WO2024076160A1 - 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치 - Google Patents

디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치 Download PDF

Info

Publication number
WO2024076160A1
WO2024076160A1 PCT/KR2023/015293 KR2023015293W WO2024076160A1 WO 2024076160 A1 WO2024076160 A1 WO 2024076160A1 KR 2023015293 W KR2023015293 W KR 2023015293W WO 2024076160 A1 WO2024076160 A1 WO 2024076160A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
semiconductor light
emitting device
tunnel junction
Prior art date
Application number
PCT/KR2023/015293
Other languages
English (en)
French (fr)
Inventor
강동훈
전지나
유효상
박형조
강대성
봉하종
성준석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024076160A1 publication Critical patent/WO2024076160A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Definitions

  • the embodiment relates to a red semiconductor light emitting device for display pixels and a display device including the same.
  • LCDs liquid crystal displays
  • OLED displays OLED displays
  • Micro-LED displays Micro-LED displays
  • a micro-LED display is a display that uses micro-LED, a semiconductor light emitting device with a diameter or cross-sectional area of 100 ⁇ m or less, as a display element.
  • micro-LED displays use micro-LED, a semiconductor light-emitting device, as a display device, they have excellent performance in many characteristics such as contrast ratio, response speed, color gamut, viewing angle, brightness, resolution, lifespan, luminous efficiency, and luminance.
  • the micro-LED display has the advantage of being able to freely adjust the size and resolution and implement a flexible display because the screen can be separated and combined in a modular manner.
  • micro-LED displays require more than millions of micro-LEDs, there is a technical problem that makes it difficult to quickly and accurately transfer micro-LEDs to the display panel.
  • Transfer technologies that have been recently developed include the pick and place process, laser lift-off method, or self-assembly method.
  • the self-assembly method is a method in which the semiconductor light-emitting device finds its assembly position within the fluid on its own, and is an advantageous method for implementing a large-screen display device.
  • the micro Red LED chip does not emit light from the side, resulting in a decrease in chip efficiency.
  • the Red chip has severe carrier leakage at an initial low current, resulting in a decrease in chip brightness.
  • the low brightness of these red chips causes problems such as increased power consumption of micro LEDs and lower color gamut.
  • One of the technical challenges of the embodiment is to provide a red semiconductor light emitting device for display pixels that improves luminance but does not cause problems such as increased power consumption or lowered color gamut, and a display device including the same.
  • a red semiconductor light emitting device for a display pixel includes a first conductivity type first semiconductor layer 251n, a first active layer 251a on the first conductivity type first semiconductor layer 251n, and the first conductivity type first semiconductor layer 251n.
  • a first semiconductor light emitting structure 251 including a second conductive second semiconductor layer 251p on the active layer 251a, a tunnel junction structure 250T1 on the first semiconductor light emitting structure 251, and the tunnel
  • a first conductivity type third semiconductor layer 252n disposed on the junction structure 250T1, a second active layer 252a on the first conductivity type third semiconductor layer 252n, and the second active layer 252a. It may include a second semiconductor light emitting structure 252 including a second conductive fourth semiconductor layer 252p thereon.
  • the tunnel junction structure 250T1 includes a second conductive type first tunnel junction layer 250Tp disposed on the second conductive type second semiconductor layer 251p; And it may include a first conductive type second tunnel junction layer (250Tn) disposed on the second conductive type first tunnel junction layer (250Tp).
  • the second conductive type first tunnel junction layer 250Tp may include a p-type AlGaAs layer doped to a concentration of 1X10 19 atoms/cm 3 or more.
  • the first conductive type second tunnel junction layer 250Tn may include an n-type GaInP layer doped at a concentration of 1X10 19 atoms/cm 3 or more.
  • the tunnel junction structure (250T2) is,
  • It may further include a second conductive type third tunnel junction layer (250Tp2) disposed below the second conductive type first tunnel junction layer (250Tp).
  • 250Tp2 second conductive type third tunnel junction layer
  • the third tunnel junction layer of the second conductivity type 250Tp2 may include a p-type GaAs layer doped at a concentration of 1X10 19 atoms/cm 3 or more.
  • the first semiconductor light emitting structure 251B may further include a second conductive type fifth semiconductor layer 265 disposed between the second conductive type second semiconductor layer 251p and the tunnel junction structure 250T2. You can.
  • the second conductivity type fifth semiconductor layer 265 may include a p- ( Al .
  • the first semiconductor light emitting structure 251B further includes a sixth semiconductor layer 266 of a second conductivity type disposed between the tunnel junction structures 250T1 and 250T2 and the fifth semiconductor layer 265 of the second conductivity type. It can be included.
  • the second conductive sixth semiconductor layer 266 includes a p-(Al x1 Ga 1-x1 ) y In 1-y P layer (where 0.0 ⁇ x1 ⁇ 0.8, 0.2 ⁇ y ⁇ 0.6)
  • the composition of Al in the second conductive type sixth semiconductor layer 266 may be graded.
  • the Al composition (X1) of the second conductivity type sixth semiconductor layer 266 may be graded from 0.3 to 0.6 to 0.0 in the direction of the tunnel junction structure (250T1, 250T2).
  • a display device may include a red semiconductor light-emitting device for any one of the display pixels.
  • a first semiconductor light-emitting structure 251, a second semiconductor light-emitting structure 252, and first and second semiconductor light-emitting structures 251, 252) By including the first or second tunnel junction structure (250T1, 250T2) disposed between the two active layers, red wavelength light can be emitted, thereby enabling the implementation of high brightness.
  • the same brightness increase effect as applying two red semiconductor light emitting devices is obtained, while the power consumption of the LED display is improved by more than 11.2%.
  • the red semiconductor light emitting device 250B includes the first or second tunnel junction structures 250T1 and 250T2 and the second conductivity type second semiconductor layer 251p of the 1-2 semiconductor light emitting structure 251B.
  • ) may include a second conductive fifth semiconductor layer 265 between them, and a hole barrier occurs when the hole moving through the tunnel junction does not move smoothly due to the electrical barrier generated in the heterojunction region. It has a special technical effect in improving the electrical problems of the barrier (HB).
  • the red semiconductor light emitting device 250C includes the first or second tunnel junction structure 250T1 and 250T2 and the second conductivity type second semiconductor layer 251p of the 1-3 semiconductor light emitting structure 251C. ) may include a sixth semiconductor layer 266 of the second conductivity type.
  • the Al composition has a special technical effect of further improving the electrical problem of the hole barrier (HB) by further including the graded sixth semiconductor layer 266 of the second conductivity type.
  • FIG. 1 is an exemplary diagram of a living room of a house where a display device according to an embodiment is placed.
  • FIG. 2 is an enlarged view of the first panel area in the display device of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line B1-B2 in area A2 of FIG. 2.
  • FIG. 4 is an exemplary diagram in which a light emitting device according to an embodiment is assembled on a substrate by a self-assembly method.
  • Figure 5 is a partial enlarged view of area A3 in Figure 4.
  • Figure 6 is a cross-sectional view of a red semiconductor light-emitting device 250A for a display pixel according to the first embodiment.
  • Figure 7a is a schematic diagram of the first tunnel junction structure 250T1 in the first embodiment.
  • Figure 7b is a schematic diagram of the second tunnel junction structure 250T2 of the first embodiment.
  • Figure 8 is a conceptual diagram of an energy band diagram in a red semiconductor light emitting device of internal technology.
  • Figure 9 is a partial cross-sectional schematic diagram of a red semiconductor light emitting device 250B according to the second embodiment.
  • Figure 10 is a partial cross-sectional schematic diagram of a red semiconductor light emitting device (250C) according to the third embodiment.
  • Figure 11 is a cross-sectional view of a red semiconductor light emitting device (250D) according to the fifth embodiment.
  • Display devices described in this specification include digital TVs, mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, and slates.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • slates may include PCs, tablet PCs, ultra-books, desktop computers, etc.
  • the configuration according to the embodiment described in this specification can be applied to a device capable of displaying even if it is a new product type that is developed in the future.
  • FIG. 1 shows a living room of a house where a display device 100 according to an embodiment is installed.
  • the display device 100 of the embodiment can display the status of various electronic products such as a washing machine 101, a robot vacuum cleaner 102, and an air purifier 103, and can communicate with each electronic product based on IOT, and can communicate with the user. Each electronic product can also be controlled based on the setting data.
  • the display device 100 may include a flexible display manufactured on a thin and flexible substrate.
  • Flexible displays can bend or curl like paper while maintaining the characteristics of existing flat displays.
  • a unit pixel refers to the minimum unit for implementing one color.
  • a unit pixel of a flexible display can be implemented by a light emitting device.
  • the light emitting device may be Micro-LED or Nano-LED, but is not limited thereto.
  • FIG. 2 is an enlarged view of the first panel area A1 in the display device of FIG. 1.
  • the display device 100 of the embodiment may be manufactured by mechanically and electrically connecting a plurality of panel areas, such as the first panel area A1, through tiling.
  • the first panel area A1 may include a plurality of light emitting devices 150 arranged for each unit pixel.
  • a unit pixel may include a first sub-pixel, a second sub-pixel, and a third sub-pixel.
  • a plurality of red light-emitting devices 150R are disposed in the first sub-pixel
  • a plurality of green light-emitting devices 150G are disposed in the second sub-pixel
  • a plurality of blue light-emitting devices 150B are disposed in the third sub-pixel.
  • the unit pixel may further include a fourth sub-pixel in which no light-emitting element is disposed, but this is not limited.
  • the light emitting device 150 may be a semiconductor light emitting device.
  • FIG. 3 is a cross-sectional view taken along line B1-B2 in area A2 of FIG. 2.
  • the display device 100 of the embodiment includes a substrate 200a, spaced apart wiring lines 201a and 202a, a first insulating layer 211a, a second insulating layer 211b, and a third insulating layer ( 206) and a plurality of light emitting devices 150.
  • the wiring may include a first wiring 201a and a second wiring 202a that are spaced apart from each other.
  • the first wiring 201a and the second wiring 202a may function as panel wiring for applying power to the light emitting device 150 from the panel, and in the case of self-assembly of the light emitting device 150, the dielectric for assembly It may also function as an assembled electrode to generate a phoretic force.
  • the wirings 201a and 202a may be formed of transparent electrodes (ITO) or may contain a metal material with excellent electrical conductivity.
  • the wirings 201a and 202a are titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), platinum (Pt), gold (Au), tungsten (W), and molybdenum (Mo). It may be formed of at least one of these or an alloy thereof.
  • a first insulating layer 211a may be disposed between the first wiring 201a and the second wiring 202a, and a second insulating layer (211a) may be disposed on the first wiring 201a and the second wiring 202a. 211b) can be arranged.
  • the first insulating layer 211a and the second insulating layer 211b may be an oxide film or a nitride film, but are not limited thereto.
  • the light-emitting device 150 may include, but is not limited to, a red light-emitting device 150R, a green light-emitting device 150G, and a blue light-emitting device 150B to form a unit pixel (sub-pixel). and green phosphors, etc. may be provided to implement red and green colors, respectively.
  • the substrate 200 may be made of glass or polyimide. Additionally, the substrate 200 may include a flexible material such as PEN (Polyethylene Naphthalate) or PET (Polyethylene Terephthalate). Additionally, the substrate 200 may be made of a transparent material, but is not limited thereto. The substrate 200 may function as a support substrate in a panel, and may also function as an assembly substrate when self-assembling a light emitting device.
  • PEN Polyethylene Naphthalate
  • PET Polyethylene Terephthalate
  • the substrate 200 may function as a support substrate in a panel, and may also function as an assembly substrate when self-assembling a light emitting device.
  • the third insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, etc., and may be integrated with the substrate 200 to form one substrate.
  • the third insulating layer 206 may be a conductive adhesive layer that has adhesiveness and conductivity, and the conductive adhesive layer is flexible and may enable a flexible function of the display device.
  • the third insulating layer 206 may be an anisotropic conductive film (ACF) or a conductive adhesive layer such as an anisotropic conductive medium or a solution containing conductive particles.
  • the conductive adhesive layer may be a layer that is electrically conductive in a direction perpendicular to the thickness, but electrically insulating in a direction horizontal to the thickness.
  • the gap between the wires 201a and 202a is smaller than the width of the light emitting device 150 and the width of the assembly hole 203, so that the assembly position of the light emitting device 150 using an electric field can be fixed more precisely.
  • a third insulating layer 206 is formed on the wirings 201a and 202a to protect the wirings 201a and 202a from the fluid 1200 and prevent leakage of current flowing through the wirings 201a and 202a.
  • the third insulating layer 206 may be formed as a single layer or multilayer of an inorganic insulator such as silica or alumina or an organic insulator.
  • the third insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, etc., and may be integrated with the substrate 200 to form one substrate.
  • the third insulating layer 206 has a partition wall, and the assembly hole 203 can be formed by the partition wall.
  • the third insulating layer 206 may include an assembly hole 203 into which the light emitting device 150 is inserted (see FIG. 45). Therefore, during self-assembly, the light emitting device 150 can be easily inserted into the assembly hole 203 of the third insulating layer 206.
  • the assembly hole 203 may be called an insertion hole, a fixing hole, an alignment hole, etc.
  • the assembly hole 203 may have a shape and size corresponding to the shape of the light emitting device 150 to be assembled at the corresponding location. Accordingly, it is possible to prevent another light emitting device from being assembled in the assembly hole 203 or a plurality of light emitting devices from being assembled.
  • Figure 4 is a diagram showing an example in which a light emitting device according to an embodiment is assembled on a substrate by a self-assembly method
  • Figure 5 is a partial enlarged view of area A3 in Figure 4.
  • Figure 5 is a diagram with area A3 rotated 180 degrees for convenience of explanation.
  • FIGS. 4 and 5 Based on FIGS. 4 and 5 , an example in which a semiconductor light emitting device according to an embodiment is assembled into a display panel by a self-assembly method using an electromagnetic field will be described.
  • the assembled substrate 200 which will be described later, can also function as a panel substrate in a display device after assembly of the light emitting device, but the embodiment is not limited thereto.
  • the semiconductor light emitting device 150 may be introduced into the chamber 1300 filled with the fluid 1200, and the semiconductor light emitting device 150 may be inserted into the substrate 200 by a magnetic field generated from the assembly device 1100. ) can be moved to . At this time, the light emitting device 150 adjacent to the assembly hole 203 of the assembly substrate 200 may be assembled into the assembly hole 230 by dielectrophoresis force generated by the electric field of the assembly electrodes.
  • the fluid 1200 may be water such as ultrapure water, but is not limited thereto.
  • the chamber may be called a water tank, container, vessel, etc.
  • the assembled substrate 200 may be placed on the chamber 1300. Depending on the embodiment, the assembled substrate 200 may be introduced into the chamber 1300.
  • the semiconductor light emitting device 150 may be implemented as a vertical semiconductor light emitting device as shown, but is not limited to this and a horizontal light emitting device may be employed.
  • the semiconductor light emitting device 150 may include a magnetic layer (not shown) containing a magnetic material.
  • the magnetic layer may include a magnetic metal such as nickel (Ni). Since the semiconductor light emitting device 150 introduced into the fluid includes a magnetic layer, it can move to the substrate 200 by the magnetic field generated from the assembly device 1100.
  • the magnetic layer may be disposed on the upper or lower side or on both sides of the light emitting device.
  • the semiconductor light emitting device 150 may include a passivation layer 156 surrounding the top and side surfaces.
  • the passivation layer 156 may be formed using an inorganic insulator such as silica or alumina through PECVD, LPCVD, sputtering deposition, etc. Additionally, the passivation layer 156 may be formed by spin coating an organic material such as photoresist or polymer material.
  • the semiconductor light emitting device 150 may include a first conductivity type semiconductor layer 152a, a second conductivity type semiconductor layer 152c, and an active layer 152b disposed between them.
  • the first conductive semiconductor layer 152a may be an n-type semiconductor layer
  • the second conductive semiconductor layer 152c may be a p-type semiconductor layer, but are not limited thereto.
  • the semiconductor light emitting device 150 shown in FIG. 5 may be a blue semiconductor light emitting device 150B or a green semiconductor light emitting device 150G, but is not limited thereto.
  • a first electrode may be connected to the first conductivity type semiconductor layer 152a, and a second electrode may be connected to the second conductivity type semiconductor layer 152c. To this end, some areas of the first conductivity type semiconductor layer 152a and the second conductivity type semiconductor layer 152c may be exposed to the outside. Accordingly, in the manufacturing process of the display device after the semiconductor light emitting device 150 is assembled on the assembly substrate 200, some areas of the passivation layer 156 may be etched.
  • the assembled substrate 200 may include a pair of first assembled electrodes 201 and second assembled electrodes 202 corresponding to each of the semiconductor light emitting devices 150 to be assembled.
  • the first assembled electrode 201 and the second assembled electrode 202 can be formed by stacking multiple single metals, metal alloys, metal oxides, etc.
  • the first assembled electrode 201 and the second assembled electrode 202 emit an electric field as an alternating voltage is applied, thereby fixing the semiconductor light emitting device 150 inserted into the assembly hole 203 by dielectrophoretic force. there is.
  • the gap between the first assembly electrode 201 and the second assembly electrode 202 may be smaller than the width of the semiconductor light emitting device 150 and the width of the assembly hole 203, and the semiconductor light emitting device 150 using an electric field may be smaller than the width of the assembly hole 203.
  • the assembly position can be fixed more precisely.
  • An insulating layer 212 is formed on the first assembled electrode 201 and the second assembled electrode 202 to protect the first assembled electrode 201 and the second assembled electrode 202 from the fluid 1200, and Leakage of current flowing through the first assembled electrode 201 and the second assembled electrode 202 can be prevented.
  • the insulating layer 212 may be formed of a single layer or multiple layers of an inorganic insulator such as silica or alumina or an organic insulator.
  • the insulating layer 212 may have a minimum thickness to prevent damage to the first assembled electrode 201 and the second assembled electrode 202 when assembling the semiconductor light emitting device 150, and the semiconductor light emitting device 150 can have a maximum thickness for stable assembly.
  • a partition 207 may be formed on the insulating layer 212. Some areas of the partition wall 207 may be located on top of the first assembled electrode 201 and the second assembled electrode 202, and the remaining area may be located on the top of the assembled substrate 200.
  • An assembly hole 203 in which the semiconductor light emitting devices 150 are coupled is formed in the assembly substrate 200, and the surface where the assembly hole 203 is formed may be in contact with the fluid 1200.
  • the assembly hole 203 can guide the exact assembly position of the semiconductor light emitting device 150.
  • the assembly hole 203 may have a shape and size corresponding to the shape of the semiconductor light emitting device 150 to be assembled at the corresponding location. Accordingly, it is possible to prevent other semiconductor light emitting devices from being assembled in the assembly hole 203 or from assembling a plurality of semiconductor light emitting devices.
  • the assembly device 1100 that applies a magnetic field may move along the assembled substrate 200.
  • the assembly device 1100 may be a permanent magnet or an electromagnet.
  • the assembly device 1100 may move while in contact with the assembly substrate 200 in order to maximize the area to which the magnetic field is applied within the fluid 1200.
  • the assembly device 1100 may include a plurality of magnetic materials or may include a magnetic material of a size corresponding to that of the assembly substrate 200. In this case, the moving distance of the assembly device 1100 may be limited to within a predetermined range.
  • the semiconductor light emitting device 150 in the chamber 1300 may move toward the assembly device 1100 and the assembly substrate 200 by the magnetic field generated by the assembly device 1100.
  • the semiconductor light emitting device 150 enters the assembly hole 203 by the dielectrophoresis force (DEP force) formed by the electric field of the assembly electrode of the assembly substrate. It can be fixed.
  • DEP force dielectrophoresis force
  • the assembled wirings 201 and 202 form an electric field by an alternating current power source, and a dielectrophoretic force may be formed between the assembled wirings 201 and 202 by this electric field.
  • the semiconductor light emitting device 150 can be fixed to the assembly hole 203 on the substrate 200 by this dielectrophoretic force.
  • a predetermined solder layer (not shown) is formed between the light emitting device 150 assembled on the assembly hole 203 of the substrate 200 and the assembly electrode, thereby improving the bonding strength of the light emitting device 150.
  • a molding layer (not shown) may be formed in the assembly hole 203 of the assembly substrate 200.
  • the molding layer may be a transparent resin or a resin containing a reflective material or a scattering material.
  • the time required to assemble each semiconductor light-emitting device on a substrate can be drastically shortened, making it possible to implement a large-area, high-pixel display more quickly and economically.
  • Figure 6 is a cross-sectional view of the red semiconductor light emitting device 250A for display pixels according to the first embodiment.
  • red semiconductor light-emitting device for display pixels will be abbreviated as “red semiconductor light-emitting device.”
  • the red semiconductor light emitting device 250A is a first semiconductor light emitting structure 251, a second semiconductor light emitting structure 252, and between the first and second semiconductor light emitting structures 251 and 252. It may include a first tunnel junction structure (250T1) disposed in.
  • the red semiconductor light emitting device 250A includes a first electrode layer 254n disposed below the first semiconductor light emitting structure 251 and a second electrode layer disposed above the second semiconductor light emitting structure 252. (254p) may be included.
  • the first electrode layer 254n may include a magnetic metal such as nickel (Ni).
  • the second electrode layer 254p may include a light-transmitting ohmic layer such as ITO, but is not limited thereto.
  • the red semiconductor light emitting device 250A may include a passivation layer 256 including an inorganic insulator such as silica or alumina disposed on the top and side surfaces.
  • a passivation layer 256 including an inorganic insulator such as silica or alumina disposed on the top and side surfaces.
  • the red semiconductor light emitting device 250A may be an AlGaInP-based light emitting diode and may emit light at a wavelength within the range of about 570 nm to about 630 nm.
  • the wavelength can be influenced by the band gap energy of the light emitting diode.
  • the band gap size can be adjusted by changing the composition ratio of Al and Ga, and as the composition ratio of Al increases, the wavelength can become shorter.
  • the first semiconductor light emitting structure 251 includes a first conductive type first semiconductor layer 251n, a first active layer 251a on the first conductive type first semiconductor layer 251n, and the first semiconductor layer 251n.
  • a second conductive type second semiconductor layer 251p may be included on the active layer 251a.
  • the first semiconductor light emitting structure 251 may include a ( Al
  • the first conductivity type semiconductor layer 251n may be doped with an N-type dopant
  • the second conductivity type second semiconductor layer 251p may be doped with a P-type dopant, but are not limited thereto.
  • the N-type dopant may be Si or Te
  • the P-type dopant may be Mg or C (carbon), but are not limited thereto.
  • the first conductivity type first semiconductor layer 251n may include a high concentration first conductivity type 1-1 semiconductor layer (not shown) and a low concentration first conductivity type 1-2 semiconductor layer (not shown). However, it is not limited to this.
  • the 1-1 semiconductor layer may include an n + -AlGaInP layer
  • the 1-2 semiconductor layer may include an n-GaP layer, but are not limited thereto.
  • the second semiconductor light emitting structure 252 includes a first conductive third semiconductor layer 252n, a second active layer 252a on the first conductive type third semiconductor layer 252n, and the third semiconductor layer 252n.
  • a fourth semiconductor layer 252p of a second conductivity type may be included on the active layer 252a.
  • the second semiconductor light emitting structure 252 may include a ( Al)
  • the third conductivity type semiconductor layer 252n may be doped with an N-type dopant
  • the second conductivity type fourth semiconductor layer 252p may be doped with a P-type dopant, but are not limited thereto.
  • the N-type dopant may be Si or Te
  • the P-type dopant may be Mg or C (carbon), but are not limited thereto.
  • the second conductivity type fourth semiconductor layer 252p may include a low concentration second conductivity type 4-1 semiconductor layer (not shown) and a high concentration second conductivity type 4-2 semiconductor layer (not shown). It may be possible, but it is not limited to this.
  • the 4-1 semiconductor layer may include a p-AlGaInP layer
  • the 4-2 semiconductor layer may include a p + -GaP layer, but are not limited thereto.
  • Figure 7a is a schematic diagram of the first tunnel junction structure 250T1 in the first embodiment.
  • the first tunnel junction structure 250T1 of the first embodiment may be doped at a high concentration of 1X10 19 atoms/cm 3 or more.
  • the first tunnel junction structure 250T1 of the first embodiment may include a second conductive type first tunnel junction layer 250Tp and a first conductive type second tunnel junction layer 250Tn.
  • the second conductive type first tunnel junction layer 250Tp may include a high concentration AlGaAs layer.
  • the second conductive type first tunnel junction layer 250Tp may include a p ++ -AlGaAs layer doped with carbon (C) at a high concentration of 1X10 19 atoms/cm 3 or more.
  • the first conductivity type second tunnel junction layer 250Tn may include a high concentration GaInP layer.
  • the first conductivity type second tunnel junction layer 250Tn may include an n ++ -GaInP layer doped with Si at a high concentration of 1X10 19 atoms/cm 3 or more.
  • Figure 7b is a schematic diagram of the second tunnel junction structure 250T2 of the first embodiment.
  • the second tunnel junction structure 250T2 of the first embodiment includes a second conductive type first tunnel junction layer 250Tp, a first conductive type second tunnel junction layer 250Tn, and a second conductive type third tunnel junction layer. It may include (250Tp2).
  • the second conductive type third tunnel junction layer 250Tp2 may be disposed below the second conductive type first tunnel junction layer 250Tp.
  • the second conductive third tunnel junction layer 250Tp2 may include a high concentration GaAs layer.
  • the second conductivity type third tunnel junction layer 250Tp2 may include a p ++ -GaAs layer doped with carbon (C) at a high concentration of 1X10 19 atoms/cm 3 or more.
  • the first semiconductor light emitting structure 251, the second semiconductor light emitting structure 252, and the first or second tunnel junction structure disposed between the first and second semiconductor light emitting structures 251 and 252 By including 250T1, 250T2), it has the technical feature of enabling high brightness by enabling the emission of red wavelength light from the two active layers.
  • the same brightness increase effect as applying two red semiconductor light emitting devices is obtained, while the power consumption of the LED display is improved by more than 11.2% (based on full white, 300 nit).
  • Figure 8 is a conceptual diagram of an energy band diagram in a red semiconductor light emitting device of internal technology.
  • HB hole barrier
  • a hole barrier is formed between the first or second tunnel junction structures 250T1 and 250T2 and the p-type Clad layer, which is the second conductive type second semiconductor layer 251p of the first semiconductor light emitting structure 251. )(HB) may exist.
  • the p-type Clad layer which is the first or second tunnel junction structure (250T1, 250T2) that requires high concentration doping, and the second conductive type second semiconductor layer (251p) of the first semiconductor light emitting structure (251) It has been studied that a hole barrier (HB) may exist as an offset occurs due to the difference in bandgap energy between different materials and the difference in fermi level of the different materials.
  • HB hole barrier
  • Figure 9 is a partial cross-sectional schematic diagram of the red semiconductor light emitting device 250B according to the second embodiment.
  • the red semiconductor light emitting device 250B according to the second embodiment may adopt the technical features of the red semiconductor light emitting device 250A according to the first embodiment.
  • the red semiconductor light emitting device 250B may include a first tunnel junction structure 250T1 or a second tunnel junction structure 250T2.
  • the red semiconductor light emitting device (250B) includes a first or second tunnel junction structure (250T1, 250T2) and a second conductive type second semiconductor layer (251p) of the 1-2 semiconductor light emitting structure (251B). It may include a second conductive type fifth semiconductor layer 265 therebetween.
  • the second conductivity type fifth semiconductor layer 265 may include a p- ( Al , may be doped with Mg, but is not limited thereto.
  • the p-AlInP/AlGaAs junction is a junction of dissimilar materials, there is no problem with the epi-growth itself, but according to the red semiconductor light-emitting device of internal technology, the first semiconductor light-emitting structure 251 and the first semiconductor light-emitting structure 251
  • HB hole barrier
  • the p-type Clad layer which is the first or second tunnel junction structure (250T1, 250T2) that requires high concentration doping, and the second conductive type second semiconductor layer (251p) of the first semiconductor light emitting structure (251) It has been studied that a hole barrier (HB) may exist as an offset occurs due to the difference in bandgap energy between different materials and the difference in fermi level of the different materials.
  • HB hole barrier
  • the red semiconductor light emitting device (250B) includes a first or second tunnel junction structure (250T1, 250T2) and a second conductive type second semiconductor layer (251p) of the 1-2 semiconductor light emitting structure (251B). It may include a second conductive type fifth semiconductor layer 265 therebetween,
  • the p-AlInP/AlGaAs junction is a junction of heterogeneous materials, there is no problem with epitaxial growth itself, and in the field of LED technology, since the junction is grown without an interlayer during the AlGaAs/AlInP heterojunction, there is no electrical problem in the junction layer. It is not easy to recognize that something is happening.
  • Figure 10 is a partial cross-sectional schematic diagram of the red semiconductor light emitting device 250C according to the third embodiment.
  • the red semiconductor light emitting device 250C according to the third embodiment may adopt the technical features of the red semiconductor light emitting devices 250A and 250B according to the first or second embodiment.
  • the red semiconductor light emitting device 250C may include a first tunnel junction structure 250T1 or a second tunnel junction structure 250T2.
  • the red semiconductor light emitting device (250C) includes a first or second tunnel junction structure (250T1, 250T2) and a second conductive type second semiconductor layer (251p) of the 1-3 semiconductor light emitting structure (251C). It may include a second conductive type fifth semiconductor layer 265 and a second conductive type sixth semiconductor layer 266 therebetween.
  • the second conductivity type fifth semiconductor layer 265 may include a p- ( Al , may be doped with Mg, but is not limited thereto.
  • the second conductivity type sixth semiconductor layer 266 may include a p-(Al and may be doped with Mg, but is not limited thereto.
  • composition of Al in the second conductive type sixth semiconductor layer 266 may be graded.
  • the Al composition X1 in the second conductivity type sixth semiconductor layer 266 may be graded from 0.3 to 0.6 to 0.0.
  • the red semiconductor light emitting device (250C) includes a first or second tunnel junction structure (250T1, 250T2) and a second conductive type second semiconductor layer (251p) of the 1-3 semiconductor light emitting structure (251C). It may include a second conductive type sixth semiconductor layer 266 therebetween.
  • the Al composition has a special technical effect of further improving the electrical problem of the hole barrier (HB) by further including the graded sixth semiconductor layer 266 of the second conductivity type.
  • Figure 11 is a cross-sectional view of a red semiconductor light emitting device 250D according to the fifth embodiment.
  • the red semiconductor light emitting device 250D according to the fifth embodiment can adopt the technical features of the red semiconductor light emitting device 250A for display pixels according to the first embodiment shown in FIG. 6.
  • the red semiconductor light emitting device 250D may include a horizontal semiconductor light emitting device structure.
  • the red semiconductor light emitting device 250D may have a first electrode layer 254 electrically connected to the upper part of the first conductive type first semiconductor layer 251n.
  • the fifth embodiment may further include a magnetic layer 254m disposed below the first semiconductor light emitting structure 251.
  • a first semiconductor light-emitting structure 251, a second semiconductor light-emitting structure 252, and first and second semiconductor light-emitting structures 251, 252) By including the first or second tunnel junction structure (250T1, 250T2) disposed between the two active layers, red wavelength light can be emitted, thereby enabling the implementation of high brightness.
  • the same brightness increase effect as applying two red semiconductor light emitting devices is obtained, while the power consumption of the LED display is improved by more than 11.2%.
  • the red semiconductor light emitting device 250B includes the first or second tunnel junction structures 250T1 and 250T2 and the second conductivity type second semiconductor layer 251p of the 1-2 semiconductor light emitting structure 251B.
  • ) may include a second conductive fifth semiconductor layer 265 between them, and a hole barrier occurs when the hole moving through the tunnel junction does not move smoothly due to the electrical barrier generated in the heterojunction region. It has a special technical effect in improving the electrical problems of the barrier (HB).
  • the red semiconductor light emitting device 250C includes the first or second tunnel junction structure 250T1 and 250T2 and the second conductivity type second semiconductor layer 251p of the 1-3 semiconductor light emitting structure 251C. ) may include a sixth semiconductor layer 266 of the second conductivity type.
  • the Al composition has a special technical effect of further improving the electrical problem of the hole barrier (HB) by further including the graded sixth semiconductor layer 266 of the second conductivity type.
  • Embodiments may be adopted in the field of displays that display images or information.
  • Embodiments may be adopted in the field of displays that display images or information using semiconductor light-emitting devices.
  • Embodiments can be adopted in the field of displays that display images or information using micro- or nano-level semiconductor light-emitting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

실시예는 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치에 관한 것이다. 실시예에 따른 디스플레이 화소용 적색 반도체 발광소자는, 제1 도전형 제1 반도체층과, 상기 제1 도전형 제1 반도체층 상에 제1 활성층 및 상기 제1 활성층 상에 제2 도전형 제2 반도체층을 포함하는 제1 반도체 발광구조물과, 상기 제1 반도체 발광구조물 상에 터널 정션구조 및 상기 터널 정션구조 상에 배치되는 제1 도전형 제3 반도체층과, 상기 제1 도전형 제3 반도체층 상에 제2 활성층 및 상기 제2 활성층 상에 제2 도전형 제4 반도체층을 포함하는 제2 반도체 발광구조물을 포함할 수 있다. 상기 터널 정션구조는, 상기 제2 도전형 제2 반도체층 상에 배치되는 제2 도전형 제1 터널 정션층; 및 상기 제2 도전형 제1 터널 정션층 상에 배치되는 제1 도전형 제2 터널 정션층을 포함할 수 있다.

Description

디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치
실시예는 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치에 관한 것이다.
대면적 디스플레이는 액정디스플레이(LCD), OLED 디스플레이, 그리고 마이크로-LED 디스플레이(Micro-LED display) 등이 있다.
마이크로-LED 디스플레이는 100㎛ 이하의 직경 또는 단면적을 가지는 반도체 발광소자인 마이크로-LED를 표시소자로 사용하는 디스플레이이다.
마이크로-LED 디스플레이는 반도체 발광소자인 마이크로-LED를 표시소자로 사용하기 때문에 명암비, 응답속도, 색 재현율, 시야각, 밝기, 해상도, 수명, 발광효율이나 휘도 등 많은 특성에서 우수한 성능을 가지고 있다.
특히 마이크로-LED 디스플레이는 화면을 모듈 방식으로 분리, 결합할 수 있어 크기나 해상도 조절이 자유로운 장점 및 플렉서블 디스플레이 구현이 가능한 장점이 있다.
그런데 대형 마이크로-LED 디스플레이는 수백만 개 이상의 마이크로-LED가 필요로 하기 때문에 마이크로-LED를 디스플레이 패널에 신속하고 정확하게 전사하기 어려운 기술적 문제가 있다.
최근 개발되고 있는 전사기술에는 픽앤-플레이스 공법(pick and place process), 레이저 리프트 오프법(Laser Lift-off method) 또는 자가조립 방식(self-assembly method) 등이 있다.
이 중에서, 자가조립 방식은 유체 내에서 반도체 발광소자가 조립위치를 스스로 찾아가는 방식으로서 대화면의 디스플레이 장치의 구현에 유리한 방식이다.
최근에 미국등록특허 제9,825,202 등에서 자가조립에 적합한 마이크로-LED 구조를 제시한 바 있으나, 아직 마이크로-LED의 자가조립을 통하여 디스플레이를 제조하는 기술에 대한 연구가 미비한 실정이다.
특히 종래기술에서 대형 디스플레이에 수백만 개 이상의 반도체 발광소자를 신속하게 전사하는 경우 전사 속도(transfer speed)는 향상시킬 수 있으나 전사 불량률(transfer error rate)이 높아질 수 있어 전사 수율(transfer yield)이 낮아지는 기술적 문제가 있다.
관련 기술에서 유전영동(dielectrophoresis, DEP)을 이용한 자가조립 방식의 전사공정이 시도되고 있으나 DEP force의 불균일성 등으로 인해 자가 조립률이 낮은 문제가 있다.
한편, 비공개 내부 기술에 의하면, 레드(R) 마이크로 LED chip, 그린(G) 마이크로 LED chip, 및 블루(B) LED chip을 DEP force를 이용한 자가 조립이 연구되고 있다.
한편, 마이크로 Red LED 칩은 측면에서의 비발광으로 칩 효율 저하가 발생한다.
특히, Bule 칩, Green 칩 대비 빠른 모빌리티로 인하여 Red 칩은 초기의 저전류에서 캐리어의 누설이 심하여 칩의 휘도 저하가 발생한다.
이러한 Red 칩의 저휘도는 마이크로 LED의 소비전력 증가와 색재현율 저하의 문제를 유발하는 문제가 있다.
실시예의 기술적 과제 중의 하나는, 휘도를 향상시키면서도 소비전력 증가나 색재현율 저하의 문제를 유발하지 않는 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치를 제공하고자 함이다.
실시예에 따른 디스플레이 화소용 적색 반도체 발광소자는, 제1 도전형 제1 반도체층(251n)과, 상기 제1 도전형 제1 반도체층(251n) 상에 제1 활성층(251a) 및 상기 제1 활성층(251a) 상에 제2 도전형 제2 반도체층(251p)을 포함하는 제1 반도체 발광구조물(251)과, 상기 제1 반도체 발광구조물(251) 상에 터널 정션구조(250T1) 및 상기 터널 정션구조(250T1) 상에 배치되는 제1 도전형 제3 반도체층(252n)과, 상기 제1 도전형 제3 반도체층(252n) 상에 제2 활성층(252a) 및 상기 제2 활성층(252a) 상에 제2 도전형 제4 반도체층(252p)을 포함하는 제2 반도체 발광구조물(252)을 포함할 수 있다.
상기 터널 정션구조(250T1)는, 상기 제2 도전형 제2 반도체층(251p) 상에 배치되는 제2 도전형 제1 터널 정션층(250Tp); 및 상기 제2 도전형 제1 터널 정션층(250Tp) 상에 배치되는 제1 도전형 제2 터널 정션층(250Tn)을 포함할 수 있다.
상기 제2 도전형 제1 터널 정션층(250Tp)은, 1X1019 atoms/cm3 농도 이상으로 도핑된 p형 AlGaAs층을 포함할 수 있다.
상기 제1 도전형 제2 터널 정션층(250Tn)은 1X1019 atoms/cm3 농도 이상의 농도로 도핑된 n형 GaInP층을 포함할 수 있다.
상기 터널 정션구조(250T2)는,
상기 제2 도전형 제1 터널 정션층(250Tp) 아래에 배치되는 제2 도전형 제3 터널 정션층(250Tp2)을 더 포함할 수 있다.
상기 제2 도전형 제3 터널 정션층(250Tp2)은 1X1019 atoms/cm3 농도 이상의 농도로 도핑된 p형 GaAs층을 포함할 수 있다.
상기 제1 반도체 발광구조물(251B)은, 상기 제2 도전형 제2 반도체층(251p)과 상기 터널 정션구조(250T2) 사이에 배치되는 제2 도전형 제5 반도체층(265)을 더 포함할 수 있다.
상기 제2 도전형 제5 반도체층(265)은 p-(AlxGa1-x)yIn1-yP층(단, 0.0≤x≤0.8, 0.2≤y≤0.6)을 포함할 수 있다.
상기 제1 반도체 발광구조물(251B)은, 상기 터널 정션구조(250T1, 250T2)와 상기 제2 도전형 제5 반도체층(265) 사이에 배치되는 제2 도전형 제6 반도체층(266)을 더 포함할 수 있다.
상기 제2 도전형 제6 반도체층(266)은 p-(Alx1Ga1-x1)yIn1-yP층(단, 0.0≤x1≤0.8, 0.2≤y≤0.6)을 포함하며, 상기 제2 도전형 제6 반도체층(266)에서 Al의 조성은 그레이딩 될 수 있다.
상기 제2 도전형 제6 반도체층(266)의 Al의 조성(X1)은 상기 터널 정션구조(250T1, 250T2) 방향으로 0.3 내지 0.6에서 0.0으로 그레이딩될 수 있다.
실시예에 따른 디스플레이 장치는, 상기 어느 하나의 디스플레이 화소용 적색 반도체 발광소자를 포함할 수 있다.
실시예에 따른 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치에 의하면 제1 반도체 발광구조물(251)과, 제2 반도체 발광구조물(252) 및 제1, 제2 반도체 발광구조물들(251, 252) 사이에 배치되는 제1 또는 제2 터널 정션구조(250T1, 250T2)를 포함함으로써 2개의 활성층에서 적색파장의 빛의 발광이 가능함으로써 고 휘도 구현이 가능한 기술적 특징이 있다.
또한 실시예에 의하면 적색 반도체 발광소자를 두 개 적용한 것과 같은 휘도 상승 효과를 얻으면서도 LED 디스플레이의 소비전력이 11.2% 이상 개선되는 효과가 있다.
또한 제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-2 반도체 발광구조물(251B)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제5 반도체층(265)을 포함할 수 있고, 터널 졍션을 통과해서 이동하는 Hole이 이종 접합 영역에서 발생한 전기적인 Barrier에 의해 원활하게 이동하지 못해서 발생하는 홀 배리어(hole barrier)(HB)의 전기적 문제를 개선하는 특별한 기술적 효과가 있다.
또한 제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-3 반도체 발광구조물(251C)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제6 반도체층(266)을 포함할 수 있다.
제3 실시예에 의하면, Al의 조성은 그레이딩되는 제2 도전형 제6 반도체층(266)을 더 포함함으로써 홀 배리어(hole barrier)(HB)의 전기적 문제를 더욱 개선하는 특별한 기술적 효과가 있다.
도 1은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실에 대한 예시도.
도 2는 도 1의 디스플레이 장치에서 제1 패널영역의 확대도.
도 3은 도 2의 A2 영역의 B1-B2 선을 따른 단면도.
도 4는 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예시도.
도 5는 도 4의 A3 영역의 부분 확대도.
도 6은 제1 실시예에 따른 디스플레이 화소용 적색 반도체 발광소자(250A)의 단면도.
도 7a는 제1 실시예의 제1 터널 정션구조(250T1)의 모식도.
도 7b는 제1 실시예의 제2 터널 정션구조(250T2)의 모식도.
도 8은 내부기술의 적색 반도체 발광소자에서의 에너지 밴드 다이어 그램에 대한 개념도.
도 9는 제2 실시예에 따른 적색 반도체 발광소자(250B)의 부분 단면 모식도.
도 10은 제3 실시예에 따른 적색 반도체 발광소자(250C)의 부분 단면 모식도.
도 11은 제5 실시예에 따른 적색 반도체 발광소자(250D)의 단면도.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 및 '부'는 명세서 작성의 용이함이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것이며, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것은 아니다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 '상(on)'에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 다른 중간 요소가 존재할 수도 있는 것을 포함한다.
본 명세서에서 설명되는 디스플레이 장치에는 디지털 TV, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트(Slate) PC, 태블릿(Tablet) PC, 울트라 북(Ultra-Book), 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에도 적용될 수 있다.
이하 실시예에 따른 반도체 발광소자 및 이를 포함하는 디스플레이 장치에 대해 설명한다.
도 1은 실시예에 따른 디스플레이 장치(100)가 배치된 주택의 거실을 도시한다.
실시예의 디스플레이 장치(100)는 세탁기(101), 로봇 청소기(102), 공기 청정기(103) 등의 각종 전자 제품의 상태를 표시할 수 있고, 각 전자 제품들과 IOT 기반으로 통신할 수 있으며 사용자의 설정 데이터에 기초하여 각 전자 제품들을 제어할 수도 있다.
실시예에 따른 디스플레이 장치(100)는 얇고 유연한 기판 위에 제작되는 플렉서블 디스플레이(flexible display)를 포함할 수 있다. 플렉서블 디스플레이는 기존의 평판 디스플레이의 특성을 유지하면서, 종이와 같이 휘어지거나 말릴 수 있다.
플렉서블 디스플레이에서 시각정보는 매트릭스 형태로 배치되는 단위 화소(unit pixel)의 발광이 독자적으로 제어됨에 의하여 구현될 수 있다. 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다. 플렉서블 디스플레이의 단위 화소는 발광소자에 의하여 구현될 수 있다. 실시예에서 발광소자는 Micro-LED나 Nano-LED일 수 있으나 이에 한정되는 것은 아니다.
도 2는 도 1의 디스플레이 장치에서 제1 패널영역(A1)의 확대도이다.
도 2에 의하면, 실시예의 디스플레이 장치(100)는 제1 패널영역(A1)과 같은 복수의 패널영역들이 타일링에 의해 기구적, 전기적 연결되어 제조될 수 있다.
제1 패널영역(A1)은 단위 화소 별로 배치된 복수의 발광소자(150)를 포함할 수 있다.
예컨대, 단위 화소는 제1 서브 화소, 제2 서브 화소 및 제3 서브 화소를 포함할 수 있다. 예컨대, 복수의 적색 발광소자(150R)가 제1 서브 화소에 배치되고, 복수의 녹색 발광소자(150G)가 제2 서브 화소에 배치되며, 복수의 청색 발광소자(150B)가 제3 서브 화소에 배치될 수 있다. 단위 화소는 발광소자가 배치되지 않는 제4 서브 화소를 더 포함할 수도 있지만, 이에 대해서는 한정하지 않는다. 한편, 발광소자(150)는 반도체 발광소자일 수 있다.
다음으로 도 3은 도 2의 A2 영역의 B1-B2 선을 따른 단면도이다.
도 3을 참조하면, 실시예의 디스플레이 장치(100)는 기판(200a), 이격 배치된 배선(201a, 202a), 제1 절연층(211a), 제2 절연층(211b), 제3 절연층(206) 및 복수의 발광소자(150)를 포함할 수 있다.
배선은 서로 이격된 제1 배선(201a) 및 제2 배선(202a)을 포함할 수 있다. 제1 배선(201a) 및 제2 배선(202a)은 패널에서 발광소자(150)에 전원을 인가하기 위한 패널 배선을 기능을 할 수 있으며, 발광소자(150)의 자가 조립의 경우 조립을 위한 유전영동 힘을 생성하기 위한 조립 전극 기능을 수행할 수도 있다.
배선(201a, 202a)은 투명 전극(ITO)으로 형성되거나, 전기 전도성이 우수한 금속물질을 포함할 수 있다. 예를 들어, 배선(201a, 202a)은 티탄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 금(Au), 텅스텐(W), 몰리브덴(Mo) 중 적어도 어느 하나 또는 이들의 합금으로 형성될 수 있다.
상기 제1 배선(201a) 및 제2 배선(202a) 사이에 제1 절연층(211a)이 배치될 수 있고, 상기 제1 배선(201a) 및 제2 배선(202a) 상에 제2 절연층(211b)이 배치될 수 있다. 상기 제1 절연층(211a)과 상기 제2 절연층(211b)은 산화막, 질화막 등일 수 있으나 이에 한정되는 것은 아니다.
발광소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색 발광소자(150R), 녹색 발광소자(150G) 및 청색 발광소자(150B)를 포함할 수 있으나 이에 한정되는 것은 아니며, 적색 형광체와 녹색 형광체 등을 구비하여 각각 적색과 녹색을 구현할 수도 있다.
기판(200)은 유리나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다. 상기 기판(200)은 패널에서의 지지 기판으로 기능할 수 있으며, 발광소자의 자가 조립시 조립용 기판으로 기능할 수도 있다.
제3 절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
제3 절연층(206)은 접착성과 전도성을 가지는 전도성 접착층일 수 있고, 전도성 접착층은 연성이 있어서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다. 예를 들어, 제3 절연층(206)은 이방성 전도성 필름(ACF, anisotropy conductive film)이거나 이방성 전도매질, 전도성 입자를 함유한 솔루션(solution) 등의 전도성 접착층일 수 있다. 전도성 접착층은 두께에 대해 수직방향으로는 전기적으로 전도성이나, 두께에 대해 수평방향으로는 전기적으로 절연성을 가지는 레이어일 수 있다.
배선(201a, 202a) 간의 간격은 발광소자(150)의 폭 및 조립 홀(203)의 폭보다 작게 형성되어, 전기장을 이용한 발광소자(150)의 조립 위치를 보다 정밀하게 고정할 수 있다.
배선(201a, 202a) 상에는 제3 절연층(206)이 형성되어, 배선(201a, 202a)을 유체(1200)로부터 보호하고, 배선(201a, 202a)에 흐르는 전류의 누출을 방지할 수 있다. 제3 절연층(206)은 실리카, 알루미나 등의 무기물 절연체 또는 유기물 절연체가 단일층 또는 다층으로 형성될 수 있다.
또한 제3 절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
제3 절연층(206)은 격벽을 가지고, 이 격벽에 의해 조립 홀(203)이 형성될 수 있다. 예를 들어, 제3 절연층(206)은 발광소자(150)가 삽입되기 위한 조립 홀(203)을 포함할 수 있다(도 45 참조). 따라서, 자가 조립시, 발광소자(150)가 제3 절연층(206)의 조립 홀(203)에 용이하게 삽입될 수 있다. 조립 홀(203)은 삽입 홀, 고정 홀, 정렬 홀 등으로 불릴 수 있다.
조립 홀(203)은 대응하는 위치에 조립될 발광소자(150)의 형상에 대응하는 형상 및 크기를 가질 수 있다. 이에 따라, 조립 홀(203)에 다른 발광소자가 조립되거나 복수의 발광소자들이 조립되는 것을 방지할 수 있다.
다음으로 도 4는 실시예에 따른 발광소자가 자가조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이며, 도 5는 도 4의 A3 영역의 부분 확대도이다. 도 5는 설명 편의를 위해 A3 영역을 180도 회전시킨 상태의 도면이다.
도 4 및 도 5를 기초로 실시예에 따른 반도체 발광소자를 전자기장을 이용한 자가조립 방식에 의해 디스플레이 패널에 조립되는 예를 설명하기로 한다.
이후 설명되는 조립기판(200)은 발광소자의 조립 후에 디스플레이 장치에서 패널 기판의 기능도 할 수 있으나, 실시예가 이에 한정되는 것은 아니다.
도 4를 참조하면, 반도체 발광소자(150)는 유체(1200)가 채워진 챔버(1300)에 투입될 수 있으며, 조립 장치(1100)로부터 발생하는 자기장에 의해 반도체 발광소자(150)는 기판(200)로 이동할 수 있다. 이때 조립기판(200)의 조립 홀(203)에 인접한 발광소자(150)는 조립 전극들의 전기장에 의한 유전영동 힘에 의해 조립 홀(230)에 조립될 수 있다. 상기 유체(1200)는 초순수 등의 물일 수 있으나 이에 한정되는 것은 아니다. 챔버는 수조, 컨테이너, 용기 등으로 불릴 수 있다.
반도체 발광소자(150)가 챔버(1300)에 투입된 후, 조립기판(200)이 챔버(1300) 상에 배치될 수 있다. 실시 예에 따라, 조립기판(200)은 챔버(1300) 내로 투입될 수도 있다.
도 5를 참조하면 반도체 발광소자(150)는 도시된 바와 같이 수직형 반도체 발광소자로 구현될 수 있으나 이에 한정되지 않고 수평형 발광소자가 채용될 수 있다.
반도체 발광소자(150)는 자성체를 갖는 자성층(미도시)을 포함할 수 있다. 상기 자성층은 니켈(Ni) 등 자성을 갖는 금속을 포함할 수 있다. 유체 내로 투입된 반도체 발광소자(150)는 자성층을 포함하므로, 조립 장치(1100)로부터 발생하는 자기장에 의해 기판(200)로 이동할 수 있다. 상기 자성층은 발광소자의 상측 또는 하측 또는 양측에 모두 배치될 수 있다.
상기 반도체 발광소자(150)는 상면 및 측면을 둘러싸는 패시베이션층(156)을 포함할 수 있다. 패시베이션층(156)은 실리카, 알루미나 등의 무기물 절연체를 PECVD, LPCVD, 스퍼터링 증착법 등을 통해 형성될 수 있다. 또한 패시베이션층(156)은 포토레지스트, 고분자 물질과 같은 유기물을 스핀 코팅하는 방법을 통해 형성될 수 있다.
상기 반도체 발광소자(150)는 제1 도전형 반도체층(152a), 제2 도전형 반도체층(152c) 및 그 사이에 배치되는 활성층(152b)을 포함할 수 있다. 상기 제1 도전형 반도체층(152a)은 n형 반도체층일 수 있고, 제2 도전형 반도체층(152c)은 p형 반도체층일 수 있으나 이에 한정되는 것은 아니다.
도 5에 도시된 반도체 발광소자(150)는 블루 반도체 발광소자(150B) 또는 그린 반도체 발광소자(150G)일 수 있으나 이에 한정되는 것은 아니다.
상기 제1 도전형 반도체층(152a)에는 제1 전극이 연결될 수 있고, 제2 도전형 반도체층(152c)에는 제2 전극이 연결될 수 있다. 이를 위해서는 제1 도전형 반도체층(152a) 및 제2 도전형 반도체층(152c)의 일부 영역이 외부로 노출될 수 있다. 이에 따라 반도체 발광소자(150)가 조립기판(200)에 조립된 후에 디스플레이 장치의 제조 공정에서, 패시베이션층(156) 중 일부 영역이 식각될 수 있다.
조립기판(200)은 조립될 반도체 발광소자(150) 각각에 대응하는 한 쌍의 제1 조립 전극(201) 및 제2 조립 전극(202)을 포함할 수 있다. 상기 제1 조립 전극(201), 제2 조립 전극(202)은 단일 금속 혹은 금속합금, 금속산화물 등을 다중으로 적층하여 형성할 수 있다.
상기 제1 조립 전극(201), 제2 조립 전극(202)은 교류 전압이 인가됨에 따라 전기장을 방출함으로써, 조립 홀(203)로 투입된 반도체 발광소자(150)를 유전영동 힘에 의해 고정시킬 수 있다. 상기 제1 조립 전극(201), 제2 조립 전극(202) 간의 간격은 반도체 발광소자(150)의 폭 및 조립 홀(203)의 폭보다 작을 수 있으며, 전기장을 이용한 반도체 발광소자(150)의 조립 위치를 보다 정밀하게 고정할 수 있다.
제1 조립 전극(201), 제2 조립 전극(202) 상에는 절연층(212)이 형성되어, 제1 조립 전극(201), 제2 조립 전극(202)을 유체(1200)로부터 보호하고, 제1 조립 전극(201), 제2 조립 전극(202)에 흐르는 전류의 누출을 방지할 수 있다. 예컨대 상기 절연층(212)은 실리카, 알루미나 등의 무기물 절연체 또는 유기물 절연체가 단일층 또는 다층으로 형성될 수 있다. 절연층(212)은, 반도체 발광소자(150)의 조립 시 제1 조립 전극(201), 제2 조립 전극(202)의 손상을 방지하기 위한 최소 두께를 가질 수 있고, 반도체 발광소자(150)가 안정적으로 조립되기 위한 최대 두께를 가질 수 있다.
절연층(212)의 상부에는 격벽(207)이 형성될 수 있다. 격벽(207)의 일부 영역은 제1 조립 전극(201), 제2 조립 전극(202)의 상부에 위치하고, 나머지 영역은 조립기판(200)의 상부에 위치할 수 있다.
한편, 조립기판(200)의 제조 시 절연층(212) 상부 전체에 형성된 격벽 중 일부가 제거됨으로써, 반도체 발광소자(150)들 각각이 조립기판(200)에 결합 및 조립되는 조립 홀(203)이 형성될 수 있다.
조립기판(200)에는 반도체 발광소자(150)들이 결합되는 조립 홀(203)이 형성되고, 조립 홀(203)이 형성된 면은 유체(1200)와 접촉할 수 있다. 조립 홀(203)은 반도체 발광소자(150)의 정확한 조립 위치를 가이드할 수 있다.
한편, 조립 홀(203)은 대응하는 위치에 조립될 반도체 발광소자(150)의 형상에 대응하는 형상 및 크기를 가질 수 있다. 이에 따라, 조립 홀(203)에 다른 반도체 발광소자가 조립되거나 복수의 반도체 발광소자들이 조립되는 것을 방지할 수 있다.
다시 도 4를 참조하면, 조립기판(200)이 챔버에 배치된 후에 자기장을 가하는 조립 장치(1100)가 조립기판(200)을 따라 이동할 수 있다. 상기 조립 장치(1100)는 영구 자석이거나 전자석일 수 있다.
조립 장치(1100)는 자기장이 미치는 영역을 유체(1200) 내로 최대화하기 위해, 조립기판(200)과 접촉한 상태로 이동할 수 있다. 실시예에 따라서는, 조립 장치(1100)가 복수의 자성체를 포함하거나, 조립기판(200)과 대응하는 크기의 자성체를 포함할 수도 있다. 이 경우, 조립 장치(1100)의 이동 거리는 소정 범위 이내로 제한될 수도 있다.
조립 장치(1100)에 의해 발생하는 자기장에 의해 챔버(1300) 내의 반도체 발광소자(150)는 조립 장치(1100) 및 조립기판(200)을 향해 이동할 수 있다.
도 5을 참조하면, 반도체 발광소자(150)는 조립 장치(1100)를 향해 이동 중 조립기판의 조립 전극의 전기장에 의해 형성되는 유전영동 힘(DEP force)에 의해 조립 홀(203)로 진입하여 고정될 수 있다.
구체적으로 조립 배선(201, 202)은 교류 전원에 의해 전기장을 형성하고, 이 전기장에 의해 유전영동 힘이 조립 배선(201, 202) 사이에 형성될 수 있다. 이 유전영동 힘에 의해 기판(200) 상의 조립 홀(203)에 반도체 발광소자(150)를 고정시킬 수 있다.
이때 기판(200)의 조립 홀(203) 상에 조립된 발광소자(150)와 조립 전극 사이에 소정의 솔더층(미도시)이 형성되어 발광소자(150)의 결합력을 향상시킬 수 있다.
또한 조립 후 조립기판(200)의 조립 홀(203)에 몰딩층(미도시)이 형성될 수 있다. 몰딩층은 투명 레진이거나 또는 반사물질, 산란물질이 포함된 레진일 수 있다.
상술한 전자기장을 이용한 자가조립 방식에 의해, 반도체 발광소자들 각각이 기판에 조립되는 데 소요되는 시간을 급격히 단축시킬 수 있으므로, 대면적 고화소 디스플레이를 보다 신속하고 경제적으로 구현할 수 있다.
다음으로 도 6은 제1 실시예에 따른 디스플레이 화소용 적색 반도체 발광소자(250A)의 단면도이다. 이하 “디스플레이 화소용 적색 반도체 발광소자”는 “적색 반도체 발광소자”로 약칭하기로 한다.
제1 실시예에 따른 적색 반도체 발광소자(250A)는, 제1 반도체 발광구조물(251)과, 제2 반도체 발광구조물(252) 및 상기 제1, 제2 반도체 발광구조물들(251, 252) 사이에 배치되는 제1 터널 정션구조(250T1)를 포함할 수 있다.
제1 실시예에 따른 적색 반도체 발광소자(250A)는 상기 제1 반도체 발광구조물(251) 하측에 배치되는 제1 전극층(254n) 및 상기 제2 반도체 발광구조물(252) 상측에 배치되는 제2 전극층(254p)을 포함할 수 있다.
상기 제1 전극층(254n)은 니켈(Ni) 등 자성을 갖는 금속을 포함할 수 있다. 상기 제2 전극층(254p)은 ITO 등의 투광성 오믹층을 포함할 수 있으나 이에 한정되는 것은 아니다.
제1 실시예에 따른 적색 반도체 발광소자(250A)는 상면 및 측면에 배치되는 실리카, 알루미나 등의 무기물 절연체를 포함하는 패시베이션층(256)을 포함할 수 있다.
제1 실시예에 따른 적색 반도체 발광소자(250A)는 AlGaInP계 발광다이오드일 수 있고, 약 570nm 내지 약 630nm 범위 내의 파장을 발광할 수 있다. 파장은 발광다이오드가 가지는 밴드 갭에너지에 의해 좌우될 수 있다. 예를 들어, 밴드갭 크기는 Al과 Ga의 조성비를 변화시킴으로써 조절될 수 있고, Al의 조성비를 증가시킬수록 파장이 짧아질 수 있다.
제1 실시예서 제1 반도체 발광구조물(251)은 제1 도전형 제1 반도체층(251n)과, 상기 제1 도전형 제1 반도체층(251n) 상에 제1 활성층(251a) 및 상기 제1 활성층(251a) 상에 제2 도전형 제2 반도체층(251p)을 포함할 수 있다.
상기 제1 반도체 발광구조물(251)은 (AlxGa1-x)yIn1-yP층(단, 0.0≤x≤1.0, 0.01≤y≤0.9)을 포함할 수 있으며, 상기 제1 도전형 제1 반도체층(251n)은 N형 도펀트가 도핑될 수 있고, 상기 제2 도전형 제2 반도체층(251p)은 P형 도펀트가 도핑될 수 있으나 이에 한정되는 것은 아니다.
예를 들어, N형 도펀트는 Si 또는 Te 등일 수 있으며, P형 도펀트는 Mg 또는 C(carbon) 일 수 있으나 이에 한정되는 것은 아니다.
상기 제1 도전형 제1 반도체층(251n)은, 고농도 제1 도전형 제1-1 반도체층(미도시)과, 저농도 제1 도전형 제1-2 반도체층(미도시)을 포함할 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 제1-1 반도체층은 n+-AlGaInP층을 포함할 수 있고, 제1-2 반도체층은 n-GaP층을 포함할 수 있으나 이에 한정되는 것은 아니다.
또한 제1 실시예서 제2 반도체 발광구조물(252)은 제1 도전형 제3 반도체층(252n)과, 상기 제1 도전형 제3 반도체층(252n) 상에 제2 활성층(252a) 및 상기 제2 활성층(252a) 상에 제2 도전형 제4 반도체층(252p)을 포함할 수 있다.
상기 제2 반도체 발광구조물(252)은 (AlxGa1-x)yIn1-yP층(단, 0.0≤x≤1.0, 0.01≤y≤0.9)을 포함할 수 있으며, 상기 제1 도전형 제3 반도체층(252n)은 N형 도펀트가 도핑될 수 있고, 상기 제2 도전형 제4 반도체층(252p)은 P형 도펀트가 도핑될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, N형 도펀트는 Si 또는 Te 등일 수 있으며, P형 도펀트는 Mg 또는 C(carbon) 일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제2 도전형 제4 반도체층(252p)은, 저농도 제2 도전형 제4-1 반도체층(미도시)과, 고농도 제2 도전형 제4-2 반도체층(미도시)을 포함할 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 제4-1 반도체층은 p-AlGaInP층을 포함할 수 있고, 제4-2 반도체층은 p+-GaP층을 포함할 수 있으나 이에 한정되는 것은 아니다.
도 7a는 제1 실시예의 제1 터널 정션구조(250T1)의 모식도이다.
제1 실시예의 제1 터널 정션구조(250T1)는 1X1019 atoms/cm3 농도 이상의 고농도로 도핑될 수 있다.
제1 실시예의 제1 터널 정션구조(250T1)는, 제2 도전형 제1 터널 정션층(250Tp)과, 제1 도전형 제2 터널 정션층(250Tn)을 포함할 수 있다.
상기 제2 도전형 제1 터널 정션층(250Tp)은 고농도의 AlGaAs층을 포함할 수 있다.
예를 들어, 상기 제2 도전형 제1 터널 정션층(250Tp)은 탄소(C)가 1X1019 atoms/cm3 농도 이상의 고농도로 도핑된 p++-AlGaAs층을 포함할 수 있다.
다음으로 상기 제1 도전형 제2 터널 정션층(250Tn)은 고농도의 GaInP층을 포함할 수 있다. 예를 들어, 상기 제1 도전형 제2 터널 정션층(250Tn)은 Si이 1X1019 atoms/cm3 농도 이상의 고농도로 도핑된 n++-GaInP층을 포함할 수 있다.
도 7b는 제1 실시예의 제2 터널 정션구조(250T2)의 모식도이다.
제1 실시예의 제2 터널 정션구조(250T2)는, 제2 도전형 제1 터널 정션층(250Tp)과, 제1 도전형 제2 터널 정션층(250Tn) 및 제2 도전형 제3 터널 정션층(250Tp2)을 포함할 수 있다. 상기 제2 도전형 제3 터널 정션층(250Tp2)은 제2 도전형 제1 터널 정션층(250Tp) 아래에 배치될 수 있다.
상기 제2 도전형 제3 터널 정션층(250Tp2)은 고농도의 GaAs층을 포함할 수 있다. 예를 들어, 상기 제2 도전형 제3 터널 정션층(250Tp2)은 탄소(C)가 1X1019 atoms/cm3 농도 이상의 고농도로 도핑된 p++-GaAs층을 포함할 수 있다.
실시예에 의하면 제1 반도체 발광구조물(251)과, 제2 반도체 발광구조물(252) 및 제1, 제2 반도체 발광구조물들(251, 252) 사이에 배치되는 제1 또는 제2 터널 정션구조(250T1, 250T2)를 포함함으로써 2개의 활성층에서 적색파장의 빛의 발광이 가능함으로써 고 휘도 구현이 가능한 기술적 특징이 있다.
또한 실시예에 의하면 적색 반도체 발광소자를 두 개 적용한 것과 같은 휘도 상승 효과를 얻으면서도 LED 디스플레이의 소비전력이 11.2% 이상 개선되는 효과가 있다(Full white, 300nit기준).
도 8은 내부 기술의 적색 반도체 발광소자에서의 에너지 밴드 다이어 그램에 대한 개념도이다.
내부기술의 적색 반도체 발광소자에 의하면, 제1 반도체 발광구조물(251)과 제1 또는 제2 터널 정션구조(250T1, 250T2) 사이에 홀 배리어(HB)가 존재하는 것이 연구되었다.
예를 들어, 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1 반도체 발광구조물(251)의 제2 도전형 제2 반도체층(251p)인 p형 Clad층 사이에서 홀 배리어(hole barrier)(HB)가 존재할 수 있다.
예를 들어, 고농도의 도핑을 필요로 하는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1 반도체 발광구조물(251)의 제2 도전형 제2 반도체층(251p)인 p형 Clad층의 이종의 물질을 간에 Bandgap 에너지 차이, 이종 물질의 fermi level 차이에 따른 offset 발생함에 따라 홀 배리어(hole barrier)(HB)가 존재할 수 있음이 연구되었다.
도 9는 제2 실시예에 따른 적색 반도체 발광소자(250B)의 부분 단면 모식도이다.
제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 실시예에 따른 적색 반도체 발광소자(250A)의 기술적 특징을 채용할 수 있다.
예를 들어, 제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 터널 정션구조(250T1) 또는 제2 터널 정션구조(250T2)를 포함할 수 있다.
이하 제2 실시예에 따른 적색 반도체 발광소자(250B)의 기술적 특징을 중심으로 설명하기로 한다.
제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-2 반도체 발광구조물(251B)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제5 반도체층(265)을 포함할 수 있다.
상기 제2 도전형 제5 반도체층(265)은 p-(AlxGa1-x)yIn1-yP층(단, 0.0≤x≤0.8, 0.2≤y≤0.6)을 포함할 수 있으며, Mg으로 도핑될 수 있으나 이에 한정되는 것은 아니다.
일반적으로 LED 구조에서 클래딩층으로 성장하는 Phosphide 계열의 AlInP 계열층과 터널 졍션(Tunnel junction)을 형성하는 Arsenide 계열의 AlGaAs 계열층을 접합 시 물질적으로는 이종 접합을 이루지만, 두 층의 Al 조성조절에 따라 물질 간의 격자 상수 차이를 조절할 수 있어 접합 층 사이에 별도의 Interlayer 층을 삽입하지 않고 이어서 성장하는 것이 일반적이다.
한편, 도 8에서와 같이, p-AlInP/AlGaAs 접합에서 이종 물질의 접합임에도 에피 성장 자체는 문제가 발생하지 않으나, 내부기술의 적색 반도체 발광소자에 의하면, 제1 반도체 발광구조물(251)과 제1 또는 제2 터널 정션구조(250T1, 250T2) 사이에 홀 배리어(HB)가 존재하는 것이 연구되었다.
예를 들어, 고농도의 도핑을 필요로 하는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1 반도체 발광구조물(251)의 제2 도전형 제2 반도체층(251p)인 p형 Clad층의 이종의 물질을 간에 Bandgap 에너지 차이, 이종 물질의 fermi level 차이에 따른 offset 발생함에 따라 홀 배리어(hole barrier)(HB)가 존재할 수 있음이 연구되었다.
제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-2 반도체 발광구조물(251B)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제5 반도체층(265)을 포함할 수 있고,
터널 졍션을 통과해서 이동하는 Hole이 이종 접합 영역에서 발생한 전기적인 Barrier에 의해 원활하게 이동하지 못해서 발생하는 홀 배리어(hole barrier)(HB)의 전기적 문제를 개선하는 특별한 기술적 효과가 있다.
LED 기술분야에서 p-AlInP/AlGaAs 접합은 이종물질의 접합임에도 에피 성장 자체는 문제가 발생하지 않으며, LED 기술분야에서 AlGaAs/AlInP 이종 접합시 Interlayer 없이 성장되는 접합이기 때문에 해당 접합층에서 전기적인 문제가 야기되고 있음을 알아차리는 것은 쉬운 일은 아니다.
다음으로 도 10은 제3 실시예에 따른 적색 반도체 발광소자(250C)의 부분 단면 모식도이다.
제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 실시예 또는 제2 실시예에 따른 적색 반도체 발광소자들(250A, 250B)의 기술적 특징을 채용할 수 있다.
예를 들어, 제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 터널 정션구조(250T1) 또는 제2 터널 정션구조(250T2)를 포함할 수 있다.
이하 제3 실시예에 따른 적색 반도체 발광소자(250C)의 기술적 특징을 중심으로 설명하기로 한다.
제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-3 반도체 발광구조물(251C)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제5 반도체층(265) 및 제2 도전형 제6 반도체층(266)을 포함할 수 있다.
상기 제2 도전형 제5 반도체층(265)은 p-(AlxGa1-x)yIn1-yP층(단, 0.0≤x≤0.8, 0.2≤y≤0.6)을 포함할 수 있으며, Mg으로 도핑될 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제2 도전형 제6 반도체층(266)은 p-(Alx1Ga1-x1)yIn1-yP층(단, 0.0≤x1≤0.8, 0.2≤y≤0.6)을 포함할 수 있으며, Mg으로 도핑될 수 있으나 이에 한정되는 것은 아니다.
상기 제2 도전형 제6 반도체층(266)에서 Al의 조성은 그레이딩 될 수 있다.
예를 들어, 상기 제2 도전형 제6 반도체층(266)에서 Al의 조성 X1은 0.3 내지 0.6에서 0.0으로 그레이딩될 수 있다.
제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-3 반도체 발광구조물(251C)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제6 반도체층(266)을 포함할 수 있다.
제3 실시예에 의하면, Al의 조성은 그레이딩되는 제2 도전형 제6 반도체층(266)을 더 포함함으로써 홀 배리어(hole barrier)(HB)의 전기적 문제를 더욱 개선하는 특별한 기술적 효과가 있다.
도 11은 제5 실시예에 따른 적색 반도체 발광소자(250D)의 단면도이다.
제5 실시예에 따른 적색 반도체 발광소자(250D)는 도 6에 도시된 제1 실시예에 따른 디스플레이 화소용 적색 반도체 발광소자(250A)의 기술적 특징을 채용할 수 있다.
제5 실시예에 따른 적색 반도체 발광소자(250D)는 제1 실시예와 달리 수평형 반도체 발광소자 구조를 포함할 수 있다.
예를 들어, 제5 실시예에 따른 적색 반도체 발광소자(250D)는 제1 도전형 제1 반도체층(251n)의 상부 일부에 전기적으로 연결되는 제1 전극층(254)이 배치될 수 있다. 제5 실시예는 제1 반도체 발광구조물(251) 하측에 배치되는 자성층(254m)을 더 포함할 수 있다.
실시예에 따른 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치에 의하면 제1 반도체 발광구조물(251)과, 제2 반도체 발광구조물(252) 및 제1, 제2 반도체 발광구조물들(251, 252) 사이에 배치되는 제1 또는 제2 터널 정션구조(250T1, 250T2)를 포함함으로써 2개의 활성층에서 적색파장의 빛의 발광이 가능함으로써 고 휘도 구현이 가능한 기술적 특징이 있다.
또한 실시예에 의하면 적색 반도체 발광소자를 두 개 적용한 것과 같은 휘도 상승 효과를 얻으면서도 LED 디스플레이의 소비전력이 11.2% 이상 개선되는 효과가 있다.
또한 제2 실시예에 따른 적색 반도체 발광소자(250B)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-2 반도체 발광구조물(251B)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제5 반도체층(265)을 포함할 수 있고, 터널 졍션을 통과해서 이동하는 Hole이 이종 접합 영역에서 발생한 전기적인 Barrier에 의해 원활하게 이동하지 못해서 발생하는 홀 배리어(hole barrier)(HB)의 전기적 문제를 개선하는 특별한 기술적 효과가 있다.
또한 제3 실시예에 따른 적색 반도체 발광소자(250C)는 제1 또는 제2 터널 정션구조(250T1, 250T2)와 제1-3 반도체 발광구조물(251C)의 제2 도전형 제2 반도체층(251p) 사이에 제2 도전형 제6 반도체층(266)을 포함할 수 있다.
제3 실시예에 의하면, Al의 조성은 그레이딩되는 제2 도전형 제6 반도체층(266)을 더 포함함으로써 홀 배리어(hole barrier)(HB)의 전기적 문제를 더욱 개선하는 특별한 기술적 효과가 있다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.
실시예는 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 반도체 발광소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 마이크로급이나 나노급 반도체 발광소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.

Claims (11)

  1. 제1 도전형 제1 반도체층과, 상기 제1 도전형 제1 반도체층 상에 제1 활성층 및 상기 제1 활성층 상에 제2 도전형 제2 반도체층을 포함하는 제1 반도체 발광구조물;
    상기 제1 반도체 발광구조물 상에 터널 정션구조; 및
    상기 터널 정션구조 상에 배치되는 제1 도전형 제3 반도체층과, 상기 제1 도전형 제3 반도체층 상에 제2 활성층 및 상기 제2 활성층 상에 제2 도전형 제4 반도체층을 포함하는 제2 반도체 발광구조물;을 포함하며,
    상기 터널 정션구조는,
    상기 제2 도전형 제2 반도체층 상에 배치되는 제2 도전형 제1 터널 정션층; 및
    상기 제2 도전형 제1 터널 정션층 상에 배치되는 제1 도전형 제2 터널 정션층을 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  2. 제1항에 있어서,
    상기 제2 도전형 제1 터널 정션층은, 1X1019 atoms/cm3 농도 이상으로 도핑된 p형 AlGaAs층을 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  3. 제1항에 있어서,
    상기 제1 도전형 제2 터널 정션층은 1X1019 atoms/cm3 농도 이상의 농도로 도핑된 n형 GaInP층을 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  4. 제1항에 있어서,
    상기 터널 정션구조는,
    상기 제2 도전형 제1 터널 정션층 아래에 배치되는 제2 도전형 제3 터널 정션층을 더 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  5. 제4항에 있어서,
    상기 제2 도전형 제3 터널 정션층은 1X1019 atoms/cm3 농도 이상의 농도로 도핑된 p형 GaAs층을 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  6. 제1항에 있어서,
    상기 제1 반도체 발광구조물은,
    상기 제2 도전형 제2 반도체층과 상기 터널 정션구조 사이에 배치되는 제2 도전형 제5 반도체층을 더 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  7. 제6항에 있어서,
    상기 제2 도전형 제5 반도체층은 p-(AlxGa1-x)yIn1-yP층(단, 0.0≤x≤0.8, 0.2≤y≤0.6)을 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  8. 제6항에 있어서,
    상기 제1 반도체 발광구조물은,
    상기 터널 정션구조와 상기 제2 도전형 제5 반도체층 사이에 배치되는 제2 도전형 제6 반도체층을 더 포함하는, 디스플레이 화소용 적색 반도체 발광소자.
  9. 제8항에 있어서,
    상기 제2 도전형 제6 반도체층은 p-(Alx1Ga1-x1)yIn1-yP층(단, 0.0≤x1≤0.8, 0.2≤y≤0.6)을 포함하며, 상기 제2 도전형 제6 반도체층에서 Al의 조성은 그레이딩 되는, 디스플레이 화소용 적색 반도체 발광소자.
  10. 제9항에 있어서,
    상기 제2 도전형 제6 반도체층의 Al의 조성(X1)은 상기 터널 정션구조 방향으로 0.3 내지 0.6에서 0.0으로 그레이딩되는, 디스플레이 화소용 적색 반도체 발광소자.
  11. 제1항 내지 제10항 중 어느 하나의 디스플레이 화소용 적색 반도체 발광소자를 포함하는, 디스플레이 장치.
PCT/KR2023/015293 2022-10-05 2023-10-05 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치 WO2024076160A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220127094 2022-10-05
KR10-2022-0127094 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024076160A1 true WO2024076160A1 (ko) 2024-04-11

Family

ID=90608362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015293 WO2024076160A1 (ko) 2022-10-05 2023-10-05 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치

Country Status (1)

Country Link
WO (1) WO2024076160A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129648A (ko) * 2017-05-25 2018-12-05 쇼와 덴코 가부시키가이샤 발광 다이오드 및 터널 접합층의 제조 방법
KR102170243B1 (ko) * 2019-06-24 2020-10-26 주식회사 썬다이오드코리아 공융 금속-합금 본딩을 이용한 다중 접합 발광 다이오드 및 이의 제조방법
KR20200140978A (ko) * 2019-06-07 2020-12-17 광전자 주식회사 AlGaAs-GaInP 변형 보상층을 가지는 적외선 발광 다이오드
WO2021247198A1 (en) * 2020-06-02 2021-12-09 Facebook Technologies, Llc High-efficiency red micro-led with localized current aperture
KR20220078282A (ko) * 2020-12-03 2022-06-10 삼성전자주식회사 광학 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129648A (ko) * 2017-05-25 2018-12-05 쇼와 덴코 가부시키가이샤 발광 다이오드 및 터널 접합층의 제조 방법
KR20200140978A (ko) * 2019-06-07 2020-12-17 광전자 주식회사 AlGaAs-GaInP 변형 보상층을 가지는 적외선 발광 다이오드
KR102170243B1 (ko) * 2019-06-24 2020-10-26 주식회사 썬다이오드코리아 공융 금속-합금 본딩을 이용한 다중 접합 발광 다이오드 및 이의 제조방법
WO2021247198A1 (en) * 2020-06-02 2021-12-09 Facebook Technologies, Llc High-efficiency red micro-led with localized current aperture
KR20220078282A (ko) * 2020-12-03 2022-06-10 삼성전자주식회사 광학 소자 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021167149A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021040066A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017122891A1 (en) Display device using semiconductor light emitting device and method for manufacturing
WO2021117979A1 (ko) 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
WO2020251076A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021054491A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020262752A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021145499A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020256203A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2021107271A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2022045392A1 (ko) 디스플레이 장치 제조용 기판
WO2021162153A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021125423A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020262751A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2016195165A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020251070A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017099307A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2020256207A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2024076160A1 (ko) 디스플레이 화소용 적색 반도체 발광소자 및 이를 포함하는 디스플레이 장치
WO2023068407A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치
WO2022071679A1 (ko) 마이크로 led 및 이를 구비한 디스플레이 모듈
WO2022019346A1 (ko) 반도체 발광소자 및 반도체 발광소자를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875222

Country of ref document: EP

Kind code of ref document: A1