在一个第一响应消息中承载,可以分布在多个第一响应消息中,因此,可以从获取的第一响应消息中选择一个或者多个第一响应消息的上行信道配置信息所配置的上行信道资源,向基站发送上行消息。可选地,在发送上行消息时还可以通过如下方式实现:从接收到所述随机接入信号的波束中选择预定数量的第一波束;通过所述第一波束对应的资源向所述第一节点发送所述上行消息,即,UE可以选择发送一部分波束对应的Msg3(即,上行消息)。
在一个示例性实施例中,向所述第一节点发送上行消息包括:当满足如下规则至少之一时,确定出在所述第一有效波束对应的资源上不需要发送的所述上行消息:在所述第一有效波束对应的资源上发送所述上行消息的发射功率超过第二阈值的上行消息;配置的所述上行消息的资源大小不满足第一需求;接收到的所述第一响应消息的信道质量性能不满足第二需求;向所述第一节点发送除不需要发送的所述上行消息之外的其他上行消息。在本实施例中, 第二阈值可以是预先设定的值,可以设定为第一节点支持的最大发射功率或者为对第一节点配置的最大发射功率,可以在所述第一有效波束对应的资源上发送所述上行消息的发射功率超过第二阈值的上行消息的情况下,确定出在所述第一有效波束对应的资源上不需要发送的所述上行消息,此外,第一需求可以是带宽、数据接入量等等,第二需求可以是时延、可靠性、高效性等等,需要说明的是,上述第二阈值、上述第一需求以及上述第二需求的举例说明仅是一种示例性实施例,第二阈值、第一需求、第二需求并不仅限于上述举例。
在一个示例性实施例中,在向所述第一节点发送上行消息之后,所述方法还包括:接收所述第一节点发送的目标下行信道,并基于所述目标下行信道确定是否继续使用所述第一有效波束,其中,在所述目标下行信道指示不再继续使用所述第一有效波束的情况下,不再继续检测第二响应消息,在所述目标下行信道指示需要继续使用所述第一有效波束的情况下,继续检测第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。在本实施例中,可能没有直接通过目标下行信道指示第二节点不再继续使用第一有效波束,而是通过获取第二响应消息的资源分配信息包含的指示信息,指示第二节点解码目标下行信道中包括的控制信息确定第二响应消息的资源分配信息为有效状态的情况下,确定第一节点指示第二节点继续使用第一有效波束。
在一个示例性实施例中,获取所述第一节点基于接收到的所述随机接入信号所返回的第一响应消息包括:在发送完所述随机接入信号之后在目标时间窗内检测所述第一节点发送的目标下行信道,其中,所述目标下行信道的目标控制信息中承载有所述第一响应消息的调度信息;基于所述第一响应消息的调度信息检测并接收所述第一响应消息;在获取所述第一节点基于接收到的所述随机接入信号所返回的第一响应消息之后,所述方法还包括:终止在所述目标时间窗内继续检测所述目标下行信道。在本实施例中,第一响应消息的信息包可以在时间窗内的多个第一响应消息中承载,因此,一个第一响应消息的信息包中至少包括一个随机接入信号的索引信息,其中,该索引信息是用于指示该信息包响应该索引信息的随机接入信号。
在本实施例中还提供了一种信号的接收方法,图3是根据本公开实施例的信号的接收方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号;其中,多个所述目标波束为所述第二节点所确定出的波束。
其中,上述步骤的执行主体可以是前述的第一节点,该第一节点可以是具备信号收发能力的设备,例如,基站,或者是基站内的模块,或者是可以与基站进行数据传输的网络节点,或者还可以是其他的具备类似处理能力的处理设备或处理单元等。后续会以基站执行上述操作为例(仅是一种示例性说明,在实际操作中还可以是其他的设备或模块来执行上述操作)进行说明,其中,第二节点可以是前述的UE。
在上述实施例中,第二节点可以确定多个目标波束,进而可以基于该多个目标波束所分别对应的资源向第一节点发送随机接入信号。采用这种方式,可以实现利用该多个目标波束所分别对应的可以发送随机接入信号的资源向第一节点发送随机接入信号,避免了仅采用单个波束所对应的资源发生故障时无法向第一节点发送随机接入信号的情况,解决了相关技术中存在的在随机接入的过程中只能采用单束波所对应的资源上传输随机接入信号的技术问题, 达到了可以采用多束波所分别对应的资源上传输随机接入信号的技术效果,满足了极低时延、极高可靠性、超大带宽、海量接入等的通信需求。
在上述实施例中,多个目标波束可以为第二节点从多个波束中确定的最优的波束,也可以是第二节点从多个波束中任意确定的波束。
在一个示例性实施例中,多个所述目标波束为所述第二节点通过如下方式至少之一所确定出的:对下行信号进行测量,基于测量结果选择多个所述目标波束;从存储的波束中选择多个所述目标波束;从第一节点配置的多个波束中获取多个所述目标波束;从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择多个所述目标波束。
在一个示例性实施例中,接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号包括:接收所述第二节点在第一波束所对应的资源上发送的所述随机接入信号,其中,所述第一波束为所述第二节点通过如下方式确定的:确定所述目标波束上发送所述随机接入信号的发射功率;基于所述发射功率从多个所述目标波束中确定出所述第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量。
在一个示例性实施例中,所述第二节点是通过如下方式实现基于所述发射功率从多个所述目标波束中确定出所述第一波束的:将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。
在一个示例性实施例中,在接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号之后,所述方法还包括:基于接收到的所述随机接入信号向所述第二节点返回第一响应消息,其中,所述第一响应消息用于指示所述第二节点基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源返回上行消息,所述上行消息中包括以下信息至少之一:第一指示信息;发送所述上行消息的第二节点的标识信息;其中,所述第一指示信息用于指示是否使用第一有效波束,其中,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。
在一个示例性实施例中,在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。
在一个示例性实施例中,接收所述上行消息;在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
在一个示例性实施例中,接收所述第二节点通过所选择的一个或多个第一响应消息中的上行信道配置信息所配置的上行信道资源发送的所述上行消息,其中,所选择的一个或多个第一响应消息为所述第二节点从获取的所述第一响应消息中选择出来的。在本实施例中,第一响应消息的信息包可以采用多个第一响应消息承载,进而基站可以接收终端在获取的第一响应消息中选择一个或多个第一响应消息中的上行信道配置信息所配置的上行资源发送的上行消息。
在一个示例性实施例中,向所述第二节点发送目标下行信道,以指示所述第二节点是否继续使用所述第一有效波束,其中,在指示所述第二节点不再继续使用所述第一有效波束的情况下,所述第二节点不再继续检测第二响应消息,在指示所述第二节点需要继续使用所述第一有效波束的情况下,所述第二节点继续检测第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。
显然,上述所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。
下面结合具体实施例对本公开进行具体说明:
在5G NR系统中,终端接收TRP(Transmit-Receive Point,5G对于基站的新叫法)同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel Block,可简称为SSB),由于SSB是可以采用多波束方式发送的,即SSB信息可以通过不同beam方向发送出去,图4是本公开实施例的基站与终端之间的不同波束方向的示意图。然后,终端根据接收到的SSB选择SSB对应的一个Beam方向,并且进一步选择该Beam方向对应的随机接入信道资源,并且在上述PRACH资源上发送随机接入信号(preamble),开始随机接入过程。其中,SSB中包括主同步信号(Primary Synchronization Signal,可简称为PSS)、辅同步信号(Secondary Synchronization Signal,可简称为SSS)以及物理广播信道(Physical Broadcast Channel,可简称为PBCH)。
5GNR系统中SSB与PRACH Occasion的映射:
SSB:即SS/PBCH block,其中承载了下行同步信号(包括主同步信号,PSS,和辅同步信号,SSS)以及PBCH(物理广播信道,其中承载MIB(Management Information Base,管理信息库)信息)。NR中由于支持多个Beam发送,因此,SSB也是支持在多个Beam方向上发送的。
PRACH Occasion(PRACH时频资源,可简称为RO):就PRACH Preamble发送时对应的时频资源。在同一时刻,频域上可以包括多个PRACH Occasions。
NR中随机接入过程中PRACH occasion要与SSB形成对应关系,即1个PRACH Occasion可能对应1个SSB,也可能对应多个SSB,这都是由基站配置的。
方案一:
步骤1:UE在多个beams对应的PRACH时频资源(即,前述的PRACH occasion)上发送随机接入信号(preamble),可称为Msg1(对应于上述随机接入信号)消息发送。
其中,UE对选择的beams方向可以采用以下至少之一的方式获得:
方式1:UE测量/检测Downlink信号/信道(Downlink信号/信道可以采用不同的beams方向发送),进而确定UE选择的多个beams方向。其中,UE根据所述测量/检测Downlink信号/信道的结果与门限值进行比较,并且按照以下方式确定UE选择的beams方向的数量,包括:当满足门限值要求的beams数量大于等于N时,则选择其中的N个beams方向(其中,N个beams方向可以是RSRP(Reference Signal Receiving Power,参考信号接收功率)/RSRQ(Reference Signal Receiving Quality,LTE参考信号接收质量)/RSSI(Reference Signal Strength Indicator,接收的信号强度指示)/SNR(Signal-to-Noise-Ratio,质量控制方法)最优的N个,也可以是任意的N个);否则满足门限值要求的全部beams作为选择的beams方向,其中,满足门限值要求包括测量/检测Downlink信号/信道的RSRP/RSRQ/RSSI/SNR等信息大于或者等于门限值。
方式2:UE自行选择N个beams方向。其中,所述N个beams方向可以是UE存储的N个beams方向,还可以是来自于UE之前接入系统时使用过的N个beams方向。
方式3:TPR通过DL信息给UE配置的N个beams方向。
方式4:在PRACH资源配置时,将PRACH资源(包括PRACH时频资源和/或PRACH上的preamble资源)进行分组,每组PRACH资源可以支持多个beams方向的Msg1发送。UE选择了一组PRACH资源,则UE在所述这组PRACH资源对应的M个beams上发送Msg1。
步骤1-1:如果UE按照上述步骤1确定了beams之后,如果UE在所述beam方向上发射Msg1所需的发射功率超过一个阈值时,则所述beam不用做Msg1的发射。
步骤2:TRP给UE发送Msg1的响应信息,可称为Msg2(对应于上述第一响应信息)。其中,Msg2的调度信息在下行控制信道(Physical Downlink Control Channel,可简称为PDCCH)中的下行控制信息(Downlink Control Information,可简称为DCI)中承载。Msg2承载在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中发送。其中,Msg2中包括一个或者多个信息包,其中,信息包中至少包括一个preamble的索引信息。所述preamble索引信息用来指示该信息包是针对所述索引信息的preamble的响应。
步骤3:UE发送完Msg1之后会在一个时间窗内检测TRP发送的Msg2的调度信息所在的PDCCH,进而根据检测到的PDCCH中的DCI承载的调度信息检测Msg2。其中,假设UE检测到TRP发送的针对自己发送的M个beams的K(K小于等于M)个Msg2(TRP不一定能够全部检测到M个beams的preamble,因此,此处的采用K表示Msg2),例如,K个Msg2中的信息包(K个Msg2的信息包不一定都在一个Msg2中承载,还可以分布在上述时间窗内的多个Msg2中)中的K个preamble索引信息都是UE发送的。进一步的,所述K个Msg2的信息包中还包中包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)信道的资源分配信息,用来UE传输上行消息,该上行消息可称为Msg3。
步骤4:UE按照K个Msg2的信息包指示的PUSCH信道,发送K1个Msg3消息。其中Msg3消息中包括以下信息中至少之一:
(1)第一指示信息,用来指示UE继续使用所述beams方向;
(2)UE的标识信息;
其中,K1的数量小于等于K。当UE发送Msg3时如果发射功率超过阈值,则所述Msg3就不会发送,相应的beam方向也会被UE放弃。
步骤5:TRP接收到UE发送的Msg3消息后,执行以下操作:
当Msg3指示UE不使用所述beams方向时,则TRP不在所述beams方向继续向UE发送Msg3的响应消息,即Msg4(对应于上述第二响应消息)。其中,Msg4通过PDCCH调度的PDSCH承载;
当Msg3指示UE继续所述beams方向或者Msg3中没有所述第一指示信息时,TRP继续向UE发送Msg3的响应信息即Msg4。
方案二:
本方案是对方案1中的步骤5进行的扩展:
步骤5的扩展如下:
步骤5:TRP接收到UE发送的Msg3消息后,执行以下操作:
TRP向UE发送PDCCH,并且在其中的DCI中指示是否放弃所述beam方向。如果所述DCI 指示UE放弃所述beam方向,则UE不再继续检测后续的Msg4信息;如果所述DCI中指示UE继续使用所述beam方向,则UE继续检测后续的Msg4信息;需要说明的是,如果所述DCI中没有指示UE继续使用beam方向,则获取Msg4的资源分配信息中包括的指示信息,即指示UE解码DCI确定Msg4的资源分配信息为有效值,则确定TRP指示UE继续使用所述beam方向。
方案三:
本方案是对方案1中的步骤5进行的扩展:
步骤5的扩展如下:
步骤5:TRP接收到UE发送的Msg3消息后,执行以下操作:
当TRP仅仅在UE指示不使用的beams方向检测到UE发送的Msg3消息,则TRP继续在所述Beams方向向UE发送Msg4消息,即在随机接入过程中,虽然Msg3是通过Msg2的信息包调度的,但Msg2的信息包中只有preamble索引信息,同时preamble是可以给使用相同beams的UE公用的,因此,还可能存在多个UE使用相同的beams发送Msg3,从而导致多个UE的Msg3发生碰撞以及TRP没有检测到该beams上的Msg3,反而检测到UE放弃的beams上的Msg3。为了保证随机接入流程,TRP可以修改UE的决定,即继续使用所述beams方向完成随机接入流程。
步骤6:UE继续检测所述K个Msg3消息的响应消息Msg4的PDCCH,执行以下操作之一:
如果UE在UE指示不使用所述beams方向没有收到PDCCH,则确认放弃所述beams方向;
如果UE在UE指示不使用所述beams方向收到PDCCH,并且PDCCH中的DCI包括确认不使用所述beams的确认信息,则UE不在所述beams方向继续检测PDCCH;
如果UE在UE指示不使用所述beams方向收到PDCCH,并且PDCCH中的DCI包括继续使用所述beams的信息,则UE继续根据所述PDCCH中的PDSCH调度信息,继续检测Msg4消息;
如果UE在UE指示不使用所述beams方向收到PDCCH,并且PDCCH中的DCI包括PDSCH调度信息,且所述PDSCH的调度信息为有效值,则UE继续根据所述PDCCH中的PDSCH调度信息,继续检测Msg4消息。
方案四:
本方案是对方案1中的步骤4-5进行的扩展:
步骤3(与方案1一致):UE发送完Msg1之后会在一个时间窗内检测TRP发送的Msg2的调度信息所在的PDCCH,进而根据检测到的PDCCH中的DCI承载的调度信息检测Msg2。其中,假设UE检测到TRP发送的针对自己发送的M个beams的K(K小于等于M)个Msg2(TRP不一定能够全部检测到M个beams的preamble,因此,此处的采用K表示Msg2),例如,K个Msg2中的信息包(K个Msg2的信息包不一定都在一个Msg2中承载,还可以分布在上述时间窗内的多个Msg2中)中的K个preamble索引信息都是UE发送的。进一步的,所述K个Msg2的信息包中还包中包括PUSCH信道的资源分配信息,用来UE传输上行消息,我们称这个上行消息为Msg3。
上述步骤4的扩展如下:
步骤4:UE接收到K个beams方向上的Msg2的信息包,UE从中选择其中K1个beams方向发送Msg3消息。其中Msg3消息的调度信息在Msg2的信息包中指示。其中,当满足以下条件中至少之一时,所述beam方向的Msg3不发送,包括:
(1)一个beam方向,UE发送Msg3时如果发射功率超过阈值,则所述Msg3就不会发送;
(2)Msg3的信息包中配置的Msg3资源大小不满足UE需求时,所述Msg3就不会发送;
(3)针对某个beam的Msg1,UE收到的Msg2消息的信道质量性能不满足需求,则该Msg2对应的Msg3就不会发送。
上述步骤5的扩展具体如下:
步骤5:TRP接收到UE发送的Msg3消息后,执行以下操作:
TRP向UE发送PDCCH,并且在其中的DCI中指示是否放弃所述beam方向。如果所述DCI指示UE放弃所述beam方向,则UE不再继续检测后续的Msg4信息;如果所述DCI中指示UE继续使用所述beam方向,则UE继续检测后续的Msg4信息;如果所述DCI中没有指示UE继续使用beam方向,则获取Msg4的资源分配信息中包括的指示信息,即指示UE解码DCI确定Msg4的资源分配信息为有效值,则确定TRP指示UE继续使用所述beam方向。
方案五:
本方案是对方案1中的步骤3进行的扩展:
步骤2(同方案1中的步骤1-2):TRP给UE发送Msg1的响应信息,我们称为Msg2。其中,Msg2的调度信息在下行控制信道(PDCCH)中的下行控制信息(DCI)中承载。Msg2承载在PDSCH中发送。其中,Msg2中包括一个或者多个信息包,每个信息包中至少包括一个preamble的索引信息。所述preamble索引信息用来指示该信息包是针对所述索引信息的preamble的响应。进一步的,在PRACH资源配置时,将PRACH资源(包括PRACH时频资源和/或PRACH上的preamble资源)进行分组,每组PRACH资源可以支持多个beams方向的Msg1发送。UE选择了一组PRACH资源,则UE在这组PRACH资源对应的M个beams上发送Msg1。
上述步骤3的扩展如下:
步骤3:UE发送完Msg1之后会在一个时间窗内检测TRP发送的PDCCH,其中PDCCH的DCI中承载了Msg1的响应信息Msg2的调度信息。在所述时间窗内,当UE检测到PDCCH并且从对应的PDSCH中承载的Msg2消息中检测到自己发送的preamble索引后,就继续按照Msg2中指示的Msg3资源发送Msg3。进一步,所述UE不在所述时间窗内继续检测TRP发送的PDCCH。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种信息的发送装置,该装置用于实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本公开实施例的信息的发送装置的结构框图,如图5所示,该装置包括:
第一确定模块52,用于确定多个目标波束;
第一发送模块54,用于基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
在一个可选的实施例中,上述第一确定模块52用于通过以下方式至少之一确定多个目标波束:
对下行信道进行检测,基于检测结果选择多个所述目标波束;对下行信号进行测量,基于测量结果选择多个所述目标波束;从存储的波束中选择多个所述目标波束;从所述第一节点配置的多个波束中获取多个所述目标波束;从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择多个所述目标波束。
在一个可选的实施例中,上述第一发送模块54包括:
第一确定单元,用于确定所述目标波束上发送所述随机接入信号的发射功率;
第二确定单元,用于基于所述发射功率从多个所述目标波束中确定出第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量;
第一发送单元,用于在所述第一波束所对应的资源上发送所述随机接入信号。
在一个可选的实施例中,上述第二确定单元包括:
确定子单元,用于将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。
在一个可选的实施例中,上述装置还包括:
获取模块,用于在基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号之后,获取所述第一节点发送的第一响应消息;
第二发送模块,用于基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送上行消息,所述上行消息中包括以下信息至少之一:第一指示信息;发送所述上行消息的第二节点的标识信息;其中,所述第一指示信息用于指示是否使用第一有效波束,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。
在一个可选的实施例中,上述装置还包括:
第一终止模块,用于在向所述第一节点发送上行消息之后,所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
第三发送模块,用于所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。
在一个可选的实施例中,上述第一节点包括:
第一接收模块,用于接收所述上行消息;
第四发送模块,用于在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,所述第一节点在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
在一个可选的实施例中,上述装置还包括以下至少之一:
第一确认模块,用于在向所述第一节点发送上行消息之后,在指示不使用的所述第一有 效波束对应的第二有效波束对应的资源上没有收到所述第一节点发送给第二节点的目标下行信道的情况下,确认放弃使用所述第一有效波束;
第二确认模块,用于在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送给第二节点的目标下行信道,并且所述目标下行信道中的控制信息中包括不使用所述第一有效波束的确认信息的情况下,确认不在所述第一有效波束对应的第二有效波束对应的资源上继续检测所述目标下行信道;
第一检测模块,用于在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,并且所述目标下行信道中的控制信息中包括使用所述第一有效波束的信息的情况下,根据所述目标下行信道中的第二响应消息的调度信息继续检测所述第二响应消息;
第二检测模块,用于在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,所述目标下行信道中的控制信息中包括所述第二响应消息的调度信息,且所述调度信息为有效状态的情况下,根据所述调度信息继续检测所述第二响应消息。
在一个可选的实施例中,上述第二发送模块包括:
选择单元,用于从获取的所述第一响应消息中选择一个或者多个第一响应消息;
第二发送单元,用于通过所选择的第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送所述上行消息。
在一个可选的实施例中,上述第二发送模块包括:
第三确定单元,用于当满足如下规则至少之一时,确定出在所述第一有效波束对应的资源上不需要发送的所述上行消息:在所述第一有效波束对应的资源上发送所述上行消息的发射功率超过第二阈值的上行消息;配置的所述上行消息的资源大小不满足第一需求;接收到的所述第一响应消息的信道质量性能不满足第二需求;第三发送单元,用于向所述第一节点发送除不需要发送的所述上行消息之外的其他上行消息。
在一个可选的实施例中,上述装置还包括:
第二接收模块,用于在向所述第一节点发送上行消息之后,接收所述第一节点发送的目标下行信道,并基于所述目标下行信道确定是否继续使用所述第一有效波束,其中,在所述目标下行信道指示不再继续使用所述第一有效波束的情况下,不再继续检测第二响应消息,在所述目标下行信道指示需要继续使用所述第一有效波束的情况下,继续检测第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。
在一个可选的实施例中,上述获取模块包括:
第一检测单元,用于在发送完所述随机接入信号之后在目标时间窗内检测所述第一节点发送的目标下行信道,其中,所述目标下行信道的目标控制信息中承载有所述第一响应消息的调度信息;
第二检测单元,用于基于所述第一响应消息的调度信息检测并接收所述第一响应消息;
上述装置还包括:第二终止模块,用于在获取所述第一节点基于接收到的所述随机接入信号所返回的第一响应消息之后,终止在所述目标时间窗内继续检测所述目标下行信道。
图6是根据本公开实施例的信息的接收装置的结构框图,如图6所示,该装置包括:
第三接收模块62,用于接收第二节点在多个目标波束分别对应的资源上所发送的随机接 入信号;其中,多个所述目标波束为所述第二节点所确定出的波束。
在一个可选的实施例中,多个所述目标波束为所述第二节点通过如下方式至少之一所确定出的:对下行信号进行测量,基于测量结果选择多个所述目标波束;从存储的波束中选择多个所述目标波束;从第一节点配置的多个波束中获取多个所述目标波束;从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择多个所述目标波束。
在一个可选的实施例中,上述第三接收模块62包括:
第二接收单元,用于接收所述第二节点在第一波束所对应的资源上发送的所述随机接入信号,其中,所述第一波束为所述第二节点通过如下方式确定的:确定所述目标波束上发送所述随机接入信号的发射功率;基于所述发射功率从多个所述目标波束中确定出所述第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量。
在一个可选的实施例中,所述第二节点是通过如下方式实现基于所述发射功率从多个所述目标波束中确定出所述第一波束的:将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。
在一个可选的实施例中,上述装置还包括:
返回模块,用于在接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号之后,基于接收到的所述随机接入信号向所述第二节点返回第一响应消息,其中,所述第一响应消息用于指示所述第二节点基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源返回上行消息,所述上行消息中包括以下信息至少之一:第一指示信息;发送所述上行消息的第二节点的标识信息;其中,所述第一指示信息用于指示是否使用第一有效波束,其中,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。
在一个可选的实施例中,上述装置还包括:
第三终止模块,用于在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
处理模块,用于在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;其中,所述第二响应消息为所述上行消息的响应消息。
在一个可选的实施例中,上述装置还包括:
第四接收模块,用于接收所述上行消息;
第五发送模块,用于在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
在一个可选的实施例中,所述装置还包括:
第五接收模块,用于接收所述第二节点通过所选择的一个或多个第一响应消息中的上行 信道配置信息所配置的上行信道资源发送的所述上行消息,其中,所选择的一个或多个第一响应消息为所述第二节点从获取的所述第一响应消息中选择出来的。
在一个可选的实施例中,上述装置还包括:
第六发送模块,用于向所述第二节点发送目标下行信道,以指示所述第二节点是否继续使用所述第一有效波束,其中,在指示所述第二节点不再继续使用所述第一有效波束的情况下,所述第二节点不再继续检测第二响应消息,在指示所述第二节点需要继续使用所述第一有效波束的情况下,所述第二节点继续检测第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种信号的发送方法,包括:
    确定多个目标波束;
    基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
  2. 根据权利要求1所述的方法,其中,确定多个目标波束包括以下至少之一:
    对下行信道进行检测,基于检测结果选择多个所述目标波束;
    对下行信号进行测量,基于测量结果选择多个所述目标波束;
    从存储的波束中选择多个所述目标波束;
    从所述第一节点配置的多个波束中获取多个所述目标波束;
    从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择多个所述目标波束。
  3. 根据权利要求1所述的方法,其中,基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号包括:
    确定所述目标波束上发送所述随机接入信号的发射功率;
    基于所述发射功率从多个所述目标波束中确定出第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量;
    在所述第一波束所对应的资源上发送所述随机接入信号。
  4. 根据权利要求3所述的方法,其中,基于所述发射功率从多个所述目标波束中确定出第一波束包括:
    将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。
  5. 根据权利要求1所述的方法,其中,在基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号之后,所述方法还包括:
    获取所述第一节点发送的第一响应消息;
    基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送上行消息,所述上行消息中包括以下信息至少之一:
    第一指示信息;
    发送所述上行消息的第二节点的标识信息;
    其中,所述第一指示信息用于指示是否使用第一有效波束,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。
  6. 根据权利要求5所述的方法,其中,在向所述第一节点发送上行消息之后,所述方法还包括:
    所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
    所述第一节点在基于接收到的所述上行消息中的第一指示信息,确定出第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
    其中,所述第二响应消息为所述上行消息的响应消息。
  7. 根据权利要求5所述的方法,其中,在向所述第一节点发送上行消息之后,所述方法还包括:
    所述第一节点接收所述上行消息;
    所述第一节点在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,所述第一节点在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
  8. 根据权利要求7所述的方法,其中,在向所述第一节点发送上行消息之后,所述方法还包括以下至少之一:
    在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上没有收到所述第一节点发送给第二节点的目标下行信道的情况下,确认放弃使用所述第一有效波束;
    在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送给第二节点的目标下行信道,并且所述目标下行信道中的控制信息中包括不使用所述第一有效波束的确认信息的情况下,确认不在所述第一有效波束对应的第二有效波束对应的资源上继续检测所述目标下行信道;
    在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,并且所述目标下行信道中的控制信息中包括使用所述第一有效波束的信息的情况下,根据所述目标下行信道中的第二响应消息的调度信息继续检测所述第二响应消息;
    在指示不使用的所述第一有效波束对应的第二有效波束对应的资源上收到所述第一节点发送的目标下行信道,所述目标下行信道中的控制信息中包括所述第二响应消息的调度信息,且所述调度信息为有效状态的情况下,根据所述调度信息继续检测所述第二响应消息。
  9. 根据权利要求5所述的方法,其中,基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一节点发送上行消息包括:
    从获取的所述第一响应消息中选择一个或者多个第一响应消息;
    通过所选择的第一响应消息中的上行信道配置信息所配置的上行信道资源,向所述第一 节点发送所述上行消息。
  10. 根据权利要求5所述的方法,其中,向所述第一节点发送上行消息包括:
    当满足如下规则至少之一时,确定出在所述第一有效波束对应的资源上不需要发送的所述上行消息:
    在所述第一有效波束对应的资源上发送所述上行消息的发射功率超过第二阈值的上行消息;
    配置的所述上行消息的资源大小不满足第一需求;
    接收到的所述第一响应消息的信道质量性能不满足第二需求;
    向所述第一节点发送除不需要发送的所述上行消息之外的其他上行消息。
  11. 根据权利要求5或10所述的方法,其中,在向所述第一节点发送上行消息之后,所述方法还包括:
    接收所述第一节点发送的目标下行信道,并基于所述目标下行信道确定是否继续使用所述第一有效波束,其中,在所述目标下行信道指示不再继续使用所述第一有效波束的情况下,不再继续检测第二响应消息,在所述目标下行信道指示需要继续使用所述第一有效波束的情况下,继续检测第二响应消息;
    其中,所述第二响应消息为所述上行消息的响应消息。
  12. 根据权利要求5所述的方法,其中,
    获取所述第一节点基于接收到的所述随机接入信号所返回的第一响应消息包括:在发送完所述随机接入信号之后在目标时间窗内检测所述第一节点发送的目标下行信道,其中,所述目标下行信道的目标控制信息中承载有所述第一响应消息的调度信息;基于所述第一响应消息的调度信息检测并接收所述第一响应消息;
    在获取所述第一节点基于接收到的所述随机接入信号所返回的第一响应消息之后,所述方法还包括:终止在所述目标时间窗内继续检测所述目标下行信道。
  13. 一种信号的接收方法,包括:
    接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号;
    其中,多个所述目标波束为所述第二节点所确定出的波束。
  14. 根据权利要求13所述的方法,其中,多个所述目标波束为所述第二节点通过如下方式至少之一所确定出的:
    对下行信号进行测量,基于测量结果选择多个所述目标波束;
    从存储的波束中选择多个所述目标波束;
    从第一节点配置的多个波束中获取多个所述目标波束;
    从配置的多个资源分组中选择目标资源组,从所述目标资源组所对应的多个波束中选择 多个所述目标波束。
  15. 根据权利要求13所述的方法,其中,接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号包括:
    接收所述第二节点在第一波束所对应的资源上发送的所述随机接入信号,其中,所述第一波束为所述第二节点通过如下方式确定的:
    确定所述目标波束上发送所述随机接入信号的发射功率;
    基于所述发射功率从多个所述目标波束中确定出所述第一波束,其中,所述第一波束的数量为一个或多个,且所述第一波束的数量小于或等于所述目标波束的数量。
  16. 根据权利要求15所述的方法,其中,所述第二节点是通过如下方式实现基于所述发射功率从多个所述目标波束中确定出所述第一波束的:
    将对应的所述发射功率小于或等于第一阈值的目标波束确定为所述第一波束。
  17. 根据权利要求13所述的方法,其中,在接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号之后,所述方法还包括:
    基于接收到的所述随机接入信号向所述第二节点返回第一响应消息,其中,所述第一响应消息用于指示所述第二节点基于所述第一响应消息中的上行信道配置信息所配置的上行信道资源返回上行消息,所述上行消息中包括以下信息至少之一:
    第一指示信息;
    发送所述上行消息的第二节点的标识信息;
    其中,所述第一指示信息用于指示是否使用第一有效波束,其中,所述第一有效波束为所述第一响应消息对应的随机接入信号针对的目标波束,所述第一响应消息对应的波束为第二有效波束。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点不再使用所述第一有效波束的情况下,终止在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
    在基于接收到的所述上行消息中的第一指示信息,确定出所述第二节点使用所述第一有效波束的情况下,在第二有效波束所对应的资源上向所述第二节点发送第二响应消息;
    其中,所述第二响应消息为所述上行消息的响应消息。
  19. 根据权利要求17所述的方法,其中,所述方法还包括:
    接收所述上行消息;
    在一个时间窗内接收到的至少一个所述上行消息中包括的所述第一指示信息都指示不再使用所述第一有效波束的情况下,在第二节点所指示的不再使用的所述第一有效波束中选择至少一个第一有效波束,并继续在选择的所述至少一个第一有效波束对应的第二有效波束对 应的资源上向所述第二节点发送第二响应消息,其中,所述第二响应消息为所述上行消息的响应消息。
  20. 根据权利要求17所述的方法,其中,所述方法还包括:
    接收所述第二节点通过所选择的一个或多个第一响应消息中的上行信道配置信息所配置的上行信道资源发送的所述上行消息,其中,所选择的一个或多个第一响应消息为所述第二节点从获取的所述第一响应消息中选择出来的。
  21. 根据权利要求17所述的方法,其中,所述方法还包括:
    向所述第二节点发送目标下行信道,以指示所述第二节点是否继续使用所述第一有效波束,其中,在指示所述第二节点不再继续使用所述第一有效波束的情况下,所述第二节点不再继续检测第二响应消息,在指示所述第二节点需要继续使用所述第一有效波束的情况下,所述第二节点继续检测第二响应消息;
    其中,所述第二响应消息为所述上行消息的响应消息。
  22. 一种信号的发送装置,包括:
    第一确定模块,用于确定多个目标波束;
    第一发送模块,用于基于多个所述目标波束所分别对应的资源向第一节点发送随机接入信号。
  23. 一种信号的接收装置,包括:
    第三接收模块,用于接收第二节点在多个目标波束分别对应的资源上所发送的随机接入信号;
    其中,多个所述目标波束为所述第二节点所确定出的波束。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至12或者权利要求13至21任一项中所述的方法的步骤。
  25. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述权利要求1至12或者权利要求13至21任一项中所述的方法的步骤。
PCT/CN2023/092589 2022-05-27 2023-05-06 信号的发送方法及装置、信号的接收方法及装置 WO2023226732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210591041.7A CN117202387A (zh) 2022-05-27 2022-05-27 信号的发送方法及装置、信号的接收方法及装置
CN202210591041.7 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226732A1 true WO2023226732A1 (zh) 2023-11-30

Family

ID=88918391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092589 WO2023226732A1 (zh) 2022-05-27 2023-05-06 信号的发送方法及装置、信号的接收方法及装置

Country Status (2)

Country Link
CN (1) CN117202387A (zh)
WO (1) WO2023226732A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376466A1 (en) * 2013-06-24 2014-12-25 Samsung Electronics Co., Ltd. Apparatus and method for adaptively determining tx beam subset for random access in wireless communication system
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法
CN109152081A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 基于多波束的随机接入方法、网络侧设备及用户终端
CN109151967A (zh) * 2017-06-14 2019-01-04 维沃移动通信有限公司 一种上行多波束功率控制方法及终端
CN109803339A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种随机接入方法、终端及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376466A1 (en) * 2013-06-24 2014-12-25 Samsung Electronics Co., Ltd. Apparatus and method for adaptively determining tx beam subset for random access in wireless communication system
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法
CN109151967A (zh) * 2017-06-14 2019-01-04 维沃移动通信有限公司 一种上行多波束功率控制方法及终端
CN109152081A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 基于多波束的随机接入方法、网络侧设备及用户终端
CN109803339A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种随机接入方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "General aspects for NR HF cell", 3GPP TSG-RAN2 MEETING #95 R2-165585, 21 August 2016 (2016-08-21), XP051140999 *

Also Published As

Publication number Publication date
CN117202387A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US10893566B2 (en) Method for receiving beam recovery request and network device
US11997722B2 (en) Random access procedure reporting and improvement for wireless networks
CN109803443B (zh) 用于随机接入的方法、终端设备和网络设备
CN109302726B (zh) 测量方法、终端设备和接入网设备
JP7131873B2 (ja) 通信方法及び通信装置
US20190182872A1 (en) Random access method and device
JP6209274B2 (ja) デュアルコネクティビティにおいてスモールセルでランダムアクセスを行う方法及びシステム
US10779225B2 (en) Methods, network nodes and wireless device for handling access information
WO2020164069A1 (en) Mobility enhancement in a connected state
US20220322452A1 (en) Communication method and system, and device
KR20200118105A (ko) 캐리어 세트 결정 방법 및 장치, 저장 매체 그리고 전자 디바이스
CN111093261A (zh) 定时提前量的确定方法、装置、设备及介质
US20210068132A1 (en) Uplink transmission method and user equipment
WO2019128760A1 (zh) 消息接收方法及终端
CN109391975B (zh) 一种发射功率配置、随机接入功率控制方法、装置和设备
WO2021027739A1 (zh) 波束失败恢复方法及装置
US11595829B2 (en) Method and device for transmitting information element
US20160150503A1 (en) Method for transmitting signal in device-to-device proximity service, base station, and user equipment
US20230224113A1 (en) Secondary cell activation method, apparatus, device, and storage medium
WO2023226732A1 (zh) 信号的发送方法及装置、信号的接收方法及装置
EP3780413A1 (en) Enhanced beam adjustment procedure for beam-based operation
WO2023143269A1 (zh) 一种通信方法及装置
WO2023207554A1 (zh) 一种定时提前量的获取方法及装置
WO2023226731A1 (zh) 系统信息发送、无线通信系统接入方法及装置
US20240057006A1 (en) Method for performing pdc and computer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810805

Country of ref document: EP

Kind code of ref document: A1