WO2024075538A1 - 電力管理システム及び電力管理方法 - Google Patents
電力管理システム及び電力管理方法 Download PDFInfo
- Publication number
- WO2024075538A1 WO2024075538A1 PCT/JP2023/034335 JP2023034335W WO2024075538A1 WO 2024075538 A1 WO2024075538 A1 WO 2024075538A1 JP 2023034335 W JP2023034335 W JP 2023034335W WO 2024075538 A1 WO2024075538 A1 WO 2024075538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- control
- storage device
- management server
- remote control
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims description 259
- 230000001105 regulatory effect Effects 0.000 claims description 40
- 238000004146 energy storage Methods 0.000 description 73
- 238000004891 communication Methods 0.000 description 43
- 210000004027 cell Anatomy 0.000 description 33
- 239000000446 fuel Substances 0.000 description 20
- 238000007599 discharging Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000005611 electricity Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
Definitions
- This disclosure relates to a power management system and a power management method.
- VPP Virtual Power Plant
- One aspect of the disclosure is a power management system that includes one or more distributed power sources installed in one or more facilities connected to a power grid, and a power management device that executes remote control of the one or more distributed power sources, and when remote control is set by the power management device for a specific distributed power source included in the one or more distributed power sources, the power management system limits the acceptance of local control at the facility.
- One aspect of the disclosure is a power management method including step A in which a power management device executes remote control of one or more distributed power sources installed in one or more facilities connected to a power grid, and step B in which, when a specific distributed power source included in the one or more distributed power sources is set for remote control by the power management device, the specific distributed power source restricts the acceptance of local control at the facility.
- FIG. 1 is a diagram showing a power management system 1 according to an embodiment.
- FIG. 2 is a diagram showing a facility 100 according to the embodiment.
- FIG. 3 is a diagram showing an upper level management server 300 according to an embodiment.
- FIG. 4 is a diagram showing the lower level management server 200 according to the embodiment.
- FIG. 5 is a diagram showing the EMS 160 according to the embodiment.
- FIG. 6 is a diagram for explaining an operation example 1 according to the embodiment.
- FIG. 6 is a diagram for explaining an operation example 2 according to the embodiment.
- FIG. 8 is a diagram for explaining an operation example 3 according to the embodiment.
- FIG. 9 is a diagram for explaining an operation example 4 according to the embodiment.
- FIG. 10 is a diagram for explaining an operation example 5 according to the embodiment.
- FIG. 11 is a diagram for explaining the first modification.
- FIG. 12 is a diagram for explaining the first modification.
- the power management system may be simply referred to as a power system.
- the power management system 1 has a facility 100.
- the power management system 1 includes a lower management server 200, an upper management server 300, and a third-party server 400.
- the facility 100, the lower management server 200, the upper management server 300, and the third-party server 400 are configured to be able to communicate via a network 11.
- the network 11 may include the Internet, a dedicated line such as a VPN (Virtual Private Network), or a mobile communications network.
- Facility 100 is connected to power grid 12 and may receive power from power grid 12 or may supply power to power grid 12. Power from power grid 12 to facility 100 may be referred to as forward flow power. Power from facility 100 to power grid 12 may be referred to as reverse flow power. In FIG. 1, facilities 100A to 100C are illustrated as examples of facility 100.
- facility 100 may be a facility such as a residence, a facility such as a store, or a facility such as an office.
- Facility 100 may be an apartment building including two or more residences.
- Facility 100 may be a complex including at least two or more of the following facilities: residences, stores, and offices. Details of facility 100 will be described later (see FIG. 2). Note that a user who owns or manages facility 100 may also be referred to as facility 100.
- the lower level management server 200 is managed by a business operator that manages the power related to the power grid 12 or the facility 100.
- the business operator may be a resource aggregator (RA).
- the lower management server 200 may be referred to as an RA, and the RA may be referred to as the lower management server 200. Details of the lower management server 200 will be described later (see Figure 4).
- the lower level management server 200 may constitute a power management device that performs remote control of one or more distributed power sources installed in one or more facilities 100 (hereinafter sometimes referred to as a facility group 100).
- the lower management server 200 transmits control commands received from the upper management server 300 to the facility 100 (which may include the power storage device 120 and EMS 160 described below).
- the control commands are commands used to adjust the balance of power supply and demand in the power grid 12 (VPP (Virtual Power Plant) control), and are commands to control the distributed power sources (e.g., the power storage device 120) installed in the facility 100.
- the lower management server 200 transmits measurement data received from the facility 100 (which may include the power storage device 120 and EMS 160 described below) to the upper management server 300.
- the measurement data is data on the power (discharge power or charge power) of the distributed power sources (e.g., the power storage device 120) installed in the facility 100.
- the lower-level management server 200 may provide a maintenance and management service for the distributed power sources (e.g., the power storage device 120) installed in the facility 100.
- the lower-level management server 200 already has information about the distributed power sources, so that even after the distributed power sources are installed in the facility 100, the information stored in the lower-level management server 200 can be used to easily and simply utilize the distributed power sources for VPP.
- the upper management server 300 is managed by a business operator that manages the power related to the power grid 12.
- the upper management server 300 may be managed by a business operator that provides various services.
- the upper management server 300 may be referred to as an AEMS (Area Energy Management System).
- the business operator may be a retail electricity business operator.
- the retail electricity business operator may include a regional power business operator (general electric utility) that manages infrastructure such as the power grid 12, or may include a new power business operator other than the regional power business operator.
- the new power business operator may be expected to sell power to the facility by procuring power from the power market.
- the power market may include a wholesale power market for trading power supplied to the facility 100 (procured power), a power adjustment market for adjusting the power supply and demand gap after the gate of the wholesale power market is closed, or a capacity market for trading supply capacity (e.g., reverse flow power).
- the power market may include trading of power with other retail electricity business operators.
- the power market may include trading of power with other power generation businesses.
- the electricity market can be an exchange for trading electricity, regardless of whether it is one-to-one, one-to-other, or many-to-many.
- the service may include a service for suppressing the difference (imbalance) between the planned value for the forward flow power (hereinafter also referred to as procured power) of the group of facilities 100 and the actual value for the procured power of the group of facilities 100 to a predetermined difference or less.
- the service may include a service for suppressing the difference (imbalance) between the planned value for the reverse flow power (hereinafter also referred to as generated power) of the group of facilities 100 and the actual value for the generated power of the group of facilities 100 to a predetermined difference or less.
- the upper management server 300 may also be referred to as the new power supplier, and the new power supplier may also be referred to as the upper management server 300. Details of the upper management server 300 will be described later (see FIG. 3).
- the new power supplier may be an example of a retail electricity supplier that sells electricity to each of one or more facilities 100.
- the third-party server 400 is managed by a business operator that manages the balance of power supply and demand in the power grid 12.
- the business operator may manage the power market related to the power grid 12.
- the third-party server 400 may have a function to check the imbalance of procured power.
- the third-party server 400 may have a function to check the imbalance of generated power.
- the third-party server may perform the operations shown below.
- the third-party server 400 may check whether the difference (imbalance) between the planned value for the procured power and the actual value for the procured power exceeds a predetermined difference.
- the planned value and the actual value may be aggregated for a unit period (e.g., every 30 minutes), and the imbalance may be checked for the unit period (e.g., every 30 minutes). If the imbalance exceeds the predetermined difference, the third-party server 400 may impose a penalty on the business operator (e.g., a new power business operator) that manages the upper management server 300. If the imbalance does not exceed the predetermined difference, the third-party server 400 may provide an incentive to the business operator (e.g., a new power business operator) that manages the upper management server 300. The penalty and incentive may be monetary.
- the third-party server 400 may check whether the difference (imbalance) between the planned value for the generated power and the actual value for the generated power exceeds a predetermined difference.
- the planned value and the actual value may be aggregated for a unit period (e.g., every 30 minutes), and the imbalance may be checked for the unit period (e.g., every 30 minutes). If the imbalance exceeds the predetermined difference, the third-party server 400 may impose a penalty on the business operator (e.g., a new power business operator) that manages the upper management server 300. If the imbalance does not exceed the predetermined difference, the third-party server 400 may provide an incentive to the business operator (e.g., a new power business operator) that manages the upper management server 300. The penalty and incentive may be monetary.
- the period during which the imbalance between the generated power and the procured power is confirmed may be defined as the target period (e.g., one day).
- the planned value for procured power may include a plan formulated before the target period (e.g., 12:00 on the day before the target period).
- the planned value for generated power may include a plan formulated before the target period (e.g., 12:00 on the day before the target period).
- the planned value for procured power may include a plan formulated before a unit period included in the target period (e.g., one hour before the unit period).
- the planned value for generated power may include a plan formulated before a unit period included in the target period (e.g., one hour before the unit period).
- the planned value for the procured power and the actual value for the procured power may be reported from the lower management server 200 or the upper management server 300.
- the planned value for the generated power and the actual value for the generated power may be reported from the lower management server 200 or the upper management server 300.
- the facility 100 includes a solar cell device 110, a power storage device 120, a fuel cell device 130, a load device 140, and an EMS (Energy Management System) 160.
- the facility 100 may also include a measuring device 190.
- the solar cell device 110 is a distributed power source that generates electricity in response to light such as sunlight.
- the solar cell device 110 is composed of a PCS (Power Conditioning System) and a solar panel.
- installation may mean connecting the solar cell device 110 to the power grid 12.
- the energy storage device 120 is a distributed power source that charges and discharges power.
- the energy storage device 120 is composed of a PCS and a storage cell.
- installation may mean that the energy storage device 120 is connected to the power grid 12.
- the energy storage device 120 is an example of a distributed power source used to adjust the balance of power supply and demand in the power grid 12.
- the energy storage device 120 is an example of a distributed power source that is remotely controlled by the lower-level management server 200.
- the energy storage device 120 may be considered to be an example of a distributed power source used for VPP control.
- the fuel cell device 130 is a distributed power source that generates electricity using fuel.
- the fuel cell device 130 is composed of a PCS and a fuel cell.
- installation may mean that the fuel cell device 130 is connected to the power grid 12.
- the fuel cell device 130 may be a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), or a molten carbonate fuel cell (MCFC).
- SOFC solid oxide fuel cell
- PEFC polymer electrolyte fuel cell
- PAFC phosphoric acid fuel cell
- MCFC molten carbonate fuel cell
- the load device 140 is a device that consumes electric power.
- the load device 140 may include an air conditioner, a heat pump water heater, a lighting device, and the like.
- EMS 160 manages the electricity related to facility 100.
- EMS 160 may control solar cell device 110, power storage device 120, fuel cell device 130, and load devices 140.
- EMS 160 is illustrated as an example of a device that receives control commands from lower-level management server 200, but such a device may be referred to as a Gateway or simply as a control unit.
- EMS 160 may be referred to as a Local EMS (LEMS), a Home EMS (HEMS), or a VPP controller to distinguish it from lower-level management server 200. Details of EMS 160 will be described later (see FIG. 5).
- the measuring device 190 measures the forward flow power (hereinafter also referred to as demand power) from the power grid 12 to the facility 100.
- the measuring device 190 may measure the reverse flow power from the facility 100 to the power grid 12.
- the measuring device 190 may be a Smart Meter belonging to a power company.
- the measuring device 190 may transmit an information element indicating the measurement result (the integrated value of the forward flow power or the reverse flow power) in a first interval (e.g., 30 minutes) to the EMS 160 at each first interval.
- the measuring device 190 may transmit an information element indicating the measurement result in a second interval (e.g., 1 minute) that is shorter than the first interval to the EMS 160.
- the communication unit 310 is configured by a communication module.
- the communication module may be a wireless communication module that complies with standards such as IEEE802.11a/b/g/n/ac/ax, ZigBee, Wi-SUN, LTE, 5G, and 6G, or may be a wired communication module that complies with standards such as IEEE802.3.
- the communication unit 310 may transmit a control command to the lower management server 200 to instruct remote control of a distributed power source (in the embodiment, the power storage device 120).
- the control command may include information indicating the total regulated power of the power storage devices 120 managed by the lower management server 200, may include information indicating the regulated power of each of the power storage devices 120 (hereinafter, individual regulated power), and may include information indicating an adjustment time period during which the power supply and demand balance of the power grid 12 needs to be adjusted.
- a control command including information indicating the total regulated power of the power storage devices 120 managed by the lower management server 200 instructs the lower management server 200 to create a certain predetermined regulated power, for example, to discharge 70 kW, using the multiple power storage devices 120 managed by the lower management server 200.
- a control command including information indicating the regulated power of each of the power storage devices 120 instructs each of the multiple power storage devices 120 managed by the lower management server 200 to create a certain predetermined regulated power, for example, to discharge 700 W.
- control command including information indicating the time period during which the power supply and demand balance of the power grid 12 needs to be adjusted instructs the power storage device 120 to discharge during the time period during which the power storage device 120 generates regulated power, for example, between 17:00 and 18:00.
- the control command may include information indicating the operation mode of the power storage device 120.
- the operation mode may include a mode for discharging the power storage device 120 (forced discharge mode), a mode for charging the power storage device 120 (forced charge mode), a mode for charging the solar cell device 110 with surplus power (green mode), and the like.
- the regulated power of the energy storage device 120 may include the discharge power of the energy storage device 120, and may also include the charging power of the energy storage device 120. Therefore, the total regulated power may include the total discharging power and may also include the total charging power. Similarly, the individual regulated power may include the individual discharging power and may also include the individual charging power. The adjustment time period may include the discharging time period and may also include the charging time period.
- the regulated power of the energy storage device 120 (distributed power source) may be replaced with the reverse flow power or forward flow power of the facility 100.
- the management unit 320 is composed of storage media such as a hard disk drive (HDD), a solid state drive (SSD), and non-volatile memory.
- HDD hard disk drive
- SSD solid state drive
- non-volatile memory non-volatile memory
- the management unit 320 may manage the amount of power that can be adjusted by the facility group 100.
- the control unit 330 may include at least one processor.
- the at least one processor may be formed by a single integrated circuit (IC), or may be formed by multiple circuits (such as integrated circuits and/or discrete circuits) communicatively connected.
- control unit 330 may instruct the communication unit 210 to transmit a control command instructing remote control of the distributed power source based on a control plan for the distributed power source (in this embodiment, the power storage device 120).
- the control plan is a plan for adjusting the balance between power supply and demand in the power grid 12.
- control unit 330 may identify a time period in which a power shortage or surplus will occur in the power grid 12 based on a prediction of the power supply and demand balance of the power grid 12, and may generate a control command to instruct remote control of the distributed power source in order to eliminate the power shortage or surplus of the power grid 12 during the identified time period. (lower management server)
- the lower-level management server 200 has a communication unit 210, a management unit 220, and a control unit 230.
- the communication unit 210 is configured by a communication module.
- the communication module may be a wireless communication module that complies with standards such as IEEE802.11a/b/g/n/ac/ax, ZigBee, Wi-SUN, LTE, 5G, and 6G, or may be a wired communication module that complies with standards such as IEEE802.3.
- the communication unit 210 may receive a control command from the upper management server 300 instructing remote control of the distributed power source (in the embodiment, the power storage device 120).
- the communication unit 210 may transmit a control command to the facility 100 instructing remote control of the distributed power source (in the embodiment, the power storage device 120).
- the communication unit 210 may receive facility information of the facility 100.
- the facility information may include information indicating the configuration of the distributed power sources possessed by the facility 100, or may include information indicating the specifications of the distributed power sources possessed by the facility 100.
- the facility information may include information indicating whether or not to participate in the adjustment of the power supply and demand balance of the power grid 12 (e.g., VPP control).
- the communication unit 210 may receive a planned value for the power generation of each facility 100.
- the communication unit 210 may receive a planned value for the power demand of each facility 100.
- the communication unit 210 may transmit control commands to control devices installed in each of the facilities 100.
- the devices installed in each of the facilities 100 may include distributed power sources such as a solar cell device 110, a power storage device 120, and a fuel cell device 130.
- the devices installed in each of the facilities 100 may include load devices 140.
- the management unit 220 is composed of storage media such as a HDD (Hard Disk Drive), SSD (Solid State Drive), and non-volatile memory.
- the management unit 220 may constitute a management unit that manages one or more facilities 100 connected to the power grid 12.
- the management of one or more facilities 100 may be interpreted as management of one or more distributed power sources connected to the power grid 12.
- the management unit 220 may manage information related to the facility 100.
- the information related to the facility 100 may include the type of distributed power source (solar cell device 110, power storage device 120, or fuel cell device 130) provided in the facility 100, the specifications of the distributed power source (solar cell device 110, power storage device 120, or fuel cell device 130) provided in the facility 100, etc.
- the specifications may include the rated power generation of the solar cell device 110, the rated charging power of the power storage device 120, the rated discharging power of the power storage device 120, and the rated output power of the fuel cell device 130.
- the specifications may include the rated capacity of the power storage device 120, the maximum charging and discharging power, etc.
- the control unit 230 may include at least one processor.
- the at least one processor may be formed by a single integrated circuit (IC), or may be formed by multiple circuits (such as integrated circuits and/or discrete circuits) communicatively connected.
- control unit 230 may execute remote control of one or more distributed power sources (in an embodiment, the energy storage device 120) connected to the power grid 12.
- the control unit 230 may execute remote control of the distributed power sources in response to a control command received from the upper management server 300.
- the execution may include setting the remote control (sending or receiving a control command) and operating the energy storage device 120 in response to the control command.
- the following options may be assumed as operations of the control unit 230 in remote control of the distributed power sources.
- control unit 230 may execute remote control to transparently transmit the control command received from the upper management server 300 to the facility 100.
- the control unit 230 may execute remote control to relay the control command received from the upper management server 300 to the facility 100 without executing processing such as allocation of regulated power of the distributed power sources.
- control unit 230 may execute remote control to allocate regulated power for the distributed power sources by referring to the control command received from the upper management server 300, and then transmit a control command including information indicating the regulated power for each distributed power source to the facility 100.
- control unit 230 may execute remote control to allocate the regulated power for the distributed power sources so as to ensure a total regulated power, and transmit a control command including information indicating the allocated regulated power to the facility 100.
- the control unit 230 may assign different adjustment time periods to the distributed power sources.
- control unit 230 may collect (receive) information indicating the adjustable power of the distributed power source from the facility 100 in advance, and allocate the adjustable power to the distributed power source based on the adjustable power. Similarly, the control unit 230 may collect (receive) information indicating the adjustable time period of the distributed power source from the facility 100 in advance, and allocate the adjustment time period to the distributed power source based on the adjustable time period.
- the first communication unit 161 is configured by a communication module.
- the communication module may be a wireless communication module that complies with standards such as IEEE802.11a/b/g/n/ac/ax, ZigBee, Wi-SUN, LTE, 5G, and 6G, or may be a wired communication module that complies with standards such as IEEE802.3 or a proprietary protocol.
- the first communication unit 161 constitutes a first communication unit that communicates with the lower-level management server 200 via the network 11.
- the first communication unit 161 may receive a control command from the lower-level management server 200 instructing remote control of a distributed power source (in this embodiment, the energy storage device 120).
- the control command may include information indicating the individual adjustment power that should be controlled by each energy storage device 120, and may include information indicating a time period during which the energy storage device 120 is remotely controlled, for example, an adjustment time period during which VPP control is required.
- the control command may include information indicating the operation mode of the energy storage device 120 specified by the remote control.
- the first communication unit 161 may communicate with the load device 140, or may communicate with the measurement device 190.
- the second communication unit 162 is configured by a communication module.
- the communication module may be a wireless communication module that complies with standards such as IEEE802.11a/b/g/n/ac/ax, ZigBee, Wi-SUN, LTE, 5G, and 6G, or may be a wired communication module that complies with standards such as IEEE802.3, RS485, or a proprietary protocol.
- the second communication unit 162 may communicate with the solar cell device 110, the power storage device 120, and the fuel cell device 130. Although signal lines are omitted in FIG. 2, the second communication unit 162 may communicate with the load device 140 and may communicate with the measurement device 190.
- the control unit 163 controls the EMS 160.
- the control unit 163 may include at least one processor.
- the at least one processor may be configured as a single integrated circuit (IC), or may be configured as multiple circuits (such as integrated circuits and/or discrete circuits) communicatively connected.
- control unit 163 may control the solar cell device 110, the power storage device 120, and the fuel cell device 130.
- the control unit 163 may also control the load device 140.
- Example of operation An operation example according to the embodiment will be described below. In the following, a case of a distributed power source used for VPP control will be described as an example. As the control of the power storage device 120, remote control and local control are assumed.
- Remote control is control related to the adjustment of the balance between power supply and demand in the power grid 12 (VPP control). Remote control is control in accordance with control commands received from the lower-level management server 200.
- local control is control in the facility 100, and includes control to suppress power charges and control to suppress peak power. Local control may be control in accordance with operation by a user of the facility 100 using a controller used for user operation of the power storage device 120. Local control may include control using the EMS 160. For example, at least the power storage device 120 that has instructed remote control may transmit the operating status of the power storage device 120 to the lower-level management server 200 at a predetermined interval.
- VPP control the adjustment of the power supply and demand balance of the power grid 12
- a specific power storage device included in one or more power storage devices 120 restricts the acceptance of local control when remote control is set by the lower management server 200.
- Setting remote control may be interpreted as sending or receiving a control command.
- Restricting the acceptance of local control may be performed by the EMS 160 or the power storage device 120 in response to an instruction from the lower management server 200.
- a specific power storage device is one of the power storage devices 120 for which the execution of the acceptance restriction of local control is scheduled. Therefore, even the same power storage device 120 may or may not become a specific power storage device depending on the time of the acceptance restriction, the remaining charge state, etc. Setting as a specific power storage device and canceling the setting are performed by a control command.
- Local control for which acceptance is expected to be restricted includes power control related to changes in the regulated power of the power storage device 120, and may not include controls other than power control.
- Power control for which acceptance is expected to be restricted may be considered to be control that inhibits remote control, and may include at least changes in the operation mode.
- Power control may include controls such as changing the discharge power to a level lower than the discharge power instructed by remote control, or changing the charge power to a level lower than the charge power instructed by remote control.
- Controls other than power control may include controls related to the display of the power status of the facility 100, etc.
- restricting local control may include actions such as (a) preventing local control from being transmitted, (b) not receiving local control, (c) receiving local control but ignoring the local control, and (d) receiving local control but ignoring local control that instructs a change in remote control.
- the lower level management server 200 transmits information instructing restriction of acceptance of local control (hereinafter, the acceptance restriction flag) to the specific energy storage device or the facility 100 in which the specific energy storage device is installed.
- the acceptance restriction flag information instructing restriction of acceptance of local control
- the energy storage device 120 or the EMS 160 receives the acceptance restriction flag, it restricts the acceptance of local control for the specific energy storage device.
- the lower level management server 200 selects a specific power storage device based on a judgment condition related to one or more power storage devices 120.
- the judgment condition may include the following options.
- the judgment condition may be whether or not the energy storage device 120 is registered in the lower-level management server 200 (e.g., the management unit 220) as a specific energy storage device.
- the lower-level management server 200 does not select an energy storage device 120 that is not registered in the management unit 220 as a specific energy storage device, but selects an energy storage device 120 that is registered in the management unit 220 as a specific energy storage device.
- the judgment condition may be whether or not there is a contract that restricts the acceptance of local control in remote control.
- the contract may be a contract between the facility 100 and the lower-level management server 200.
- the lower-level management server 200 does not select a power storage device 120 that does not have a contract that restricts the acceptance of local control in remote control as a specific power storage device, but selects a power storage device 120 that has a contract that restricts the acceptance of local control in remote control as a specific power storage device.
- the judgment condition may be whether or not the energy storage device 120 participates in the adjustment of the power supply and demand balance of the power grid 12 (VPP control).
- the lower-level management server 200 does not select the energy storage device 120 that does not participate in VPP control as a specific energy storage device, but selects the energy storage device 120 that participates in VPP control as a specific energy storage device. In other words, the lower-level management server 200 does not select the energy storage device 120 installed in the facility 100 that has not agreed to participate in VPP control as a specific energy storage device, but selects the energy storage device 120 installed in the facility 100 that has agreed to participate in VPP control as a specific energy storage device.
- the judgment condition may be whether the remaining amount of stored power in the power storage device 120 is equal to or greater than a threshold.
- the remaining amount of stored power may be represented by the power remaining in the power storage device 120, or may be represented by SOC.
- the lower level management server 200 does not select a power storage device 120 whose remaining amount of stored power is less than the threshold as a specific power storage device, but selects a power storage device 120 whose remaining amount of stored power is equal to or greater than the threshold as a specific power storage device.
- Option 4 may be used in cases where the VPP control involves discharging the power storage device 120.
- the judgment condition may be whether the charging capacity of the power storage device 120 is equal to or greater than a threshold.
- the charging capacity may be represented by the free capacity remaining in the power storage device 120, or may be represented by 100%-SOC.
- the lower level management server 200 does not select a power storage device 120 whose charging capacity is less than the threshold as a specific power storage device, but selects a power storage device 120 whose charging capacity is equal to or greater than the threshold as a specific power storage device.
- Option 5 may be used in cases where the VPP control involves charging the power storage device 120.
- Option 6 may combine two or more options selected from options 1 to 5 above.
- VPP control involves discharging the power storage device 120 with reference to Figure 6.
- the upper management server 300 transmits a control command to the lower management server 200 based on the control plan.
- the control command includes information indicating the total discharge power, individual discharge power, discharge time period, etc.
- the lower level management server 200 selects a specific power storage device based on the judgment conditions, and transmits a control command to the facility group 100 in which the selected specific power storage device is installed.
- the control command includes an acceptance restriction flag, as well as information indicating the individual discharge power, the discharge time period, and the operation mode.
- the lower-level management server 200 selects a specific energy storage device based on the judgment conditions. With this configuration, it is possible to select an appropriate energy storage device 120 as the specific energy storage device.
- Example 2 In the second operational example, when instructed by a higher-level device (in the embodiment, the higher-level management server 300), the lower-level management server 200 transmits information instructing to restrict acceptance of local control to the specific power storage device or the facility 100 in which the specific power storage device is installed.
- the judgment criteria used to select the specific power storage device may be the same as those in the first operational example.
- the upper management server 300 transmits information requesting that the acceptance of local control be restricted (e.g., an acceptance restriction request) to the lower management server 200 together with a control command.
- the lower management server 200 may select a specific power storage device based on a judgment condition.
- VPP control involves discharging the power storage device 120 with reference to Figure 7.
- the upper management server 300 transmits a control command to the lower management server 200 based on the control plan.
- the control command includes information indicating the total discharge power, individual discharge power, discharge time period, etc.
- the upper management server 300 transmits an acceptance restriction request to the lower management server 200 together with the control command.
- the lower-level management server 200 selects a specific energy storage device based on the judgment conditions, and transmits a control command to the facility group 100 in which the selected specific energy storage device is installed.
- the control command includes an acceptance restriction flag, as well as information indicating the individual discharge power, the discharge time period, and the operation mode.
- the lower-level management server 200 transmits information instructing a restriction on accepting local control when instructed by the upper-level management server 300.
- the upper-level management server 300 determines it is necessary.
- Example 3 In operation example 3, when a specific condition is satisfied for the power storage device 120 for which remote control has been changed to local control, the lower management server 200 transmits information instructing a restriction on accepting local control to the specific power storage device or the facility 100 in which the specific power storage device is installed.
- the specific power storage device is selected from among the power storage devices 120 for which remote control has not been changed to local control.
- the judgment conditions used to select the specific power storage device may be the same as those in operation example 1. Here, the following options are considered as the specific condition.
- the specific condition may be that the number of energy storage devices 120 that have changed remote control to local control (hereinafter, the number of changed devices) is equal to or greater than a threshold. If the number of changed devices has not reached the threshold, the lower management server 200 does not send an acceptance restriction flag, and if the number of changed devices has reached the threshold, it sends an acceptance restriction flag to the specific energy storage device or the facility 100 in which the specific energy storage device is installed.
- the specific condition may be that the ratio of the power storage devices 120 for which remote control has been changed to local control (hereinafter, the changed device ratio) is equal to or greater than a threshold value.
- the changed device ratio may be a ratio to the total number of power storage devices 120 for which remote control is set. If the changed device ratio has not reached the threshold value, the lower management server 200 does not send an acceptance restriction flag, and if the changed device ratio has reached the threshold value, the lower management server 200 sends an acceptance restriction flag to the specific power storage device or the facility 100 in which the specific power storage device is installed.
- the specific condition may be that the change in the discharge power of the energy storage device 120 for which remote control has been changed by local control is equal to or greater than a threshold. If the change in the discharge power has not reached the threshold, the lower management server 200 does not send an acceptance restriction flag, but if the change in the discharge power has reached the threshold, it sends an acceptance restriction flag to the specific energy storage device or the facility 100 in which the specific energy storage device is installed.
- the change may be the amount of power or the remaining capacity ratio of the energy storage device 120.
- Option 3 may be used in cases where the VPP control involves discharging the energy storage device 120.
- the specific condition may be that the change in the charging power of the power storage device 120 for which remote control has been changed by local control is equal to or greater than a threshold. If the change in the charging power has not reached the threshold, the lower management server 200 does not send an acceptance restriction flag, but if the change in the charging power has reached the threshold, the lower management server 200 sends an acceptance restriction flag to the specific power storage device or the facility 100 in which the specific power storage device is installed.
- Option 4 may be used in cases where the VPP control is control involving charging of the power storage device 120.
- Option 5 may combine two or more options selected from options 1 to 4 above.
- VPP control involves discharging the power storage device 120 with reference to Figure 8.
- the upper management server 300 transmits a control command to the lower management server 200 based on the control plan.
- the control command includes information indicating the total discharge power, individual discharge power, discharge time period, etc.
- the lower level management server 200 transmits a control command to the facility group 100, as shown in the upper part of FIG. 8.
- the control command includes information indicating the individual discharge power, the discharge time period, and the operation mode.
- the lower management server 200 transmits a control command including an acceptance restriction flag to a group of facilities 100M in which a power storage device 120 that has not changed remote control to local control is installed.
- FIG. 8 illustrates a specific condition in which the number of changed devices (number of facilities) reaches 20.
- facility group 100N the facility group in which the power storage device 120 in which remote control has been changed to local control is installed is represented as facility group 100N to distinguish it from facility group 100M. No control command including the reception restriction flag is sent to facility group 100N.
- the specific condition may be determined so that a total discharge power (e.g., 70,000 W) is secured. In other words, assuming a case in which a discharge of 700 W is allocated to one facility 100, the specific condition may be determined so that 100 facilities 100 are secured.
- a total discharge power e.g., 70,000 W
- the lower-level management server 200 transmits information (e.g., an acceptance restriction flag) instructing a restriction on acceptance of local control to the specific power storage device or the facility 100 in which the specific power storage device is installed.
- information e.g., an acceptance restriction flag
- the lower management server 200 sets remote control for one or more power storage devices 120 based on a control plan required for adjusting the balance between power supply and demand in the power grid 12.
- the control plan may be formulated by the upper management server 300.
- the control plan may be considered to be the total adjustment power included in the control command received from the upper management server 300.
- the lower management server 200 allocates individual adjustment power and adjustment time slots to the power storage devices 120 so that the total adjustment power is secured, and transmits a control command including the allocated individual adjustment power and adjustment time slot.
- the judgment conditions used to select a specific power storage device for which an acceptance restriction flag is transmitted may be the same as those in the first operational example.
- the lower level management server 200 may set remote control for a specific power storage device without setting remote control for at least some of the power storage devices 120 that are remotely controlled and are other than the specific power storage device.
- Setting remote control may be interpreted as sending or receiving a control command.
- FIG. 9 the facility group 100 in which a specific distributed power source is installed is represented by facility group 100P, and the facility group 100 in which a specific distributed power source is not installed is represented by facility group 100Q.
- the upper management server 300 transmits a control command to the lower management server 200 based on the control plan.
- the control command includes information indicating the total discharge power, individual discharge power, discharge time period, etc.
- the lower management server 200 selects a specific energy storage device from one or more energy storage devices 120 based on the control plan. For example, the lower management server 200 selects a specific energy storage device so that the total discharge power (e.g., 70,000 W) is secured.
- the lower management server 200 transmits a control command to the facility group 100P in which the selected specific energy storage device is installed.
- the control command includes an acceptance restriction flag, along with information indicating the individual discharge power, the discharge time period, and the operation mode.
- the lower management server 200 does not transmit a control command to the facility group 100Q in which the specific energy storage device is not installed.
- the facility group 100P includes 100 facilities 100, so the total discharge power (e.g., 70,000 W) is secured.
- operation example 4 a case has been exemplified in which the lower management server 200 does not transmit a control command to the entire group of facilities 100Q in which a specific power storage device 120 is not installed.
- operation example 4 is not limited to this.
- the lower management server 200 may transmit a control command to part of the group of facilities 100Q.
- the control command transmitted to part of the group of facilities 100Q does not have to include an acceptance restriction flag.
- the lower-level management server 200 sets remote control for one or more power storage devices 120 based on a control plan required for adjusting the power supply and demand balance of the power grid 12. With this configuration, it is possible to appropriately secure the adjustment power for remote control according to the status of the power storage devices 120 controlled by the lower-level management server 200.
- the lower-level management server 200 may set remote control for a specific power storage device without setting remote control for at least some of the power storage devices 120 other than the specific power storage device. With this configuration, it is possible to appropriately ensure the adjustment power for remote control without excessively increasing the number of power storage devices 120 for which local control is restricted.
- the lower management server 200 sets remote control for one or more power storage devices 120 based on a control plan required for adjusting the balance between power supply and demand in the power grid 12.
- the control plan may be formulated by the upper management server 300.
- the control plan may be considered to be the total adjustment power included in the control command received from the upper management server 300.
- the lower management server 200 allocates individual adjustment power and adjustment time slots to the power storage devices 120 so that the total adjustment power is secured, and transmits a control command including the allocated individual adjustment power and adjustment time slot.
- the judgment conditions used to select a specific power storage device for which an acceptance restriction flag is transmitted may be the same as those in the first operational example.
- the lower management server 200 sets different control as remote control for one or more energy storage devices 120 for a specific energy storage device.
- the lower management server 200 may set remote control for a specific energy storage device that is different from the remote control set for energy storage devices 120 other than the specific energy storage device.
- the different control may include control with different adjustment power for the energy storage device 120, or control with different adjustment time periods for the energy storage device 120.
- FIG. 10 the facility group 100 in which the power storage device 120 to which the first control command is sent is installed is represented by facility group 100X, and the facility group 100 in which the power storage device 120 to which the second control command is sent is installed is represented by facility group 100Y.
- the upper management server 300 transmits a control command to the lower management server 200 based on the control plan.
- the control command includes information indicating the total amount of discharged power, the discharge time period, etc.
- the lower-level management server 200 sets remote control for one or more power storage devices 120 based on the control plan. For example, the lower-level management server 200 assigns individual adjustment power and adjustment time periods to the power storage devices 120 so that the total amount of discharged power (e.g., 70 kWh) is secured.
- the total amount of discharged power e.g. 70 kWh
- the lower level management server 200 transmits a first control command to the facility group 100X.
- the control command includes information indicating the individual discharge power, the discharge time period, and the operation mode.
- the first control command includes an acceptance restriction flag.
- the lower level management server 200 transmits a second control command to the facility group 100Y.
- the control command includes information indicating the individual discharge power, the discharge time period, and the operation mode.
- the second control command does not need to include the acceptance restriction flag.
- the individual discharge power (e.g., 1000 W) included in the first control command may be different from the individual discharge power (e.g., 400 W) included in the second control command.
- the discharge time period (e.g., 17:00-17:30) included in the first control command may be different from the individual discharge power (e.g., 17:30-18:00) included in the second control command.
- operation example 5 a case in which the second control command does not include an acceptance restriction flag is illustrated.
- operation example 5 is not limited to this.
- the second control command may include an acceptance restriction flag.
- the lower-level management server 200 sets remote control for one or more power storage devices 120 based on a control plan required for adjusting the power supply and demand balance of the power grid 12. With this configuration, it is possible to appropriately secure the adjustment power for remote control according to the status of the power storage devices 120 controlled by the lower-level management server 200.
- the lower-level management server 200 sets different controls as remote control for one or more power storage devices 120 for a specific power storage device. With this configuration, it is possible to assign appropriate individual discharge power or discharge time period to each power storage device 120.
- a specific power storage device included in one or more power storage devices 120 controlled by the lower management server 200 restricts acceptance of local control when remote control is set by the lower management server 200. According to such a configuration, the acceptance of local control that inhibits remote control is restricted, so that adjustment power for remote control can be secured and VPP control can be appropriately executed.
- an administrator of the upper management server 300 wishes to provide a service related to VPP control
- a case where a new power storage device 120 is newly installed in the facility 100 a case where a power storage device 120 already installed in the facility 100 is used can be assumed.
- the administrator may borrow the regulating power for remote control from the user of the facility 100 and pay the user of the facility 100 a fee for the regulating power for remote control.
- the service related to VPP control may be provided by the administrator of the lower management server 200.
- the specific power storage device releases the restriction on accepting local control when the integrated value of the regulated power in a predetermined period for remote control reaches a threshold value.
- the predetermined period may be one year, one month, one day, or a unit time period (e.g., two hours).
- the threshold value may be determined according to the ratio of remote control to local control and the lifespan of the distributed power source.
- the ratio of remote control to local control may be determined by a contract between the facility 100 and the lower management server 200, or may be determined by the user of the facility 100. For example, if the integrated value of the regulated power of the specific power storage device reaches a threshold value in the middle of a predetermined period, the device is able to accept local control for the remainder of the predetermined period. Then, in the next predetermined period, the integrated value of the regulated power in the previous predetermined period may be reset, and the restriction on accepting local control may be imposed.
- the following options are considered for lifting the restriction on accepting local control.
- a threshold value is specified by the lower-level management server 200, and the measurement of the integrated value of the regulated power is performed by the EMS 160 or the power storage device 120.
- the EMS 160 or the power storage device 120 autonomously releases the restriction on accepting local control when the integrated value of the regulated power reaches the threshold value.
- the threshold value is registered in advance in the EMS 160 or the power storage device 120, and the measurement of the integrated value of the regulated power is performed by the EMS 160 or the power storage device 120.
- the EMS 160 or the power storage device 120 autonomously releases the local control acceptance restriction when the integrated value of the regulated power reaches the threshold value.
- the result of the regulated power is reported from EMS 160 or the power storage device 120 to the lower management server 200, and the accumulated value of the regulated power is managed by the lower management server 200.
- the lower management server 200 transmits information to EMS 160 or the power storage device 120 instructing the lifting of the acceptance restriction on local control.
- EMS 160 or the power storage device 120 lifts the acceptance restriction on local control in response to the information instructing the lifting of the acceptance restriction on local control.
- the EMS 160 or the power storage device 120 reports the results of the regulated power to the lower management server 200, and the accumulated value of the regulated power is managed by the lower management server 200.
- the lower management server 200 excludes the power storage device from the targets for which the local control acceptance limit is sent, and does not send the local control acceptance limit.
- the ratio of remote control to local control is 50:50
- the power that can be discharged in one year using remote control is 35,000 kWh.
- the power that can be discharged in one year using local control is also 35,000 kWh.
- the power (threshold) that can be discharged by remote control in one month may be expressed as 35,000 kWh/12 months. If the specified period is one day, the power (threshold) that can be discharged by remote control in one day may be expressed as 35,000 kWh/365 days.
- the power that can be discharged in one year by remote control and local control may be updated according to the deterioration state of the energy storage device 120. For example, if the number of cycles in one year is less than 7,000 cycles, it may be assumed that the deterioration of the energy storage device 120 is relatively not advanced, and the power that can be discharged in one year by remote control and local control may be increased. On the other hand, if the number of cycles in one year is more than 7,000 cycles, it may be assumed that the deterioration of the energy storage device 120 is relatively advanced, and the power that can be discharged in one year by remote control and local control may be decreased.
- the deterioration state of the energy storage device 120 may be identified by the results of checking the SOH (State Of Health) of the energy storage device 120.
- the amount of power that can be discharged in a year by remote control and local control increases or decreases
- the amount of power (threshold) that can be discharged by remote control in a specified period of time also increases or decreases according to the ratio of remote control to local control.
- FIG. 12 in the case where the specified period is one day, if the integrated value of the discharge power of remote control reaches the threshold value at 13:00, acceptance of local control may be restricted until 13:00, and the restriction on accepting local control may be lifted after 13:00.
- FIG. 12 assumes a case where the local control for which acceptance is restricted is a change in operation mode, and a change to a discharge power that does not fall below the discharge power instructed by remote control may be permitted.
- Modification 2 of the embodiment. The following mainly describes the differences from Modification 1.
- Modification 2 illustrates the case of a distributed power source used for VPP control.
- Modification Example 1 the explanation has been mainly given of power that can be discharged by remote control, but in Modification Example 2, both power that can be discharged by remote control and power that can be discharged by local control are considered.
- the procedure shown below may be executed. The procedure shown below may be executed by the lower management server 200, by the EMS 160, or by the power storage device 120.
- the total lifetime discharge amount of the energy storage device 120 is calculated based on the life cycle and the effective capacity of the energy storage device 120.
- An operation mode to be applied to the energy storage device 120 is selected from the three operation modes shown below.
- the first operation mode may be a mode in which the total discharge energy amount B is determined by subtracting the total discharge energy amount A corresponding to the life period required by the user (consumer) of the facility 100 from the lifetime total discharge energy amount, and the total discharge energy amount A is assigned to local control and the total discharge energy amount B is assigned to remote control.
- the first operation mode may be referred to as a consumer priority mode.
- the second operation mode may be a mode in which the total discharged power amount A is determined by subtracting the total discharged power amount B requested by the administrator (business operator) of the upper management server 300 from the lifetime total discharged power amount, and the total discharged power amount A is assigned to local control and the total discharged power amount B is assigned to remote control.
- the second operation mode may be referred to as a business operator priority mode.
- the third operation mode may be a mode in which the total discharged energy A and the total discharged energy B are distributed so that the total discharged energy A that can be allocated to users (consumers) of the facility 100 and the total discharged energy B that can be allocated to the administrator (business operator) of the upper management server 300 become the lifetime total discharged energy, and the total discharged energy A is allocated to local control and the total discharged energy B is allocated to remote control.
- the lower level management server 200 may perform the following operations.
- the lower level management server 200 may determine the amount of power (first threshold) that can be discharged by local control in a specified period based on the total amount of discharged power A, and may determine the amount of power (second threshold) that can be discharged by remote control in a specified period based on the total amount of discharged power B.
- the lower level management server 200 may manage the discharge history of the power storage device 120 in relation to local control, the discharge history of the power storage device 120 in relation to remote control, and the deterioration state of the power storage device 120.
- the lower level management server 200 may notify the user of the power storage device 120 of this fact.
- the lower level management server 200 may notify the user of the power storage device 120 of this fact.
- the lower-level management server 200 may lift the restriction on accepting local control for a specific distributed power source located in an area where a disaster or power outage has occurred.
- the disaster may be an earthquake, typhoon, flood, etc.
- the lower-level management server 200 may receive disaster information and identify the area where the disaster has occurred based on the disaster information.
- the lower-level management server 200 may transmit information to the specific distributed power source located in the area where the disaster has occurred instructing it to lift the restriction on accepting local control.
- a specific distributed power source located in an area where a disaster or power outage has occurred may autonomously lift the local control acceptance restriction.
- the disaster may be an earthquake, typhoon, flood, etc.
- the specific distributed power source may receive disaster information and, based on the disaster information, determine whether or not it is located in an area where a disaster has occurred.
- the lower management server 200 may receive information from the facility 100 requesting lifting of the local control acceptance restriction, and may determine whether or not to allow the lifting of the local control acceptance restriction.
- the lower management server 200 may transmit the result of the determination to the facility 100.
- the lifting of the local control acceptance restriction may be performed by instruction from the lower management server 200, or may be performed autonomously in the facility 100.
- the specific distributed power source may release the restriction on accepting local control when the adjustment of the regulated power instructed by remote control is completed.
- the restriction on accepting local control is released, the specific distributed power source may return to the setting state before the remote control was applied.
- the lower level management server 200 may accept a reservation for the setting state to be applied when the restriction on accepting local control is released, before releasing the restriction on accepting local control.
- the specific distributed power source may lift the restriction on accepting local control if a communication interruption occurs between the lower management server 200 and the facility 100 for a certain period of time.
- the communication interruption may be measured by a timer.
- the specific distributed power source may return to the setting state before remote control was applied.
- the lower management server 200 may accept a reservation for the setting state to be applied when the restriction on accepting local control is lifted, before lifting the restriction on accepting local control.
- the specific distributed power source may lift the restriction on accepting local control when the number of charge/discharge cycles of the energy storage device 120 reaches a threshold value in a specified period of time.
- the specific distributed power source may return to the setting state before remote control was applied.
- the lower-level management server 200 may accept a reservation for the setting state to be applied when lifting the restriction on accepting local control, before lifting the restriction on accepting local control.
- the restriction on accepting local control is executed by the EMS 160 or the power storage device 120 in response to an instruction (reception restriction flag) from the lower management server 200.
- the restriction on accepting local control may be executed autonomously by the EMS 160 or the power storage device 120, without being based on an instruction (reception restriction flag) from the lower management server 200.
- the EMS 160 or the power storage device 120 may autonomously restrict the acceptance of local control when remote control is set by the lower management server 200. The intention to perform such an operation may be registered in advance in the EMS 160 or the power storage device 120.
- communication between the lower-level management server 200 and the power storage device 120 may be performed via the EMS 160.
- the power storage device 120 may be read as the EMS 160 or as the facility 100.
- remote control of the power storage device 120 may be performed via the EMS 160.
- the power storage device 120 may be read as the EMS 160 or as the facility 100.
- the distributed power source used for VPP control is the power storage device 120.
- the distributed power source used for VPP control may be a solar cell device 110, a fuel cell device 130, etc.
- the distributed power source used for VPP control may be a wind power generation device, a geothermal power generation device, etc. In such cases, the discharge power of the power storage device 120 may be interpreted as the generated power or output power of the distributed power source.
- the discharging of the power storage device 120 has been mainly described.
- the above disclosure is not limited to this.
- the above disclosure can also be applied to the charging of the power storage device 120.
- the distributed power source used for VPP control may be interpreted as a distributed power source system including the power storage device 120 and the EMS 160.
- the host management server 300 may be considered to be the entity that performs remote control of the distributed power sources based on the control plan.
- the lower management server 200 may be considered to be responsible for part of the remote control of the distributed power sources under the control of the host management server 300.
- the lower management server 200 and the upper management server 300 may be realized by a single server, and the lower management server 200 and the upper management server 300 may be managed by a single operator.
- generated power is primarily used, but “generated power” may also be read as “reverse flow power.”
- Procured power has been primarily used, but procured power may also be interpreted as "forward flow power.”
- Procured power may be considered to be the term used for the forward flow power of the group of facilities 100, and demand power may be considered to be the term used for the forward flow power of each of the facilities 100.
- power may be expressed as an instantaneous value (W/kW) or an integrated value per unit time (Wh/kWh).
- a program may be provided that causes a computer to execute each process performed by the EMS 160 and the lower level management server 200.
- the program may also be recorded on a computer-readable medium.
- a computer-readable medium it is possible to install the program on a computer.
- the computer-readable medium on which the program is recorded may be a non-transient recording medium.
- the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or DVD-ROM.
- a chip may be provided that is configured with a memory that stores programs for executing the processes performed by the EMS 160 and the lower level management server 200, and a processor that executes the programs stored in the memory.
- the above disclosure may have the following problems and effects.
- distributed power sources will be controlled by a power management device managed by a resource aggregator (RA) or similar (hereafter referred to as remote control).
- RA resource aggregator
- remote control a controller used for user operation of the distributed power sources
- the present disclosure provides a power management system and a power management method that enable proper execution of VPP control.
- a first feature is a power management system that includes one or more distributed power sources installed in one or more facilities connected to a power grid, and a power management device that performs remote control of the one or more distributed power sources, and when remote control is set by the power management device for a specific distributed power source included in the one or more distributed power sources, the power management system restricts the acceptance of local control at the facility.
- the second feature is that in the first feature, the power management system is such that the power management device transmits information instructing the specific distributed power source or the facility in which the specific distributed power source is installed, instructing the reception restriction of the local control.
- the third feature is a power management system according to the second feature, in which the power management device selects the specific distributed power source based on a judgment condition related to the one or more distributed power sources.
- the fourth feature is a power management system in which, in any one of the first to third features, the power management device transmits information instructing the specific distributed power source or the facility in which the specific distributed power source is installed, instructing the power management device to restrict the acceptance of the local control when specified by a higher-level device.
- the fifth feature is a power management system in which, in any one of the second to fourth features, when a distributed power source whose remote control has been changed by the local control satisfies a specific condition, the power management device transmits information instructing the specific distributed power source or the facility in which the specific distributed power source is installed to restrict acceptance of the local control, and the specific distributed power source is selected from among distributed power sources whose remote control has not been changed by the local control.
- the sixth feature is a power management system in any one of the second to fifth features, in which the power management device sets the remote control for the one or more distributed power sources based on a control plan required for adjusting the power supply and demand balance of the power grid.
- the seventh feature is a power management system according to the sixth feature, in which the power management device does not set the remote control for at least some of the distributed power sources other than the specific distributed power source, but sets the remote control for the specific distributed power source.
- the eighth feature is a power management system according to the sixth feature, in which the power management device sets different controls as the remote control for the one or more distributed power sources.
- the ninth feature is a power management system according to any one of the first to eighth features, in which the specific distributed power source releases the restriction on accepting the local control when an integrated value of the regulated power for the remote control in a predetermined period of time reaches a threshold value.
- the tenth feature is a power management method including step A in which a power management device executes remote control of one or more distributed power sources installed in one or more facilities connected to a power grid, and step B in which, when a specific distributed power source included in the one or more distributed power sources is set for remote control by the power management device, the specific distributed power source restricts acceptance of local control at the facility.
- 1...power management system 11...network, 12...power system, 100...facility, 110...solar cell device, 120...power storage device, 130...fuel cell device, 140...load device, 160...EMS, 161...first communication unit, 162...second communication unit, 163...control unit, 190...measuring device, 200...lower management server, 210...communication unit, 220...management unit, 230...control unit, 300...upper management server, 310...communication unit, 320...management unit, 330...control unit, 400...third-party server
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
電力管理システムは、電力系統に接続される1以上の施設に設置される1以上の分散電源と、前記1以上の分散電源の遠隔制御を実行する電力管理装置と、を備え、前記1以上の分散電源に含まれる特定分散電源は、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限する。
Description
本開示は、電力管理システム及び電力管理方法に関する。
近年、電力系統の電力需給バランスを維持するために、蓄電装置を分散電源として用いる技術(例えば、VPP(Virtual Power Plant))が知られている。
さらに、分散電源として蓄電装置を用いるケースにおいて、蓄電装置のSOC(State Of Charge)が特定比率となるまで、蓄電装置の放電電力をVPPで用いる技術も提案されている(例えば、特許文献1)。
開示の一態様は、電力系統に接続される1以上の施設に設置される1以上の分散電源と、前記1以上の分散電源の遠隔制御を実行する電力管理装置と、を備え、前記1以上の分散電源に含まれる特定分散電源は、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限する、電力管理システムである。
開示の一態様は、電力管理装置が、電力系統に接続される1以上の施設に設置される1以上の分散電源の遠隔制御を実行するステップAと、前記1以上の分散電源に含まれる特定分散電源が、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限するステップBと、を備える、電力管理方法である。
以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものである。
[実施形態]
(電力管理システム)
以下において、実施形態に係る電力管理システムについて説明する。電力管理システムは、単に、電力システムと称されてもよい。
(電力管理システム)
以下において、実施形態に係る電力管理システムについて説明する。電力管理システムは、単に、電力システムと称されてもよい。
図1に示すように、電力管理システム1は、施設100を有する。電力管理システム1は、下位管理サーバ200、上位管理サーバ300及び第三者サーバ400を含む。
ここで、施設100、下位管理サーバ200、上位管理サーバ300及び第三者サーバ400は、ネットワーク11を介して通信可能に構成される。ネットワーク11は、インターネットを含んでもよく、VPN(Virtual Private Network)などの専用回線を含んでもよく、移動体通信網を含んでもよい。
施設100は、電力系統12に接続されており、電力系統12から電力が供給されてもよく、電力系統12に電力を供給してもよい。電力系統12から施設100への電力は、順潮流電力と称されてもよい。施設100から電力系統12への電力は、逆潮流電力と称されてもよい。図1では、施設100として、施設100A~施設100Cが例示されている。
特に限定されるものではないが、施設100は、住宅などの施設であってもよく、店舗などの施設であってもよく、オフィスなどの施設であってもよい。施設100は、2以上の住宅を含む集合住宅であってもよい。施設100は、住宅、店舗及びオフィスの少なくともいずれか2以上の施設を含む複合施設であってもよい。施設100の詳細については後述する(図2を参照)。なお、施設100を所有又は管理するユーザを施設100と称することもある。
下位管理サーバ200は、電力系統12又は施設100に関する電力を管理する事業者によって管理される。事業者は、リソースアグリゲータ(RA)であってもよい。
以下において、下位管理サーバ200がRAによって管理されるケースについて例示する。下位管理サーバ200をRAと称することもあり、RAを下位管理サーバ200と称することもある。下位管理サーバ200の詳細については後述する(図4を参照)。
実施形態では、下位管理サーバ200は、1以上の施設100(以下、施設群100と称することもある)に設置される1以上の分散電源の遠隔制御を実行する電力管理装置を構成してもよい。
ここで、下位管理サーバ200は、上位管理サーバ300から受信する制御指令を施設100(後述する蓄電装置120、EMS160を含んでもよい)に送信する。制御指令は、電力系統12の電力需給バランスの調整(VPP(Virtual Power Plant)制御)で用いる指令であり、施設100に設置される分散電源(例えば、蓄電装置120)を制御する指令である。下位管理サーバ200は、施設100(後述する蓄電装置120、EMS160を含んでもよい)から受信する測定データを上位管理サーバ300に送信する。測定データは、施設100に設置される分散電源(例えば、蓄電装置120)の電力(放電電力又は充電電力)のデータである。
さらに、下位管理サーバ200は、施設100に設置される分散電源(例えば、蓄電装置120)の保守・管理サービスを提供してもよい。このような構成によれば、下位管理サーバ200は、分散電源に関する情報を予め有しているため、施設100に設置された後であっても、下位管理サーバ200に蓄積された情報を用いて分散電源をVPPに容易かつ簡易に利用することができる。
上位管理サーバ300は、電力系統12に関する電力を管理する事業者によって管理される。上位管理サーバ300は、各種サービスを提供する事業者によって管理されてもよい。上位管理サーバ300は、AEMS(Area Energy Management System)と称されてもよい。事業者は、小売電気事業者であってもよい。小売電気事業者は、電力系統12などの基盤を管理する地域電力事業者(一般電気事業者)を含んでもよく、地域電力事業者以外の新電力事業者を含んでもよい。新電力事業者は、電力市場から電力を調達することによって、施設に対して電力を販売することが想定されてもよい。電力市場は、施設100に供給される電力(調達電力)の取引に関する卸電力市場を含んでもよく、卸電力市場のゲートクローズ後における電力需給のギャップの調整に関する電力調整市場を含んでもよく、供給力(例えば、逆潮流電力)の取引に関する容量市場を含んでもよい。電力市場は、他の小売電気事業者と電力の取引を含んでもよい。電力市場は、他の発電事業者と電力の取引を含んでもよい。すなわち、電力市場は、1対1又は1対他又は多対多などの形態によらずに、電力の取引を行うための取引所であればよい。
サービスは、施設群100の順潮流電力(以下、調達電力と称することもある)に関する計画値と施設群100の調達電力に関する実績値との差異(インバランス)が所定差異以下に抑制するためのサービスを含んでもよい。サービスは、施設群100の逆潮流電力(以下、発電電力と称することもある)に関する計画値と施設群100の発電電力に関する実績値との差異(インバランス)が所定差異以下に抑制するためのサービスを含んでもよい。
以下において、上位管理サーバ300が新電力事業者によって管理されるケースについて例示する。上位管理サーバ300を新電力事業者と称することもあり、新電力事業者を上位管理サーバ300と称することもある。上位管理サーバ300の詳細については後述する(図3を参照)。
実施形態では、新電力事業者は、1以上の施設100の各々に電力を販売する小売電気事業者の一例であってもよい。
第三者サーバ400は、電力系統12の電力需給バランスを管理する事業者によって管理される。事業者は、電力系統12に関する電力市場を管理してもよい。例えば、第三者サーバ400は、調達電力のインバランスを確認する機能を有してもよい。第三者サーバ400は、発電電力のインバランスを確認する機能を有してもよい。例えば、第三者サーバは、以下に示す動作を行ってもよい。
第1に、第三者サーバ400は、調達電力に関する計画値と調達電力に関する実績値との差異(インバランス)が所定差異を超えるか否かを確認してもよい。計画値及び実績値は単位期間(例えば、30分毎)に集計されてもよく、インバランスは、単位期間(例えば、30分毎)に確認されてもよい。第三者サーバ400は、インバランスが所定差異を超える場合に、上位管理サーバ300を管理する事業者(例えば、新電力事業者)に対してペナルティを課してもよい。第三者サーバ400は、インバランスが所定差異を超えない場合に、上位管理サーバ300を管理する事業者(例えば、新電力事業者)に対してインセンティブを付与してもよい。ペナルティ及びインセンティブは、金銭的なものであってもよい。
第2に、第三者サーバ400は、発電電力に関する計画値と発電電力の実績値との差異(インバランス)が所定差異を超えるか否かを確認してもよい。計画値及び実績値は単位期間(例えば、30分毎)に集計されてもよく、インバランスは、単位期間(例えば、30分毎)に確認されてもよい。第三者サーバ400は、インバランスが所定差異を超える場合に、上位管理サーバ300を管理する事業者(例えば、新電力事業者)に対してペナルティを課してもよい。第三者サーバ400は、インバランスが所定差異を超えない場合に、上位管理サーバ300を管理する事業者(例えば、新電力事業者)に対してインセンティブを付与してもよい。ペナルティ及びインセンティブは、金銭的なものであってもよい。
ここで、発電電力及び調達電力のインバランスが確認される期間を対象期間(例えば、1日)と定義してもよい。このようなケースにおいて、調達電力に関する計画値は、対象期間よりも前のタイミング(例えば、対象期間の前日の12:00)に策定される計画を含んでもよい。発電電力に関する計画値は、対象期間よりも前のタイミング(例えば、対象期間の前日の12:00)に策定される計画値を含んでもよい。さらに、調達電力に関する計画値は、対象期間に含まれる単位期間よりも前のタイミング(例えば、単位期間の1時間前)に策定される計画値を含んでもよい。発電電力に関する計画値は、対象期間に含まれる単位期間よりも前のタイミング(例えば、単位期間の1時間前)に策定される計画値を含んでもよい。
特に限定されるものではないが、調達電力に関する計画値と調達電力に関する実績値は、下位管理サーバ200又は上位管理サーバ300から報告されてもよい。発電電力に関する計画値と発電電力に関する実績値は、下位管理サーバ200又は上位管理サーバ300から報告されてもよい。
(施設)
以下において、実施形態に係る施設について説明する。図2に示すように、施設100は、太陽電池装置110と、蓄電装置120と、燃料電池装置130と、負荷機器140と、EMS(Energy Management System)160と、を有する。施設100は、測定装置190を有してもよい。
以下において、実施形態に係る施設について説明する。図2に示すように、施設100は、太陽電池装置110と、蓄電装置120と、燃料電池装置130と、負荷機器140と、EMS(Energy Management System)160と、を有する。施設100は、測定装置190を有してもよい。
太陽電池装置110は、太陽光などの光に応じて発電をする分散電源である。例えば、太陽電池装置110は、PCS(Power Conditioning System)及び太陽光パネルによって構成される。ここで、設置とは、太陽電池装置110と電力系統12とが接続されることであってもよい。
蓄電装置120は、電力の充電及び電力の放電をする分散電源である。例えば、蓄電装置120は、PCS及び蓄電セルによって構成される。ここで、設置とは、蓄電装置120と電力系統12とが接続されることであってもよい。以下において、蓄電装置120は、電力系統12の電力需給バランスの調整に用いる分散電源の一例である。言い換えると、蓄電装置120は、下位管理サーバ200によって遠隔制御が設定される分散電源の一例である。蓄電装置120は、VPP制御に用いる分散電源の一例であると考えてもよい。
燃料電池装置130は、燃料を用いて発電を行う分散電源である。例えば、燃料電池装置130は、PCS及び燃料電池セルによって構成される。ここで、設置とは、燃料電池装置130と電力系統12とが接続されることであってもよい。
例えば、燃料電池装置130は、固体酸化物型燃料電池(SOFC; Solid Oxide Fuel Cell)であってもよく、固体高分子型燃料電池(PEFC; Polymer Electrolyte Fuel Cell)であってもよく、リン酸型燃料電池(PAFC; Phosphoric Acid Fuel Cell)であってもよく、溶融炭酸塩型燃料電池(MCFC; Molten Carbonate Fuel Cell)であってもよい。
負荷機器140は、電力を消費する機器である。例えば、負荷機器140は、空調装置、ヒートポンプ給湯器、照明装置などを含んでもよい。
負荷機器140は、電力を消費する機器である。例えば、負荷機器140は、空調装置、ヒートポンプ給湯器、照明装置などを含んでもよい。
EMS160は、施設100に関する電力を管理する。EMS160は、太陽電池装置110、蓄電装置120、燃料電池装置130、負荷機器140を制御してもよい。実施形態では、下位管理サーバ200から制御コマンドを受信する装置としてEMS160を例示するが、このような装置は、Gatewayと称されてもよく、単に制御ユニットと称されてもよい。EMS160は、下位管理サーバ200と区別するために、LEMS(Local EMS)と称されてもよく、HEMS(Home EMS)と称されてもよく、VPPコントローラと称されてもよい。EMS160の詳細については後述する(図5を参照)。
測定装置190は、電力系統12から施設100への順潮流電力(以下、需要電力とも称する)を測定する。測定装置190は、施設100から電力系統12への逆潮流電力を測定してもよい。例えば、測定装置190は、電力会社に帰属するSmart Meterであってもよい。測定装置190は、第1間隔(例えば、30分)における測定結果(順潮流電力又は逆潮流電力の積算値)を示す情報要素を第1間隔毎にEMS160に送信してもよい。測定装置190は、第1間隔よりも短い第2間隔(例えば、1分)における測定結果を示す情報要素をEMS160に送信してもよい。
(上位管理サーバ)
以下において、実施形態に係る上位管理サーバについて説明する。図3に示すように、上位管理サーバ300は、通信部310と、管理部320と、制御部330と、を有する。
以下において、実施形態に係る上位管理サーバについて説明する。図3に示すように、上位管理サーバ300は、通信部310と、管理部320と、制御部330と、を有する。
通信部310は、通信モジュールによって構成される。通信モジュールは、IEEE802.11a/b/g/n/ac/ax、ZigBee、Wi-SUN、LTE、5G、6Gなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3などの規格に準拠する有線通信モジュールであってもよい。
例えば、通信部310は、電力系統12の電力需給バランスの調整が必要な場合に、分散電源(実施形態では、蓄電装置120)の遠隔制御を指示する制御指令を下位管理サーバ200に送信してもよい。制御指令は、下位管理サーバ200で管理される蓄電装置120の総調整電力を示す情報を含んでもよく、蓄電装置120の各々の調整電力(以下、個別調整電力)を示す情報を含んでもよく、電力系統12の電力需給バランスの調整が必要な調整時間帯を示す情報を含んでもよい。具体的に、下位管理サーバ200で管理される蓄電装置120の総調整電力を示す情報を含む制御指令とは、下位管理サーバ200で管理される複数の蓄電装置120を用いて、ある所定の調整電力を創出する、例えば、70kWを放電するように指示する。また、蓄電装置120の各々の調整電力を示す情報を含む制御指令とは、下位管理サーバ200で管理される複数の蓄電装置120の各々に対して、ある所定の調整電力を創出する、例えば、700Wを放電するように指示する。また、電力系統12の電力需給バランスの調整が必要な調整時間帯を示す情報を含む制御指令とは、蓄電装置120が調整電力を創出する時間帯、例えば、17:00~18:00の間に放電するように指示する。制御指令は、蓄電装置120の運転モードを示す情報を含んでもよい。運転モードは、蓄電装置120の放電を実行するモード(強制放電モード)、蓄電装置120の充電を実行するモード(強制充電モード)、太陽電池装置110の余剰電力を充電するモード(グリーンモード)などを含んでもよい。
蓄電装置120の調整電力は、蓄電装置120の放電電力を含んでもよく、蓄電装置120の充電電力を含んでもよい。従って、総調整電力は、総放電電力を含んでもよく、総充電電力を含んでもよい。同様に、個別調整電力は、個別放電電力を含んでもよく、個別充電電力を含んでもよい。調整時間帯は、放電時間帯を含んでもよく、充電時間帯を含んでもよい。なお、蓄電装置120(分散電源)の調整電力は、施設100の逆潮流電力や順潮流電力と置き換えてもよい。
管理部320は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、不揮発性メモリなどの記憶媒体によって構成される。
例えば、管理部320は、施設群100によって調整可能な電力量を管理してもよい。
制御部330は、少なくとも1つのプロセッサを含んでもよい。少なくとも1つのプロセッサは、単一の集積回路(IC)によって構成されてもよく、通信可能に接続された複数の回路(集積回路及び又はディスクリート回路(discrete circuit(s))など)によって構成されてもよい。
例えば、制御部330は、分散電源(実施形態では、蓄電装置120)の制御計画に基づいて、分散電源の遠隔制御を指示する制御指令の送信を通信部210に指示してもよい。制御計画は、電力系統12の電力需給バランスを調整するための計画である。
特に限定されるものではないが、制御部330は、電力系統12の電力需給バランスの予測に基づいて、電力系統12の電力の不足又は過剰が生じる時間帯を特定し、特定された時間帯において、電力系統12の電力の不足又は過剰を解消するために、分散電源の遠隔制御を指示する制御指令を生成してもよい。
(下位管理サーバ)
(下位管理サーバ)
以下において、実施形態に係る下位管理サーバについて説明する。図4に示すように、下位管理サーバ200は、通信部210と、管理部220と、制御部230と、を有する。
通信部210は、通信モジュールによって構成される。通信モジュールは、IEEE802.11a/b/g/n/ac/ax、ZigBee、Wi-SUN、LTE、5G、6Gなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3などの規格に準拠する有線通信モジュールであってもよい。
例えば、通信部210は、分散電源(実施形態では、蓄電装置120)の遠隔制御を指示する制御指令を上位管理サーバ300から受信してもよい。通信部210は、分散電源(実施形態では、蓄電装置120)の遠隔制御を指示する制御指令を施設100に送信してもよい。
通信部210は、施設100の施設情報を受信してもよい。施設情報は、施設100が有する分散電源の構成を示す情報を含んでもよく、施設100が有する分散電源の仕様を示す情報を含んでもよい。施設情報は、電力系統12の電力需給バランスの調整(例えば、VPP制御)に参加するか否かを示す情報を含んでもよい。
なお、通信部210は、施設100の各々の発電電力に関する計画値を受信してもよい。通信部210は、施設100の各々の需要電力に関する計画値を受信してもよい。
通信部210は、施設100の各々に設置される装置を制御する制御コマンドを送信してもよい。施設100の各々に設置される装置は、太陽電池装置110、蓄電装置120、燃料電池装置130などの分散電源を含んでもよい。施設100の各々に設置される装置は、負荷機器140を含んでもよい。
管理部220は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、不揮発性メモリなどの記憶媒体によって構成される。
例えば、管理部220は、電力系統12に接続された1以上の施設100を管理する管理部を構成してもよい。1以上の施設100の管理は、電力系統12に接続された1以上の分散電源の管理と読み替えられてもよい。
管理部220は、施設100に関する情報を管理してもよい。例えば、施設100に関する情報は、施設100に設けられる分散電源(太陽電池装置110、蓄電装置120又は燃料電池装置130)の種別、施設100に設けられる分散電源(太陽電池装置110、蓄電装置120又は燃料電池装置130)のスペックなどである。スペックは、太陽電池装置110の定格発電電力、蓄電装置120の定格充電電力、蓄電装置120の定格放電電力、燃料電池装置130の定格出力電力を含んでもよい。スペックは、蓄電装置120の定格容量、最大充放電電力などを含んでもよい。
制御部230は、少なくとも1つのプロセッサを含んでもよい。少なくとも1つのプロセッサは、単一の集積回路(IC)によって構成されてもよく、通信可能に接続された複数の回路(集積回路及び又はディスクリート回路(discrete circuit(s))など)によって構成されてもよい。
例えば、制御部230は、電力系統12に接続された1以上の分散電源(実施形態では、蓄電装置120)の遠隔制御を実行してもよい。制御部230は、上位管理サーバ300から受信する制御指令に応じて、分散電源の遠隔制御を実行してもよい。実行は、遠隔制御の設定(制御指令の送信又は受信)及び制御指令に応じた蓄電装置120の動作を含んでもよい。分散電源の遠隔制御における制御部230の動作としては、以下に示すオプションが想定されてもよい。
オプション1では、制御部230は、上位管理サーバ300から受信する制御指令を透過的に施設100に送信する遠隔制御を実行してもよい。すなわち、制御部230は、分散電源の調整電力の割当てなどの処理を実行せずに、上位管理サーバ300から受信する制御指令を施設100に中継する遠隔制御を実行してもよい。
オプション2では、制御部230は、上位管理サーバ300から受信する制御指令を参照して、分散電源の調整電力の割当てを実行した上で、各分散電源の調整電力を示す情報を含む制御指令を施設100に送信する遠隔制御を実行してもよい。例えば、制御部230は、総調整電力を確保するように分散電源の調整電力を割り当てるとともに、割り当てられた調整電力を示す情報を含む制御指令を施設100に送信する遠隔制御を実行してもよい。制御部230は、異なる調整時間帯を分散電源に割り当ててもよい。
特に限定されるものではないが、制御部230は、分散電源の調整可能電力を示す情報を施設100から事前に収集(受信)するとともに、調整可能電力に基づいて調整電力を分散電源に割り当ててもよい。同様に、制御部230は、分散電源の調整可能時間帯を示す情報を施設100から事前に収集(受信)するとともに、調整可能時間帯に基づいて調整時間帯を分散電源に割り当ててもよい。
(EMS)
以下において、実施形態に係るEMSについて説明する。図5に示すように、EMS160は、第1通信部161と、第2通信部162と、制御部163と、を有する。
以下において、実施形態に係るEMSについて説明する。図5に示すように、EMS160は、第1通信部161と、第2通信部162と、制御部163と、を有する。
第1通信部161は、通信モジュールによって構成される。通信モジュールは、IEEE802.11a/b/g/n/ac/ax、ZigBee、Wi-SUN、LTE、5G、6Gなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3又は独自の専用プロトコルなどの規格に準拠する有線通信モジュールであってもよい。
例えば、第1通信部161は、ネットワーク11を介して下位管理サーバ200と通信を実行する第1通信部を構成する。第1通信部161は、分散電源(実施形態では、蓄電装置120)の遠隔制御を指示する制御指令を下位管理サーバ200から受信してもよい。制御指令は、各々の蓄電装置120が制御すべき個別調整電力を示す情報を含んでもよく、蓄電装置120が遠隔制御される時間帯、例えば、VPP制御が必要な調整時間帯を示す情報を含んでもよい。制御指令は、遠隔制御で指定される蓄電装置120の運転モードを示す情報を含んでもよい。
第1通信部161は、負荷機器140と通信を実行してもよく、測定装置190と通信を実行してもよい。
第2通信部162は、通信モジュールによって構成される。通信モジュールは、IEEE802.11a/b/g/n/ac/ax、ZigBee、Wi-SUN、LTE、5G、6Gなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3、RS485又は独自の専用プロトコルなどの規格に準拠する有線通信モジュールであってもよい。
例えば、第2通信部162は、太陽電池装置110、蓄電装置120及び燃料電池装置130と通信を実行してもよい。図2では信号ラインを省略しているが、第2通信部162は、負荷機器140と通信を実行してもよく、測定装置190と通信を実行してもよい。
制御部163は、EMS160を制御する。制御部163は、少なくとも1つのプロセッサを含んでもよい。少なくとも1つのプロセッサは、単一の集積回路(IC)によって構成されてもよく、通信可能に接続された複数の回路(集積回路及び又はディスクリート回路(discrete circuit(s))など)によって構成されてもよい。
例えば、制御部163は、太陽電池装置110、蓄電装置120及び燃料電池装置130を制御してもよい。制御部163は、負荷機器140を制御してもよい。
(動作例)
以下において、実施形態に係る動作例について説明する。以下においては、VPP制御に用いる分散電源であるケースについて例示する。蓄電装置120の制御としては、遠隔制御及びローカル制御が想定される。
以下において、実施形態に係る動作例について説明する。以下においては、VPP制御に用いる分散電源であるケースについて例示する。蓄電装置120の制御としては、遠隔制御及びローカル制御が想定される。
遠隔制御は、電力系統12の電力需給バランスの調整に関する制御(VPP制御)である。遠隔制御は、下位管理サーバ200から受信する制御指令に従った制御である。一方で、ローカル制御は、施設100における制御であり、電力料金を抑制する制御、ピーク電力を抑制する制御などを含む。ローカル制御は、蓄電装置120のユーザ操作で用いるコントローラを用いた施設100のユーザの操作に従った制御であってもよい。ローカル制御は、EMS160を用いた制御を含んでもよい。例えば、少なくとも遠隔制御を指示した蓄電装置120は、蓄電装置120の動作状況を所定間隔で下位管理サーバ200に送信してもよい。
ここで、遠隔制御で蓄電装置120の動作が設定された後に、遠隔制御がローカル制御で変更されると、電力系統12の電力需給バランスの調整(VPP制御)を制御計画に従って適切に実行することができない。
従って、動作例では、1以上の蓄電装置120に含まれる特定蓄電装置は、下位管理サーバ200によって遠隔制御が設定される場合に、ローカル制御の受付を制限する。遠隔制御の設定は、制御指令の送信又は受信と読み替えてもよい。ローカル制御の受付制限は、下位管理サーバ200からの指示に応じて、EMS160によって実行されてもよく、蓄電装置120によって実行されてもよい。特定蓄電装置は、蓄電装置120の中で、ローカル制御の受付制限の実行が予定されるものである。よって、同一の蓄電装置120であっても受付制限の時刻や残量状態などによって特定蓄電装置となる時とならない時がある。特定蓄電装置に設定されること、および設定の解除は制御指令によって行われる。
受付の制限が想定されるローカル制御は、蓄電装置120の調整電力の変更に関する電力制御を含み、電力制御以外の制御を含まなくてもよい。受付の制限が想定される電力制御は、遠隔制御を阻害する制御であると考えてもよく、少なくとも運転モードの変更を含んでもよい。電力制御は、遠隔制御で指示された放電電力を下回る放電電力への変更、遠隔制御で指示された充電電力を下回る充電電力への変更などの制御を含んでもよい。一方で、遠隔制御で指示された調整電力(放電電力又は充電電力)が確保されるのであれば、調整電力の変更を伴うローカル制御は制限されなくてもよい。電力制御以外の制御は、施設100の電力状態の表示に関する制御などを含んでもよい。
ここで、ローカル制御の制限は、(a)ローカル制御を送信させないようにすること、(b)ローカル制御を受信しないこと、(c)ローカル制御を受信するが、ローカル制御を無視すること、(d)ローカル制御を受信するが、遠隔制御の変更を指示するローカル制御を無視する、などの動作を含んでもよい。
動作例では、下位管理サーバ200は、ローカル制御の受付制限を指示する情報(以下、受付制限フラグ)を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。蓄電装置120又はEMS160は、受付制限フラグを受信した場合には、特定蓄電装置に対するローカル制御の受付を制限する。動作例のバリエーションとしては、以下に示すバリエーションが考えられる。
(動作例1)
動作例1では、下位管理サーバ200は、1以上の蓄電装置120に関する判定条件に基づいて、特定蓄電装置を選択する。判定条件としては、以下に示すオプションが考えられる。
動作例1では、下位管理サーバ200は、1以上の蓄電装置120に関する判定条件に基づいて、特定蓄電装置を選択する。判定条件としては、以下に示すオプションが考えられる。
オプション1では、判定条件は、蓄電装置120が特定蓄電装置として下位管理サーバ200(例えば、管理部220)に登録されているか否かという条件であってもよい。下位管理サーバ200は、管理部220に登録されていない蓄電装置120を特定蓄電装置として選択せずに、管理部220に登録された蓄電装置120を特定蓄電装置として選択する。
オプション2では、判定条件は、遠隔制御においてローカル制御の受付を制限する契約があるか否かという条件であってもよい。契約は、施設100と下位管理サーバ200との間の契約であってもよい。下位管理サーバ200は、遠隔制御においてローカル制御の受付を制限する契約がない蓄電装置120を特定蓄電装置として選択せずに、遠隔制御においてローカル制御の受付を制限する契約がある蓄電装置120を特定蓄電装置として選択する。
オプション3では、判定条件は、電力系統12の電力需給バランスの調整(VPP制御)に参加する蓄電装置120であるか否かという条件であってもよい。下位管理サーバ200は、VPP制御に参加しない蓄電装置120を特定蓄電装置として選択せずに、VPP制御に参加する蓄電装置120を特定蓄電装置として選択する。言い換えると、下位管理サーバ200は、VPP制御への参加を了承していない施設100に設置された蓄電装置120を特定蓄電装置として選択せずに、VPP制御への参加を了承している施設100に設置された蓄電装置120を特定蓄電装置として選択する。
オプション4では、判定条件は、蓄電装置120の蓄電残量が閾値以上であるか否かという条件であってもよい。蓄電残量は、蓄電装置120に残っている電力によって表されてもよく、SOCによって表されてもよい。下位管理サーバ200は、蓄電残量が閾値未満である蓄電装置120を特定蓄電装置として選択せずに、蓄電残量が閾値以上である蓄電装置120を特定蓄電装置として選択する。オプション4は、VPP制御が蓄電装置120の放電を伴う制御であるケースで用いられてもよい。
オプション5では、判定条件は、蓄電装置120の充電余力が閾値以上であるか否かという条件であってもよい。充電余力は、蓄電装置120に残っている空き容量によって表されてもよく、100%-SOCによって表されてもよい。下位管理サーバ200は、充電余力が閾値未満である蓄電装置120を特定蓄電装置として選択せずに、充電余力が閾値以上である蓄電装置120を特定蓄電装置として選択する。オプション5は、VPP制御が蓄電装置120の充電を伴う制御であるケースで用いられてもよい。
オプション6では、上述したオプション1~オプション5の中から選択された2以上のオプションが組み合わされてもよい。
例えば、VPP制御が蓄電装置120の放電を伴うケースを例に挙げて、図6を参照しながら説明する。
第1に、上位管理サーバ300は、制御計画に基づいて、制御指令を下位管理サーバ200に送信する。制御指令は、総放電電力、個別放電電力、放電時間帯などを示す情報を含む。
第2に、下位管理サーバ200は、判定条件に基づいて特定蓄電装置を選択し、選択された特定蓄電装置が設置された施設群100に対して制御指令を送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報とともに、受付制限フラグを含む。
動作例1によれば、下位管理サーバ200は、判定条件に基づいて特定蓄電装置を選択する。このような構成によれば、特定蓄電装置として適切な蓄電装置120を選択することができる。
(動作例2)
動作例2では、下位管理サーバ200は、上位装置(実施形態では、上位管理サーバ300)から指示された場合に、ローカル制御の受付制限を指示する情報を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
動作例2では、下位管理サーバ200は、上位装置(実施形態では、上位管理サーバ300)から指示された場合に、ローカル制御の受付制限を指示する情報を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
ここで、上位管理サーバ300は、ローカル制御の受付を制限することを依頼する情報(例えば、受付制限依頼)を制御命令とともに下位管理サーバ200に送信する。下位管理サーバ200は、受付制限依頼に応じて、判定条件に基づいて特定蓄電装置を選択してもよい。
例えば、VPP制御が蓄電装置120の放電を伴うケースを例に挙げて、図7を参照しながら説明する。
第1に、上位管理サーバ300は、制御計画に基づいて、制御指令を下位管理サーバ200に送信する。制御指令は、総放電電力、個別放電電力、放電時間帯などを示す情報を含む。上位管理サーバ300は、制御命令とともに、受付制限依頼を下位管理サーバ200に送信する。
第2に、下位管理サーバ200は、受付制限依頼に応じて、判定条件に基づいて特定蓄電装置を選択し、選択された特定蓄電装置が設置された施設群100に対して制御指令を送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報とともに、受付制限フラグを含む。
動作例2によれば、下位管理サーバ200は、上位管理サーバ300から指示された場合に、ローカル制御の受付制限を指示する情報を送信する。このような構成によれば、上位管理サーバ300で必要と判断された場合に、遠隔制御の調整電力を確保することができる。
(動作例3)
動作例3では、下位管理サーバ200は、遠隔制御をローカル制御で変更した蓄電装置120に関する特定条件が満たされた場合に、ローカル制御の受付制限を指示する情報を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。特定蓄電装置は、遠隔制御をローカル制御で変更していない蓄電装置120の中から選択される。特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。ここで、特定条件としては、以下に示すオプションが考えられる。
動作例3では、下位管理サーバ200は、遠隔制御をローカル制御で変更した蓄電装置120に関する特定条件が満たされた場合に、ローカル制御の受付制限を指示する情報を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。特定蓄電装置は、遠隔制御をローカル制御で変更していない蓄電装置120の中から選択される。特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。ここで、特定条件としては、以下に示すオプションが考えられる。
オプション1では、特定条件は、遠隔制御をローカル制御で変更した蓄電装置120の数(以下、変更装置数)が閾値以上であるという条件であってもよい。下位管理サーバ200は、変更装置数が閾値に達していない場合に、受付制限フラグを送信せずに、変更装置数が閾値に達した場合に、特定蓄電装置又は特定蓄電装置が設置された施設100に受付制限フラグを送信する。
オプション2では、特定条件は、遠隔制御をローカル制御で変更した蓄電装置120の比率(以下、変更装置比率)が閾値以上であるという条件であってもよい。変更装置比率は、遠隔制御が設定された蓄電装置120の総数に対する比率であってもよい。下位管理サーバ200は、変更装置比率が閾値に達していない場合に、受付制限フラグを送信せずに、変更装置比率が閾値に達した場合に、特定蓄電装置又は特定蓄電装置が設置された施設100に受付制限フラグを送信する。
オプション3では、特定条件は、遠隔制御をローカル制御で変更した蓄電装置120の放電電力の変更幅が閾値以上であるという条件であってもよい。下位管理サーバ200は、放電電力の変更幅が閾値に達していない場合に、受付制限フラグを送信せずに、放電電力の変更幅が閾値に達した場合に、特定蓄電装置又は特定蓄電装置が設置された施設100に受付制限フラグを送信する。変更幅は、電力量であってもよく、蓄電装置120の残量比率であってもよい。オプション3は、VPP制御が蓄電装置120の放電を伴う制御であるケースで用いられてもよい。
オプション4では、特定条件は、遠隔制御をローカル制御で変更した蓄電装置120の充電電力の変更幅が閾値以上であるという条件であってもよい。下位管理サーバ200は、充電電力の変更幅が閾値に達していない場合に、受付制限フラグを送信せずに、充電電力の変更幅が閾値に達した場合に、特定蓄電装置又は特定蓄電装置が設置された施設100に受付制限フラグを送信する。オプション4は、VPP制御が蓄電装置120の充電を伴う制御であるケースで用いられてもよい。
オプション5では、上述したオプション1~オプション4の中から選択された2以上のオプションが組み合わされてもよい。
例えば、VPP制御が蓄電装置120の放電を伴うケースを例に挙げて、図8を参照しながら説明する。
第1に、上位管理サーバ300は、制御計画に基づいて、制御指令を下位管理サーバ200に送信する。制御指令は、総放電電力、個別放電電力、放電時間帯などを示す情報を含む。
第2に、下位管理サーバ200は、図8の上段に示すように、制御指令を施設群100に対して送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報を含む。
第3に、下位管理サーバ200は、図8の下段に示すように、遠隔制御をローカル制御で変更した蓄電装置120が特定条件を満たした場合に、遠隔制御をローカル制御で変更していない蓄電装置120が設置された施設群100Mに対して、受付制限フラグを含む制御指令を送信する。例えば、図8では、変更装置数(施設数)が20に達する特定条件が例示されている。
なお、図8では、遠隔制御をローカル制御で変更した蓄電装置120が設置された施設群は、施設群100Mと区別するために施設群100Nで表されている。施設群100Nに対して受付制限フラグを含む制御指令は送信されていない。
特に限定されるものではないが、特定条件は、総放電電力(例えば、70,000W)が確保されるように定められてもよい。すなわち、1軒の施設100について700Wの放電が割り当てられるケースを想定した場合に、100軒の施設100が確保されるように特定条件が定められてもよい。
動作例3によれば、下位管理サーバ200は、遠隔制御をローカル制御で変更した蓄電装置120が特定条件を満たした場合に、ローカル制御の受付制限を指示する情報(例えば、受付制限フラグ)を特定蓄電装置又は特定蓄電装置が設置された施設100に送信する。このような構成によれば、ローカル制御を過度に制限することなく、遠隔制御の調整電力を確保することができる。
(動作例4)
動作例4では、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。制御計画は、上位管理サーバ300によって策定されてもよい。制御計画は、上位管理サーバ300から受信する制御指令に含まれる総調整電力であると考えてもよい。すなわち、下位管理サーバ200は、総調整電力が確保されるように個別調整電力及び調整時間帯を蓄電装置120に割り当て、割り当てられた個別調整電力及び調整時間帯を含む制御指令を送信する。特に限定されるものではないが、受付制限フラグが送信される特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
動作例4では、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。制御計画は、上位管理サーバ300によって策定されてもよい。制御計画は、上位管理サーバ300から受信する制御指令に含まれる総調整電力であると考えてもよい。すなわち、下位管理サーバ200は、総調整電力が確保されるように個別調整電力及び調整時間帯を蓄電装置120に割り当て、割り当てられた個別調整電力及び調整時間帯を含む制御指令を送信する。特に限定されるものではないが、受付制限フラグが送信される特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
ここで、下位管理サーバ200は、遠隔制御対象の蓄電装置120であって特定蓄電装置以外の蓄電装置120の少なくとも一部の蓄電装置120に対して遠隔制御を設定せずに、特定蓄電装置に対して遠隔制御を設定してもよい。遠隔制御の設定は、制御指令の送信又は受信と読み替えてよい。
例えば、VPP制御が蓄電装置120の放電を伴うケースを例に挙げて、図9を参照しながら説明する。図9では、特定分散電源が設置された施設群100が施設群100Pで表され、特定分散電源が設置されていない施設群100が施設群100Qで表されている。
第1に、上位管理サーバ300は、制御計画に基づいて、制御指令を下位管理サーバ200に送信する。制御指令は、総放電電力、個別放電電力、放電時間帯などを示す情報を含む。
第2に、下位管理サーバ200は、制御計画に基づいて、1以上の蓄電装置120の中から特定蓄電装置を選択する。例えば、下位管理サーバ200は、総放電電力(例えば、70,000W)が確保されるように特定蓄電装置を選択する。下位管理サーバ200は、選択された選択された特定蓄電装置が設置された施設群100Pに対して制御指令を送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報とともに、受付制限フラグを含む。一方で、下位管理サーバ200は、特定蓄電装置が設置されていない施設群100Qに対して制御指令を送信しない。
図9に示す例では、1軒の施設100について700Wの放電が割り当てられるケースを想定した場合に、100軒の施設100が施設群100Pに含まれるため、総放電電力(例えば、70,000W)が確保されている。
動作例4では、下位管理サーバ200は、特定蓄電装置120が設置されていない施設群100Qの全体に対して制御指令を送信しないケースについて例示した。しかしながら、動作例4はこれに限定されるものではない。下位管理サーバ200は、施設群100Qの一部に対して制御指令を送信してもよい。但し、施設群100Qの一部に送信される制御指令は、受付制限フラグを含まなくてもよい。
動作例4によれば、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。このような構成によれば、下位管理サーバ200によって制御される蓄電装置120の状況に応じて、遠隔制御の調整電力を適切に確保することができる。
動作例4によれば、下位管理サーバ200は、特定蓄電装置以外の蓄電装置120の少なくとも一部の蓄電装置120に対して遠隔制御を設定せずに、特定蓄電装置に対して遠隔制御を設定してもよい。このような構成によれば、ローカル制御を制限する蓄電装置120を過度に増やすことなく、遠隔制御の調整電力を適切に確保することができる。
(動作例5)
動作例5では、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。制御計画は、上位管理サーバ300によって策定されてもよい。制御計画は、上位管理サーバ300から受信する制御指令に含まれる総調整電力であると考えてもよい。すなわち、下位管理サーバ200は、総調整電力が確保されるように個別調整電力及び調整時間帯を蓄電装置120に割り当て、割り当てられた個別調整電力及び調整時間帯を含む制御指令を送信する。特に限定されるものではないが、受付制限フラグが送信される特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
動作例5では、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。制御計画は、上位管理サーバ300によって策定されてもよい。制御計画は、上位管理サーバ300から受信する制御指令に含まれる総調整電力であると考えてもよい。すなわち、下位管理サーバ200は、総調整電力が確保されるように個別調整電力及び調整時間帯を蓄電装置120に割り当て、割り当てられた個別調整電力及び調整時間帯を含む制御指令を送信する。特に限定されるものではないが、受付制限フラグが送信される特定蓄電装置の選択に用いる判定条件は、動作例1と同様であってもよい。
ここで、下位管理サーバ200は、特定蓄電装置に対して、1以上の蓄電装置120に対して遠隔制御として異なる制御を設定する。下位管理サーバ200は、特定蓄電装置に対して、特定蓄電装置以外の蓄電装置120に設定する遠隔制御とは異なる遠隔制御を設定してもよい。異なる制御は、蓄電装置120の調整電力が異なる制御を含んでもよく、蓄電装置120の調整時間帯が異なる制御を含んでもよい。
例えば、VPP制御が蓄電装置120の放電を伴うケースを例に挙げて、図10を参照しながら説明する。図10では、第1制御指令が送信される蓄電装置120が設置された施設群100が施設群100Xで表され、第2制御指令が送信される蓄電装置120が設置された施設群100が施設群100Yで表される。
第1に、上位管理サーバ300は、制御計画に基づいて、制御指令を下位管理サーバ200に送信する。制御指令は、総放電電力量、放電時間帯などを示す情報を含む。
第2に、下位管理サーバ200は、制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。例えば、下位管理サーバ200は、総放電電力量(例えば、70kWh)が確保されるように個別調整電力及び調整時間帯を蓄電装置120に割り当てる。
第3に、下位管理サーバ200は、施設群100Xに対して第1制御指令を送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報を含む。第1制御指令は、受付制限フラグを含む。
第4に、下位管理サーバ200は、施設群100Yに対して第2制御指令を送信する。制御指令は、個別放電電力、放電時間帯、運転モードを示す情報を含む。第2制御指令は、受付制限フラグを含まなくてもよい。
ここで、第1制御指令に含まれる個別放電電力(例えば、1000W)は、第2制御指令に含まれる個別放電電力(例えば、400W)と異なってもよい。第1制御指令に含まれる放電時間帯(例えば、17:00~17:30)は、第2制御指令に含まれる個別放電電力(例えば、17:30~18:00)と異なってもよい。
動作例5では、第2制御指令が受付制限フラグを含まないケースについて例示した。しかしながら、動作例5はこれに限定されるものではない。第2制御指令は、受付制限フラグを含んでもよい。
動作例5によれば、下位管理サーバ200は、電力系統12の電力需給バランスの調整で要求される制御計画に基づいて、1以上の蓄電装置120に対して遠隔制御を設定する。このような構成によれば、下位管理サーバ200によって制御される蓄電装置120の状況に応じて、遠隔制御の調整電力を適切に確保することができる。
動作例5によれば、下位管理サーバ200は、特定蓄電装置に対して、1以上の蓄電装置120に対して遠隔制御として異なる制御を設定する。このような構成によれば、蓄電装置120毎に適切な個別放電電力又は放電時間帯を割り当てることができる。
(作用及び効果)
実施形態では、下位管理サーバ200によって制御される1以上の蓄電装置120に含まれる特定蓄電装置は、下位管理サーバ200によって遠隔制御が設定された場合に、ローカル制御の受付を制限する。このような構成によれば、遠隔制御を阻害するローカル制御の受付が制限されるため、遠隔制御の調整電力を確保することができ、VPP制御を適切に実行することができる。
実施形態では、下位管理サーバ200によって制御される1以上の蓄電装置120に含まれる特定蓄電装置は、下位管理サーバ200によって遠隔制御が設定された場合に、ローカル制御の受付を制限する。このような構成によれば、遠隔制御を阻害するローカル制御の受付が制限されるため、遠隔制御の調整電力を確保することができ、VPP制御を適切に実行することができる。
実施形態では、VPP制御に関するサービスを上位管理サーバ300の管理者が提供しようとする場合に、管理者が所有する蓄電装置120を利用するモデル(いわゆる第三者所有モデル)だけではなく、施設100のユーザが所有する蓄電装置120を利用するモデルにおいても、遠隔制御の調整電力を確保することができるため、VPP制御に関するサービスを提供することができる。言い換えると、新たな蓄電装置120を施設100に新たに設置する蓄電装置120を利用するケースに加えて、施設100に既に設置された蓄電装置120を利用するケースを想定することができる。VPP制御に関するサービスでは、管理者は、遠隔制御の調整電力を施設100のユーザから借りるとともに、遠隔制御の調整電力に対する対価を施設100のユーザに支払ってもよい。VPP制御に関するサービスは下位管理サーバ200の管理者が提供するとしてもよい。
[変更例1]
以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例1においては、VPP制御に用いる分散電源であるケースについて例示する。
以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例1においては、VPP制御に用いる分散電源であるケースについて例示する。
具体的には、特定蓄電装置は、遠隔制御について所定期間における調整電力の積算値が閾値に達した場合に、ローカル制御の受付制限を解除する。所定期間は、1年であってもよく、1月であってもよく、1日であってもよく、単位時間帯(例えば、2時間)であってもよい。閾値は、遠隔制御とローカル制御との比率及び分散電源の寿命に応じて定められてもよい。遠隔制御とローカル制御との比率は、施設100と下位管理サーバ200との間の契約によって定められてもよく、施設100のユーザによって定められてもよい。例えば、特定蓄電装置が、所定期間の途中で調整電力の積算値が閾値に達した場合には、所定期間中の残りの期間においては、ローカル制御の受付が可能となる。そして、次の所定期間においては、以前の所定期間における調整電力の積算値はリセットされ、ローカル制御の受付制限が行われてもよい。ここで、ローカル制御の受付制限の解除としては、以下に示すオプションが考えられる。
オプション1では、下位管理サーバ200から閾値が指示され、調整電力の積算値の測定がEMS160又は蓄電装置120によって実行される。オプション1では、EMS160又は蓄電装置120は、調整電力の積算値が閾値に達した場合に、ローカル制御の受付制限を自律的に解除する。
オプション2では、閾値が予めEMS160又は蓄電装置120に登録されており、調整電力の積算値の測定がEMS160又は蓄電装置120によって実行される。オプション2では、EMS160又は蓄電装置120は、調整電力の積算値が閾値に達した場合に、ローカル制御の受付制限を自律的に解除する。
オプション3では、EMS160又は蓄電装置120から下位管理サーバ200に調整電力の結果が報告されており、調整電力の積算値が下位管理サーバ200によって管理される。オプション3では、下位管理サーバ200は、調整電力の積算値が閾値に達した場合に、ローカル制御の受付制限の解除を指示する情報をEMS160又は蓄電装置120に送信する。EMS160又は蓄電装置120は、ローカル制御の受付制限の解除を指示する情報に応じて、ローカル制御の受付制限を解除する。
オプション4では、EMS160又は蓄電装置120から下位管理サーバ200に調整電力の結果が報告されており、調整電力の積算値が下位管理サーバ200によって管理される。オプション4では、下位管理サーバ200は、ローカル制御の受付制限を送付する蓄電装置の対象から除外して、ローカル制御の受付制限を送付しないようにする。
例えば、蓄電装置120の耐用年数が10年であり、蓄電装置120の寿命到達サイクルが7,000であり、蓄電装置120の実効容量が10kWhであるケースについて、図11を参照しながら説明する。
図11に示すように、遠隔制御及びローカル制御で1年間に放電可能な電力は、70,000kWh(= 7,000サイクル×10kWh)である。遠隔制御とローカル制御との比率が50:50である場合には、遠隔制御で1年間に放電可能な電力(すなわち、閾値)は、35,000kWhである。なお、ローカル制御で1年間に放電可能な電力は、35,000kWhである。
ここで、所定期間が1月である場合には、遠隔制御で1月に放電可能な電力(閾値)は、35,000kWh/12月で表されてもよい。所定期間が1日である場合には、遠隔制御で1日に放電可能な電力(閾値)は、35,000kWh/365日で表されてもよい。
さらに、遠隔制御及びローカル制御で1年間に放電可能な電力は、蓄電装置120の劣化状態に応じて更新されてもよい。例えば、1年間のサイクル数が7,000サイクルよりも少ない場合には、蓄電装置120の劣化が相対的に進んでいないと想定して、遠隔制御及びローカル制御で1年間に放電可能な電力を増大してもよい。一方で、1年間のサイクル数が7,000サイクルよりも多い場合には、蓄電装置120の劣化が相対的に進んでいると想定して、遠隔制御及びローカル制御で1年間に放電可能な電力を減少してもよい。蓄電装置120の劣化状態は、蓄電装置120のSOH(State Of Health)の確認結果によって特定されてもよい。
遠隔制御及びローカル制御で1年間に放電可能な電力の増減に伴って、所定期間において遠隔制御で放電可能な電力(閾値)についても、遠隔制御とローカル制御との比率に応じて増減する。
例えば、図12に示すように、所定期間が1日であるケースにおいて、13:00のタイミングで遠隔制御の放電電力の積算値が閾値に達する場合には、13:00まではローカル制御の受付が制限されており、13:00以降においてローカル制御の受付制限が解除されてもよい。なお、図12では、受付の制限が想定されるローカル制御が運転モードの変更であるケースが想定されており、遠隔制御で指示された放電電力を下回らない放電電力への変更は許容されてもよい。
[変更例2]
以下において、実施形態の変更例2について説明する。以下においては、変更例1に対する相違点について主として説明する。変更例2においては、VPP制御に用いる分散電源であるケースについて例示する。
以下において、実施形態の変更例2について説明する。以下においては、変更例1に対する相違点について主として説明する。変更例2においては、VPP制御に用いる分散電源であるケースについて例示する。
変更例1では、遠隔制御で放電可能な電力について主として説明したが、変更例2では、遠隔制御で放電可能な電力及びローカル制御で放電可能な電力の双方について考える。具体的には、変更例2では以下に示す手順が実行されてもよい。以下に示す手順は、下位管理サーバ200によって実行されてもよく、EMS160によって実行されてもよく、蓄電装置120によって実行されてもよい。
(1)蓄電装置120の寿命到達サイクル数を設定する。寿命到達サイクル数は、蓄電装置120のSOHの確認結果によって補正される。
(2)蓄電装置120の生涯総放電電力量が寿命到達サイクル及び蓄電装置120の実効容量に基づいて算出される。
(3)以下に示す3つの運用モードの中から、蓄電装置120に適用する運用モードが選択される。
第1運用モードは、施設100のユーザ(需要家)が要求する寿命期間に相当する総放電電力量Aを生涯総放電電力量から差し引いた電力を総放電電力量Bとして特定し、総放電電力量Aをローカル制御に割り当て、総放電電力量Bを遠隔制御に割り当てるモードであってもよい。第1運用モードは、需要家優先モードと称されてもよい。
第2運用モードは、上位管理サーバ300の管理者(事業者)が要求する総放電電力量Bを生涯総放電電力量から差し引いた電力を総放電電力量Aとして特定し、総放電電力量Aをローカル制御に割り当て、総放電電力量Bを遠隔制御に割り当てるモードであってもよい。第2運用モードは、事業者優先モードと称されてもよい。
第3運用モードは、施設100のユーザ(需要家)に割り当て可能な総放電電力量A及び上位管理サーバ300の管理者(事業者)に割り当て可能な総放電電力量Bが生涯総放電電力量となるように、総放電電力量A及び総放電電力量Bを分配し、総放電電力量Aをローカル制御に割り当て、総放電電力量Bを遠隔制御に割り当てるモードであってもよい。
このような前提下において、下位管理サーバ200は、以下に示す動作を実行してもよい。
具体的には、下位管理サーバ200は、総放電電力量Aに基づいて、所定期間においてローカル制御で放電可能な電力(第1閾値)を特定し、総放電電力量Bに基づいて、所定期間において遠隔制御で放電可能な電力(第2閾値)を特定してもよい。
下位管理サーバ200は、ローカル制御に関する蓄電装置120の放電履歴、遠隔制御に関する蓄電装置120の放電履歴及び蓄電装置120の劣化状態を管理してもよい。
下位管理サーバ200は、所定期間においてローカル制御の放電電力の積算値が第1閾値に達した場合に、又は、所定期間においてローカル制御の放電電力の積算値が第1閾値に達すると予測される場合に、その旨を蓄電装置120のユーザに通知してもよい。
下位管理サーバ200は、所定期間において遠隔制御の放電電力の積算値が第2閾値に達した場合に、又は、所定期間において遠隔制御の放電電力の積算値が第2閾値に達すると予測される場合に、その旨を蓄電装置120のユーザに通知してもよい。
[変更例3]
以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。
以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。
変更例3では、ローカル制御の受付制限を解除する条件のバリエーションについて説明する。バリエーションとしては、以下に示すオプションが考えられる。
オプション1では、下位管理サーバ200は、災害又は停電が生じたエリアに存在する特定分散電源について、ローカル制御の受付制限を解除してもよい。災害は、地震、台風、水害などであってもよい。具体的には、下位管理サーバ200は、災害情報を受信するとともに、災害情報によって災害が生じたエリアを特定してもよい。下位管理サーバ200は、災害が生じたエリアに存在する特定分散電源に対して、ローカル制御の受付制限の解除を指示する情報を送信してもよい。
オプション2では、災害又は停電が生じたエリアに存在する特定分散電源は、ローカル制御の受付制限を自律的に解除してもよい。災害は、地震、台風、水害などであってもよい。具体的には、特定分散電源は、災害情報を受信するとともに、災害情報によって災害が生じたエリアに存在するか否かを特定してもよい。
オプション3では、下位管理サーバ200は、ローカル制御の受付制限の解除を要求する情報を施設100から受信し、ローカル制御の受付制限の解除を許容するか否かを判断してもよい。下位管理サーバ200は、判断結果を施設100に送信してもよい。ローカル制御の受付制限の解除は、下位管理サーバ200の指示によって実行されてもよく、施設100において自律的に実行されてもよい。
オプション4では、特定分散電源は、遠隔制御で指示された調整電力の調整が完了した場合に、ローカル制御の受付制限を解除してもよい。特定分散電源は、ローカル制御の受付制限を解除する場合に、遠隔制御が適用される前の設定状態に復帰してもよい。或いは、下位管理サーバ200は、ローカル制御の受付制限を解除する前において、ローカル制御の受付制限を解除するときに適用する設定状態の予約を受け付けてもよい。
オプション5では、特定分散電源は、下位管理サーバ200と施設100との通信断時間が一定期間に亘って生じた場合に、ローカル制御の受付制限を解除してもよい。通信断時間はタイマによって測定されてもよい。特定分散電源は、ローカル制御の受付制限を解除する場合に、遠隔制御が適用される前の設定状態に復帰してもよい。或いは、下位管理サーバ200は、ローカル制御の受付制限を解除する前において、ローカル制御の受付制限を解除するときに適用する設定状態の予約を受け付けてもよい。
オプション6では、特定分散電源は、所定期間において蓄電装置120の充放電サイクル数が閾値に達した場合に、ローカル制御の受付制限を解除してもよい。特定分散電源は、ローカル制御の受付制限を解除する場合に、遠隔制御が適用される前の設定状態に復帰してもよい。或いは、下位管理サーバ200は、ローカル制御の受付制限を解除する前において、ローカル制御の受付制限を解除するときに適用する設定状態の予約を受け付けてもよい。
[その他の実施形態]
本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
上述した開示において、ローカル制御の受付制限は、下位管理サーバ200からの指示(受付制限フラグ)に応じて、EMS160又は蓄電装置120によって実行される。しかしながら、上述した開示はこれに限定されるものではない。ローカル制御の受付制限は、下位管理サーバ200からの指示(受付制限フラグ)によらずに、EMS160又は蓄電装置120によって自律的に実行されてもよい。具体的には、上述した動作例1で説明した判定条件に基づいて、EMS160又は蓄電装置120は、下位管理サーバ200によって遠隔制御が設定された場合に、ローカル制御の受付を自律的に制限してもよい。このような動作を行う旨については、EMS160又は蓄電装置120に予め登録されてもよい。
上述した開示において、下位管理サーバ200と蓄電装置120との間の通信は、EMS160を介して実行されてもよい。下位管理サーバ200との通信という観点では、蓄電装置120は、EMS160と読み替えられてもよく、施設100と読み替えられてもよい。
上述した開示において、蓄電装置120の遠隔制御は、EMS160を介して実行されてもよい。遠隔制御という観点では、蓄電装置120は、EMS160と読み替えられてもよく、施設100と読み替えられてもよい。
上述した開示において、VPP制御に用いる分散電源が蓄電装置120であるケースについて例示した。しかしながら、上述した開示はこれに限定されるものではない。VPP制御に用いる分散電源は、太陽電池装置110、燃料電池装置130などであってもよい。VPP制御に用いる分散電源は、風力発電装置、地熱発電装置などであってもよい。このようなケースにおいて、蓄電装置120の放電電力は、分散電源の発電電力又は出力電力と読み替えられてもよい。
上述した開示において、蓄電装置120の放電について主として説明した。しかしながら、上述した開示はこれに限定されるものではない。上述した開示は、蓄電装置120の充電についても適用することができる。
上述した開示において、VPP制御に用いる分散電源は、蓄電装置120及びEMS160を含む分散電源システムと読み替えられてもよい。
上述した開示では特に触れていないが、制御計画に基づいた分散電源の遠隔制御の主体は、上位管理サーバ300であると考えてもよい。下位管理サーバ200は、上位管理サーバ300の制御下において、分散電源の遠隔制御の一部を担っていると考えてもよい。
上述した開示では特に触れていないが、下位管理サーバ200及び上位管理サーバ300は、1つのサーバによって実現されてもよく、下位管理サーバ200及び上位管理サーバ300は、1つの事業者によって管理されてもよい。
上述した開示では、主として発電電力という用語を用いたが、発電電力は、逆潮流電力と読み替えてもよい。
上述した開示では、主として調達電力という用語を用いたが、調達電力は、順潮流電力と読み替えてもよい。調達電力は、施設群100の順潮流電力について用いる用語であり、需要電力は、施設100の各々の順潮流電力について用いる用語であると考えてもよい。
上述した開示では特に触れていないが、電力は、瞬時値(W/kW)で表されてもよく、単位時間の積算値(Wh/kWh)で表されてもよい。
上述した開示では特に触れていないが、EMS160、下位管理サーバ200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
或いは、EMS160、下位管理サーバ200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されてもよい。
上述した開示は、以下に示す課題及び効果を有していてもよい。
VPPにおいては、RA(Resource Aggregator)などによって管理される電力管理装置によって分散電源を制御することも想定される(以下、遠隔制御)。一方で、分散電源のユーザ操作で用いるコントローラなどを用いて分散電源を施設において制御することも想定される(以下、ローカル制御)。
このようなケースにおいて、VPP制御に関する制御計画に従って遠隔制御を実行しても、ローカル制御によって遠隔制御とは異なる動作を分散電源が行うことが想定され、制御計画に従ったVPP制御を実現することができない可能性がある。
本開示によれば、VPP制御を適切に実行することを可能とする電力管理システム及び電力管理方法を提供することができる。
[付記]
上述した開示は以下のように表されてもよい。
第1の特徴は、電力系統に接続される1以上の施設に設置される1以上の分散電源と、前記1以上の分散電源の遠隔制御を実行する電力管理装置と、を備え、前記1以上の分散電源に含まれる特定分散電源は、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限する、電力管理システムである。
上述した開示は以下のように表されてもよい。
第1の特徴は、電力系統に接続される1以上の施設に設置される1以上の分散電源と、前記1以上の分散電源の遠隔制御を実行する電力管理装置と、を備え、前記1以上の分散電源に含まれる特定分散電源は、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限する、電力管理システムである。
第2の特徴は、第1の特徴において、前記電力管理装置は、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信する、電力管理システムである。
第3の特徴は、第2の特徴において、前記電力管理装置は、前記1以上の分散電源に関する判定条件に基づいて、前記特定分散電源を選択する、電力管理システムである。
第4の特徴は、第1特徴乃至第3の特徴のいずれか1つにおいて、前記電力管理装置は、上位装置から指定された場合に、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信する、電力管理システムである。
第5の特徴は、第2の特徴乃至第4の特徴のいずれか1つにおいて、前記電力管理装置は、前記遠隔制御を前記ローカル制御で変更した分散電源が特定条件を満たした場合に、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信し、前記特定分散電源は、前記遠隔制御を前記ローカル制御で変更していない分散電源の中から選択される、電力管理システムである。
第6の特徴は、第2の特徴乃至第5の特徴のいずれか1つにおいて、前記電力管理装置は、前記電力系統の電力需給バランスの調整で要求される制御計画に基づいて、前記1以上の分散電源に対して前記遠隔制御を設定する、電力管理システムである。
第7の特徴は、第6の特徴において、前記電力管理装置は、前記特定分散電源以外の分散電源の少なくとも一部の分散電源に対して前記遠隔制御を設定せずに、前記特定分散電源に対して前記遠隔制御を設定する、電力管理システムである。
第8の特徴は、第6の特徴において、前記電力管理装置は、前記1以上の分散電源に対して前記遠隔制御として異なる制御を設定する、電力管理システムである。
第9の特徴は、第1の特徴乃至第8の特徴のいずれか1つにおいて、前記特定分散電源は、前記遠隔制御について所定期間における調整電力の積算値が閾値に達した場合に、前記ローカル制御の受付制限を解除する、電力管理システムである。
第10の特徴は、電力管理装置が、電力系統に接続される1以上の施設に設置される1以上の分散電源の遠隔制御を実行するステップAと、前記1以上の分散電源に含まれる特定分散電源が、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限するステップBと、を備える、電力管理方法である。
1…電力管理システム、11…ネットワーク、12…電力系統、100…施設、110…太陽電池装置、120…蓄電装置、130…燃料電池装置、140…負荷機器、160…EMS、161…第1通信部、162…第2通信部、163…制御部、190…測定装置、200…下位管理サーバ、210…通信部、220…管理部、230…制御部、300…上位管理サーバ、310…通信部、320…管理部、330…制御部、400…第三者サーバ
Claims (10)
- 電力系統に接続される1以上の施設に設置される1以上の分散電源と、
前記1以上の分散電源の遠隔制御を実行する電力管理装置と、を備え、
前記1以上の分散電源に含まれる特定分散電源は、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限する、電力管理システム。 - 前記電力管理装置は、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信する、請求項1に記載の電力管理システム。
- 前記電力管理装置は、前記1以上の分散電源に関する判定条件に基づいて、前記特定分散電源を選択する、請求項2に記載の電力管理システム。
- 前記電力管理装置は、上位装置から指定された場合に、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信する、請求項1に記載の電力管理システム。
- 前記電力管理装置は、前記遠隔制御を前記ローカル制御で変更した分散電源が特定条件を満たした場合に、前記ローカル制御の受付制限を指示する情報を前記特定分散電源又は前記特定分散電源が設置された施設に送信し、
前記特定分散電源は、前記遠隔制御を前記ローカル制御で変更していない分散電源の中から選択される、請求項2に記載の電力管理システム。 - 前記電力管理装置は、前記電力系統の電力需給バランスの調整で要求される制御計画に基づいて、前記1以上の分散電源に対して前記遠隔制御を設定する、請求項2に記載の電力管理システム。
- 前記電力管理装置は、前記特定分散電源以外の分散電源の少なくとも一部の分散電源に対して前記遠隔制御を設定せずに、前記特定分散電源に対して前記遠隔制御を設定する、請求項6に記載の電力管理システム。
- 前記電力管理装置は、前記1以上の分散電源に対して前記遠隔制御として異なる制御を設定する、請求項6に記載の電力管理システム。
- 前記特定分散電源は、前記遠隔制御について所定期間における調整電力の積算値が閾値に達した場合に、前記ローカル制御の受付制限を解除する、請求項1に記載の電力管理システム。
- 電力管理装置が、電力系統に接続される1以上の施設に設置される1以上の分散電源の遠隔制御を実行するステップAと、
前記1以上の分散電源に含まれる特定分散電源が、前記電力管理装置によって遠隔制御が設定された場合に、前記施設におけるローカル制御の受付を制限するステップBと、を備える、電力管理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-162501 | 2022-10-07 | ||
JP2022162501A JP2024055509A (ja) | 2022-10-07 | 2022-10-07 | 電力管理システム及び電力管理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024075538A1 true WO2024075538A1 (ja) | 2024-04-11 |
Family
ID=90608144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/034335 WO2024075538A1 (ja) | 2022-10-07 | 2023-09-21 | 電力管理システム及び電力管理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024055509A (ja) |
WO (1) | WO2024075538A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100138065A1 (en) * | 2009-02-11 | 2010-06-03 | Taft Jeffrey D | Method and system for reducing feeder circuit loss using demand response |
JP2011229374A (ja) * | 2010-04-19 | 2011-11-10 | General Electric Co <Ge> | 網において需要応答事象を計画するシステム及び方法 |
US20140277808A1 (en) * | 2013-03-15 | 2014-09-18 | Open Access Technology International, Inc. | Use of Demand Response (DR) and Distributed Energy Resources (DER) to mitigate the impact of Variable Energy Resources (VER) in Power System Operation |
US20170005474A1 (en) * | 2015-07-04 | 2017-01-05 | Sunverge Energy, Inc. | Virtual power plant |
WO2018043662A1 (ja) * | 2016-08-31 | 2018-03-08 | 京セラ株式会社 | 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム |
-
2022
- 2022-10-07 JP JP2022162501A patent/JP2024055509A/ja active Pending
-
2023
- 2023-09-21 WO PCT/JP2023/034335 patent/WO2024075538A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100138065A1 (en) * | 2009-02-11 | 2010-06-03 | Taft Jeffrey D | Method and system for reducing feeder circuit loss using demand response |
JP2011229374A (ja) * | 2010-04-19 | 2011-11-10 | General Electric Co <Ge> | 網において需要応答事象を計画するシステム及び方法 |
US20140277808A1 (en) * | 2013-03-15 | 2014-09-18 | Open Access Technology International, Inc. | Use of Demand Response (DR) and Distributed Energy Resources (DER) to mitigate the impact of Variable Energy Resources (VER) in Power System Operation |
US20170005474A1 (en) * | 2015-07-04 | 2017-01-05 | Sunverge Energy, Inc. | Virtual power plant |
WO2018043662A1 (ja) * | 2016-08-31 | 2018-03-08 | 京セラ株式会社 | 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム |
Also Published As
Publication number | Publication date |
---|---|
JP2024055509A (ja) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7103925B2 (ja) | 電力管理方法および電力管理システム | |
JP7538269B2 (ja) | 需要側装置及び発電側装置 | |
AU2021353150A1 (en) | Power control system and program | |
WO2024075538A1 (ja) | 電力管理システム及び電力管理方法 | |
Thompson et al. | Resiliency evaluation of net-zero residential communities | |
JP2020048370A (ja) | 電力管理方法および電力管理システム | |
JP7480246B2 (ja) | 電力管理装置及び電力管理方法 | |
JP7059394B2 (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
JP2023005861A (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
JP7208095B2 (ja) | サーバ装置及び制御方法 | |
JP7493110B1 (ja) | 電力管理装置、電力管理方法及びプログラム | |
JP7498350B2 (ja) | 電力管理装置、電力管理方法及びプログラム | |
JP7511613B2 (ja) | 通信装置、分散電源及び通信方法 | |
JP2023177798A (ja) | 管理装置及び管理方法 | |
WO2022070631A1 (ja) | 電力制御システム、電力制御装置およびプログラム | |
JP2024058999A (ja) | 電力管理装置及び電力管理方法 | |
JP2024059007A (ja) | 電力管理装置及び電力管理方法 | |
JP7480075B2 (ja) | 蓄電装置管理システム及び蓄電装置管理方法 | |
JP2023132558A (ja) | 電力管理装置及び電力管理方法 | |
JP7354394B2 (ja) | 電力管理装置及び電力管理方法 | |
WO2023095911A1 (ja) | 電力システム及び制御方法 | |
JP7162819B2 (ja) | 電力制御装置、電力制御システム及び電力制御方法 | |
WO2021060143A1 (ja) | 電力管理システム及び電力管理方法 | |
JP2023109296A (ja) | 電力システム及び制御方法 | |
EP4404427A1 (en) | Energy resource control method, control device, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23874667 Country of ref document: EP Kind code of ref document: A1 |