WO2021027739A1 - 波束失败恢复方法及装置 - Google Patents

波束失败恢复方法及装置 Download PDF

Info

Publication number
WO2021027739A1
WO2021027739A1 PCT/CN2020/107911 CN2020107911W WO2021027739A1 WO 2021027739 A1 WO2021027739 A1 WO 2021027739A1 CN 2020107911 W CN2020107911 W CN 2020107911W WO 2021027739 A1 WO2021027739 A1 WO 2021027739A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink signal
beam failure
serving cell
terminal
failure recovery
Prior art date
Application number
PCT/CN2020/107911
Other languages
English (en)
French (fr)
Inventor
李铁
张永平
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20852924.8A priority Critical patent/EP4002912A4/en
Publication of WO2021027739A1 publication Critical patent/WO2021027739A1/zh
Priority to US17/667,071 priority patent/US20220167339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communication technology, and in particular to a beam failure recovery method and device.
  • the fifth generation (5G) new radio (NR) communication system Compared with long-term evolution (LTE) communication systems that use low-frequency bands, the fifth generation (5G) new radio (NR) communication system adds high-frequency bands to achieve greater bandwidth and more High transmission rate.
  • LTE long-term evolution
  • NR new radio
  • the 5G NR communication system adopts hybrid beamforming technology to increase the directional power in the transmitting direction to obtain good directional gain, improve the signal-to-interference and noise ratio at the receiving end, and thereby improve the performance of the 5G NR communication system.
  • the base station and the terminal since both the base station and the terminal adopt hybrid beamforming technology, beam management is required between the terminal and the base station.
  • the base station and the terminal can align the transceiver beams to ensure the normal communication of the transceiver link between the base station and the terminal.
  • the 5G protocol defines two functions: radio link failure (RLF) and beam failure recovery (BFR).
  • RLF radio link failure
  • BFR beam failure recovery
  • RLF radio link failure
  • BFR beam failure recovery
  • the base station will configure a new beam candidate set for the terminal.
  • the new beam candidate set includes multiple downlink reference signal resources, such as channel state information-reference signal (CSI-RS) resources.
  • CSI-RS channel state information-reference signal
  • the terminal needs to measure the signals carried by multiple downlink reference signal resources in the new beam candidate set to determine the beam quality corresponding to each downlink reference signal resource in the new beam candidate set. This increases the terminal's implementation complexity in the BFR process.
  • the embodiments of the present application provide a beam failure recovery method and device, which are used to reduce the implementation complexity of the terminal during the BFR process.
  • a beam failure recovery method including: a terminal receives configuration information sent by a network device, the configuration information is used to indicate M uplink signal resources, and M is a positive integer; the terminal sends an uplink signal according to the configuration information; In the case of beam failure, the terminal receives a first response message based on the uplink signal, and the first response message is used to determine that the BFR is successful.
  • the terminal receives the configuration information sent by the network device to learn multiple uplink signal resources.
  • the terminal can send the uplink signal according to the configuration information, so that the network device can measure the uplink signal to determine the beam quality of multiple uplink signal resources.
  • the network device can determine that the network device uses the downlink transmission beam.
  • the terminal can also determine the receiving beam used by the terminal for the downlink according to the instructions of the network device. Therefore, in the case of beam failure, the terminal receives the first response message based on the uplink signal sent by the network device to complete beam failure recovery. It can be seen that in the technical solution provided by the embodiment of the present application, the terminal does not need to measure the downlink reference signal to determine the beam quality of multiple downlink reference signal resources, thereby reducing the terminal's implementation complexity in the BFR process.
  • the uplink signal resource is a sounding reference signal (SRS) resource.
  • SRS sounding reference signal
  • the SRS resources are SRS resources used for antenna selection, SRS resources used for physical uplink shared channel transmission, SRS resources used for beam management, or SRS resources used for new beam detection. It is understandable that when the SRS resource is the SRS resource used for antenna selection, the current antenna selection process can be reused for candidate beam detection, which is beneficial to reduce system resource overhead and save power consumption of network equipment. In the case where the SRS resources are SRS resources used for beam management, the current beam management process can be reused for candidate beam detection, which is beneficial to reduce the overhead of system resources and save power consumption of network equipment. In the case that the SRS resource is used for physical uplink shared channel transmission, the current physical uplink shared channel transmission process can be reused for candidate beam detection, which is beneficial to reduce the overhead of system resources and save the power consumption of network equipment .
  • the method before the terminal sends the uplink signal according to the configuration information, the method further includes: in the case of a beam failure, the terminal sends a first request message, where the first request message is used to request beam failure recovery. In this way, after receiving the first request message, the network device obtains the measurement result of the uplink signal. Therefore, after receiving the first request message, the network device can directly send the first response message to the terminal according to the measurement result of the uplink signal obtained before, without performing the uplink signal measurement procedure again, thereby reducing the BFR delay .
  • the method further includes: in the case of a beam failure, the terminal sends a first request message, where the first request message is used to request beam failure recovery. Since the measurement process of the uplink signal is after the beam failure occurs in the serving cell, the measurement result of the uplink signal obtained by the network device is more accurate, which is beneficial to selecting a suitable new beam.
  • sending an uplink signal according to configuration information includes: sending an uplink signal according to M uplink signal resources.
  • the first request message includes first indication information, and the first indication information is used to indicate that a beam failure occurs in the serving cell.
  • the first request message includes second indication information
  • the second indication information is used to indicate at least one serving cell where beam failure occurs.
  • the first request message includes third indication information, and the third indication information is used to indicate that the new beam is not recognized.
  • the terminal accesses multiple serving cells
  • at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the terminal sending the uplink signal according to the configuration information includes: for each of the multiple serving cells, the terminal sends the uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the terminal when the terminal accesses multiple serving cells, at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the terminal sending an uplink signal according to the configuration information includes: for each serving cell in at least one serving cell where a beam failure occurs, the terminal sends an uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the first response message is used to indicate a new beam of at least one serving cell in which beam failure occurs.
  • the first response message is carried in the signaling of the primary cell or the secondary cell where no beam failure has occurred.
  • the beam that transmits the first response message is a new beam of at least one serving cell where the beam fails.
  • the configuration information is also used to indicate N downlink signal resources, and N is a positive integer.
  • the configuration information is used to indicate a resource set, and the resource set includes M uplink signal resources; or, the resource set includes M uplink signal resources and N downlink signal resources.
  • the configuration information is used to indicate a first resource set and a second resource set, the first resource set includes M uplink signal resources, and the second resource set includes N downlink signal resources.
  • a beam failure recovery method including: a network device sends configuration information to a terminal, the configuration information is used to indicate M uplink signal resources, and M is a positive integer; the network device measures the uplink signal according to the configuration information; In the case of beam failure, the network device sends a first response message to the terminal based on the measurement result of the uplink signal, and the first response message is used for the terminal to determine that the BFR is successful.
  • the network device sends configuration information to the terminal, so that the terminal learns multiple uplink signal resources.
  • the terminal can send an uplink signal according to the configuration information, so that the network device measures the uplink signal to determine the beam quality of multiple uplink signal resources.
  • the network device Based on the beam reciprocity, after the network device completes the uplink measurement, the network device can determine that the network device uses the downlink transmission beam.
  • the terminal can also determine the receiving beam used by the terminal for the downlink according to the instructions of the network device. Therefore, in the case of beam failure, based on the measurement result of the uplink signal, the network device sends a first response message to the terminal to complete beam failure recovery. It can be seen that in the technical solution provided by the embodiment of the present application, the terminal does not need to measure the downlink reference signal to determine the beam quality of multiple downlink reference signal resources, thereby reducing the terminal's implementation complexity in the BFR process.
  • the uplink signal resources are SRS resources.
  • the SRS resources are SRS resources used for antenna selection, SRS resources used for physical uplink shared channel transmission, SRS resources used for beam management, or SRS resources used for new beam detection.
  • the method before the network device measures the uplink signal according to the configuration information, the method further includes: the network device receives a first request message sent by the terminal, where the first request message is used to request beam failure recovery.
  • the method further includes: the network device receives a first request message sent by the terminal, where the first request message is used to request beam failure recovery.
  • the network device when the terminal accesses a serving cell, the network device measures the uplink signal according to the configuration information, including: the network device measures the uplink signal according to M uplink signal resources.
  • the first request message includes first indication information, and the first indication information is used to indicate that a beam failure occurs in the serving cell.
  • the first request message includes second indication information
  • the second indication information includes an identifier of at least one serving cell where a beam failure occurs.
  • the first request message includes third indication information, and the third indication information is used to indicate that the terminal does not recognize the new beam.
  • the network equipment measuring the uplink signal according to the configuration information includes: for each of the multiple serving cells, the network equipment measures the uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the network device measuring the uplink signal according to the configuration information includes: for each serving cell in the at least one serving cell where the beam fails, the network device measures the uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the first response message is used to indicate a new beam of at least one serving cell in which beam failure occurs.
  • the first response message is carried in the signaling of the primary cell or the secondary cell where no beam failure has occurred.
  • the beam that transmits the first response message is a new beam of at least one serving cell where the beam fails.
  • the configuration information is also used to indicate N downlink signal resources, and N is a positive integer.
  • the configuration information is used to indicate a resource set, and the resource set includes M uplink signal resources; or, the resource set includes M uplink signal resources and N downlink signal resources.
  • the configuration information is used to indicate a first resource set and a second resource set, the first resource set includes M uplink signal resources, and the second resource set includes N downlink signal resources.
  • a communication device may be a terminal or a chip or a system on a chip in the terminal.
  • the communication device includes: a receiving module and a sending module.
  • the receiving module is used to receive configuration information sent by the network device, the configuration information is used to indicate M uplink signal resources, and M is a positive integer.
  • the sending module is used to send uplink signals according to the configuration information.
  • the receiving module is further configured to receive a first response message based on the uplink signal in the case of a beam failure, and the first response message is used to determine that the BFR is successful.
  • the uplink signal resources are SRS resources.
  • the SRS resources are SRS resources used for antenna selection, SRS resources used for physical uplink shared channel transmission, SRS resources used for beam management, or SRS resources used for new beam detection.
  • the sending module is also used to send a first request message in the case of a beam failure before sending an uplink signal, and the first request message is used to request beam failure recovery.
  • the sending module is also used to send a first request message in the case of a beam failure after sending an uplink signal, and the first request message is used to request beam failure recovery.
  • the sending module is also used to send an uplink signal according to M uplink signal resources when the terminal accesses a serving cell.
  • the first request message includes first indication information, and the first indication information is used to indicate that a beam failure occurs in the serving cell.
  • the first request message includes second indication information
  • the second indication information is used to indicate at least one serving cell where beam failure occurs.
  • the first request message includes third indication information, and the third indication information is used to indicate that the new beam is not recognized.
  • the terminal accesses multiple serving cells
  • at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the sending module is also used to send an uplink signal for each of the multiple serving cells according to at least one uplink signal resource corresponding to the serving cell.
  • the terminal accesses multiple serving cells
  • at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the sending module is also used to send an uplink signal according to at least one uplink signal resource corresponding to the serving cell for each serving cell where the beam fails among the multiple serving cells.
  • the first response message is used to indicate a new beam of at least one serving cell in which beam failure occurs.
  • the first response message is carried in the signaling of the primary cell or the secondary cell where no beam failure has occurred.
  • the beam that transmits the first response message is a new beam of at least one serving cell where the beam fails.
  • the configuration information is also used to indicate N downlink signal resources, and N is a positive integer.
  • the configuration information is used to indicate a resource set, and the resource set includes M uplink signal resources; or, the resource set includes M uplink signal resources and N downlink signal resources.
  • the configuration information is used to indicate a first resource set and a second resource set, the first resource set includes M uplink signal resources, and the second resource set includes N downlink signal resources.
  • a communication device may be a network device or a chip or a system on a chip in the network device.
  • the communication device includes a sending module and a receiving module.
  • the sending module is used to send configuration information to the terminal, the configuration information is used to indicate M uplink signal resources, and M is a positive integer.
  • the receiving module is used to measure the uplink signal according to the configuration information.
  • the sending module is further configured to send a first response message to the terminal based on the measurement result of the uplink signal in the case of a beam failure, and the first response message is used for the terminal to determine that the BFR is successful.
  • the uplink signal resources are SRS resources.
  • the SRS resources are SRS resources used for antenna selection, SRS resources used for physical uplink shared channel transmission, SRS resources used for beam management, or SRS resources used for new beam detection.
  • the receiving module is also used to receive the first request message sent by the terminal before measuring the uplink signal, and the first request message is used to request beam failure recovery.
  • the receiving module is also used to receive the first request message sent by the terminal after measuring the uplink signal, and the first request message is used to request beam failure recovery.
  • the first request message includes first indication information, and the first indication information is used to indicate that a beam failure occurs in the serving cell.
  • the first request message includes second indication information
  • the second indication information is used to indicate at least one serving cell where beam failure occurs.
  • the first request message includes third indication information, and the third indication information is used to indicate that the terminal does not recognize the new beam.
  • the terminal accesses multiple serving cells
  • at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the receiving module is also used to measure the uplink signal for each of the multiple serving cells according to at least one uplink signal resource corresponding to the serving cell.
  • the terminal accesses multiple serving cells
  • at least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the receiving module is further configured to measure the uplink signal according to at least one uplink signal resource corresponding to the serving cell for each serving cell in the at least one serving cell where beam failure occurs.
  • the first response message is used to indicate a new beam of at least one serving cell in which beam failure occurs.
  • the first response message is carried in the signaling of the primary cell or the secondary cell where no beam failure has occurred.
  • the beam that transmits the first response message is a new beam of at least one serving cell where the beam fails.
  • the configuration information is also used to indicate N downlink signal resources, and N is a positive integer.
  • the configuration information is used to indicate a resource set, and the resource set includes M uplink signal resources; or, the resource set includes M uplink signal resources and N downlink signal resources.
  • the configuration information is used to indicate a first resource set and a second resource set, the first resource set includes M uplink signal resources, and the second resource set includes N downlink signal resources.
  • a communication device including a processor.
  • the processor may be used to execute instructions in the memory to implement the beam failure recovery method involved in any design of the first aspect or the second aspect.
  • the communication device further includes a memory, and the processor is coupled with the memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, a transceiver circuit, an input/output interface, an input/output circuit, and the like.
  • the processor when the communication device is a chip or a chip system, the processor may also be a processing circuit or a logic circuit; the communication interface may be an input/output interface or interface on the chip or chip system. Circuits, output circuits, input circuits, pins or related circuits, etc.
  • a communication device including: a processor and a memory, the memory and the processor are coupled, the memory stores an instruction, and when the processor executes the instruction, the communication device realizes any of the first or second aspects above.
  • the communication device further includes a communication interface, and the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, a transceiver circuit, an input/output interface, an input/output circuit, and the like.
  • the processor when the communication device is a chip or a chip system, the processor may also be a processing circuit or a logic circuit; the memory may be a storage circuit; and the communication interface may be the chip or a chip system Upper input/output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc.
  • a communication device including: a processor and a communication interface, the processor is used to execute a computer program, so that the communication device realizes the beam failure recovery involved in any one of the designs in the first or second aspect method.
  • the communication interface may be a transceiver, a transceiver circuit, an input/output interface, an input/output circuit, and the like.
  • the processor when the communication device is a chip or a chip system, the processor may also be a processing circuit or a logic circuit; the communication interface may be an input/output interface or interface on the chip or chip system. Circuits, output circuits, input circuits, pins or related circuits, etc.
  • a computer-readable storage medium stores instructions. When the instructions are executed on a computer, the computer can execute any design in the first aspect or the second aspect. The beam failure recovery method involved.
  • a computer program product includes instructions.
  • the computer program product runs on a computer, the computer can execute the beams involved in any of the above-mentioned first or second aspects. Failure recovery method.
  • a chip or chip system in a tenth aspect, includes a processor, and when the processor executes an instruction, the processor is used to execute the beam failure recovery method involved in any one of the designs of the first or second aspect above .
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes an input and output circuit that can be used as a communication interface.
  • a communication system including a terminal and a network device.
  • the terminal is used to execute the beam failure recovery method involved in any one of the designs in the above first aspect
  • the network device is used to execute the beam failure recovery method involved in any one of the designs in the above second aspect.
  • Figure 1 is a schematic diagram of an uplink beam training
  • Figure 2 is a schematic diagram of a BFR
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal and a network device provided by an embodiment of the application;
  • FIG. 6 is a flowchart of a beam failure recovery method provided by an embodiment of the application.
  • FIG. 7 is a flowchart of a beam failure recovery method provided by an embodiment of the application.
  • FIG. 8 is a flowchart of another beam failure recovery method provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three kinds of relationships, for example, A and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • at least one means one or more
  • plural means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • instructions can include direct instructions and indirect instructions, as well as explicit instructions and implicit instructions.
  • the information indicated by a certain piece of information (the first indication information and the second indication information as described below) is referred to as information to be indicated.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated by the agreement) of each information, thereby reducing the indication overhead to a certain extent.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter); the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it may be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the beam pair may include a transmitting beam at the transmitting end and a receiving beam at the receiving end.
  • the transmitting end uses the transmitting beam for data transmission
  • the receiving end uses the corresponding receiving beam for data reception.
  • the beam pair may also be referred to as an uplink beam or a downlink beam.
  • the uplink beam is used to carry the information sent by the terminal to the network device, and the uplink beam includes the transmitting beam of the terminal and the receiving beam of the network device.
  • the downlink beam is used to carry the information sent by the network device to the terminal, and the downlink beam includes the receiving beam of the terminal and the transmitting beam of the network device.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technologies.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc. Different beams can be considered as different resources.
  • the communication device can transmit the same information or different information through different beams.
  • one beam corresponds to one resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • Beam reciprocity can be understood as the correlation between the receiving beam and the transmitting beam (Tx/Rx beam correlation).
  • Beam reciprocity means that the base station can determine the receiving beam used by the base station for the uplink according to the downlink measurement of one or more transmission beams of the base station by the terminal;
  • the uplink measurement of the receive beam determines the transmit beam used by the base station for the downlink; or the terminal can determine the transmit beam that the terminal uses for the uplink based on the downlink measurement of one or more receive beams of the terminal to the terminal Or, the terminal can determine the receive beam used for the downlink according to the instruction of the base station, and the instruction of the base station is based on the uplink measurement of one or more transmit beams of the terminal by the base station.
  • Resource is a data structure, including multiple sub-parameters, used to encapsulate related information.
  • the uplink signal resource is taken as an example.
  • the uplink signal resource may include at least one of the following parameters: the type of the uplink signal, the resource element (RE) that carries the uplink signal, the transmission time and period of the uplink signal, and the uplink signal transmission. The number of ports used by the signal, etc.
  • Each uplink signal resource has a unique index to identify the resource of the uplink signal. It is understandable that the index of the uplink signal resource may have other names, such as the identifier of the uplink signal resource, which is not limited in the embodiment of the present application.
  • Uplink beam training is used to determine the transmitting beam of the terminal and the receiving beam of the transmission reception point (TRP).
  • the uplink beam training includes the following steps:
  • U1 Perform TRP detection on different terminal transmitting beams, and select terminal transmitting beam or TRP receiving beam. Among them, U1 is not a required step.
  • U2 Perform TRP detection on different TRP receiving beams, and change or select the TRP receiving beam to realize the refinement of the TRP receiving beam.
  • U3 Perform TRP detection on the same TRP receiving beam, change or select the terminal sending beam, so as to realize the refinement of the terminal sending beam.
  • Random access procedure random access procedure
  • Random access is used to establish an uplink between a terminal and a network device.
  • the random access process is used in multiple events, such as the cell handover process, the RRC connection re-establishment process, and so on.
  • the contention-based random access procedure includes the following 4 steps:
  • Step 1 The terminal sends the preamble to the network device. It should be noted that the preamble is carried in a physical random access channel (PRACH).
  • PRACH physical random access channel
  • Step 2 The network device sends a random access response to the terminal.
  • Step 3 The terminal sends a message (message, Msg) 3 to the network device.
  • Step 4 The network device sends Msg4 to the terminal.
  • the non-competition-based random access process includes the following two steps:
  • Step 1 The terminal sends the preamble to the network device.
  • Step 2 The network device sends a random access response to the terminal.
  • TCI Transmission configuration indication
  • the TCI state is used to indicate the Quasi Co-Location (QCL) relationship between different physical signals and/or physical channels.
  • TCI state may be used to indicate the QCL relationship between CSI-RS and demodulation reference signal (demodulation reference signal, DMRS).
  • the QCL relationship is used to indicate that multiple antenna ports have one or more identical or similar communication characteristics. For example, if two antenna ports have a quasi co-location relationship, then the large-scale characteristics of the channel for one antenna port to transmit a signal can be inferred from the large-scale characteristics of the channel for the other antenna port to transmit a signal. For two antenna ports with a QCL relationship, the signals corresponding to the two antenna ports have the same parameters; or, the parameters of one antenna port can be used to determine the parameters of the other antenna port that has a QCL relationship with the antenna port; Or, the parameter difference between the two antenna ports is less than a preset threshold.
  • Table 1 shows four QCL types (types).
  • BFR can be used to help the base station or terminal adjust the currently failed beam pair to an available beam pair according to the beam measurement result, thereby avoiding frequent wireless link failures caused by beam pair failure.
  • the BFR of a single cell mainly includes the following steps:
  • the base station uses the high-level parameter failureDetectionResourcesToAddModList to configure the set for the terminal as Resource index of the CSI-RS period; and, the base station uses the high-level parameter candidateBeamRSList to configure the set for the terminal as
  • SSB may also be referred to as a synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • the terminal obtains the set including the periodic CSI-RS resource by monitoring the activated TCI state information of the control resource set (CORESET) of the corresponding physical downlink control channel (PDCCH).
  • the TCI state of the reference signal (RS) that the terminal expects to obtain has QCL-TypeD. Terminal expectation set The RS is single-ported.
  • the physical layer of the terminal is based on the set RS evaluates the link quality (radio link quality) in, where the terminal expects the evaluation to be based on the set
  • the RS in is periodic and has a QCL-TypeD relationship with the DMRS of the corresponding monitored PDCCH.
  • the physical layer of the terminal sends a beam failure indication (BFI) to the MAC layer.
  • the threshold Q out and LR are the default values of the high-level parameters rlmInSyncOutOfSyncThreshold.
  • the period for reporting the BFI at the physical layer can refer to the prior art.
  • the terminal physical layer When the terminal physical layer receives consecutive Beam-Failure-Instance-MaxCount BFIs, it is considered that a beam failure has occurred between the terminal and the base station.
  • the terminal physical layer Select the RS whose L1-RSRP measurement value is greater than or equal to the threshold Q in, LR , and report it to the MAC layer of the terminal.
  • the threshold Q in and LR are configured through the high-level parameter rsrp-ThresholdSSB. Specifically, for the collection For the SSB resource in the middle, the threshold Q in, and LR directly uses the high-level parameter rsrp-ThresholdSSB.
  • the threshold Q in, LR For collection For the CSI-RS resources in the CSI-RS, the threshold Q in, LR uses the product of rsrp-ThresholdSSB and powerControlOffsetSS.
  • the terminal When the terminal detects a beam failure and determines at least one candidate beam, the terminal may send a beam failure recovery request (BFRQ) to the base station.
  • the BFRQ includes a beam failure indication and information about the candidate beam.
  • the BFRQ can be carried in the PRACH configured by the high-level parameter PRACH-ResourceDedicatedBFR.
  • the terminal When the terminal transmits BFRQ in time slot n, the terminal will start monitoring from time slot n+4 in the monitoring window configured by the high-level parameter BeamFailureRecoveryConfig by the cell-radio network temporary identifier (C-RNTI) or Modulation and coding scheme (MCS)-C-RNTI initialized cyclic redundancy check (cyclic redundancy check, CRC) scrambled PDCCH.
  • C-RNTI cell-radio network temporary identifier
  • MCS Modulation and coding scheme
  • CRC cyclic redundancy check
  • the search space of the PDCCH is configured by the high-level parameter recoverySearchSpaceID.
  • the PDCCH is used to carry a beam failure recovery response (BFRR).
  • BFRR beam failure recovery response
  • the CORESET carrying PDCCH and the slave set The selected periodic CSI-RS or SSB whose index is q new has a QCL relationship. q new is determined by the MAC layer of the terminal.
  • the physical layer of the terminal may send a notification of a successful BFR (notification of a successful BFR) to the MAC layer.
  • the new beam candidate set configured by the base station for the terminal includes: CSI-RS resources or SSB resources.
  • the new beam candidate set is the set above Moreover, in the BFR process, the terminal needs to determine the beam quality corresponding to the CSI-RS resource/SSB resource in the new beam candidate set. This makes the terminal's implementation complexity in the BFR process relatively high.
  • the above-mentioned BFR procedure is only applicable to the primary cell.
  • the industry has not yet provided a specific technical solution.
  • this application provides a beam failure recovery method, and the specific introduction of the method can be found below.
  • the beam failure recovery method provided in this application is not only applicable to the primary cell, but also applicable to other cells other than the primary cell, such as a secondary cell or a primary and secondary cell.
  • the technical solutions provided in the embodiments of this application can be applied to various communication systems using beamforming technology, for example, a new radio (NR) communication system using a fifth generation (5G) communication technology, and future evolution System or multiple communication fusion systems, etc.
  • the technical solution provided by this application can be applied to a variety of application scenarios, such as machine to machine (M2M), macro and micro communications, enhanced mobile broadband (eMBB), ultra-high reliability and ultra-low latency Scenarios such as communication (ultra-reliable&low latency communication, uRLLC) and massive Internet of Things communication (massive machine type communication, mMTC).
  • M2M machine to machine
  • macro and micro communications such as enhanced mobile broadband (eMBB), ultra-high reliability and ultra-low latency Scenarios such as communication (ultra-reliable&low latency communication, uRLLC) and massive Internet of Things communication (massive machine type communication, mMTC).
  • eMBB enhanced mobile broadband
  • uRLLC ultra-high reliability and ultra-
  • These scenarios may include, but are not limited to: a communication scenario between a terminal and a terminal, a communication scenario between a network device and a network device, a communication scenario between a network device and a terminal, and so on.
  • the application in the communication scenario between the network device and the terminal is taken as an example.
  • FIG. 3 it is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the terminal can access a serving cell to establish a communication link with the network device.
  • FIG. 4 it is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • the terminal can simultaneously access multiple serving cells.
  • the terminal simultaneously accesses cell #1 and cell #2.
  • the multiple serving cells accessed by the terminal may belong to the same network device, or may belong to different network devices, and the embodiment of the present application is not limited thereto.
  • CA carrier aggregation
  • DC dual connectivity
  • CoMP Coordinated multiple points
  • multiple serving cells accessed by the terminal may include: a primary cell (primary cell, PCell) and a secondary cell (secondary cell, SCell).
  • PCell is the cell where the terminal establishes the initial connection, or the cell where the RRC connection is reestablished, or the primary cell designated during the handover process.
  • the SCell may be added during RRC reconfiguration to provide additional radio resources.
  • one serving cell corresponds to one component carrier (CC).
  • CC component carrier
  • the carrier unit corresponding to the PCell may be referred to as a primary component carrier (PCC).
  • the carrier unit corresponding to the SCell may be called a secondary component carrier (SCC).
  • the terminal accesses multiple serving cells at the same time, which is equivalent to that the terminal can communicate with network devices on multiple CCs at the same time, thereby achieving support for larger transmission bandwidth.
  • the multiple serving cells accessed by the terminal may include: PCell, SCell, or primary and secondary cells (PScell).
  • PCell and SCell can refer to the above, and will not be repeated here.
  • the PSCell may also be called a primary and secondary cell group cell (primary secondary cell group cell).
  • primary secondary cell group cell when the terminal is reconfigured in the synchronization process, the PSCell is a cell in a secondary cell group (secondary cell group) where the terminal performs random access.
  • the secondary cell group refers to a subset of a PSCell and N SCells for a terminal configured with dual connectivity, where N is a natural number.
  • FIGS. 3 and 4 are only schematic diagrams, and do not limit the application scenarios of the technical solutions provided in this application.
  • the network device may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as: micro base stations (also called small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in the embodiment of the present application.
  • the base station may be a base station (BTS) in the global system for mobile communication (GSM), code division multiple access (CDMA), and broadband
  • BTS base station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • eNB or e-NodeB evolutional node B
  • LTE long term evolution
  • eNB Internet of Things
  • NB-IoT narrowband-internet of things
  • PLMN public land mobile network
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device for implementing the functions of the network equipment is the network equipment as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network equipment mentioned in this application usually includes a baseband unit (BBU), a remote radio unit (RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU is used for signal modulation.
  • RRU is used for radio frequency processing.
  • the antenna is responsible for the conversion between the guided wave on the cable and the space wave in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce signal loss, and can also reduce the cost of the feeder.
  • RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all the BBUs can also be centralized and placed in the Central Office (CO).
  • CO Central Office
  • decentralized BBUs are centralized and turned into a BBU baseband pool, they can be managed and scheduled uniformly, and resource allocation is more flexible.
  • all physical base stations evolved into virtual base stations. All virtual base stations share the user's data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • the base station may include a centralized unit (CU) and a distributed unit (DU).
  • the base station may also include an active antenna unit (AAU).
  • CU implements part of the base station's functions, and DU implements some of the base station's functions.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of radio link control (RLC), media access control (MAC), and physical (physical, PHY) layers.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited here.
  • the terminal is a device with wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as aeroplane, balloon, satellite, etc.).
  • the terminal equipment may be user equipment (UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for implementing the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal as an example to describe the technical solutions provided by the embodiments of the present application.
  • Figure 5 is a schematic diagram of the hardware structure of a network device and a terminal provided by an embodiment of the application.
  • the terminal includes at least one processor 101 and at least one transceiver 103.
  • the terminal may further include an output device 104, an input device 105, and at least one memory 102.
  • the processor 101, the memory 102, and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • the memory 102 may exist independently and is connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101.
  • the memory 102 is used to store application program codes for executing the solutions of the present application, and the processor 101 controls the execution.
  • the processor 101 is configured to execute the computer program code stored in the memory 102, so as to implement the method provided in the embodiment of the present application.
  • the transceiver 103 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 communicates with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect to the core network device through a link (for example, an S1 interface), or to connect to a network interface of another network device through a wired or wireless link (for example, an X2 interface) (not shown in the figure), The embodiment of the application does not specifically limit this.
  • a link for example, an S1 interface
  • a wired or wireless link for example, an X2 interface
  • a beam failure recovery method provided by an embodiment of this application includes the following steps:
  • the network device sends configuration information to the terminal, so that the terminal receives the configuration information sent by the network device.
  • the configuration information is used to indicate M uplink signal resources of the terminal, and M is a positive integer.
  • the uplink signal resource indicated by the configuration information can be used for new beam detection. New beam detection may also be referred to as new beam identification, or candidate beam detection, and the embodiment of the present application is not limited thereto.
  • the uplink signal resources include but are not limited to: SRS resources.
  • SRS resources can be periodic, semi-persistent, or aperiodic.
  • the SRS resource indicated by the configuration information may be to reuse the SRS resource in the current standard. That is, the SRS resources indicated by the configuration information may be SRS resources used for antenna selection, or SRS resources used for physical uplink shared channel (PUSCH) transmission, or SRS resources used for beam management .
  • SRS resources used for PUSCH transmission can be divided into two types: one type is SRS resources used for codebooks, and the other type is SRS resources used for non-codebooks.
  • the SRS indicated by the configuration information may be a newly defined SRS resource specifically used for new beam detection.
  • configuration information is used to indicate the M uplink signal resources of the terminal, including the following two implementation modes:
  • Implementation manner 1 The configuration information indicates the M uplink signal resources of the terminal in an explicit manner.
  • the configuration information includes indexes of M uplink signal resources.
  • Implementation manner 2 The configuration information indicates the M uplink signal resources of the terminal in an implicit manner.
  • the configuration information is used to indicate a resource set.
  • the resource set includes M uplink signal resources.
  • the configuration information is used to indicate a resource set, which may be implemented as: the configuration information includes an index of the resource set.
  • the network device configures a resource set for the terminal in advance, and the resource set is inactive.
  • the configuration information is used to indicate a resource set, which can be implemented as: the configuration information includes indication information corresponding to the resource set, and the indication information corresponding to the resource set is used to indicate whether to activate the resource set.
  • the indication information may be implemented in one or more bits. Taking the indication information implemented by one bit as an example, the value of the indication information is "1", which is used to indicate the activation of the resource set; the value of the indication information is "0", which indicates that the resource set is not to be activated .
  • the terminal may send the uplink signal resource according to the uplink signal resource included in the resource set.
  • the network device can measure the uplink signal according to the uplink signal resources included in the resource set.
  • the configuration information is used to indicate L resource sets, and L is a positive integer greater than or equal to 2.
  • L resource sets may include a part of the uplink signal resources in the M uplink signal resources. That is to say, M uplink signal resources belong to L resource sets.
  • the uplink signal resources included in each resource set in the L resource sets are different.
  • the configuration information is used to indicate L resource sets, which may be implemented as: the configuration information includes the index of each resource set in the L resource sets.
  • the network device is pre-configured with P resource sets, all P resource sets are inactive, and P is a positive integer greater than or equal to L.
  • the configuration information is used to indicate L resource sets, which can be implemented as: the configuration information includes a bitmap, the bitmap includes at least P bits, and the P bits correspond to the P resource sets one-to-one, and one bit is used to indicate Whether to activate the corresponding resource collection. For example, when the value of the bit is "1", it is used to indicate that the corresponding resource set is activated; when the value of the bit is "0", it is used to indicate that the corresponding resource set is not to be activated.
  • the terminal can send the uplink signal according to the uplink signal resources included in the L resource sets.
  • the network device can measure the uplink signal according to the uplink signal resources included in the L resource sets.
  • one resource set may correspond to one or more serving cells, which is not limited in the embodiment of the present application.
  • the foregoing resource set may have other names, such as a new beam identification set, or a candidate beam detection set, or a new beam detection set, and the embodiment of the present application is not limited thereto.
  • the configuration information can be implemented in different ways.
  • the configuration information will be specifically described below for different application scenarios.
  • Scenario 1 The terminal only accesses one serving cell.
  • the M uplink signal resources indicated by the configuration information are all uplink signal resources corresponding to the serving cell accessed by the terminal.
  • the configuration information may only indicate one resource set, and the resource set includes M uplink signal resources.
  • Scenario 2 The terminal accesses multiple serving cells.
  • At least one serving cell in the multiple serving cells corresponds to at least one uplink signal resource among the M uplink signal resources.
  • the terminal accesses cell #1, cell #2, cell #3, and cell #4, and the configuration information is used to indicate uplink signal resource #1, uplink signal resource #2, uplink signal resource #3, and uplink signal resource #4.
  • Cell #1 can correspond to uplink signal resource #1 and uplink signal resource #3
  • cell #2 can correspond to uplink signal resource #2
  • cell #3 can correspond to uplink signal resource #4 and uplink signal resource #5
  • cell #4 may not Correspond to any uplink signal resource indicated by the configuration information.
  • the correspondence relationship between the uplink signal resource and the serving cell may be a one-to-one correspondence, a one-to-many correspondence, or a many-to-one correspondence, which is not limited.
  • the correspondence between the uplink signal resource and the serving cell can be configured in an explicit manner.
  • the configuration information of the uplink signal resource includes the index of the serving cell corresponding to the uplink signal resource. Therefore, the communication device can determine the serving cell corresponding to the uplink signal resource according to the index of the serving cell included in the configuration information of the uplink signal resource.
  • the correspondence between the uplink signal resource and the serving cell can be configured in an implicit manner.
  • the configuration information of the resource set includes the index of the serving cell. Therefore, the communication device can determine the service cell corresponding to all uplink signal resources in the resource set according to the index of the serving cell included in the configuration information of the resource set.
  • the configuration information of the resource set includes the index of cell #1 and the index of cell #2.
  • the resource set includes uplink signal resource #1 and uplink signal resource #2. Therefore, cell #1 corresponds to uplink signal resource #1 and uplink signal resource #1.
  • Signal resource #2 and cell #2 correspond to uplink signal resource #1 and uplink signal resource #2.
  • the configuration information may only indicate one resource set, and the resource set includes M uplink signal resources.
  • the resource set corresponds to each of the multiple serving cells accessed by the terminal, so that each of the multiple serving cells corresponds to M uplink signal resources.
  • the configuration information may indicate a resource set corresponding to at least one serving cell among the multiple serving cells, and the resource set corresponding to the serving cell includes at least one uplink signal resource among M uplink signal resources.
  • the terminal accesses cell #1, cell #2, and cell #3; the configuration information may indicate resource set #1 corresponding to cell #1, and resource set #2 corresponding to cell #2.
  • Resource set #1 includes uplink signal resource #1 and uplink signal resource #2
  • resource set #2 includes uplink signal resource #3 and uplink signal resource #4. Therefore, cell #1 corresponds to uplink signal resource #1 and uplink signal resource 2
  • cell #2 corresponds to uplink signal resource #3 and uplink signal resource #4.
  • the terminal sends an uplink signal according to the configuration information, so that the network device measures the uplink signal according to the configuration information.
  • the uplink signal involved in step S102 is the uplink signal corresponding to the uplink signal resource.
  • the uplink signal resource is an SRS resource
  • the uplink signal is an SRS.
  • the terminal sending the uplink signal according to the configuration information specifically includes: the terminal sending the uplink signal according to all or part of the uplink signal resources indicated by the configuration information.
  • the network device measuring the uplink signal according to the configuration information specifically includes: the network device measuring the uplink signal according to all or part of the uplink signal resources indicated by the configuration information.
  • the network device can determine the beam quality of the uplink signal resource by measuring the uplink signal corresponding to the uplink signal resource.
  • the beam quality measurement may include but is not limited to: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal to interference plus noise ratio (signal to interference plus noise ratio). interference plus noise ratio, SINR).
  • step S102 will be described with examples in combination with various situations of uplink signal resources.
  • Example 1 For an uplink signal resource indicated by the configuration information, if the uplink signal resource is an SRS resource used for antenna selection, the terminal may send the SRS to the network device according to the SRS resource in the antenna selection process.
  • the network equipment can measure the SRS in the antenna selection process to determine the beam quality of the SRS resource.
  • the beam quality of the SRS resource determined by the network device can be used not only in the antenna selection process, but also in the BFR process.
  • Example 2 For an uplink signal resource indicated by the configuration information, if the uplink signal resource is an SRS resource used for beam management, the terminal may send an SRS to the network device according to the SRS resource in the beam management process.
  • the network equipment can measure the SRS in the beam management process to determine the beam quality of the SRS resource.
  • the above beam management process may be the U1/U2/U3 stage in the uplink beam training.
  • the beam quality of the SRS resource determined by the network device can be used not only in the beam management process, but also in the BFR process.
  • Example 3 For an uplink signal resource indicated by the configuration information, if the uplink signal resource is an SRS resource used for PUSCH transmission, the terminal may send an SRS to the network device according to the SRS resource during PUSCH transmission. Correspondingly, the network equipment measures the SRS during the transmission of the PUSCH to determine the beam quality corresponding to the SRS resource.
  • the beam quality of the SRS resource determined by the network device can be used not only in the PUSCH transmission process, but also in the BFR process.
  • the terminal implements uplink signal transmission by multiplexing some current procedures (such as antenna selection procedures), and the network equipment implements uplink signal measurement by multiplexing some current procedures , Thereby reducing the overhead of system resources.
  • the network device reuses some current procedures to measure the uplink signal, the network device does not need to measure the beam quality in other scenarios, thereby saving the power consumption of the network device.
  • step S102 The specific implementation of step S102 will be described below in conjunction with specific application scenarios.
  • step S102 can be specifically implemented as: the terminal sends an uplink signal according to M uplink signal resources; correspondingly, the network device measures the uplink signal according to the M uplink signal resources .
  • step S102 may be specifically implemented as: for each serving cell of the multiple serving cells, the terminal sends an uplink signal according to at least one uplink signal resource corresponding to the serving cell ; Correspondingly, the network equipment measures the uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the terminal accesses cell #1, cell #2, cell #3, and cell #4.
  • the configuration information indicates uplink signal resource #1, uplink signal resource #2, uplink signal resource #3, and uplink signal resource #4.
  • cell #1 corresponds to uplink signal resource #1 and uplink signal resource #2;
  • cell #2 corresponds to uplink signal resource #3 and uplink signal resource #4;
  • cell #3 and cell #4 do not correspond to any one indicated by the configuration information Uplink signal resources.
  • the terminal transmits uplink signals according to uplink signal resource #1 and uplink signal resource #2; for cell #2, the terminal transmits uplink signals according to uplink signal resource #3 and uplink signal resource #4 Signal: For cell #3 and cell #4, because cell #3 and cell #4 do not correspond to any uplink signal resource indicated by the configuration information, the terminal does not send an uplink signal.
  • the network device measures the uplink signal according to uplink signal resource #1 and uplink signal resource #2; for cell #2, the network device measures the uplink signal according to uplink signal resource #3 and uplink signal resource #4 ; For cell #3 and cell #4, the network equipment does not measure the uplink signal.
  • step S102 may be specifically implemented as: for each serving cell in at least one serving cell where beam failure occurs, the terminal according to the at least one uplink signal resource corresponding to the serving cell , Sending an uplink signal; accordingly, the network device measures the uplink signal according to at least one uplink signal resource corresponding to the serving cell.
  • the terminal accesses cell #1, cell #2, cell #3, and cell #4.
  • the configuration information indicates uplink signal resource #1, uplink signal resource #2, uplink signal resource #3, and uplink signal resource #4.
  • cell #1 corresponds to uplink signal resource #1 and uplink signal resource #2;
  • cell #2 corresponds to uplink signal resource #3 and uplink signal resource #4;
  • cell #3 and cell #4 do not correspond to any one indicated by the configuration information Uplink signal resources. It is assumed that beam failure occurs in cell #1, and no beam failure occurs in cell #2, cell 3, and cell #4.
  • the terminal transmits the uplink signal according to the uplink signal resource #1 and the uplink signal resource #2 corresponding to the cell #1; correspondingly, the network device transmits the uplink signal according to the uplink signal resource #1 and the uplink signal resource #2 corresponding to the cell #1. , Measure the uplink signal.
  • the network device sends a first response message to the terminal based on the measurement result of the uplink signal, so that the terminal receives the first response message based on the uplink signal.
  • the first response message is used to make the terminal determine that the beam failed to recover successfully.
  • the first response message may have other names, such as beam failure recovery response, which is not limited in the embodiment of the present application.
  • the foregoing beam failure situation specifically refers to: a beam failure occurs in at least one serving cell. It is understandable that the terminal can determine whether a beam failure has occurred in the serving cell through a method in the prior art.
  • the terminal may send a notification message to the network device, so that the network device learns that the beam failure has occurred in the serving cell.
  • the notification message may be specifically implemented as the first request message below.
  • the measurement result of the uplink signal may include: at least one uplink signal resource corresponding to the serving cell
  • the beam quality of each uplink signal resource in. Therefore, the network device can determine the new beam of the serving cell where the beam failure occurs according to the measurement result of the uplink signal. Among them, there is reciprocity between the new beam and the uplink beam corresponding to the target uplink signal resource.
  • the target uplink signal resource may be an uplink signal resource with the highest beam quality among at least one uplink signal resource corresponding to a serving cell where a beam failure occurs.
  • the target uplink signal resource may be an uplink signal resource whose beam quality reaches a preset threshold among at least one uplink signal resource corresponding to a serving cell where a beam failure occurs.
  • the preset threshold may be Q in, LR or other values, which is not limited in the embodiment of the present application.
  • the new beam is the beam used for downlink transmission after the BFR succeeds.
  • the new beam of the serving cell is the receiving beam of the terminal; for the network device, the new beam of the serving cell is the transmitting beam of the network device.
  • the first response message is used to make the terminal determine that the beam failed to recover successfully, and the following implementation manners may be adopted:
  • the first response message is used to indicate a new beam of at least one serving cell where beam failure occurs.
  • the first response message is used to indicate the TCI state corresponding to at least one serving cell where beam failure occurs.
  • the TCI state is used to indicate QCL-Type D.
  • the first response message is used to indicate the index of a new beam of at least one serving cell where a beam failure occurs.
  • the first response message is carried in the signaling of the serving cell.
  • the first response message may be carried in the signaling of the cell where no beam failure has occurred.
  • the first response message may be carried in the signaling of the cell where the beam failure has not occurred, including: the first response message is carried in the primary cell or the secondary cell where the beam failure has not occurred.
  • the first response message may be carried in the signaling of the cell where the beam failure has not occurred, including: the first response message is carried in the primary cell, the primary and secondary cells where the beam failure has not occurred, or In the secondary cell where the beam failed.
  • the first response message may be carried in the signaling of the cell where the beam failure occurs.
  • the above-mentioned signaling may be RRC signaling, MAC-CE signaling, or downlink control information (DCI).
  • RRC signaling and MAC-control element (CE) signaling are carried in a physical downlink shared channel (PDSCH).
  • DCI is carried in PDCCH.
  • the first response message can be sent as a whole, or divided into multiple sub-messages to be sent separately.
  • each sub-message in the multiple sub-messages corresponds to a serving cell in which beam failure occurs, and the sub-message may be used to indicate the beam occurrence corresponding to the sub-message The new beam of the failed serving cell.
  • the beam for transmitting the first response message is a new beam of at least one serving cell where the beam fails.
  • the network device may use the new beam of the serving cell where the beam failure occurs to send the first response message. In this way, after the terminal successfully receives the first response message, the terminal can confirm that the beam transmitting the first response message is the new beam of the serving cell where the beam failure occurs.
  • the above-mentioned new beam may be the default beam or the beam with the highest beam quality.
  • cell #1 and cell #2 have beam failures.
  • the network device transmits the first response message on the beam with index 1 of cell #1, so that the terminal can determine that the beam with index 1 is the new beam of cell #1.
  • the network device transmits the first response message on the beam with index 4 of cell #2, so that the terminal can determine that the beam with index 4 is the new beam of cell #2.
  • the first response message may be carried in the PDCCH.
  • the terminal successfully receives the first response message it may mean that the terminal successfully receives the PDCCH.
  • the network device sends configuration information to the terminal, so that the terminal learns multiple uplink signal resources.
  • the terminal can send an uplink signal according to the configuration information, so that the network device measures the uplink signal to determine the beam quality of multiple uplink signal resources.
  • the network device can determine that the network device uses the downlink transmission beam.
  • the terminal can also determine the receiving beam used by the terminal for the downlink according to the instructions of the network device. Therefore, in the case of beam failure, based on the measurement result of the uplink signal, the network device sends a first response message to the terminal to complete beam failure recovery. It can be seen that in the technical solution provided by the embodiment of the present application, the terminal does not need to measure the downlink reference signal to determine the beam quality of multiple downlink reference signal resources, thereby reducing the terminal's implementation complexity in the BFR process.
  • the configuration information in step S101 may also be used to indicate N downlink reference signal resources, where N is a positive integer.
  • the aforementioned downlink reference signal resources are CSI-RS resources or SSB resources.
  • the configuration information is used to indicate the implementation manner of N downlink reference signal resources, and reference may be made to the above-mentioned configuration information used to indicate the implementation manner of M uplink signal resources.
  • the configuration information indicates M uplink signal resources and N downlink reference signal resources, and any one of the following implementation manners may be adopted:
  • the configuration information indicates the resource set.
  • the resource set includes M uplink signal resources and N downlink reference signal resources.
  • the resource collection may be the collection mentioned above Or other collections.
  • the configuration information indicates the first resource set and the second resource set.
  • the first resource set includes M uplink signal resources.
  • the second resource set includes N downlink signal resources.
  • the first resource set may be the set mentioned above
  • the second collection of resources can be a division Other collections.
  • the BFR method in the prior art can be used between the network device and the terminal or, the BFR method shown in FIG. 6 is used between the network device and the terminal; or, the BFR method in the prior art and the BFR method shown in FIG. 6 can be used in combination between the network device and the terminal.
  • the above beam failure recovery method further includes step S104.
  • S104 In the case of a beam failure, the terminal sends a first request message to the network device, so that the network device receives the first request message sent by the terminal.
  • the first request message is used to request beam failure recovery.
  • the first request message may also have other names, such as a beam failure recovery request, which is not limited in the embodiment of the present application.
  • the terminal sends the first request message in the primary cell; or, the terminal sends the first request message in the secondary cell.
  • the primary cell may be a frequency 1 (frequency 1, F1) cell
  • the secondary cell may be a frequency 2 (frequency 2, F2) cell.
  • F1 may be a high frequency
  • F2 may be a low frequency, and the embodiment of the present application is not limited thereto.
  • the first request message may include first indication information and/or second indication information.
  • the first indication information is used to indicate that a beam failure occurs in the serving cell.
  • the second indication information is used to indicate at least one serving cell in which beam failure occurs.
  • the second indication information may include: an index of at least one serving cell in which beam failure occurs.
  • the first request message may further include: third indication information, where the third indication information is used to indicate that the terminal does not recognize the new beam.
  • the terminal may perform downlink reference signal measurement to determine the beam quality of the N downlink reference signal resources. If the beam qualities of the N downlink reference signal resources do not meet the preset threshold (for example, Q out, LR in the above), the terminal does not recognize a new beam. In this case, the first request message sent by the terminal may include the third indication information.
  • the preset threshold for example, Q out, LR in the above
  • step S104 may be before step S102; or, as shown in FIG. 8, the execution order of step S104 may be after step S102.
  • step S102 in a scenario where the terminal accesses multiple serving cells, if the execution sequence of step S102 is before step S104, step S102 can adopt the second implementation manner above.
  • step S102 can adopt the implementation manner two or the implementation manner three above.
  • step S102 may adopt the second implementation manner or the implementation manner three above.
  • step S102 may adopt the second implementation manner above; the first request message includes the first indication information and the second indication information, or the first request message includes In the case of the second indication information, step S102 may adopt the third implementation manner above.
  • step S102 if the execution sequence of step S102 is before step S104, in the case of a beam failure in the serving cell accessed by the terminal, after the network device receives the first request message, the network device can use the previously acquired uplink For the signal measurement result, the first response message is directly sent to the terminal without performing the uplink signal measurement procedure again, thereby reducing the BFR delay.
  • step S102 in the case of a beam failure in the serving cell accessed by the terminal, after the network device receives the first request message, the network device performs the uplink signal measurement , To obtain the measurement result of the uplink signal, so that the network device sends the first response message to the terminal according to the measurement result of the uplink signal. Since the measurement process of the uplink signal is after the beam failure occurs in the serving cell, the measurement result of the uplink signal obtained by the network device is more accurate, which is beneficial to selecting a suitable new beam. In addition, this can also reduce the time required for the terminal to track and measure the complexity.
  • the uplink signal resource may be replaced with a preamble resource and/or an uplink signal resource with a QCL relationship for carrying or scheduling Msg3 resources.
  • each network element such as a network device and a terminal
  • each network element includes a corresponding hardware structure or software module for performing each function, or a combination of both.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function:
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal includes: a receiving module 301 and a sending module 302.
  • the sending module 302 is used to support the terminal to perform step S102 in FIG. 6, step S104 in FIG. 7 or FIG. 8, and/or other processes used to support the technical solutions described herein.
  • the receiving module 301 is used to support the terminal to perform steps S101 and S103 in FIG. 6 and/or used to support other processes of the technical solutions described herein.
  • the receiving module 301 and the sending module 302 in FIG. 9 may be implemented by the transceiver 103 in FIG. 5, which is not limited in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer instructions are stored; when the computer-readable storage medium runs on the terminal shown in FIG. 5, the terminal is caused to execute The method shown in Figure 6, Figure 7 or Figure 8.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)).
  • the embodiment of the present application also provides a computer program product containing computer instructions, when it runs on the terminal shown in FIG. 3, the terminal can execute the method shown in FIG. 6, FIG. 7 or FIG. 8.
  • the terminals, computer storage media, and computer program products provided in the above embodiments of the present application are all used to execute the methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding beneficial effects of the methods provided above. This will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device includes: a receiving module 401 and a sending module 402.
  • the sending module 402 is used to support the network device to perform steps S101 and S103 in FIG. 6 and/or used to support other processes of the technical solution described herein.
  • the receiving module 401 is used to support the network device to perform step S102 in FIG. 6, step S104 in FIG. 7 or FIG. 8, and/or other processes used to support the technical solutions described herein.
  • the receiving module 401 and the sending module 402 in FIG. 10 may be implemented by the transceiver 203 in FIG. 5, which is not limited in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer instructions are stored; when the computer-readable storage medium runs on the network device shown in FIG. 5, the network The device executes the method shown in Figure 6, Figure 7, or Figure 8.
  • the embodiment of the present application also provides a computer program product containing computer instructions, when it runs on the network device shown in FIG. 5, the network device can execute the method shown in FIG. 6, FIG. 7 or FIG. 8.
  • the network devices, computer storage media, and computer program products provided in the above embodiments of the present application are all used to execute the methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding beneficial effects of the methods provided above. I will not repeat them here.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • the chip shown in FIG. 11 may be a general-purpose processor or a dedicated processor.
  • the chip includes a processor 501.
  • the processor 501 is used to support the communication device to execute the technical solution shown in FIG. 6, FIG. 7 or FIG. 8.
  • the chip further includes a transceiver pin 502 as a communication interface.
  • the transceiver pin 502 is used to receive the control of the processor 501 and is used to support the communication device to execute the technical solution shown in FIG. 6, FIG. 7 or FIG.
  • the chip shown in FIG. 11 may further include: a storage medium 503.
  • the chip shown in Figure 11 can be implemented using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic devices (PLD) , Controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic devices
  • Controllers state machines
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种波束失败恢复方法及装置,涉及通信技术领域,用于降低BFR过程中终端的实现复杂度。该方法包括:终端接收网络设备发送的配置信息,该配置信息用于指示一个或多个上行信号资源;终端根据该配置信息,发送上行信号,以便于网络设备测量上行信号,确定上行信号对应的上行资源的波束质量;在发生波束失败的情况下,网络设备基于上行信号的测量结果,向终端发送第一响应消息,以便于终端确定波束失败恢复成功。本申请的技术方案适用于BFR过程中。

Description

波束失败恢复方法及装置
本申请要求于2019年08月09日提交国家知识产权局、申请号为201910736673.6、申请名称为“波束失败恢复方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及波束失败恢复方法及装置。
背景技术
相比于长期演进(long term evolution,LTE)通信系统采用低频频段,第五代(5th generation,5G)新空口(new radio,NR)通信系统新增高频频段,以实现更大带宽、更高传输速率。当信号的频率较高时,信号在空间传播中会发生严重衰落。因此,5G NR通信系统采用混合波束赋形技术,提高发射方向的定向功率,以获得良好的定向性增益,改善接收端信干噪比,进而提升5G NR通信系统的性能。
在5G NR通信系统中,由于基站和终端均采用混合波束赋形技术,因此终端与基站之间需要进行波束管理。通过上下行波束管理功能,基站和终端之间可以对齐收发波束,保证基站与终端之间的收发链路的正常通信。
为了保证收发链路的鲁棒性,5G协议中又定义了无线链路失败(radio link failure,RLF)和波束失败恢复(beam failure recovery,BFR)两个功能。其中,RLF用于宣称小区级无线链路失败。BFR用于宣称当前小区的波束发生失败。BFR设计目的是:在RLF触发前,通过BFR过程实现由于波束失败导致的无线链路失败的快速恢复。
对于BFR,基站会为终端配置新波束候选集合,该新波束候选集合包括多个下行参考信号资源,例如信道状态信息参考信号(channel state information-reference signal,CSI-RS)资源。这样一来,在服务小区的波束失败的情况下,终端通过确定服务小区的新波束候选集合中的每一个下行参考信号资源对应的波束质量,进而选择可用的波束上报给基站,以实现波束恢复。
当前,在BFR过程中,终端需要测量新波束候选集合中多个下行参考信号资源所承载的信号,以确定新波束候选集合中的每一个下行参考信号资源对应的波束质量。这增加了终端在BFR过程中的实现复杂度。
发明内容
本申请实施例提供一种波束失败恢复方法及装置,用于在BFR过程中,降低终端的实现复杂度。
第一方面,提供一种波束失败恢复方法,包括:终端接收网络设备发送的配置信息,配置信息用于指示M个上行信号资源,M为正整数;终端根据配置信息,发送上行信号;在发生波束失败的情况下,终端接收基于上行信号的第一响应消息,第一响应消息用于确定BFR成功。
基于上述技术方案,终端接收网络设备发送的配置信息,以获知多个上行信号资源。这样一来,终端可以根据配置信息,发送上行信号,以使得网络设备测量上行信 号,以确定多个上行信号资源的波束质量。基于波束互易性,网络设备在完成上行链路的测量后,网络设备可以确定网络设备用于下行链路的发送波束。同时,终端也能够根据网络设备的指示,确定终端用于下行链路的接收波束。因此,在发生波束失败的情况下,终端接收网络设备发送的基于上行信号的第一响应消息,以完成波束失败恢复。可见,本申请实施例所提供的技术方案中,终端无需测量下行参考信号,以确定多个下行参考信号资源的波束质量,从而降低终端在BFR过程中的实现复杂度。
一种可能的设计中,上行信号资源为探测参考信号(sounding reference signal,SRS)资源。
一种可能的设计中,SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。可以理解的是,在SRS资源为用于天线选择的SRS资源的情况下,当前的天线选择流程可以复用于候选波束检测,有利于降低系统资源的开销,节省网络设备的耗电量。在SRS资源为用于波束管理的SRS资源的情况下,当前的波束管理流程可以复用于候选波束检测,有利于降低系统资源的开销,节省网络设备的耗电量。在SRS资源为用于物理上行共享信道传输的SRS资源的情况下,当前的物理上行共享信道的传输流程可以复用于候选波束检测,有利于降低系统资源的开销,节省网络设备的耗电量。
一种可能的设计中,在终端根据配置信息,发送上行信号之前,方法还包括:终端在发生波束失败的情况下,发送第一请求消息,第一请求消息用于请求波束失败恢复。这样一来,网络设备在接收到第一请求消息之后,以获取上行信号的测量结果。从而,网络设备在接收到第一请求消息之后,可以根据之前获取的上行信号的测量结果,直接向终端发送第一响应消息,而无需再次执行上行信号的测量流程,从而减少了BFR的时延。
一种可能的设计中,在终端根据配置信息,发送上行信号之后,方法还包括:终端在发生波束失败的情况下,发送第一请求消息,第一请求消息用于请求波束失败恢复。由于上行信号的测量流程是在服务小区发生波束失败之后,因此,网络设备获得的上行信号的测量结果较为精确,有利于选择合适的新波束。
一种可能的设计中,在终端接入一个服务小区的情况下,根据配置信息,发送上行信号,包括:根据M个上行信号资源,发送上行信号。
一种可能的设计中,第一请求消息包括第一指示信息,第一指示信息用于指示服务小区发生波束失败。
一种可能的设计中,第一请求消息包括第二指示信息,第二指示信息用于指示至少一个发生波束失败的服务小区。这样一来,在终端接入多个服务小区的场景下,网络设备可以根据第二指示信息,获知哪些服务小区发生了波束失败。
一种可能的设计中,第一请求消息包括第三指示信息,第三指示信息用于指示未识别出新波束。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。终端根据配置信息,发送上行信号,包括:对于多个服务小区中的每一个服务小区,终端根据服务小区对应的至少一个上行信号资源,发送上行信号。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。终端根据配置信息,发送上行信号,包括:对于至少一个发生波束失败的服务小区中的每一个服务小区,终端根据服务小区对应的至少一个上行信号资源,发送上行信号。
一种可能的设计中,第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
一种可能的设计中,传输第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,配置信息还用于指示N个下行信号资源,N为正整数。
一种可能的设计中,配置信息用于指示资源集合,该资源集合包括M个上行信号资源;或者,该资源集合包括M个上行信号资源和N个下行信号资源。
一种可能的设计中,配置信息用于指示第一资源集合和第二资源集合,该第一资源集合包括M个上行信号资源,第二资源集合包括N个下行信号资源。
第二方面,提供一种波束失败恢复方法,包括:网络设备向终端发送配置信息,配置信息用于指示M个上行信号资源,M为正整数;网络设备根据配置信息,测量上行信号;在发生波束失败的情况下,网络设备基于上行信号的测量结果,向终端发送第一响应消息,第一响应消息用于使终端确定BFR成功。
基于上述技术方案,网络设备向终端发送配置信息,以使得终端获知多个上行信号资源。这样一来,终端可以根据配置信息,发送上行信号,以使得网络设备测量上行信号,以确定多个上行信号资源的波束质量。基于波束互易性,网络设备在完成上行链路的测量后,网络设备可以确定网络设备用于下行链路的发送波束。同时,终端也能够根据网络设备的指示,确定终端用于下行链路的接收波束。因此,在发生波束失败的情况下,基于上行信号的测量结果,网络设备向终端发送第一响应消息,以完成波束失败恢复。可见,本申请实施例所提供的技术方案中,终端无需测量下行参考信号,以确定多个下行参考信号资源的波束质量,从而降低终端在BFR过程中的实现复杂度。
一种可能的设计中,上行信号资源为SRS资源。
一种可能的设计中,SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
一种可能的设计中,在网络设备根据配置信息,测量上行信号之前,方法还包括:网络设备接收终端发送的第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,在网络设备根据配置信息,测量上行信号之后,方法还包括:网络设备接收终端发送的第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,在终端接入一个服务小区的情况下,网络设备根据配置信息,测量上行信号,包括:网络设备根据M个上行信号资源,测量上行信号。
一种可能的设计中,第一请求消息包括第一指示信息,第一指示信息用于指示服务小区发生波束失败。
一种可能的设计中,第一请求消息包括第二指示信息,第二指示信息包括至少一个发生波束失败的服务小区的标识。
一种可能的设计中,第一请求消息包括第三指示信息,第三指示信息用于指示终端未识别出新波束。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。网络设备根据配置信息,测量上行信号,包括:对于多个服务小区中的每一个服务小区,网络设备根据服务小区对应的至少一个上行信号资源,测量上行信号。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。网络设备根据配置信息,测量上行信号,包括:对于至少一个发生波束失败的服务小区中的每一个服务小区,网络设备根据服务小区对应的至少一个上行信号资源,测量上行信号。
一种可能的设计中,第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
一种可能的设计中,传输第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,配置信息还用于指示N个下行信号资源,N为正整数。
一种可能的设计中,配置信息用于指示资源集合,该资源集合包括M个上行信号资源;或者,该资源集合包括M个上行信号资源和N个下行信号资源。
一种可能的设计中,配置信息用于指示第一资源集合和第二资源集合,该第一资源集合包括M个上行信号资源,第二资源集合包括N个下行信号资源。
第三方面,提供一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统。该通信装置包括:接收模块和发送模块。其中,接收模块,用于接收网络设备发送的配置信息,配置信息用于指示M个上行信号资源,M为正整数。发送模块,用于根据配置信息,发送上行信号。接收模块,还用于在发生波束失败的情况下,接收基于上行信号的第一响应消息,第一响应消息用于确定BFR成功。
一种可能的设计中,上行信号资源为SRS资源。
一种可能的设计中,SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
一种可能的设计中,发送模块,还用于在发送上行信号之前,在发生波束失败的情况下,发送第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,发送模块,还用于在发送上行信号之后,在发生波束失败的情况下,发送第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,发送模块,还用于在终端接入一个服务小区的情况下,根据M个上行信号资源,发送上行信号。
一种可能的设计中,第一请求消息包括第一指示信息,第一指示信息用于指示服务小区发生波束失败。
一种可能的设计中,第一请求消息包括第二指示信息,第二指示信息用于指示至少一个发生波束失败的服务小区。
一种可能的设计中,第一请求消息包括第三指示信息,第三指示信息用于指示未识别出新波束。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。发送模块,还用于对于多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。发送模块,还用于对于多个服务小区中的每一个发生波束失败的服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
一种可能的设计中,第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
一种可能的设计中,传输第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,配置信息还用于指示N个下行信号资源,N为正整数。
一种可能的设计中,配置信息用于指示资源集合,该资源集合包括M个上行信号资源;或者,该资源集合包括M个上行信号资源和N个下行信号资源。
一种可能的设计中,配置信息用于指示第一资源集合和第二资源集合,该第一资源集合包括M个上行信号资源,第二资源集合包括N个下行信号资源。
第四方面,提供一种通信装置,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统。该通信装置包括发送模块和接收模块。其中,发送模块,用于向终端发送配置信息,配置信息用于指示M个上行信号资源,M为正整数。接收模块,用于根据配置信息,测量上行信号。发送模块,还用于在发生波束失败的情况下,基于上行信号的测量结果,向终端发送第一响应消息,第一响应消息用于使终端确定BFR成功。
一种可能的设计中,上行信号资源为SRS资源。
一种可能的设计中,SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
一种可能的设计中,接收模块,还用于在测量上行信号之前,接收终端发送的第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,接收模块,还用于在测量上行信号之后,接收终端发送的第一请求消息,第一请求消息用于请求波束失败恢复。
一种可能的设计中,第一请求消息包括第一指示信息,第一指示信息用于指示服务小区发生波束失败。
一种可能的设计中,第一请求消息包括第二指示信息,第二指示信息用于指示至 少一个发生波束失败的服务小区。
一种可能的设计中,第一请求消息包括第三指示信息,第三指示信息用于指示终端未识别出新波束。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。接收模块,还用于对于多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
一种可能的设计中,在终端接入多个服务小区的情况下,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。接收模块,还用于对于至少一个发生波束失败的服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
一种可能的设计中,第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
一种可能的设计中,传输第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
一种可能的设计中,配置信息还用于指示N个下行信号资源,N为正整数。
一种可能的设计中,配置信息用于指示资源集合,该资源集合包括M个上行信号资源;或者,该资源集合包括M个上行信号资源和N个下行信号资源。
一种可能的设计中,配置信息用于指示第一资源集合和第二资源集合,该第一资源集合包括M个上行信号资源,第二资源集合包括N个下行信号资源。
第五方面,提供了一种通信装置,包括处理器。所述处理器可用于执行存储器中的指令,以实现上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。可选地,该通信装置还包括存储器,处理器与存储器耦合。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,所述通信接口可以是收发器、收发电路、输入/输出接口、输入/输出电路等。
在另一种实现方式中,当该通信装置为芯片或芯片系统时,所述处理器也可以为处理电路或逻辑电路;所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
第六方面,提供一种通信装置,包括:处理器和存储器,存储器和处理器耦合,存储器存储有指令,当处理器执行该指令时,使得通信装置实现上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。可选的,该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信。
在一种实现方式中,所述通信接口可以是收发器、收发电路、输入/输出接口、输入/输出电路等。
在一种实现方式中,当该通信装置为芯片或芯片系统时,所述处理器也可以为处理电路或逻辑电路;所述存储器可以是存储电路;所述通信接口可以是该芯片或芯片 系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
第七方面,提供一种通信装置,包括:处理器和通信接口,所述处理器用于执行计算机程序,使得通信装置实现上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。
在一种实现方式中,所述通信接口可以是收发器、收发电路、输入/输出接口、输入/输出电路等。
在另一种实现方式中,当该通信装置为芯片或芯片系统时,所述处理器也可以为处理电路或逻辑电路;所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机可以执行上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。
第九方面,提供一种计算机程序产品,该计算机程序产品包括指令,当该计算机程序产品在计算机上运行时,使得计算机可以执行上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。
第十方面,提供一种芯片或芯片系统,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述第一方面或第二方面中任一种设计所涉及的波束失败恢复方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括可以作为通信接口的输入输出电路。
第十一方面,提供一种通信系统,包括终端和网络设备。其中,终端用于执行上述第一方面中任一种设计所涉及的波束失败恢复方法,网络设备用于执行上述第二方面中任一种设计所涉及的波束失败恢复方法。
其中,第三方面至第十一方面中任一种设计所带来的技术效果可参见上文中对应的方法所带来的技术效果。
附图说明
图1为一种上行波束训练的示意图;
图2为一种BFR的示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的另一种通信系统的架构示意图;
图5为本申请实施例提供的一种终端与网络设备的硬件结构示意图;
图6为本申请实施例提供的一种波束失败恢复方法的流程图;
图7为本申请实施例提供的一种波束失败恢复方法的流程图;
图8为本申请实施例提供的另一种波束失败恢复方法的流程图;
图9为本申请实施例提供的一种终端的结构示意图;
图10为本申请实施例提供的一种网络设备的结构示意图;
图11为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系, 例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一指示信息、第二指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
为了便于理解本申请的技术方案,下面先对本申请所涉及的术语进行简单介绍。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
5G毫米波通信系统中以波束对的方式进行数据传输。可以理解的是,波束对可以包括发送端的发送波束和接收端的接收波束。发送端通过发送波束进行数据发送,接收端以相应的接收波束进行数据接收。
波束对还可以称为上行波束或者下行波束。其中,上行波束用于承载终端发送给网络设备的信息,上行波束包括终端的发送波束和网络设备的接收波束。下行波束用于承载网络设备发送给终端的信息,下行波束包括终端的接收波束和网络设备的发送波束。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通信装置通过不同的波束可以发送相同的信息或者不同的信息。
在本申请实施例中,一个波束对应一个资源,因此可以以资源的索引来唯一标识 该资源对应的波束。
2、波束互易性
波束互易性可以理解为接收波束与发送波束之间的相关性(Tx/Rx beam correspondence)。
波束互易性是指:基站能够根据终端对基站的一个或多个发送波束的下行链路测量,确定基站用于上行链路的接收波束;或者,基站能够根据基站对基站的一个或多个接收波束的上行链路测量,确定基站用于下行链路的发送波束;或者,终端能够根据终端对终端的一个或多个接收波束的下行链路测量,确定终端用于上行链路的发送波束;或者,终端能够根据基站的指示,确定用于下行链路的接收波束,基站的指示基于基站对终端的一个或多个发送波束的上行链路测量。
波束互易性的具体定义可以参见第三代合作伙伴(3rd generation partnership project,3GPP)的38.912协议。
3、资源
资源是一种数据结构,包括多个子参数,用于封装相关的信息。
示例性的,以上行信号资源为例,上行信号资源可以包括以下参数至少一项:上行信号的类型、承载上行信号的资源粒(resource element,RE),上行信号的发送时间和周期,发送上行信号所采用的端口数等。每一个上行信号资源具有唯一的索引,以标识该上行信号的资源。可以理解的是,上行信号资源的索引可以有其他的名称,例如上行信号资源标识,本申请实施例对此不作任何限制。
4、上行波束训练
上行波束训练用于确定终端的发送波束和传输接收点(transmission reception point,TRP)的接收波束。
如图1所示,上行波束训练包括以下步骤:
U1:在不同的终端发送波束上进行TRP检测,选择终端发送波束或者TRP接收波束。其中,U1不是必选的步骤。
U2:在不同的TRP接收波束上进行TRP检测,改变或选择TRP接收波束,以实现TRP接收波束的细化。
U3:在相同的TRP接收波束上进行TRP检测,改变或选择终端发送波束,以实现终端发送波束的细化。
其中,上述步骤的具体实现方式可以参考现有技术,本申请实施例对此不作限定。
5、随机接入过程(random access procedure)
随机接入用于建立终端与网络设备之间的上行链路。随机接入过程在多个事件中使用到,例如小区切换过程、RRC连接重建立过程等。
示例性的,基于竞争的随机接入过程包括以下4个步骤:
步骤1、终端向网络设备发送前导码。需要说明的是,该前导码承载于物理随机接入信道(physical random access channel,PRACH)中。
步骤2、网络设备向终端发送随机接入响应。
步骤3、终端向网络设备发送消息(message,Msg)3。
步骤4、网络设备向终端发送Msg4。
上述各个步骤所发送的消息的具体描述可参见现有技术,本申请实施例对此不再赘述。
示例性的,基于非竞争的随机接入过程包括以下2个步骤:
步骤1、终端向网络设备发送前导码。
步骤2、网络设备向终端发送随机接入响应。
6、传输配置指示(transmission configuration indication,TCI)状态(state)
TCI state用于指示不同的物理信号和/或物理信道之间的准共址(Quasi Co-Location,QCL)关系。例如,TCI state可以用于指示CSI-RS与解调参考信号(demodulation reference signal,DMRS)之间的QCL关系。
QCL关系用于表示多个天线端口之间具有一个或多个相同或者相类似的通信特征。例如,如果两个天线端口具有准共址关系,那么一个天线端口发送一个信号的信道大尺度特性可以从另一个天线端口发送一个信号的信道大尺度特性推断出来。对于具有QCL关系的两个天线端口来说,两个天线端口对应的信号中具有相同的参数;或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数;又或者,两个天线端口间的参数差小于预设阈值。
一种示例性的,表1示出4种QCL类型(type)。
表1
Figure PCTCN2020107911-appb-000001
以上是对本申请实例所涉及的术语的介绍,下文中不再赘述。
在5G毫米波通信系统中,由于信道波动较为剧烈,可能发生基站与终端之间的波束对失败。BFR可用于帮助基站或者终端根据波束测量结果,将当前失败的波束对调整到可用的波束对,从而避免波束对失败造成的频繁无线链路失败。
如图2所示,单小区的BFR主要包括以下步骤:
基站通过高层参数failureDetectionResourcesToAddModList,为终端配置集合为
Figure PCTCN2020107911-appb-000002
的CSI-RS周期resource index;以及,基站通过高层参数candidateBeamRSList,为终端配置集合为
Figure PCTCN2020107911-appb-000003
的周期CSI-RS resource index/同步信号块(synchronization signal block,SSB)index。需要说明的是,SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。
如果终端未配置failureDetectionResourcesToAddModList,终端通过相应的监控物理下行控制信道(physical downlink control channel,PDCCH)的控制资源集合(control resource set,CORESET)的激活的TCI state信息来获得包括周期CSI-RS resource的 集合
Figure PCTCN2020107911-appb-000004
终端期望获得的参考信号(reference signal,RS)的TCI state具有QCL-TypeD的。终端期望集合
Figure PCTCN2020107911-appb-000005
的RS是单端口的。
终端的物理层根据集合
Figure PCTCN2020107911-appb-000006
中的RS评估链路质量(radio link quality),其中终端期望该评估基于的集合
Figure PCTCN2020107911-appb-000007
中的RS是周期的,且与相应监控的PDCCH的DMRS具有QCL-TypeD关系的。当评估的所有RS链路质量均差于门限Q out,LR时,终端物理层向MAC层发送一个波束失败指示(beam failure indication,BFI)。其中,门限Q out,LR是高层参数rlmInSyncOutOfSyncThreshold默认值。物理层上报BFI的周期可以参考现有技术。
终端物理层接收到连续的Beam-Failure-Instance-MaxCount个BFI时,则认为终端与基站之间发生了波束失败。在发生波束失败的情况下,终端物理层从集合
Figure PCTCN2020107911-appb-000008
中选取出L1-RSRP测量值大于或者等于门限Q in,LR的RS,上报给终端的MAC层。其中,门限Q in,LR是通过高层参数rsrp-ThresholdSSB配置的。具体的,对于集合
Figure PCTCN2020107911-appb-000009
中的SSB资源,则门限Q in,LR直接使用高层参数rsrp-ThresholdSSB。对于集合
Figure PCTCN2020107911-appb-000010
中的CSI-RS资源,则门限Q in,LR使用rsrp-ThresholdSSB与powerControlOffsetSS的乘积。
当终端检测到波束失败并且确定出至少一个候选波束时,终端可以向基站发送波束失败恢复请求(beam failure recovery request,BFRQ),该BFRQ包括波束失败指示以及候选波束的信息。该BFRQ可以承载于高层参数PRACH-ResourceDedicatedBFR所配置的PRACH中。
当终端在时隙n传输了BFRQ时,终端将从时隙n+4开始在高层参数BeamFailureRecoveryConfig所配置的监控窗内监听由小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)或者调制与编码策略(modulation and coding scheme,MCS)-C-RNTI初始化的循环冗余校验(cyclic redundancy check,CRC)加扰的PDCCH。该PDCCH的搜索空间由高层参数recoverySearchSpaceID配置。该PDCCH用于承载波束失败恢复响应(beam failure recovery response,BFRR)。
需要说明的是,承载PDCCH的CORESET与从集合
Figure PCTCN2020107911-appb-000011
中选取出来的索引为q new的周期CSI-RS或者SSB具有QCL关系。q new由终端的MAC层确定。
当终端从高层参数recoverySearchSpaceID所配置的搜索空间中正确解出此PDCCH时,则认为BFR过程成功。终端的物理层可以向MAC层发送BFR成功的通知(notification of a successful BFR)。
从上述BFR过程的介绍中可以获知,在BFR过程中,基站为终端所配置的新波束候选集合包括:CSI-RS资源或者SSB资源。新波束候选集合即为上文中的集合
Figure PCTCN2020107911-appb-000012
并且,在BFR过程中,终端需要确定新波束候选集合中的CSI-RS资源/SSB资源对应的波束质量。这使得终端在BFR过程中的实现复杂度较高。
另外,在终端接入多个服务小区的场景下,上述BFR流程只适用于主小区。对于辅小区的BFR流程,业界尚未给出具体的技术方案。
为了降低终端在BFR过程中的实现复杂度,本申请提供一种波束失败恢复方法,该方法的具体介绍可参见下文。同时,在终端接入多个服务小区的场景下,本申请所提供的波束失败恢复方法不仅适用于主小区,还适用于除主小区之外的其他小区,例如辅小区或者主辅小区。
本申请实施例提供的技术方案可以应用于各种采用波束赋形技术的通信系统,例如,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动带宽(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
如图3所示,为本申请实施例提供的一种通信系统的架构示意图。如图3所示,终端可以通过接入一个服务小区,以建立与网络设备之间的通信链路。
如图4所示,为本申请实施例提供的一种通信系统的架构示意图。如图4所示,终端可以同时接入多个服务小区。例如,终端同时接入小区#1和小区#2。可以理解的是,终端所接入的多个服务小区可以属于同一网络设备,也可以属于不同的网络设备,本申请实施例不限于此。
需要说明的是,图4所示的多个服务小区为终端提供服务的场景包括但不限于:载波聚合(carrier aggregation,CA)场景、多TRP场景、双连接(dual connectivity,DC)场景、以及协作多点传输(coordinated multiple points,CoMP)场景等,在此不再逐一举例说明。
在CA场景下,终端所接入的多个服务小区可以包括:主小区(primary cell,PCell)以及辅小区(secondary cell,SCell)。PCell是终端进行初始连接建立的小区,或者进行RRC连接重建立的小区,又或者是在切换过程中指定的主小区。SCell可以是在RRC重配置时添加的,用于提供额外的无线资源。需要说明的是,采用CA技术的情况下,一个服务小区对应一个载波单元(component carrier,CC)。例如,PCell对应的载波单元可以称为主载波单元(primary component carrier,PCC)。SCell对应的载波单元可以称为辅载波单元(secondary component carrier,SCC)。在CA场景下,终端同时接入多个服务小区,相当于终端可以同时在多个CC上与网络设备之间进行通信,从而实现对更大的传输带宽的支持。
在DC场景下,终端所接入的多个服务小区可以包括:PCell、SCell、或者主辅小区(primary second cell,PScell)。其中,PCell和SCell的定义可以参考上文,在此不再赘述。PSCell也可以称为主辅小区组小区(primary secondary cell group cell)。在DC场景下,当终端在同步流程中进行重配置时,PSCell是终端进行随机接入的辅小区组(secondary cell group)中的小区。辅小区组是指:对于一个配置双连接的终端来说,由PSCell和N个SCell组成的子集,N为自然数。
需要说明的是,图3和图4仅为示意图,并不对本申请提供的技术方案的适用场景构成限定。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global  system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请所说的网络设备,例如基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(Central Office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。
在一些部署中,基站可以包括集中式单元(centralized unit,CU)和分布式单元(Distributed Unit,DU)。基站还可以包括有源天线单元(active antenna unit,AAU)。CU实现基站的部分功能,DU实现基站的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
终端是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR) 终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图5为本申请实施例提供的网络设备和终端的硬件结构示意图。
终端包括至少一个处理器101和至少一个收发器103。可选的,终端还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端中处理器101、存储器102和收发器103的描述,在此不再赘述。
下面结合说明书附图对本申请的技术方案进行具体阐述。
如图6所示,为本申请实施例提供的一种波束失败恢复方法,该方法包括以下步骤:
S101、网络设备向终端发送配置信息,以使得终端接收网络设备发送的配置信息。
其中,配置信息用于指示终端的M个上行信号资源,M为正整数。该配置信息所指示的上行信号资源可以用于新波束检测。新波束检测也可以称为新波束识别,或者候选波束检测,本申请实施例不限于此。
在本申请实施例中,上行信号资源包括但不限于:SRS资源。SRS资源可以是周期的,或者半持续的,或者非周期的。
可选的,配置信息所指示的SRS资源可以是复用当前标准中的SRS资源。也即,配置信息所指示的SRS资源可以是用于天线选择的SRS资源,或者,用于物理上行共享信道(physical uplink shared channel,PUSCH)传输的SRS资源,又或者用于波束管理的SRS资源。其中,用于PUSCH传输的SRS资源可以分为两类:一类是用于码本(codebook)的SRS资源,另一类是用于非码本的SRS资源。
可选的,配置信息所指示的SRS可以是新定义的专门用于新波束检测的SRS资源。
需要说明的是,配置信息用于指示终端的M个上行信号资源,包括以下两种实现方式:
实现方式一、配置信息以显式的方式指示终端的M个上行信号资源。
例如,配置信息包括M个上行信号资源的索引。
实现方式二、配置信息以隐式的方式指示终端的M个上行信号资源。
(1)、配置信息用于指示一个资源集合。该资源集合包括M个上行信号资源。
可选的,配置信息用于指示一个资源集合,可以实现为:配置信息包括资源集合的索引。
可选的,网络设备预先为终端配置了资源集合,该资源集合是未激活的。这种情况下,配置信息用于指示一个资源集合,可以实现为:配置信息包括该资源集合对应的指示信息,该资源集合对应的指示信息用于指示是否激活该资源集合。可选的,该指示信息可以以一个或多个比特来实现。以该指示信息以一个比特来实现为例,该指示信息的取值为“1”,用于指示激活该资源集合;该指示信息的取值为“0”,用于指示不激活该资源集合。可以理解的是,在该资源集合被激活的情况下,终端可以根据该资源集合所包含的上行信号资源,发送上行信号资源。相应的,网络设备可以根据该资源集合所包含的上行信号资源,测量上行信号。
(2)配置信息用于指示L个资源集合,L为大于等于2的正整数。L个资源集合 中的每一个资源集合可以包括M个上行信号资源中的一部分上行信号资源。也就是说,M个上行信号资源分属于L个资源集合中。可选的,L个资源集合中每一个资源集合所包含的上行信号资源是不相同的。
可选的,配置信息用于指示L个资源集合,可以实现为:配置信息包括L个资源集合中每一个资源集合的索引。
可选的,网络设备预先配置了P个资源集合,P个资源集合均是未激活的,P为大于等于L的正整数。示例性的,配置信息用于指示L个资源集合,可以实现为:配置信息包括位图,该位图至少包括P个比特,P个比特与P个资源集合一一对应,一个比特用于指示是否激活对应的资源集合。例如,当比特的取值为“1”,用于指示激活对应的资源集合;当比特的取值为“0”用于指示不激活对应的资源集合。可以理解的是,在L个资源集合被激活的情况下,终端可以根据该L个资源集合所包含的上行信号资源,发送上行信号。相应的,网络设备可以根据该L个资源集合所包含的上行信号资源,测量上行信号。
基于实现方式二,一个资源集合可以对应一个或多个服务小区,本申请实施例对此不作限定。
上述资源集合可以有其他名称,例如新波束识别集合,或者,候选波束检测集合,又或者新波束检测集合,本申请实施例不限于此。
可以理解的是,在不同应用场景下,配置信息可以采用不同的实现方式。下面针对不同的应用场景,对配置信息进行具体说明。
场景一、终端仅接入一个服务小区。
基于场景一,配置信息所指示的M个上行信号资源均为终端所接入的服务小区对应的上行信号资源。这种情况下,配置信息可以仅指示一个资源集合,该资源集合包含M个上行信号资源。
场景二、终端接入多个服务小区。
基于场景二,多个服务小区中至少一个服务小区对应M个上行信号资源中的至少一个上行信号资源。举例来说,终端接入小区#1、小区#2、小区#3、以及小区#4,配置信息用于指示上行信号资源#1、上行信号资源#2、上行信号资源#3、上行信号资源#4、上行信号资源#5。小区#1可以对应上行信号资源#1和上行信号资源#3,小区#2可以对应上行信号资源#2,小区#3可以对应上行信号资源#4和上行信号资源#5,小区#4可以不对应配置信息所指示的任一个上行信号资源。
在本申请实施例中,上行信号资源与服务小区之间的对应关系可以是一一对应关系,也可以是一对多的对应关系,也可以是多对一的对应关系,对此不作限定。
可选的,上行信号资源与服务小区之间的对应关系可以以显式的方式配置。例如上行信号资源的配置信息包括该上行信号资源对应的服务小区的索引。从而,通信装置根据上行信号资源的配置信息所包括的服务小区的索引,能够确定该上行信号资源所对应的服务小区。
可选的,上行信号资源与服务小区之间的对应关系可以以隐式的方式配置。例如,资源集合的配置信息包括服务小区的索引。从而,通信装置根据资源集合的配置信息所包括的服务小区的索引,可以确定该资源集合中的所有上行信号资源对应的服务小 区。举例来说,资源集合的配置信息包括小区#1的索引和小区#2的索引,该资源集合包括上行信号资源#1和上行信号资源#2,因此小区#1对应上行信号资源#1和上行信号资源#2,小区#2对应上行信号资源#1和上行信号资源#2。
示例性的,配置信息可以仅指示一个资源集合,该资源集合包括M个上行信号资源。该资源集合与终端所接入的多个服务小区中的每一个服务小区均对应,从而多个服务小区中的每一个服务小区均对应M个上行信号资源。
示例性的,配置信息可以指示多个服务小区中至少一个服务小区对应的资源集合,服务小区对应的资源集合中包括M个上行信号资源中的至少一个上行信号资源。举例来说,终端接入小区#1、小区#2和小区#3;配置信息可以指示小区#1对应的资源集合#1,小区#2对应的资源集合#2。资源集合#1包括上行信号资源#1和上行信号资源#2,资源集合#2包括上行信号资源#3和上行信号资源#4。因此,小区#1对应上行信号资源#1和上行信号资源2,小区#2对应上行信号资源#3和上行信号资源#4。
S102、终端根据配置信息,发送上行信号,以使得网络设备根据配置信息,测量上行信号。
可以理解的是,步骤S102所涉及的上行信号即为上行信号资源所对应的上行信号。例如,若上行信号资源为SRS资源,则上行信号即为SRS。
在本申请实施例中,终端根据配置信息,发送上行信号,具体包括:终端根据配置信息所指示的全部或者部分上行信号资源,发送上行信号。
在本申请实施例中,网络设备根据配置信息,测量上行信号,具体包括:网络设备根据配置信息所指示的全部或者部分上行信号资源,测量上行信号。
可以理解的是,对于一个上行信号资源来说,网络设备测量该上行信号资源对应的上行信号,可以确定该上行信号资源的波束质量。示例性的,波束质量的度量可以包括但不限于:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、或者信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
下面结合上行信号资源的各种情形,对步骤S102进行举例说明。
示例一、对于配置信息所指示的一个上行信号资源来说,若该上行信号资源为用于天线选择的SRS资源,则终端可以在天线选择流程中,根据SRS资源,向网络设备发送SRS。相应的,网络设备可以在天线选择流程中,测量SRS,确定SRS资源的波束质量。
基于示例一,网络设备所确定的SRS资源的波束质量,不仅可用于天线选择流程中,还可以用于BFR过程中。
示例二、对于配置信息所指示的一个上行信号资源来说,若该上行信号资源为用于波束管理的SRS资源,则终端可以在波束管理流程中,根据SRS资源,向网络设备发送SRS。相应的,网络设备可以在波束管理流程中,测量SRS,确定SRS资源的波束质量。
可以理解的是,上述波束管理过程可以为上行波束训练中的U1/U2/U3阶段。
基于示例二,网络设备所确定的SRS资源的波束质量,不仅可以用于波束管理流程中,还可以用于BFR过程中。
示例三、对于配置信息所指示的一个上行信号资源来说,若该上行信号资源为用于PUSCH传输的SRS资源,则终端可以在PUSCH的传输过程中,根据SRS资源,向网络设备发送SRS。相应的,网络设备在PUSCH的传输过程中,测量SRS,确定SRS资源对应的波束质量。
基于示例三,网络设备所确定的SRS资源的波束质量,不仅可以用于PUSCH的传输流程中,还可以用于BFR过程中。
可以理解的是,对于上述示例一至示例三来说,终端通过复用当前的一些流程(例如天线选择流程)来实现上行信号的发送,网络设备通过复用当前的一些流程来实现上行信号的测量,从而降低系统资源的开销。另外,在网络设备复用当前的一些流程实现上行信号的测量的情况下,网络设备在其他场景下无需额外测量波束质量,从而节省了网络设备的功耗。
下面结合具体应用场景,对步骤S102的具体实现方式进行说明。
实现方式一、在终端仅接入一个服务小区的场景下,步骤S102可以具体实现为:终端根据M个上行信号资源,发送上行信号;相应的,网络设备根据M个上行信号资源,测量上行信号。
实现方式二、在终端接入多个服务小区的场景下,步骤S102可以具体实现为:对于多个服务小区中的每一个服务小区,终端根据服务小区对应的至少一个上行信号资源,发送上行信号;相应的,网络设备根据服务小区对应的至少一个上行信号资源,测量上行信号。
举例来说,终端接入小区#1、小区#2、小区#3、以及小区#4。配置信息指示了上行信号资源#1、上行信号资源#2、上行信号资源#3、上行信号资源#4。其中,小区#1对应上行信号资源#1和上行信号资源#2;小区#2对应上行信号资源#3和上行信号资源#4;小区#3和小区#4不对应配置信息所指示的任何一个上行信号资源。在这种情况下,对于小区#1,终端根据上行信号资源#1和上行信号资源#2,发送上行信号;对于小区#2,终端根据上行信号资源#3和上行信号资源#4,发送上行信号;对于小区#3和小区#4,由于小区#3和小区#4不对应配置信息所指示的任何一个上行信号资源,因此终端不发送上行信号。相应的,对于小区#1,网络设备根据上行信号资源#1和上行信号资源#2,测量上行信号;对于小区#2,网络设备根据上行信号资源#3和上行信号资源#4,测量上行信号;对于小区#3和小区#4,网络设备不测量上行信号。
实现方式三、在终端接入多个服务小区的场景下,步骤S102可以具体实现为:对于至少一个发生波束失败的服务小区中的每一个服务小区,终端根据服务小区对应的至少一个上行信号资源,发送上行信号;相应的,网络设备根据服务小区对应的至少一个上行信号资源,测量上行信号。
举例来说,终端接入小区#1、小区#2、小区#3、以及小区#4。配置信息指示了上行信号资源#1、上行信号资源#2、上行信号资源#3、上行信号资源#4。其中,小区#1对应上行信号资源#1和上行信号资源#2;小区#2对应上行信号资源#3和上行信号资源#4;小区#3和小区#4不对应配置信息所指示的任何一个上行信号资源。假设小区#1发生波束失败,小区#2、小区3以及小区#4未发生波束失败。这种情况下,终端根据小区#1对应的上行信号资源#1和上行信号资源#2,发送上行信号;相应的,网络设备 根据小区#1对应的上行信号资源#1和上行信号资源#2,测量上行信号。
S103、在发生波束失败的情况下,网络设备基于上行信号的测量结果,向终端发送第一响应消息,以使得终端接收到基于上行信号的第一响应消息。
其中,第一响应消息用于使终端确定波束失败恢复成功。可选的,第一响应消息可以有其他名称,例如波束失败恢复响应,本申请实施例不限于此。
上述发生波束失败的情况,具体是指:至少一个服务小区发生波束失败。可以理解的是,终端可以通过现有技术的方法,确定服务小区是否发生了波束失败。
在确定服务小区发生波束失败的情况下,终端可以向网络设备发送通知消息,以使得网络设备获知服务小区发生了波束失败。该通知消息可以具体实现为下文中的第一请求消息。
需要说明的是,对于一个发生波束失败的服务小区来说,若该发生波束失败的服务小区对应至少一个上行信号资源,则上行信号的测量结果可以包括:该服务小区对应的至少一个上行信号资源中每一个上行信号资源的波束质量。因此,网络设备可以根据上行信号的测量结果,确定发生波束失败的服务小区的新波束。其中,新波束与目标上行信号资源对应的上行波束之间具有互易性。
示例性的,目标上行信号资源可以是发生波束失败的服务小区所对应的至少一个上行信号资源中,波束质量最高的上行信号资源。或者,目标上行信号资源可以是发生波束失败的服务小区所对应的至少一个上行信号资源中,波束质量达到预设门限的上行信号资源。可选的,预设门限可以为Q in,LR,也可以为其他取值,本申请实施例对此不作限定。
可以理解的是,在发生波束失败的服务小区中,新波束是在BFR成功后用于下行传输的波束。对于终端来说,服务小区的新波束是终端的接收波束;对于网络设备来说,服务小区的新波束是网络设备的发送波束。
可选的,第一响应消息用于使终端确定波束失败恢复成功,可以采用以下实现方式:
实现方式一、第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
例如,第一响应消息用于指示至少一个发生波束失败的服务小区对应的TCI state。可选的,该TCI state用于指示QCL-Type D。
又例如,第一响应消息用于指示至少一个发生波束失败的服务小区的新波束的索引。
可选的,在终端仅接入一个服务小区的场景下,第一响应消息承载于该服务小区的信令中。在终端接入多个服务小区的场景下,第一响应消息可承载于未发生波束失败的小区的信令中。
示例性的,在CA场景下,第一响应消息可承载于未发生波束失败的小区的信令中,包括:第一响应消息承载于主小区或者未发生波束失败的辅小区中。
示例性的,在DC场景下,第一响应消息可承载于未发生波束失败的小区的信令中,包括:第一响应消息承载于主小区、未发生波束失败的主辅小区、或者未发生波束失败的辅小区中。
可选的,第一响应消息可承载于发生波束失败的小区的信令中。
上述信令可以为RRC信令、MAC-CE信令、或者下行控制信息(downlink control information,DCI)。其中,RRC信令和MAC-控制单元(control element,CE)信令承载于物理下行共享信道(physical downlink shared channel,PDSCH)中。DCI承载于PDCCH中。
可以理解的是,第一响应消息可以作为一个整体统一发送,也可以分为多个子消息分开发送。可选的,在第一响应消息分为多个子消息的情况下,多个子消息中的每一个子消息对应一个发生波束失败的服务小区,子消息可以用于指示该子消息所对应的发生波束失败的服务小区的新波束。
实现方式二、传输第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
也即,对于一个发生波束失败的服务小区来说,网络设备可以采用该发生波束失败的服务小区的新波束来发送第一响应消息。这样一来,终端在成功接收到第一响应消息之后,终端可以确认传输该第一响应消息的波束为发生波束失败的服务小区的新波束。
上述新波束可以是默认波束,或者是波束质量最高的波束。
举例来说,小区#1和小区#2发生波束失败。对于小区#1,网络设备在小区#1的索引为1的波束上传输第一响应消息,从而终端能够确定索引为1的波束为小区#1的新波束。对于小区#2,网络设备在小区#2的索引为4的波束上传输第一响应消息,从而终端能够确定索引为4的波束为小区#2的新波束。
可选的,第一响应消息可以承载于PDCCH中。这种情况下,终端成功接收到第一响应消息,可以是指:终端成功接收到该PDCCH。
基于图6所示的技术方案,网络设备向终端发送配置信息,以使得终端获知多个上行信号资源。这样一来,终端可以根据配置信息,发送上行信号,以使得网络设备测量上行信号,以确定多个上行信号资源的波束质量。基于波束互易性,网络设备在完成上行链路的测量后,网络设备可以确定网络设备用于下行链路的发送波束。同时,终端也能够根据网络设备的指示,确定终端用于下行链路的接收波束。因此,在发生波束失败的情况下,基于上行信号的测量结果,网络设备向终端发送第一响应消息,以完成波束失败恢复。可见,本申请实施例所提供的技术方案中,终端无需测量下行参考信号,以确定多个下行参考信号资源的波束质量,从而降低终端在BFR过程中的实现复杂度。
可以理解的是,出于兼容性的考虑,步骤S101中的配置信息还可以用于指示N个下行参考信号资源,N为正整数。上述下行参考信号资源为CSI-RS资源或者SSB资源。
其中,配置信息用于指示N个下行参考信号资源的实现方式,可以参考上文中配置信息用于指示M个上行信号资源的实现方式。
示例性的,配置信息指示M个上行信号资源以及N个下行参考信号资源,可以采用以下实现方式中的任意一种:
(1)配置信息指示资源集合。该资源集合包括M个上行信号资源以及N个下行参考信号资源。示例性的,该资源集合可以为上文中提到的集合
Figure PCTCN2020107911-appb-000013
或者是其他集合。
(2)配置信息指示第一资源集合和第二资源集合。其中,第一资源集合包括M个上行信号资源。第二资源集合包括N个下行信号资源。示例性的,第一资源集合可以为上文中提到的集合
Figure PCTCN2020107911-appb-000014
第二资源集合可以为除集合
Figure PCTCN2020107911-appb-000015
之外的其他集合。
在本申请实施例中,若配置信息同时指示M个上行参考信号资源以及N个下行参考信号资源,则在发生波束失败的情况下,网络设备和终端之间可以采用现有技术中的BFR方法;或者,网络设备和终端之间采用图6所示的BFR方法;又或者,网络设备和终端之间可以将现有技术中的BFR方法和图6所示的BFR方法相互结合使用。
可选的,如图7或图8所示,上述波束失败恢复方法还包括步骤S104。
S104、在发生波束失败的情况下,终端向网络设备发送第一请求消息,以使得网络设备接收终端发送的第一请求消息。
其中,第一请求消息用于请求波束失败恢复。可选的,第一请求消息还可以有其他名称,例如波束失败恢复请求,本申请实施例不限于此。
作为一种可能的实现方式,在终端接入多个小区的场景下,终端在主小区中发送第一请求消息;或者,终端在辅小区中发送第一请求消息。示例性的,主小区可以为频率1(frequency 1,F1)的小区,辅小区可以为频率2(frequency 2,F2)的小区。F1可以为高频,F2可以为低频,本申请实施例不限于此。
在本申请实施例中,第一请求消息可以包括第一指示信息和/或第二指示信息。其中,该第一指示信息用于指示服务小区发生波束失败。该第二指示信息用于指示至少一个发生波束失败的服务小区。示例性的,第二指示信息可以包括:至少一个发生波束失败的服务小区的索引。
可选的,第一请求消息还可以包括:第三指示信息,该第三指示信息,该第三指示信息用于指示终端未识别出新波束。
示例性的,若配置信息还指示了N个下行参考信号资源,终端可以进行下行参考信号的测量,确定N个下行参考信号资源的波束质量。若N个下行参考信号资源的波束质量均不满足预设门限(例如上文中的Q out,LR),则终端未识别出新波束。在这种情况下,终端所发送的第一请求消息可以包括第三指示信息。
如图7所示,步骤S104的执行顺序可以位于步骤S102之前;或者,如图8所示,步骤S104的执行顺序可以位于步骤S102之后。
在本申请实施例中,在终端接入多个服务小区的场景下,若步骤S102的执行顺序位于步骤S104之前,则步骤S102可以采用上文中的实现方式二。
在本申请实施例中,在终端的接入多个服务小区的场景下,若步骤S102的执行顺序位于步骤S104之后,则步骤S102可以采用上文中的实现方式二或者实现方式三。例如,在第一请求消息包括第一指示信息和/或第二指示信息的情况下,步骤S102可以采用上文中的实现方式二或者实现方式三。又例如,在第一请求消息包括第一指示信息的情况下,步骤S102可以采用上文中的实现方式二;在第一请求消息包括第一指示信息和第二指示信息,或者第一请求消息包括第二指示信息的情况下,步骤S102可以采用上文中的实现方式三。
可以理解的是,若步骤S102的执行顺序位于步骤S104之前,在终端所接入的服务小区发生波束失败的情况下,在网络设备接收到第一请求消息之后,网络设备可以 根据之前获取的上行信号的测量结果,直接向终端发送第一响应消息,而无需再次执行上行信号的测量流程,从而减少了BFR的时延。
可以理解的是,若步骤S102的执行顺序位于步骤S104之后,在终端所接入的服务小区发生波束失败的情况下,在网络设备接收到第一请求消息之后,网络设备再进行上行信号的测量,以获取上行信号的测量结果,以便于网络设备根据上行信号的测量结果,向终端发送第一响应消息。由于上行信号的测量流程是在服务小区发生波束失败之后,因此,网络设备获得的上行信号的测量结果较为精确,有利于选择合适的新波束。此外,这样也可以减少终端需时时跟踪测量的复杂度。
可选的,在上述图6至图8所示的实施例中,上行信号资源可以替换为前导码资源和/或用于承载或者调度Msg3的资源具有QCL关系的上行信号资源。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构或软件模块,或两者结合。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图9为本申请实施例提供的一种终端的结构示意图。如图9所示,终端包括:接收模块301和发送模块302。其中,发送模块302用于支持终端执行图6中的步骤S102,图7或图8中的步骤S104,和/或用于支持本文描述的技术方案的其他过程。接收模块301用于支持终端执行图6中的步骤S101和S103,和/或用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图5所示的终端,图9中的接收模块301和发送模块302可以由图5中的收发器103来实现,本申请实施例对此不作限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图5所示的终端上运行时,使得该终端执行如图6、图7或者图8所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可 以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图3所示的终端上运行时,使得终端可以执行图6、图7或者图8所示的方法。
上述本申请实施例提供的终端、计算机存储介质以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图10为本申请实施例提供的一种网络设备的结构示意图。如图10所示,网络设备包括:接收模块401和发送模块402。其中,发送模块402用于支持网络设备执行图6中的步骤S101和S103,和/或用于支持本文描述的技术方案的其他过程。接收模块401用于支持网络设备执行图6中的步骤S102,图7或图8中的步骤S104,和/或用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图5所示的网络设备,图10中的接收模块401和发送模块402可以由图5中的收发器203来实现,本申请实施例对此不作限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图5所示的网络设备上运行时,使得该网络设备执行如图6、图7或者图8所示的方法。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在图5所示的网络设备上运行时,使得网络设备可以执行图6、图7或者图8所示的方法。
上述本申请实施例提供的网络设备、计算机存储介质以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图11为本申请实施例提供的一种芯片的结构示意图。图11示的芯片可以为通用处理器,也可以为专用处理器。该芯片包括处理器501。其中,处理器501用于支持通信装置执行图6、图7或者图8所示的技术方案。
可选的,该芯片还包括作为通信接口的收发管脚502,收发管脚502用于接受处理器501的控制,用于支持通信装置执行图6、图7或者图8所示的技术方案。
可选的,图11所示的芯片还可以包括:存储介质503。
需要说明的是,图11所示的芯片可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (69)

  1. 一种波束失败恢复方法,其特征在于,所述方法包括:
    接收网络设备发送的配置信息,所述配置信息用于指示M个上行信号资源,M为正整数;
    根据所述配置信息,发送上行信号;
    在发生波束失败的情况下,接收基于所述上行信号的第一响应消息,所述第一响应消息用于确定波束失败恢复成功。
  2. 根据权利要求1所述的波束失败恢复方法,其特征在于,所述上行信号资源为探测参考信号SRS资源。
  3. 根据权利要求2所述的波束失败恢复方法,其特征在于,所述SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
  4. 根据权利要求1至3任一项所述的波束失败恢复方法,其特征在于,在根据所述配置信息,发送上行信号之前,所述方法还包括:
    在发生波束失败的情况下,发送第一请求消息,所述第一请求消息用于请求波束失败恢复。
  5. 根据权利要求1至3任一项所述的波束失败恢复方法,其特征在于,在根据所述配置信息,发送上行信号之后,所述方法还包括:
    在发生波束失败的情况下,发送第一请求消息,所述第一请求消息用于请求波束失败恢复。
  6. 根据权利要求1至5任一项所述的波束失败恢复方法,其特征在于,在终端接入一个服务小区的情况下,所述根据所述配置信息,发送上行信号,包括:
    根据所述M个上行信号资源,发送上行信号。
  7. 根据权利要求4或5所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第一指示信息,所述第一指示信息用于指示服务小区发生波束失败。
  8. 根据权利要求4、5或7所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第二指示信息,所述第二指示信息用于指示至少一个发生波束失败的服务小区。
  9. 根据权利要求7或8所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第三指示信息,所述第三指示信息用于指示未识别出新波束。
  10. 根据权利要求7至9任一项所述的波束失败恢复方法,其特征在于,在终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述根据所述配置信息,发送上行信号,包括:
    对于所述多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
  11. 根据权利要求8所述的波束失败恢复方法,其特征在于,在终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述根据所述配置信息,发送上行信号,包括:
    对于所述至少一个发生波束失败的服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
  12. 根据权利要求10或11所述的波束失败恢复方法,其特征在于,所述第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
  13. 根据权利要求12所述的波束失败恢复方法,其特征在于,所述第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
  14. 根据权利要求12所述的波束失败恢复方法,其特征在于,所述第一响应消息承载于发生波束失败的小区的信令中。
  15. 根据权利要求10或11所述的波束失败恢复方法,其特征在于,传输所述第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
  16. 根据权利要求15所述的波束失败恢复方法,其特征在于,所述新波束为默认波束或者波束质量最高的波束。
  17. 一种波束失败恢复方法,其特征在于,所述方法包括:
    向终端发送配置信息,所述配置信息用于指示M个上行信号资源,M为正整数;
    根据所述配置信息,测量上行信号;
    在发生波束失败的情况下,基于所述上行信号的测量结果,向所述终端发送第一响应消息,所述第一响应消息用于使所述终端确定波束失败恢复成功。
  18. 根据权利要求17所述的波束失败恢复方法,其特征在于,所述上行信号资源为探测参考信号SRS资源。
  19. 根据权利要求18所述的波束失败恢复方法,其特征在于,所述SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
  20. 根据权利要求17至19任一项所述的波束失败恢复方法,其特征在于,在所述根据所述配置信息,测量上行信号之前,所述方法还包括:
    接收所述终端发送的第一请求消息,所述第一请求消息用于请求波束失败恢复。
  21. 根据权利要求17至19任一项所述的波束失败恢复方法,其特征在于,在所述根据所述配置信息,测量上行信号之后,所述方法还包括:
    接收所述终端发送的第一请求消息,所述第一请求消息用于请求波束失败恢复。
  22. 根据权利要求17至21任一项所述的波束失败恢复方法,其特征在于,在所述终端接入一个服务小区的情况下,所述根据所述配置信息,测量上行信号,包括:
    根据所述M个上行信号资源,测量上行信号。
  23. 根据权利要求20或21所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第一指示信息,所述第一指示信息用于指示服务小区发生波束失败。
  24. 根据权利要求20、21或23所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第二指示信息,所述第二指示信息用于指示至少一个发生波束失败的服务小区。
  25. 根据权利要求23或24所述的波束失败恢复方法,其特征在于,所述第一请求消息包括第三指示信息,所述第三指示信息用于指示所述终端未识别出新波束。
  26. 根据权利要求23至25任一项所述的波束失败恢复方法,其特征在于,在所述终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述根据所述配置信息,测量上行信号,包括:
    对于所述多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
  27. 根据权利要求24所述的波束失败恢复方法,其特征在于,在所述终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述根据所述配置信息,测量上行信号,包括:
    对于所述至少一个发生波束失败的服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
  28. 根据权利要求26或27所述的波束失败恢复方法,其特征在于,所述第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
  29. 根据权利要求28所述的波束失败恢复方法,其特征在于,所述第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
  30. 根据权利要求28所述的波束失败恢复方法,其特征在于,所述第一响应消息承载于发生波束失败的小区的信令中。
  31. 根据权利要求26或27所述的波束失败恢复方法,其特征在于,传输所述第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
  32. 根据权利要求31所述的波束失败恢复方法,其特征在于,所述新波束为默认波束或者波束质量最高的波束。
  33. 一种通信装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的配置信息,所述配置信息用于指示M个上行信号资源,M为正整数;
    发送模块,用于根据所述配置信息,发送上行信号;
    所述接收模块,还用于在发生波束失败的情况下,接收基于所述上行信号的第一响应消息,所述第一响应消息用于确定波束失败恢复成功。
  34. 根据权利要求33所述的通信装置,其特征在于,所述上行信号资源为探测参考信号SRS资源。
  35. 根据权利要求34所述的通信装置,其特征在于,所述SRS资源为用于天线选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
  36. 根据权利要求33至35任一项所述的通信装置,其特征在于,
    所述发送模块,还用于在发生波束失败的情况下,在发送所述上行信号之前,发送第一请求消息,所述第一请求消息用于请求波束失败恢复。
  37. 根据权利要求33至35任一项所述的通信装置,其特征在于,
    所述发送模块,还用于在发生波束失败的情况下,在发送所述上行信号之后,发送第一请求消息,所述第一请求消息用于请求波束失败恢复。
  38. 根据权利要求33至37任一项所述的通信装置,其特征在于,
    所述发送模块,具体用于在终端接入一个服务小区的情况下,根据所述M个上行信号资源,发送上行信号。
  39. 根据权利要求36或37所述的通信装置,其特征在于,所述第一请求消息包括第一指示信息,所述第一指示信息用于指示服务小区发生波束失败。
  40. 根据权利要求36、37或39所述的通信装置,其特征在于,所述第一请求消息包括第二指示信息,所述第二指示信息用于指示至少一个发生波束失败的服务小区。
  41. 根据权利要求39或40所述的通信装置,其特征在于,所述第一请求消息包括第三指示信息,所述第三指示信息用于指示未识别出新波束。
  42. 根据权利要求39至41任一项所述的通信装置,其特征在于,在终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述发送模块,具体用于对于所述多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
  43. 根据权利要求40所述的通信装置,其特征在于,在终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述发送模块,具体用于对于所述至少一个发生波束失败的服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,发送上行信号。
  44. 根据权利要求42或43所述的通信装置,其特征在于,所述第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
  45. 根据权利要求44所述的通信装置,其特征在于,所述第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
  46. 根据权利要求44所述的通信装置,其特征在于,所述第一响应消息承载与发生波束失败的小区的信令中。
  47. 根据权利要求42或43所述的通信装置,其特征在于,传输所述第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
  48. 根据权利要求47所述的通信装置,其特征在于,所述新波束为默认波束或者波束质量最高的波束。
  49. 一种通信装置,其特征在于,包括:
    发送模块,用于向终端发送配置信息,所述配置信息用于指示M个上行信号资源,M为正整数;
    接收模块,用于根据所述配置信息,测量上行信号;
    所述发送模块,用于在发生波束失败的情况下,基于所述上行信号的测量结果,向所述终端发送第一响应消息,所述第一响应消息用于使所述终端确定波束失败恢复成功。
  50. 根据权利要求49所述的通信装置,其特征在于,所述上行信号资源为探测参考信号SRS资源。
  51. 根据权利要求50所述的通信装置,其特征在于,所述SRS资源为用于天线 选择的SRS资源、用于物理上行共享信道传输的SRS资源、用于波束管理的SRS资源、或者用于新波束检测的SRS资源。
  52. 根据权利要求49至51任一项所述的通信装置,其特征在于,
    所述接收模块,还用于在测量所述上行信号之前,接收所述终端发送的第一请求消息,所述第一请求消息用于请求波束失败恢复。
  53. 根据权利要求49至51任一项所述的通信装置,其特征在于,
    所述接收模块,还用于在测量所述上行信号之后,接收所述终端发送的第一请求消息,所述第一请求消息用于请求波束失败恢复。
  54. 根据权利要求49至53任一项所述的通信装置,其特征在于,
    所述接收模块,具体用于在所述终端接入一个服务小区的情况下,根据所述M个上行信号资源,测量上行信号。
  55. 根据权利要求49或53所述的通信装置,其特征在于,所述第一请求消息包括第一指示信息,所述第一指示信息用于指示服务小区发生波束失败。
  56. 根据权利要求52、53或55所述的通信装置,其特征在于,所述第一请求消息包括第二指示信息,所述第二指示信息用于指示至少一个发生波束失败的服务小区。
  57. 根据权利要求55或56所述的通信装置,其特征在于,所述第一请求消息包括第三指示信息,所述第三指示信息用于指示所述终端未识别出新波束。
  58. 根据权利要求55至57任一项所述的通信装置,其特征在于,在所述终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述接收模块,具体用于对于所述多个服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
  59. 根据权利要求56所述的通信装置,其特征在于,在所述终端接入多个服务小区的情况下,所述多个服务小区中至少一个服务小区对应所述M个上行信号资源中的至少一个上行信号资源;
    所述接收模块,具体用于对于所述至少一个发生波束失败的服务小区中的每一个服务小区,根据服务小区对应的至少一个上行信号资源,测量上行信号。
  60. 根据权利要求58或59所述的通信装置,其特征在于,所述第一响应消息用于指示至少一个发生波束失败的服务小区的新波束。
  61. 根据权利要求60所述的通信装置,其特征在于,所述第一响应消息承载于主小区或者未发生波束失败的辅小区的信令中。
  62. 根据权利要求60所述的通信装置,其特征在于,所述第一响应消息承载于发生波束失败的小区的信令中。
  63. 根据权利要求58或59所述的通信装置,其特征在于,传输所述第一响应消息的波束为至少一个发生波束失败的服务小区的新波束。
  64. 根据权利要求63所述的通信装置,其特征在于,所述新波束为默认波束或者波束质量最高的波束。
  65. 根据权利要求33-64任一项所述的通信装置,其特征在于,所述接收模块和所述发送模块为收发器。
  66. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,当所述指令被处理器执行时,所述通信装置用于执行权利要求1至16任一项所述的波束失败恢复方法,或者,所述通信装置用于执行权利要求17至32任一项所述的波束失败恢复方法。
  67. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器用于执行计算机程序,使得所述通信装置实现权利要求1至16任一项所述的波束失败恢复方法,或者,使得所述通信装置实现权利要求17至32任一项所述的波束失败恢复方法。
  68. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至16任一项所述的波束失败恢复方法,或者使得计算机执行权利要求17至32任一项所述的波束失败恢复方法。
  69. 一种计算机程序产品,其特征在于,包括计算机程序,当该计算机程序在计算机上运行时,使得所述权利要求1至16任一项所述的波束失败恢复方法被实现,或者,使得所述权利要求17至32任一项所述的波束失败恢复方法被实现。
PCT/CN2020/107911 2019-08-09 2020-08-07 波束失败恢复方法及装置 WO2021027739A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20852924.8A EP4002912A4 (en) 2019-08-09 2020-08-07 BEAM FAILURE RECOVERY METHOD AND DEVICE
US17/667,071 US20220167339A1 (en) 2019-08-09 2022-02-08 Beam failure recovery method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910736673.6 2019-08-09
CN201910736673.6A CN112351451B (zh) 2019-08-09 2019-08-09 波束失败恢复方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/667,071 Continuation US20220167339A1 (en) 2019-08-09 2022-02-08 Beam failure recovery method and apparatus

Publications (1)

Publication Number Publication Date
WO2021027739A1 true WO2021027739A1 (zh) 2021-02-18

Family

ID=74367649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107911 WO2021027739A1 (zh) 2019-08-09 2020-08-07 波束失败恢复方法及装置

Country Status (4)

Country Link
US (1) US20220167339A1 (zh)
EP (1) EP4002912A4 (zh)
CN (1) CN112351451B (zh)
WO (1) WO2021027739A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022251417A1 (en) * 2021-04-02 2023-10-05 Huawei Technologies Co., Ltd. Beam failure recovery method and apparatus
CN116981055A (zh) * 2022-04-16 2023-10-31 华为技术有限公司 一种通信方法、通信装置及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547115A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 一种窄波束平滑切换的方法及装置
WO2019051231A1 (en) * 2017-09-07 2019-03-14 Ofinno Technologies, Llc UPLINK BEAM MANAGEMENT
CN110035441A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 确定波束、信号质量测量方法及通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454755B2 (en) * 2017-03-22 2019-10-22 Qualcomm Incorporated Beam failure identification and recovery techniques
US10674383B2 (en) * 2017-07-25 2020-06-02 Mediatek Inc. Channels and procedures for beam failure recovery
US11291068B2 (en) * 2017-08-11 2022-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US11184080B2 (en) * 2017-09-11 2021-11-23 Qualcomm Incorporated Radio link monitoring and beam failure recovery resource configuration and operation
CN110034799B (zh) * 2018-01-11 2023-09-01 华为技术有限公司 通信方法和通信设备
EP3769437A1 (en) * 2018-03-28 2021-01-27 Huawei Technologies Co., Ltd. Devices, methods and computer programs for two-way beam failure recovery in wireless communications
US10778313B2 (en) * 2018-08-17 2020-09-15 Qualcomm Incorporated Techniques for beam failure recovery in wireless communications
WO2020063874A1 (en) * 2018-09-28 2020-04-02 Mediatek Inc. Electronic device and method for beam failure recovery
CN114026909B (zh) * 2019-06-28 2024-02-23 Lg 电子株式会社 在无线通信系统中执行波束故障恢复过程的方法及其设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547115A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 一种窄波束平滑切换的方法及装置
WO2019051231A1 (en) * 2017-09-07 2019-03-14 Ofinno Technologies, Llc UPLINK BEAM MANAGEMENT
CN110035441A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 确定波束、信号质量测量方法及通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-1907317, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728756 *
See also references of EP4002912A4

Also Published As

Publication number Publication date
EP4002912A1 (en) 2022-05-25
US20220167339A1 (en) 2022-05-26
CN112351451A (zh) 2021-02-09
EP4002912A4 (en) 2022-09-28
CN112351451B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
US10893566B2 (en) Method for receiving beam recovery request and network device
WO2019153708A1 (en) System and method for periodic beam failure measurements
US11265871B2 (en) Relay transmission method and apparatus
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020192566A1 (zh) 波束失败恢复方法和通信装置
WO2020244551A1 (zh) 用于激活辅小区的方法和装置
TW202046791A (zh) 用於波束故障偵測之方法及ue
WO2020029293A1 (zh) 无线通信方法、用户设备和基站
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2022022517A1 (zh) 确定传输功率的方法及装置
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2022022491A1 (zh) 通信方法及装置
WO2022082687A1 (zh) 数据传输方法、装置、可读存储介质和系统
WO2022077387A1 (zh) 一种通信方法及通信装置
CN111355627B (zh) 资源上报的方法及装置
CN115767574A (zh) 测量方法、装置及系统
WO2022237803A1 (zh) 通信方法以及相关联的装置、介质和芯片
TWI792622B (zh) 波束故障恢復方法及使用者設備
WO2024060078A1 (zh) 信息收发方法与装置
WO2023024704A1 (zh) 通信方法以及通信装置
WO2022253203A1 (zh) 通信方法及通信装置
EP4266593A1 (en) Method and apparatus for transmitting and receiving uplink in wireless communication system
EP4258723A1 (en) Beam failure recovery method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852924

Country of ref document: EP

Effective date: 20220221